

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Enabling CP2K Application for Exascale Computing with

Accelerators using OpenACC and OpenCL

Mariusz Uchroński
a
*, Agnieszka Kwiecień

a
, Marcin Gębarowski

a

aWCSS, Wroclaw University of Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

CP2K is an application for atomistic and molecular simulation and, with its excellent scalability, is particularly

important with regards to use on future exascale systems. The code is well parallelized using MPI and hybrid

MPI/OpenMP, typically scaling well to ~1 core per atom in the system. The research on CP2K done within

PRACE-1IP stated that due to heavy usage of sparse matrix multiplication for large systems, there is a place for

improvement of performance. The main goal of this work, undertaken within PRACE-3IP, was to investigate

the most time-consuming routines and port them to accelerators, particularly GPGPUs. The relevant areas of

the code that can be effectively accelerated are the matrix multiplications (DBCSR library). A significant amount

of work has already been done on DBCSR library using CUDA. We focused on enabling the library on

a potentially wider range of computing resources using OpenCL and OpenACC technologies, to bring the overall

application closer to exascale. We introduce the ports and promising performance results. The work done has led

to the identification of a number of issues with using OpenACC in CP2K, which need to be further investigated

and resolved to make the application and technology work better together.

Introduction

CP2K [1] is an open-source application designed for atomistic and molecular simulation of solid state, liquid,

molecular and biological systems. CP2K proved to be a highly scalable code [2], what makes it a good candidate

to use on the current petascale and future exascale systems. The code is written in FORTRAN 95, well

parallelized with MPI and, in some parts, with hybrid MPI/OpenMP [15]. It is typically scaling well to ~1 core

per atom in the system. CP2K supports the research of many science communities, as it is widely used for

materials science, life sciences and computational chemistry. The code has been used by several projects on

PRACE Research Infrastructure, including national Tier-1 resources, across the PRACE regular and DECI calls.

It has been added to the Unified European Applications Benchmark Suite [3].

The main goal of this work, undertaken within PRACE-3IP, was to identify most promising routines in the

CP2K code and port them to accelerators, particularly GPGPUs. The research on CP2K done within PRACE-1IP

[2] stated that due to heavy usage of sparse matrix multiplication for large systems, there is still a place for

improvement of the performance. Thus, the relevant areas of the code that could be effectively accelerated are

the matrix multiplications in DBCSR library [16]. Based on previous suggestions and our analysis we decided to

focus on the DBCSR library. A significant amount of work has already been done on the library using CUDA.

The CUDA implementation of matrix multiplication in DBCSR has been refactored lately, and resulting

improvements are included in the release of CP2K v2.5. Our aim was to enable it on a potentially wider range of

computing resources, using OpenCL and OpenACC technologies. Both technologies have been identified by

PRACE as important for exascale computing [4], and it is of interest to evaluate the possibility of using them to

bring the application closer to exascale.

Within this task we have worked on CP2K v2.4. At the time of writing of this paper v2.5 is available for

download.

2

Technology used

OpenACC [9] is a directive-based open standard supported by NVIDIA, PGI, Cray and CAPS, designed to

simplify parallel programming of heterogeneous CPU/GPU systems [4]. The developer can annotate C, C++ and

FORTRAN source code to identify the areas to be accelerated using #pragma compiler directives and additional

functions. It is portable across operating systems, and multi-core processors such as NVIDIA and AMD GPUs,

and Intel Xeon Phi [4], but the range of target options depends on the compiler used. The latest version of

the standard, OpenACC 2.0a [5], was announced on August 31, 2013.

OpenCL [10] is an open standard for parallel programming of heterogeneous computing systems. It provides an

API and a standard language to write portable code for multi-core CPUs, GPUs, APUs and other architectures,

including latest Intel Xeon Phi accelerators. OpenCL kernels are written in a subset of the ISO C99 language that

is compiled at runtime to target a particular computing device. An interesting feature of this technology is that

the code prepared for Intel Xeon processors is also runnable on the Intel Xeon Phi with minimal changes [4], but

it might result in sub-optimal performance. The latest version of the standard, OpenCL v2.0 [11], was announced

in 18 March, 2014.

Hardware used

For development and testing we used the Supernova system, located at Wrocław Centre for Networking and

Supercomputing (WCSS). The system was used to obtain most of the results presented in this paper.

Supernova serves as a Tier-1 machine within PRACE infrastructure, and is a cluster running the Scientific Linux

operating system. The cluster is equipped with 404 thin nodes comprising two six-core Intel Xeon X5650

processors running at 2.67 GHz with 32 GB of memory per node, and 3 fat nodes with four sixteen-core AMD

Opteron 6274 processors with 256 GB of memory and two NVIDIA Tesla M2075 (448 cores, 6 GB of memory)

per node. For tests and development we used also two additional nodes: one with two NVIDIA GTX 480 and

second with two AMD Radeon HD 6950 GPUs. The nodes have the GNU compilers, Portland Group’s PGI

Accelerator compilers and NVIDIA CUDA 5.0 (where necessary) installed.

Some part of the work was continued on the Zeus system, located at ACK Cyfronet AGH in Kraków, Poland.

The system also serves as PRACE Tier-1 machine and has the PGI compilers installed. The GPGPU part of

the cluster consists of nodes comprising Intel Xeon X5670 or E5645 processors and NVIDIA Tesla M2050 or

M2090 GPUs. It is running the Scientific Linux 5 operating system.

For testing, the Fionn system located at Irish Centre for High-End Computing (ICHEC), has also been used.

The system consists of several partitions, and the hybrid one contains 32 nodes, with two ten-core 2.2 GHz Intel

Ivy Bridge processors and 64 GB of memory each. 16 nodes of this partition have 32 Intel Xeon Phi 5110P

accelerators while the other 16 have 32 NVIDIA K20X's.

Porting and testing

OpenACC port

The work undertaken within this task started from a compilation of the CP2K v2.4 source code (release date:

2013-06-19) on Supernova using gfortran from the GNU compiler suite (v4.8), as it is known the code work

well with it. The compilation of SOPT (pure serial) and POPT (pure MPI, with OpenMPI support) versions

ended without any difficulty and the application tests from a test suite have been successfully run.

OpenACC directives are supported by only a few compilers, and the mostly used are Portland Group’s PGI

Accelerator compilers [13]. We decided to use PGI suite in our further work. Other compilers with OpenACC

support, like CAPS [8] and Cray have not been initially considered, due to lack of access to the license or

appropriate hardware. As a first step we planned to compile the existing source code and then introduce

the OpenACC port, run tests and compare the performance. For debugging purposes we have used Allinea DDT

[12] and PGDBG [14].

A number of different issues were identified when building CP2K with the pgfortran from the PGI compiler

suite, including non-implemented FORTRAN functions and a segmentation fault. We mainly used PGI version

13.5, but next releases 14.1 and 14.3 were also tested, with no improvement in the problematic areas. Slow

compilation when using PGI has been a disadvantage, limiting to some extent possibilities of exploring different

compilation options and target architectures in a given time frame. The issues encountered and the proposed

work-around are summarised below:

3

1. The compilation stopped with an error indicating that Error Function ERFC(X) from the FORTRAN 2008

standard [6] is not supported by the compiler. We investigated the PGI support for FORTRAN standards

and while FORTRAN 2003 is officially stated as fully supported, the coverage for FORTRAN 2008

specific features is still low, resulting in the mentioned error. At first we replaced the function called erfc

with a direct implementation done by Takuya Ooura from Research Institute for Mathematical Sciences at

Kyoto University, Japan [7]. This work-around solved the problem resulting in a successful compilation,

but was treated only as a temporary solution. Then we’ve found a direct implementation of the erfc

function provided in CP2K code in erf_fn module (used several times in different parts of the code).

Thus we’ve replaced the original FORTRAN 2008 function call with the one from the CP2K module. It

required including the module in a hfx_types.F file. This will be no longer an issue as soon as PGI

fully supports FORTRAN 2008 extensions. The newest release available to date (14.3) implements some

further features, so there is progress in this direction.

2. Application ended with a segmentation fault error on all the tests from the test suite. An analysis reviled

that the error is propagated in matrix multiplication nested operations (used in several files

e.g. atom_operators.F and atom_utils.F). The erroneous line of code in atom_operators.F file is as

follows:

INT(1:n,1:n) = INT(1:n,1:n) +

MATMUL(TRANSPOSE(cm(1:m,1:n)),MATMUL(omat(1:m,1:m),cm(1:m,1:n)))

We have implemented a simple program performing the above calculations and it compiles and runs

without errors, even for big matrices, so we suppose the problem is more likely linked to the application

context in connection to the compiler. Such nested matrix operations may generate a big number of

temporary data stored on the stack, and using the ulimit -s unlimited option might prevent

the segmentation fault, but the unlimited stack size is already a default value on Supernova.

We have compiled the program with the debug –g flag and run it within the Allinea DDT debugger [12]

(v3.2.1) with the simple test cp2k/tests/QS/C.inp. The above error was duplicated and DDT reported:

STOPED in SUBROUTINE contract2add (int, omat, cm, error) in a file:

#1 contract2add () at /home/gensiub/cp2k-2.4.0/obj/Linux-x86-64-

pgi/sopt/atom_operators.f90:1031 (at 0x000000000057beed)

Setting a breakpoint at atom_operators.f90:1031 and stepping into the operation resulted

in displaying of a notice:

Thread 1 stopped in pgf90_mmul_real8 with signal SIGSEGV (Segmentation fault).

Reason/Origin: address not mapped to object (attempt to access invalid address)

The memory debugging in DDT reported issues with the memory management on an earlier phase,

in the function create_cp2k_input_reading (input_cp2k.f90:133), giving an error

in pgf90_ptr_alloc04 called by the keyword_create function (input_keyword_types.f90:211),

and the DDT notice:

Memory error detected in __memset_sse2 from /lib64/libc.so.6:

read/write before start of allocation

An analysis with the PGDBG (v14.3 on Zeus@Cyfronet) has given similar messages:

Signalled SIGSEGV at 0x1EE1EB7, function pgf90_mmul_real8

 0x1EE1EB7: F2 41 F 10 1F movsd (%r15),%xmm3

The stack trace started and ended with memory errors:

#16 cp2k line: "cp2k.f90"@331 address: 0x407688

#15 run_input line: "cp2k_runs.f90"@1191 address: 0x6A94C3

 input_file_path = 0x7FFFECE58370, output_file_path = 0x7FFFECE58770,

 ierr = 0, ERROR: Cannot read value at address 0x0.

(…)

#1 err_matrix line: "atom_utils.f90"@1507 address: 0x56F549

 emat = 0xA3A8EC0, demax = 4.9406564584124654e-324, kmat = 0xA3A8CE0,

 pmat = 0xA39A4A0, umat = 0xA38CFD0, upmat = 0x60A0F50, nval = 0xA38B444,

 nbs = 0xA38FDF4, error = 0x7FFFECE54AA0, = <unavailable>

#0 pgf90_mmul_real8 address: 0x1EE1EB7

We suspect some initialization errors, but to find out the possible reason, more investigation on the source

code is needed, if further time allows.

4

Due to the issues mentioned above we decided to do some of the porting in parallel, expecting to find solutions

of the problems at some point. We started with the source code analysis of the DBCSR library in order to

introduce the OpenACC directives into the code. Because the segmentation fault error was not resolved

in a reasonable timeframe, we needed to narrow our work. To check if using OpenACC in the library would give

any performance improvement we ported an example dbcsr_example_3.F delivered with the application source

code.

We have established that OpenACC can be introduced in the file dbcsr_mm_stack_d.F in the method

internal_mm_d_nn which performs matrix multiplication:

 PURE SUBROUTINE internal_mm_d_nn(&

 M,N,K,A,B,C)

 INTEGER, INTENT(IN) :: M, N, K

 REAL(kind=real_8), INTENT(INOUT) :: C(M,N)

 REAL(kind=real_8), INTENT(IN) :: B(K,N)

 REAL(kind=real_8), INTENT(IN) :: A(M,K)

 C(:,:) = C(:,:) + MATMUL (A, B)

 END SUBROUTINE internal_mm_d_nn

The new method internal_mm_d_nn_acc has been created with OpenACC directives, and called in

the dbcsr_mm_stack_d.F file instead of the original one. In order to use this method of matrix multiplication in

CP2K some changes to the file dbcs_config.F had to be made. To enable the OpenACC port we have changed

a value of the variables named mm_driver and mm_host_driver from mm_driver_smm to mm_driver_matmul.

 PURE SUBROUTINE internal_mm_d_nn_acc(&

 M,N,K,A,B,C)

 INTEGER, INTENT(IN) :: M, N, K

 INTEGER :: i, j, l

 REAL(kind=real_8), INTENT(INOUT) :: C(M,N)

 REAL(kind=real_8), INTENT(IN) :: A(M,K)

 REAL(kind=real_8), INTENT(IN) :: B(K,N)

 !$acc data copyin(A, B) copy(C)

 !$acc kernels loop

 DO i = 1, M

 DO j = 1, N

 DO l = 1, K

 C(i, j) = C(i, j) + A(i, l) * B(l, j)

 ENDDO

 ENDDO

 ENDDO

 !$acc end data

 END SUBROUTINE internal_mm_d_nn_acc

All changes and tests were conducted on CP2K version 2.4. The code has been built in a pure serial version

referred to as SOPT. For comparison reasons, the code was built with two compilers, GNU gfortran and PGI

pgf90. The target architectures for PGI were: Intel Xeon CPU, AMD Opteron, NVIDIA GTX, NVIDIA Tesla,

and AMD Radeon. We have used a standard set of gfortran options, as delivered with CP2K, with only

the libraries locations (LIBS) modified. It is possible that other compiler options (e.g. –O2) could give better

performance; this would need further investigation.

Gfortran options (arch/Linux-x86-64-gfortran.sopt):

CC = cc

CPP =

FC = gfortran

LD = gfortran

AR = ar -r

CPPFLAGS =

DFLAGS = -D__GFORTRAN -D__FFTSG -D__FFTW3

FCFLAGS = -O1 -fstrict-aliasing -fbacktrace -g -fbounds-check -ffree-form $(DFLAGS)

LDFLAGS = $(FCFLAGS)

LIBS = -lstdc++ -lfftw3 /usr/lib/libblas/libblas.a -llapack

OBJECTS_ARCHITECTURE = machine_gfortran.o

Pgf90 options for Supernova nodes with AMD CPUs and NVIDIA Tesla GPUs (arch/Linux-x86-64-pgi-

acc.sopt):

5

CC = pgcc

CPP = cpp

FC = pgf90 -Mfree

LD = pgf90

AR = ar -r

DFLAGS = -D__PGI -D__FFTSG -D__FFTW3

CPPFLAGS = -traditional -C $(DFLAGS) -P

FCFLAGS = -fastsse -acc -tp amd64

LDFLAGS = $(FCFLAGS)

LIBS = -llapack -lacml -lfftw3

OBJECTS_ARCHITECTURE = machine_pgi.o

The -acc option enables the OpenACC directives in the compiler. PGI compilers target the accelerator regions

for the NVIDIA GPU, by default. The compilers provide the PGI Unified Binary technology, which outputs code

for different target architectures. To enable it, the code should be built with the target accelerator option,

e.g. -ta=nvidia,host. This option generates different versions of accelerated functions, and it is decided at

runtime which one is used, depending on the hardware available. By default, the GPU version is used, if the

GPU is available.

Performance results, discussed below, gathered for the DBCSR Example 3, illustrate the potential of OpenACC

technology in CP2K, if possible to use with the whole application.

The -Minfo flag, if given to the PGI compilers, provides feedback on optimizations made by the compiler. We

have observed that during compilation with –fastsse flag almost every loop in the program was optimized,

giving with this automatic approach quite good performance. In the following section we show the performance

results of different versions of the example code.

OpenCL port

Main goal of OpenCL work related to CP2K was porting DBCSR library to OpenCL. The same parts of

the application identified as worth porting to OpenACC were considered candidates for OpenCL.

The development work was divided into following stages:

 create C – Fortran interfaces in order to allow OpenCL code execution,

 device initialization,

 memory management – copy input to the device and then copy back results to the host,

 prepare OpenCL kernel and execute calculation on the device.

Development and testing was performed on AMD Radeon HD 7660G GPU with AMD Catalyst Driver 13.1 and

OpenCL 1.2 AMD-APP 2.8, and on Supernova nodes with NVIDIA GTX 480. The code was compiled with the

GNU compiler 4.6.3.

In order to call OpenCL DBCSR code from the FORTRAN interface the function opencl_multiply has been

developed (fig. 1). The C function dc_multiply_ocl (bind with ocl_multiply), contains the code responsible

for copying input data from a host to a device, executing calculations on the device and copying the results back

to the host. The opencl_multiply function is called by the dbcsr_opencl_multiply subroutine (fig. 2).

Figure 1. Fortran - C interface for OpenCL

DBCSR creates a stack with many small sparse matrixes which need to be processed to solve the large sparse

matrix multiplication. In order to correctly multiply these small sparse matrixes the stack parameter is created.

6

This parameter contains information about input data location and location for storing multiplication results.

A subroutine for processing DBCSR stack with OpenCL is shown in fig. 3.

Figure 2. Subroutine for executing C/OpenCL code

Figure 3. Subroutine for processing DBCSR stack with OpenCL

Fig. 4 shows the C function dc_multiply_ocl responsible for copying input data from a host to a device,

executing calculations on the device and copying the results back to the host.

The DBCSR OpenCL kernel dbcsr_kernel code is illustrated on fig. 5.

In the OpenCL implementation for each small matrix multiplication (C=AxB) a thread block is created. Every

element of the C matrix is computed by a single OpenCL thread. Threads from different thread block may update

the same element of the C matrix in parallel. This situation can cause incorrect values in the C matrix. In order to

prevent this issue a lock for the C matrix is required. The locking was implemented with OpenCL atomic

function atomic_cmpxchg and global c_locks vector.

7

Figure 4. OpenCL memory transfer and kernel execution.

Figure 5. DBCSR OpenCL kernel code

8

Performance results

OpenACC results

As stated before we have been unable to run CP2K compiled with PGI without a segmentation fault. Thus we

used the example number 3 from the DBCSR library. The example has been compiled in several SOPT versions

using gfortran and pgf90, and different MM_DRIVER keywords (select which routines to use for matrix block

multiplications) for a comparison. The versions are as follows:

 gfortran internal – compiled with a driver pointing to the internal method of matrix multiplication

(FORTRAN MATMUL());

 gfortran smm – a version with default settings, with matrix multiplication handled by the SMM library

optimised for Small Matrix Multiplies (requires the SMM library at link time);

 pgi internal – compiled with PGI, without OpenACC support, matrix multiplication handled by

the internal method;

 pgi smm – compiled with PGI, no OpenACC support, default settings with SMM library;

 openacc – compiled with PGI and OpenACC support.

Test runs were conducted on multiple problem sizes. We have changed the nblkrows_total parameter of input

matrices, while a size of small block matrix remained constant: rbs_size x cbs_size = 100 x 100. We also

modified the mm_stack_size parameter (in dbcsr_config.F file). We have measured the time spent by the

program on preparing and computing all the small matrices.

Fig. 6 shows the results obtained for different number of block matrices (from 10k to 1000k blocks, and for

additional 4000k blocks, with the constant block size set to 100x100, giving 10k elements in every block, and

mm_stack_size=1000) with each compiled version of the code. Presented times are mean values gathered from

10 calls to dbcsr_multiply. We increased the problem size by changing the dimention of the sparse matrix –

adding 100 blocks to each dimention in one step. The computation time increases linear along with the problem

size for all five code versions. To check this linear trend we run the test for a bigger problem size: 4000k block

matrices (2000x2000). The result obtained is aproximately two times bigger than for 1000k blocks (1000x1000),

what confirms the trend.

Figure 6. Tests results for different problem sizes

Figures 7 and 8 present the speedup of the particular version of the code for 250k and 1000k of block matrices

respectively. The computation times of the non-optimized ‘gfortran internal’ version of the code have been used

as a basis for the speedup calculation. The results show that PGI compilers provide very good automatic code

omptimizations, which lead to reducing the computation time. The code compiled with gfortran and the SMM

library for performing matrix operations, runs slower than the code compiled with PGI without the specialized

0

10

20

30

40

50

60

70

80

90

100

10k 40k 90k 160k 250k 360k 490k 640k 810k 1000k 4000k

ti
m

e
 [

s]

number of block matrices

gfortran internal gfortran smm pgi internal pgi smm openacc

9

library. It must be mentioned, that using other compilation options for gfortran might indicate some

performance improvements, but it requires further investigation. Using OpenACC gives very good results,

although, the code compiled with PGI and SMM library shows similar performance. Such results for OpenACC

suggest that the GPU is not fully utilized, and we suspected some of the library parameters may limit

the performance.

We looked closer on the data used in the computations and we have found that the multiplied stacks always had

the maximum size of 1000, regardless from other settings. This caused an increased total number of function

calls and data transfers to and from GPU for bigger problems. To get the most of GPU computations the size of

the data transferred to an accelerator in one call should be maximized. The size of the stacks can be configured in

the dbcsr_config.F file and we created two more versions of the code, with the maximum stack size set to

2048 and 10000 (noted as 10k), both with OpenACC support.

Figures 9 and 10 show the results for problem sizes 4000k and 25000k and different maximum stack sizes. When

the problem size exceeded 4000k blocks the computation time increased drastically, and the speedup of all the

code versions become significantly smaller, as it is shown for 25000k blocks. We have noticed that for each

problem size there is no big difference between results gathered for OpenACC code variants for the three stack

sizes. This suggests that the GPU is still not fully utilized, and the reason is more likely connected to

the placement of the OpenACC pragmas.

After further analysis of the FORTRAN implementation we determined that we cannot gain a better performance

without changing the FORTRAN code. It would require creating new methods for preparing bigger portions of

data to be send to accelerators or modifying the multiplication method to be better adapted to the specific type of

Figure 7. Speedup for problem size 250k blocks

1,00

6,66

8,51

16,22 16,19

0

5

10

15

20

Sp
e

e
d

u
p

gfortran internal gfortran smm pgi internal

pgi smm openacc

Figure 8. Speedup for problem size 1000k blocks

1,00

6,68

8,45

16,28 16,55

0

5

10

15

20

Sp
e

e
d

u
p

gfortran internal gfortran smm pgi internal

pgi smm openacc

1,00

1,45 1,46
1,53 1,50 1,50 1,50

0,0

0,5

1,0

1,5

2,0

Sp
e

e
d

u
p

gfortran internal gfortran smm

pgi internal pgi smm

openacc openacc (stack 2048)

openacc (stack 10k)

Figure 10. Speedup for problem size 25000k

1,00

6,66

8,48

16,26 16,30 16,74 16,72

0

5

10

15

20

Sp
e

e
d

u
p

gfortran internal gfortran smm

pgi internal pgi smm

openacc openacc (stack 2048)

openacc (stack 10k)

Figure 9. Speedup for problem size 4000k blocks

10

data the program operates on. It could be realized by coping the data to the GPU before the multiplication, rather

than right at the start of the OpenACC kernel. We have started to investigate this approach, and will continue if

time allows.

OpenCL results

Similar as for OpenACC implementation example number 3 from the DBCSR library has been used for OpenCL

performance tests. The tested problem sizes were also similar as for OpenACC. The ports have been developed

and tested in parallel, but some of the findings could be reused, as both refer to the DBCSR library and consider

accelerators as the target architecture. With the usage of OpenCL there is also a possibility to target the CPU, but

it was not the main focus of this study.

The first set of test results for the OpenCL port is shown in the table 1. The testing was performed on a AMD

Radeon HD 7660G GPU with the AMD Catalyst Driver 13.1 and OpenCL 1.2 AMD-APP 2.8. The size of

the block matrices was set to 10x10 to initially evaluate the methods on a small problem size. The results show

that OpenCL performed worse for bigger problems.

nblocks OpenCL [s] MATMUL [s] SMM [s]

10k 0.006 0.034 0.007

40k 0.013 0.012 0.012

90k 0.021 0.017 0.018

160k 0.027 0.025 0.025

250k 0.035 0.032 0.032

360k 0.056 0.039 0.037

490k 0.059 0.046 0.044

640k 0.065 0.050 0.051

810k 0.071 0.059 0.056

1000k 0.079 0.067 0.065

4000k 0.171 0.136 0.127

25000k 0.441 0.338 0.310

100000k 1.473 0.657 0.608

Table 1. Test for the OpenCL, MATMUL and SMM methods (10x10 block size)

For better comparison with OpenACC additional tests of the OpenCL port have been run. The results are shown

on fig. 11 and fig. 12. Tests were performed on a Supernova node with a NVIDIA GTX 480 GPU. Figure 1111

shows results for different number of block matrices (from 10k to 1000k blocks, with the constant block size set

to 100x100, giving 10k elements in every block, and mm_stack_size=1000). OpenCL computation times are

shorter than for the gfortran code. For problem sizes 10k, 40k, 90k and 160k the OpenCL implementation is

faster than the OpenACC code and SMM code compiled with PGI.

It can be seen that for larger problem sizes the OpenCL code runs slower than SMM PGI and OpenACC.

Following the analysis of OpenACC results we determined that a reason for this is dividing the data into smaller

portions according to the mm_stack_size parameter. It resulted in many sequential executions of the OpenCL

kernel on the GPU device. In this case the computational data is copied to/from GPU before and after each

OpenCL kernel execution. The data transfer between CPU and GPU is a well known performance bottleneck, so

we looked again into the algorithm parameters to find a better solution and avoid additional transfers.

11

Figure 11. Test results for mm_stack_size = 1000

In order to avoid executing the OpenCL kernel multiple times the value of the mm_stack_size parameter has

been increased. It results in less sequential OpenCL executions. In this case an impact of the memory transfer on

the overall execution time has been significantly decreased. Results for mm_stack_size = 10000 are shown on

fig. 12. The OpenCL execution time is shorter than other implementations for all problem sizes. Changing the

mm_stack_size parameter for implementations other than OpenCL has no impact on the execution time.

Figure 92 Test results for mm_stack_size = 10000

0

1

2

3

4

5

6

7

8

9

10k 40k 90k 160k 250k 360k 490k 640k 810k 1000k

ti
m

e
 [

s]

gfortran smm pgi smm OpenACC OpenCL

0

1

2

3

4

5

6

7

8

9

10k 40k 90k 160k 250k 360k 490k 640k 810k 1000k

ti
m

e
 [

s]

gfortran smm pgi smm OpenACC OpenCL

12

Conclusion

In conclusion, our tests demonstrated the potential of both OpenACC and OpenCL. With OpenACC we have

been able to obtain a very good performance without many modifications to the source code. We added a new

method with OpenACC directives and changed the code so the new method would be called. We tried to

introduce as few changes as possible to the original code, to check how much work is required to introduce the

technique into the existing application. The results show that, like we expected, in order to get the most of the

GPUs some substantial modifications of the library would be needed. A comparison of PGI SMM results with

OpenACC confirms our expectations. Lack of increase in performance after increasing the maximum stack size

suggests that more changes in the code have to be made. Nevertheless, OpenACC as a whole deserves attention.

We have shown that with minor code modifications one can achieve good results and we believe that with proper

adjustments even better performance can be achived.

It must be noticed that the power of the OpenACC standard strongly depends on the compilers’ support.

The choice of proprietary compilers seems to be not sufficient, especially in a current landscape of scientific

applications which often are open-source and developed using open tools and compilers like GCC. This may

lead to compatibility issues, as described above for CP2K. However, OpenACC once introduced to the code, in

connection with the compiler support for different targets, is a powerful technology. The OpenACC directives

may be used by a compiler to generate kernels for new emerging architectures, as soon as they become

supported.

One possible way for further evaluation of OpenACC in CP2K could be to copy the data on GPU before

the multiplication, similar to the OpenCL and CUDA approach, rather than right at the strat of the OpenACC

kernel. We have started to investigate this approach, and will continue if time allows. It requires some bigger

changes in the original FORTRAN code, as in OpenACC we are opperating on the pragma level. Another

direction worth considering is investigating the CAPS source-to-source compilers [8] together with GNU or Intel

compilers, avoiding the PGI compilers. Combining CAPS and Intel compilers would give another possibility to

target the Intel Xeon Phi as one of the accelerators, in addition to the work done with CP2K on this architecture

so far [17].

The OpenCL results show a better performance to the other methods tested if proper value of mm_stack_size

parameter is used. If time allows, further work will be focused on improving the performance and identifying

additional areas of the code suitable for porting.

As an additional conclusion we may state that introducing OpenACC to an existing application is relatively

simpler and requires less knowledge and time from the developer than OpenCL. However, it still requires a good

understanding of the application, its data and algorithms, and may require refactoring of the original code to gain

a performance as expected from the GPU acceleration.

References

[1] CP2K homepage, http://www.cp2k.org

[2] I. Bethune, A. Carter, X. Guo, P. Korosoglou: “Million Atom KS-DFT with CP2K”, PRACE whitepaper,

PRACE-1IP, pdf: http://www.prace-ri.eu/IMG/pdf/Million_Atom_KS-DFT_with_CP2K.pdf

[3] Unified European Application Benchmark Suite (UEABS), http://www.prace-ri.eu/ueabs

[4] PRACE Public deliverable, D7.2.1, “A Report on the Survey of HPC Tools and Techniques”, 2013, pdf:

http://www.prace-ri.eu/IMG/pdf/d7.2.1.pdf

[5] The OpenACC 2.0a Specification (Corrected), pdf:

http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf

[6] The ERF (X) function in a draft of the Fortran 2008 Standard, http://nag.co.uk/sc22wg5

[7] Takuya Ooura: Ooura’s Mathematical Software Packages – Error Functions, Institute for Mathematical

Sciences, Kyoto University, http://www.kurmis.kyoto-u.ac.jp/~ooura/

[8] CAPS compilers, http://www.caps-entreprise.com/products/caps-compilers/

[9] The OpenACC homepage, http://www.openacc.org

[10] OpenCL Khronos Group homepage, http://www.khronos.org/opencl/

[11] The Khronos OpenCL Registry with OpenCL 2.0 specification, http://www.khronos.org/registry/cl/

[12] Allinea DDT homepage, http://www.allinea.com/products/ddt/

[13] Portland Group’s PGI Accelerator compilers, http://www.pgroup.com/resources/accel.htm

[14] PGDBG Graphical Symbolic Debugger, http://www.pgroup.com/products/pgdbg.htm

[15] I. Bethune: “Improving the scalability of CP2K on multi-core systems. A dCSE Project”, 2010, pdf:

http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02_final_report.pdf

http://www.prace-ri.eu/IMG/pdf/Million_Atom_KS-DFT_with_CP2K.pdf
http://www.prace-ri.eu/IMG/pdf/d7.2.1.pdf
http://nag.co.uk/sc22wg5
http://www.kurmis.kyoto-u.ac.jp/~ooura/
http://www.caps-entreprise.com/products/caps-compilers/
http://www.openacc.org/
http://www.khronos.org/opencl/
http://www.allinea.com/products/ddt/
http://www.pgroup.com/resources/accel.htm
http://www.pgroup.com/products/pgdbg.htm
http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02_final_report.pdf

13

[16] Urban Borštnik, Joost VandeVondele, Valéry Weber, Jrg Hutter: “Sparse Matrix Multiplication: The

Distributed Block-Compressed Sparse Row Library”, Parallel Computing, Available online 1 April 2014,

http://www.sciencedirect.com/science/article/pii/S0167819114000428

[17] Fiona Reid, Iain Bethune: “Evaluating CP2K on Exascale Hardware: Intel Xeon Phi”, PRACE whitepaper,

PRACE-3IP, 2014

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework

Programme (FP7/2007-2013) under grant agreement no. RI-312763, and by the Polish Ministry of Science and

Higher Education (funds for R&D in 2013-2014) under grant agreement no. 2890/7.PR/2013/2. The calculations

were carried out on computing resources at Wrocław Centre for Networking and Supercomputing (Supernova),

ACK Cyfronet AGH (Zeus) and Irish Centre for High End Computing (Fionn).

http://www.sciencedirect.com/science/article/pii/S0167819114000428

