

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

High Performance MP2 for Condensed Phase Simulations

Ruyman Reyesa, Iain Bethunea*
aEPCC, The University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh, EH9 3JZ, UK

Abstract

This report describes the results of a PRACE Preparatory Access Type Cb project to optimise the implementation
of Møller-Plesset second order perturbation theory (MP2) in CP2K, to allow it to be used efficiently on the
PRACE Research Infrastructure. The work consisted of three stages: firstly serial optimisation of several key
computational kernels; secondly, OpenMP implementation of parallel 3D Fourier Transform to support mixed-
mode MPI/OpenMP use of CP2K; and thirdly - benchmarking the performance gains achieved by new code on
HERMIT for a test case representative of proposed production simulations. Consistent speedups of 8% were
achieved in the integration kernel routines as a result of the serial optimisation. When using 8 OpenMP threads
per MPI process, speedups of up to 10x for the 3D FFT were achieved, and for some combinations of MPI
processes and OpenMP threads, overall speedups of 66% for the whole code were measured. As a result of this
work, a proposal for full PRACE Project Access has been submitted.

Application Code: CP2K

1. Introduction

CP2K

CP2K [1] is an open-source program written in Fortran 95 for atomistic and molecular simulation. The code is
most well-known for its implementation of the QUICKSTEP [2] linear scaling DFT algorithm, but has been
designed in an extensible and efficient manner thus allowing users a wide choice of simulation methods from
classical, semi-empirical and DFT to Hartree-Fock and the recently added Møller-Plesset second order
perturbation theory (MP2) [3]. CP2K consists of over 800,000 lines of code and is developed by a distributed
team of researchers from across Europe.

Tödi

‘Tödi’ is a Cray XK6 system with hybrid GPU/CPU capabilities, installed at CSCS (the Swiss National
Supercomputing Centre) [4]. It features 176 GPU nodes, each one equipped with a 16-core AMD ‘Interlagos’
Opteron CPU, 32 GB DDR3 memory and one NVIDIA Tesla X2090 GPU with 6GB GDDR5 memory and 96
non-GPU nodes, each with the same CPU but no GPU for a total of 4352 cores in the entire machine

For this work we have used Todi extensively as development and testing platform, although we have not made
use of the GPU capabilities of the system. Access to this system was kindly provided by Prof. Jürg Hutter and
Prof Joost VandeVondele.

* Corresponding author. E-mail address: ibethune@epcc.ed.ac.uk

b Preparatory Access Type C provides PRACE users with access to PRACE RI resources for code development
and optimisation with the support of PRACE experts. Full details of how to apply can be found at
http://www.prace-ri.eu/Call-Announcements

High Performance MP2 for Condensed Phase Simulations

2

HERMIT

HERMIT, one of the PRACE Tier-0 HPC systems, is a Cray XE6 system and consists of 3552 compute nodes.
Each node contains two Dual Socket AMD ‘Interlagos’ CPUs running at 2.3 GHz, with 16 cores each making a
total of 32 cores per node and 113664 cores in the entire system. Hermit is installed at the HLRS [5], and access
was provided via the PRACE Preparatory access project 2010PA0723, submitted by Prof. Joost VandeVondele.

2. Profiling of MP2 Calculations
Throughout the project we have used a test system NH3_32_bulk which computes the MP2 energy of 32
Ammonia molecules arranged in a cubic cell of side 10Å (see Appendix A). Periodic boundary conditions and a
TZV2P basis set are employed. The calculation takes just over 15 minutes on 2400 cores. Initial analysis of the
routine timings output by CP2K (Table 1) showed that most of the time was spent in the
integrate_v_rspace routine, which computes the matrix elements corresponding to a potential stored on
real-space multigrids.
 SUBROUTINE CALLS SELF TIME(S) TOTAL TIME(S)
 AVERAGE MAXIMUM AVERAGE MAXIMUM
 CP2K 1 0.070 0.192 1040.238 1040.251
 mp2_gpw_compute 1 40.766 185.838 934.151 934.293
 integrate_v_rspace 97 716.798 742.346 731.760 757.871
 cp_dbcsr_multiply_d 195 0.002 0.002 123.330 131.867

Table 1 Breakdown of timings by routine for CP2K MP2 calculation

More detailed analysis using the Cray Performance Analysis Toolkit (CrayPAT) showed that in this case, much
of this time was spent in the xyz_to_vab and integrate_core_* routines (Table 2). xyz_to_vab
prepares for the integration operation by transforming from a Cartesian representation of a Gaussian basis
function to a spherical polar representation. integrate_core_* carries out the integration of the Gaussian
products, with a specialised version for each case of the total angular momentum quantum numbers of the two
basis functions.
|| Samp% | Samp | Imb. | Imb. |Group
|| | | Samp | Samp% | Function
--
|| 9.9% | 6434.3 | 400.7 | 5.9% | xyz_to_vab$integrate_pgf_product_rspace$qs_integrate
|| 7.4% | 4814.0 | 312.0 | 6.1% |integrate_core_2_
|| 7.0% | 4547.9 | 396.1 | 8.0% |dgemm_kernel
|| 6.1% | 3992.6 | 357.4 | 8.2% |integrate_core_1_
|| 4.4% | 2836.4 | 286.6 | 9.2% |blas_memory_alloc
|| 4.1% | 2675.8 | 249.2 | 8.5% |integrate_ortho$integrate_pgf_product_rspace$qs_integ
|| 3.8% | 2495.4 | 219.6 | 8.1% |integrate_core_3_
|| 2.9% | 1860.3 | 178.7 | 8.8% |_EXP_15
|| 2.9% | 1855.6 | 194.4 | 9.5% |integrate_core_0_
|| 2.8% | 1826.0 | 227.0 | 11.1% |dgemv_t
|| 2.7% | 1749.9 | 191.1 | 9.8% |integrate_pgf_product_rspace$qs_integrate_potential_
|| 2.6% | 1661.1 | 229.9 | 12.2% |exp_radius$qs_util_
|| 2.0% | 1330.6 | 155.4 | 10.5% |exp_radius_very_extended$qs_interactions_
|| 1.7% | 1095.9 | 101.1 | 8.4% |build_pgf_product_list$hfx_pair_list_methods_
|| 1.6% | 1059.0 | 140.0 | 11.7% |_dgemv_
|| 1.6% | 1037.8 | 122.2 | 10.5% |integrate_v_rspace$qs_integrate_potential_
|| 1.5% | 1002.6 | 144.4 | 12.6% |dgemm_oncopy
|| 1.4% | 884.6 | 140.4 | 13.7% |dgemm_otcopy
|| 1.3% | 831.7 | 159.3 | 16.1% |integrate_core_4_
|| 1.2% | 774.3 | 89.7 | 10.4% |build_pair_list_pgf$hfx_pair_list_methods_
|| 1.0% | 652.5 | 117.5 | 15.3% |int2pair$task_list_methods_

Table 2 CrayPAT sampling analysis of CP2K MP2 calculation. “Imb. Samp.” is a measure of load imbalance calculated as (max – mean)
over all processing elements.

The implementation of MP2 in CP2K is essentially embarrassingly parallel – processes compute the integrals for
a subset of the occupied and virtual orbital pairs independently. Therefore to speed up the overall calculation,
we investigated serial optimisation of these routines.

 High Performance MP2 for Condensed Phase Simulations

3

3. Specialized/improved version of xyz_to_vab
According to discussions with the CP2K developers, the values of the angular momentum quantum numbers
la_max_local and lb_max_local are typically integers between 0 and 7 inclusive. An analysis of the
testcase provided (Figure 1) highlighted that the most common parameter combinations are in fact combinations
of 0 and 1, thus making it worthwhile investing additional time optimizing these combinations.

Figure 1 Percentage of the total number of calls in the test problems for each combinations of values (la_max_local,lb_max_local).

Template system

xyz_to_vab has a complex nested loop structure depending on the values of the paramaters la_max_local
and lb_max_local which inhibits the compiler from generating efficient code. We planned to generate
specific versions of the routine for common values of la_max_local, lb_max_local, thus enabling
further optimizations to the routine by the compiler. Generating dozens of versions of the same routine would
reduce the sustainability of the code, so to facilitate future addition or replacement of subroutines or
optimizations, we have used a template system to specify the structure of the routines. The template is then
parsed by a python script, which generates the different versions of the routine.

The template variables are accessed using @<var_name>@ (e.g. @<la_max_local>@)). Fortran DO loops
are replaced by <$--(for ...)--> tags, and each correspondent ENDDO statement is replaced by a <$--
(end)--> tag. The python script unrolls loops by generating the contents of the loop with the iteration value.
For example, when parsing the code in Listing 1 the python script will generate the code in Listing 2.

1 <$--(for value in range (0,3))-->
2 a[@<value>@] = b[@<value>@]
3 <$--(end)-->

Listing 1 Example of loop using the template syntax

1 a[0] = b[0]
2 a[1] = b[1]
3 a[2] = b[2]

Listing 2 Code generated by the python script when parsing the code in Listing 1

High Performance MP2 for Condensed Phase Simulations

4

The code of the xyz_to_vab routine has been re-written using the template subsystem, using the values of
la_max_local and lb_max_local as template variables. For each combination of la_max_local and
lb_max_local we generate the code of the routine with the template and write all combinations to a file. A
caller routine with all combinations is generated as well. This caller routine uses the original, generic version of
the xyz_to_vab routine if the values of la_max_local and lb_max_local passed in is not
implemented by a specialised routine. CP2K developers only need to modify two parameters in the python script
to generate routines for other intervals e.g. if performing simulations with unusually large values of the L
quantum number.

Optimizations applied to the template

The routine is divided on two steps. First (as shown in Listing 3), the routine computes the polynomial expansion
coefficients, which are stored on a local temporary array named alpha. The array is de-allocated at the end of
the subroutine. The loop in line 3 has a constant number of iterations, and loops in lines 4 and 5 have at
maximum la_max_local or lb_max_local iterations. Boundaries of the loops in lines 8 and 11 are
computed in terms of the values of the loops 4 and 5. The variable lp = la_max_local + lb_max_local,
so it is also possible to compute its value at compile time for the specialized subroutines.

1 ALLOCATE(alpha(0:lp,0:la_max_local,0:lb_max_local,3))
2 alpha(:,:,:,:)=0.0_dp
3 DO iaxis=1,3
4 DO lxa=0,la_max_local
5 DO lxb=0,lb_max_local
6 binomial_k_lxa=1.0_dp
7 a=1.0_dp
8 DO k=0,lxa
9 binomial_l_lxb=1.0_dp
10 b=1.0_dp
11 DO l=0,lxb
12 alpha(lxa-l+lxb-k,lxa,lxb,iaxis)=alpha(lxa-l+lxb-k,lxa,lxb,iaxis)+ &
 binomial_k_lxa*binomial_l_lxb*a*b
13 binomial_l_lxb=binomial_l_lxb*REAL(lxb-l,dp)/REAL(l+1,dp)
14 b=b*(rp(iaxis)-(ra(iaxis)+rab(iaxis)))
15 ENDDO
16 binomial_k_lxa=binomial_k_lxa*REAL(lxa-k,dp)/REAL(k+1,dp)
17 a=a*(-ra(iaxis)+rp(iaxis))
18 ENDDO
19 ENDDO
20 ENDDO

Listing 3 Computation of the polynomial expansion coefficients.

When la_max_local and lb_max_local are known, we can fully unroll the loop nest facilitating further
optimization steps by the compiler. However, we performed a number of higher-level optimisations based on our
understanding of the algorithm. We replaced the dynamic allocation of the alpha array by the static declaration
of three separate alpha arrays, one per each iaxis value. This reduces the number of indirect addressing to
access memory locations. The iaxis loop is written now in the template, thus the code is still easy to follow.

Listing 4 shows the second part of the xyz_to_vab routine, where the vab vector is computed. This requires
several nested loops whose boundaries are computed in terms of la_max_local and lb_max_local, so
they can be expanded in the specialised routines. Some loop nests can be simplified or entirely removed when
la_max_local or lb_max_local are zero or one. For example, the loop in Line 4 can be replaced by a
single iteration if lp = 1 (i.e la_max_local + lb_max_local = 1). Loops from Line 26 to Line 29 can be
expanded in the template as well. Internal loops in Lines 30 and 32 feature relatively complex boundary
conditions involving the call to a MAX() intrinsic. However, if lzb + lyb is zero, we can simplify the loop
boundaries, again allowing the compiler freedom to optimise by removing the function call from the loop
bounds. This condition is known when parsing the template so different code will be generated depending on the
values of lzb and lyb.

Many other micro-optimizations have been implemented in the template. Further details are available on the
template itself, available in the CP2K Subversion repository [9].

 High Performance MP2 for Condensed Phase Simulations

5

When the values of the variables when la_max_local and lb_max_local are both zero this greatly
simplifies the code of the (0,0) routine into a single assignment. As the (0,0) case is one of the most common,
this greatly improves performance, as shown in Figure 2.

1 ALLOCATE(coef_ttz(0:la_max_local,0:lb_max_local))
2 ALLOCATE(coef_tyz(0:la_max_local,0:lb_max_local, &
 0:la_max_local,0:lb_max_local))
3 lxyz=0
4 DO lzp=0,lp
5 coef_tyz=0.0_dp
6 DO lyp=0,lp-lzp
7 coef_ttz=0.0_dp
8 DO lxp=0,lp-lzp-lyp
9 lxyz=lxyz+1
10 DO lxb=0,lb_max_local
11 DO lxa=0,la_max_local
12 coef_ttz(lxa,lxb) = coef_ttz(lxa,lxb)+ &
 coef_xyz(lxyz)*alpha(lxp,lxa,lxb,1)
13 ENDDO
14 ENDDO
15 ENDDO
16 DO lyb=0,lb_max_local
17 DO lya=0,la_max_local
18 DO lxb=0,lb_max_local-lyb
19 DO lxa=0,la_max_local-lya
20 coef_tyz(lxa,lxb,lya,lyb)=coef_tyz(lxa,lxb,lya,lyb)&
 +coef_ttz(lxa,lxb)*alpha(lyp,lya,lyb,2)
21 ENDDO
22 ENDDO
23 ENDDO
24 ENDDO
25 ENDDO
26 DO lzb=0,lb_max_local
27 DO lza=0,la_max_local
28 DO lyb=0,lb_max_local-lzb
29 DO lya=0,la_max_local-lza
30 DO lxb=MAX(lb_min_local-lzb-lyb,0), &
 lb_max_local-lzb-lyb
31 jco=coset(lxb,lyb,lzb)
32 DO lxa=MAX(la_min_local-lza-lya,0), &
 la_max_local-lza-lya
33 ico=coset(lxa,lya,lza)
34 vab(ico,jco)=vab(ico,jco)+ &
 coef_tyz(lxa,lxb,lya,lyb)&
 *alpha(lzp,lza,lzb,3)
36 ENDDO
37 ENDDO
38 ENDDO
39 ENDDO
40 ENDDO
41 ENDDO
42 ENDDO

Listing 4 Sketch of the second part of the xyz_to_vab routine

High Performance MP2 for Condensed Phase Simulations

6

A set of additional Gfortran compiler flags focused on constant optimizations (-fgcse-sm -fgcse-las -
fmerge-all-constants) was also explored, but the additional building time required did not compensate
the performance achieved. It is worth to considering using these flags for the auto-tuning framework (see Section
4), where the building time is not as important for compiling the entire code.

Figure 2 Impact of the different optimizations applied on the execution time of the xyz_to_vab routine according to CP2K internal timing.

To avoid extending the build time of the default C2PK code beyond acceptable limits, two different templates
were used. The default one completely unrolls all the possible loops, as described before. However, when
la_max_local or lb_max_local are greater than a specific number (currently set to 3) the size of the
routine increases noticeably, as does its compilation time.

An alternative template, where only the inner loops are expanded, is provided in the python script. A parameter
on this script allows generation of the routine using one or other template depending on the size of
la_max_local and lb_max_local.

4. Auto-tuning framework for integrate kernels
As shown in Section 2 the integration kernels integrate_core_* make up a significant fraction of the total
computation. There are also kernels for collocation (the inverse of integration). Although these are not important
in MP2 calculations, they are very similar, so we applied all our optimisations to both sets of routines, thus
benefitting a wider range of users of the code, in addition to the specific application this project supported.
Similarly to xyz_to_vab these routines feature a set of nested loops accessing to two- and three-dimensional
arrays. Both routines are called several times using different parameters. However, the parameter defining the
number of iterations of the internal loops (lp) is typically between 0 and 7.

Listing 5 shows a sketch of the integrate routine. All occurrences of the lp variable are highlighted in red. There
are three loops whose boundaries are defined by this variable. If the value of lp were known in compile time,
loops could be unrolled or written using vector notation to increase efficiency. Similar situation arises in the
collocate routines.

We have created versions of the integrate and collocate routines for each possible value of lp within a defined
range of the most frequent values (set to 7 by default). This facilitates the compiler to generate efficient code for
these cases, improving overall performance.

From our experience with different systems, we have found that the optimal sequential micro-optimizations vary
greatly across compilers and platforms. An optimization that benefits a particular compiler might hinder the
performance on others. The existing code had a particular set of loop optimisations applied, but we found that
these did not give performance that was portable from one system to another.

To prevent this, and to provide CP2K users with the best possible performance, we have adapted an existing
auto-tuning framework for these routines. Updated reasonable defaults are provided with the C2PK distribution,
and the auto-tuning framework is now bundled with the code so that users can generate their own optimized
version for their particular system.

0	

1	

2	

3	

4	

5	

6	

Original	 0me	 Template	
op0miza0on	

Simplify	 case	
(0,0)	

Compiler	 flags	

Ti
m
e	
(s
)	

Time	 spent	 in	 xyz_to_vab	

 High Performance MP2 for Condensed Phase Simulations

7

The auto-tuning framework generates different implementations of both integrate and collocate routines using
various source transformations:

• Unroll the loop in Line 7
• Use vector notation for contents of loop in Line 7
• Unroll the loops in Lines 15 and 16
• Use vector notation in the loop contents in Line 16
• Unroll the loops in lines 26,28 and 29
• Use vector notation for the contents of the loop in Line 29

1 DO kg=kgmin,0
2 ...
3 DO jg=jgmin,0
4 ...
5 DO ig=igmin,igmax
6 ...
7 DO lxp=0,lp
8 coef_x(1,lxp)=coef_x(1,lxp)+s01*pol_x(lxp,ig)
9 coef_x(2,lxp)=coef_x(2,lxp)+s02*pol_x(lxp,ig)
10 coef_x(3,lxp)=coef_x(3,lxp)+s03*pol_x(lxp,ig)
11 coef_x(4,lxp)=coef_x(4,lxp)+s04*pol_x(lxp,ig)
12 ENDDO
13 ENDDO
14 lxy=0
15 DO lyp=0,lp
16 DO lxp=0,lp-lyp
17 lxy=lxy+1
18 coef_xy(1,lxy)=coef_xy(1,lxy)+coef_x(1,lxp) &
 * pol_y(1,lyp,jg)
19 coef_xy(2,lxy)=coef_xy(2,lxy)+coef_x(2,lxp) &
 * pol_y(1,lyp,jg)
20 coef_xy(1,lxy)=coef_xy(1,lxy)+coef_x(3,lxp) &
 * pol_y(2,lyp,jg)
21 coef_xy(2,lxy)=coef_xy(2,lxy)+coef_x(4,lxp) &
 * pol_y(2,lyp,jg)
22 ENDDO
23 ENDDO
24 ENDDO
25 lxyz = 0
26 DO lzp=0,lp
27 lxy=0
28 DO lyp=0,lp-lzp
29 DO lxp=0,lp-lzp-lyp
30 lxyz=lxyz+1 ; lxy=lxy+1
31 coef_xyz(lxyz)=coef_xyz(lxyz)+coef_xy(1,lxy) &
 * pol_z(1,lzp,kg)
32 coef_xyz(lxyz)=coef_xyz(lxyz)+coef_xy(2,lxy) &
 * pol_z(2,lzp,kg)
33 ENDDO
34 lxy=lxy+lzp
35 ENDDO
36 ENDDO
37 ENDDO

Listing 5 Sketch of the default version of the integrate routine

High Performance MP2 for Condensed Phase Simulations

8

Similar transformations are performed in the collocate routine. All combinations are tested individually for each
value of lp. Caller routines, acting as wrappers to the original calls to collocate and integrate, are generated as
well.

All the code generated by the auto-tuning framework, is first checked for correctness using provided sample data
(avoiding possible miscompiled code at high optimization levels) and then has its performance measured.

When all possible combinations of transformations are explored, a script summarizes the timings and returns the
best combination of optimizations for each lp value. This combination is finally used to generate the library
libgrid.a. This library can be linked with CP2K and will override the defaults if the appropriate pre-
processor macro (__HAS_LIBGRID) is defined when building CP2K.

Figure 3 shows the workflow of the auto-tuning framework. The user needs to set the appropriate compiler
options for their architecture by modifying the variables FC_comp and FCFLAGS in the config.in file. Then
they can generate the library Makefile by running the main script (generate_makefile.sh). The default
behaviour is to build and test the library.

It is important to note that creating the entire library might take a significant amount of time, particularly when
compiling with high optimization levels. The Makefile has been designed in such a way that it is possible to
split the creation of the library into separate steps. The README file included in the package provides the users
with the necessary instructions.

Figure 3 Auto-tuning framework workflow. Bash scripts are highlighted in orange, grey is used for Makefile and cyan for user-editable
files. Yellow boxes represent Makefile targets.

 High Performance MP2 for Condensed Phase Simulations

9

Figure 4 shows the execution time for the collocate routine for each lp size using the best combination for
different compilers on Todi. For each of these cases a different set of optimisations was applied by the auto-
tuning framework to generate the best performing executable. The poor performance of code produced by the
Cray compiler compared with GNU or Intel compilers is not yet understood, although Cray are currently
investigating the issue.

Figure 4 Comparison of execution times for the optimized collocate routines. ‘Default’ stands for the default CFLAGS set in the CP2K SVN
and compiled with gfortran 4.7. ‘Gfortran tuned’ uses a set of additional compilation flags to pre-compute constant values at compile time.
‘Cray o2’ and ‘Cray o3 ‘represents the time using the Cray Compiler Environment 8.0.6 with flags –O2 and –O3 respectively. ‘Intel’ stands
for the Intel compiler using the –O3 flag.

5. OpenMP 3D FFT routines
As in standard DFT calculations using QUICKSTEP, Fast Fourier Transforms are required to transform the
density on real-space grids into a plane-wave grid representation, and transform the corresponding potential
found by the Poisson solver back into real-space. While significant effort has been expended on efficient FFT
using both MPI and OpenMP [6][7], this has focused on distributed-data FFTs, which are required when the
grids are distributed as is the case for most parallel calculations. In MP2 however, due to the distribution of
orbital pairs to processes, each MPI process has its own local grids which are transformed in isolation, and thus a
serial FFT is performed on each process. To get the best possible scalability from CP2K, and in some cases to
access the maximum memory available per process, it is desirable to use mixed-mode MPI and OpenMP. The
serial FFT routines were not previously OpenMP-parallel as they were considered unimportant but as a result
they can prove to be costly in MP2 calculations where large numbers of threads per process are used. Therefore
we investigated adding OpenMP threading to the serial 3D FFT routine in CP2K.

CP2K uses FFTW3 [8] as the default FFT library, although an in-build FFT is also available for systems where
FFTW3 is not installed. The module fft3_lib.F contains the routines to create, execute and destroy the FFT
plans. The subroutine fftw3_create_plan_3d receives the plan structure (defined in fft_types.F), the
input and output arrays and the plan style according to the input parameters from the user, indicating if the plan
is ESTIMATE, MEASURE, PATIENT or EXHAUSTIVE. These values indicate to the FFTW planner how much
time should spend computing the optimal plan, thus trading off setup time for potentially better runtime
performance.

The initial code in CP2K calls the FFTW 3D transform routines directly. It is possible to allow FFTW to use
available OpenMP threads during execution of an FFT, but prior experience had shown that it was sometimes
possible to get better performance by splitting the FFT into independent FFTs on each axis, and parallelising
over these with threads.

High Performance MP2 for Condensed Phase Simulations

10

After exploring different possible strategies for the parallelisation we concluded that the most suitable
implementation for the evaluated systems (and potentially for other systems as well) was to use separate one-
dimensional plans for each dimension, splitting the Z-axis of the input array across the different OpenMP
threads. Three plans (fftw_plan_nx, fftw_plan_ny and fftw_plan_nz) are created. In the case that
the size of the Z dimension does not divide evenly into the number of threads, initially we simply performed the
remaining FFTs on a single thread.

This implementation of the separated plans uses the FFTW Guru Interface rather than the basic interface used
before. The Guru Interface enables usage of different strides for each dimension of the array containing the data
to be transformed. This is required so we can manually distribute the work between the threads.

In addition, based on the assumption that for large arrays as the FFT is a memory-bandwidth limited operation,
we opted for transposing the output of the FFTW in each dimension so the next FFTW will perform its
transformation on contiguous data (i.e. the stride is one), to promote efficient streaming of data from main
memory.

Figure 5 Steps to compute the 3D FFTW in the fft3d_s routine for the out-of-place case.

We evaluated different combinations for transposing and computing the arrays of the FFT. The optimal order for
computing each plane of the 3D FFTW is shown in Figure 5. In particular, we found that the final transposition
is best not computed directly in the output of the Z-axis FFT but using an external loop, parallelized using
OpenMP. This method proved to be faster than directly transposing the tmp array for many cases. We have
prioritised the large grid sizes in our choice of implementation, since these are intrinsically more expensive.
There are comments in the source with instructions on how to change this order, facilitating future optimization
work on other platforms.

A comparison of the performance of different FFTW-OpenMP implementations is shown in Figure 6. Overall,
we see speedups of 2-10x over the serial FFT when using 8 threads with our chosen implementation, depending
on the size of the grid. However, we observe that performance is poor when using a large number of threads
with a small grid size. This is due to load imbalance - when the grid size is not evenly divided into the number of
threads, the remainder part is performed sequentially.

To avoid this issue, instead of doing the remainder sequentially, we distribute the remaining rows over the
working threads. For example, if we are using 4 threads and there are 7 FFTs to perform, with the initial
implementation four threads will perform one FFT each and then three rows would be performed sequentially by
one thread. With our improved load balancing mechanism, three threads will perform the two FFTs while the last
one will perform a single FFT, thus minimising the imbalance. The performance of this scheme is shown in
Figure 7.

FFTW	 	
X	 axis	 	

(zin,tmp)	

•  Each	 thread	 computes	
nz/threads	

•  Output	 is	 transposed	
to	 M(nz,nx,ny)	

FFTW	 	
Y	 axis	

(tmp,zout)	

•  Each	 thread	 computes	
nz/threads	

•  Outut	 is	 transposed	 to	
M(nx,ny,nz)	

FFTW	 	
Z	 axis	

(zout,tmp)	

•  Each	 thread	 computes	
ny/threads	

Do	 loop	 	 	
zout	 =	 tmp	

• All	 threads	
workshare	 the	
tranposition	 of	
the	 tmp	 vector	
to	 M(nz,ny,nx)	

 High Performance MP2 for Condensed Phase Simulations

11

Figure 6 Comparison of speedup over the sequential implementation of the 3D FFT using FFTW threads(red) against three different
implementations of FFTW with manual OpenMP. The green line represents an implementation not transposing the Z-axis; the magenta line
represents an implementation transposing the output of both Y- and Z-axis; and finally, the cyan line represents an implementation
transposing the output of the Z-axis on an external OpenMP loop instead of directly transposing the FFTW output.

Figure 7 Speedup of the alternative load balancing mechanism over the initial implementation for a variety of grid sizes.

This alternative load balance mechanism cannot be directly applied in the single precision case (__FFT_SGL).
FFTW requires that if a plan is re-used for multiple arrays (or in our case, by multiple threads at offsets into the
same array), each input must have the same alignment with respect to 16-byte boundaries to allow vector

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

1	 2	 4	 8	 16	

Sp
ee
du

p	

Number	 of	 cores	

Speedup	 of	 load	 balanced	 version	

256x256x256	

64x64x64	

256x32x64	

120x120x120	

512x512x512	

120x75x91	

75x75x75	

High Performance MP2 for Condensed Phase Simulations

12

instructions like SSE or AVX to be used. However, with single precision complex numbers each element is 8
bytes and so we have no guarantee that the start of each thread’s data has the same alignment if the number of
elements per thread is odd. In this case we implemented a different approach where N-1 threads will perform an
even number of FFTs whereas the last one will perform the remainder. For example, if the total number of FFTs
is 11 and there are 4 threads, the first three threads would perform the FFTW of 2 rows whereas the last one
would perform the 5 remaining rows. Although the imbalance in this case is bigger than in the double precision
case, we avoid doing additional FFTs sequentially, and still respect the alignment requirements.

6. Overall performance evaluation on HERMIT
In order to evaluate the performance improvements achieved as a result of the above work we have carried out
benchmarking of the new version of the code using the PRACE HERMIT system, using the aforementioned
NH3_32_bulk test case.

Figure 8 shows a comparison of the execution time of MPI-only execution with fully populated nodes - one MPI
rank per CPU core. The blue line shows the wall-clock execution time required for the test case with the initial
version of the code, whilst the red line shows the execution time using the current version of CP2K including the
improvements implemented during this project. Notice that the execution time slightly increases with a larger
number of cores with the new version with respect to the previous version. Figure 9 shows the speedup obtained
in the modules affected by our project together with the overall speedup of execution. Since we are not using
threads in this particular execution, we expect the FFT time to remain unchanged. We see a speedup of 8% from
the optimised grid operations across all core counts. The drop in overall speedup at 8192 and 16384 cores is due
to the introduction of the routine replicate_mat_to_subgroup in the MP2 implementation. This routine
uses a message-round-a-ring approach with blocking MPI_SendRecv calls to distribute matrix data to the
subgroups. As confirmed by our timing reports, the cost of this scales linearly with the number of MPI
processes, and may become a bottleneck to further scaling (on 16384 cores it takes ~10% of the total runtime).
Investigating a tree-based broadcast is recommended, although we did not have time to do this within the scope
of this project.

Figure 8 Execution time of the NH3 test case using 1 MPI rank per core.

0	

200	

400	

600	

800	

1000	

1200	

1400	

2048	 4096	 8192	 16384	

Ex
ec
ut
io
n	
Ti
m
e	
(s
)	

Number	 of	 cores	 (1rank/core)	

Before	 After	

 High Performance MP2 for Condensed Phase Simulations

13

Figure 9 Speedup of each individual routine before and after compared with the overall speedup in HERMIT.

Figure 10 Execution time of the NH3 test case using 1 MPI rank per NUMA node (4 MPI ranks per node, 8 threads per rank)

0.80	

0.90	

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

2048	 4096	 8192	 16384	

Sp
ee
du
p	

Number	 of	 cores	 (1rank/core)	

Overall	 fft3d_s	 integrate_v_rspace	

0	

500	

1000	

1500	

2000	

2500	

3000	

2048	 4096	 8192	 16384	

Ex
ec
ut
io
n	
Ti
m
e	
(s
)	

Number	 of	 cores	 (4rank/node,8th/rank)	

Before	 After	

High Performance MP2 for Condensed Phase Simulations

14

Figure 11 Speedup of individual routines in the current version of CP2K with respect to the initial version of the code (4 MPI ranks per node,
8 threads per rank)

We also measured the wall-clock time for calculations using multiple OpenMP threads per MPI rank. In this
case we chose 8 threads to make best usage of the local caches and memory affinity, since there are 8 cores per
NUMA region on the AMD ‘Interlagos’ processor architecture. The overall runtime of the initial and new
versions of the code are shown in Figure 10 and the speedup over the initial code is shown in Figure 11. The
speedup of the new FFT routines is around 3, which is a good result given that the largest FFT grid used in this
calculation is 903. Again, the small but constant speedup from the optimised grid operations is observed. Overall,
we find speedups of between 8% and 66% over the initial version of the code. The reason for this variation is
the relative cost of the FFT compared with the MP2 integrals and Hartree-Fock computation.

It is worth noting that when using 8192 or 16384 cores, the runs with 8 OpenMP threads per rank are 44% and
34% faster respectively than the MPI-only runs, demonstrating the value of using mixed-mode parallelism for
these types of calculations at large scale.

7. Conclusion
To summarise, we have optimised two key parts of the CP2K code needed for efficient MP2 calculations at large
scale. Firstly, we have used loop structure optimisation via templates and an auto-tuning approach, to generate
code for key integration kernels that can be effectively optimised by the compiler, to give maximal performance
on any given machine architecture. For our Gfortran on AMD Interlagos environment, we found a speedup of
around 8% over the original code for these routines. Larger speedups may be obtained on other architectures for
which the initial code is further from optimal. We have also implemented a new OpenMP-parallel 3D FFT
routine, which gives speedups of 2-10x when using 8 OpenMP threads depending on the size of the FFT grid.
For a test case representative of a real user job we found the FFT performance was improved by a factor of 3.
All of our improvements are in the current SVN trunk, available for download at on the CP2K SourceForge
project page [9].

We have identified a communication-bound routine replicate_mat_to_subgroup which scales poorly
with increasing numbers of MPI processes, although we note that already at 8192 cores, it is more efficient to
use mixed-mode MPI/OpenMP parallelism, which will mitigate this cost to some extent.

Finally, we note that Prof. Joost VandeVondele, whose use of the PRACE RI this project was designed to
support had now submitted a request for 40 million CPU hours to perform ground-breaking MP2 calculations, so
we consider this preparatory access project to have been a success.

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

2048	 4096	 8192	 16384	

Sp
ee
du
p	

Number	 of	 cores	 (4rank/node,8th/rank)	

Overall	 fft3d_s	 integrate_v_rspace	

 High Performance MP2 for Condensed Phase Simulations

15

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-283493. We acknowledge that the results of this
research have been achieved using the PRACE Research Infrastructure resource HERMIT based in Germany at
HLRS.

We are very grateful to Prof. Joost VandeVondele (ETH Zurich) and Prof. Jürg Hutter (Univ. Zurich) for help
and advice on code development and for access to the Cray XK6 at CSCS for development and testing.

References
[1] CP2K Project Website, http://www.cp2k.org
[2] Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach, J. VandeVondele, M.

Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comp. Phys. Comm. 167, 103 (2005).
[3] Second Order Møller-Plesset Perturbation Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and Plane

Waves Approach, M. Del Ben, J. Hutter and J. VandeVondele, Journal of Chemical Theory and Computation (2012)
[4] Swiss National Supercomputing Centre, http://www.cscs.ch
[5] High Performance Computing Center Stuttgart, http://www.hlrs.de
[6] Improving the performance of CP2K on HECToR, I. Bethune, HECToR dCSE Report, (2009)
[7] Improving the scalability of CP2K on multi-core systems, I. Bethune, HECToR dCSE Report (2010)
[8] The Design and Implementation of FFTW3, M. Frigo and S. Johnson, Proceedings of the IEEE 93 (2), 216-231 (2005)
[9] CP2K SVN repository, http://sourceforge.net/p/cp2k/code

High Performance MP2 for Condensed Phase Simulations

16

Appendix A

CP2K Input file NH3_32_bulk used for profiling and testing throughout this project:

&GLOBAL
 PROJECT periodic_NH3_32_real_TZ
 PRINT_LEVEL MEDIUM
 RUN_TYPE ENERGY
 &TIMINGS
 THRESHOLD 0.01
 &END
&END GLOBAL
&FORCE_EVAL
 METHOD Quickstep
 &DFT
 BASIS_SET_FILE_NAME HFX_BASIS
 POTENTIAL_FILE_NAME GTH_HF_POTENTIALS
 &MGRID
 CUTOFF 200
 REL_CUTOFF 25
 &END MGRID
 &QS
 METHOD GPW
 EPS_DEFAULT 1.0E-15
 EPS_PGF_ORB 1.0E-30
 &END QS
 &SCF
 SCF_GUESS RESTART
 EPS_SCF 1.0E-7
 MAX_SCF 100
 ADDED_MOS 15000 15000
 &END SCF
 &XC
 &XC_FUNCTIONAL NONE
 &END XC_FUNCTIONAL
 &HF
 FRACTION 1.0000000
 &SCREENING
 EPS_SCHWARZ 1.0E-8
 SCREEN_ON_INITIAL_P FALSE
 &END SCREENING
 &INTERACTION_POTENTIAL
 POTENTIAL_TYPE TRUNCATED
 CUTOFF_RADIUS 5.0
 T_C_G_DATA t_c_g.dat
 &END
 &END HF
 &MP2
 METHOD MP2_GPW
 &MP2_GPW
 &END
 MEMORY 1300.
 NUMBER_PROC 1
 &END
 &END XC
 &END DFT
 &SUBSYS
 &CELL
 ABC 10.182 10.182 10.182
 &END CELL
 &COORD
 <Full coordinates removed, contact ibethune@epcc.ed.ac.uk for a copy of the full system>
 &END COORD
 &KIND H
 BASIS_SET cc-TZV2P-GTH
 POTENTIAL GTH-HF-q1
 &END KIND
 &KIND N
 BASIS_SET cc-TZV2P-GTH
 POTENTIAL GTH-HF-q5
 &END KIND
 &TOPOLOGY
 &CENTER_COORDINATES
 &END
 &END TOPOLOGY
 &END SUBSYS
&END FORCE_EVAL

