

1

Available online at www.prace-ri.eu

Partnership for Advanced Computing in Europe

Optimising CP2K for the Intel Xeon Phi

Fiona Reida, Iain Bethunea*
aEPCC, The University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK

Abstract

CP2K is an important European program for atomistic simulation for many users of the PRACE Research
Infrastructure as well as national and local compute resources. In the context of a PRACE Preparatory Access
Type C project, we have parallelised several routines in CP2K to allow the code to gain better performance on
the Intel Xeon Phi for a materials science application. We have obtained a 50% speedup in the maximum
performance of the code on the Xeon Phi, but have not been able to demonstrate better performance than running
the same calculation on a Sandy Bridge 16-core CPU node. We present details of the developments made to
CP2K, and discuss several lessons, which will be of wider interest to developers considering porting their codes
to Xeon Phi.

Application Code: CP2K

1. Introduction
CP2K [1] is a freely available and widely used program for atomistic simulation in the fields of Computational
Chemistry, Materials Science, Condensed Matter Physics and Biochemistry, amongst others. Today’s
researchers require robust and portable applications that allow them to tackle complex and challenging problems
by taking advantage of the latest advances in computer hardware. CP2K has demonstrated scalability to 10,000s
of CPU cores using a mixed-mode MPI/OpenMP parallelisation strategy, and has been deployed on a range of
Tier-0 and Tier-1 PRACE systems. The code can make use of GPU accelerators using Nvidia’s CUDA
programming model, and recent work within PRACE [2] ported the code to Intel’s MIC (Many Integrated Core)
architecture, using the existing parallelisation, although initial performance results were disappointing.

Figure 1: A generic Langasite structure that could be studied with CP2K (from Ben Slater, UCL).

* Corresponding author. E-mail address: ibethune@epcc.ed.ac.uk

2

The aim of this work was to optimise CP2K with the objective of improving the performance of a specific test
simulation on the Xeon Phi. The systems of interest are the Langasites (see Error! Reference source not
found.), a family of solid oxides composed of Lanthanum, Gallium and Germanium, studied by Dr. Ben Slater
(UCL), who provided the case study input files for this project. Langasites have applications as fuel cells and we
wish to be able to efficiently computationally screen different orderings of La, Ga and Ge to determine the
minimum energy and maximum conductivity structures. Since many structures must be evaluated in parallel, a
cluster of accelerated nodes was suggested as a suitable architecture for executing these jobs quickly and with
rapid turnaround.

Hardware: EURORA

The EURORA system, located at the Cineca facility in Bologna, Italy, was used to obtain the results presented in
this report.

EURORA (EURopean many integrated cORe Architecture) is a heterogeneous, tightly clustered Linux system
running CentOS 6.3. The system is made up of 64 Intel compute nodes. Half of the compute nodes comprise two
eight-core Intel Xeon E5-2658 processors running at 2.1 GHz the other half comprise two eight-core Intel Xeon
E5-2678W processors running at 3.1 GHz. 58 of the nodes have 16 GB of memory but only 14 GB of this can be
safely allocated by the application due to system overheads. The remaining 6 nodes (all with 3.1 GHz clock
speed) have 32 GB of memory. Each node allows shared memory jobs using up to 16 threads to be run, and MPI
can be used both within and between nodes. Users can specify the amount of memory and clock speed they
require via the PBS batch system. In addition to the compute nodes, EURORA has a login node comprising two
six-core E5645 processors running at 2.4 GHz. The processors on the login node use a different instruction set
from the compute nodes - the E5645 is based on the ‘Westmere’ microarchitecture, while E5-2658/78W are
‘Sandy Bridge’ chips and support AVX. As a result binaries cross-compiled for the compute nodes cannot be run
on the login nodes. This means that all testing of code must be carried out via the batch system either
interactively or by remote submission.

32 of the EURORA compute nodes have two Nvidia Tesla K20 (Kepler) GPU cards attached with the remaining
32 compute nodes having two Intel Xeon Phi 5110P co-processors instead. Each Xeon Phi card contains 60
physical cores running 4 virtual threads per core giving access to a total of 240 threads per card. The clock speed
of the cores is 1.053 GHz and each card has 8 GB of memory with a memory bandwidth of 352 GB/s [3]. For
more details on the hardware specifications please see [4]. In the remainder of this report the Xeon E5-2678W
processors will usually be referred to as the host.

The EURORA login and compute nodes have the Intel Cluster Studio XE 2013 (and 2013 SP1) software
installed, which includes compilers, tools and debuggers for both the host nodes and the Xeon Phi cards.
Compilation of code for the host and Xeon Phi can be carried out on either a login node or via an interactive
session on one of the Xeon Phi enabled compute nodes. The advantage of compiling via an interactive session is
that the code can then be easily tested on either the compute node or the Xeon Phi card. For either option the
appropriate compiler modules and environment must be set up prior to compiling CP2K. Version 13.1.3 of the
Intel ifort/icc compiler has been used for all the results presented in this report.

2. Initial Benchmarking
Our preliminary testing of the Langasite input files was carried out on the host so that we could experiment with
different parameters, the objective being to develop a benchmark that could be run on both the host and on the
Xeon Phi. The initial runtime of the benchmark on the host using 16 MPI processes was found to be over 10
hours which was simply too long and thus we needed to find some way to reduce the runtime. In addition, we
also discovered that the total memory requirement of the benchmark was in excess of 20 GB with each processor
using over 1.25 GB and thus the benchmark in its initial form would not be able to run on the Xeon Phi card
which has only 8 GB of memory. A number of steps were taken to reduce both the runtime and the memory
requirements. These steps are summarised below:

1. Reduce the maximum number of iterations for both GEO_OPT and CELL_OPT from 300 to 1. Each
optimisation step is essentially identical so this has no effect on the validity of the benchmark

2. Reduce the number of SCF and outer SCF cycles from 35 and 15 respectively to 1. Each SCF cycle is
identical, although reducing the number of cycles makes the some setup routines proportionally more
expensive

3

3. Use SZV-GTH instead of DZVP-GTH as the basis set for Oxygen. This is a physical approximation,
which reduces the computational cost of the calculation.

4. Reduce the value of MGRID%CUTOFF from 600 to 50. This reduces the size of the 3D grids used to
store the plane-wave expansion of the electronic density, trading accuracy for reduced memory and
time.

5. Add the SAVE_MEM keyword, which reduces the maximum memory by deallocating sections of the
input data structure when they are no longer needed. This has no effect on the calculation, but saves a
(small) amount of memory.

Steps 1 and 2 enabled the runtime to be reduced to 350 seconds on 16 MPI processes with step 3 giving a further
reduction in runtime to 117 seconds. Steps 4 and 5 greatly reduced the memory requirements such that each
processor required 422 MB of memory. The total memory usage does not scale directly with the number of MPI
processes due to parallelisation overheads including grid halos, communication buffers etc. In practice we were
able to run up to 16 MPI processes on the MIC before running out of memory.

In addition to the changes detailed above, we added the following lines to the input file:

 &TIMINGS
 THRESHOLD 0.000001
 &END

By default CP2K only reports timings that take more than 2% of the runtime. When parallelising the code the
runtime of a routine may well decrease such that it can fall below this threshold. As a result the threshold has
been decreased to 0.0001% such that we should pick up all significant timings. The final input file we used for
this study can be found in Appendix A. This input file can be run on both the host and Xeon Phi using a range of
MPI process counts and different numbers of threads. On the Xeon Phi memory limitations mean that not all the
possible MPI process counts or numbers of threads can be executed but a good range is still possible.

Four different versions of CP2K were compiled which will subsequently be referred to as SOPT, SSMP, POPT
and PSMPb. These correspond respectively to, a pure serial (SOPT) version, a pure OpenMP (SSMP) version, a
pure MPI (POPT) version and a mixed mode MPI/OpenMP (PSMP) version. On the Xeon Phi the SOPT version
was not used due to the very long runtimes that would result – parallelisation is a prerequisite to achieving good
performance on the MIC architecture.

The performance of the Langasite benchmark was initially investigated on the host using a single 16-core node.
All four versions of CP2K were tested. A range of thread counts or MPI process counts up to sixteen was tested
for the SSMP and POPT versions respectively. For the PSMP version the number of threads was fixed e.g. 1, 2,
4 with the number of MPI processes being increased until the total number of cores used reached sixteen. In
addition to this, the PSMP version was also run keeping the number of threads times the number of MPI
processes fixed at sixteen to ensure that all cores on a node were used. Figure 2 shows the CP2K runtime plotted
against the number of cores used for the host version of the code with Table 1 giving the actual timings. For the
PSMP version using all sixteen cores the runtime is plotted against the number of OpenMP threads.

Code version Number of MPI processes or OpenMP threads for SSMP version
1 2 4 8 16

SOPT 950.524 - - - -
POPT 968.343 495.616 267.798 147.221 83.188
SSMP 977.185 598.108 400.982 302.575 254.448
PSMP (full node) 270.042 169.481 122.560 100.747 88.721
PSMP 1 thread 988.320 503.146 274.549 150.027 84.752
PSMP 2 threads 614.426 320.623 173.493 98.217 -
PSMP 4 threads 420.289 221.592 122.600 - -

Table 1: Runtime (in seconds) of the Langasite benchmark run on the host (3.1GHz E5-2678W processors were used for all runs). The fastest
runtime was obtained with the POPT version using 16 MPI processes.

b The acronyms SOPT, SSMP, POPT and PSMP are standard CP2K terminology and will be familiar to users of
the code.

4

From Figure 2 we can see that the best performance is obtained when running the pure MPI (POPT) version of
the code on 16 processors. The runtime of the OpenMP (SSMP) version is generally higher than for the POPT
version as it doesn’t scale as well as the MPI version. This is a simple consequence of Amdahl’s law as the
proportion of the code which is not fully OpenMP parallelised is non-zero. The PSMP version run on a fixed
thread count can usually outperform the SSMP version as with the PSMP build the code can take advantage of
both the MPI and OpenMP parallelisation. When running all sixteen cores the PSMP version gives equivalent
performance to the POPT version when using 16 MPI processes. The other thread counts however never manage
to do any better than the POPT version – this is because only sections of the code have been threaded and we
haven’t yet reached the limit of MPI scaling, where the use of OpenMP threads is expected to extend the
scalability of the code [5]. The performance of the POPT version and PSMP versions with 1 thread are identical
as expected. The serial (SOPT) runtime was the roughly the same as the SSMP (1 thread) or POPT (1 process)
versions.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

C
P2

K
tim

e
(s

ec
on

ds
)

Number of cores used, (except PSMP full node which plots against the no. threads)

Langasite benchmark on a 16 processor HOST node of Eurora

popt
ssmp

psmp full node
psmp OMP_NUM_THREADS=2
psmp OMP_NUM_THREADS=4
psmp OMP_NUM_THREADS=1

Figure 2: Performance of Langasite benchmark on a 16-processor Intel Xeon host node of EURORA.

Figure 3 gives the corresponding performance results obtained on the Xeon Phi. Some process or thread counts
could not be run due to the memory limitation of the card. Comparing the performance of the host and Xeon Phi
(i.e. comparing Figure 2 and Figure 3) we can see that the SSMP and POPT versions behave in a similar way.
The POPT version is roughly 3 times faster than the SSMP version, which is broadly consistent with what we
see for 16 threads on the host. The main difference is that on the Xeon Phi the PSMP version can outperform
both the POPT and SSMP version. This is because by using OpenMP threads we are able to scale to more virtual
threads/processors without exceeding the memory limitation, and thus better overall performance can be
obtained.

The best performance on the Xeon Phi was obtained with the PSMP version running 8 MPI processes each with
16 OpenMP threads (this corresponds to 128 virtual threads, or a little over 50% of the available capacity of the
MIC. The runtime for this test was 671 seconds. Comparing this with the fastest time obtained on the host (83
seconds on 16 MPI processes) we find that the host node is around 8 times faster than the Xeon Phi. Clearly, the
code is unable to utilise the Xeon Phi to its full potential for this particular problem, since it has around 2.5x the
peak FLOP/s of the Xeon E5-2678W 16-core node. The performance of CP2K on the Xeon Phi is limited for
several reasons: the lack of strong scaling in some parts of the code, a potential lack of vectorisation on the Xeon
Phi native build and also the increasing memory footprint with the number of threads or processes which
prevents all of the MIC’s resources from being utilised. In a previous PRACE white paper [2] we identified a

5

number of routines that were limiting the Xeon Phi performance for a different test case, although the results are
similar here. Section 3 will discuss the optimisations we applied to improve the performance of CP2K on the
Xeon Phi. The results and a brief discussion of the performance of the final optimised code are presented in
Section 4.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 50 100 150 200 250

C
P2

K
tim

e
(s

ec
on

ds
)

Number of cores used

Langasite benchmark on MIC

popt
ssmp

psmp OMP_NUM_THREADS=2
psmp OMP_NUM_THREADS=4
psmp OMP_NUM_THREADS=8

psmp OMP_NUM_THREADS=15
psmp OMP_NUM_THREADS=16
psmp OMP_NUM_THREADS=30
psmp OMP_NUM_THREADS=32
psmp OMP_NUM_THREADS=60

Figure 3: Performance of the Langasite benchmark on the Xeon Phi MIC card.

3. Optimisation
Subroutine build_core_ppl

Our initial investigations of CP2K on the Xeon Phi [2] identified a number of routines that scaled poorly. Of
these routines the build_* routines were found to be particularly costly when larger numbers of threads were
used as is required to make full use of the Xeon Phi. These build_* routines in CP2K are not threaded and as
such the runtime remains constant with increasing thread count. Previous work [6] attempted to parallelise the
build_core_ppl subroutine in the source file core_ppl.F by adding OpenMP directives to the code.
build_core_ppl computes contributions to the core Hamiltonian matrix due to the interaction of particles
via their pseudopotentials. The main change made to the code was the addition of a parallel region around a loop
over all particles in the neighbour list. This approach involved the introduction of a new data structure to hold
the data describing a taskc. Prior to entering the parallel region the entire neighbour list is iterated over in serial
to generate an array of tasks. A parallel region was then introduced around a new loop, which looped over the
independent tasks. This approach gave good scaling on two and four threads but failed to scale beyond four
threads and therefore was not added to the CP2K code base. Being able to scale this part of the calculation
beyond four threads would be beneficial when running CP2K on both the Xeon Phi and also when running on
modern HPC systems that typically have 16 or 32 way SMP nodes.

c A task is essentially one or more iterations of the main DO WHILE loop over particle pairs.

6

A second attempt to parallelise the build_core_ppl subroutine was also made by [6] which could utilise the
iterator directly from within a parallel region. Optional arguments of the iterator can be used to specify the thread
from which it is being accessed, and access elements of the list in a thread-safe manner. This approach should, in
theory, be able to scale to a larger thread count as it avoids the need to pre-compute list of tasks in serial and also
should have near perfect load balancing as each thread will continue to request new iterations in a dynamic
manner until all the work is complete. Unfortunately, this work was not completed due to unresolved bugs and
time running out. We have taken this partial implementation of the the parallel iterator as a starting point and
have debugged the code such that it now works along with optimising the performance by removing unnecessary
synchronisation points. As a number of parts of CP2K have a similar structure with loops over particle pairs
using the neighbour list iterator, it will be possible to extend this approach to other sections of the code in future.

A summary of the main code changes that allow the parallel iterator to be used in the build_core_ppl
subroutine is given below:

• Add new integer variables nthread and mepos to store the number of threads and the thread number
respectively.

• Ensure that omp_get_num_threads() and omp_get_thread_num() are defined as integer
functions.

• Add the optional nthread argument to the iterator creation subroutine calls to ensure that each thread
has its own scratch copy of the iterator state, e.g.
CALL neighbor_list_iterator_create(nl_iterator,sab_orb)
Becomes:
CALL neighbor_list_iterator_create(nl_iterator,sab_orb,nthread=nthread)

• Insert an OpenMP parallel region around the main DO WHILE loop over particle pairs. All variables
accessed inside the parallel region are correctly scoped (as shared or private). The thread ID (mepos)
must be determined at the beginning of the parallel region. Some array allocations needed to be moved
inside the parallel region – and also be deallocated before leaving the parallel region.

• Add the mepos variable to the DO WHILE conditional e.g.
 DO WHILE (neighbor_list_iterate(nl_iterator)==0)
 Becomes:

DO WHILE (neighbor_list_iterate(nl_iterator, mepos=mepos)==0)

• Add the optional mepos argument to the get_iterator_info call, e.g.
CALL get_iterator_info(nl_iterator,ikind=ikind,jkind=jkind,inode=inode,&
iatom=iatom,jatom=jatom,r=rab)

Becomes:
CALL
get_iterator_info(nl_iterator,mepos=mepos,ikind=ikind,jkind=jkind,inode=inode
,& iatom=iatom,jatom=jatom,r=rab)

• The get_iterator_info routine has been modified such that it is now thread aware.

• The neighbour_list_iterate routine has been modified to cleanly terminate the iteration in the
multi-threaded case. The original serial code allowed an extra final call to this routine, which would
always exit but with multiple threads potentially able to call this routine simultaneously some additional
logic was required to prevent the threads being able to over-run the end of the neighbour list data
structure, producing erroneous results.

• Ensured that updates to shared variables are protected with critical sections – the force, virial and
h_block variables require this.

Following the addition of OpenMP to the source code each version (SOPT, SSMP, POPT & SSMP) was tested
for correctness by running the entire CP2K regression test suite. The test suite comprises 2450 tests, sampling
most features of the code, and can be run both in parallel and serial. More details on the regression tests can be
found at [7]. These tests are run before any changes are committed to the code repository to ensure that the
changes produce numerically correct output.

7

When testing the performance of the modified code we initially examined the host performance as this could be
obtained relatively quickly (recall that the host runtime was around 8 times faster than the Xeon Phi) and without
waiting a significant time for jobs to pass through the queues on EURORA. Once a parallel version that passed
all the regression tests had been obtained we benchmarked it on the Xeon Phi. Our Xeon Phi performance tests
were carried out using the PSMP version of the code with 8 MPI processes and thread counts ranging from 1 to
30. We chose to use 8 MPI processes as this gave a reasonable runtime on one thread (~2950 seconds) and this
also allowed a good range of thread counts to be tested.

Figure 4 shows a comparison of the performance before and after parallelising the build_core_ppl routine
obtained on the Xeon Phi. It should be noted that many of the build_* subroutines can be invoked both with
and without the forces computations as determined by the “if(calculate_forces)” conditionals in the
CP2K code. The code timers append _forces when these routines have been called with force computation
enabled.

0"

20"

40"

60"

80"

100"

120"

140"

1" 2" 4" 8" 15" 16" 30"

Ti
m
e%
(s
ec
on

ds
)%

Number%of%threads%

build_core_ppl_origcode"

build_core_ppl_forces_origcode"

build_core_ppl_v2"

build_core_ppl_forces_v2"

build_core_ppl_splitcri:cal"

build_core_ppl_forces_splitcri:cal"

Figure 4: PSMP performance of Langasite benchmark before and after parallelising the build_core_ppl subroutine on Eurora Xeon Phi
using 8 MPI processes.

From Figure 4 we can see that prior to parallelising the build_core_ppl subroutine the runtime of the
build_core_ppl and build_core_ppl_forces routine is constant for all thread counts with the
build_core_ppl_forces routine taking more than 3 times the runtime of the non forces version. After
parallelisation the runtime decreases with thread counts and continues to scale up to 30 threads. The speedup of
the build_core_ppl routines is given in Figure 5. Figure shows that the speedup of the routine involving
forces is slightly better than the non-forces version since there is more computation per loop iteration, any
synchronisation overhead in accessing the shared iterator or other critical sections is less significant. In both
cases the code continues to speedup to 30 threads.

8

Figure 5: Speedup of the PSMP version of CP2K before and after parallelising build_core_ppl obtained by running the Langasite
benchmark on the Xeon Phi with 8 MPI processes.

A number of ways to improve the speedup of build_core_ppl were investigated. The first was to split the
critical regions encompassing the force and virial updates into several separate regions to investigate whether
this could improve the performance. By doing this, multiple threads would update independent elements of the
shared arrays at once, at the cost of increased overheads accrued from the extra critical regions. These effects
seem to cancel out in practice and using several critical sections was found to give no performance benefit (see
Figure 4) over having a single critical section. In the interests of code simplicity and readability a single critical
section was used for each of the force and virial updates.

We also tried replacing the critical regions for the force updates with atomics as these are often faster than using
critical regions in many OpenMP implementations for simple operations. However, as the data structure
involved in the force updates is rather complex, accessing both array sub-sections and derived data types, it turns
out that using atomics do not help. Therefore, a single critical section has been used as it improves readability of
the code without any performance degradation.

Subroutine build_core_ppnl

A similar parallelisation method was applied to the build_core_ppnl subroutine in the source file
core_ppnl.F. The build_core_ppnl subroutine performs a similar calculation to build_core_ppl
(but for the non-local part of the psuedopotential) and actually has two separate DO WHILE loops over particle
pairs using the same iterator and neighbour list data structure. The first of these loops computes the overlap
integrals storing them in the sap_int array for use in the second loop – this means that the sap_int array
must be shared and any updates to it protected with critical sections. At the end of the first loop the structure
containing the overlap arrays sap_int is sorted and the second loop then computes the Hamiltonian matrix
elements. In the second loop the updates to force, virial and h_block are protected with critical sections.
Two separate parallel regions are used, one which contains the first DO WHILE loop and one which contains the
second loop. The sorting of the integral list takes negligible time and so is not parallelised. As with the
build_core_ppl routine, build_core_ppnl can be called with and without the forces computation and
thus our performance results have been separated such that we can see the time spent in either calculation. Figure
6 shows the performance of the Langasite benchmark before and after the parallelisation of the
build_core_ppnl routine. Figure 77 gives the corresponding speedup.

9

Figure 6: PSMP performance of the Langasite benchmark before and after parallelising the build_core_ppnl subroutine on the
EURORA Xeon Phi using 8 MPI processes.

From Figure 6 and 7 we again see that prior to parallelisation the time spent in the build_core_ppnl routine
is constant with increasing thread count. When the routine is executed with the forces computation the
improvement in runtime is significant, dropping from ~185 seconds on one thread to ~23 seconds when using 30
threads – a speedup of 8. The forces computation continues to speedup even on 30 threads although as before the
improvement tails off beyond 15 threads. The improvement without the forces computation is somewhat less
achieving a maximum speedup of 3 on four threads, however, it still gives a small improvement in the overall
runtime.

Figure 7: PSMP speedup of the Langasite benchmark before and after parallelising the build_core_ppnl subroutine on the EURORA
Xeon Phi using 8 MPI processes.

To investigate the reasons behind the poor speedup we added some extra timers to the code such that we could
compute the time spent in each parallel region and also sub-divided this into forces and non-forces computations.

10

The amount of computation carried out in the first loop is typically small and we wanted to make sure that our
parallelisation was not introducing unnecessary OpenMP overheads. We carried out this test on the host (the host
was used due to its shorter runtimes thus faster queue turn-around) with results being given by Figure 8.

Figure 8: Performance of the SSMP version measured using the Langasite benchmark run on a single host node of EURORA. Additional
timers have been added around each DO WHILE loop and these are split into forces and non-forces computations.

From Figure 8 it is apparent that as with the Xeon Phi, the non-forces subroutine doesn’t scale well for either
loop (blue diamonds and green triangles). However parallelisation of either loop does not seem to be introducing
unnecessary overheads as the speedup is always greater than 1 and thus the final code includes both parallel
regions.

Fast Fourier Transforms

In [2] we identified a bug in the FFTW3 interface of the Intel MKL library. Essentially, the FFT execute
functions are not by default thread-safe which is the case for the FFTW3 library. The MKL documentation at [7]
gives more detail on this and provides a solution for C which allows the user to set the number of threads which
will concurrently execute a plan. We requested equivalent support for thread-safe use of the FFTW3 Fortran
interface (Intel feature request ID DPD200243422), and this was added to MKL 11.1.0 (Sept 2013) meaning that
we can now use the Intel MKL implementation of FFTW3 for the PSMP and SSMP versions of CP2K. The
benchmarking carried out in [2] demonstrated that using MKL instead of FFTW 3.3.3 on Xeon Phi in particular
should give improved performance as the Intel implementation has been optimised specifically for the Xeon Phi
whereas FFTW 3.3.3 has not.

Figure 9 shows a performance comparison of CP2K’s FFT routines using MKL 11.1.0 and FFTW 3.3.3 on the
Xeon Phi. The PSMP version of CP2K was used for this test with the number of MPI processes fixed at 2. The
benchmark is a simple input file (see Appendix B) that enables the FFT parts of CP2K to be tested in isolation
from other parts of the code. It can be used for debugging, benchmarking and also is one of the regression tests
that the code must pass after making changes to the source. The benchmark uses a 125 x 125 x 125 element grid,
which is slightly bigger than that used by the Langasite benchmark, but is typical of a wide range of CP2K jobs.
From Figure 9 we can see that MKL clearly outperforms FFTW 3.3.3 up to 32 threads beyond which it doesn’t
really make any difference what FFT library is used. The initial benchmarking on the Xeon Phi uses FFTW 3.3.3

The final optimised runs of the Langasite benchmark were performed using CP2K compiled with MKL 11.1.0.
However, the Langasite benchmark spends a tiny (<1% of the total runtime for the host and Xeon Phi) of its
runtime in FFT calculations and so using MKL 11.1.0 does not impact significantly on performance. However,
other CP2K calculations can spend significant time performing FFT computations and therefore it is advisable to
use MKL 11.1.0 if possible instead of the reference FFTW 3 library.

11

Figure 9: Performance of the PSMP version of CP2K using 2 MPI processes on the Xeon Phi using the FFT benchmark.

Additional improvements

In addition to the optimisations described above a number of other improvements were made to the CP2K source
code. Some compiler related problems or bugs were also identified. Each improvement or outstanding issue is
described briefly below.

1. The rs_distribute_matrix routine was optimised such that the local threaded data movement was
overlapped with the MPI_Alltoall call. In making this change the allocation and initialisation of an
array of locks (prerequisite to the threaded work) was moved such that it occurs before the
MPI_Alltoall call. This allows the master thread to call MPI, while the other threads proceed with some
independent work whilst the MPI communication is taking place. The original code had waited for this MPI
call to complete before creating the array of locks. The deallocation of the array of locks has also been
moved inside the parallel region and is now enclosed within a single directive with the NOWAIT clause as
only one thread needs to deallocate this array. The remaining threads can continue whilst this deallocation is
taking place.

2. Following addition of the swarm_methods.F source file (SVN revision 13372) it was discovered that the
Intel compiler cannot handle compound format statements and as a result failed to compile the code.
Statements of the form:

write(unit,”(AI10)”) “value: “, entry%value_i4

which would print a some text followed by an integer of field width 10 must be re-written with a comma
separating the two fields e.g.

write(unit,”(A,I10)”) “value: “, entry%value_i4

After making such changes to the swarm_methods.F source file (SVN revision 13374) the code
compiles and runs successfully with the Intel compiler suite.

3. Fixed a problem with argument ordering which was picked up by ifort (SVN revision 13091). The variable
stack_size was declared after it was used in the source files: dbcsr_mm_hostdrv_d.F,
dbcsr_mm_hostdrv_z.F, dbcsr_mm_hostdrv_s.F and dbcsr_mm_hostdrv_c.F. E.g. the
code initially had syntax of the form:

INTEGER, DIMENSION(dbcsr_ps_width,1:stack_size), INTENT(IN) :: params
INTEGER, INTENT(IN) :: stack_size

Which when compiled with ifort results in a compiler error. The correct code is to declare stack_size
before it is used, e.g.

12

INTEGER, INTENT(IN) :: stack_size
INTEGER, DIMENSION(dbcsr_ps_width,1:stack_size), INTENT(IN) :: params

4. The Intel compiler loses track of the optional argument blk_p in dbcsr_sort_indices when the
routine was called from transpose_index_local. This has been submitted to Intel as a compiler bug
and is still awaiting a resolution. A workaround was subsequently supplied by Intel, which involves
providing the upper bound of the arrays. This workaround has been included in CP2K SVN revision 13197.

5. The PSMP version of the code cannot currently be run with ifort 14.0.0. The code crashes with a
segmentation fault, which has been confirmed by Intel as a compiler bug. Unfortunately there is no work
around at present and users therefore will need to wait until the next release of the Intel compiler before a fix
will be available. Older versions of the compiler e.g. 13.1.3 and 13.1.0 are unaffected by this bug.

4. Results
After optimising the code as described in section 3 we re-ran our initial set of benchmarks using the different
parallel versions of CP2K. Figure 10 shows the final performance of CP2K on a 3.1 GHz host node. The overall
shape of the graph is similar to our original results. The POPT and SOPT runtimes are almost identical to our
original results (c.f. Figure 2 and Table 1) as would be expected as the serial and MPI parts of the code have not
been affected by the optimisations we applied. The runtimes of the SSMP and PSMP versions of the code have
decreased such that the SSMP version is now up to 29% (on 16 threads) faster and the PSMP version up to 27%
faster (16 threads, 1 MPI process) than the original code. The best performance on the host was obtained with the
POPT version using 16 MPI processes with a runtime of 83s. This is expected, as when using a single host node
the POPT version of the code is the most efficient choice as we are still able to scale well with MPI. The SSMP
and PSMP runtimes, although better than the initial version of the code are still greater than those obtained with
the POPT version.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2 4 6 8 10 12 14 16

C
P2

K
tim

e
(s

ec
on

ds
)

Number of cores used, (except PSMP full node which plots against the no. threads)

Langasite benchmark on a 16 processor HOST node of Eurora

popt
ssmp

psmp full node
psmp OMP_NUM_THREADS=2
psmp OMP_NUM_THREADS=4
psmp OMP_NUM_THREADS=1

Figure 10: Final performance of Langasite benchmark on a 16 processor host node of EURORA.

13

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 50 100 150 200 250

C
P2

K
tim

e
(s

ec
on

ds
)

Number of cores used

Langasite benchmark on MIC

popt
ssmp

psmp OMP_NUM_THREADS=2
psmp OMP_NUM_THREADS=4
psmp OMP_NUM_THREADS=8

psmp OMP_NUM_THREADS=15
psmp OMP_NUM_THREADS=16
psmp OMP_NUM_THREADS=30
psmp OMP_NUM_THREADS=32
psmp OMP_NUM_THREADS=60

Figure 11: Final performance of the Langastite benchmark on the Xeon Phi.

Error! Reference source not found.1 shows the performance of the Langasite benchmark obtained by running
the final optimised code on the Xeon Phi. As with the host version, the runtime of the POPT version is largely
unchanged. However, the runtime of the SSMP and PSMP versions have decreased by up to 49% (using SSMP
60 threads) and 58% (using PSMP 3 MPI processes running 60 threads) respectively. With the optimised code,
the best runtime on the Xeon Phi was 451 seconds obtained with the PSMP version using 16 MPI processes each
running 15 OpenMP threads. Comparing this against the best host runtime we now get a ratio of 5.43, which is a
significant improvement relative to the original code (where the Xeon Phi was 8 times slower). The Xeon Phi
performance is still much lower than the host, although we have not yet been able to realise all the optimisations
mentioned in [2].

As a final comparison we include the final profiles as obtained from CP2K’s in built timers for the best
performing host and Xeon Phi configurations. Figure 12 shows the timing profile for the POPT version run on
16 MPI processes on the host whereas Figure 13 shows the timing profile for the PSMP version run on 16 MPI
processes with 15 OpenMP threads on the Xeon Phi. In each profile only sections of code taking more than 5%
of the total runtime are included.

SUBROUTINE CALLS ASD SELF TIME TOTAL TIME
 AVERAGE MAXIMUM AVERAGE MAXIMUM
 CP2K 1 1.0 0.086 0.109 83.146 83.149
 cp_cell_opt 1 2.0 0.010 0.019 81.828 81.832
 geoopt_bfgs 1 3.0 0.092 0.128 81.746 81.751
 cp_eval_at 2 4.0 0.017 0.026 81.204 81.207
 qs_forces 2 5.0 0.025 0.037 81.052 81.059
 qs_energies_scf 2 6.0 0.013 0.021 53.872 53.893
 scf_env_do_scf 2 7.0 0.004 0.007 39.986 39.986
 qs_ks_build_kohn_sham_matrix 6 9.0 0.015 0.020 29.521 29.536
 sum_up_and_integrate 6 10.0 0.002 0.003 26.636 27.786
 integrate_v_rspace 6 11.0 26.567 27.719 26.634 27.785
 init_scf_loop 4 8.0 0.001 0.003 23.455 23.460
 qs_rho_update_rho 6 9.2 0.001 0.001 17.238 17.278
 calculate_rho_elec 6 10.2 16.366 17.014 17.238 17.277

14

 qs_ks_update_qs_env_forces 2 6.0 0.000 0.000 17.176 17.182
 scf_env_do_scf_inner_loop 4 8.0 0.002 0.005 16.492 16.504
 cp_dbcsr_multiply_d 112 12.2 0.002 0.003 14.048 15.690
 dbcsr_mm_cannon_multiply 112 14.2 0.098 0.173 14.035 15.675
 cp_dbcsr_mult_NS_NR 44 13.2 0.003 0.006 10.951 12.596
 qs_ks_update_qs_env 8 9.0 0.000 0.000 12.362 12.372
 cannon_multiply_low 112 15.2 0.069 0.088 11.371 11.543
 cannon_multiply_low_multrec 448 16.2 0.002 0.003 9.856 10.214
 cannon_multiply_low_multrec_mas 448 17.2 9.850 10.210 9.850 10.210
 build_core_hamiltonian_matrix_f 2 6.0 0.000 0.000 9.297 9.960
 prepare_preconditioner 4 9.0 0.000 0.000 9.347 9.359
 init_scf_run 2 7.0 0.003 0.008 7.766 7.769
 scf_env_initial_rho_setup 2 8.0 0.003 0.008 7.763 7.768
 make_preconditioner 4 10.0 0.000 0.000 6.955 6.959
 qs_energies_init_hamiltonians 2 7.0 0.008 0.014 5.613 5.621
 build_core_ppnl_forces 2 7.0 5.032 5.587 5.032 5.587
 qs_scf_loop_do_ot 4 9.0 0.000 0.000 4.761 4.792
 subspace_eigenvalues_ks_dbcsr 8 10.5 0.000 0.000 4.393 4.406
 ot_scf_mini 4 10.0 0.003 0.006 4.317 4.321

Figure 12: Timing profile of the POPT version using 16 MPI processes on the host. Only timings taking more 5% of the total runtime are
included.

SUBROUTINE CALLS ASD SELF TIME TOTAL TIME
 AVERAGE MAXIMUM AVERAGE MAXIMUM
 CP2K 1 1.0 0.545 0.611 451.241 451.294
 cp_cell_opt 1 2.0 0.001 0.002 445.632 445.856
 geoopt_bfgs 1 3.0 1.273 1.955 444.898 445.122
 cp_eval_at 2 4.0 0.327 0.331 438.415 438.416
 qs_forces 2 5.0 0.346 0.558 436.583 436.583
 qs_energies_scf 2 6.0 0.008 0.022 302.840 303.049
 scf_env_do_scf 2 7.0 0.001 0.005 191.614 191.942
 init_scf_loop 4 8.0 0.001 0.001 126.739 126.752
 qs_ks_build_kohn_sham_matrix 6 9.0 0.204 0.287 96.419 97.163
 sum_up_and_integrate 6 10.0 0.026 0.028 83.097 87.559
 integrate_v_rspace 6 11.0 82.344 86.813 83.071 87.531
 prepare_preconditioner 4 9.0 0.000 0.000 80.328 80.789
 qs_energies_init_hamiltonians 2 7.0 0.000 0.001 78.848 78.848
 build_core_hamiltonian_matrix_f 2 6.0 0.013 0.122 67.793 72.663
 scf_env_do_scf_inner_loop 4 8.0 0.002 0.007 62.241 64.678
 make_preconditioner 4 10.0 0.001 0.001 61.477 61.551
 qs_ks_update_qs_env_forces 2 6.0 0.000 0.000 59.688 59.933
 cp_dbcsr_multiply_d 112 12.2 0.006 0.007 54.521 59.743
 dbcsr_mm_cannon_multiply 112 14.2 2.550 4.719 54.376 59.607
 qs_rho_update_rho 6 9.2 0.000 0.001 50.879 51.059
 calculate_rho_elec 6 10.2 47.032 49.578 50.878 51.058
 cp_dbcsr_mult_NS_NR 44 13.2 0.002 0.003 42.662 48.836
 calculate_dispersion_pairpot 2 8.0 46.561 46.561 46.561 46.561
 cannon_multiply_low 112 15.2 0.788 0.960 40.393 45.717
 cannon_multiply_low_multrec 448 16.2 32.617 38.201 38.540 43.896
 cp_fm_syevd 14 11.7 0.001 0.001 40.739 40.997
 cp_fm_syevd_base 14 12.7 40.738 40.996 40.738 40.996
 qs_ks_update_qs_env 8 9.0 0.000 0.000 37.193 37.674
 cp_dbcsr_syevd 12 12.0 0.053 0.117 37.243 37.305
 subspace_eigenvalues_ks_dbcsr 8 10.5 0.002 0.003 36.346 36.858
 build_kinetic_matrix 4 8.0 29.351 34.608 29.382 34.639
 build_core_hamiltonian_matrix 2 8.0 0.001 0.001 28.593 28.593
 qs_scf_loop_do_ot 4 9.0 0.000 0.000 27.564 28.032
 init_scf_run 2 7.0 0.001 0.005 27.996 28.001
 scf_env_initial_rho_setup 2 8.0 0.001 0.002 27.995 28.000
 make_full_single_inverse 4 11.0 0.099 0.169 25.836 25.895
 ot_scf_mini 4 10.0 0.003 0.003 25.769 25.801
 build_core_ppnl_forces 2 7.0 22.054 25.619 22.054 25.619

Figure 13: Timing profile of the PSMP version using 16 MPI processes and 15 OpenMP threads on the Xeon Phi. Only timings taking more
than 5% of the total runtime are included.

Comparing the two profiles we can see that the next targets for optimisation on the Xeon Phi would be
calculate_dispersion_pairpot and build_kinetic_matrix, both of which have similar
structures to the build_core_ppl and build_core_ppnl which were optimised during this project. To
achieve competitive performance in integrate_v_rspace and calculate_rho_elec (the two most
expensive routines on the host), would require significant memory reductions to allow use of all 240 virtual
threads on the MIC, which could not be achieved within the short duration of this project.

15

5. Lessons Learned and Recommendations
After initially porting then optimising CP2K on the Intel Xeon Phi, we have learned several important lessons
which may be of interest to other developers considering porting their codes to Xeon Phi.

• Porting: Porting an existing parallel code is very straightforward as Intel support a wide range of
programming models, including the widely use MPI and OpenMP as well as Intel-specific models like
Cilk+ and TBB, among others. If the code can already be reliably compiled with the Intel compiler suite
and MKL this is ideal, as most of the problems we discovered in porting were related to the Intel
toolchain rather than the Xeon Phi Architecture

• Native mode: If the existing code has been designed for fat multi-core nodes typically found in modern
HPC architectures, native mode appears to be an attractive option for utilising the Xeon Phi. However,
the dual requirements for low memory usage and high scalability for a correspondingly small problem
size mean that a code which has been designed and optimised for the usual 10s of CPU cores with
around 1GB of memory per core, will struggle to adapt well to the Xeon Phi without major
modifications. To find the required levels of concurrency (240 threads of execution) requires much
finer-grained parallelism, more typical of the extreme data-parallelism used when porting applications
to GPU.

• Offload mode: While we did not test offload mode in this project, given our experience it seems as
though this is a more suitable mode of operation for several reasons. Firstly, only the parts of the code
which exhibit high levels of parallelism can be executed on the Xeon Phi, for example using OpenMP
to manage the threaded execution of an offload region in the code. This in turn reduces the memory
requirement, since only the relevant data structures need to be copied to the co-processor. In addition,
since MPI can also be used to couple together many host nodes (each with Xeon Phi co-processors), in
a distributed memory code, this could reduce the size of the data structures still further and allow
scaling to much larger problem sizes.

• Extreme parallelism: Intel’s development environment for the Xeon Phi emphasises ease of use (by
supporting familiar programming models). However, the need to expose high levels of parallelism is
still the most demanding task, irrespective of the programming model, and developers considering
porting a code should be aware of this.

6. Conclusion
Our work to optimise the performance of CP2K for simulations of Langasites on the Intel Xeon Phi in native
mode has resulted in a total speedup of 49% compared with the initial version of the code. Despite this, it is still
faster to perform these calculations solely on the host CPU. In addition, we were unable to run the calculation at
full accuracy on the Xeon Phi due to memory constraints. As a result, we do not recommend proceeding with
these calculations on the Xeon Phi, without further work on the code first to make use of offload mode to run
only the most computationally intensive and potentially parallel parts of the calculation on the co-processor.

Nevertheless, our improvements to the code - the OpenMP parallelisation of two new routines, optimised FFTs
using MKL, and other code quality changes – will benefit any users of the code, even on standard CPUs. These
changes are already included in the latest SVN trunk and will form part of the CP2K 2.5 release during 2014.

References

[1] CP2K: Open Source Molecular Dynamics, http://www.cp2k.org
[2] Evaluating CP2K on Exascale Hardware: Intel Xeon Phi, PRACE Whitepaper, F. Reid and I. Bethune,

2013.
[3] A Quick Guide of Intel MIC Usage; http://www.hpc.cineca.it/content/quick-guide-intel-mic-usage
[4] Intel Xeon Phi Specifications; http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-

detail.html
[5] Improving the scalability of CP2K on multi-core systems, I. Bethune, HECToR dCSE Report, Sep 2010

16

[6] CP2K – Scalable Atomistic Simulation for the PRACE Community, I. Bethune, A. Carter, K. Stratford and
P. Korosoglou, 2011; http://www.prace-ri.eu/IMG/pdf/CP2K_-
_Scalable_Atomistic_Simulation_for_the_PRACE_Community.pdf

[7] CP2K Regression Tester webpage; http://people.web.psi.ch/krack/cp2k/regtest/regtest.html
[8] Intel documentation regarding using FFTW3 wrappers in MKL;

http://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-D17B3AB4-BD4E-4652-
94A7-BAD4130CCB4A.htm

Acknowledgements

This work was financially supported by the PRACE project funded in part by the EUs 7th Framework
Programme (FP7/2007-2013) under grant agreement no. RI-261557.

17

Appendix A: CP2K input file for Langasite benchmark

This appendix contains the CP2K input file for running the Langasite benchmark on the host and Xeon Phi.
Supporting files (basis sets, psuedopotentials, and dispersion potential parameters) can be found in the CP2K
source distribution.

CP2K input file for Langasite benchmark

&MOTION
 &GEO_OPT
 MAX_ITER 1
 MINIMIZER BFGS
 &END
 &CELL_OPT
 TYPE DIRECT_CELL_OPT
 OPTIMIZER BFGS
 MAX_ITER 1
 EXTERNAL_PRESSURE [bar] 1.0
 &END
&END
&FORCE_EVAL
 METHOD QS
 STRESS_TENSOR ANALYTICAL
 &DFT
 BASIS_SET_FILE_NAME ./BASIS_MOLOPT
 BASIS_SET_FILE_NAME ./GTH_BASIS_SETS
 POTENTIAL_FILE_NAME ./GTH_POTENTIALS
 &MGRID
 CUTOFF 50
 &END MGRID
 &QS
 EPS_DEFAULT 1.0E-12
 &END QS
 &SCF
 SCF_GUESS ATOMIC
 EPS_SCF 1.0E-7
 &OT ON
 PRECONDITIONER FULL_SINGLE_INVERSE
 &END OT
 MAX_SCF 1
 &OUTER_SCF
 EPS_SCF 1.0E-7
 MAX_SCF 1
 &END
 &END SCF
 &XC
 &XC_FUNCTIONAL PBE
 &END
 &vdW_POTENTIAL
 DISPERSION_FUNCTIONAL PAIR_POTENTIAL
 &PAIR_POTENTIAL
 TYPE DFTD3
 PARAMETER_FILE_NAME ./dftd3.dat
 REFERENCE_FUNCTIONAL PBE
 R_CUTOFF 15.
 &END PAIR_POTENTIAL
 &END vdW_POTENTIAL
 &END XC
 &END DFT
 &SUBSYS
 &CELL
 ABC 16.449200 16.449600 15.471100
 ALPHA_BETA_GAMMA -89.990000 90.000000 120.000000
 PERIODIC XYZ
 &END CELL
 &COORD

18

O 0.000756 4.748306 0.946831
O 4.111444 2.375618 4.208139
O 2.450075 2.355151 1.612089
O 4.960243 0.944820 1.613636
O 4.924837 3.823890 1.612089
O 0.500832 3.253009 3.468621
O -1.544651 5.063646 3.467073
O 1.044441 5.929789 3.467073
O 1.426135 0.770091 4.065805
O 6.844500 0.849868 4.067352
O 4.068632 5.503961 4.067352
O -0.481982 1.464744 1.381569
O -2.603181 6.808332 1.380022
O 3.084964 5.973530 1.381569
O 4.112956 11.873271 11.261413
O 8.223644 9.500583 14.522721
O 6.562275 9.480115 11.926671
O 9.072443 8.069784 11.926671
O 9.037037 10.948854 11.926671
O 4.613032 10.377973 13.781656
O 2.567549 12.188610 13.780108
O 5.156641 13.054753 13.781656
O 5.538335 7.895056 14.380387
O 10.956700 7.974832 14.381934
O 8.180832 12.628925 14.380387
O 3.630218 8.589708 11.694604
O 1.509019 13.933297 11.694604
O 7.197164 13.098495 11.696151
O -4.111644 11.873271 11.261413
O -0.000956 9.500583 14.522721
O -1.662325 9.480115 11.926671
O 0.847843 8.069784 11.926671
O 0.812437 10.948854 11.926671
O -3.611568 10.377973 13.781656
O -5.657051 12.188610 13.780108
O -3.067959 13.054753 13.781656
O -2.686265 7.895056 14.380387
O 2.732100 7.974832 14.381934
O -0.043768 12.628925 14.380387
O -4.594382 8.589708 11.694604
O -6.715581 13.933297 11.694604
O -1.027436 13.098495 11.696151
O 8.225356 4.750385 11.261413
O 12.336044 2.377697 14.522721
O 10.674675 2.357230 11.926671
O 13.184843 0.946898 11.926671
O 13.149437 3.825969 11.926671
O 8.725432 3.255087 13.781656
O 6.679949 5.065724 13.780108
O 9.269041 5.931868 13.781656
O 9.650735 0.772170 14.380387
O 15.069100 0.851946 14.381934
O 12.293232 5.506040 14.380387
O 7.742618 1.466822 11.694604
O 5.621419 6.810411 11.694604
O 11.309564 5.975609 11.696151
O 0.000756 4.750385 11.261413
O 4.111444 2.377697 14.522721
O 2.450075 2.357230 11.926671
O 4.960243 0.946898 11.926671
O 4.924837 3.825969 11.926671
O 0.500832 3.255087 13.781656
O -1.544651 5.065724 13.780108
O 1.044441 5.931868 13.781656
O 1.426135 0.772170 14.380387
O 6.844500 0.851946 14.381934
O 4.068632 5.506040 14.380387
O -0.481982 1.466822 11.694604
O -2.603181 6.810411 11.694604

19

O 3.084964 5.975609 11.696151
O 4.112956 11.872232 6.104896
O 8.223644 9.499543 9.366204
O 6.562275 9.479076 6.768606
O 9.072443 8.068745 6.770153
O 9.037037 10.947815 6.768606
O 4.613032 10.376934 8.625138
O 2.567549 12.187571 8.623591
O 5.156641 13.053714 8.625138
O 5.538335 7.894016 9.223870
O 10.956700 7.973793 9.223870
O 8.180832 12.627886 9.223870
O 3.630218 8.588669 6.538087
O 1.509019 13.932258 6.538087
O 7.197164 13.097455 6.538087
O -4.111644 11.872232 6.104896
O -0.000956 9.499543 9.366204
O -1.662325 9.479076 6.768606
O 0.847843 8.068745 6.770153
O 0.812437 10.947815 6.768606
O -3.611568 10.376934 8.625138
O -5.657051 12.187571 8.623591
O -3.067959 13.053714 8.625138
O -2.686265 7.894016 9.223870
O 2.732100 7.973793 9.223870
O -0.043768 12.627886 9.223870
O -4.594382 8.588669 6.538087
O -6.715581 13.932258 6.538087
O -1.027436 13.097455 6.538087
O 8.225356 4.749346 6.104896
O 12.336044 2.376658 9.366204
O 10.674675 2.356190 6.768606
O 13.184843 0.945859 6.770153
O 13.149437 3.824929 6.768606
O 8.725432 3.254048 8.625138
O 6.679949 5.064685 8.623591
O 9.269041 5.930828 8.625138
O 9.650735 0.771131 9.223870
O 15.069100 0.850907 9.223870
O 12.293232 5.505000 9.223870
O 7.742618 1.465783 6.538087
O 5.621419 6.809372 6.538087
O 11.309564 5.974570 6.538087
O 0.000756 4.749346 6.104896
O 4.111444 2.376658 9.366204
O 2.450075 2.356190 6.768606
O 4.960243 0.945859 6.770153
O 4.924837 3.824929 6.768606
O 0.500832 3.254048 8.625138
O -1.544651 5.064685 8.623591
O 1.044441 5.930828 8.625138
O 1.426135 0.771131 9.223870
O 6.844500 0.850907 9.223870
O 4.068632 5.505000 9.223870
O -0.481982 1.465783 6.538087
O -2.603181 6.809372 6.538087
O 3.084964 5.974570 6.538087
O 4.112956 11.871192 0.946831
O 8.223644 9.498504 4.208139
O 6.562275 9.478037 1.612089
O 9.072443 8.067706 1.613636
O 9.037037 10.946776 1.612089
O 4.613032 10.375894 3.468621
O 2.567549 12.186532 3.467073
O 5.156641 13.052675 3.467073
O 5.538335 7.892977 4.065805
O 10.956700 7.972753 4.067352
O 8.180832 12.626847 4.067352
O 3.630218 8.587629 1.381569

20

O 1.509019 13.931218 1.380022
O 7.197164 13.096416 1.381569
O -4.111644 11.871192 0.946831
O -0.000956 9.498504 4.208139
O -1.662325 9.478037 1.612089
O 0.847843 8.067706 1.613636
O 0.812437 10.946776 1.612089
O -3.611568 10.375894 3.468621
O -5.657051 12.186532 3.467073
O -3.067959 13.052675 3.467073
O -2.686265 7.892977 4.065805
O 2.732100 7.972753 4.067352
O -0.043768 12.626847 4.067352
O -4.594382 8.587629 1.381569
O -6.715581 13.931218 1.380022
O -1.027436 13.096416 1.381569
O 8.225356 4.748306 0.946831
O 12.336044 2.375618 4.208139
O 10.674675 2.355151 1.612089
O 13.184843 0.944820 1.613636
O 13.149437 3.823890 1.612089
O 8.725432 3.253009 3.468621
O 6.679949 5.063646 3.467073
O 9.269041 5.929789 3.467073
O 9.650735 0.770091 4.065805
O 15.069100 0.849868 4.067352
O 12.293232 5.503961 4.067352
O 7.742618 1.464744 1.381569
O 5.621419 6.808332 1.380022
O 11.309564 5.973530 1.381569
Ga 4.111444 2.375252 2.390285
Ga 6.370774 0.077427 2.481564
Ga 4.973339 5.477999 2.481564
Ga 0.994332 1.568960 2.481564
Ga 0.000756 4.748658 2.690424
Ga 8.223644 9.500216 12.704867
Ga 10.482974 7.202392 12.796147
Ga 9.085539 12.602964 12.796147
Ga 5.106532 8.693924 12.796147
Ga 4.112956 11.873622 13.005006
Ga -0.000956 9.500216 12.704867
Ga 2.258374 7.202392 12.796147
Ga 0.860939 12.602964 12.796147
Ga -3.118068 8.693924 12.796147
Ga -4.111644 11.873622 13.005006
Ga 12.336044 2.377331 12.704867
Ga 14.595374 0.079506 12.796147
Ga 13.197939 5.480078 12.796147
Ga 9.218932 1.571038 12.796147
Ga 8.225356 4.750737 13.005006
Ga 4.111444 2.377331 12.704867
Ga 6.370774 0.079506 12.796147
Ga 4.973339 5.480078 12.796147
Ga 0.994332 1.571038 12.796147
Ga 0.000756 4.750737 13.005006
Ga 8.223644 9.499177 7.546802
Ga 10.482974 7.201353 7.639629
Ga 9.085539 12.601925 7.639629
Ga 5.106532 8.692885 7.639629
Ga 4.112956 11.872583 7.848489
Ga -0.000956 9.499177 7.546802
Ga 2.258374 7.201353 7.639629
Ga 0.860939 12.601925 7.639629
Ga -3.118068 8.692885 7.639629
Ga -4.111644 11.872583 7.848489
Ga 12.336044 2.376291 7.546802
Ga 14.595374 0.078467 7.639629
Ga 13.197939 5.479039 7.639629
Ga 9.218932 1.569999 7.639629

21

Ga 8.225356 4.749697 7.848489
Ga 4.111444 2.376291 7.546802
Ga 6.370774 0.078467 7.639629
Ga 4.973339 5.479039 7.639629
Ga 0.994332 1.569999 7.639629
Ga 0.000756 4.749697 7.848489
Ga 8.223644 9.498138 2.390285
Ga 10.482974 7.200313 2.481564
Ga 9.085539 12.600885 2.481564
Ga 5.106532 8.691845 2.481564
Ga 4.112956 11.871544 2.690424
Ga -0.000956 9.498138 2.390285
Ga 2.258374 7.200313 2.481564
Ga 0.860939 12.600885 2.481564
Ga -3.118068 8.691845 2.481564
Ga -4.111644 11.871544 2.690424
Ga 12.336044 2.375252 2.390285
Ga 14.595374 0.077427 2.481564
Ga 13.197939 5.477999 2.481564
Ga 9.218932 1.568960 2.481564
Ga 8.225356 4.748658 2.690424
Ge 0.000000 0.000001 0.004641
Ge 4.112200 7.124965 10.319223
Ge 12.336800 7.124965 10.319223
Ge 8.224600 0.002080 10.319223
Ge 0.000000 0.002080 10.319223
Ge 4.112200 7.123926 5.161159
Ge 12.336800 7.123926 5.161159
Ge 8.224600 0.001040 5.161159
Ge 0.000000 0.001040 5.161159
Ge 4.112200 7.122887 0.004641
Ge -4.112400 7.122887 0.004641
Ge 8.224600 0.000001 0.004641
La 3.448574 0.036635 5.063691
La 6.469429 2.969839 5.063691
La 2.420442 4.119473 5.063691
La 7.560774 7.161599 15.378273
La 10.581629 10.094804 15.378273
La 6.532642 11.244438 15.378273
La -0.663826 7.161599 15.378273
La 2.357029 10.094804 15.378273
La -1.691958 11.244438 15.378273
La 11.673174 0.038714 15.378273
La 14.694029 2.971918 15.378273
La 10.645042 4.121552 15.378273
La 3.448574 0.038714 15.378273
La 6.469429 2.971918 15.378273
La 2.420442 4.121552 15.378273
La 7.560774 7.160560 10.220208
La 10.581629 10.093764 10.220208
La 6.532642 11.243398 10.221756
La -0.663826 7.160560 10.220208
La 2.357029 10.093764 10.220208
La -1.691958 11.243398 10.221756
La 11.673174 0.037674 10.220208
La 14.694029 2.970878 10.220208
La 10.645042 4.120513 10.221756
La 3.448574 0.037674 10.220208
La 6.469429 2.970878 10.220208
La 2.420442 4.120513 10.221756
La 7.560774 7.159521 5.063691
La 10.581629 10.092725 5.063691
La 6.532642 11.242359 5.063691
La -0.663826 7.159521 5.063691
La 2.357029 10.092725 5.063691
La -1.691958 11.242359 5.063691
La 11.673174 0.036635 5.063691
La 14.694029 2.969839 5.063691
La 10.645042 4.119473 5.063691

22

 &END
 &KIND O
 BASIS_SET SZV-GTH
 POTENTIAL GTH-PBE-q6
 &END KIND
 &KIND La
 BASIS_SET DZVP
 POTENTIAL GTH-PBE-q11
 &END KIND
 &KIND Ge
 BASIS_SET DZVP-MOLOPT-SR-GTH
 POTENTIAL GTH-PBE-q4
 &END KIND
 &KIND Ga
 BASIS_SET DZVP-MOLOPT-SR-GTH
 POTENTIAL GTH-PBE-q13
 &END KIND
 &END SUBSYS
&END FORCE_EVAL
&GLOBAL
 PROJECT tmp
 RUN_TYPE CELL_OPT
 PRINT_LEVEL MEDIUM
 FLUSH_SHOULD_FLUSH
 SAVE_MEM
 &TIMINGS
 THRESHOLD 0.000001
 &END
&END GLOBAL

Figure 14: Langasite benchmark CP2K input file. The highlighted sections indicate the parts of the input file that were changed to reduce the
runtime and memory requirements down to a manageable level for execution on the Xeon Phi.

Appendix B: CP2K input file for FFT benchmark

This appendix contains the CP2K input file for running the simple FFT benchmark on the Xeon Phi.

&GLOBAL
 PRINT_LEVEL MEDIUM
 PROGRAM_NAME TEST
 RUN_TYPE NONE
 &TIMINGS
 THRESHOLD 0.00000000001
 &END
&END GLOBAL
&TEST
 &PW_TRANSFER
 GRID 125 125 125
 N_LOOP 100
 &END
&END

Figure 15: fft.inp input file used to compare the performance of FFTW 3.3.3 and MKL 11.1.0 on the Xeon Phi. The grid size used was 125 x
125 x 125 elements.

