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Executive Summary 

Work Package 8 of PRACE-6IP has successfully initiated ten projects developing forward-looking 
software solutions. Eight of these projects started in April 2019 immediately, whilst two projects 
started in January 2020, after selection in a second call for proposals. This deliverable reports on 
the public release of prototype software by all projects. This early release of work-in-progress 
software guarantees software availability to the community, and provides the community with an 
opportunity to inspect, test, and provide feedback. All first phase projects have provided links to 
accessible code repositories such as GitHub, Bitbucket and similar. Projects typically use a modern 
development infrastructure, including version control, automated continuous integration (CI), and 
standard documentation formats. Testing includes correctness as well as performance. Whereas the 
readiness level of the projects differs, integration in user codes has taken place, first performance 
results have been included in this report, and certain codes have already become part of the 
procurement benchmarks of the EuroHPC Joint-Undertaking Pre-Exascale systems. The first phase 
of this work package can thus be considered successful. 
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1 Introduction 

Work Package 8 (WP8) of PRACE-6IP focuses on ‘Forward-looking Software Solutions’ and has 
the objective to deliver high quality, transversal software that addresses the challenge posed by the 
rapidly changing HPC Pre-Exascale landscape. These challenges include the diversity of hardware 
and software complexity. It will advance strategic and long-term projects, allowing for disruptive 
approaches to modernise HPC software. The main outcome is open source software in the form of 
libraries or significantly refactored codes. All of the projects aim to provide software solutions that 
enable the use of modern HPC systems, such as the planned EuroHPC Pre-Exascale systems. 

The ten projects within WP8 have been selected based on competitive, peer reviewed calls, as 
reported on in deliverables D8.1 and D8.2. This includes eight projects funded from the start of 
PRACE-6IP, and two projects funded via a second call, with a starting date of January 2020. These 
projects cover a wide range of scientific domains, from fundamental topics such as tasking 
runtimes, halo-exchange libraries, to mathematical libraries including sparse and dense linear 
algebra, to application domain related software targeted at science and engineering like plasma 
physics, biophysics, finite elements, and fluid dynamics, or emerging domains such as quantum 
computing.  

The ten projects work independently, following their roadmaps as presented in the project 
proposals. This deliverable aligns the project teams of the first call by requiring a public prototype 
release of the software, as well as an update on the development infrastructure used, and invites 
the new project to do the same. This release helps to ensure that software sustainability is taken in 
serious consideration, using industry standard tools, issue tracking, continuous integration, 
validation and verification, documentation, etc. This document is structured per project, providing 
a brief introduction for each of them, references to the prototype software releases (i.e. public 
repositories), an overview of the development infrastructure, as well description of the planned 
short term work. 
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2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation 

2.1 Introduction and summary 

Particle-in-cell (PIC) codes have now become an essential part of the modelling toolkit for many 
areas of plasma physics, whether for modelling particle acceleration with high-power lasers, or to 
understand detailed dynamics and transport processes near the edge – or scrape-off layer (SOL) – 
of magnetised plasma confinement vessels. The PIC algorithm relies on a highly versatile, robust, 
finite-difference discretisation of the Vlasov equation for the particle distribution function in 
coordinate and velocity space. State of the art three-dimensional PIC simulations involve up to 
1012 particles on 106 cores, which generally requires careful management of the memory access 
and particle book-keeping to implement efficiently. As reported in D8.2, the PicKeX project 
focusses on two important community codes: EPOCH [1], a fully relativistic, electromagnetic 
model and BIT1 [2], a sophisticated PIC/Monte-Carlo model, both of which are heavily used in the 
laser-plasma and magnetic fusion communities respectively, but which both need heavy refactoring 
work to enable them to run effectively on future PRACE Tier-0 systems. The project partners at 
the Jülich Supercomputing Centre (JSC) and University of Ljubljana (UL) are exploring and 
implementing advanced algorithmic techniques such as task-based programming models, and 
dynamic load-balancing based on space-filling curves, to achieve this goal. Progress on these points 
is reported here together with information on an initial public release of the enhanced code versions. 

2.2 Prototype software release 

The main production version of the EPOCH code is maintained by the lead developer group at the 
University of Warwick. New users can access this repository on request at the following site [3], 
which includes well-maintained documentation, and a comprehensive database of issue-tracking 
dating back to the initial public release 10 years ago. The repository has been cloned on the JSC 
GitLab server as described below, with access to the prototype ‘EPOCH-X’ available via [4], after 
registration on the JSC LDAP system. The prototype version has the full functionality of the main 
EPOCH branch, but includes verified refactoring measures such as those highlighted below, along 
with selected test cases designed to probe particular performance issues. 

The refactoring work of the BIT1 code was carried out on the new prototype code SIMPIC. This 
code and also the ongoing StarPU prototype are available on the following repository [5], which is 
mirrored at the JSC site at [6]. The latest BIT1 code release 18 has been imported into the following 
portal [7], for future refactoring based on the SIMPIC prototype. 

2.3 Development infrastructure 

The development on EPOCH-X takes place on JSC’s internal GitLab infrastructure [8], which is 
automatically synchronised with the official repository at Warwick University [9]. The decision to 
use an internal server - rather than e.g. GitHub - is based on the need for control over the 
collaborative system, particularly with respect to benchmarking. For example, this choice will 
allow us to couple the CI system from the local GitLab with job execution on JSC’s supercomputers 
to get reliable and reproducible performance measurements and enable larger tests on target pre-
Exascale architectures. All testing is implemented using JUBE [10], the Jülich Benchmarking 
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Environment (to perform verification, automate scalability tests and compare results with various 
refactoring stages, libraries, compiler options and so on).  

Results of benchmarking tests, performance milestones, discussions, issue reports and strategic 
development decisions will be documented within the JSC GitLab. Final EPOCH code 
improvements, once their correctness is confirmed via internal tests, will be pushed to the official 
public repository at Warwick University. Intermediate prototypes can be made available via JSC’s 
GitLab as described above. The documentation for the first release SIMPIC code is available at 
[11]. All developments and discussions will be done in the Bitbucket infrastructure; final 
enhancements fed back into the main BIT1 developer repository held at IPP Prague. 

2.4 Planned work for the next six months 

The work plan for enhancing the EPOCH and BIT1 code performances on near-term and next-
generation Tier-0 supercomputers was outlined in the previous deliverable. Overall at least a dozen 
major potential hotspots were identified and slated for refactoring work. 

Prioritised steps for EPOCH-X code are: 

 Complete verification and benchmarking redesign of the ‘moving window’ mode (for laser-
electron acceleration simulation) to remove/mitigate data transport overheads 

 Implementation of new improved dynamic load balancer utilising OpenMP  
 Enhanced data reuse to drive down the ratio of stalled CPU cycles 
 Expand MPI/OpenMP hybridisation to all main code models (particle integrator, field 

solver, current gather) 

Planned activities for the BIT1 code: 

 Testing the task-based parallelisation of the prototype SIMPIC code, that was done and 
adapted for D.A.V.I.D.E, on other HPC clusters; 

 Major refactoring on the BIT1 code, including the task-based schemes tested within 
SIMPIC, using different pre-Exascale architectures. 
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3 MoPHA – Modernisation of Plasma Physics Simulation Codes for 
Heterogeneous Exascale Architectures 

3.1 Introduction and summary 

Code modernisation efforts are needed for many scientific software to fully benefit from the 
upcoming heterogeneous Exascale systems. This is true also for plasma simulation codes, such as 
ELMFIRE, GENE, and Vlasiator. Task-based parallelism potentially offers better scalability and 
portability than traditional approaches by abstracting hardware-specific optimisations away from 
the scientific algorithms. Some frameworks, such as StarPU or AMReX, even offer a relatively 
easy way to achieve both task-based parallelism and support for GPUs.  

In the MoPHA project, we explore task-based parallelism for plasma simulations and test ways to 
add support for GPUs or other accelerators to plasma simulation codes. The aim is to pave the way 
for the plasma simulations codes to be ready for the upcoming pre-Exascale systems. 

3.2 Prototype software release 

In the MoPHA project we are developing a number of different codes, some of which are hosted 
on their own repositories, but the main site for publishing prototype mini-apps and documentation 
related to the project is on GitHub [12]. 

GENE Solution of the 2D heat equation using task-based parallelism, the main purpose of this code 
is to get experience with task-based parallelism and StarPU for a Eulerian scheme similar to the 
approach used by the GENE code. In this implementation, the 2D Laplacian in the heat equation is 
treated as a convolution operation which is split into tasks that can be executed by the CPUs or 
GPUs and are scheduled using StarPU. The computational domain of the heat equation is block-
partitioned according to the number of MPI ranks available. Each domain exchanges ghost cells 
with its neighbours to make each sub-domain data independent. Each cell exchange is considered 
a task and is also scheduled with StarPU. The implementation is done in C++ using templates and 
the STL library and has been tested with StarPU 1.2.9. Serial implementations to test correctness 
of convolution and the solution of heat equation are also included [13].  

VLASIATOR Experimental Vlasiator version with partial support for GPUs using OpenACC 
directives: Implemented a set of the main computational algorithms, namely the velocity space 
acceleration update, for offloading to the GPUs using a directive-based approach. Initial results are 
promising, but further improvements are needed to optimise data movement between host and 
device memory. The code is available as a separate branch in the main Vlasiator git repository [14]. 

SYMPIFE-VMAX / ELMFIRE Mini-app for particle-in-finite-elements of Vlasov-Maxwell 
systems with multiple species: The mini-app serves as a basis for the refactoring of the ELMFIRE 
code. The prototype code uses the MFEM finite elements framework from which it leverages 
versatile mesh-handling and refining infrastructure, and arbitrary order mixed-elements spaces. 
The prototype implements symplectic integrators of order 1, 2 and 4 based on Lie-Trotter splitting 
for the VM system. The MFEM infrastructure allows the use of complex meshes and automatic 
domain decomposition, as well as hybrid parallelism [15]. 

STRUGEPIC Mini-app for structure preserving PIC simulations using AMReX: It demonstrates 
the use of the scalable framework AMReX for creating PIC plasma simulations. The main purpose 
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of the mini-app is to serve as an example of features and functionality provided by AMReX for 
plasma simulations. In addition, it also performs well enough that it can be used for proper plasma 
simulations by itself [16]. 

SIMPIC Mini-app for simple PIC simulations using StarPU: It demonstrates the use of the StarPU 
framework for task-based parallelism in plasma simulations. Due to its general applicability, 
SIMPIC can serve as a how-to guide for other codes. Current status of the prototype describes how 
to refactor a MPI code into a task-based application by introducing “codelets” first for CPU and 
later can selectively introduce GPU codelets. Different scheduling mechanisms were also tested 
with the mini-app. SIMPIC is available from a separate repository on Bitbucket [17].  

3.3 Development infrastructure 

GENE: The main GENE code is developed on a GitLab repository (hence version-controlled via 
git) and makes use of the GitLab CI functionality. Compilation tests with GNU, Intel, PGI and 
Cray compilers are regularly done, unit tests are run and two test sets are done for each commit. 
On a daily basis, larger tests are run on GitLab runners on different machines. The prototype test 
code, that uses the heat equation as basis and helps in testing and understanding the usage of 
StarPU, is also versioned with git and published on MoPHA's GitHub page. Documentation of the 
prototype code is done inside the code and online README files in markdown format. 

VLASIATOR: Vlasiator is developed using the git distributed version control software and 
GitHub for tracking issues and for managing contributions from the community. Vlasiator includes 
an integrated test package and uses CI runners for automatic compilation tests. Documentation is 
provided as a part of the source code and as wiki pages on GitHub. 

SYMPIFE-VMAX / ELMFIRE: The prototype is hosted at [18]. Building is managed using 
CMake. Documentation will be expanded in the future. 

SIMPIC: The development and the documentation of the prototype code makes use of the 
Bitbucket infrastructure that is similar to GitHub in functionality providing all means of 
collaborative tools. Repositories are open to the public and CI is used for documentation building 
and simple tests. 

3.4 Status and outlook Planned work for the next six months 

GENE: With the prototype code, first insights into the usage of StarPU tasks has been collected 
which are now used to rewrite GENE in a way to use these tasking model. An existing cache-
blocking loop in the calculation of the right-hand side of the Vlasov equation is to be taskified as 
a first step. The different blocks are computed mainly independently and suits therefore well into 
the tasking approach. In a further step, the different terms of the rhs computation will be transferred 
into separate tasks with the interdependencies taken care of. Dependent on the progress of the 
taskification, we might also write codelets for running the tasks on a GPU. 

VLASIATOR: Initial results with the experimental version that uses OpenACC to offload some 
of the solvers to GPUs were promising, but performances were sub-optimal due to overheads from 
data movement between CPU and GPU memory. In order to improve performance, further work is 
needed to optimise the data movement and/or to refine the data structures used. If possible, the 
support for GPUs should also be extended to cover more solvers. 
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SYMPIFE-VMAX / ELMFIRE: Development of a GPU version, leveraging native MFEM GPU 
support and the associated libCEED. Development of fusion-specific inputs, diagnostics and test 
cases. Implementation and testing of a guiding-centre geometric integrator for reduced electron 
dynamics in strong magnetic fields. Expansion of the documentation. 

STRUGEPIC: Investigate what kind of GPU functionality AMReX can provide. 

SIMPIC: Finalisation of the SIMPIC mini-app with benchmarking on different cluster 
architectures and integration of the CI with the StarPU simulator. 
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4 NB-LIB: Performance portable library for N-body force calculations 
at the Exascale 

4.1 Introduction and summary 

A large number of scientific applications use particle interactions (e.g. Molecular Dynamics, Monte 
Carlo or multiscale simulations in life sciences or materials), and several smaller codes or 
combinations of codes have unique features. However, while computers have become more 
specialised, many codes are not optimised for GPUs or other accelerators and it is increasingly hard 
to achieve parallelisation. This will make these codes increasingly difficult to use on next-
generation, Exascale systems. 

One of those codes currently undergoing Exascale optimisation efforts is GROMACS, also among 
the benchmark codes for pre-Exascale machines coming online in 2021. While it has a long track 
record as a widely used and highly performant HPC code, it is very difficult to offer in a single 
application all the unique features and niche use-cases that the various many-body codes combined 
support. The goal of the NonBonded-LIBrary (NB-LIB) is therefore to make the cutting-edge 
performance of GROMACS available through a high-level C++ API to its non-bonded force 
kernels. In combination with the system setup functionality that NB-LIB offers in addition, users 
will then be able to implement arbitrary workflows that might be required for their special use case 
while leveraging the performance of GROMACS for the force calculations. This way, future 
acceleration, porting, and library features will benefit all applications. 

4.2 Prototype software release 

The core functionality of NB-LIB is the ability to calculate forces and energies for multiparticle 
systems. For the prototype release, we have targeted the ability to compute forces for a Van Der 
Waals gas, such as argon, and return these forces to the user. This goal has been achieved with the 
prototype code at [19]. In order to complete this task, a two-pronged approach has been utilised. 
The first task has been to design an API specification that will allow users to programmatically 
specify simulation systems. Specifying an API that is flexible enough to accommodate as yet 
unforeseen use cases is a rather large task in the field of particle simulation because of the variety 
of different functional forms that intra- and intermolecular interactions can take. For the NB-LIB 
API we have ensured that all currently supported non-bonded interactions in GROMACS are also 
supported by NB-LIB. In order to ensure extensibility, we have also been in conversation with the 
OpenMM molecular simulation software developers as well as the developers of the Open Force 
Field Toolkit. The result is that the NB-LIB particle topology and system setup API functionalities 
are in-principle compatible with these other open source simulation codes. In addition to 
developing the API for setting up particle systems, we have defined API functionality for 
computing forces and updating coordinates on these systems. The result is the ability to write self-
contained particle simulation codes in a matter of minutes using the NB-LIB API. The second 
aspect of development efforts has been refactoring the GROMACS code-base so that the translation 
layer between NB-LIB and GROMACS is minimised. This has already led to many patches which 
streamline GROMACS internal data flows and interfaces being merged into the master branch of 
GROMACS. 
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4.3 Development infrastructure 

The public prototype release is available for inspection at [19]. The API is self-documented with 
Doxygen and there is also a short overview of the core functionalities at [20]. All non-trivial 
functions have tests and integration tests also ensure that the various parts of the API work together 
as well as with the GROMACS backend. Some aspects of GROMACS functionality that are not 
currently possible to test within GROMACS but that the API depends upon are also tested. Once 
NB-LIB is moved to the main GROMACS repo these tests will move out of the NB-LIB testing 
infrastructure, which, like GROMACS utilises the Google test framework. All pull requests require 
approval of two reviewers to be merged and go through the same testing pipeline as used by 
GROMACS. To communicate between the various development locations (Lugano, Stockholm, 
and Zürich), a number of strategies are used. Besides comments in code review, there is also a 
Slack channel used for daily stand-up and design discussion threads. In addition, discussions about 
design and distribution of tasks takes place in a weekly video conference. Perhaps the most crucial 
aid in the development of NB-LIB has been regular week long hackathons to rapidly iterate on API 
designs and implementations. These have taken place in Zürich in November, in Stockholm in 
January jointly with the developer of the GROMACS modular simulator, and in Lugano in 
February. The planned April hackathon in Stockholm, in collaboration with the GMXAPI 
developer, has been cancelled due to the Coronavirus outbreak. 

4.4 Planned work for the next six months 

The development efforts of NB-LIB for the next six months will continue to pursue a two-pronged 
approach of working on API specification and implementation while also refactoring GROMACS 
to minimise translation layers between the NB-LIB API and the GROMACS back-end. On the API 
specification and implementation front, work is planned on adding other types of particle-particle 
interactions, such as bonds and angles, to the system setup functionality. It is also planned to add 
the ability to return energies to the user, in addition to the currently available forces. Most work 
over the coming period will be focused on GROMACS refactoring. The largest share of effort will 
be spent on reworking data flow models related to non-bonded force calculation within 
GROMACS. This will in turn require some effort to be spent refactoring simulation system 
initialisation in the main MD loop within GROMACS. This simulation system initialisation work 
will proceed in parallel to, and in conversation with, similar ongoing efforts by the GMXAPI 
developers, as well as work in the core GROMACS team. This refactoring will also be needed to 
allow NB-LIB to utilise the parallelised, heterogeneous compute capabilities of GROMACS. One 
final target for the next period is to migrate NB-LIB into the main GROMACS code base. This 
means that NB-LIB will be available on HPC systems all over the world as well as Linux 
repositories for Ubuntu and Debian. Finally, we plan to step up dissemination efforts over the 
coming period. It had been planned to present NB-LIB at relevant conferences in May and July, 
but these have been cancelled due to the Coronavirus outbreak. Efforts will be made to find suitable 
opportunities to broadcast the existence of NB-LIB once scientific meetings resume. 
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5 LoSync – Synchronisation reducing programming techniques and 
runtime support 

5.1 Introduction and summary 

The LoSync project aims to improve the scalability of applications by removing unnecessary 
synchronisation and serialisation, and by fully exploiting the potential for overlapping 
computations and communications. To do this, we make use of modern features of well-
standardised APIs, to ensure portability and relevance. These techniques include: 

 Using OpenMP/OmpSs-2 tasks with data dependency clauses. This includes not only 
expressing computation as tasks, but also communication, by wrapping MPI or GASPI 
library calls inside tasks. We utilise the Task-Aware MPI (TAMPI) and Task-Aware 
GASPI (TAGASPI) interoperability libraries developed by Barcelona Supercomputing 
Center to make this as efficient as possible. 

 MPI single-sided communication. Recent developments in MPI libraries have significantly 
improved the performance of single-sided communication to the point where its benefits 
can be realised in real applications. 

 GASPI single-sided (put-notify) communication. This is a lightweight alternative to MPI 
single-sided communication which interoperates well with MPI, and offers different 
synchronisation semantics which can help remove serialisation constraints. 

The project is initially implementing these techniques in small kernels and mini-apps, with the aim 
of moving to key kernels of larger applications later in the project. In addition, development is 
being carried out on runtime library implementation to support this work. This includes: 

 Continuing the development of the TAMPI and TAGASPI interoperability libraries to 
support interaction of MPI and GASPI with OpenMP/OmpSs tasks with dependencies. 

 Exploring extensions to the OpenMP tasking model to support task dependencies on 
external events, task-nesting, fine-grained dependencies, weak dependencies and early 
release of dependencies, to avoid artificial synchronisation and serialisation effects. 

 Making use of performance analysis tools and techniques to identify optimisation targets in 
real applications where these techniques can be most beneficially applied. 

5.2 Project Prototype software release 

The prototype software currently available consists of the OmpSs-2 programming environment and 
the TAMPI library.  

The OmpSs-2 programming environment is comprised of the Nanos6 runtime library and 
Mercurium compiler, which are available for public download from [21], either in the form of 
packaged versions of stable releases or as Git repositories of the current development versions. 
Recent versions of OmpSs-2 contain the required support for the TAMPI library, for example the 
ability to pause tasks which are blocked in MPI calls, poll for completion of the relevant MPI 
operations, and resume the task when completion occurs.  

The TAMPI library uses the PMPI interface to intercept MPI calls, interact with the Nanos6 
runtime, and call the required actual MPI routines. It also contains a small number of extension to 
the standard MPI interface which allow non-blocking MPI calls inside tasks to be handled correctly 
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integrates their completion with the task dependency system. The TAMPI library is available from 
a Git repository at [22]. 

5.3 Development infrastructure 

Mercurium, Nanos6 and TAMPI use Git as a version control system. There is an internal GitLab 
server that hosts the master and development branches for all three projects. The master branch of 
each project on the internal GitLab server is also mirrored on a public GitHub repository, that is 
updated twice a year with a new stable release or for hot-fixes. 

The three projects have their own set of correctness tests that are periodically executed to validate 
any new development. All internal merge requests are automatically tested with Jenkins on four 
production machines (Marenostrum4, CTE-Power9, CTK-KNL and Nord3) before they can be 
merged on the master branch. Moreover, all merge requests are also reviewed at least by one 
additional developer. Once the internal review is completed the merge request is integrated into the 
master branch and it is automatically tested by Jenkins on four production machines.  

There is also a framework developed in-house to continuously measure the performance of 
Mercurium and Nanos6 runtime. This framework runs a set of predefined benchmarks on the four 
production machines at night if the code of the master branch has been modified. The results of the 
benchmarks are automatically saved to a MySQL database and they can be visualised using 
Grafana. The project home page contains links to the online documentation, OmpSs-2 specification 
and OmpSs-2 examples [23]. 

5.4 Planned work for the next six months 

The project is currently working on porting a number of kernels and mini-apps to the “taskified 
communication” hybrid programming supported by OmpSs-2 and TAMPI. Several of these 
(Gauss-Seidel, IFSKer, HPCG, HPCCG) are substantially complete, and undergoing performance 
analysis and testing. Others (Co-MD, miniMD, miniAMR, LULESH) are still in progress. Porting 
work on this latter set will be completed, and the performance analysed. Further target mini-apps 
and larger codes will be identified. We will synthesise our porting experiences into a best-practice 
guide to assist other developers who wish to test out this model.  

Work on a release of the TAGASPI library has been delayed by a short time: this is now ready for 
testing (prior to a prototype release) which will begin very soon. We also plan to release an 
OpenMP runtime library (based on LLVM) which supports the non-blocking mode of TAMPI. 
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6 FEM/BEM based domain decomposition solvers 

6.1 Introduction and summary 

The aim of the project is to extend the existing domain decomposition library ESPRESO [24], to 
support highly scalable solution of sound scattering and harmonic analysis problems. Distributed 
parallelisation of the library is based on the FETI (Finite Element Tearing and Interconnecting) 
domain decomposition method and the implementation for problems in complex domain will be 
based on the FETI-H (FETI-Helmholtz) method and its variants where the regularisation is done 
using the complex interface mass matrix and the preconditioning is based on the plane wave 
deflation. Refactoring and optimisation of the existing ESPRESO code is also an important part of 
the project. 

Within the first 12 months, we focused on several problems based on the original project schedule: 

 Refactoring and optimisation of ESPRESO: this includes refactoring of the global matrix 
operations, new interface for external solvers and mesh partitioners (such as Pardiso, 
SuperLU, Watson Sparse matrix Package, HYPRE, ParMetis, or PT-Scotch), optimisation 
of the parallel input workflow, or redesign of the ESPRESO configuration file. 

 Optimisation of the system matrix assembler: replacing BLAS routines by manually tuned 
code for small matrices provided significant speedup of the assembler of the heat transfer 
matrices in shared memory. 

 Development of the MATLAB prototyping application: we have successfully implemented 
and tested the FETI-H within our in-house fast-prototyping code (this includes matrix 
regularisation and preconditioning by the artificial coarse space). 

 Distributed memory parallelisation of the harmonic analysis solver within ESPRESO: 
extended to support parallelisation in both frequency and spatial domain (limited scalability 
due to lack of preconditioner). 

 Testing and documentation: project’s private and public repository have been established 
and continuous integration is in progress. 

In addition, a development of the “Solver-as-a-Service” platform has continued. This platform will 
enable users with limited or no experience with HPC to use ESPRESO to access supercomputer 
resources via an online platform. The backend has been developed and the implementation of 
frontend is in progress. We have also started with the GPU acceleration of the system matrix 
assembler and solver. 

6.2 Prototype software release 

The developed code is publicly available within the master branch of the ESPRESO library in its 
official repository at GitHub [25]. Currently, the code supports solution of the harmonic analysis 
problems in real domain parallelised across both frequency and spatial domains. However, the 
parallel scalability is limited due to the lack of a suitable preconditioner (implementation of the 
preconditioner based on an artificial coarse space is in progress). Most of the above-mentioned 
code developed in the first year is available within the repository. The public repository also 
contains the ESPRESO installation manual. The solver-specific documentation and tutorials will 
be provided in the next phase of the project. 
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6.3 Development infrastructure 

ESPRESO uses git as a version control system and an internal GitLab infrastructure is dedicated 
for the development of the library at IT4Innovations National Supercomputing Center, available at 
[26]. The repository contains the C++ code, benchmarks and tests, and short installation 
documentation. Waf is used as a build automation tool and for testing, we use the Nose framework 
[27]. The git repository consists of two major branches – dev and master; the main development 
takes place in the dev branch and implemented features are merged into the master branch. The 
GitLab continuous integration (CI) pipelines then ensures the code is properly tested and eventually 
pushed to the public repository. 

The public repository is located at [28], and contains the latest stable version of the code and 
documentation. The documentation is written using the MarkDown language and currently 
describes mainly the installation procedure and description of API for calling from external 
software. Additional information is available at the official product webpage [29]. 

6.4 Planned work for the next six months 

Several topics have to be tackled in the following six months: 

 Implementation of a preconditioner based on the artificial coarse space projection within 
the ESPRESO library. This will further improve the parallel scalability of the harmonic 
analysis code and enable solution of spatially large problems. 

 GPU acceleration – the acceleration will rely on assembling the so-called local Schur 
complement matrix on GPU and replacing the sparse direct solver by iterative solution with 
smaller dense matrix. 

 Documentation will be extended to provide additional solver-specific information. 
 Development of the frontend of the “Solver-as-a-Service” platform will continue. 

Development of the boundary element interface has been postponed in order to focus on the 
currently more important finite element code. 
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7 Performance portable linear algebra 

7.1 Introduction and summary 

In general, linear algebra algorithms have a central role in scientific applications. For example, in 
the particular case of Materials Science, many applications rely heavily on linear algebra to solve 
complex tasks. 

Overall, the diversity of linear algebra operations together with the large size of the operands 
motivates the necessity of high-performance implementations of distributed algorithms. For 
example, modern electronic structure methods rely on the Density Functional Theory (DFT) 
method, which highly depends on the solution of either dense or sparse eigenvalue problems. Dense 
eigenvalue problems are currently solved mainly using the ScaLAPACK [30] or ELPA [31] 
libraries. ScaLAPACK has been developed in 1992 and the fork-join approach used for its 
implementation is not suitable for modern node architectures. 

A more modern approach consists in the task-based implementation of the algorithms and the goal 
of this project is to deliver a modern and efficient distributed linear algebra package (DLA-Future) 
based on HPX [32], that can replace ScaLAPACK in scientific applications. 

An alternative strategy in the development of an eigensolver is to leverage on well-known and 
well-established iterative algorithms such as subspace iteration. A modern example of such 
algorithm has recently been implemented in the Chebyshev Accelerated Subspace iteration 
Eigensolver (ChASE) library. When tackling sequences of Hermitian eigenproblems, as they often 
appear in electronics structure codes, ChASE takes advantage of the distinctive features connecting 
adjacent problems in a sequence. 

7.2 Prototype software release 

7.2.1 DLA-Future and DLA-Interface 

The DLA-Future [33] and DLA-Interface [34] projects are both available at GitHub. Currently 
DLA-Future functionalities include the Cholesky decomposition and the solution of the triangular 
system of equations for distributed multi-core systems. Performance tests (Figure 1) show that our 
implementation performance is in-line with the performance of our initial prototype and the state-
of-the-art libraries. Moreover, it performs better than two highly optimised ScaLAPACK 
implementations.  
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Figure 1: Comparison of the performance of DLA-Future Cholesky decomposition compared with other libraries (left: 
ScaLAPACK implementations, right: other task-based approaches). 
 

7.2.2 Chase library 

The Chebyshev Accelerated Subspace Eigensolver (ChASE) library is a modern and parallel 
library to solve dense Hermitian (Symmetric) algebraic eigenvalue problems. ChASE is templated 
for real and complex numbers and can be used to solve real symmetric eigenproblems as well as 
complex Hermitian ones. ChASE algorithm is designed to solve for the extremal portion of the 
eigenspectrum. By default, it computes the lowest portion of the spectrum but it can compute as 
well the largest portion. The library is particularly efficient when no more than 20% of the extremal 
portion of the eigenspectrum is sought-after. ChASE is particularly efficient when dealing with 
sequences of eigenvalue problems, where the eigenvectors solving for one problem can be used as 
input to accelerate the solution of the next one. The library can be used both in single and double 
precision. The distributed version of ChASE is parallelised over MPI and can be effectively used 
on multi- and many-cores. The latest release of the library can be executed on multi-GPU devices 
per computing node. ChASE is available in Github at the following link [35]. 

7.3 Development infrastructure 

7.3.1 DLA-Future and DLA-Interface 

To manage the development and the versions of the code we use a git repository which includes a 
master branch containing the latest version of the code that has been reviewed and tested, and other 
branches which contain changes that have not been reviewed (or for which the review is in 
progress). 

The development follows the GitHub workflow [36], and the possibility to merge is blocked until 
the pull request is approved by at least another member. The GitHub workflow method also 
simplifies the integration with a CI method. A Jenkins instance is running at CSCS [37], and is 
setup to automatically build and test each pull request open in GitHub. Currently the results of the 
CI tests are not available to the general public. 
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The code is documented in two ways. The public API has an inline documentation formatted 
according to the specifications given by Doxygen. The doxygen tool can be used to extract this 
inlined documentation and produce a browsable version of the API documentation. 

The documentation of other aspects of the library (e.g. installation procedure) is available through 
markdown documents. 

7.3.2 Chase library 

The ChASE library development is organised around a double repository level. The first level is a 
Gitlab repository hosted on a GitLab server located at the Juelich Supercomputing Centre (JSC), 
and a second level hosted by GitHub where the library is publicly available. The GitLab repository 
is used exclusively by the developers of the code. It includes a simple Continuous Integration (CI) 
system and two main branches, devel and master. When a major development is completed on the 
devel branch it is merged to the master branch and undergoes a series of automatic testing by the 
CI on a server locally based at the JSC. Once a development, merged to the master branch, is stable 
and thoroughly tested, the GitLab master branch is synchronised with the GitHub master branch 
and it is released to the public. 

ChASE online documentation is developed using the Sphinx platform and hosted at the web site 
[38]. The documentation is split in two sections: User and Source. Currently only the User section 
is complete, while the Source section is under development. 

7.4 Planned work for the next six months 

7.4.1 DLA-Future and DLA-Interface 

 Complete the inter-node communication optimisations. 
 Re-implement the GPU accelerated Cholesky prototype using the DLA-Future API. 
 Continue with the implementation of the routines needed by the Hermitian eigensolver. 

7.4.2 Chase library 

One of the most important kernels in ChASE is the distributed General Matrix-Matrix 
multiplication (GEMM) operation. A benchmark of GEMM based on HPX has been developed, 
including the task-based implementation in the node, and distributed implementation of SUMMA 
(Scalable Universal Matrix Multiplication Algorithm) with the overlap of communication. In the 
next six months, the task with the highest priority is to finish and submit a conference paper related 
to this topic. Compared to ScaLAPACK, the Elemental package provides a different layout for the 
distribution of data across the nodes, which can separate the algorithmic block size and the 
distribution block size of matrix. We have interests on Elemental data layout since it makes the 
tuning of algorithmic block size possible without redistribution of matrix. The second task for us 
is to investigate the possibilities of a combination of Elemental and HPX, especially for GEMM. 
ChASE provides a class interface that abstracts the related numerical kernels. With the help of this 
interface, the third task is to integrate the SUMMA-HPX kernel into ChASE as a new backend. 
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8 GHEX: Generic Halo-Exchange for Exascale 

8.1 Introduction and summary 

GHEX provides functionalities to perform halo-exchange operations in domain decomposed 
applications. While this operation is pervasive in HPC, its implementation is usually custom written 
by developers, who best know the logic of the domain decomposition. Typically, the 
implementation is done using MPI, but this approach has some drawbacks as the architectures 
become more diverse with different address spaces and synchronisation behaviours. 

GHEX provides higher level interfaces to express halo-update operations to abstract the detail of 
the architectures and, at the same time, adapt to the logic present in the applications. An overview 
of GHEX can be found in Figure 2 below. 

The main components of GHEX are pattern, communication object and transport layer. The user 
passes to the pattern the information about domain, the information about the halos and data 
wrappers to the data to be exchanged. This happens through user provided functions to gather the 
required information that is already available in the application. After this, the user associates sub-
domains to communication objects that access the transport layer to perform the exchanges. This 
allows us to abstract different address spaces, such as GPUs, and transport mechanisms. To allow 
modern programming paradigms, like coarse grained multithreading (each thread manages a 
number of sub-domains), and multi-tasking, GHEX provides basic functionalities to interface with 
the most common threading mechanisms, such as OpenMP, pthreads and C++ threads. More can 
be added as necessary. 

Key features of GHEX is the future-based halo-exchange mechanism, and the call-back message 
exchanges. These features enable overlapping communication and communication at API level, so 
that, if the platform allows for it, it can be automatically used. The low level transport layer can 
also be accessed directly to perform point to point communications. This feature will be used by 
DISPATCH, an application to simulate solar atmosphere. 

 

 

Figure 2: Overview of GHEX 
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8.2 Prototype software release 

GHEX is available on GitHub at [39]. The license under which the software is provided is a BSD-
3-Clauses. The current releases are not tagged, since the software has not reached the level of 
maturity for a version number (see the next Section for status of CI and testing). The master branch 
is anyway tested and should always be working. The repository also offers Fortran bindings to the 
C++ function to ease the use of the communication operations from Fortran applications, called 
FHEX. 

 
Figure 3: Comparison of GHEX and MPI transport layers for different sizes of messages on Infiniband network. 
 

GHEX includes the Atlas library (developed at ECMWF, which provides domain decomposition 
and communication for unstructured grids) allowing the definition of adjacency relations to define 
unstructured meshes. Early results, shown in Figure 3, show that GHEX interfaces allow it to 
outperform the native MPI exchanges provided in Atlas. Figure 4 below shows the execution times 
for meshes with 1M nodes and up to 64 compute nodes. The relatively small sizes of the tests are 
due to limitations of recently added support for GPUs to Atlas. GHEX can handle bigger sizes 
correctly, but cannot be currently compared for performance against the main implementation. 
GHEX APIs allow for the transport layers to better manage communications in comparison with 
traditional MPI-only solutions. 
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Figure 4: Execution times for meshes with 1M nodes and up to 64 compute nodes. 

 

Even though GHEX has not been released officially, it is already employed in proof of concepts 
implementations of user applications such as the COSMO model and ECMWF’s Atlas library mini-
apps. More importantly, GHEX is used in official benchmarking suites for the next generation pre-
Exascale system as the communication backed of the GridTools Benchmark (GTBench), which 
serves as a representative mini-app for weather and climate simulations. 

The GHEX repository also provides benchmarks that can be used for comparing performance. In 
Figure 3 you can see low-level transport layer experiments showing the performance of different 
GHEX transport layers compared to native MPI. As it can be seen, the UCX backend is superior 
to MPI especially when the message sizes are not very big (which is a common use case for our 
target users), and when many threads are used. Also visible is the absence of overhead for the 
Fortran bindings (FHEX). 

8.3 Development infrastructure 

Before merging into the master branch, each contribution is validated against the tests, and merged 
only if the tests passes. Most of the testing is done manually, at the moment, but a basic CI 
infrastructure using GitHub-actions is in place for functionality tests. The reason why we consider 
this minimal at the moment, is that GHEX is designed to run on different architectures and different 
transport layers, and not all transport layers are supported equally on different architectures (for 
instance UCX is currently not optimised on Cray machines). For this reason, we are currently 
running manually the tests on different machines, but we plan to select the suitable CI solution that 
allows us to test GHEX automatically on multiple platforms. 

GHEX is copyrighted to ETH Zurich. Contributions to GHEX are welcome, through the 
mechanism provided by GitHub issues and pull-requests. Contributors are required to sign a 
Contributor License Agreement to release the copyrights of the changes to ETH. This guarantees 
the stability of future releases of the software and a clear point of contact for support. 
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8.4 Planned work for the next six months 

In the next six months the GHEX team will be engaged on multiple fronts: 

 Develop a transport layer based on libfabric, a low-level network level natively supported 
by several vendors, including CRAY. 

 Develop the facilities to perform halo-updates on inflated-cube spherical grids. 
 Finalise the Atlas implementation and provide facilities for domain decomposition based 

on commonly used libraries, such as ParMETIS. 
 Use GHEX in applications such as BIFROST solar atmospheric simulation, and others. 
 Improve on continuous integration testing to increase automation for functionality and 

performance tests. 
 Perform more through benchmarking on different platforms and transport layers. 
 Expand the benchmarks.  
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9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and 
library support for the discovery of new physics 

9.1 Introduction and summary 

The project, Linear Algebra, Krylov methods, and multi-grid API and library support for the 
discovery of New Physics (LyNcs), is addressing challenges which are arising on modern and 
upcoming architectures due to massive parallelisation. These challenges can only be met with 
disruptive approaches to parallelism because traditional parallelisation strategies for solving partial 
differential equations are no longer effective. LyNCs is targeting efficient solutions for linear 
systems based on large sparse matrices by pooling together software development efforts across 
Europe. This will provide the European communities with the next generation of parallel libraries 
for solving sparse linear systems at the Exascale. LyNCs is led by the Computation-based Science 
and Technology Research Centre (CaSToRC) of The Cyprus Institute, which joins forces with 
partners from the French Institute for Research in Computer Science and Automation (INRIA) and 
the Leibniz Supercomputing Center (LRZ). Part of LyNCs is the development of an API that is 
targeting massive parallel machines to perform simple task management with shared memory 
among huge parallel partitions. This API together with the implementing of cutting-edge sparse 
linear solver algorithms, the development of novel block Krylov solvers and optimisation of 
existing parallel codes will enable community software to efficiently utilise the upcoming pre-
Exascale and Exascale machines. The software improvements target all levels of the scientific 
application software stack, from the basic Sparse BLAS library to fully-fledged simulation codes. 
Namely, LyNCs is targeting the Fast-Accurate Block Linear Krylov Solver (Fabulous), the Lattice 
QCD community solver library DDalphaAMG and at the lowest level the efficient sparse matrix 
support software librsb. 

9.2 Prototype software release 

LyNCs is targeting software which spans all levels of the scientific software stack to ensure 
readiness for the upcoming massively parallel pre-Exascale and Exascale systems. Part of the 
developed software are: 

LyNCs: The first prototype version of the API LyNCs is available at GitHub [40], and published 
under a BSD 3-Clause license. The prototype version is targeting lattice QCD applications utilising 
DDalphaAMG as a solver library. The API is written in Python and based on the package dask, 
which enables simple memory shared task management especially designed for large allocations 
for the next generation of High Performance Computing Systems. The functionality of the 
prototype is currently limited to benchmark applications that target data exchange between smaller 
partitions and checks enabling the call of library functions written in C or C++ using python 
environment. 

Fabulous: Fabulous implements Block Krylov solver methods, is written in C++ and its 
development is ongoing. During the first year of LyNCs new capabilities enabling flexible 
preconditioner were enabled through the implementation of the block GRC with inexact breakdown 
detection. The study of a novel Block Krylov solver has been initiated that would allow to recycle 
spectral information between sequence of multiple right-hand-sides that would fit very well the 
context of the coarse grid solve in multigrid; the new method is a flexible Block GCRO technique 
with deflation at start and restart. Fabulous is distributed under CeCill license and available at the 
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INRIA GitLab [41]. The GitLab page for INRIA linear algebra software packages (Chameleon, 
Fabulous, Maphys), using continuous integration, issue tracking, unitary testing, and complex 
scenarios testing. Integration is enabled through two high performance software distributions: 
spack [42] and guix-hpc [43]. 

DDalphaAMG with multiple rhs: In the first year of LyNCs a new version of DDalphaAMG is 
developed, which enables multiple right hand side, where the vectors are ordered with row major 
ordering. This enables vectorisation during compilation without explicitly using vector 
instructions. This guaranties portability without major performance lost to different CPU 
architectures, like ARM, Intel or AMD CPUs. The first version is available at GitHub [44], and is 
currently tested on various systems, such as the SuperMUC-NG, the Mont Blanc 3 system Dibona 
and the up-coming HAWK system. As shown in Figure 5 below, the multiple right hand sides is 
extending also the scalability which makes it additional suitable for massive parallel machines. 

 
Figure 5:  Comparison of scalability in the range from 5 to 1200 nodes of DDalpaAMG on SuperMUC-NG using a 
physical point lattice of lattice size V=80x80x80x160 using 1 (blue circles), 4 (red, diamonds) and 8 (yellow, squares) 
right hand sides. 
 

Librsb: The librsb library is written in C99 and OpenMP, and is distributed under a GPLv3 license 
at [45]. Since the start of the LyNCs project, librsb is being further developed. This resulted into a 
new release with minor bug fixes, and considerable bug fix/refactoring/documentation. Namely, 
the internal test suite has been expanded very notably, and fixes have been found necessary to 
adjust inconsistencies. Tightly related to these consolidation activities are developments to the 
Python [46], and GNU Octave [47] access layers, which are of interest to diverse user communities. 
Interaction with them has led to many improvements not only in connection to the aforementioned 
'pyrsb' and 'sparsersb', but to librsb itself. Thanks to the Debian and Cygwin volunteer community, 
Linux and Cygwin users can benefit from using pre-compiled binaries after each librsb and 
sparsersb release. Since January, librsb is being included in the "Spack" HPC software distribution. 
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9.3 Development infrastructure 

As previously mentioned, LyNCs is working on a diverse software stack targeting all different 
levels. This diversity splits the effort within the LyNCs project into various tasks, e.g. like a high-
level API for which we are employing a novel framework or the low level sparse BLAS library. 
This diverse effort is reflected in the development infrastructure that is complement by the strength 
of each partner. Namely, the tasks which target the community library DDalphaAMG is led by 
CaSToRC while INRIA acts as an advisor in order to exploits most efficient block-Krylov solver 
solutions. Additional tasks, which are developed in cooperation with projects partners are: i) testing 
of librsb for QCD kernels (LRZ, CaSToRC), ii) LyNCs API software development for simplified 
memory shared task management (CaSToRC, LRZ, INRIA), and iii) pipeline version of Block-
Krylov solvers (INRIA, CaSToRC). 

LyNCs has established effective communication channels via regular telcons, usually once per 
month, and an email-list, which is used to coordinate actions among all involved members. For 
every single task, each partner is connected via mail, phone calls and telcons. For all software 
developments git is used as a version control and software is published via GitHub, INRIA GitLab 
and sourceforge. For software development in which two or more partners are involved, we 
established a GitLab-side. 

Most of LyNCs personnel positions had to be filled via recruiting, which introduced a delay of 
several tasks. Although this delay is mitigated by shifting priorities, we still expect some further 
delays of subtasks. Unfortunately, this is made worse due to the current situation connected to the 
pandemic of COVID-19. In particular, we are currently re-considering the planed face-to-face 
meetings. 

9.4 Planned work for the next six months 

The next step of LyNCs is connected to its second milestone MS2, which is the evaluation of 
prototype methods for Exascale. This will be met for block-Krylov solvers in multi-grid 
preconditioners and librsb used for QCD kernels. In summary, up-coming developments are as 
follows: 

 Extending and enabling further features in the LyNCs API, which includes testing on 
PRACE Tier-0 systems and modular architectures, such as the DEEP-EST cluster to which 
we have secured access. 

 Investigating numerical schemes based on block pipelined Krylov subspace methods, like 
pipelined GMRES and possibly implement the flexible block GCRO-DR method. 

 Integration and testing the Fabulous block Krylov solver methods in DDalphaAMG, both 
for the solution of the coarse grid as well as Krylov solvers preconditioned by multigrid at 
the finest level. 

 Performance of preliminary scalability experiments to assess the algorithmic choices. 
 Enhancing librsb's test suite further towards the next release, so that it may be used by e.g. 

Travis CI on GITHUB 
 More far-reaching optimisations (foremost on SpMM), preferably after the aforementioned 

librsb consolidation step. 

 



D8.3                   Interim Progress Report: Public Prototype Software Release and Development Infrastructure 

PRACE-6IP- INFRAEDI-823767 24 29.04.2020 

10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale 
Computers 

10.1 Introduction and summary 

ParSec brings together well-known HPC CFD practitioners with the aim of sharing best practices, 
and collaboratively modernise the AMR implementation of three leading-edge CFD community 
codes for the exploitation of future (pre) Exascale machines. The partners involved in the project 
are Barcelona Supercomputing Center (BSC), the KTH Royal Institute of Technology and Cenaero 
- Université de Liège. The community codes brought by these institutions are: 

1. Nek5000, the scalable high-order solver for computational fluid dynamics from 
KTH/UIUC [48],  

2. Alya, the high performance computational mechanics solver from BSC [49], 

3. Argo, the high order multiphysics solver from Cenaero. In particular the mesh 
functionalities of Argo are supported by the OS library MAdLib [50], which will be further 
developed during the project, including a tight interface with the finite mesh generator 
Gmsh [51]. 

These three CFD solvers cover the main approaches for the solution of PDEs using both structured 
and unstructured meshes: finite element, finite volume, and spectral elements. From this broad 
perspective, ParSec aims at reaching robust HPC solutions that can be useful for the entire 
community. The objectives of the project are: 

1. Analysis of the various separation of concerns (SoC) used for the AMR implementation - 
that will allow consistent performance comparisons and software sharing amongst codes, 

2. Cross-verification and analysis of the performance of the codes on (pre) Exascale 
architectures, 

3. The modernisation of codes based on disruptive solutions motivated by the previous 
analysis, 

4. Deliver self-contained OS software components solving different steps of the AMR process 

5. Deliver three AMR-enabled CFD legacy codes to exploit (pre) Exascale systems. 

Figure 6 below illustrates the work plan for ParSec. Since the project started in January 2020, it is 
on its very first steps. The logistics have been resolved, in particular, a mailing list and a common 
repository have been created and a monthly teleconference has been established. Apart from sorting 
out the logistics, the first three teleconferences have been focused on presenting the base-line of 
each code in terms of AMR capabilities, comparing the SoC implemented, and identifying 
components and know-how sharing opportunities that will take place in the course of the project. 
The developments have focused on the refactoring of codes to increase modularity and on enabling 
the interfacing between the already shareable components. Next steps will be focused on 
performance analysis, optimisation and implementation of new features. 
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Figure 6: ParSec work plan. 
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11 QuantEx: Efficient Quantum Circuit Simulation on Exascale 
Systems 

11.1 Introduction and summary 

QuantEx is a platform combining modular quantum circuit simulation tools with the aim of running 
efficiently on heterogeneous compute platforms and scaling to exploit pre-Exascale and Exascale 
compute resources. Modern development practices and software design methodologies are used 
along with hierarchical layers of abstraction to encapsulate complexity and enable tools to be easily 
extended and integrated into users’ circuit simulation workflows. The project started in January 
2020 and the team consists of researchers at ICHEC and LRZ. 

11.2 Evaluations 

QuantEx will integrate and build on existing software components. To determine the most suitable 
to a number of evaluations of key software components have been completed and others are 
ongoing. Evaluations are concerned with assessing each software component for suitability of 
integration into QuantEx. The evaluation takes into account methods and technologies used, 
performance profile and release license. An overview of evaluations completed to date follows. 

TAL-SH 

TAL-SH [52] is a tensor algebra library for shared memory nodes which has been proven in 
production with its integration in qFlex [53], the simulator used for Google's quantum supremacy 
experiment. It is designed to be very flexible with support for multiple hardware back ends 
including multicore CPUs and NVIDIA GPUs through the use of third party libraries which include 
OpenBLAS and cuTENSOR [54]. Due to its asynchronous execution policy, it is able to efficiently 
utilise all available hardware resources within an individual compute node. Offering C, C++, and 
Fortran bindings, TAL-SH facilitates easy integration within QuantEx. 

cuTENSOR 

cuTENSOR is an optimised tensor algebra library for Nvidia GPUs of compute capability of 7.0 
or higher, this includes Tesla V100s which are installed in HPC systems such as Summit and Kay. 
CuTENSOR has been shown to offer significant performance improvements over optimised CPU-
based tensor algebra libraries such as TBLIS and is therefore an attractive option as a low level 
driver for the required tensor contraction primitives. Its integration within TAL-SH has also shown 
that the library is mature and production-ready. The library is very flexible allowing contractions 
to be executed using efficient algorithms, such as GEMM-like Tensor-Tensor multiplication and 
Transpose-Transpose-GEMM-Transpose, which may be selected at runtime either manually or 
automatically using integrated heuristics. It is worth noting that cuTENSOR is freely available 
however it currently lies behind a license agreement which requires an NVIDIA developer account. 

qFlex 

Flexible Quantum Circuit Simulator (qFlex) implements an efficient tensor network, CPU-based 
simulator of large quantum circuits. qFlex computes exact probability amplitudes, a task that 
proves essential for the verification of quantum hardware, as well as mimics quantum machines by 
computing amplitudes with low fidelity. qFlex targets quantum circuits in the range of sizes 
expected for supremacy experiments based on random quantum circuits, in order to verify and 
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benchmark such experiments. qFlex is enabled to run efficiently on GPUs with extensive 
optimisation. It is parallelised using MPI and CUDA. TAL-SH is used as a library within qFlex, 
but with improvements with respect to the standalone version. 

Quimb 

Quimb [55] is an open source pure python library designed for quantum information and many-
body calculations. It has a submodule, called tensor, which has tools for creating and manipulating 
tensor networks, including a specialised class for quantum circuits. It uses the library opt_einsum 
to perform tensor contractions which is agnostic to the backend and can handle NumPy, Dask, 
PyTorch, Tensorflow, CuPy, Sparse, Theano, JAX, and Autograd arrays. It also has a slepc4py 
interface for easy distributed linear algebra. Integration of Quimb into the QuantEx project can be 
used to help find suitable contraction strategies for arbitrary tensor network graphs. 

11.3 Design and use case development 

Design for initial software release with exchange formats between layers has been defined. A 
prototype in development and expected to be completed by end of April. 

Use cases are central to development and benchmarking of QuantEx. As such, sample workflows 
have been implemented for the quantum Fourier transform (QFT) and the variational quantum 
eigensolver (VQE). Both methods are written to leverage OpenQASM as the intermediate circuit 
description language allowing the use of IBM Qiskit to verify their functionality. A Julia package 
titled “QuantExQASM” was developed for generating circuits to realise these given use cases. 

Additional use cases and algorithms were identified for potential implementation, including 
Grover’s search algorithm, superdense coding, and quantum phase estimation. All three can be 
used as building blocks for other methods, and are easily verified with existing frameworks. 
Bespoke solutions and use-cases in collaboration with stakeholder research groups are expected to 
follow in subsequent deliverables. 

A stakeholder meeting was held on 6 March 2020 where project status was communicated and 
input was sought. Emerging from this were steps to engage more closely with stakeholders and get 
them involved in testing and evaluation of early prototypes. 

11.4 Development infrastructure 

For keeping track of project tasks and source code a GitLab repository is used. Compute resources 
at ICHEC are available to the project through ICHEC’s National Service and to those at LRZ 
through their involvement in the project. Docker images which can be deployed as CharlieCloud 
containers on SuperMUC-NG will be provided by a dedicated Docker-Hub with Jupyter Hub 
Interface for access to SuperMUC-NG. A development node with two high end GPUs (Nvidia 
Tesla V100) and latest Intel cores connected to SuperMUC-NG for interactive submission of jobs 
and access to the parallel file system. 

11.5 Team and collaboration 

The QuantEx team is made up of researchers from ICHEC and LRZ. A GitLab repository hosted 
at ICHEC is used for development code and the issue tracking features are used for tracking tasks 
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and project progress. Slack is used for ad-hoc communication with sync meetings held every two 
meetings and topic specific meetings organised as required. The staff involved with a rough 
estimate of their time commitment is listed in Table 1 below. 

 

Name Institution Project role 

Niall Moran (60%) ICHEC (NUIG) PI 

Lee O’Riordan (30%) ICHEC (NUIG) contributor 

Kenneth Hanley (30%) ICHEC (NUIG) contributor 

John Brennan (100%) ICHEC (NUIG) contributor 

Luigi Iapichino (50%) LRZ contributor 

Ferdinand Jamitzky (50%) in-kind contribution LRZ contributor 

Table 1: Staff involved in QuantEx project. 
 

11.6 Status and outlook 

The project is going well but a little behind the planned schedule due to delays in getting staff in 
place which will be made up over the next 1-2 months. It is planned that the initial design will be 
finalised and an early prototype in place by May. Iterations of profiling, benchmarking and 
improvements will follow this. 
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12 Conclusions 

In this deliverable, we report on the status of the ten projects running under the WP 8 of PRACE-
6IP. Eight of these ten projects started their work from the start of the PRACE-6IP, while the two 
remaining started only in January 2020, after a second call. For each of the projects, we provided 
a brief summary of the project, the description of a prototype release, the development 
infrastructure and, in conclusion, the plans of the project on a short-medium term. The eight 
projects that started in April 2019 reported good progress and, in particular, all of them released a 
prototype in a public repository (GitHub, GitLab, etc.). Also, all projects implemented their work 
within a development infrastructure able to sustain the quality and maintainability of the software 
at a high level (i.e. continuous integration, issue tracking, integrated documentation, etc.). No 
critical issues in the management of these projects emerged so far, as it also appears from the results 
reported here. Only some minor staffing issues (i.e. recruitment) have slightly delayed the schedule 
of some of the projects, without leading to significant consequences. All the projects’ plans for the 
short-medium term are in line with the objectives stated in their work plans. In some cases, it is 
noteworthy that work has already been integrated in existing scientific applications or have been 
used as benchmarks for the EuroHPC Pre-Exascale systems. The two “new” projects, which started 
in January 2020, reported in this document their internal structure and plans about their upcoming 
work, which we expect to be synchronised with the projects of the first phase in time for the next 
deliverables. 

 


