

E-Infrastructures

H2020- INFRAEDI-2018-2020

INFRAEDI-01-2018: Pan-European High Performance Computing

infrastructure and services (PRACE)

PRACE-6IP

PRACE Sixth Implementation Phase Project

Grant Agreement Number: INFRAEDI-823767

D8.3

Interim Progress Report: Public Prototype Software Release and

Development Infrastructure

Final

Version: 1.2

Author(s): Fabio Affinito, Joost VandeVondele, Alex Upton

Date: 29.04.2020

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 i 29.04.2020

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: INFRAEDI-823767

Project Title: PRACE Sixth Implementation Phase Project

Project Web Site: http://www.prace-project.eu

Deliverable ID: < D8.3>

Deliverable Nature: <Report>

Dissemination Level:

PU

Contractual Date of Delivery:

30/04/2020

Actual Date of Delivery:

30/04/2020

EC Project Officer: Leonardo Flores Añover

Document Control Sheet

Document

Title: Interim Progress Report: Public Prototype Software Release

and Development Infrastructure

ID: D8.3

Version: 1.2 Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2016

File(s): D8.3

 Written by: Fabio Affinito, Joost VandeVondele, Alex
Upton

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 ii 29.04.2020

Authorship Contributors: Fabio Affinito, Constantia Alexandrou,
Momme Allalen, Simone Bacchio, Marco
Bettiol, Mauro Bianco, John Biddiscombe,
Fabian Boesch, Ricard Borrel, Matic Brank,
David Brayford, John Brennan, Dirk
Brömmel, Tomas Brzobohaty, Mark Bull,
Junxian Chew, Zahra Chitgar, Laurent
Chôné, Olivier Coulaud, Tilman Dannert,
Edoardo Di Napoli, Jacob Finkenrath, Urs
Ganse, Christophe Geuzaine, Paul Gibbon,
Luc Giraud, Aleksander Grm, Kenneth
Hanley, Berk Hess, Koen Hillewaert, Victor
Holanda, Guillaume Houzeaux, Luigi
Iapichino, Alberto Invernizzi, Ferdinand
Jamitzky, Niclas Jansson, Joe Jordan,
Prashanth Kanduri, Sebastian Keller, Leon
Kos, Giannis Koutsou, Marcin Krotkiewski,
Carlos Lopez, Martti Louhivuori, Michele
Martone, Michal Merta, Niall Moran,
Teodor Nikolov, Henrik Nortamo, Lee
O'Riordan, Phillip Otte, Dejan Penko, Adam
Peplinski, Janez Povh, Lara Querciagrossa,
Philipp Schlatter, Gregor Simič, Ujjwal
Sinha, Raffaele Solcà, Thomas Toulorge,
Alex Upton, Joost VandeVondele, Ivona
Vasileska, Xinzhe Wu, Shuhei Yamamoto,
Jan Zapletal, Artem Zhmurov

Reviewed by: Florian Berberich, JUELICH
Cédric Jourdain, CINES

Approved by: MB/TB

Document Status Sheet

Version Date Status Comments

0.1 31/03/2020 1st Draft Missing executive
summary, introduction
and conclusions

0.2 02/04/2020 2nd Draft (ready for
internal review)

Added executive
summary, introduction
and conclusions

0.3 14/04/2020 3rd Draft (following
internal review)

Changed spelling to
British English, changed
formatting of links to

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 iii 29.04.2020

references, minor
changes to text and
overall formatting

1.0 21/04/2020 Minor formatting
changes and additional
references

1.1 22/04/2020

1.2 29/04/202 Final Updated contributors

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 iv 29.04.2020

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Exascale, Forward-looking
software solutions

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in accordance
with the Consortium Agreement and the Grant Agreement n° INFRAEDI-823767. It solely reflects
the opinion of the parties to such agreements on a collective basis in the context of the Project and
to the extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of PRACE
AISBL and therefore does not emanate from it nor should it be considered to reflect PRACE
AISBL’s individual opinion.

Copyright notices

 2020 PRACE Consortium Partners. All rights reserved. This document is a project document of
the PRACE project. All contents are reserved by default and may not be disclosed to third parties
without the written consent of the PRACE partners, except as mandated by the European
Commission contract INFRAEDI-823767 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 v 29.04.2020

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet ... i

Document Status Sheet ... ii

Document Keywords ... iv

List of Figures .. vii

List of Tables .. vii

References and Applicable Documents ... vii

List of Acronyms and Abbreviations ... ix

List of Project Partner Acronyms ... x

Executive Summary ... 1

1 Introduction ... 2

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation 3

2.1 Introduction and summary ... 3

2.2 Prototype software release .. 3

2.3 Development infrastructure .. 3

2.4 Planned work for the next six months ... 4

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for Heterogeneous

Exascale Architectures ... 5

3.1 Introduction and summary ... 5

3.2 Prototype software release .. 5

3.3 Development infrastructure .. 6

3.4 Status and outlook Planned work for the next six months .. 6

4 NB-LIB: Performance portable library for N-body force calculations at the Exascale ... 8

4.1 Introduction and summary ... 8

4.2 Prototype software release .. 8

4.3 Development infrastructure .. 9

4.4 Planned work for the next six months ... 9

5 LoSync – Synchronisation reducing programming techniques and runtime support ... 10

5.1 Introduction and summary ... 10

5.2 Project Prototype software release .. 10

5.3 Development infrastructure .. 11

5.4 Planned work for the next six months ... 11

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 vi 29.04.2020

6 FEM/BEM based domain decomposition solvers .. 12

6.1 Introduction and summary ... 12

6.2 Prototype software release .. 12

6.3 Development infrastructure .. 13

6.4 Planned work for the next six months ... 13

7 Performance portable linear algebra .. 14

7.1 Introduction and summary ... 14

7.2 Prototype software release .. 14

7.2.1 DLA-Future and DLA-Interface .. 14

7.2.2 Chase library ... 15

7.3 Development infrastructure .. 15

7.3.1 DLA-Future and DLA-Interface .. 15

7.3.2 Chase library ... 16

7.4 Planned work for the next six months ... 16

7.4.1 DLA-Future and DLA-Interface .. 16

7.4.2 Chase library ... 16

8 GHEX: Generic Halo-Exchange for Exascale .. 17

8.1 Introduction and summary ... 17

8.2 Prototype software release .. 18

8.3 Development infrastructure .. 19

8.4 Planned work for the next six months ... 20

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support for

the discovery of new physics .. 21

9.1 Introduction and summary ... 21

9.2 Prototype software release .. 21

9.3 Development infrastructure .. 23

9.4 Planned work for the next six months ... 23

10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale Computers 24

10.1 Introduction and summary ... 24

11 QuantEx: Efficient Quantum Circuit Simulation on Exascale Systems 26

11.1 Introduction and summary ... 26

11.2 Evaluations ... 26

11.3 Design and use case development ... 27

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 vii 29.04.2020

11.4 Development infrastructure .. 27

11.5 Team and collaboration .. 27

11.6 Status and outlook ... 28

12 Conclusions .. 29

List of Figures

Figure 1: Comparison of the performance of DLA-Future Cholesky decomposition compared
with other libraries (left: ScaLAPACK implementations, right: other task-based approaches). ... 15

Figure 2: Overview of GHEX .. 17

Figure 3: Comparison of GHEX and MPI transport layers for different sizes of messages on
Infiniband network. .. 18

Figure 4: Execution times for meshes with 1M nodes and up to 64 compute nodes. 19

Figure 5: Comparison of scalability in the range from 5 to 1200 nodes of DDalpaAMG on
SuperMUC-NG using a physical point lattice of lattice size V=80x80x80x160 using 1 (blue
circles), 4 (red, diamonds) and 8 (yellow, squares) right hand sides. .. 22

Figure 6: ParSec work plan. ... 25

List of Tables

Table 1: Staff involved in QuantEx project. .. 28

References and Applicable Documents

[1] https://doi.org/10.1088/0741-3335/57/11/113001

[2] https://doi.org/10.1109/PDP.2010.47

[3] https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch

[4] https://gitlab.version.fz-juelich.de/SLPP/epoch

[5] https://bitbucket.org/lecadpeg/simpic/src/master

[6] https://gitlab.version.fz-juelich.de/SLPP/lecad/simpic

[7] https://bitbucket.org/lecadpeg/bit1/src/master

[8] https://gitlab.version.fz-juelich.de/SLPP/epoch

[9] https://cfsa-pmw.warwick.ac.uk/EPOCH/epoch

[10] http://www.fz-juelich.de/jsc/jube

[11] https://bitbucket.org/lecadpeg/simpic/src/master/doc/

[12] https://github.com/MoPHA

[13] https://github.com/MoPHA/gene-tasks

[14] https://github.com/fmihpc/vlasiator/tree/openacc

[15] https://github.com/MoPHA/sympife-vmax

[16] https://github.com/MoPHA/strugepic

[17] https://bitbucket.org/lecadpeg/simpic

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 viii 29.04.2020

[18] https://github.com/MoPHA/sympife-vmax/

[19] https://gitlab.com/gromacs/nb-lib.git

[20] https://gitlab.com/gromacs/nb-lib/-/wikis/NB-LIB-Public-Documentation

[21] https://pm.bsc.es/ompss-2-downloads

[22] https://github.com/bsc-pm/tampi

[23] https://pm.bsc.es/ompss-2

[24] http://numbox.it4i.cz/

[25] https://github.com/It4innovations/espreso

[26] https://code.it4i.cz/

[27] https://nose.readthedocs.io/en/latest/

[28] https://github.com/It4innovations/espreso

[29] http://numbox.it4i.cz/

[30] http://www.netlib.org/scalapack

[31] https://elpa.mpcdf.mpg.de/software

[32] https://github.com/STEllAR-GROUP/hpx

[33] https://github.com/eth-cscs/DLA-Future/

[34] https://github.com/eth-cscs/DLA-Interface/

[35] https://github.com/SimLabQuantumMaterials/ChASE

[36] https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/github-flow

[37] https://user.cscs.ch/tools/continuous/

[38] https://simlabquantummaterials.github.io/ChASE/

[39] https://github.com/GridTools/GHEX

[40] github.com/sbacchio/lyncs

[41] http://gitlab.Inria.fr

[42] https://gitlab.Inria.fr/solverstack/spack-repo

[43] https://guix-hpc.bordeaux.Inria.fr

[44] https://github.com/sy3394/DDalphaAMG

[45] http://librsb.sourceforge.net/

[46] https://github.com/michelemartone/pyrsb

[47] https://octave.sourceforge.io/sparsersb/

[48] https://github.com/Nek5000

[49] https://repository.prace-ri.eu/git/UEABS/ueabs/-/tree/master/alya

[50] https://sites.uclouvain.be/madlib

[51] https://gitlab.onelab.info/gmsh/gmsh

[52] https://github.com/DmitryLyakh/TAL_SH

[53] https://github.com/ngnrsaa/qflex

[54] https://developer.nvidia.com/cutensor

[55] https://github.com/jcmgray/quimb

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 ix 29.04.2020

List of Acronyms and Abbreviations

aisbl Association International Sans But Lucratif (legal form of the PRACE-RI)

AMR Adaptive-mesh refinement

BETI Boundary element tearing and interconnecting

CoE Centre of Excellence

CPU Central Processing Unit

CHASE Chebyshev Accelerated Subspace iteration eigensolver

CUDA Compute Unified Device Architecture (NVIDIA)

DCCRG Distributed Cartesian cell refinable grid

DoA Description of Action (formerly known as DoW)

EC European Commission

EuroHPC European High-Performance Computing Joint Undertaking

FETI Finite element tearing and interconnecting

FMM Fast-multipole method

GASPI Global Address Space Programming Interface

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/ s Giga (= 109) bits per second, also Gbit/s

GB/ s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second, also
GF/s

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GPU Graphic Processing Unit

HPC High Performance Computing; Computing at a high performance level at any given
time; often used synonym with Supercomputing

HPL High Performance LINPACK

KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte

LINPACK Software library for Linear Algebra

MB Management Board (highest decision making body of the project)

MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte

MB/ s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s

MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per second, also
MF/s

MoU Memorandum of Understanding.

MPI Message Passing Interface

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 x 29.04.2020

NIH US National Institutes of Health

PFC Plasma-facing component

PIC Particle-in-cell

PM Person-month

PRACE Partnership for Advanced Computing in Europe; Project Acronym

QCD Quantum chromodynamics

RI Research Infrastructure

SIMD Single instruction multiple data

SOL Scrape-off layer

SPMD Single program multiple data

SSC Scientific Steering Committee

SVD Singular value decomposition

TAMPI Task-aware MPI

TAGASPI Task-aware GASPI

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per second, also
TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the
Supercomputing Research Infrastructure would host the Tier-0 systems; national or
topical HPC centres would constitute Tier-1

List of Project Partner Acronyms

BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,
Germany (3rd Party to GCS)

BILKENT Bilkent University, Turkey (3rd Party to UHEM)

BSC Barcelona Supercomputing Center - Centro Nacional de Supercomputacion,
Spain

CaSToRC The Computation-based Science and Technology Research Center
(CaSToRC), The Cyprus Institute, Cyprus

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives, France
(3rd Party to GENCI)

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to
UANTWERPEN)

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación de
Galicia, Spain, (3rd Party to BSC)

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 xi 29.04.2020

CINECA CINECA Consorzio Interuniversitario, Italy

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd
Party to GENCI)

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to GENCI)

CSC CSC Scientific Computing Ltd., Finland

CSIC Spanish Council for Scientific Research (3rd Party to BSC)

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to
PNSC)

DTU Technical University of Denmark (3rd Party of UCPH)

EPCC EPCC at The University of Edinburgh, UK

EUDAT EUDAT OY

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland

GCS Gauss Centre for Supercomputing e.V., Germany

GÉANT GÉANT Vereniging

GENCI Grand Equipement National de Calcul Intensif, France

GRNET National Infrastructures for Research and Technology, Greece

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to BSC)

INRIA Institut National de Recherche en Informatique et Automatique, France (3rd
Party to GENCI)

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd
Party to UC-LCA)

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic

IUCC Machba - Inter University Computation Centre, Israel

JUELICH Forschungszentrum Juelich GmbH, Germany

KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU)

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to UANTWERPEN)

LiU Linkoping University, Sweden (3rd Party to SNIC-UU)

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., Germany
(3rd Party to GCS)

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,
Bulgaria

NTNU The Norwegian University of Science and Technology, Norway (3rd Party
to SIGMA2)

NUI-Galway National University of Ireland Galway, Ireland

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 xii 29.04.2020

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium

PSNC Poznan Supercomputing and Networking Center, Poland

SDU University of Southern Denmark (3rd Party to UCPH)

SIGMA2 UNINETT Sigma2 AS, Norway

SNIC-UU Uppsala Universitet, Sweden

STFC Science and Technology Facilities Council, UK (3rd Party to UEDIN)

SURFsara Dutch national high-performance computing and e-Science support
center, part of the SURF cooperative, Netherlands

TASK Politechnika Gdańska (3rd Party to PNSC)

TU Wien Technische Universität Wien, Austria

UANTWERPEN Universiteit Antwerpen, Belgium

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada, Portugal

UCPH Københavns Universitet, Denmark

UEDIN The University of Edinburgh

UHEM Istanbul Technical University, Ayazaga Campus, Turkey

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien)

UiO University of Oslo, Norway (3rd Party to SIGMA2)

UL UNIVERZA V LJUBLJANI, Slovenia

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN)

U Luxembourg University of Luxembourg

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA)

UmU Umea University, Sweden (3rd Party to SNIC-UU)

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA)

UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS)

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC)

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 xiii 29.04.2020

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 1 29.04.2020

Executive Summary

Work Package 8 of PRACE-6IP has successfully initiated ten projects developing forward-looking
software solutions. Eight of these projects started in April 2019 immediately, whilst two projects
started in January 2020, after selection in a second call for proposals. This deliverable reports on
the public release of prototype software by all projects. This early release of work-in-progress
software guarantees software availability to the community, and provides the community with an
opportunity to inspect, test, and provide feedback. All first phase projects have provided links to
accessible code repositories such as GitHub, Bitbucket and similar. Projects typically use a modern
development infrastructure, including version control, automated continuous integration (CI), and
standard documentation formats. Testing includes correctness as well as performance. Whereas the
readiness level of the projects differs, integration in user codes has taken place, first performance
results have been included in this report, and certain codes have already become part of the
procurement benchmarks of the EuroHPC Joint-Undertaking Pre-Exascale systems. The first phase
of this work package can thus be considered successful.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 2 29.04.2020

1 Introduction

Work Package 8 (WP8) of PRACE-6IP focuses on ‘Forward-looking Software Solutions’ and has
the objective to deliver high quality, transversal software that addresses the challenge posed by the
rapidly changing HPC Pre-Exascale landscape. These challenges include the diversity of hardware
and software complexity. It will advance strategic and long-term projects, allowing for disruptive
approaches to modernise HPC software. The main outcome is open source software in the form of
libraries or significantly refactored codes. All of the projects aim to provide software solutions that
enable the use of modern HPC systems, such as the planned EuroHPC Pre-Exascale systems.

The ten projects within WP8 have been selected based on competitive, peer reviewed calls, as
reported on in deliverables D8.1 and D8.2. This includes eight projects funded from the start of
PRACE-6IP, and two projects funded via a second call, with a starting date of January 2020. These
projects cover a wide range of scientific domains, from fundamental topics such as tasking
runtimes, halo-exchange libraries, to mathematical libraries including sparse and dense linear
algebra, to application domain related software targeted at science and engineering like plasma
physics, biophysics, finite elements, and fluid dynamics, or emerging domains such as quantum
computing.

The ten projects work independently, following their roadmaps as presented in the project
proposals. This deliverable aligns the project teams of the first call by requiring a public prototype
release of the software, as well as an update on the development infrastructure used, and invites
the new project to do the same. This release helps to ensure that software sustainability is taken in
serious consideration, using industry standard tools, issue tracking, continuous integration,
validation and verification, documentation, etc. This document is structured per project, providing
a brief introduction for each of them, references to the prototype software releases (i.e. public
repositories), an overview of the development infrastructure, as well description of the planned
short term work.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 3 29.04.2020

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation

2.1 Introduction and summary

Particle-in-cell (PIC) codes have now become an essential part of the modelling toolkit for many
areas of plasma physics, whether for modelling particle acceleration with high-power lasers, or to
understand detailed dynamics and transport processes near the edge – or scrape-off layer (SOL) –
of magnetised plasma confinement vessels. The PIC algorithm relies on a highly versatile, robust,
finite-difference discretisation of the Vlasov equation for the particle distribution function in
coordinate and velocity space. State of the art three-dimensional PIC simulations involve up to
1012 particles on 106 cores, which generally requires careful management of the memory access
and particle book-keeping to implement efficiently. As reported in D8.2, the PicKeX project
focusses on two important community codes: EPOCH [1], a fully relativistic, electromagnetic
model and BIT1 [2], a sophisticated PIC/Monte-Carlo model, both of which are heavily used in the
laser-plasma and magnetic fusion communities respectively, but which both need heavy refactoring
work to enable them to run effectively on future PRACE Tier-0 systems. The project partners at
the Jülich Supercomputing Centre (JSC) and University of Ljubljana (UL) are exploring and
implementing advanced algorithmic techniques such as task-based programming models, and
dynamic load-balancing based on space-filling curves, to achieve this goal. Progress on these points
is reported here together with information on an initial public release of the enhanced code versions.

2.2 Prototype software release

The main production version of the EPOCH code is maintained by the lead developer group at the
University of Warwick. New users can access this repository on request at the following site [3],
which includes well-maintained documentation, and a comprehensive database of issue-tracking
dating back to the initial public release 10 years ago. The repository has been cloned on the JSC
GitLab server as described below, with access to the prototype ‘EPOCH-X’ available via [4], after
registration on the JSC LDAP system. The prototype version has the full functionality of the main
EPOCH branch, but includes verified refactoring measures such as those highlighted below, along
with selected test cases designed to probe particular performance issues.

The refactoring work of the BIT1 code was carried out on the new prototype code SIMPIC. This
code and also the ongoing StarPU prototype are available on the following repository [5], which is
mirrored at the JSC site at [6]. The latest BIT1 code release 18 has been imported into the following
portal [7], for future refactoring based on the SIMPIC prototype.

2.3 Development infrastructure

The development on EPOCH-X takes place on JSC’s internal GitLab infrastructure [8], which is
automatically synchronised with the official repository at Warwick University [9]. The decision to
use an internal server - rather than e.g. GitHub - is based on the need for control over the
collaborative system, particularly with respect to benchmarking. For example, this choice will
allow us to couple the CI system from the local GitLab with job execution on JSC’s supercomputers
to get reliable and reproducible performance measurements and enable larger tests on target pre-
Exascale architectures. All testing is implemented using JUBE [10], the Jülich Benchmarking

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 4 29.04.2020

Environment (to perform verification, automate scalability tests and compare results with various
refactoring stages, libraries, compiler options and so on).

Results of benchmarking tests, performance milestones, discussions, issue reports and strategic
development decisions will be documented within the JSC GitLab. Final EPOCH code
improvements, once their correctness is confirmed via internal tests, will be pushed to the official
public repository at Warwick University. Intermediate prototypes can be made available via JSC’s
GitLab as described above. The documentation for the first release SIMPIC code is available at
[11]. All developments and discussions will be done in the Bitbucket infrastructure; final
enhancements fed back into the main BIT1 developer repository held at IPP Prague.

2.4 Planned work for the next six months

The work plan for enhancing the EPOCH and BIT1 code performances on near-term and next-
generation Tier-0 supercomputers was outlined in the previous deliverable. Overall at least a dozen
major potential hotspots were identified and slated for refactoring work.

Prioritised steps for EPOCH-X code are:

 Complete verification and benchmarking redesign of the ‘moving window’ mode (for laser-
electron acceleration simulation) to remove/mitigate data transport overheads

 Implementation of new improved dynamic load balancer utilising OpenMP
 Enhanced data reuse to drive down the ratio of stalled CPU cycles
 Expand MPI/OpenMP hybridisation to all main code models (particle integrator, field

solver, current gather)

Planned activities for the BIT1 code:

 Testing the task-based parallelisation of the prototype SIMPIC code, that was done and
adapted for D.A.V.I.D.E, on other HPC clusters;

 Major refactoring on the BIT1 code, including the task-based schemes tested within
SIMPIC, using different pre-Exascale architectures.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 5 29.04.2020

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for
Heterogeneous Exascale Architectures

3.1 Introduction and summary

Code modernisation efforts are needed for many scientific software to fully benefit from the
upcoming heterogeneous Exascale systems. This is true also for plasma simulation codes, such as
ELMFIRE, GENE, and Vlasiator. Task-based parallelism potentially offers better scalability and
portability than traditional approaches by abstracting hardware-specific optimisations away from
the scientific algorithms. Some frameworks, such as StarPU or AMReX, even offer a relatively
easy way to achieve both task-based parallelism and support for GPUs.

In the MoPHA project, we explore task-based parallelism for plasma simulations and test ways to
add support for GPUs or other accelerators to plasma simulation codes. The aim is to pave the way
for the plasma simulations codes to be ready for the upcoming pre-Exascale systems.

3.2 Prototype software release

In the MoPHA project we are developing a number of different codes, some of which are hosted
on their own repositories, but the main site for publishing prototype mini-apps and documentation
related to the project is on GitHub [12].

GENE Solution of the 2D heat equation using task-based parallelism, the main purpose of this code
is to get experience with task-based parallelism and StarPU for a Eulerian scheme similar to the
approach used by the GENE code. In this implementation, the 2D Laplacian in the heat equation is
treated as a convolution operation which is split into tasks that can be executed by the CPUs or
GPUs and are scheduled using StarPU. The computational domain of the heat equation is block-
partitioned according to the number of MPI ranks available. Each domain exchanges ghost cells
with its neighbours to make each sub-domain data independent. Each cell exchange is considered
a task and is also scheduled with StarPU. The implementation is done in C++ using templates and
the STL library and has been tested with StarPU 1.2.9. Serial implementations to test correctness
of convolution and the solution of heat equation are also included [13].

VLASIATOR Experimental Vlasiator version with partial support for GPUs using OpenACC
directives: Implemented a set of the main computational algorithms, namely the velocity space
acceleration update, for offloading to the GPUs using a directive-based approach. Initial results are
promising, but further improvements are needed to optimise data movement between host and
device memory. The code is available as a separate branch in the main Vlasiator git repository [14].

SYMPIFE-VMAX / ELMFIRE Mini-app for particle-in-finite-elements of Vlasov-Maxwell
systems with multiple species: The mini-app serves as a basis for the refactoring of the ELMFIRE
code. The prototype code uses the MFEM finite elements framework from which it leverages
versatile mesh-handling and refining infrastructure, and arbitrary order mixed-elements spaces.
The prototype implements symplectic integrators of order 1, 2 and 4 based on Lie-Trotter splitting
for the VM system. The MFEM infrastructure allows the use of complex meshes and automatic
domain decomposition, as well as hybrid parallelism [15].

STRUGEPIC Mini-app for structure preserving PIC simulations using AMReX: It demonstrates
the use of the scalable framework AMReX for creating PIC plasma simulations. The main purpose

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 6 29.04.2020

of the mini-app is to serve as an example of features and functionality provided by AMReX for
plasma simulations. In addition, it also performs well enough that it can be used for proper plasma
simulations by itself [16].

SIMPIC Mini-app for simple PIC simulations using StarPU: It demonstrates the use of the StarPU
framework for task-based parallelism in plasma simulations. Due to its general applicability,
SIMPIC can serve as a how-to guide for other codes. Current status of the prototype describes how
to refactor a MPI code into a task-based application by introducing “codelets” first for CPU and
later can selectively introduce GPU codelets. Different scheduling mechanisms were also tested
with the mini-app. SIMPIC is available from a separate repository on Bitbucket [17].

3.3 Development infrastructure

GENE: The main GENE code is developed on a GitLab repository (hence version-controlled via
git) and makes use of the GitLab CI functionality. Compilation tests with GNU, Intel, PGI and
Cray compilers are regularly done, unit tests are run and two test sets are done for each commit.
On a daily basis, larger tests are run on GitLab runners on different machines. The prototype test
code, that uses the heat equation as basis and helps in testing and understanding the usage of
StarPU, is also versioned with git and published on MoPHA's GitHub page. Documentation of the
prototype code is done inside the code and online README files in markdown format.

VLASIATOR: Vlasiator is developed using the git distributed version control software and
GitHub for tracking issues and for managing contributions from the community. Vlasiator includes
an integrated test package and uses CI runners for automatic compilation tests. Documentation is
provided as a part of the source code and as wiki pages on GitHub.

SYMPIFE-VMAX / ELMFIRE: The prototype is hosted at [18]. Building is managed using
CMake. Documentation will be expanded in the future.

SIMPIC: The development and the documentation of the prototype code makes use of the
Bitbucket infrastructure that is similar to GitHub in functionality providing all means of
collaborative tools. Repositories are open to the public and CI is used for documentation building
and simple tests.

3.4 Status and outlook Planned work for the next six months

GENE: With the prototype code, first insights into the usage of StarPU tasks has been collected
which are now used to rewrite GENE in a way to use these tasking model. An existing cache-
blocking loop in the calculation of the right-hand side of the Vlasov equation is to be taskified as
a first step. The different blocks are computed mainly independently and suits therefore well into
the tasking approach. In a further step, the different terms of the rhs computation will be transferred
into separate tasks with the interdependencies taken care of. Dependent on the progress of the
taskification, we might also write codelets for running the tasks on a GPU.

VLASIATOR: Initial results with the experimental version that uses OpenACC to offload some
of the solvers to GPUs were promising, but performances were sub-optimal due to overheads from
data movement between CPU and GPU memory. In order to improve performance, further work is
needed to optimise the data movement and/or to refine the data structures used. If possible, the
support for GPUs should also be extended to cover more solvers.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 7 29.04.2020

SYMPIFE-VMAX / ELMFIRE: Development of a GPU version, leveraging native MFEM GPU
support and the associated libCEED. Development of fusion-specific inputs, diagnostics and test
cases. Implementation and testing of a guiding-centre geometric integrator for reduced electron
dynamics in strong magnetic fields. Expansion of the documentation.

STRUGEPIC: Investigate what kind of GPU functionality AMReX can provide.

SIMPIC: Finalisation of the SIMPIC mini-app with benchmarking on different cluster
architectures and integration of the CI with the StarPU simulator.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 8 29.04.2020

4 NB-LIB: Performance portable library for N-body force calculations
at the Exascale

4.1 Introduction and summary

A large number of scientific applications use particle interactions (e.g. Molecular Dynamics, Monte
Carlo or multiscale simulations in life sciences or materials), and several smaller codes or
combinations of codes have unique features. However, while computers have become more
specialised, many codes are not optimised for GPUs or other accelerators and it is increasingly hard
to achieve parallelisation. This will make these codes increasingly difficult to use on next-
generation, Exascale systems.

One of those codes currently undergoing Exascale optimisation efforts is GROMACS, also among
the benchmark codes for pre-Exascale machines coming online in 2021. While it has a long track
record as a widely used and highly performant HPC code, it is very difficult to offer in a single
application all the unique features and niche use-cases that the various many-body codes combined
support. The goal of the NonBonded-LIBrary (NB-LIB) is therefore to make the cutting-edge
performance of GROMACS available through a high-level C++ API to its non-bonded force
kernels. In combination with the system setup functionality that NB-LIB offers in addition, users
will then be able to implement arbitrary workflows that might be required for their special use case
while leveraging the performance of GROMACS for the force calculations. This way, future
acceleration, porting, and library features will benefit all applications.

4.2 Prototype software release

The core functionality of NB-LIB is the ability to calculate forces and energies for multiparticle
systems. For the prototype release, we have targeted the ability to compute forces for a Van Der
Waals gas, such as argon, and return these forces to the user. This goal has been achieved with the
prototype code at [19]. In order to complete this task, a two-pronged approach has been utilised.
The first task has been to design an API specification that will allow users to programmatically
specify simulation systems. Specifying an API that is flexible enough to accommodate as yet
unforeseen use cases is a rather large task in the field of particle simulation because of the variety
of different functional forms that intra- and intermolecular interactions can take. For the NB-LIB
API we have ensured that all currently supported non-bonded interactions in GROMACS are also
supported by NB-LIB. In order to ensure extensibility, we have also been in conversation with the
OpenMM molecular simulation software developers as well as the developers of the Open Force
Field Toolkit. The result is that the NB-LIB particle topology and system setup API functionalities
are in-principle compatible with these other open source simulation codes. In addition to
developing the API for setting up particle systems, we have defined API functionality for
computing forces and updating coordinates on these systems. The result is the ability to write self-
contained particle simulation codes in a matter of minutes using the NB-LIB API. The second
aspect of development efforts has been refactoring the GROMACS code-base so that the translation
layer between NB-LIB and GROMACS is minimised. This has already led to many patches which
streamline GROMACS internal data flows and interfaces being merged into the master branch of
GROMACS.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 9 29.04.2020

4.3 Development infrastructure

The public prototype release is available for inspection at [19]. The API is self-documented with
Doxygen and there is also a short overview of the core functionalities at [20]. All non-trivial
functions have tests and integration tests also ensure that the various parts of the API work together
as well as with the GROMACS backend. Some aspects of GROMACS functionality that are not
currently possible to test within GROMACS but that the API depends upon are also tested. Once
NB-LIB is moved to the main GROMACS repo these tests will move out of the NB-LIB testing
infrastructure, which, like GROMACS utilises the Google test framework. All pull requests require
approval of two reviewers to be merged and go through the same testing pipeline as used by
GROMACS. To communicate between the various development locations (Lugano, Stockholm,
and Zürich), a number of strategies are used. Besides comments in code review, there is also a
Slack channel used for daily stand-up and design discussion threads. In addition, discussions about
design and distribution of tasks takes place in a weekly video conference. Perhaps the most crucial
aid in the development of NB-LIB has been regular week long hackathons to rapidly iterate on API
designs and implementations. These have taken place in Zürich in November, in Stockholm in
January jointly with the developer of the GROMACS modular simulator, and in Lugano in
February. The planned April hackathon in Stockholm, in collaboration with the GMXAPI
developer, has been cancelled due to the Coronavirus outbreak.

4.4 Planned work for the next six months

The development efforts of NB-LIB for the next six months will continue to pursue a two-pronged
approach of working on API specification and implementation while also refactoring GROMACS
to minimise translation layers between the NB-LIB API and the GROMACS back-end. On the API
specification and implementation front, work is planned on adding other types of particle-particle
interactions, such as bonds and angles, to the system setup functionality. It is also planned to add
the ability to return energies to the user, in addition to the currently available forces. Most work
over the coming period will be focused on GROMACS refactoring. The largest share of effort will
be spent on reworking data flow models related to non-bonded force calculation within
GROMACS. This will in turn require some effort to be spent refactoring simulation system
initialisation in the main MD loop within GROMACS. This simulation system initialisation work
will proceed in parallel to, and in conversation with, similar ongoing efforts by the GMXAPI
developers, as well as work in the core GROMACS team. This refactoring will also be needed to
allow NB-LIB to utilise the parallelised, heterogeneous compute capabilities of GROMACS. One
final target for the next period is to migrate NB-LIB into the main GROMACS code base. This
means that NB-LIB will be available on HPC systems all over the world as well as Linux
repositories for Ubuntu and Debian. Finally, we plan to step up dissemination efforts over the
coming period. It had been planned to present NB-LIB at relevant conferences in May and July,
but these have been cancelled due to the Coronavirus outbreak. Efforts will be made to find suitable
opportunities to broadcast the existence of NB-LIB once scientific meetings resume.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 10 29.04.2020

5 LoSync – Synchronisation reducing programming techniques and
runtime support

5.1 Introduction and summary

The LoSync project aims to improve the scalability of applications by removing unnecessary
synchronisation and serialisation, and by fully exploiting the potential for overlapping
computations and communications. To do this, we make use of modern features of well-
standardised APIs, to ensure portability and relevance. These techniques include:

 Using OpenMP/OmpSs-2 tasks with data dependency clauses. This includes not only
expressing computation as tasks, but also communication, by wrapping MPI or GASPI
library calls inside tasks. We utilise the Task-Aware MPI (TAMPI) and Task-Aware
GASPI (TAGASPI) interoperability libraries developed by Barcelona Supercomputing
Center to make this as efficient as possible.

 MPI single-sided communication. Recent developments in MPI libraries have significantly
improved the performance of single-sided communication to the point where its benefits
can be realised in real applications.

 GASPI single-sided (put-notify) communication. This is a lightweight alternative to MPI
single-sided communication which interoperates well with MPI, and offers different
synchronisation semantics which can help remove serialisation constraints.

The project is initially implementing these techniques in small kernels and mini-apps, with the aim
of moving to key kernels of larger applications later in the project. In addition, development is
being carried out on runtime library implementation to support this work. This includes:

 Continuing the development of the TAMPI and TAGASPI interoperability libraries to
support interaction of MPI and GASPI with OpenMP/OmpSs tasks with dependencies.

 Exploring extensions to the OpenMP tasking model to support task dependencies on
external events, task-nesting, fine-grained dependencies, weak dependencies and early
release of dependencies, to avoid artificial synchronisation and serialisation effects.

 Making use of performance analysis tools and techniques to identify optimisation targets in
real applications where these techniques can be most beneficially applied.

5.2 Project Prototype software release

The prototype software currently available consists of the OmpSs-2 programming environment and
the TAMPI library.

The OmpSs-2 programming environment is comprised of the Nanos6 runtime library and
Mercurium compiler, which are available for public download from [21], either in the form of
packaged versions of stable releases or as Git repositories of the current development versions.
Recent versions of OmpSs-2 contain the required support for the TAMPI library, for example the
ability to pause tasks which are blocked in MPI calls, poll for completion of the relevant MPI
operations, and resume the task when completion occurs.

The TAMPI library uses the PMPI interface to intercept MPI calls, interact with the Nanos6
runtime, and call the required actual MPI routines. It also contains a small number of extension to
the standard MPI interface which allow non-blocking MPI calls inside tasks to be handled correctly

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 11 29.04.2020

integrates their completion with the task dependency system. The TAMPI library is available from
a Git repository at [22].

5.3 Development infrastructure

Mercurium, Nanos6 and TAMPI use Git as a version control system. There is an internal GitLab
server that hosts the master and development branches for all three projects. The master branch of
each project on the internal GitLab server is also mirrored on a public GitHub repository, that is
updated twice a year with a new stable release or for hot-fixes.

The three projects have their own set of correctness tests that are periodically executed to validate
any new development. All internal merge requests are automatically tested with Jenkins on four
production machines (Marenostrum4, CTE-Power9, CTK-KNL and Nord3) before they can be
merged on the master branch. Moreover, all merge requests are also reviewed at least by one
additional developer. Once the internal review is completed the merge request is integrated into the
master branch and it is automatically tested by Jenkins on four production machines.

There is also a framework developed in-house to continuously measure the performance of
Mercurium and Nanos6 runtime. This framework runs a set of predefined benchmarks on the four
production machines at night if the code of the master branch has been modified. The results of the
benchmarks are automatically saved to a MySQL database and they can be visualised using
Grafana. The project home page contains links to the online documentation, OmpSs-2 specification
and OmpSs-2 examples [23].

5.4 Planned work for the next six months

The project is currently working on porting a number of kernels and mini-apps to the “taskified
communication” hybrid programming supported by OmpSs-2 and TAMPI. Several of these
(Gauss-Seidel, IFSKer, HPCG, HPCCG) are substantially complete, and undergoing performance
analysis and testing. Others (Co-MD, miniMD, miniAMR, LULESH) are still in progress. Porting
work on this latter set will be completed, and the performance analysed. Further target mini-apps
and larger codes will be identified. We will synthesise our porting experiences into a best-practice
guide to assist other developers who wish to test out this model.

Work on a release of the TAGASPI library has been delayed by a short time: this is now ready for
testing (prior to a prototype release) which will begin very soon. We also plan to release an
OpenMP runtime library (based on LLVM) which supports the non-blocking mode of TAMPI.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 12 29.04.2020

6 FEM/BEM based domain decomposition solvers

6.1 Introduction and summary

The aim of the project is to extend the existing domain decomposition library ESPRESO [24], to
support highly scalable solution of sound scattering and harmonic analysis problems. Distributed
parallelisation of the library is based on the FETI (Finite Element Tearing and Interconnecting)
domain decomposition method and the implementation for problems in complex domain will be
based on the FETI-H (FETI-Helmholtz) method and its variants where the regularisation is done
using the complex interface mass matrix and the preconditioning is based on the plane wave
deflation. Refactoring and optimisation of the existing ESPRESO code is also an important part of
the project.

Within the first 12 months, we focused on several problems based on the original project schedule:

 Refactoring and optimisation of ESPRESO: this includes refactoring of the global matrix
operations, new interface for external solvers and mesh partitioners (such as Pardiso,
SuperLU, Watson Sparse matrix Package, HYPRE, ParMetis, or PT-Scotch), optimisation
of the parallel input workflow, or redesign of the ESPRESO configuration file.

 Optimisation of the system matrix assembler: replacing BLAS routines by manually tuned
code for small matrices provided significant speedup of the assembler of the heat transfer
matrices in shared memory.

 Development of the MATLAB prototyping application: we have successfully implemented
and tested the FETI-H within our in-house fast-prototyping code (this includes matrix
regularisation and preconditioning by the artificial coarse space).

 Distributed memory parallelisation of the harmonic analysis solver within ESPRESO:
extended to support parallelisation in both frequency and spatial domain (limited scalability
due to lack of preconditioner).

 Testing and documentation: project’s private and public repository have been established
and continuous integration is in progress.

In addition, a development of the “Solver-as-a-Service” platform has continued. This platform will
enable users with limited or no experience with HPC to use ESPRESO to access supercomputer
resources via an online platform. The backend has been developed and the implementation of
frontend is in progress. We have also started with the GPU acceleration of the system matrix
assembler and solver.

6.2 Prototype software release

The developed code is publicly available within the master branch of the ESPRESO library in its
official repository at GitHub [25]. Currently, the code supports solution of the harmonic analysis
problems in real domain parallelised across both frequency and spatial domains. However, the
parallel scalability is limited due to the lack of a suitable preconditioner (implementation of the
preconditioner based on an artificial coarse space is in progress). Most of the above-mentioned
code developed in the first year is available within the repository. The public repository also
contains the ESPRESO installation manual. The solver-specific documentation and tutorials will
be provided in the next phase of the project.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 13 29.04.2020

6.3 Development infrastructure

ESPRESO uses git as a version control system and an internal GitLab infrastructure is dedicated
for the development of the library at IT4Innovations National Supercomputing Center, available at
[26]. The repository contains the C++ code, benchmarks and tests, and short installation
documentation. Waf is used as a build automation tool and for testing, we use the Nose framework
[27]. The git repository consists of two major branches – dev and master; the main development
takes place in the dev branch and implemented features are merged into the master branch. The
GitLab continuous integration (CI) pipelines then ensures the code is properly tested and eventually
pushed to the public repository.

The public repository is located at [28], and contains the latest stable version of the code and
documentation. The documentation is written using the MarkDown language and currently
describes mainly the installation procedure and description of API for calling from external
software. Additional information is available at the official product webpage [29].

6.4 Planned work for the next six months

Several topics have to be tackled in the following six months:

 Implementation of a preconditioner based on the artificial coarse space projection within
the ESPRESO library. This will further improve the parallel scalability of the harmonic
analysis code and enable solution of spatially large problems.

 GPU acceleration – the acceleration will rely on assembling the so-called local Schur
complement matrix on GPU and replacing the sparse direct solver by iterative solution with
smaller dense matrix.

 Documentation will be extended to provide additional solver-specific information.
 Development of the frontend of the “Solver-as-a-Service” platform will continue.

Development of the boundary element interface has been postponed in order to focus on the
currently more important finite element code.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 14 29.04.2020

7 Performance portable linear algebra

7.1 Introduction and summary

In general, linear algebra algorithms have a central role in scientific applications. For example, in
the particular case of Materials Science, many applications rely heavily on linear algebra to solve
complex tasks.

Overall, the diversity of linear algebra operations together with the large size of the operands
motivates the necessity of high-performance implementations of distributed algorithms. For
example, modern electronic structure methods rely on the Density Functional Theory (DFT)
method, which highly depends on the solution of either dense or sparse eigenvalue problems. Dense
eigenvalue problems are currently solved mainly using the ScaLAPACK [30] or ELPA [31]
libraries. ScaLAPACK has been developed in 1992 and the fork-join approach used for its
implementation is not suitable for modern node architectures.

A more modern approach consists in the task-based implementation of the algorithms and the goal
of this project is to deliver a modern and efficient distributed linear algebra package (DLA-Future)
based on HPX [32], that can replace ScaLAPACK in scientific applications.

An alternative strategy in the development of an eigensolver is to leverage on well-known and
well-established iterative algorithms such as subspace iteration. A modern example of such
algorithm has recently been implemented in the Chebyshev Accelerated Subspace iteration
Eigensolver (ChASE) library. When tackling sequences of Hermitian eigenproblems, as they often
appear in electronics structure codes, ChASE takes advantage of the distinctive features connecting
adjacent problems in a sequence.

7.2 Prototype software release

7.2.1 DLA-Future and DLA-Interface

The DLA-Future [33] and DLA-Interface [34] projects are both available at GitHub. Currently
DLA-Future functionalities include the Cholesky decomposition and the solution of the triangular
system of equations for distributed multi-core systems. Performance tests (Figure 1) show that our
implementation performance is in-line with the performance of our initial prototype and the state-
of-the-art libraries. Moreover, it performs better than two highly optimised ScaLAPACK
implementations.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 15 29.04.2020

Figure 1: Comparison of the performance of DLA-Future Cholesky decomposition compared with other libraries (left:
ScaLAPACK implementations, right: other task-based approaches).

7.2.2 Chase library

The Chebyshev Accelerated Subspace Eigensolver (ChASE) library is a modern and parallel
library to solve dense Hermitian (Symmetric) algebraic eigenvalue problems. ChASE is templated
for real and complex numbers and can be used to solve real symmetric eigenproblems as well as
complex Hermitian ones. ChASE algorithm is designed to solve for the extremal portion of the
eigenspectrum. By default, it computes the lowest portion of the spectrum but it can compute as
well the largest portion. The library is particularly efficient when no more than 20% of the extremal
portion of the eigenspectrum is sought-after. ChASE is particularly efficient when dealing with
sequences of eigenvalue problems, where the eigenvectors solving for one problem can be used as
input to accelerate the solution of the next one. The library can be used both in single and double
precision. The distributed version of ChASE is parallelised over MPI and can be effectively used
on multi- and many-cores. The latest release of the library can be executed on multi-GPU devices
per computing node. ChASE is available in Github at the following link [35].

7.3 Development infrastructure

7.3.1 DLA-Future and DLA-Interface

To manage the development and the versions of the code we use a git repository which includes a
master branch containing the latest version of the code that has been reviewed and tested, and other
branches which contain changes that have not been reviewed (or for which the review is in
progress).

The development follows the GitHub workflow [36], and the possibility to merge is blocked until
the pull request is approved by at least another member. The GitHub workflow method also
simplifies the integration with a CI method. A Jenkins instance is running at CSCS [37], and is
setup to automatically build and test each pull request open in GitHub. Currently the results of the
CI tests are not available to the general public.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 16 29.04.2020

The code is documented in two ways. The public API has an inline documentation formatted
according to the specifications given by Doxygen. The doxygen tool can be used to extract this
inlined documentation and produce a browsable version of the API documentation.

The documentation of other aspects of the library (e.g. installation procedure) is available through
markdown documents.

7.3.2 Chase library

The ChASE library development is organised around a double repository level. The first level is a
Gitlab repository hosted on a GitLab server located at the Juelich Supercomputing Centre (JSC),
and a second level hosted by GitHub where the library is publicly available. The GitLab repository
is used exclusively by the developers of the code. It includes a simple Continuous Integration (CI)
system and two main branches, devel and master. When a major development is completed on the
devel branch it is merged to the master branch and undergoes a series of automatic testing by the
CI on a server locally based at the JSC. Once a development, merged to the master branch, is stable
and thoroughly tested, the GitLab master branch is synchronised with the GitHub master branch
and it is released to the public.

ChASE online documentation is developed using the Sphinx platform and hosted at the web site
[38]. The documentation is split in two sections: User and Source. Currently only the User section
is complete, while the Source section is under development.

7.4 Planned work for the next six months

7.4.1 DLA-Future and DLA-Interface

 Complete the inter-node communication optimisations.
 Re-implement the GPU accelerated Cholesky prototype using the DLA-Future API.
 Continue with the implementation of the routines needed by the Hermitian eigensolver.

7.4.2 Chase library

One of the most important kernels in ChASE is the distributed General Matrix-Matrix
multiplication (GEMM) operation. A benchmark of GEMM based on HPX has been developed,
including the task-based implementation in the node, and distributed implementation of SUMMA
(Scalable Universal Matrix Multiplication Algorithm) with the overlap of communication. In the
next six months, the task with the highest priority is to finish and submit a conference paper related
to this topic. Compared to ScaLAPACK, the Elemental package provides a different layout for the
distribution of data across the nodes, which can separate the algorithmic block size and the
distribution block size of matrix. We have interests on Elemental data layout since it makes the
tuning of algorithmic block size possible without redistribution of matrix. The second task for us
is to investigate the possibilities of a combination of Elemental and HPX, especially for GEMM.
ChASE provides a class interface that abstracts the related numerical kernels. With the help of this
interface, the third task is to integrate the SUMMA-HPX kernel into ChASE as a new backend.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 17 29.04.2020

8 GHEX: Generic Halo-Exchange for Exascale

8.1 Introduction and summary

GHEX provides functionalities to perform halo-exchange operations in domain decomposed
applications. While this operation is pervasive in HPC, its implementation is usually custom written
by developers, who best know the logic of the domain decomposition. Typically, the
implementation is done using MPI, but this approach has some drawbacks as the architectures
become more diverse with different address spaces and synchronisation behaviours.

GHEX provides higher level interfaces to express halo-update operations to abstract the detail of
the architectures and, at the same time, adapt to the logic present in the applications. An overview
of GHEX can be found in Figure 2 below.

The main components of GHEX are pattern, communication object and transport layer. The user
passes to the pattern the information about domain, the information about the halos and data
wrappers to the data to be exchanged. This happens through user provided functions to gather the
required information that is already available in the application. After this, the user associates sub-
domains to communication objects that access the transport layer to perform the exchanges. This
allows us to abstract different address spaces, such as GPUs, and transport mechanisms. To allow
modern programming paradigms, like coarse grained multithreading (each thread manages a
number of sub-domains), and multi-tasking, GHEX provides basic functionalities to interface with
the most common threading mechanisms, such as OpenMP, pthreads and C++ threads. More can
be added as necessary.

Key features of GHEX is the future-based halo-exchange mechanism, and the call-back message
exchanges. These features enable overlapping communication and communication at API level, so
that, if the platform allows for it, it can be automatically used. The low level transport layer can
also be accessed directly to perform point to point communications. This feature will be used by
DISPATCH, an application to simulate solar atmosphere.

Figure 2: Overview of GHEX

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 18 29.04.2020

8.2 Prototype software release

GHEX is available on GitHub at [39]. The license under which the software is provided is a BSD-
3-Clauses. The current releases are not tagged, since the software has not reached the level of
maturity for a version number (see the next Section for status of CI and testing). The master branch
is anyway tested and should always be working. The repository also offers Fortran bindings to the
C++ function to ease the use of the communication operations from Fortran applications, called
FHEX.

Figure 3: Comparison of GHEX and MPI transport layers for different sizes of messages on Infiniband network.

GHEX includes the Atlas library (developed at ECMWF, which provides domain decomposition
and communication for unstructured grids) allowing the definition of adjacency relations to define
unstructured meshes. Early results, shown in Figure 3, show that GHEX interfaces allow it to
outperform the native MPI exchanges provided in Atlas. Figure 4 below shows the execution times
for meshes with 1M nodes and up to 64 compute nodes. The relatively small sizes of the tests are
due to limitations of recently added support for GPUs to Atlas. GHEX can handle bigger sizes
correctly, but cannot be currently compared for performance against the main implementation.
GHEX APIs allow for the transport layers to better manage communications in comparison with
traditional MPI-only solutions.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 19 29.04.2020

Figure 4: Execution times for meshes with 1M nodes and up to 64 compute nodes.

Even though GHEX has not been released officially, it is already employed in proof of concepts
implementations of user applications such as the COSMO model and ECMWF’s Atlas library mini-
apps. More importantly, GHEX is used in official benchmarking suites for the next generation pre-
Exascale system as the communication backed of the GridTools Benchmark (GTBench), which
serves as a representative mini-app for weather and climate simulations.

The GHEX repository also provides benchmarks that can be used for comparing performance. In
Figure 3 you can see low-level transport layer experiments showing the performance of different
GHEX transport layers compared to native MPI. As it can be seen, the UCX backend is superior
to MPI especially when the message sizes are not very big (which is a common use case for our
target users), and when many threads are used. Also visible is the absence of overhead for the
Fortran bindings (FHEX).

8.3 Development infrastructure

Before merging into the master branch, each contribution is validated against the tests, and merged
only if the tests passes. Most of the testing is done manually, at the moment, but a basic CI
infrastructure using GitHub-actions is in place for functionality tests. The reason why we consider
this minimal at the moment, is that GHEX is designed to run on different architectures and different
transport layers, and not all transport layers are supported equally on different architectures (for
instance UCX is currently not optimised on Cray machines). For this reason, we are currently
running manually the tests on different machines, but we plan to select the suitable CI solution that
allows us to test GHEX automatically on multiple platforms.

GHEX is copyrighted to ETH Zurich. Contributions to GHEX are welcome, through the
mechanism provided by GitHub issues and pull-requests. Contributors are required to sign a
Contributor License Agreement to release the copyrights of the changes to ETH. This guarantees
the stability of future releases of the software and a clear point of contact for support.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 20 29.04.2020

8.4 Planned work for the next six months

In the next six months the GHEX team will be engaged on multiple fronts:

 Develop a transport layer based on libfabric, a low-level network level natively supported
by several vendors, including CRAY.

 Develop the facilities to perform halo-updates on inflated-cube spherical grids.
 Finalise the Atlas implementation and provide facilities for domain decomposition based

on commonly used libraries, such as ParMETIS.
 Use GHEX in applications such as BIFROST solar atmospheric simulation, and others.
 Improve on continuous integration testing to increase automation for functionality and

performance tests.
 Perform more through benchmarking on different platforms and transport layers.
 Expand the benchmarks.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 21 29.04.2020

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and
library support for the discovery of new physics

9.1 Introduction and summary

The project, Linear Algebra, Krylov methods, and multi-grid API and library support for the
discovery of New Physics (LyNcs), is addressing challenges which are arising on modern and
upcoming architectures due to massive parallelisation. These challenges can only be met with
disruptive approaches to parallelism because traditional parallelisation strategies for solving partial
differential equations are no longer effective. LyNCs is targeting efficient solutions for linear
systems based on large sparse matrices by pooling together software development efforts across
Europe. This will provide the European communities with the next generation of parallel libraries
for solving sparse linear systems at the Exascale. LyNCs is led by the Computation-based Science
and Technology Research Centre (CaSToRC) of The Cyprus Institute, which joins forces with
partners from the French Institute for Research in Computer Science and Automation (INRIA) and
the Leibniz Supercomputing Center (LRZ). Part of LyNCs is the development of an API that is
targeting massive parallel machines to perform simple task management with shared memory
among huge parallel partitions. This API together with the implementing of cutting-edge sparse
linear solver algorithms, the development of novel block Krylov solvers and optimisation of
existing parallel codes will enable community software to efficiently utilise the upcoming pre-
Exascale and Exascale machines. The software improvements target all levels of the scientific
application software stack, from the basic Sparse BLAS library to fully-fledged simulation codes.
Namely, LyNCs is targeting the Fast-Accurate Block Linear Krylov Solver (Fabulous), the Lattice
QCD community solver library DDalphaAMG and at the lowest level the efficient sparse matrix
support software librsb.

9.2 Prototype software release

LyNCs is targeting software which spans all levels of the scientific software stack to ensure
readiness for the upcoming massively parallel pre-Exascale and Exascale systems. Part of the
developed software are:

LyNCs: The first prototype version of the API LyNCs is available at GitHub [40], and published
under a BSD 3-Clause license. The prototype version is targeting lattice QCD applications utilising
DDalphaAMG as a solver library. The API is written in Python and based on the package dask,
which enables simple memory shared task management especially designed for large allocations
for the next generation of High Performance Computing Systems. The functionality of the
prototype is currently limited to benchmark applications that target data exchange between smaller
partitions and checks enabling the call of library functions written in C or C++ using python
environment.

Fabulous: Fabulous implements Block Krylov solver methods, is written in C++ and its
development is ongoing. During the first year of LyNCs new capabilities enabling flexible
preconditioner were enabled through the implementation of the block GRC with inexact breakdown
detection. The study of a novel Block Krylov solver has been initiated that would allow to recycle
spectral information between sequence of multiple right-hand-sides that would fit very well the
context of the coarse grid solve in multigrid; the new method is a flexible Block GCRO technique
with deflation at start and restart. Fabulous is distributed under CeCill license and available at the

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 22 29.04.2020

INRIA GitLab [41]. The GitLab page for INRIA linear algebra software packages (Chameleon,
Fabulous, Maphys), using continuous integration, issue tracking, unitary testing, and complex
scenarios testing. Integration is enabled through two high performance software distributions:
spack [42] and guix-hpc [43].

DDalphaAMG with multiple rhs: In the first year of LyNCs a new version of DDalphaAMG is
developed, which enables multiple right hand side, where the vectors are ordered with row major
ordering. This enables vectorisation during compilation without explicitly using vector
instructions. This guaranties portability without major performance lost to different CPU
architectures, like ARM, Intel or AMD CPUs. The first version is available at GitHub [44], and is
currently tested on various systems, such as the SuperMUC-NG, the Mont Blanc 3 system Dibona
and the up-coming HAWK system. As shown in Figure 5 below, the multiple right hand sides is
extending also the scalability which makes it additional suitable for massive parallel machines.

Figure 5: Comparison of scalability in the range from 5 to 1200 nodes of DDalpaAMG on SuperMUC-NG using a
physical point lattice of lattice size V=80x80x80x160 using 1 (blue circles), 4 (red, diamonds) and 8 (yellow, squares)
right hand sides.

Librsb: The librsb library is written in C99 and OpenMP, and is distributed under a GPLv3 license
at [45]. Since the start of the LyNCs project, librsb is being further developed. This resulted into a
new release with minor bug fixes, and considerable bug fix/refactoring/documentation. Namely,
the internal test suite has been expanded very notably, and fixes have been found necessary to
adjust inconsistencies. Tightly related to these consolidation activities are developments to the
Python [46], and GNU Octave [47] access layers, which are of interest to diverse user communities.
Interaction with them has led to many improvements not only in connection to the aforementioned
'pyrsb' and 'sparsersb', but to librsb itself. Thanks to the Debian and Cygwin volunteer community,
Linux and Cygwin users can benefit from using pre-compiled binaries after each librsb and
sparsersb release. Since January, librsb is being included in the "Spack" HPC software distribution.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 23 29.04.2020

9.3 Development infrastructure

As previously mentioned, LyNCs is working on a diverse software stack targeting all different
levels. This diversity splits the effort within the LyNCs project into various tasks, e.g. like a high-
level API for which we are employing a novel framework or the low level sparse BLAS library.
This diverse effort is reflected in the development infrastructure that is complement by the strength
of each partner. Namely, the tasks which target the community library DDalphaAMG is led by
CaSToRC while INRIA acts as an advisor in order to exploits most efficient block-Krylov solver
solutions. Additional tasks, which are developed in cooperation with projects partners are: i) testing
of librsb for QCD kernels (LRZ, CaSToRC), ii) LyNCs API software development for simplified
memory shared task management (CaSToRC, LRZ, INRIA), and iii) pipeline version of Block-
Krylov solvers (INRIA, CaSToRC).

LyNCs has established effective communication channels via regular telcons, usually once per
month, and an email-list, which is used to coordinate actions among all involved members. For
every single task, each partner is connected via mail, phone calls and telcons. For all software
developments git is used as a version control and software is published via GitHub, INRIA GitLab
and sourceforge. For software development in which two or more partners are involved, we
established a GitLab-side.

Most of LyNCs personnel positions had to be filled via recruiting, which introduced a delay of
several tasks. Although this delay is mitigated by shifting priorities, we still expect some further
delays of subtasks. Unfortunately, this is made worse due to the current situation connected to the
pandemic of COVID-19. In particular, we are currently re-considering the planed face-to-face
meetings.

9.4 Planned work for the next six months

The next step of LyNCs is connected to its second milestone MS2, which is the evaluation of
prototype methods for Exascale. This will be met for block-Krylov solvers in multi-grid
preconditioners and librsb used for QCD kernels. In summary, up-coming developments are as
follows:

 Extending and enabling further features in the LyNCs API, which includes testing on
PRACE Tier-0 systems and modular architectures, such as the DEEP-EST cluster to which
we have secured access.

 Investigating numerical schemes based on block pipelined Krylov subspace methods, like
pipelined GMRES and possibly implement the flexible block GCRO-DR method.

 Integration and testing the Fabulous block Krylov solver methods in DDalphaAMG, both
for the solution of the coarse grid as well as Krylov solvers preconditioned by multigrid at
the finest level.

 Performance of preliminary scalability experiments to assess the algorithmic choices.
 Enhancing librsb's test suite further towards the next release, so that it may be used by e.g.

Travis CI on GITHUB
 More far-reaching optimisations (foremost on SpMM), preferably after the aforementioned

librsb consolidation step.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 24 29.04.2020

10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale
Computers

10.1 Introduction and summary

ParSec brings together well-known HPC CFD practitioners with the aim of sharing best practices,
and collaboratively modernise the AMR implementation of three leading-edge CFD community
codes for the exploitation of future (pre) Exascale machines. The partners involved in the project
are Barcelona Supercomputing Center (BSC), the KTH Royal Institute of Technology and Cenaero
- Université de Liège. The community codes brought by these institutions are:

1. Nek5000, the scalable high-order solver for computational fluid dynamics from
KTH/UIUC [48],

2. Alya, the high performance computational mechanics solver from BSC [49],

3. Argo, the high order multiphysics solver from Cenaero. In particular the mesh
functionalities of Argo are supported by the OS library MAdLib [50], which will be further
developed during the project, including a tight interface with the finite mesh generator
Gmsh [51].

These three CFD solvers cover the main approaches for the solution of PDEs using both structured
and unstructured meshes: finite element, finite volume, and spectral elements. From this broad
perspective, ParSec aims at reaching robust HPC solutions that can be useful for the entire
community. The objectives of the project are:

1. Analysis of the various separation of concerns (SoC) used for the AMR implementation -
that will allow consistent performance comparisons and software sharing amongst codes,

2. Cross-verification and analysis of the performance of the codes on (pre) Exascale
architectures,

3. The modernisation of codes based on disruptive solutions motivated by the previous
analysis,

4. Deliver self-contained OS software components solving different steps of the AMR process

5. Deliver three AMR-enabled CFD legacy codes to exploit (pre) Exascale systems.

Figure 6 below illustrates the work plan for ParSec. Since the project started in January 2020, it is
on its very first steps. The logistics have been resolved, in particular, a mailing list and a common
repository have been created and a monthly teleconference has been established. Apart from sorting
out the logistics, the first three teleconferences have been focused on presenting the base-line of
each code in terms of AMR capabilities, comparing the SoC implemented, and identifying
components and know-how sharing opportunities that will take place in the course of the project.
The developments have focused on the refactoring of codes to increase modularity and on enabling
the interfacing between the already shareable components. Next steps will be focused on
performance analysis, optimisation and implementation of new features.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 25 29.04.2020

Figure 6: ParSec work plan.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 26 29.04.2020

11 QuantEx: Efficient Quantum Circuit Simulation on Exascale
Systems

11.1 Introduction and summary

QuantEx is a platform combining modular quantum circuit simulation tools with the aim of running
efficiently on heterogeneous compute platforms and scaling to exploit pre-Exascale and Exascale
compute resources. Modern development practices and software design methodologies are used
along with hierarchical layers of abstraction to encapsulate complexity and enable tools to be easily
extended and integrated into users’ circuit simulation workflows. The project started in January
2020 and the team consists of researchers at ICHEC and LRZ.

11.2 Evaluations

QuantEx will integrate and build on existing software components. To determine the most suitable
to a number of evaluations of key software components have been completed and others are
ongoing. Evaluations are concerned with assessing each software component for suitability of
integration into QuantEx. The evaluation takes into account methods and technologies used,
performance profile and release license. An overview of evaluations completed to date follows.

TAL-SH

TAL-SH [52] is a tensor algebra library for shared memory nodes which has been proven in
production with its integration in qFlex [53], the simulator used for Google's quantum supremacy
experiment. It is designed to be very flexible with support for multiple hardware back ends
including multicore CPUs and NVIDIA GPUs through the use of third party libraries which include
OpenBLAS and cuTENSOR [54]. Due to its asynchronous execution policy, it is able to efficiently
utilise all available hardware resources within an individual compute node. Offering C, C++, and
Fortran bindings, TAL-SH facilitates easy integration within QuantEx.

cuTENSOR

cuTENSOR is an optimised tensor algebra library for Nvidia GPUs of compute capability of 7.0
or higher, this includes Tesla V100s which are installed in HPC systems such as Summit and Kay.
CuTENSOR has been shown to offer significant performance improvements over optimised CPU-
based tensor algebra libraries such as TBLIS and is therefore an attractive option as a low level
driver for the required tensor contraction primitives. Its integration within TAL-SH has also shown
that the library is mature and production-ready. The library is very flexible allowing contractions
to be executed using efficient algorithms, such as GEMM-like Tensor-Tensor multiplication and
Transpose-Transpose-GEMM-Transpose, which may be selected at runtime either manually or
automatically using integrated heuristics. It is worth noting that cuTENSOR is freely available
however it currently lies behind a license agreement which requires an NVIDIA developer account.

qFlex

Flexible Quantum Circuit Simulator (qFlex) implements an efficient tensor network, CPU-based
simulator of large quantum circuits. qFlex computes exact probability amplitudes, a task that
proves essential for the verification of quantum hardware, as well as mimics quantum machines by
computing amplitudes with low fidelity. qFlex targets quantum circuits in the range of sizes
expected for supremacy experiments based on random quantum circuits, in order to verify and

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 27 29.04.2020

benchmark such experiments. qFlex is enabled to run efficiently on GPUs with extensive
optimisation. It is parallelised using MPI and CUDA. TAL-SH is used as a library within qFlex,
but with improvements with respect to the standalone version.

Quimb

Quimb [55] is an open source pure python library designed for quantum information and many-
body calculations. It has a submodule, called tensor, which has tools for creating and manipulating
tensor networks, including a specialised class for quantum circuits. It uses the library opt_einsum
to perform tensor contractions which is agnostic to the backend and can handle NumPy, Dask,
PyTorch, Tensorflow, CuPy, Sparse, Theano, JAX, and Autograd arrays. It also has a slepc4py
interface for easy distributed linear algebra. Integration of Quimb into the QuantEx project can be
used to help find suitable contraction strategies for arbitrary tensor network graphs.

11.3 Design and use case development

Design for initial software release with exchange formats between layers has been defined. A
prototype in development and expected to be completed by end of April.

Use cases are central to development and benchmarking of QuantEx. As such, sample workflows
have been implemented for the quantum Fourier transform (QFT) and the variational quantum
eigensolver (VQE). Both methods are written to leverage OpenQASM as the intermediate circuit
description language allowing the use of IBM Qiskit to verify their functionality. A Julia package
titled “QuantExQASM” was developed for generating circuits to realise these given use cases.

Additional use cases and algorithms were identified for potential implementation, including
Grover’s search algorithm, superdense coding, and quantum phase estimation. All three can be
used as building blocks for other methods, and are easily verified with existing frameworks.
Bespoke solutions and use-cases in collaboration with stakeholder research groups are expected to
follow in subsequent deliverables.

A stakeholder meeting was held on 6 March 2020 where project status was communicated and
input was sought. Emerging from this were steps to engage more closely with stakeholders and get
them involved in testing and evaluation of early prototypes.

11.4 Development infrastructure

For keeping track of project tasks and source code a GitLab repository is used. Compute resources
at ICHEC are available to the project through ICHEC’s National Service and to those at LRZ
through their involvement in the project. Docker images which can be deployed as CharlieCloud
containers on SuperMUC-NG will be provided by a dedicated Docker-Hub with Jupyter Hub
Interface for access to SuperMUC-NG. A development node with two high end GPUs (Nvidia
Tesla V100) and latest Intel cores connected to SuperMUC-NG for interactive submission of jobs
and access to the parallel file system.

11.5 Team and collaboration

The QuantEx team is made up of researchers from ICHEC and LRZ. A GitLab repository hosted
at ICHEC is used for development code and the issue tracking features are used for tracking tasks

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 28 29.04.2020

and project progress. Slack is used for ad-hoc communication with sync meetings held every two
meetings and topic specific meetings organised as required. The staff involved with a rough
estimate of their time commitment is listed in Table 1 below.

Name Institution Project role

Niall Moran (60%) ICHEC (NUIG) PI

Lee O’Riordan (30%) ICHEC (NUIG) contributor

Kenneth Hanley (30%) ICHEC (NUIG) contributor

John Brennan (100%) ICHEC (NUIG) contributor

Luigi Iapichino (50%) LRZ contributor

Ferdinand Jamitzky (50%) in-kind contribution LRZ contributor

Table 1: Staff involved in QuantEx project.

11.6 Status and outlook

The project is going well but a little behind the planned schedule due to delays in getting staff in
place which will be made up over the next 1-2 months. It is planned that the initial design will be
finalised and an early prototype in place by May. Iterations of profiling, benchmarking and
improvements will follow this.

D8.3 Interim Progress Report: Public Prototype Software Release and Development Infrastructure

PRACE-6IP- INFRAEDI-823767 29 29.04.2020

12 Conclusions

In this deliverable, we report on the status of the ten projects running under the WP 8 of PRACE-
6IP. Eight of these ten projects started their work from the start of the PRACE-6IP, while the two
remaining started only in January 2020, after a second call. For each of the projects, we provided
a brief summary of the project, the description of a prototype release, the development
infrastructure and, in conclusion, the plans of the project on a short-medium term. The eight
projects that started in April 2019 reported good progress and, in particular, all of them released a
prototype in a public repository (GitHub, GitLab, etc.). Also, all projects implemented their work
within a development infrastructure able to sustain the quality and maintainability of the software
at a high level (i.e. continuous integration, issue tracking, integrated documentation, etc.). No
critical issues in the management of these projects emerged so far, as it also appears from the results
reported here. Only some minor staffing issues (i.e. recruitment) have slightly delayed the schedule
of some of the projects, without leading to significant consequences. All the projects’ plans for the
short-medium term are in line with the objectives stated in their work plans. In some cases, it is
noteworthy that work has already been integrated in existing scientific applications or have been
used as benchmarks for the EuroHPC Pre-Exascale systems. The two “new” projects, which started
in January 2020, reported in this document their internal structure and plans about their upcoming
work, which we expect to be synchronised with the projects of the first phase in time for the next
deliverables.

