

E-Infrastructures

H2020- INFRAEDI-2018-2020

INFRAEDI-01-2018: Pan-European High Performance Computing

infrastructure and services (PRACE)

PRACE-6IP

PRACE Sixth Implementation Phase Project

Grant Agreement Number: INFRAEDI-823767

D8.2

Interim Progress Report - Staff and Established Project Structure

Final

Version: 1.2

Author(s): Fabio Affinito, Joost VandeVondele

Date: 18.10.2019

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 iii 18.10.2019

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: INFRAEDI-823767

Project Title: PRACE Sixth Implementation Phase Project

Project Web Site: http://www.prace-project.eu

Deliverable ID: < D8.2>

Deliverable Nature: <Report>

Dissemination Level:

PU

Contractual Date of Delivery:

31/10/2019

Actual Date of Delivery:

31/10/2019

EC Project Officer: Leonardo Flores Añover

Document Control Sheet

Document

Title: Interim Progress Report - Staff and Established Project

Structure

ID: D8.2

Version: 1.2 Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2016

File(s): D8.2

Authorship

Written by: Fabio Affinito, JoostVandeVondele

Contributors: Martti Louhivuori, Mark Bull, Paul Gibbon,
Berk Hess, Mark Abraham, Costantia
Alexandrou, Mauro Bianco, Raffaele Solcà,
Michal Merta, Alex Upton, Fabio Affinito,
Joost VandeVondele

Reviewed by: Florian Berberich, JUELICH
Aris Sotiropoulos, GRNET

Approved by: MB/TB

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 iv 18.10.2019

Document Status Sheet

Version Date Status Comments

0.1 24/09/2019 1st Draft Missing conclusions

0.2 30/09/2019 2nd Draft Introduction and
conclusions reviewed
and revised by JVV and
FA, updated and added
references

1.0 01/10/2019 Final version Final version also
reviewed by software
project PIs

1.1 17/10/19 Revised version Version revised after first
internal review and
comments from Mauro
Bianco and Jakob
Finkelrath

1.2 18/10/19 Final version Added items to the
abbreviations list

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 v 18.10.2019

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Exascale, Forward-looking
software solutions

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in accordance
with the Consortium Agreement and the Grant Agreement n° INFRAEDI-823767. It solely reflects
the opinion of the parties to such agreements on a collective basis in the context of the Project and
to the extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of PRACE
AISBL and therefore does not emanate from it nor should it be considered to reflect PRACE
AISBL’s individual opinion.

Copyright notices

 2019 PRACE Consortium Partners. All rights reserved. This document is a project document of
the PRACE project. All contents are reserved by default and may not be disclosed to third parties
without the written consent of the PRACE partners, except as mandated by the European
Commission contract INFRAEDI-823767 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 vi 18.10.2019

Table of Contents

Document Control Sheet .. iii

Document Status Sheet ... iv

Document Keywords .. v

List of Figures .. vii

List of Tables .. vii

References and Applicable Documents .. viii

List of Acronyms and Abbreviations ... ix

List of Project Partner Acronyms ... x

Executive Summary ... 1

1 Introduction ... 1

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation 3

2.1 Introduction and objectives of the project .. 3

2.2 Project schedule ... 4

2.3 Team and collaboration .. 5

2.4 Status and outlook ... 6

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for Heterogeneous

Exascale Architectures ... 8

3.1 Introduction and objectives of the project .. 8

3.2 Project schedule ... 10

3.3 Team and collaboration .. 11

3.4 Status and outlook ... 12

4 NB-Lib: Performance portable library for N-body force calculations at the Exascale . 13

4.1 Introduction and objectives of the project .. 13

4.2 Project schedule ... 14

4.3 Team and collaboration .. 14

4.4 Status and outlook ... 15

5 LoSync - Synchronisation reducing programming techniques and runtime support 16

5.1 Introduction and objectives of the project .. 16

5.2 Project schedule ... 18

5.3 Team and collaboration .. 18

5.4 Status and outlook ... 19

6 FEM/BEM based domain decomposition solvers .. 20

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 vii 18.10.2019

6.1 Introduction and objectives of the project .. 20

6.2 Project schedule ... 21

6.3 Team and collaboration .. 23

6.4 Status and outlook ... 23

7 Performance portable linear algebra .. 25

7.1 Introduction and objectives of the project .. 25

7.2 Project schedule ... 27

7.3 Team and collaboration .. 28

7.4 Status and outlook ... 28

8 GHEX: Generic Halo-Exchange for Exascale .. 30

8.1 Introduction and objectives of the project .. 30

8.2 Project schedule ... 32

8.3 Team and collaboration .. 33

8.4 Status and outlook ... 34

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support for

the discovery of new physics .. 36

9.1 Introduction and objectives of the project .. 36

9.2 Project schedule ... 38

9.3 Team and collaboration .. 41

9.4 Status and outlook ... 41

10 Conclusions .. 43

List of Figures

Figure 1: PiCKeX timeline (months) showing estimated start and end of tasks and sub-tasks 4

Figure 2: Evolution of time spent in particle pusher per iteration across MPI ranks, showing the
emergence of load imbalance as the plasma system is disturbed by a powerful laser pulse............ 6

Figure 3: MoPHA timeline (months) showing estimated start and end of each sub-task 10

Figure 4: Smooth migration from ScaLAPACK to modern libraries .. 26

Figure 5: Overview of GHEX .. 31

Figure 6: GHEX performance with Atlas library ... 35

Figure 7: GHEX performance on standalone benchmarks for structured grids 35

List of Tables

Table 1: Overview of WP8 funded projects ... 2

Table 2: PiCKeX Staff members and roles .. 5

Table 3: MoPHA milestones and deliverables ... 11

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 viii 18.10.2019

Table 4: Timeline of FEM/BEM milestones and deliverables ... 22

Table 5: Performance portable linear algebra timeline of subtasks and deliverables 27

Table 6: Timeline of GHEX tasks .. 33

Table 7: LyNcs Timeline. Left: scheduling of tasks, subtasks, in units of three-month quarters
(Q). Milestones and meetings are also shown, namely the Kick-Off meeting (KO) and face-to-
face meetings (F2F). Right: PM distribution of partner effort to each task. 39

Table 8: LyNcs Milestones (MS) ... 40

Table 9: LyNcs contributions to WP8 deliverables ... 40

References and Applicable Documents

[1] Augonnet, C., Thibault, S., Namyst, R. & Wacrenier, P.-A. StarPU: a unified platform for
task scheduling on heterogeneous multicore architectures. Concurr. Comput. Pract. Exp. 23,
187–198 (2011).

[2] http://www.icl.utk.edu/files/publications/2017/icl-utk-1037-2017.pdf

[3] C. Alexandrou, S. Bacchio, J. Finkenrath, arXiv:1805.09584 [hep-lat]

[4] C. Alexandrou et al., arXiv:1807.00495 [hep-lat]

[5] O. Coulaud, L. Giraud, P. Ramet, X. Vasseur, Developments in Parallel – Distributed – Grid
and Cloud Computing for Engineering, Saxe-Coburg Publications, pp.249–275, 2013, 978-
1-874672-62-3

[6] V. Fraysse, L. Giraud, S. Gratton, ACM Trans. Math. Softw. pp. 1-12, 35 (2), 2008

[7] L. Giraud, S. Gratton, X. Pinel, X. Vasseur, SIAM Journal on Scientific Computing, Society
for Industrial and Applied Mathematics, 2010, 32 (4), pp.1858–1878

[8] http://www.netlib.org/blas/blast-forum/chapter3.pdf

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 ix 18.10.2019

List of Acronyms and Abbreviations

aisbl Association International Sans But Lucratif (legal form of the PRACE-RI)

AMR Adaptive-mesh refinement

BETI Boundary element tearing and interconnecting

CoE Center of Excellence

CPU Central Processing Unit

CHASE Chebyshev Accelerated Subspace iteration eigensolver

CUDA Compute Unified Device Architecture (NVIDIA)

DCCRG Distributed Cartesian cell refinable grid

DoA Description of Action (formerly known as DoW)

EC European Commission

EuroHPC European High-Performance Computing Joint Undertaking

FETI Finite element tearing and interconnecting

FMM Fast-multipole method

GASPI Global Address Space Programming Interface

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/ s Giga (= 109) bits per second, also Gbit/s

GB/ s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second, also
GF/s

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GPU Graphic Processing Unit

HPC High Performance Computing; Computing at a high performance level at any given
time; often used synonym with Supercomputing

HPL High Performance LINPACK

KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte

LINPACK Software library for Linear Algebra

MB Management Board (highest decision making body of the project)

MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte

MB/ s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s

MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per second, also
MF/s

MoU Memorandum of Understanding.

MPI Message Passing Interface

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 x 18.10.2019

NIH US National Institutes of Health

PFC Plasma-facing component

PIC Particle-in-cell

PM Person-month

PRACE Partnership for Advanced Computing in Europe; Project Acronym

QCD Quantum chromodynamics

RI Research Infrastructure

SIMD Single instruction multiple data

SOL Scrape-off layer

SPMD Single program multiple data

SSC Scientific Steering Committee

SVD Singular value deccomposition

TAMPI Task-aware MPI

TAGASPI Task-aware GASPI

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per second, also
TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the
Supercomputing Research Infrastructure would host the Tier-0 systems; national or
topical HPC centres would constitute Tier-1

List of Project Partner Acronyms

BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,
Germany (3rd Party to GCS)

BILKENT Bilkent University, Turkey (3rd Party to UHEM)

BSC Barcelona Supercomputing Center - Centro Nacional de Supercomputacion,
Spain

CaSToRC The Computation-based Science and Technology Research Center
(CaSToRC), The Cyprus Institute, Cyprus

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives, France
(3rd Party to GENCI)

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to
UANTWERPEN)

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación de
Galicia, Spain, (3rd Party to BSC)

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 xi 18.10.2019

CINECA CINECA Consorzio Interuniversitario, Italy

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd
Party to GENCI)

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to GENCI)

CSC CSC Scientific Computing Ltd., Finland

CSIC Spanish Council for Scientific Research (3rd Party to BSC)

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to
PNSC)

DTU Technical University of Denmark (3rd Party of UCPH)

EPCC EPCC at The University of Edinburgh, UK

EUDAT EUDAT OY

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland

GCS Gauss Centre for Supercomputing e.V., Germany

GÉANT GÉANT Vereniging

GENCI Grand Equipement National de Calcul Intensiv, France

GRNET Greek Research and Technology Network S.A., Greece

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to BSC)

INRIA Institut National de Recherche en Informatique et Automatique, France (3rd
Party to GENCI)

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd
Party to UC-LCA)

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic

IUCC Machba - Inter University Computation Centre, Israel

JUELICH Forschungszentrum Juelich GmbH, Germany

KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU)

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to UANTWERPEN)

LiU Linkoping University, Sweden (3rd Party to SNIC-UU)

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., Germany
(3 rd Party to GCS)

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,
Bulgaria

NTNU The Norwegian University of Science and Technology, Norway (3rd Party
to SIGMA2)

NUI-Galway National University of Ireland Galway, Ireland

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 xii 18.10.2019

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium

PSNC Poznan Supercomputing and Networking Center, Poland

SDU University of Southern Denmark (3rd Party to UCPH)

SIGMA2 UNINETT Sigma2 AS, Norway

SNIC-UU Uppsala Universitet, Sweden

STFC Science and Technology Facilities Council, UK (3rd Party to UEDIN)

SURFsara Dutch national high-performance computing and e-Science support
center, part of the SURF cooperative, Netherlands

TASK Politechnika Gdańska (3rd Party to PNSC)

TU Wien Technische Universität Wien, Austria

UANTWERPEN Universiteit Antwerpen, Belgium

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada, Portugal

UCPH Københavns Universitet, Denmark

UEDIN The University of Edinburgh

UHEM Istanbul Technical University, Ayazaga Campus, Turkey

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien)

UiO University of Oslo, Norway (3rd Party to SIGMA2)

UL UNIVERZA V LJUBLJANI, Slovenia

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN)

U Luxembourg University of Luxembourg

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA)

UmU Umea University, Sweden (3rd Party to SNIC-UU)

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA)

UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS)

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC)

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 xiii 18.10.2019

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 1 18.10.2019

Executive Summary

This document gives a brief overview of the eight projects funded in PRACE-6IP Work Package
(WP) 8. The previous deliverable, D8.1, described the selection process. Therefore, in this
deliverable we give an overview of how the project teams are starting their work, with a focus on
their composition, organisation, and planned work. In order to reach the targets of the proposals,
each team has been given freedom with regards to their internal organisation and choice of most
appropriate software development methodology for their project. In this document each team will
describe their chosen approach and the results achieved in the first stage of the project, with an
explicit schedule, or an outlook of the planned work in the next six months.

1 Introduction

The objective of WP8 is to face the challenges of the Exascale transition from the point of view of
the software solutions. This means that the fundamental approach consists in delivering, at the end
of the PRACE 6IP project, “forward-looking” solutions that will deal with two main issues: 1) the
diversity of the incoming new hardware infrastructure and 2) the complexity of the codes in use by
the scientific communities. The high difficulties related to those two aspects does not permit to
face this problem in other ways than with a disruptive approach consisting in the development of
new software (or in some cases of deeply refactored existing software) or in domain-specific
libraries. This activity requires a high investment of resources from PRACE and the involved
partners. However, the approach “high-risk, high-gain” is necessary because the impact required
must be qualitatively high enough to respond to the Exascale challenges. These projects are
furthermore timely as it aligns with the EuroHPC investments in pre-Exascale hardware.

In order to ensure a high qualitative standard for this objective, PRACE decided to go through a
competitive selection, which started earlier than the PRACE-6IP project. The requirement for this
selection was primarily bound to a strong commitment of resources of the partners willing to take
part, in terms of manpower and of expertise.

The competitive process started with 14 Letter of Intents and after a selection which deeply
involved the PRACE SSC was concluded with 8 approved projects. The selection process has been
accurately described in the PRACE Deliverable D8.1. The approved projects (reported in Table 1)
span different scientific and technological areas and involve many different PRACE partners. The
committed manpower effort varies between approximately 60 and 180 person-month.

The PRACE Kick-off meeting, held in Bratislava, Slovakia in April 2019, gave us the first
opportunity to gather and to discuss the organisation of this Work Package once the awarded
projects were approved. During this meeting we discussed about the structure and the
organisational model of the Work Package, concluding for an approach as light as possible, leaving
the possibility to each of the project to decide its internal rules. This includes the communication
channels among the participants to the projects, the choice of repositories and the software
development methodologies to be adopted. An overall synchronisation of all the projects will be
set only on specific cases when this is needed, for example for the submission of deliverables,
organisation of workshop and conferences, etc. In addition to such “on-purpose” virtual meetings,
we are planning face-to-face meetings and/or conferences focused on themes of interest to many
different projects (for example programming models, tasking-based approaches, etc) and also

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 2 18.10.2019

attractive and fostering collaboration with communities external to PRACE. On the other hand, the
kick-off participants highlighted the infrastructural need for computational resources and other
tools that should be provided by PRACE.

Project title Partners Effort (PM)

PiCKeX - Particle kinetic codes for Exascale plasma
simulations

JSC, UL 90

Performance portable linear algebra ETHZ, UL, JSC, CINECA 182

MoPHA - Modernisation of plasma physics simulation
codes for heterogeneous Exascale architectures

CSC, MPCDF, UL 135

LyNcs: Linear algebra, Krylov subspace methods and
multigrid solvers for the discovery of new physics

CASTORC, INRIA, LRZ 120

LoSync - Synchronization reducing programming
techniques and runtime support

EPCC, BSC 90

NB-LIB - Performance portable library for N-body
force calculation at Exascale

KTH, ETHZ 105

GHEX - Performance portable communication layer for
grid application

ETHZ, UiO 111

FEM-BEM based domain decomposition solver IT4I 62

Table 1: Overview of WP8 funded projects

In this document we will go through all the approved projects, analysing their individual objectives
and relative schedule. All the sections will describe the details of the staff taking part to the project
and the role of each partner in the project. Also, each project reports about the choice made about
their internal organisation (i.e. communication tools, etc.) and the adopted software development
methodologies (for example Agile, Scrum, etc.). Finally, each section contains a short report of the
initial results obtained so far and the planned work from the next six months.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 3 18.10.2019

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation

2.1 Introduction and objectives of the project

Numerical modelling of plasmas often demands a kinetic approach to handle extreme
nonlinearities, wave-particle interactions and other non-Maxwellian phenomena. Mathematically
this requires the ab initio solution of the relativistic Vlasov-Boltzmann equation for the plasma
constituents together with the appropriate Maxwell equations for the electromagnetic
fields. Currently the model of choice is the particle-in-cell (PIC) code (or equivalently gyrokinetics
for magnetised plasmas) a highly versatile, robust, finite-difference discretization of the Vlasov
equation for the particle distribution function f(x,p). State of the art three dimensional PIC
simulations involve up to 1012 particles on 106 cores.

Even when performed on modern supercomputers, PIC simulation still has its limitations: apart
from the computational expense of solving the particle and field equations for the full 3D
electromagnetic system, the necessity of transferring information to and from the spatial grid makes
it inherently noisy, collisional regimes are only accessible with the help of ad-hoc extensions, and
some form of adaptive mesh refinement is often required to handle geometrically complex
problems. Various simplifications are possible by exploiting geometrical symmetry, enabling 1D
and 2D codes to be used for preliminary studies or parameter scans. If the phenomena of interest
evolve slowing in time, implicit algorithms can be used to overcome timestep limitations of explicit
codes due to the Courant condition.

While these various classes of kinetic plasma model - from fully electromagnetic to simplified
electrostatic or magnetoinductive - are sufficient for isolated physical contexts, the complexity of
plasma device simulation and laser-plasma applications increasingly demands hybrid or multi-
scale modelling involving two or more separate but closely coupled codes. Here it would clearly
be advantageous to offer generic algorithmic components for kinetic plasma simulation on a single
platform or within an easily portable library which are capable of exploiting modern
supercomputing architectures. Clearly this goal is way beyond the scope of the present call, so to
ensure that results are achieved with some impact, the present project will concentrate on two
important kinetic codes, EPOCH and BIT1, which are heavily used in the laser-plasma and
magnetic fusion (edge physics) communities respectively. The general aim here is to transfer HPC
best practices and software technology known to work well in algorithmically related, but
physically much simpler applications, in order to enable these two codes for Exascale-class
simulations.

Major community codes involved

The EPOCH code already has a large user-base of over 800 registered users and has become
central to many plasma physics research projects worldwide for studies of laser-plasma
interactions, QED-plasmas, tokamak kinetic instabilities, space physics and particle accelerator
design. It solves the full Maxwell equations for the electromagnetic field (offering several different
numerical implementations of the field solver), with fully relativistic charge dynamics (supporting
various integrator schemes). EPOCH utilises computers ranging from workstations in 1D, up to
100,000’s of cores on national Tier-1/Tier-0 supercomputers in 3D, with a clear potential for
performance optimisation to bring it to the Exascale HPC level needed for 3D simulations of
complex plasma processes over disparate length-scales. To achieve this while maintaining the

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 4 18.10.2019

code’s versatility, EPOCH’s core parallelism, vectorization, I/O and other algorithm kernels will
need to be adapted to make best use of contemporary and future Exascale machine architectures.

BIT1: Kinetic effects in the Scrape-off Layer (SOL) play an important role for the future
confinement fusion devices: they affect strongly plasma and power loads to the plasma facing
components (PFC). As a result kinetic effects in the SOL influence on the lifetime of the PFC.
Therefore, kinetic study of the SOL has become one of the most challenging topics in fusion plasma
research. The systematic kinetic study of SOL can be made using the unique PIC/MC code BIT1.
The BIT1 is electrostatic parallel massively PIC code with MC (Monte Carlo) routines. The general
PIC algorithm in BIT1 uses the motion of each plasma particle to calculate all macro-quantities
(like density, current density and so on) from their positions and velocities. The macro-force acting
on the particles is calculated from the field equations i.e. set of Maxwell’s equations. Since BIT1
is electrostatic it solves only the Poisson equation in one spatial dimension, but retains 3 velocity
components (1D3V). Collisions are reintroduced via a Monte-Carlo (MC) based collision operator.
The BIT1 code algorithm includes both the PIC and MC routines, with a workflow comprising an
integrator to solve the equation of motion, a Poisson field-solver including the effects of the vessel
walls, followed by the MC part to account for particle collisions and the characteristics of the
plasma source and boundary effects.

2.2 Project schedule

The following Gantt chart shows the project timeline with the main tasks and subtasks:

Figure 1: PiCKeX timeline (months) showing estimated start and end of tasks and sub-tasks

The project will basically comprise 4 phases with associated checkpoints:

M6: An initial consultation with the associated developer groups in Warwick and Vienna to obtain
up-to-date information on the current and near-term development plans and benchmarking.

M12: Creation of ‘performance’ versions of each code, perhaps with reduced physics/model
complexity, followed by verification and first optimisation actions.

M24: Completion of major refactoring including application of new programming models, with
benchmarking of new kernels and algorithms. Incorporation of the enhanced code versions back
into the production versions.

M30: Final report with performance enhancement results.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 5 18.10.2019

2.3 Team and collaboration

The team consists of two sites at the Juelich Supercomputing Centre (Juelich, Lead) and the
University of Ljubljana (UL, Contributor). The staff members and their roles, together with the
original code developers, are described below.

Team member Position Project role Funding type

Paul Gibbon Division head, JSC PI matching

Dirk Broemmel Staff member, JSC EPOCH analysis & redesign matching

Philipp Otte PRACE HLST, JSC Performance analysis matching

Ujjwal Sinha Postdoc, JSC EPOCH refactoring PRACE-6IP
(100%)

Zahra Chitgar PhD student, JSC EPOCH physics use cases matching

Junxian Chew PhD student, JSC PEPC electrostatic solver matching

Leon Kos Head, LECAD, UL co-PI matching

Ivona Vasileska PhD student, LECAD BIT1 user and test case matching

Gregor Simic Technical colleague,
LECAD

testing and deploying the
software

matching

Matic Brank PhD student, LECAD BIT1 code refactoring schemes matching

Tony Arber,

Keith Bennett

University of Warwick Developer team, EPOCH code External in-kind

David Tskhakaya Prague University Lead developer, BIT1 code External in-kind

Table 2: PiCKeX Staff members and roles

For collaboration the team uses, skype and video conference room for regular and ad-hoc meetings.
The project has also a Bitbucket organisation that will be used to realise the test codes and their
prototypes developed in the projects. Each of the codes have also their own code development
repositories:

 EPOCH https://gitlab.version.fz-juelich.de/SLPP/epoch/epoch

 BIT1 https://bitbucket.org/lecadpeg/simpic/

For the EPOCH code, the gitlab repository at JSC is effectively a clone of the main developer hub
hosted at the University of Warwick, and will be synchronised such that both sides have access to
the new performance version.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 6 18.10.2019

Meetings

 28/29 May 2019: general discussions at PRACE-6IP F2F meeting, Bratislava

 19 June 2019: project team VC between JSC and U Ljubljana to discuss platform sharing
and initial code activities

 4 September 2019: VC between JSC and EPOCH developer team at University of Warwick

 October/November 2019: F2F in Juelich

2.4 Status and outlook

The project has had a successful start, with a first performance assessment of the 2D version of
EPOCH and preliminary refactoring work on BIT1. For the latter code, the team from the
University of Ljubljana already start to work on the prototype code SIMPIC, and successfully got
the compute time on EUROfusion A4 partition (D.A.V.I.D.E cluster at CINECA). The team now
can work truly heterogeneous GPU/OpenMP/MPI machine (4 NVIDIA GPUs per node with Power
8 processors that have 16 cores with 8 threads per core totalling to 128 threaded cores per node),
they can submit up to 32 nodes in one job (128 GPUs+4096 CPU threads).

The EPOCH code has been instrumented using Score-P for proper profiling and tracing. Three
representative test cases were chosen: i) a Weibel instability as an example of an ideally balanced
configuration; ii) laser-particle acceleration utilizing the moving window feature where only the
last 50 iterations are measured and iii) an interaction of a laser striking a solid foil target where
load balancing is difficult to maintain over long run-times. Results shown below consider the time
marching loop only with I/O disabled. The main problems of EPOCH identified in the initial tests
are: lack of adaptive load balancing (c.f. Figure 1), a naive and costly implementation of the moving
window (approx. 30% of the runtime is spent on this feature) and a high ratio of CPU cycles stalled
on resources.

Figure 2: Evolution of time spent in particle pusher per iteration across MPI ranks, showing the emergence of

load imbalance as the plasma system is disturbed by a powerful laser pulse

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 7 18.10.2019

Based on this preliminary analysis, the following modification are considered: 1) improving load
balancing by hybridization using OpenMP and implementation of an improved dynamic load
balancer; 2) reimplementation of the moving window feature in order to remove the high cost of
transporting data; 3) improvement of data reuse in order to drive down the ratio of stalled CPU
cycles; 4) hybridization using MPI and OpenMP to further mitigate load imbalance.

Over the next 6 months first experimental versions of both codes will be established: BIT1-
>SIMPIC; EPOCH -> EPOCH-X along the lines indicated above.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 8 18.10.2019

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for
Heterogeneous Exascale Architectures

3.1 Introduction and objectives of the project

Numerical simulations are absolutely essential to address central open questions in plasma physics,
from fusion energy to space weather. Of key importance is the understanding of the fundamental
physical processes involved in plasma turbulence. Insight-providing simulations require enormous
computational efforts. Prerequisite for adequate and efficient usability of next generation
supercomputers in the pre-Exascale and Exascale era is to push respective codes in this field to the
next structural level with respect to scalability and portability to heterogeneous HPC architectures.

In order to prepare for the technical and scientific challenges in Exascale computing, the project
aims to improve the scalability and adaptability of three widely used plasma physics codes -
ELMFIRE, GENE, and Vlasiator - which share the feature that they use higher-dimensional (3D
to 6D) grids. The project consists of three main tasks: 1) refactoring of the codes to make them
more accessible and adaptable, 2) implementing task-based parallelisation to achieve performance
portability and scalability, and 3) knowledge transfer to encourage code reuse in the plasma physics
community (as well as beyond) and to share lessons learned in the project.

Task A: Refactoring of the existing codes to have a clearer separation of concern is the key to
achieving the adaptability and portability needed to fully utilise extreme-scale HPC systems. Code
modernisation and modularisation will allow for more accessible and adaptable codes with a clear
separation between different levels of the code. This separation of concern will make it easier to
use external libraries and to fine-tune computational kernels to different architectures in order to
achieve maximal performance. In light of the current trend of increasing diversity of architectures
within a single high-end HPC system (CPUs with large vector registers, GPUs connected via PCIe
or NVLINK, FPGAs, vector processors as accelerators etc.), it is clear that a modular design with
clear separations is needed more than ever. In order to cater for specific programming models,
special treatment of data or other architecture-dependent tweaks that are required to fully utilise
the hardware, it is crucial to either limit the code changes needed to a small part of the code or to
offload the burden to an external library.

One of the aims of this project is to modernise, refactor, and modularise three representative plasma
physics codes to achieve a high level of separation between different levels of code. In addition,
using an external library (MFEM, https://mfem.org/) for finite element discretisation will be
investigated and new mesh implementations will be explored to address scalability issues due to
the increased complexity of mesh metadata in the adaptive mesh refinement (AMR).

ELMFIRE

Full-torus simulations of electrostatic turbulence in tokamaks are extremely computationally
intensive, and to take full advantage of the increasing computing resources available, the
ELMFIRE code needs to be modernised and modularised. A more versatile version of ELMFIRE
can be achieved by in-depth refactoring of the code, using modern programming models and
modular writing with consistent conventions, testing and documentation.

The development of the refactored ELMFIRE will be tiered in order to deliver usable successively
less-reduced versions of the final code during the course of the project. Using an external library
(MFEM) for scalable and portable finite element discretisation will also be investigated.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 9 18.10.2019

GENE

The diversity of architectures in the HPC world, especially in the top-end systems, has made it
increasingly difficult to run and maintain a single code base and still reach maximal performance
with GENE on nearly all major HPC systems around the world. To address this, a refactoring of
the GENE code is necessary to achieve a clear separation between different levels in the code.

On the highest level, an abstraction layer that describes the physical problem and differential
equations, in the middle level a numerical representation of the equations and algorithms to solve
them, and on the lowest level a number of computationally intensive kernels. The computationally
intensive kernels, such as the right-hand terms in the Vlasov equations, can then be ported with the
best possible approach to different architectures.

Vlasiator

The current implementation is based on the DCCRG (Distributed Cartesian Cell-Refinable Grid)
library, which suffers from a rather centralised mesh metadata handling and related memory
overheads. With the introduction of adaptive mesh refinement (AMR), the complexity of mesh
metadata has grown considerably, and mesh implementations with less global communication and
shared state will be essential. The aim is to refactor Vlasiator to become independent from its
underlying grid framework, and portable to be based on existing state-of-the art mesh
implementations such as AMReX.

In the process, the actual solver implementation and mesh structure will be logically separated, to
allow for easier switching of the mesh back-end. This will enable and improve code reuse,
portability and aid Vlasiator in utilizing the latest developments in this area.

Task B: Task-based parallelisation offers a natural approach for heterogeneous parallel
computing, both in terms of algorithms and computing tasks but also in terms of diverse hardware
environments. By splitting the computation into reasonably small tasks and by defining the
dependency graph among the tasks, it is possible to utilise efficiently the full width of a single
computational node, even in a heterogeneous architecture that may contain e.g. GPUs or other
accelerators. Task-based parallelisation in combination with message-passing communication
(MPI) for multi-node parallelisation is well suited to achieve good performance and scalability on
extreme-scale computing resources containing a diversity of architectures.

One of the aims of this project is to explore and implement task-based parallelisation in the context
of plasma physics codes. To this aim, task graphs will be designed for the computationally intensive
solvers (e.g. for Vlasov and field equations). In addition to task-based parallelisation schemes, the
runtime task scheduler StarPU [1] will be investigated. Using an external runtime task scheduler
may make it easier to port functionality and performance between architectures without a need to
have in-built support for new architectures in the plasma simulation codes.

In order to facilitate the exploration of different approaches to task-based parallelism and/or
utilisation of GPUs, the project will implement simplified prototype codes (miniapps) that address
a particular aspect of plasma simulations. These miniapps will then be used to test different
approaches allowing for a more rapid exploration for potentially effective strategies. All insights
gained with these tests will be valuable for finally introducing those approaches with the most
potential into the target codes.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 10 18.10.2019

Task C: Knowledge transfer is an integral part of fostering good development practices, including
code reuse and sharing of experience, in the plasma physics community. In general, the pooling of
effort to develop external libraries dedicated to providing good solutions to common problems that
are then used in multiple scientific codes is by far the best trend in recent years.

Any lessons learned in the project will be shared with the community with the aim that by
encouraging the use of external libraries and code reuse, the overall standard of plasma physics
codes will be improved. All miniapps developed in the project will also be made freely available
in a common git repository.

3.2 Project schedule

The Gantt chart in Figures shows the project timeline with the main tasks and subtasks:

Figure 3: MoPHA timeline (months) showing estimated start and end of each sub-task

Milestone /
Deliverable

Month Description

D1 6 Contribution to WP8 1st interim progress report (staffing, project structure
and initiation)

D2 12 Contribution to WP8 2nd interim progress report (pre-release of software)

D3 24 Contribution to WP8 3rd interim progress report (public release of
software)

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 11 18.10.2019

Milestone /
Deliverable

Month Description

D4 30 Contribution to WP8 final report

MS1 3 Kick-off meeting held and recruitment finished

MS2 6 Cross-review of the codes (ELMFIRE, GENE, Vlasiator) discussed

MS3 10 Task-based work-sharing and task graphs designed for the evaluation test
code

MS4 12 Release of evaluation test codes and refactoring code designs

MS5 22 Separation of concern realised through refactoring of the codes

MS6 24 Public release of software

MS7 28 Task-based parallelisation implemented in a plasma physics code

MS8 30 Presentation of results in a suitable event (ISC, plasma physics conference
etc.) including performance assessment

Table 3: MoPHA milestones and deliverables

3.3 Team and collaboration

The project has three main contributors: CSC, MPCDF, and University of Ljubljana, with
additional in-kind contributions from the code development teams of ELMFIRE, GENE, and
Vlasiator. The team consists of HPC experts and scientific code developers familiar with state-of-
the-art HPC programming techniques and the codes targeted in the project.

CSC

Martti Louhivuori (PI), Sebastian von Alfthan (co-PI), Laurent Chôné (lead contributor for

ELMFIRE work), Henrik Nortamo, Fredrik Robertsén

MPCDF

Tilman Dannert (lead contributor for GENE work), Carlos Lopez Cruz

University of Ljubljana

Leon Kos, Matic Brank, Dejan Penko, Gregor Simič, Ivona Vasileska

University of Helsinki

Urs Ganse (lead contributor for Vlasiator work)

The project is also supported by scientific advisors for each of the codes: Frank Jenko (Max Planck
Institute of Plasma Physics, GENE), Timo Kiviniemi (Aalto University, ELMFIRE), and Minna
Palmroth (University of Helsinki, Vlasiator).

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 12 18.10.2019

For collaboration the team uses a Slack workspace, an always open Zoom video conference room
(for regular and ad-hoc meetings), and a mailing list. The project has also a Github organisation
that will be used to release the test codes and miniapp prototypes developed in the project. Each of
the codes have also their own code repositories.

 MoPHA on Github: github.com/MoPHA

 ELMFIRE: elmfire.eu

 GENE: genecode.org

 Vlasiator: helsinki.fi/vlasiator
 github.com/fmihpc/vlasiator

Meetings

 May 27-28, Kick-off meeting, in Bratislava prior to the PRACE-6IP all-hands meeting

 Sep 9, 1st Video conference

 Oct 1, 2nd Video conference

3.4 Status and outlook

The project has had a successful start and the work is progressing as planned. A one-and-half day
kick-off meeting was organised in conjunction with the PRACE-6IP all-hands meetings to discuss
the technical details of the project and to make concrete plans for the work. In addition, the
recruitment of project personnel has also been finished.

Started at the kick-off meeting and continued over the summer period, a cross review of the three
codes was done to identify similarities and common structures in the codes. Based on some of the
similarities identified, an initial set of prototype miniapps has been planned and work on
implementing them has started.

Refactoring work on all three codes has also started. Additionally, a continuous integration (CI)
workflow has been implemented for Vlasiator that will greatly improve productivity for the
refactoring work. Work on designing the task graphs has also started with initial ideas on how to
organise the code into tasks.

In the next six months, the project aims to continue the refactoring work by improving the
modularisation of GENE and Vlasiator and by integrating the MFEM library with ELMFIRE. The
planned prototype miniapps will also be implemented and task graphs will be designed for the
evaluation test code. Preparations for the pre-release of the miniapps and refactoring code designs
will be done as well.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 13 18.10.2019

4 NB-Lib: Performance portable library for N-body force calculations
at the Exascale

4.1 Introduction and objectives of the project

A large number of scientific applications use particle interactions (e.g. Molecular Dynamics, Monte
Carlo or multiscale simulations in life sciences or materials), and several smaller codes or
combinations of codes have unique features. However, as computers have become more
specialised, many codes have not been accelerated e.g. for GPUs and it is increasingly hard to
maintain parallelisation – which will make them increasingly difficult to use on next-generation
PRACE systems.

The goal of the NB-LIB project is to address this with a library of cutting-edge-performance
nonbonded interactions as well as a parallelization framework that can be used by all these
applications. This way, future acceleration, porting or library features will benefit all applications
making it easier to convince vendors to contribute such efforts. We will achieve this by separating
the lower-level parts of the GROMACS code into an API of non-bonded force routines to enable
re-use of widely used, highly portable, and performant HPC code. This will benefit applications in
multiple domains and leverage Exascale optimization underway in co-funded and collaborative
projects. The library will be available via APIs in industry standard languages, including both
python3 and C++14. This will permit domain scientists to use the API to prototype and deploy
solutions for new N-body simulations rapidly, leveraging existing knowledge and best practices,
rather than learning how to modify existing code. This will enable innovation across disciplines as
we approach the Exascale era, while still providing familiar tools to HPC developers, rather than
require knowledge of niche runtimes or languages. The project will work alongside co-funded
PRACE-6IP and Swedish HPC projects, as well as distinct API efforts funded in the USA. It will
provide efforts that will advantage both users of the NB-LIB library and API, and the underlying
GROMACS simulation back end.

The disruptive innovation within GROMACS will stimulate existing modernization and
optimization efforts. It will evolve testable software seams to permit non-bonded force-calculation,
which will be tailored by GROMACS for correctness and performance for particular Exascale node
structures and/or user workloads. GROMACS is a widely used and highly targeted code, within
PRACE and around the world, which will ensure sustainability of the library and its API. Once
deployed, the API will provide the leverage for future innovation, for example to deploy Exascale-
suitable FMM implementations as drop-in replacements, so that user-level Python workflows will
require no changes.

The resulting library and API will be available under a highly permissive license such as the LGPL
v2 used currently for GROMACS (no restrictions whatsoever on linking to the library).
Sustainability will be assured through integration with existing GROMACS development
workflows and roadmaps, and tests of the API functionality will be developed and deployed the
same way. Core GROMACS developers are closely involved in the project to facilitate this.

Task 1. Refactoring of various aspects of GROMACS simulation setup and execution code to
minimise the need for large amounts of adapter code. Currently simulation setup procedures in
GROMACS are targeted towards biomolecular simulations, which has historically been the
primary usage of GROMACS. These setup procedures are also implemented as a pipeline which
is targeted to biomolecular simulations and the procedures have an implicit assumption that a

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 14 18.10.2019

biomolecular force-field will be used. Further, the actual simulations that GROMACS runs are
currently exposed as command line binaries.

The aim of this task is to focus on refactoring GROMACS data structures so that they can accept
objects built outside of any GROMACS software pipeline, such as will be the case for the NB-Lib
API. This will align nicely with ongoing work in BioExcel to refactor user-facing aspects of the
GROMACS codebase.

In addition to simulation system setup refactoring, some work will be spent on refactoring
GROMACS simulation execution to move towards simulations being built by external callers, such
as would be the case with the NB-Lib API. This will align well with ongoing work by various NIH
(National Institutes of Health) projects to make GROMACS simulation execution more modular.

Task 2. Implementation of API prototype that will be possible to extend to facilitate different
use cases. Initial efforts will focus on the simplest use case that could have scientific value, namely,
a simulation of Lennard-Jones particles in a cubic periodic box on a single node. This use case will
still be able to take advantage of GROMACS excellent parallelism using multiple threads and/or
GPUs on a single node, while leaving aside the question of how to allocate resources in a multiple-
node, MPI context. This focus will mean that emphasis can be placed on user experience and user
interface (UX/UI) in the initial development phase. This early emphasis on UX/UI should help
drive uptake of the API, resulting in early feedback from early adopters that can drive further API
development.

Task 3. Collection of use cases that can guide future development goals. While there are many
possible simulation systems that could be targeted by NB-Lib, in order to focus resources, specific
targets will be chosen based on on-going discussions with potential users. Eventually this may also
expand to include incorporation of feedback from early adopters into development targets.
However, for the coming period, most focus here will be on gathering user stories and use case
scenarios.

4.2 Project schedule

Milestones

 MS1 (M6) Project staffing in place and project successfully initiated.

 MS2 (M12) Release of public API prototype

 MS3 (M24) Release of public API (v1.0)

 MS4 (M30) Performance testing on pre-Exascale systems

Deliverables

The deliverables will be in accordance to those planned in the WP8 schedule:

 D1 (M6) Initial report on project staffing and project initiation

 D2 (M12) Report of public API prototype release

 D3 (M24) Report on public API (v1.0) release

 D4 (M30) Final report including performance testing on pre-Exascale machines

4.3 Team and collaboration

The team consists of two partners, The Royal Institute of Technology (KTH) in Sweden, and The
Swiss National Supercomputing Center (CSCS). KTH is leading GROMACS development and

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 15 18.10.2019

API planning/integration efforts while CSCS is leading API implementation and performance
testing as well as use case collection.

KTH

Berk Hess (PI): Provide guidance on and refactoring of neighbour search code in GROMACS.
Neighbor searching is a key aspect of GROMACS parallelization and will be necessary for a
performant API.

E. Joseph Jordan: Main liaison between GROMACS development team at KTH and CSCS. Plan
API design and refactor GROMACS internal data structures to minimise the need for boilerplate
and adapter code in API.

Paul Bauer (external contributor): GROMACS product manager. Provide guidance on and
refactoring of GROMACS data structures pertaining to atomic coordinates and forces parameters.

CSCS

Victor Holanda Rusu: Main liaison between CSCS and GROMACS development team at KTH.
Provide some benchmarking of GROMACS and API deliverables.

Prashanth Kanduri: Expose GROMACS seams that will allow API calls to non-bonded force
calculation. Write API adapters and user-facing elements.

Sebastian Keller (external contributor): Expose GROMACS seams that will allow API calls to non-
bonded force calculation. Write API adapters and user-facing elements.

Channels

Weekly teleconferences are held between KTH and CSCS participants. In fall or winter, KTH
participants will have an in person planning meeting/hackathon at CSCS. In winter or spring CSCS
participants will attend annual GROMACS developer planning meeting (location TBD) where the
wider GROMACS community comes together to decide on development goals for GROMACS
2021 release. Further in person meetings will be planned as needed. Code is shared and reviewed
in a variety of places, including GROMACS gerrit, gitlab, and redmine.

4.4 Status and outlook

Project staffing has been completed. Refactoring work is underway to expose necessary seams for
NB-Lib API. An in person meeting will be held at CSCS before the end of 2019 and another
meeting will be held next year location TBD. The prospects for having an initial prototype
implementation in line with deliverable D2 is good. Overall, the NB-Lib project is off to a
promising start.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 16 18.10.2019

5 LoSync - Synchronisation reducing programming techniques and
runtime support

5.1 Introduction and objectives of the project

The LoSync project will focus on improving the scalability of applications by removing
unnecessary synchronisation and serialisation, and full realising opportunities to overlap
calculation and communication. To do this, we will make use of modern features of well-
standardised APIs, to ensure portability and relevance. These techniques will include:

 Using OpenMP/OmpSs tasks with data dependency clauses. This will include not only
expressing computation as tasks, but also communication, by wrapping MPI or GASPI
library calls inside tasks. We will utilise the Task-Aware MPI (TAMPI) and Task-Aware
GASPI (TAGASPI) interoperability libraries developed by the INTERTWinE project to
make this as efficient as possible.

 MPI single-sided communication. Recent developments in MPI libraries have significantly
improved the performance of single-sided communication to the point where its benefits
can be realised in real applications.

 GASPI single-sided (put-notify) communication. This is a lightweight alternative to MPI
single-sided communication which interoperates well with MPI, and offers different
synchronisation semantics which can help remove serialisation constraints.

A significant part of the work of this task will consist of implementing these techniques in key
kernels of important applications such as Gysela, Flucs, IFS, Quantum Espresso, CP2K, iPIC3D,
CASTEP, LULESH, NTCHEM, as well as, some of the applications involved in the DEEP-EST
project. The project will also make use of smaller kernels and mini-apps, sourced from the PRACE
CodeVault, the INTERTWinE project resource packs, and elsewhere as appropriate.

In addition, work will be carried out on runtime library implementation to support this work,
building on development in the INTERTWinE FET-HPC and POP CoE projects. This will include:

 Continuing the development of the INTERTWinE TAMPI and TAGASPI interoperability
libraries to support interaction of MPI and GASPI with OpenMP/OmpSs tasks with
dependencies.

 Continuing the development of the INTERTWinE Resource Management interface and its
implementation.

 Exploring extensions to the OpenMP tasking model to support task dependencies on
external events, task-nesting, fine-grained dependencies, weak dependencies and early
release of dependencies, to avoid artificial synchronization and serialization effects.

 Making use of performance analysis tools and techniques developed in POP to identify
optimisation targets in real applications where these techniques can be most beneficially
applied.

The project will engage with the relevant standards bodies for MPI, OpenMP and GASPI, to track
relevant upcoming features, propose new features where necessary, and to produce prototype
implementation to test these features. The project will engage with the application developer

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 17 18.10.2019

community through training courses, hands-on developer workshops, and targeted website
materials.

Task 1: Runtime enhancements

This task will extend the Task-Aware MPI (TAMPI) and the Task-Aware GASPI (TAGASPI)
libraries to further improve the interoperability of tasking systems and message passing APIs. The
TAMPI library currently supports synchronous two-sided MPI primitives inside tasks. In this task
we will extend TAMPI to support both asynchronous and single-sided MPI primitives inside tasks.
These extensions will widen the applicability and performance of the TAMPI library. Moreover,
the TAGASPI library, which is currently under development, will be completed and evaluated on
various systems. The OmpSs-2 runtime system will be extended with the required interfaces to
effectively support both libraries, which rely on the Pause/Resume API, the external Events API
and the polling services offered by the OmpSs-2 runtime. New tasking features such as advanced
task-nesting, fine-grained dependencies, weak dependencies and early release of dependencies,
will be investigated to further improve the integration of tasking systems and message passing APIs
based on the feedback from Task 2.

Task 2: Kernels and Applications

This task will implement synchronisation minimising programming techniques in kernels, proxy
or mini apps and in real application codes. Initially the focus will be on simpler examples, in order
to gain experience, and understand in greater depth the software engineering challenges involved
in converting “conventional”, two-sided MPI (or MPI + OpenMP loops) codes to use dependent
tasks for both computation and communication. The project will analyse a selection of full
application codes for their asynchrony potential (building on techniques developed by the POP
CoE) and identify candidates where there are potential gains to be made and where the software
engineering challenge is tractable. Emphasis will be given to applications where the developers are
willing and able to collaborate on the refactoring work. Careful performance analysis experiments
will be carried out, so that the work in Task 1 can be properly evaluated, and an in-depth
understanding of not just whether, but precisely why, performance can be gained with these
methods. The task will feed back performance data and additional feature requests to Task 1 to
inform the development of the task-aware communication libraries and task-based runtime system.

Task 3: Dissemination and exploitation

This task will ensure the effective dissemination and exploitation of the work in Tasks 1 and 2, via
the following mechanisms:

 Training courses aimed at application developers and delivered via the PTC Training
Programme

 Developer workshops, including hands-on coding sessions

 Online material, including software releases, demo kernels and best practice guides

 Ad-hoc consultancy for interested development teams

 Publications in conference proceedings and journals

 Promotion of the project on social media

Task 4: Management

This task will ensure the effective management and oversight of the project, including:

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 18 18.10.2019

 Organising and chairing meetings (online and face-to-face)

 Monitoring progress against milestones

 Producing timely, high-quality deliverables

 Reporting to PRACE 6IP WP8 management

5.2 Project schedule

Milestones

 MS1 (M6) Project staffing in place, project structure established, and project successfully
initiated.

 MS2 (M12) Prototype releases of TAMPI and TAGASPI libraries, and initial versions of
kernels and mini-apps. Plans for full application development work completed.

 MS3 (M24) Updated releases of TAMPI and TAGASPI libraries, updated versions of
kernels and mini-apps. Use of libraries demonstrated in real application codes.

 MS4 (M30) Performance results of kernels, mini-apps and full applications on large scale
systems.

Deliverables

 The deliverables will be in accordance to those planned in the WP8 schedule: D1 (M6)

Initial progress report on staffing, established project structure and project initiation.

 D2 (M12) First interim progress report, including descriptions of prototype releases of
TAMPI and TAGASPI libraries, initial versions of kernels and mini-apps and plans for full
application development work.

 D3 (M24) Second interim progress report, including descriptions of updated releases of
TAMPI and TAGASPI libraries, updated versions of kernels and mini-apps and results of
full application development work.

 D4 (M30) Final report, including performance results on large scale systems.

5.3 Team and collaboration

The team consists of two partners, UEDIN (represented by EPCC) and BSC. UEDIN leads the
project and is focusing on the implementation of synchronisation reducing techniques in kernels
and applications. BSC is focusing on providing enhanced support for these techniques in the
OmpSs-2 programming model and TAMPI and TAGASPI libraries. UEDIN acts as co-ordinator
and performs project management tasks. The project is fully staffed as follows:

UEDIN

Mark Bull (PI), Caoimhín Laoide-Kemp, Dominic Sloan-Murphy

BSC

Vicenç Beltran Querol (Co-PI), Raúl Peñacoba Veigas, Kevin Sala, Marcos Maroñas

A face-to-face kick-off meeting was held in Edinburgh on 2nd July 2019. This has been followed
by a number of Skype meetings. Marcos Maroñas commenced a 3-month visit to Edinburgh under
the HPC-Europa3 programme on 2 September 2019. The next face-to-face meeting is planned to
be in Barcelona in December.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 19 18.10.2019

 The OmpSs-2 programming model is publicly available at GitHub (https://github.com/bsc-
pm/ompss-2-releases).

 The Task-Aware MPI (TAMPI) prototype library is publicly available at GitHub
(https://github.com/bsc-pm/tampi).

 The Task-Aware GASPI (TAGASPI) library will be publicly available at GitHub.

We will integrate the modifications done to kernels, proxy-apps and applications into their official
distributions when possible. Otherwise, we will include them in some of the software repositories
maintained (https://pm.bsc.es/gitlab/ompss-2/examples) or hosted
(https://pm.bsc.es/gitlab/benchmarks/ompss-2) by BSC.

5.4 Status and outlook

Initial work at UEDIN has focused on analysing the Mantevo mini-apps collection and assessing
their suitability as text cases for the MPI + tasks programming model. Of these, Co-MD and
miniMD have been selected for porting: although they are both molecular dynamics applications,
they uses different algorithms (cell based vs neighbour-list based) which require different tasking
strategies, and will make an interesting comparison. Work will continue on these, and then move
on to other mini-apps in the near future.

At BSC, other kernels and mini-apps have been ported to evaluate the OmpSs/OpenMP tasks +
TAMPI implementation: this evaluation work is ongoing in the project. On the runtime, side, work
will now concentrate on support single-sided message passing inside tasks, both with MPI (in the
TAMPI library) and GASPI (in the TAGASPI) library. The TAGASPI and TAMPI (with single-
sided support) libraries will be published as a pre-release of WP8 software output (Milestone MS2).
Recent work on exploiting loop parallelism within tasks, in order to reduce tasking overheads, will
be evaluated in the context of MPI + tasks, with the intention of helping the user navigate the
complex trade-off space between numbers of MPI processes, number of threads and task
granularity.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 20 18.10.2019

6 FEM/BEM based domain decomposition solvers

6.1 Introduction and objectives of the project

Solution of large scale multiphysics engineering problems requires a significant amount of
computational resources. However, most of the existing commercial or open source solvers are not
capable of utilizing full potential of current or upcoming supercomputers equipped with large
number of heterogeneous nodes, processors with wide SIMD (Single Instruction Multiple Data)
registers, accelerator cards, etc.

The aim of this project is to extend the domain decomposition library ESPRESO to support highly
scalable solution of problems in complex domain using finite/boundary element tearing and
interconnecting (FETI/BETI) non overlapping domain decomposition method, thus enabling
solution of large scale sound scattering and harmonic analysis problems. The current
implementation in ESPRESO (similarly as in most other solvers) focus on the elasticity or the heat
transfer problems for which it features excellent parallel and numerical scalabilities. The
implementation for complex problems (such as solution of the Helmholtz equation) will be based
on the FETI-H/FETI-DPH (FETI-Helmholtz/FETI-Helmholtz dual-primal) approach where the
regularization is done using the complex interface mass matrix and preconditioning is based on the
plane wave deflation.

The goal is to provide a modern, modular and portable code written in C++, parallelised on all
possible levels, and capable of utilizing the most powerful supercomputers. Basic refactoring of
the original ESPRESO code providing wrappers to external libraries such as BLAS or parallel
direct solvers, which should enable faster development, will be part of the project. The
development will take into account the heterogeneous nature of current and future supercomputers.
The code will be parallelised in a hybrid manner in shared and distributed memory and will benefit
from the SIMD vector capabilities of modern CPUs. The parallelization in shared memory and
vectorization will be done using the OpenMP pragmas. The computationally most demanding parts
of the code will be accelerated using state of the art GP-GPUs. MPI will be used for a distributed
memory parallelization. The implementation will be made available to developers of external
libraries using a public API with extensive documentation and, moreover, the solver will be
incorporated into a “Solver as a service” platform at IT4Innovations, thus enabling scientists and
engineers with zero experience in HPC to leverage the power of supercomputers. This effort will
also provide a highly scalable easy-to-use open-source alternative to commercial packages such as
ANSYS or COMSOL.

Work on the project is split into several phases.

Refactoring. The ESPRESO library now provides users with unified interface and input files, it
has an extensive help with examples and a GUI is under development. However, the project will
start with refactoring its internal structure to more reflect the modern object-oriented and modular
design. The main purpose of this refactoring will be to make the internal structure more easily
modifiable and extendable, to provide developers with easy-to-use interface to external libraries
such as BLAS for CPUs or accelerators, and parallel direct solvers. During refactoring the espresso
code, a prototype FETI-H code in Matlab will be developed for testing purposes, fast prototyping,
etc.

Shared memory implementation and optimization. After the refactoring, we will implement the
initial non-accelerated version of the solver for the Helmholtz equation which will feature a hybrid
parallelization by OpenMP in the shared memory. Within the shared memory, a special attention

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 21 18.10.2019

will be paid among other things to the SIMD vectorization of the system matrix assembly. Since
modern CPUs are equipped with the SIMD registers with of up to eight double operands (using
instruction set extensions such as AVX, AVX2, AVX512), neglecting this feature would lead to a
significantly less efficient code. Vectorization and shared memory parallelization will be based
mainly on the OpenMP 4.5 pragmas.

GPU acceleration. Since the architecture of current supercomputers is becoming increasingly
heterogeneous and this trend is expected to continue in the upcoming years, it is necessary to reflect
it when designing a solver capable of fully employing state-of-the-art HPC clusters. We will
leverage our experience with accelerating the FETI method by converting operations with sparse
data structures to operations with dense matrices using the Schur complement method on both Intel
Xeon Phi coprocessors and NVIDIA graphic cards. Dense data structures are more suitable for
accelerators since they allow for coalesced memory access pattern, which leads to a better usage
of accelerator’s high bandwidth memory. However, since the Intel Xeon Phi architecture will no
longer be developed by Intel, we will now mainly focus on the acceleration by GPUs. The most
time-consuming parts of the code will be accelerated using the CUDA platform.

MPI parallelisation. Simultaneously with the intra-node optimization, parallelization, and
acceleration, attention will be paid to the distributed memory parallelization using MPI. We will
leverage our previous experience with parallelization of FETI and its variants Total-FETI (TFETI),
Hybrid FETI (HFETI), and Hybrid Total FETI (HTFETI) for the Laplace and Lamé equations. The
main bottleneck of the FETI method is the solution of the coarse problem; size of this problem
grows proportionally to the number of subdomains. The hybrid variants of FETI (HFETI, HTFETI)
combine FETI and FETI-DP to group subdomains into larger clusters thus reducing the size of the
coarse problem. If needed to ensure scalability of the solution, we will provide hybrid versions of
the FETI for complex problems. Moreover, if it will be necessary to reduce overhead by
communication, communication hiding and avoiding algorithm may be employed.

Other tasks include development of the external API to make the methods easily available for third-
party solvers, continuous testing and development of documentation, establishment of a webpage
for dissemination of the project’s results. When the code development is finished and properly
tested for performance, scalability and correctness of solution, it will be integrated into the “Solver
as a service” online platform simultaneously developed at IT4Innovations. The purpose of this
platform is to make the high-performance computing easily available to scientists and engineers
without proper training in parallel algorithms and parallel programming. In the long run the aim is
to provide a highly scalable platform for engineering computing and alternative to current
commercial engineering software.

6.2 Project schedule

Tasks

 Task 1 Refactoring of the existing code, development of the Matlab prototyping

application. Including object-oriented redesign considering modularity and portability;
implementation of core classes and wrappers to external software; in the final phase
development of external API.

 Task 2 Shared memory implementation, optimization, and parallelization of FETI for

complex problems and simultaneous development of the BEM API. Includes system matrix
assembly vectorised and parallelised in shared memory, implementation of local subdomain
solves.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 22 18.10.2019

 Task 3 Acceleration of the computationally intensive kernels using GPUs. This includes
system matrix assembly acceleration; local subdomain solver acceleration using Schur
complement method.

 Task 4 Distributed parallelization using MPI. Including implementation of FETI for
complex problems and its hybrid total variants.

 Task 5 Testing and documentation. Includes initial creation of testing infrastructure; testing
performance and correctness; creation of documentation and examples; and, in the last
phase, testing of external API.

Deliverables

The deliverables will be in accordance to those planned in the WP8 schedule:

 D1 Project kick-off (M01).

 D2 Interim progress report: staff and established project structure (M06).

 D3 Interim progress report: public prototype software release (M12).

 D4 Interim progress report: Public Software release and integration in external codes

(M24).

 D5 Final report: including performance results on (pre)Exascale system (M30).

Milestones

 MS 1 (M1) Kick-off meeting

 MS 2 (M6) Initial redesign and refactoring of the original code finished.

 MS 3 (M12) Initial shared and distributed memory parallelised version of FETI for

complex problems available.

 MS 4 (M24) Software is publicly released supporting hybrid variant of FETI for complex

problems, GPU acceleration.

 MS 5 (M30) The external API is finished and tested, final report is delivered.

Table 4: Timeline of FEM/BEM milestones and deliverables

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 23 18.10.2019

6.3 Team and collaboration

The project team consists of researchers employed at IT4Innovations National Supercomputing
Center in Ostrava, Czech Republic. The researchers have experience with development of parallel
scientific software, its optimization and testing on state-of-the-art HPC platform. They participated
or participate, e.g., in the H2020 projects (e.g., READEX, EXA2CT, POP2), national grants, or
Intel supported IPCC (Intel Parallel Computing Center) project. The development is supported by
62 person-months split among the team:

 Michal Merta (PI) – involved in Tasks 1, 2, 3, 5.

 Jan Zapletal – involved in Tasks 2, 3, 4, 5.

 Lukáš Malý – involved in Tasks 3, 4, 5.

 Ondřej Meca – involved in Task 1, 4, 5.

The researchers will be supported by the ESPRESO development team, namely by Tomáš
Brzobohatý, one of the founders of the ESPRESO library.

Since the employees come from a single institute, they meet in person at regular basis; regular
meetings have been established. Git-based repositories are used for code development and a
webpage was created to disseminate the project’s results:

 http://numbox.it4i.cz - the main communication channel, which will contain all the
important information and links to external repositories of the project and relevant
resources

 https://github.com/It4innovations/espreso - publicly available repository

 https://code.it4i.cz – developer (protected) repository

 http://espreso.it4i.cz/doc/index.html - documentation.

6.4 Status and outlook

The project was successfully initiated after the PRACE-6IP kick-off meeting in May 2019.
Recruitment of the staff is now completed and tasks are assigned to the involved researchers.
Besides the establishment of the git repositories and webpage, the current work has been split into
two subtasks – refactoring of the ESPRESO code and development of the Matlab code for fast
prototyping.

The code refactoring consisted largely of the development of interfaces to external direct solvers.
Espreso now supports solution of large sparse linear systems by the MPI version of Pardiso
available in the Intel MKL (Math Kernel Library), as well as the original Pardiso 6, SuperLU, and
Watson Sparse Matrix Package (WSMP) developed by IBM. Moreover, domain/graph
decomposition by multiple graph partitioning software (Metis, ParMetis, Scotch, PT-Scotch, or
KaHIP) is now available which enables combination of different partitioners for multilevel domain
decomposition method (ParMetis/PT-Scotch on the MPI level, Metis/Scotch/KaHIP on the node
level). Parallel solution of the harmonic analysis problems now supports automatic decomposition
of the spectrum band across computational resources. However, the code currently only supports
decomposition in the frequency domain. Finally, to improve users’ experience, the structure of the
ESPRESO configuration file which serves to set parameters of the solver, has been redesigned.

Furthermore, a testing FETI-H code within the MatSol library written in Matlab was implemented.
The purpose of the code is to have a tool for fast prototyping of various domain decomposition

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 24 18.10.2019

methods suitable for problems in the complex domain. Regularization of stiffness matrices by
interface mass matrices has been implemented and tested on academic examples (cubical domains
with point acoustic source).

Within the next six months, the Matlab code will be extended to support preconditioning by
projection to an artificial coarse space. After testing the functionality of the prototype code, the
implementation in the ESPRESO C++ library will start. We will start with implementation and
optimization in the shared memory, using OpenMP pragmas. Next, distributed version will be
developed using MPI.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 25 18.10.2019

7 Performance portable linear algebra

7.1 Introduction and objectives of the project

In general, linear algebra algorithms have a central role in scientific applications: (i) In the
particular case of Materials Science many applications rely heavily on linear algebra to solve
complex tasks. A subset of these applications crucially depends (also in terms of performance) on
the solution of distributed dense eigenvalue problems; (ii) in non-linear optimization the interior
point methods must solve in each iteration a system of linear equations involving the so-called
Schur Complement Matrix which is dense, has to be generated in each iteration separately, and is
the standard bottleneck of these methods; (iii) in big data analysis dealing with high dimensional
data several classical methods like discriminant analysis or linear regression amount to computing
inverse or spectral factorization of a large dense matrix. Overall, the diversity of linear algebra
operations together with the large size of the operands motivates the necessity of high-performance
implementations of distributed algorithms.

For example, modern electronic structure methods rely on the Density Functional Theory (DFT)
method, in which the exponential complexity of the many-body Schrödinger equation is reduced
to a computationally tractable problem with polynomial complexity which requires the solution of
the decoupled Kohn-Sham equations. After discretization, such equations translate into either
algebraic eigenvalue problems or linear systems. Depending on the discretization method used, the
eigenvalue problems may be dense or sparse. Dense eigenvalue problems are currently solved
mainly using the ScaLAPACK (http://www.netlib.org/scalapack) or ELPA
(https://elpa.mpcdf.mpg.de/software) libraries.

ScaLAPACK has been developed and is maintained by the Innovative Computing Laboratory
(ICL) at the University of Tennessee. During the process of planning the roadmap to provide a
successor of ScaLAPACK, ICL performed a study [2] to identify the current status of linear algebra
libraries, hardware architectures and the structure and features needed by a modern library.

The study analyses the processing units, memory types, and communication links, programming
models, matrix layout and algorithms and clearly identifies the ScaLAPACK limitations. The study
also identifies a problem for the current approach of offloading high parallel work to the GPU and
execute the rest of the operations on the CPU, since most of the raw performance of the
supercomputers is provided by the GPUs. The study also highlights the improvement trend in the
performance of nodes and bandwidth of the interconnect of the computing systems. Bandwidth is
becoming scarce and therefore techniques of dynamically rebalancing work should not be
considered and statically partitioned matrices have to be considered, leaving dynamic schedule
only at the node level.

An alternative strategy in the development of an eigensolver is to leverage on well-known and
well-established iterative algorithms such as subspace iteration. A modern example of such
algorithm has recently being implemented in the Chebyshev Accelerated Subspace iteration
Eigensolver (ChASE) library. When tackling sequences of Hermitian eigenproblems, as they often
appear in electronics structure codes, ChASE takes advantage of the distinctive features connecting
adjacent problems in a sequence. At the core of the library, the polynomial degree of the Chebyshev
filter is optimised so as to reduce up to 20% the number of FLOPs necessary to declare each of the
eigenpairs converged.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 26 18.10.2019

The goal of this project is to provide a modern and efficient distributed linear algebra package
based on HPX (https://github.com/STEllAR-GROUP/hpx), that can replace ScaLAPACK in
scientific applications, and help the developers of scientific applications in the process of adopting
modern, performance portable, and distributed linear algebra libraries. Since independent tasks can
be executed easily in parallel, libraries built on task-based runtime can improve significantly the
parallel efficiency of single function calls, and solve the fork-join mechanism issue of
ScaLAPACK. In general task-based runtimes simplifies the scheduling of small non-parallelizable
independent tasks on different cores, that in general are executed sequentially.

An API based on HPX future (https://en.cppreference.com/w/cpp/thread/future) will be developed
and will allow tasks of different routines to run concurrently creating a single dependency graph
for the full application. The dependency tracking of the tasks of the full application can have a
large impact on the performances, since the hardware resources can be used more efficiently
reducing the idle time.

Figure 4: Smooth migration from ScaLAPACK to modern libraries

To simplify the adoption of new libraries we will provide different levels of APIs presented in
Figure 1. The first and easiest step is to replace direct ScaLAPACK calls with DLA Interface calls.
This method requires little changes to the application code, but some overhead for the matrix layout
conversions has to be taken into account. To fully exploit the benefits of the new libraries the native
interfaces has to be used but it requires more changes of the source code.

To address the different project goals, we define 4 tasks:

 Task 1 (T1): Preparation of a migration guide,

 Task 2 (T2): Improvement of the DLA interface library supporting new libraries and
routines,

 Task 3 (T3): Collaboration for the development of eigensolvers in SLATE, and
implementation of a HPX based version of SLATE,

 Task 4 (T4): Integration in applications.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 27 18.10.2019

The first two tasks prepare the tools needed for the smooth migration to modern linear algebra
routines. The first task (T1) will focus on the development of the migration guide for the DLA
interface library which will facilitate the migration of current scientific application.

7.2 Project schedule

Table 5: Performance portable linear algebra timeline of subtasks and deliverables

T1 is divided in four subtasks (ST). The description of the different libraries included in DLA
interface will be added to the guide by ST1.1. The content of the guide regarding the different
matrix layouts, the matrix interface and the conversion methods will be created in ST1.2. ST1.3
will document the routines available in the DLA interface library and their usage. It will also
document the limitations of the routines of the different libraries compared to ScaLAPACK (e.g.
constraints on the choice of the block sizes for the 2D block cyclic distribution). ST1.4 will
contribute to the description of the performance of the different libraries and of the selection
procedure of the different parameters to achieve the best performance.

T2 will contribute to the improvement of the DLA interface routines which compute the eigenvalue
and eigenvectors. ST2.1 will contribute adding the ChASE eigenvalue solver to the library to give
access to eigenvalue solvers optimised for distributed multi-GPUs clusters. In addition, ST2.2 and
ST2.3 will improve some of the key kernels of the ChASE library (e.g. skinny QR decomposition),
and extend its support to generalised Hermitian eigenproblems without the necessity of Cholesky
factorizations, and include partial SVD computations.

The major contribution of this project is however included in T3 in which we propose to provide
an HPX based distributed linear algebra library (called DLA-Future). The library will provide the
standard SLATE API and an API based on C++ std::future.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 28 18.10.2019

The fourth task of the project (T4) will contribute with the integration of the libraries developed in
the previous tasks in the scientific applications, such that they can benefit of the better efficiency
and performance portability of the new implementations. The focus will be on Quantum
ESPRESSO, SIRIUS and CP2K, applications used by the material science community in scientific
publications. Additionally, we will assist the optimization community to improve the solvers for
linear conic programming by integrating the new libraries.

7.3 Team and collaboration

The project has four contributors: ETH Zurich, CINECA, University of Ljubljana and Jülich
Supercomputing Centre.

ETHZ:
Raffaele Solcà (PI), Alberto Invernizzi, Alo Roosing

CINECA:
Fabio Affinito (coPI), Alessandro Colombo (until September 30), Lara Querciagrossa

University of Ljubljana:
Janez Povh (coPI), Aleksander Grm, Gregor Simič, Timotej Hrga

JSC:
Edoardo Di Napoli (coPI), Xinzhe Wu

ETHZ and CINECA will contribute to the development of the Eigensolver based on HPX,
University of Ljubljana will contribute to the improvement of the documentation and to the
migration guide. JSC will contribute to the further development of the ChASE library and its
documentation.

For collaboration the team set up a Slack channel (linalg6ip.slack.com) and two mailing lists (one
for PI and coPIs, the second one for the full team).

Each of the libraries is hosted on his own git repository:

 DLA-Interface https://github.com/eth-cscs/DLA-interface

 DLA-Future https://github.com/eth-cscs/DLA-Future

 ChASE https://github.com/SimLabQuantumMaterials/ChASE

Meetings:

On 11 June 2019 the kick-off video conference with all members of the project took place.

7.4 Status and outlook

The project started successfully and the work proceed. A kick-off videoconference has been
organised with all the project collaborators to discuss about the project details. The work on the
Cholesky prototype continued with two experiments. We performed a comparison between
column-major and tile layout which showed no performance difference. On the other hand we
performed some experiments on communication which showed an overall improvementof the
performance of the prototype.

Based on the results of the experiments we started the design of the API based on HPX future and
the refactoring of the Cholesky prototype. An open repository has been set up for the distributed
linear algebra library based on HPX futures (DLA-Future) and a continuous integration service has
been setup to run tests for each Pull Request made on the GitHub repository.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 29 18.10.2019

The work on the ChASE library started as well. The user documentation has been improved and it
can be found online at https://simlabquantummaterials.github.io/ChASE/index.html. In addition
the parallel I/O of the library has been modernised and a HPX based Tiled QR decomposition has
been developed and the work to integrate it inside ChASE to replace the LAPACK QR has started.

In the next six months we aim to complete the design of the HPX based linear algebra API, finish
the refactoring of the Cholesky decomposition and develop the conversion from generalised to
standard eigenvalue problem. Moreover we plan to improve the documentation of DLA-Interface
and start writing the migration guide. For the ChASE library we plan to continue the benchmark
and implement a partial SVD. In addition we aim to improve the developer documentation and to
simplify validation and further development of the ChASE eigensolver we plan to implement and
test a Julia-based prototype.

Scotch, PT-Scotch, or KaHIP is now available which enables combination of different partitioners
for multilevel domain decomposition method (ParMetis/PT-Scotch on the MPI level,
Metis/Scotch/KaHIP on the node level). Parallel solution of the harmonic analysis problems now
supports automatic decomposition of the spectrum band across computational resources. However,
the code currently only supports decomposition in the frequency domain. Finally, to improve users’
experience, the structure of the ESPRESO configuration file which serves to set parameters of the
solver, has been redesigned.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 30 18.10.2019

8 GHEX: Generic Halo-Exchange for Exascale

8.1 Introduction and objectives of the project

Applications in different scientific domains use various types of computational grids. Cartesian
topologies with and without regular spacing or curvilinear, they can represent true 2D and 3D
geometries; block-structured grids in which each block exhibits regularities but their connection
are general; Fully unstructured meshes in which the topology of the connections arbitrary.

Because of the topological differences between the individual grids, and in how the grid data
structures are organised in individual applications, the halo zones are defined and stored in memory
differently for each of them. GHEX will strive to provide a clean and performance-portable
implementation of halo exchange for the most important grid types independently of the particular
applications characteristics. Priority will be given to grids used by the strategic scientific
collaborators, among which MeteoSwiss and the COSMO weather and climate model, and the
Rosseland Centre for Solar Physics (RoCS) and the DISPATCH modelling framework.

GHEX will be used as a communication layer in GridTools - a set of open-source libraries to
develop next generation weather and climate simulation applications in a common infrastructure.
One ambitious objective is to run high-resolution whole-globe simulation on a grid with less than
1 km spatial resolution. Several other ongoing collaborations are also employing GridTools at
different stages, e.g., NICAM model developed at Riken Center for Computational Science, ICON
at the Max Planck Institute, the Atlas library at the European Centre for Medium-Range Weather
Forecasts (ECMWF), and in the context of the European project ESCAPE-2.

GHEX is developed in a collaboration between the Swiss National Supercomputing Centre (CSCS),
and the University Center for Information Technology (USIT, University of Oslo, Norway). At
USIT the aim is to integrate the communication primitives library into DISPATCH - a task-based
numerical framework for the solution of partial differential equations on Exascale systems, and
BIFROST stellar atmospheric model. DISPATCH currently supports Cartesian and orthogonal
curvilinear meshes and implements its own MPI-based halo exchange collective, which is not
designed to work on accelerators. With GHEX integration our goal is to make DISPATCH more
portable, and provide it with a larger choice of communication backends optimised for present day
and future HPC architectures. Since DISPATCH is a modern task-based framework that has a
demonstrated scalability on tens of thousands of CPU cores, including on PRACE Tier-0 systems,
it is a perfect target to integrate GHEX, but also to provide invaluable feedback during the design
and the development of the library. BIFROST is a more traditional application that will benefit
from GHEX for portability to other platforms.

To target this wide range of applications GHEX will support the following grid types

 Regional regular latitude-longitude topologies with Cartesian topology

 Block-structured grids on the sphere, such as inflated cubes, global latitude-longitude,
icosahedral

 Fully general, unstructured meshes

Traditionally, scientific applications are designed to work on one grid type. The communication
primitives are implemented directly by the developers using low-level interfaces (usually MPI).
This approach has two drawbacks: first each group ends up developing similar software for the
halo-exchange; second, the performance portability is often limited since the different computing
platforms require distinct strategies for optimising performance. Understandably, scientists and

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 31 18.10.2019

modellers specialise within their field and need not be experts in performance optimization at the
same time. Unless they are not explicitly interested in optimizing their software for various types
of HPC hardware, they often implement for only a single machine and don’t update/refactor their
software for new architectures. This often causes the effort to be short lived or become inefficient
over the years.

A solution to these problems is to use high-level interfaces that hides the architectural details and
allow the HPC experts to provide optimised implementations. In this way only one refactor is
needed to modernise the code and then the code can run on multiple platforms. Although the
general approach is not new, a successful implementation is challenging, especially to support
multiple parallel programming models (e.g., MPI, multithreading, or task-based). To become
widely adopted and future-proof, such interface should:

 Define application-level semantics that can be supported efficiently by a wide range of
present and future platforms

 Include hooks and customization points for hardware-specific, or problem-specific,
performance optimizations, without semantic implications

 Support a wide range of grids and meshes, while guaranteeing good performance

The first point allows users to reason about the behaviour of their massively parallel applications,
which is often not intuitive. The second point can help to improve performance by introducing a
few lines of codes, without impacting code correctness when moving to other platforms, or when
changing the grid. The third point essentially means that the software addresses the needs of the
target communities. To achieve those goals, technical expertise is necessary, but not enough. The
developers of GHEX collaborates closely with the scientific partners in an interdisciplinary style
to make sure that what they deliver is useful and usable.

Figure 5: Overview of GHEX

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 32 18.10.2019

The library will be developed in C++ using the technique of generative programming. In a nutshell,
this technique is based on providing high-order functions to which to pass the functions (in jargon
functors) to be executed to perform the actual operations. This technique is a proven technology
for producing high-quality and overhead-free general software abstractions. Our group has a long
standing experience with this technology. On the left side of Figure 5 there is a depiction of the
software architecture that highlights the main library components, in blue, and the concepts from
the applications needed for GHEX to function correctly.

A large part of existing scientific software, including weather, climate and astrophysics codes, are
implemented in FORTRAN. This includes not only old legacy software, but also modern
applications (e.g., DISPATCH). The GridTools project provides general facilities to bind the C++
components to FORTRAN codes, from which GHEX will directly benefit. In addition, Python has
become the language of choice of many scientific communities, and there is a current effort, dubbed
GT4Py, to provide a Python frontend to the GridTools main engine. GHEX will be a fundamental
component to enable GridTools4Py to not just enable python programs to run natively on a node,
but to be also deployed in a big parallel system. This is part of a larger effort in which many
supercomputing centres around the world are currently engaged in to ease access to computing
resources.

The GHEX interfaces will be designed to support the two major parallel programming paradigms:
Single Program Multiple Data (SPMD) (multithreaded) and the Exascale oriented task-based
parallelism. The collective halo exchange communication primitives will be asynchronous, and
will avoid global synchronizations. GHEX functions will return future-like handlers to allow
checking for completion in a later stage. This model follows the direction that the ISO C++
language is taking, and is employed by popular HPC libraries.

8.2 Project schedule

After the initial phase of the project we revised our schedule to reflect on the results of the initial
design phase and the priority shifts in the participating institutions. We organise our project in 6
Tasks:

 T1: Requirements collection from users and designing/prototyping of solutions

 T2: Implementing halo-exchanges for regular grids

 T3: Implementing halo-exchanges for unstructured grids for different applications

 T4: Development of a thin point-to-point exchange layer with different transport layers

 T5: Benchmarking with tests and applications on different architectures

 T6: Integrating into production applications and frameworks and benchmark on early
Exascale systems

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 33 18.10.2019

Table 6: Timeline of GHEX tasks

T1 is spanning the whole duration of the project since our development methodology is based on
continuous integration and delivery, so collecting requirements, prototyping and refactoring is an
integral part of the process. In this work-package the building system and the continuous
integration and testing system will be developed and improved.

T2 will focus on regular grids, for which plenty of optimizations are possible, due to the fact that
the halo regions can be described in very synthetic ways. We assume the work on regular grids will
be completed around mid-project. T3 focuses on unstructured grids. Our first target is to interface
with the Atlas library developed at the European Centre for Medium-Range Weather Forecasts

(ECMWF) with which we are collaborating. Other meshing and libraries will be studied
subsequently.

T4 aims at developing a common transport layer that is used to move data. This layer can be
substituted without impacting the user code, and will be implemented on top of lower level
communication libraries such as MPI, UCX, libfabric, or shared memory abstractions. This work-
package will last until the end of the project to address problems in applications due to performance
issues or correctness problems in the transport layer.

T5 is dedicated to benchmarking our solutions in both the low-level transport layer and the
application layers for halo-exchanges. Keeping the implementation under pressure for performance
is key to ensure a good quality of implementation.

Finally, T6 will focus on integrating GHEX into existing production applications and framework.
The basic candidates are the COSMO model, the DISPATCH task based application, and
GridTools4Py, a Python frontend to develop weather and climate models for the next generation
computers. While prototype integration and benchmarking will be conducted before, in this work-
package we will focus on production quality implementations and benchmark the full applications
in order to guarantee the best performance.

8.3 Team and collaboration

The staff in the project has been hired. Two developers have been hired at the Swiss National
Supercomputing Centre and working 100% on the project. One position is dedicated to this project
at the University of Oslo. The team is now composed of

 Mauro Bianco, PI, CSCS

 Marcin Krotkiewski, proponent and main contributor, USIT

 Fabian Bösch, main contributor, CSCS

 Marco Bettiol, main contributor, CSCS

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 34 18.10.2019

The collaboration uses a Slack channel in the GridTools organization, with access to all other
members of it. The development is organised according to agile methodologies based on SCRUM,
with adaptations for our particular needs. At the moment we organise the development in sprints
of three weeks and have daily stand-up meetings on the slack channel. The work is divided into
tasks, that are maintained in a backlog and scheduled before each sprint starts during a sprint

planning meeting. We use Jira software to maintain and organise the backlog and track the progress
of the tasks.

The code is shared on GitHub. Each member of the team has a fork of the main repository in order
to avoid polluting it with many branches. In this way, individual team members are responsible for
their own working copy and can manage them as they prefer. When updated can be merged into
the main repository a pull request is made and the code is reviewed by another team member. To
facilitate the code review process a document describing the code conventions has been developed
and shared in a repository’s wiki page. GitHub is also used to track issues in order to have a central
place where we collect and control them.

Frequent video calls are needed to discuss requirements and results from benchmarks, and for this
we typically use Skype or Zoom. We had two face-to-face meetings, one before the project started
and one before the kick-off meeting in Bratislava. We organised another face-to-face meeting in
Oslo in October 2019 to discuss the interfaces to the low-level transport layer and the current status
of the design of the other components.

8.4 Status and outlook

The project started by dedicating the first three months to collecting requirements and test designs.
Two main designs were developed and one was selected for the halo update interfaces. A regular
grid implementation based on MPI is working on CPUs and GPUs and is currently being tested in
the COSMO weather prediction model dynamical core, showing benefits in performance (9%
overall gain) with respect to the previous implementation (Figure 6, which refers to a synthetic test
case). This is due to the different scheduling of serializations and exchanges that take advantage of
finer grain synchronizations and reduction in the number of pack/unpack kernels needed. Similarly,
the integration with Atlas, the library for meshing, domain decomposition and halo-updates
developed at ECMWF has started and show better scalability on CPUs for meshes on the sphere
(Figure 7).

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 35 18.10.2019

Figure 6: GHEX performance with Atlas library

Figure 7: GHEX performance on standalone benchmarks for structured grids

Substantial work has been carried out to gather the requirements from DISPATCH and they are
driving the development of the low-level transport layer to make sure it will suit both target
application types: standard SPMD and the more loosely structured task-based codes, where the
communication and computation performed by different tasks can be scheduled independently of
each other. We prototyped an MPI backend, and a version of the transport layer that uses the
Unified Communication X (UCX) communication framework. Initial experiences are encouraging,
and in some cases we observe good improvement over the standard MPI approach. We are also
integrating the low-level transport layer into the existing code that uses MPI directly.

In the next six months we will finalise the regular grids halo updates. We will discuss with our
collaborators the opportunity to integrate GHEX into COSMO regional weather model in their
production systems. We will also finalise the interface of GHEX to Atlas to run also on GPUs. We
will have multiple low-level transport layers with a finalised API, and have a prototype
implementation of DISPATCH to benchmark.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 36 18.10.2019

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and
library support for the discovery of new physics

9.1 Introduction and objectives of the project

The project Linear Algebra, Krylov methods, and multi-grid API and library support for the
discovery of new physics (LyNcs), will pool together software development efforts across Europe
to provide communities with the next generation of parallel libraries for solving sparse linear
systems at the Exascale. LyNcs is led by the Computation-based Science and Technology Research
Centre (CaSToRC) of The Cyprus Institute which will join forces with partners from the French
Institute for Research in Computer Science and Automation (Inria) and the Leibniz
Supercomputing center (LRZ). Within LyNcs, we will implement cutting-edge sparse linear solver
algorithms, develop and prototype new Krylov and block Krylov solvers, and optimise existing
parallel codes that implement a range of preconditioners for these solvers.

The improvements proposed span all levels of the scientific application software stack, from the
basic Sparse BLAS library to fully-fledged simulation codes. In particular, we target the Fast
Accurate Block Linear krylOv Solver (Fabulous) and its dependencies Starpu, Chameleon,
Maphys, and Pastix, which we will enable for lattice Quantum Chromodynamics (QCD), for
Computational Chemistry, and Computational Electromagnetics. Lattice QCD community solver
libraries QUDA and DDalphaAMG will be further developed to implement and optimise Krylov
and block Krylov solvers and new preconditioners. At the lowest level, we will further develop the
efficient sparse matrix support software librsb, its APIs and adapter libraries, pursuing a tighter
integration with the aforementioned packages. This library development and optimization will be
accompanied by a coherent effort in designing, implementing, documenting, and maintaining an
API, enabling various scientific user communities to build full-fledged scientific applications on
top of these libraries.

LyNcs has two overarching objectives. The first is to consolidate and extend low-level advanced
libraries that implement basic kernels and algorithms for the parallel solution of large numerical
linear algebra problems, in particular by employing Krylov subspace methods suitable for
Exascale. LyNcs recognises the urgent need to improve and further develop these libraries while
adopting new frameworks to enhance their scalability. The second is to support user communities
to use sparse linear solvers as building blocks of larger applications, such that they can address the
next generation of challenges in their scientific fields, namely in lattice QCD, computational
chemistry, and engineering applications in electromagnetism. These domains rely on access to
leadership supercomputers such as via PRACE Tier-0 access, requiring the solution of huge sparse
linear systems often involving poorly conditioned matrices. Adoption by user communities and
maintainability relies on well thought-out, documented, and portable APIs with demonstrated
examples of their use in established community codes. A recent example is the adoption of
DDalphaAMG within tmLQCD, allowing the first simulation using a true multi-grid, crucial for
allowing the simulation of QCD with quarks tuned to their physical masses on the PRACE Tier-0
system SuperMUC [3, 4]. LyNcs will generalise such development efforts, contributing to the
development of multiple “low-level” solver libraries and targeting their adoption in several
community codes enhancing synergies between leading European scientific groups.

Task 1 - Sparse linear solvers suitable for Exascale: This task will focus on optimizing existing,
broadly used libraries to incorporate novel approaches either available in the literature or with
demonstrated improvements in proof-of-concept applications. In particular, for Krylov subspace
techniques, we will implement several methods that have exhibited improved scalability and

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 37 18.10.2019

performance. The core Krylov methods can be designed and implemented independently of two
main kernels they intensively used, namely the linear operator application (usually a matrix-vector
product) and the preconditioner application. Those two numerical kernels have to be specialised
for the targeted applications and must be provided by the user of the library. For the Krylov library
we will consider block solver variants that recycle spectral information either at restart or between
solution phases. In particular, we will consider augmentation techniques, deflation techniques for
Krylov block solvers [5]. The Krylov block solvers will also be implemented in their flexible
counterparts [6,7], allowing for mixed arithmetic calculation, reducing communication volume,
and consequently both time and energy-to-solution. These advanced linear system solvers share
common kernels to those necessary for implementing eigensolvers. This synergy will be leveraged
to investigate the robustness of these methods for eigensolvers. The outcome of this activity will
be a new release of the Fabulous library.

As preconditioner for lattice QCD, multigrid implementations are available in both QUDA for
GPUs and DDalphaAMG for CPUs. These methods have brought dramatic improvements in time-
to-solution for solving sparse linear systems arising in lattice QCD with large condition numbers,
by solving the system on an hierarchy of coarser grids as preconditioners. However, floating point
performance on the coarse grids is much lower than what is achievable. We will implement block
methods for bundling solutions of multiple right-hand sides to improve efficiency at the coarse
level. In addition, we will implement a framework allowing distributing the coarse-level operator
applications over sub-partitions of the process pool, to optimise the load-balancing of the various
multi-grid levels. Providing such solutions is crucial if these methods are to scale beyond the state-
of-the-art, which relies on a symmetric domain decomposition between coarse and fine grids.

For the solution of sparse linear systems, where sparse matrix-matrix product are involved as well
as for some inner numerical kernels of the above mentioned methods, this task targets the
fundamental building block of our solvers, that are the sparse matrix support routines. In LyNcs
we will adhere to the Sparse BLAS API [8], which is vendor-independent. We will improve our
existing Sparse BLAS implementation and provide a Sparse BLAS API-compliant layer to support
routine libraries simplifying the validation of performance, correctness, and scalability properties.
For the performance critical kernels, or for novel heterogeneous architectures, we will develop
specialised support kernels accessible through the generic Sparse BLAS API. In this way we can
develop, compare and experiment with novel data layouts, without the need of modifying our
numerical algorithm specification.

Task 2 - Prototyping new methods for Exascale: This task will investigate cutting-edge,
disruptive techniques that have not been considered so far but that are expected to be beneficial
towards Exascale. Sparse linear solvers rely on an efficient implementation of the stencil operator
that is a discrete representation of a linear operator. In parallel applications, each iteration requires
communication of the stencil boundaries between processes, as well as global reductions to
implement vector dot-products. Several techniques have been proposed to mitigate this scalability
issue. One class involves relaxing the frequent communication and synchronization requirements.
Another relies on parallel solutions on different chunks of right-hand sides running in parallel over
smaller MPI partitions, mostly independently, but with infrequent exchange of information, such
as the Krylov deflation spaces. Techniques for asynchronous composition of deflated spaces and
block pipelined variants of Krylov solver techniques will be investigated within this task first with
proof-of-concept implementations to assess their scalability features and improvements.
Depending on the outcomes, we will selectively incorporate these methods in the libraries of Task
1. At the lowest-level, we will investigate new approaches to optimise our Sparse BLAS

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 38 18.10.2019

implementation, namely dense substructures support, refined cache blocking techniques, and
adaptation of the precision on a block-specific basis.

Task 3 - Portable APIs: Within this task we will design, implement, and document APIs for
calling the libraries developed in Tasks 1 and 2. We will design these APIs to be called for either
GPU or CPU variants of the underlying libraries, so that scientific application developers can
transition from GPU systems to CPU systems with minimal changes in their higher-level codes.
Documentation and example use applications will be provided with the API library for
demonstrating its use, how the library initialises, data structures used, and conventions.

Task 4 - Community code enabling: This task will provide direct support to the developers of
main European community codes for interfacing their codes with our developed libraries through
the API of Task 3. We have identified major European codes employing linear solvers, including
HORSE for Electromagnetism, A-VCI for computational chemistry and for lattice QCD openQCD,
which is used to produce the Coordinated Lattice Simulations datasets used by several
collaborations including Mainz, RQCD, and Alpha, and the code tmLQCD, which is used by the
European Twisted Mass Collaboration that spans 10 European countries. Developers and users of
these codes are major PRACE allocations holders on SuperMUC, Marconi, Piz Daint, and
JUWELS and have already expressed support for LyNcs.

9.2 Project schedule

In the Gantt chart of Table 7, we show the scheduling of the tasks including their subtasks, in
intervals of three-month quarters. The timing of the Milestones is also shown, with details for each
Milestone presented in Table 8. We successfully teamed up at the PRACE-6IP kick-off meeting in
Bratislava. In the right part of Table 7 we also show the distribution of partner effort Person Months
(PMs) towards the four tasks.

For the ongoing project we adapt the work schedule as follows:

 The work effort of T 1.3 is extended to Q1

 The end of Task 2 is shifted from Q6 to Q7 in order to soften possible delays

 Task 3/4 we plan to include test on the upcoming EuroHPC systems for (Q9-Q10)

 We plan to schedule F2F meeting within this year if all positions are filled (Q3)

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 39 18.10.2019

 1 2 3 4 5 6 7 8 9 10 CYI INRIA LRZ Total

Task 1. Sparse linear solvers

suitable for Exascale - leader

CYI
 Task 1 16 11 12 39

1.1: Block solvers using
augmentation/deflation
techniques

 Task 2 12 10 10 32

1.2: Specialised matrix-
vector and multigrid for
QCD

 Task 3 12 3 6 21

1.3: Sparse BLAS Task 4 20 6 2 28

Task 2. Prototyping new

methods for Exascale- leader

Inria

2.1: Asynchronous
composition of deflated
spaces

2.2: Design of block
pipelined variants

2.3: Asynchronous
communication in iterative
solvers

Task 3. Portable APIs -

leader LRZ

3.1: API definition,
consultation with community

3.2: API implementation

3.3: API documentation

Task 4. Community code

enabling - leader CYI

4.1: Enabling lattice QCD
codes (OpenQCD,
tmLQCD)

4.2: Enabling computational
electromagnetics codes
(HORSE)

4.3: Enabling computational
chemistry codes (A-VCI)

Milestones MS1MS2MS3 MS4

Face-to-face meetings KO F2F F2F F2F

Table 7: LyNcs Timeline. Left: scheduling of tasks, subtasks, in units of three-month quarters (Q). Milestones

and meetings are also shown, namely the Kick-Off meeting (KO) and face-to-face meetings (F2F). Right: PM

distribution of partner effort to each task.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 40 18.10.2019

Milestone number, title, and

month of completion
Description, associated tasks, and means of verification

MS1: First version of APIs
available (M12)

A first version of the APIs will be made available, incorporating
algorithms developed in Tasks 1 and 2 and after consultation with the
community within Task 3.

MS2: Prototype methods for
Exascale evaluated (M15)

The evaluation of algorithms prototyped in Task 2 will be finalised.
The improved algorithms will be selected for implementing and
optimizing within Task 1.

MS3: First reported
improvements on Tier-0 system
(M18)

First benchmark results on a PRACE Tier-0 showing improved
scalability of the libraries developed in Task 1 using the APIs
developed in Task 2.

MS4: Community codes using
LyNcs APIs (M24)

Community codes using the methods developed and implemented in
Tasks 1 and 2, via the APIs of Task 3, after support from this project
within Task 4.

Table 8: LyNcs Milestones (MS)

In Table 9 we list the PRACE 6IP deliverables as they appear in the proposal and detail the
contribution to these deliverables by LyNcs.

PRACE 6IP deliverable Contribution by LyNcs

D8.2: Interim progress report: staff
and established project structure
(M6)

Finalised set of tasks and milestones, PM distribution, and team,
including any new staff.

D8.3: Interim progress report: Public
Prototype software release and
development infrastructure (SSC
feedback) (M12)

First version of APIs from Task 3. Progress of library
optimization (Task 1) and evaluation of prototypes new
algorithms (Task 2)

D8.4: Interim progress report: Public
Software release (docs, testing, issue
tracker) and integration in external
codes (SSC feedback) (M24)

First release of software, including documentation,
benchmark results and issue tracking statistics (Tasks 1, and
3). Report on evaluation of new methods of Task 2, and
candidates selected for implementation within Task 1. Progress
of integration into community codes (Task 4).

D8.5: Final report: including
performance results on (pre)Exascale
systems (M30)

Performance results on community software linked to APIs
(Tasks 1, 2, 3, and 4). Report on results presented in
conferences. Publication of results of Task 2 (as peer-review
publication or PRACE white paper)

Table 9: LyNcs contributions to WP8 deliverables

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 41 18.10.2019

9.3 Team and collaboration

CaSToRC filled two positions opened for the tasks related to LyNcs. Namely, Dr. Simone Bacchio
was recruited and started in July 2019, while Dr. Shuhei Yamamoto started in September 2019.
This enables CaSToRC to fully engage with the upcoming tasks of LyNcs and WP8 in general.
CaSToRC is leading LyNcs, organizing the meetings, coordinating work, and scheduling telcons.
Furthermore, CaSToRC members worked during the first month of the project on Task 1, Task 2,
and Task 3. These efforts include an investigation of novel algorithms related to Task 1 and 2, and
an investigating of different hybrid software approaches, like a python-based API, with respect to
Task 3. For the upcoming months, CaSToRC will enable and optimise multiple right-hand-sides in
DDalphaAMG. This will enable a close collaboration with Inria by investigate new algorithmic
approaches using Inria’s solver software Fabulous.

The open position at Inria is vacant due to a last minute cancelation of the recruited postdoc. Inria
is currently advertising and searching to fill the open position as soon as possible to minimise
delays in the work plan. The work is in the meantime progressing as planned, with Inria leading
Task 2, currently working together with CaSToRC on investigations of communication strategies
to efficiently share information accumulated in Block-Krylov procedures running on different
partitions of the HPC system. Furthermore, Fabulous is currently further optimised to meet the
challenges of novel computing architectures.

The position at LRZ is held by Dr. Michele Martone. LRZ is engaged with Task 1 and Task 3, and
is leading the effort related to libsrb. After the successful release of an update of librsb, the next
step will be the investigation of the potential of the sparse matrix library in user kernels, such as in
lattice QCD, in collaboration with CaSToRC. A prototype version linked to a lattice QCD kernel
is available and we expect to be able to report about its findings within the next reporting period.

During this initial period we initialised a common communication structure between the three
partners. This includes an email-list hosted by LRZ where project partners are exchanging
information and scheduling meetings. For software development, Inria provided a gitlab repository,
which will be used to publish first and new releases of the developed API. Moreover efforts related
to Task 2 are currently hosted by private Github accounts and will be published when results are
available. We have regular monthly telcons, with the next upcoming call to be held during the first
week of October. Furthermore, we plan to host a face2face meeting to coordinate work effort with
the new recruited postdocs. We will schedule this meeting as soon as possible and once all positions
are filled.

9.4 Status and outlook

LyNcs was successfully initiated during a meeting of all three partners during the PRACE-6IP
kickoff meeting that took place from the 28 to 29 May 2019 in Bratislava. We determined the
common communication channels and gave an update of the project timeline. Promising methods
to explore were discussed and a plan was drafted on which key algorithms to focus on, which are
essential to reach the project goals.

In detail, we determined that a multigrid procedure with multiple right hand sides, accelerated by
using Block-Krylov methods, enabling deflation methods on the fly will be explored. During the
past month, we collected benchmark results using QUDA running on NVIDIA GPUs in order to
understand the potential of exact deflation in multigrid procedures. The results are very promising,
although at the cost of an increased overhead – the setup time of the multigrid, which has increased.
We plan to mitigate this additional time by using Block-Krylov methods to calculate the low lying
spectrum directly during the iterations. This work is related to Task 1 and 2 and is currently in

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 42 18.10.2019

development by CaSToRC in collaboration with Inria. Implementation of communication avoiding
Krylov-subspace methods remains open for investigation, to push further the limited strong scaling
bounds of our Krylov solver.

Currently we intensified efforts in developing communication schemes to partition more flexibly
the solver tasks, which will enable us to use efficiently large partitions of HPC systems without
facing the strong scaling boundaries of our Krylov solvers. This will be directly included in the
first API version of LyNcs which is targeted for MS12.

The LRZ effort of the first months of LyNcs was focused on a new release for the Sparse Matrix
library librsb. The new release is available since August 2019 and is a maintenance release, easing
build on different platform and with bug fixes. A first prototype is available linking librsb to DD-
HMC, a predecessor software to openQCD with a common base. This prototype will help to
understand the potential of librsb with respect to lattice QCD kernels. We expect to have
benchmark results for Q2 which will help us to coordinate the Sparse Matrix library effort with
respect to Task 3.

D8.2 Interim Progress Report - Staff and Established Project Structure

PRACE-6IP- INFRAEDI-823767 43 18.10.2019

10 Conclusions

In this Deliverable we report about the status, the organisation and the structure of the eight projects
approved in the process of selection described in the D8.1 deliverable. These projects cover a wide
area of computational sciences ranging from numerical libraries to programming models and
scientific domain applications. The main focus of this task is to deliver high quality software able
to deal with the Exascale challenges. All the projects described in this document discuss how they
intend to develop their software and achieve their targets. The organization reflects the 'agile team
of teams' concept. For this reason, we are limiting the global communications only in case of
necessity, for example when we need to establish a common milestone or delivering a document.
To share experience and expertise, we are planning face-to-face events when we can globally
discuss topics that can be of common interest to (almost) all the projects (for example task-based
approaches, programming paradigms, etc.). For the remaining part, the management of each project
is individually in charge to their PI.

In this document, each project reports about their internal organisation. In particular, after the
context and the objectives of each project are briefly recalled, the tasks and the planning are shown.
The information about the staff composing each project, their distribution among the partners and
their expertise are reported. Also, the choice of the tools used in the projects to coordinate the
work is discussed in each section. In many cases, regular video conferences have been chosen to
check the progress of the work, while in other cases other tools, such as Slack have been preferred.
Where present, the opportunity of collaboration with other projects external to PRACE was
reported. In conclusion, all the projects described the activities conducted from the PRACE-6IP
Kick-off Meeting until this moment and the planning of the activities for the next few months.

This Deliverable shows that all the selected projects in the Work Package 8 have set up their
internal organisation with an accurate planning of the activities. This is an additional benefit of
having required detailed proposals for the selection process. None of these projects is having
staffing issues at the moment and the collaboration between the PRACE partners looks working
satisfactorily well. All the projects have their activity on track and no criticalities appear at present.

