

E-Infrastructures

H2020-INFRAEDI-2018-2020

INFRAEDI-01-2018: Pan-European High Performance

Computing infrastructure and services (PRACE)

PRACE-6IP

PRACE Sixth Implementation Phase Project

Grant Agreement Number: INFRAEDI-823767

D7.4

Evaluation of Benchmark Performance

Final

Version: 1.1

Author(s): Walter Lioen (SURF), Miguel Avillez (UEVORA), Cevdet Aykanat

(Bilkent), Stefan Becuwe (UAntwerpen), Maxwell Cai (SURF), Dimitris

Dellis (GRNET), Andrew Emerson (CINECA), Jacob Finkenrath (CyI),

Cédric Jourdain (CINES), Holly Judge (EPCC), Ozan Karsavuran (Bilkent),

Kurt Lust (UAntwerpen), Cristian Morales (BSC), Charles Moulinec

(STFC), Andrew Sunderland (STFC)

Date: 30.11.2021

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 i 30.11.2021

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: INFRAEDI-823767

Project Title: PRACE Sixth Implementation Phase Project

Project Web Site: https://www.prace-ri.eu/about/ip-projects/

Deliverable ID: < D7.4>

Deliverable Nature: <DOC_TYPE: Report>

Dissemination Level:

PU*
Contractual Date of Delivery:
30 / November / 2021

Actual Date of Delivery:
30 / November / 2021

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for members of the

consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision

2005/444/EC.

Document Control Sheet

Document

Title: Evaluation of Benchmark Performance

ID: D7.4

Version: <1.1> Status: Final

Available at: https://www.prace-ri.eu/about/ip-projects/

Software Tool: Microsoft Word 2016

File(s): D7.4-final-1.1.docx

Authorship

Written by: Walter Lioen (SURF), Miguel Avillez

(UEVORA), Cevdet Aykanat (Bilkent),

Stefan Becuwe (UAntwerpen), Maxwell

Cai (SURF), Dimitris Dellis (GRNET),

Andrew Emerson (CINECA), Jacob

Finkenrath (CyI), Cédric Jourdain

(CINES), Holly Judge (EPCC), Ozan

Karsavuran (Bilkent), Kurt Lust

(UAntwerpen), Cristian Morales (BSC),

Charles Moulinec (STFC), Andrew

Sunderland (STFC)

Contributors:

Reviewed by: David Vicente, BSC

Dirk Brömmel, JUELICH

Approved by: MB/TB

https://www.prace-ri.eu/about/ip-projects/
https://www.prace-ip.eu/about/ip-projects/

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 ii 30.11.2021

Document Status Sheet

Version Date Status Comments

0.1 09/August/2021 Draft Skeleton

0.2 13/October/2021 Draft First integrated version

0.3 17/October/2021 Draft

0.4 24/October/2021 Draft

0.5 31/October/2021 Draft

0.6 3/November/2021 Draft For PRACE internal

review

0.7 10/November/2021 Draft

0.8 17/November/2021 Draft PRACE internal review

check

0.9 21/November/2021 Draft

1.0 23/November/2021 Final version For approval by MB/TB

1.1 30/November/2021 Final version Final adjustments

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 iii 30.11.2021

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Applications, Benchmarking,

Energy Efficiency, Systems, Energy to Solution, Time to Solution,

Performance

Disclaimer

This deliverable has been prepared by the responsible work package of the project in accordance

with the Consortium Agreement and the Grant Agreement n° INFRAEDI-823767. It solely

reflects the opinion of the parties to such agreements on a collective basis in the context of the

project and to the extent foreseen in such agreements. Please note that even though all

participants to the project are members of PRACE aisbl, this deliverable has not been approved

by the Council of PRACE aisbl and therefore does not emanate from it nor should it be

considered to reflect PRACE aisbl’s individual opinion.

Copyright notices

 2021 PRACE Consortium Partners. All rights reserved. This document is a project document

of the PRACE project. All contents are reserved by default and may not be disclosed to third

parties without the written consent of the PRACE partners, except as mandated by the European

Commission contract INFRAEDI-823767 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are

acknowledged as owned by the respective holders.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 iv 30.11.2021

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet ... i

Document Status Sheet .. ii

Document Keywords ... iii

List of Figures .. ix

List of Tables .. xi

References and Applicable Documents .. xv

List of Acronyms and Abbreviations .. xvii

List of Project Partner Acronyms .. xxi

Executive Summary ... 1

1 Introduction ... 2

1.1 UEABS History and Previous Work .. 2

1.2 Work Described in this Report ... 2

1.3 Outline .. 3

1.4 Intended Audience ... 3

2 Application Benchmarks .. 3

2.1 Alya ... 3

2.1.1 Code Description .. 3

2.1.2 Test Cases ... 3

2.2 Code_Saturne ... 4

2.2.1 Code Description .. 4

2.2.2 Test Cases ... 4

2.3 CP2K ... 5

2.3.1 Code Description .. 5

2.3.2 Test Cases ... 5

2.4 GADGET .. 6

2.4.1 Code Description .. 6

2.4.2 Test Cases ... 7

2.4.2.1 Test Case A: Cosmological Dark Matter-only Simulation........................ 7

2.4.2.2 Test Case B: Blob Test .. 7

2.5 GPAW ... 7

2.5.1 Code description .. 7

2.5.2 Test Cases ... 7

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 v 30.11.2021

2.5.2.1 Test Case S: Carbon Nanotube ... 8

2.5.2.2 Test Case M: Copper Filament ... 8

2.5.2.3 Test Case L: Silicon Cluster .. 8

2.6 GROMACS .. 8

2.6.1 Code Description .. 8

2.6.2 Test Cases ... 9

2.6.2.1 Test Case A: GluCl Ion Channel ... 9

2.6.2.2 Test Case B: Lignocellulose .. 9

2.6.2.3 Test Case C: STMV.28M ... 9

2.7 NAMD ... 9

2.7.1 Code Description .. 9

2.7.2 Test Cases ... 10

2.8 NEMO ... 10

2.8.1 Code Description .. 10

2.8.2 Test Cases ... 11

2.8.2.1 Test Case A: .. 11

2.8.2.2 Test Case B: .. 11

2.9 PFARM ... 12

2.9.1 Code Description .. 12

2.9.2 Test Cases ... 13

2.9.2.1 Test Case 1 (Atomic) ... 14

2.10 QCD .. 14

2.10.1 Details on Benchmark Kernels: ... 15

2.11 Quantum ESPRESSO ... 15

2.11.1 Code Description .. 15

2.11.2 Test Cases ... 16

2.12 SPECFEM3D ... 16

2.12.1 Code Description .. 16

2.12.2 Test Cases ... 17

2.12.2.1 Validation Test Case ... 17

2.12.2.2 Test Case A .. 17

2.12.2.3 Test Case B .. 17

2.13 TensorFlow ... 18

2.13.1 Code Description .. 18

2.13.2 Test Cases ... 18

2.13.2.1 Test Case A (small) ... 18

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 vi 30.11.2021

2.13.2.2 Test Case B (medium) ... 19

2.13.2.3 Test Case C (large) ... 19

3 Benchmark Systems .. 19

3.1 PRACE Tier-0 Systems ... 19

3.1.1 Hawk ... 19

3.1.2 JUWELS ... 19

3.1.3 Joliot-Curie .. 20

3.1.4 MARCONI100 .. 21

3.1.5 MareNostrum4 ... 21

3.1.6 SuperMUC-NG ... 21

3.1.7 Piz Daint ... 22

3.2 EuroHPC System ... 22

3.2.1 HPC Vega ... 22

3.3 Energy Measurement Capability/Availability .. 23

4 Benchmark Results per Application ... 23

4.1 Alya ... 23

4.1.1 Performance on Skylake Systems (Test Case A) .. 24

4.1.2 Performance on Skylake Systems (Test Case B) .. 25

4.1.3 Performance on AMD Systems (Test Case A) .. 26

4.1.4 Performance on AMD Systems (Test Case B) .. 27

4.1.5 Performance on GPU Systems (Test Case A and Test Case B) 27

4.2 Code_Saturne ... 28

4.2.1 Performance Results .. 28

4.2.1.1 Performance for Test Case A .. 29

4.2.1.2 Preparing for Larger Runs - Test Case B on SuperMUC-NG 30

4.2.1.3 Performance for Test Case B .. 32

4.2.1.4 Performance for Test Cases C and D.. 33

4.2.1.5 Very Large Simulation on SuperMUC-NG and Hawk (56B) 35

4.2.2 Energy Consumption – Comparison for Several Machines 35

4.2.3 Energy Consumption – Comparison Without and With Output on the Disk 36

4.2.4 Conclusions .. 36

4.3 CP2K ... 37

4.3.1 Installation of CP2K ... 37

4.3.2 Running Benchmarks .. 37

4.3.3 Benchmark Results ... 38

4.3.3.1 Performance on Hawk ... 38

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 vii 30.11.2021

4.3.3.2 Performance on Irene-Rome (Joliot-Curie) .. 39

4.3.3.3 Performance on JUWELS ... 40

4.3.3.4 Performance on MareNostrum4.. 41

4.3.3.5 Performance on MARCONI100 .. 42

4.3.3.6 Performance on Piz Daint GPU.. 43

4.3.3.7 Performance on Piz Daint CPU .. 44

4.3.3.8 Performance on SuperMUC-NG ... 45

4.3.4 Performance Comparison .. 46

4.3.5 Threading Options .. 48

4.3.6 Energy Consumption Comparison ... 49

4.3.7 Energy Usage Considerations .. 51

4.3.8 Conclusions .. 52

4.4 GADGET .. 52

4.4.1 System Software Environment .. 52

4.4.2 Code Compilation and Extra MPI Tasks for Incoming Communications 53

4.4.3 Setup of the Runs .. 53

4.4.4 Performance Results .. 53

4.4.5 Discussion .. 59

4.5 GPAW ... 60

4.5.1 Performance Results .. 60

4.5.1.1 Test Case S .. 61

4.5.1.2 Test Case M ... 64

4.5.1.3 Test Case L .. 69

4.5.2 Energy Performance .. 73

4.5.3 Discussion .. 76

4.6 GROMACS .. 77

4.6.1 System Software Environment .. 77

4.6.2 Performance Results .. 78

4.6.3 GROMACS Performance Comparison. .. 81

4.7 NAMD ... 84

4.7.1 System Software Environment .. 84

4.7.2 Performance Results .. 85

4.7.3 NAMD Performance Comparison .. 88

4.8 NEMO ... 90

4.8.1 Installation ... 90

4.8.2 Performance Results .. 90

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 viii 30.11.2021

4.9 PFARM ... 92

4.9.1 Benchmarking Setup ... 92

4.9.1.1 Hybrid MPI / OpenMP Configurations on CPUs 92

4.9.1.2 GPU Node Configurations .. 93

4.9.1.3 Numerical Libraries used for the Eigensolver Calculation 93

4.9.2 PFARM Performance Results .. 94

4.9.2.1 Test Case 1c .. 94

4.9.2.2 Test Case 1d .. 95

4.9.2.3 Performance Benchmark Data .. 96

4.9.2.4 Eigensolver Performance .. 99

4.9.2.5 Energy Usage of Benchmark Runs .. 100

4.10 QCD .. 101

4.10.1 Test Case: Part 1 .. 102

4.10.2 Test Case: Part 2 - V = 32×32×32×96 ... 103

4.10.3 Test Case: Part 2 - V = 64×64×64×128 ... 106

4.10.4 Comments on Future Developments .. 107

4.10.5 Conclusion .. 108

4.11 Quantum ESPRESSO ... 108

4.11.1 MARCONI100 .. 108

4.11.2 Benchmarks for MareNostrum4, JUWELS, and SuperMUC-NG 109

4.11.3 Energy Efficiencies ... 111

4.12 SPECFEM3D_GLOBE ... 111

4.12.1 System Software Environment .. 111

4.12.2 Results .. 112

4.12.2.1 Validation Test Case ... 112

4.12.2.2 Test Case A .. 113

4.12.2.3 Test Case B .. 113

4.12.3 Performance Comparison .. 114

4.12.3.1 Scalability .. 114

4.12.3.2 Strong Scaling ... 116

4.12.3.2.1 Small Benchmark Run to Test More Complex Earth 116

4.12.3.2.2 Test Case A ... 120

4.12.3.3 Energy Consumption Comparison .. 123

4.12.4 Conclusions .. 127

4.13 TensorFlow ... 127

4.13.1 Performance on Hawk .. 130

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 ix 30.11.2021

4.13.2 Performance on SuperMUC-NG .. 132

4.13.3 Performance on Lisa .. 132

5 Conclusions .. 133

5.1 Performance Comparison of all Benchmark Systems .. 134

5.1.1 LINPACK Performance .. 134

5.1.2 Application Performance ... 134

5.2 Energy Efficiency ... 136

5.2.1 LINPACK Energy Efficiency .. 136

5.2.2 Energy to Solution .. 136

List of Figures

Figure 1: Partitioning of Configuration Space in PFARM... 13

Figure 2: CP2K run times for Test Case A. ... 46

Figure 3: CP2K run times for Test Case B. .. 47

Figure 4: CP2K run times for Test Case C. .. 48

Figure 5: CP2K energy consumption for Test Case A. .. 50

Figure 6: CP2K energy consumption for Test Case B. .. 50

Figure 7: CP2K energy consumption for Test Case C. .. 51

Figure 8: Speed-up comparisons for Test Case A with GADGET-4 on JUWELS and

MareNostrum4. .. 54

Figure 9: Parallel efficiency for Test Case A with GADGET-4 on JUWELS and

MareNostrum4. .. 55

Figure 10: Simulation time for Test Case B - c (core-based approach; solid lines) and Test

Case B-n (node-based approach; dashed lines) obtained with GADGET-4 on Irene-SKL,

JUWELS, and MareNostrum4. .. 58

Figure 11: Speed-up for Test Case B - c (core-based approach; solid lines) and Test Case B-n

(node-based approach; dashed lines) obtained with GADGET-4 on Irene-SKL, JUWELS, and

MareNostrum4. .. 59

Figure 12: Parallel efficiency for Test Case B - c (core-based approach; solid lines) and Test

Case B-n (node-based approach; dashed lines) obtained with GADGET-4 on Irene-SKL,

JUWELS, and MareNostrum4. .. 59

Figure 13: Benchmark time for GPAW 20.1.0, Test Case M, as function of the number of

nodes ... 68

Figure 14: Benchmark time for GPAW 20.1.0, Test Case L, in function of the number of

nodes. .. 73

Figure 15: GROMACS performance comparison as function of number of nodes. 83

Figure 16: NAMD Performance as function of number of nodes. ... 89

Figure 17: Parallel performance of PFARM (EXDIG) on PRACE Tier-0 systems for Test

Case 1c ... 95

Figure 18: Parallel performance of PFARM (EXDIG) on PRACE Tier-0 systems for Test

Case 1d ... 96

Figure 19: Sector Hamiltonian Eigensolver performance using DSYEVD with 1 MPI task per

node. ... 99

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 x 30.11.2021

Figure 20: Sector Hamiltonian Eigensolver performance using DSYEVD with 4 MPI tasks

per node .. 100

Figure 21: Relative speed-up of the performance using UEABS QCD Part 1 compare to the

single node performance on SuperMUC-NG equipped with Intel Xeon Skylake chips. For the

benchmark application strong scaling towards multiple nodes on PRACE Tier-0 machines

with a test size of V=8×64×64×64 is used. .. 102

Figure 22: Sustained performance of the UEABS QCD Part 2 with the smaller volume of

V=32×32×32×96 on a single node and on 16 node in dependece of the theoretical peak

memory bandwith of the corresponding architecture. The figure shows obtained results within

PRACE-4IP to PRACE-6IP. Note that all numbers were obtained using double precision. . 105

Figure 23: Strong scaling of QCD Part 2 Test Case 2: The sustained performance on the

newer PRACE Tier-0 machines is shown for Test Case 2 with volume 128×64×64×64 is

shown in dependence on the number of nodes. In all cases the double precision benchmark

kernels were used. .. 106

Figure 24: Time-to-solution as a function of MARCONI100 nodes for the medium test case of

Quantum ESPRESSO. We show data for both the CPU and GPU versions of the application.

 .. 109

Figure 25: Performance with the medium test case on MareNostrum4, JUWELS and

SuperMUC-NG .. 110

Figure 26: Performance with the large test case for MareNostrum4, JUWELS and

SuperMUC-NG .. 111

Figure 27: Mesher scaling on 24 computes nodes by increasing the NEX_XI 115

Figure 28: Solver scaling on 24 computes nodes by increasing the NEX_XI 115

Figure 29: SPECFEM3D_GLOBE, strong scaling on Validation Test Case: small benchmark

run to test on more complex earth .. 118

Figure 30: SPECFEM3D_GLOBE, speed-up on Validation Test Case: small benchmark run

to test on more complex earth .. 119

Figure 31: SPECFEM3D_GLOBE, parallel efficiency on Validation Test Case: small

benchmark run to test on more complex earth ... 119

Figure 32: SPECFEM3D_GLOBE, strong scaling on Test Case A 122

Figure 33: SPECFEM3D_GLOBE, speed-up on Test Case A .. 123

Figure 34: SPECFEM3D_GLOBE, parallel efficiency on Test Case A 123

Figure 35: SPECFEM3D_GLOBE, energy consumption for the Validation Test Case 124

Figure 36: SPECFEM3D_GLOBE, energy consumption for Test Case A 125

Figure 37: SPECFEM3D_GLOBE, energy consumption for Test Case B 126

Figure 38: The Horovod timeline showing how the neural network gradients from different

nodes are communicated and reduced. This figure only contains information about the

communication between nodes; the actual computation time spent on individual nodes is not

shown. .. 129

Figure 39: A zoom-in view of Figure 38 showing the communication between nodes in

microsecond timescales. ... 130

Figure 40: The scaling efficiency of TensorFlow on Hawk, annotated by blue numbers in the

figure. The dashed line indicates a perfectly linear scaling where the speed-up factor (S)

grows as a function of the number of MPI workers (Np), and the black thick curve indicates

the actual speed-up factor. The green curve is the throughput of the system as a whole (in the

units of images per second). ... 131

Figure 41: The scaling efficiency of TensorFlow on SuperMUC-NG, annotated by blue

numbers in the figure. The dashed line indicates a perfectly linear scaling where the speed-up

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xi 30.11.2021

factor (S) grows as a function of the number of MPI workers (Np), and the black thick curve

indicates the actual speed-up factor. The green curve is the throughput of the system as a

whole (in the units of images per second). ... 132

Figure 42: The scaling efficiency of TensorFlow on Lisa, annotated by blue numbers in the

figure. The dashed line indicates a perfectly linear scaling where the speed-up factor (S)

grows as a function of the number of MPI workers (Np), and the black thick curve indicates

the actual speed-up factor. The green curve is the throughput of the system as a whole (in the

units of images per second). ... 133

List of Tables

Table 1: PFARM (EXDIG) benchmarking datasets .. 14

Table 2: Alya, Test Case A, MareNostrum4 .. 24

Table 3: Alya, Test Case A, JUWELS ... 24

Table 4: Alya, Test Case A, SuperMUC-NG ... 24

Table 5: Alya, Test Case A, Irene-SKL ... 25

Table 6: Alya, Test Case B, MareNostrum4 .. 25

Table 7: Alya, Test Case B, JUWELS ... 25

Table 8: Alya, Test Case B, SuperMUC-NG ... 26

Table 9: Alya, Test Case B, Irene-SKL.. 26

Table 10: Alya, Test Case A Irene-Rome .. 26

Table 11: Alya, Test Case A, Hawk ... 26

Table 12: Alya, Test Case B Irene-Rome .. 27

Table 13: Alya, Test Case B, Hawk ... 27

Table 14: Alya, Test Case A, Piz Daint ... 27

Table 15: Alya, Test Case A, MARCONI100 ... 28

Table 16: Alya, Test Case B, Piz Daint .. 28

Table 17: Alya, Test Case B, MARCONI100 .. 28

Table 18: Code_Saturne, Test Case A - SuperMUC-NG ... 29

Table 19: Code_Saturne, Test Case A - MareNostrum4 .. 29

Table 20: Code_Saturne, Test Case A – JUWELS .. 29

Table 21: Code_Saturne, Test Case A - Joliot-Curie – Skylake .. 29

Table 22: Code_Saturne, Test Case A - Joliot-Curie - Rome .. 30

Table 23: Code_Saturne, Test Case A - Hawk ... 30

Table 24: Code_Saturne, Test Case B - SFC Morton .. 31

Table 25: Code_Saturne, Test Case B - SFC Hilbert ... 31

Table 26: Code_Saturne, Test Case B – METIS .. 31

Table 27: Code_Saturne, Test Case B – SCOTCH .. 31

Table 28: Code_Saturne, Test Case B - PT-SCOTCH ... 31

Table 29: Code_Saturne, Test Case B – METIS - SuperMUC-NG ... 32

Table 30: Code_Saturne, Test Case B – METIS - MareNostrum4 .. 32

Table 31: Code_Saturne, Test Case B – METIS – JUWELS .. 32

Table 32: Code_Saturne, Test Case B – METIS - Joliot-Curie – Skylake 32

Table 33: Code_Saturne, Test Case B – METIS - Joliot-Curie – Rome 33

Table 34: Code_Saturne, Test Case B – METIS - Hawk ... 33

Table 35: Code_Saturne, Test Case C – METIS + MM - SuperMUC-NG 33

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xii 30.11.2021

Table 36: Code_Saturne, Test Case C – METIS + MM – JUWELS 33

Table 37: Code_Saturne, Test Case C – METIS + MM - Joliot-Curie – Skylake 34

Table 38: Code_Saturne, Test Case C – METIS + MM - Joliot-Curie – Rome 34

Table 39: Code_Saturne, Test Case C – METIS + MM - Hawk ... 34

Table 40: Code_Saturne, Test Case D – METIS + MM - SuperMUC-NG 34

Table 41: Code_Saturne, Test Case D – METIS + MM – JUWELS 34

Table 42: Code_Saturne, Test Case D – METIS + MM - Joliot-Curie – Skylake 35

Table 43: Code_Saturne, Test Case D – METIS + MM - Hawk ... 35

Table 44: Code_Saturne, Very large case (56B) – METIS + MM - SuperMUC-NG 35

Table 45: Code_Saturne, Very large case (56B) – METIS + MM - Hawk 35

Table 46: Code_Saturne, Energy consumption in kJ - Comparison between machines 36

Table 47: Code_Saturne, Energy consumption in kJ - Comparison without (N P) and with (W

P) output on (postprocessing) ... 36

Table 48: CP2K, Test Case A, Hawk ... 38

Table 49: CP2K, Test Case B, Hawk ... 38

Table 50: CP2K, Test Case C, Hawk ... 39

Table 51: CP2K, Test Case A, Irene-Rome ... 39

Table 52: CP2K, Test Case B, Irene-Rome ... 39

Table 53: CP2K, Test Case C, Irene-Rome ... 40

Table 54: CP2K, Test Case A, JUWELS ... 40

Table 55: CP2K, Test Case B, JUWELS ... 40

Table 56: CP2K, Test Case C, JUWELS ... 41

Table 57: CP2K, Test Case A, MareNostrum4 .. 41

Table 58: CP2K, Test Case B, MareNostrum4 .. 41

Table 59: CP2K, Test Case C, MareNostrum4 .. 42

Table 60: CP2K, Test Case A, MARCONI100 ... 42

Table 61: CP2K, Test Case B, MARCONI100 .. 42

Table 62: CP2K, Test Case C, MARCONI100 .. 43

Table 63: CP2K, Test Case A, Piz Daint GPU .. 43

Table 64: CP2K, Test Case B, Piz Daint GPU ... 43

Table 65: CP2K, Test Case C, Piz Daint GPU ... 44

Table 66: CP2K, Test Case A, Piz Daint CPU ... 44

Table 67: CP2K, Test Case B, Piz Daint CPU ... 44

Table 68: CP2K, Test Case C, Piz Daint CPU ... 45

Table 69: CP2K, Test Case A, SuperMUC-NG ... 45

Table 70: CP2K, Test Case B, SuperMUC-NG ... 45

Table 71: CP2K, Test Case C, SuperMUC-NG ... 46

Table 72: CP2K – the optimum number of threads for Test Case A. 48

Table 73: CP2K – the optimum number of threads for Test Case C. 49

Table 74: CP2K – run times and energy consumption for Test Case C on Piz Daint GPU. 51

Table 75: Software versions used in GADGET-4 benchmarks ... 53

Table 76: Timings, speed-up, and parallel efficiency of Test Case A of GADGET-4 on

JUWELS ... 54

Table 77: Timings, speed-up, and parallel efficiency of Test Case A of GADGET-4 on

MareNostrum4 ... 54

Table 78: Energy measurements for GADGET-4 Test Case A on MareNostrum4. 55

Table 79: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach)

obtained with GADGET-4 on Irene-SKL. ... 56

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xiii 30.11.2021

Table 80: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach)

obtained with GADGET-4 on JUWELS. ... 56

Table 81: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach)

obtained with GADGET-4 on MareNostrum4. .. 57

Table 82: Timings, speed-up and parallel efficiency of Test Case B-n (node-based approach)

obtained with GADGET-4 on Irene-SKL. ... 57

Table 83: Timings, speed-up and parallel efficiency of Test Case B-n (node-based approach)

obtained with GADGET-4 on JUWELS. ... 58

Table 84: Benchmark run time, GPAW 20.1.0, Test Case S ... 61

Table 85: Benchmark run time, GPAW 20.10.0, Test Case S ... 62

Table 86: Efficiency with respect to a single core run, GPAW 20.1.0, Test Case S 62

Table 87: Efficiency with respect to a single core run, GPAW 20.10.0, Test Case S 63

Table 88: Benchmark run time per node, GPAW 20.1.0, Test Case S 64

Table 89: Benchmark run times, GPAW 20.1.0, Test Case M .. 65

Table 90: Benchmark run times, GPAW 20.10.0, Test Case M .. 65

Table 91: Efficiency with respect to a 48-core run, GPAW 20.1.0, Test Case M 66

Table 92: Efficiency with respect to a 48-core run, GPAW 20.10.0, Test Case M 67

Table 93: Efficiency with respect to a single node run on AMD EPYC, GPAW 20.1.0, Test

Case M .. 68

Table 94: Efficiency with respect to a single node run on AMD EPYC, GPAW 20.10.0, Test

Case M .. 68

Table 95: Benchmark run times, GPAW 20.1.0, Test Case L ... 69

Table 96: Benchmark run times, GAPW 20.10.0, Test Case L ... 70

Table 97: Efficiency with respect to a 480-core run, GPAW 20.1.0, Test Case L 71

Table 98: Efficiency with respect to a 480-core run, GPAW 20.10.1, Test Case L 71

Table 99: Efficiency with respect to a 512-core run, GPAW 20.1.0, Test Case L 72

Table 100: Efficiency with respect to a 512-core run, GPAW 20.10.0, Test Case L 72

Table 101: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case S 74

Table 102: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case M 75

Table 103: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case L 76

Table 104: Software environment used in GROMACS Benchmarks 78

Table 105: GROMACS performance on AMD EPYC based Systems 79

Table 106: GROMACS performance on Skylake based Systems ... 80

Table 107: GROMACS performance on GPU-based Systems .. 81

Table 108: GROMACS parallel efficiency for all Test Cases and Systems. 84

Table 109: Software environment used in NAMD Benchmarks ... 85

Table 110: NAMD performance on AMD EPYC based Systems ... 86

Table 111: NAMD performance on Skylake based Systems ... 87

Table 112: NAMD performance on GPU-based Systems ... 88

Table 113: Number of allocated nodes for NEMO for each Test Case and for each machine. 91

Table 114: Time and energy to solution of NEMO for both test cases on 1024 and 10240

cores of each machine. ... 91

Table 115: Time to solution (excluding IO time) of NEMO for both test cases on 1024 and

10240 cores of each machine. .. 92

Table 116: Hybrid MPI/OpenMP configurations used for PFARM (EXDIG) 93

Table 117: Numerical Libraries used for PFARM (EXDIG) ... 94

Table 118: Parallel Performance of PFARM (EXDIG) on Xeon-based systems (i) for Test

Cases 1c and 1d .. 97

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xiv 30.11.2021

Table 119: Parallel Performance of PFARM (EXDIG) on Xeon-based systems (ii) for Test

Cases 1c and 1d .. 97

Table 120: Parallel Performance of PFARM (EXDIG) on AMD-based systems for Test Cases

1c and 1d .. 98

Table 121: Parallel Performance of PFARM (EXDIG) on GPU-accelerated systems for Test

Cases 1c and 1d. (* The number of cores to be used in MAGMA calculations is not user-

specified, though MAGMA uses pthread parallelism for some CPU-based operations) 98

Table 122: Energy Consumption of PFARM (EXDIG) benchmarking runs for Test Case 1c.

 .. 101

Table 123: Energy Consumption of PFARM (EXDIG) benchmarking runs for Test Case 1d.

 .. 101

Table 124: The table shows the sustained performance of the UEABS QCD Part 1 with

volume V=8×64×64×64 using strong scaling in time to solution (in seconds) on the different

PRACE Tier-0 machines. ... 103

Table 125: Sustained performance of the UEABS QCD Part 2 test size V=96×32×32×32

using strong scaling on the current PRACE Tier-0 machines. The number obtained are

collected using double precision kernels. Note that the scalability of the QPhiX kernel is hard

limited by the local volume per MPI task. This is reached in case of 32 Nodes on Hawk, thus

limit the scaling towards larger number of nodes in the chosen parallelisation..................... 105

Table 126: Strong scaling of QCD Part 2 using the larger test size of V=128×64×64×64. The

quoted numbers are sustained performance in Gflop/s using double precision. 107

Table 127: Performance and parallel efficiency of Quantum ESPRESSO for the medium test

case on MARCONI100 GPU nodes ... 108

Table 128: Performance and parallel efficiency of Quantum ESPRESSO for the medium test

case on MARCONI100 using only CPUs .. 109

Table 129: Comparison of the performance of Quantum ESPRESSO for the medium test case

on MareNostrum4, JUWELS, SuperMUC-NG. ... 110

Table 130: Comparison of the performances of Quantum ESPRESSO for the large test case

for MareNostrum4, JUWELS and SuperMUC-NG ... 110

Table 131: Software environment used in SPECFEM3D_GLOBE Benchmarks 112

Table 132: SPECFEM3D_GLOBE Validation Test Case ... 112

Table 133: SPECFEM3D_GLOBE Test Case A ... 113

Table 134: SPECFEM3D_GLOBE Test Case B ... 114

Table 135: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Joliot-Curie Rome

 .. 116

Table 136: SPECFEM3D_GLOBE, strong scaling Validation Test Case on JUWELS Cluster

module .. 116

Table 137: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Joliot-Curie

Skylake ... 116

Table 138: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Vega 117

Table 139: SPECFEM3D_GLOBE, strong scaling Validation Test Case on MARCONI100

 .. 117

Table 140: SPECFEM3D_GLOBE, strong scaling Validation Test Case on JUWELS Booster

 .. 117

Table 141: SPECFEM3D_GLOBE, strong scaling Test Case A on Joliot-Curie Rome 120

Table 142: SPECFEM3D_GLOBE, strong scaling Test Case A on Hawk 120

Table 143: SPECFEM3D_GLOBE, strong scaling Test Case A on JUWELS Cluster module

 .. 120

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xv 30.11.2021

Table 144: SPECFEM3D_GLOBE, strong scaling Test Case A on Joliot-Curie Skylake 120

Table 145: SPECFEM3D_GLOBE, strong scaling Test Case A on Vega 120

Table 146: SPECFEM3D_GLOBE, strong scaling Test Case A on MARCONI100 121

Table 147: SPECFEM3D_GLOBE, strong scaling Test Case A on JUWELS Booster 121

Table 148: SPECFEM3D_GLOBE, strong scaling Test Case A on Piz Daint 121

Table 149: SPECFEM3D_GLOBE, energy consumption and solver time for the Validation

Test Case .. 124

Table 150: SPECFEM3D_GLOBE, energy consumption and solver time for Test Case A . 125

Table 151: SPECFEM3D_GLOBE, energy consumption and solver time for Test Case B . 126

Table 152: TOP500 performance of PRACE Tier-0 systems .. 134

Table 153: Selected relative speed per core per application-dataset combination 135

Table 154: Green500 energy efficiency of PRACE Tier-0 systems 136

Table 155: Selected relative energy to solution measurements ... 137

References and Applicable Documents

[1] https://www.prace-ri.eu

[2] NEMO website: https://www.nemo-ocean.eu

[3] Inputs-Outputs (using XIOS):

https://forge.ipsl.jussieu.fr/nemo/wiki/Users/ModelInterfacing/InputsOutputs

[4] Standard model Output (IOM):

https://www.nemo-ocean.eu/doc/node75.html#SECTION001421200000000000000

[5] https://geodynamics.org/cig/software/specfem3d_globe/

[6] D. Peter, D. Komatitsch, Y. Luo, R. Martin, N. Le Goff, E. Casarotti, P. Le Loher,

F. Magnoni, Q. Liu, C. Blitz, T. Nissen-Meyer, P. Basini, and J. Tromp. Forward and

adjoint simulations of seismic wave propagation on fully unstructured hexahedral

meshes. Geophys. J. Int., 186(2):721–739, 2011. doi: 10.1111/j.1365-

246X.2011.05044.x

[7] D. Komatitsch. Fluid-solid coupling on a cluster of GPU graphics cards for seismic

wave propagation. C. R. Acad. Sci., Ser. IIb Mec., 339:125–135, 2011. doi:

10.1016/j.crme.2010.11.007

[8] Piz Daint, Tier-0 system at CSCS, Switzerland:

https://www.cscs.ch/computers/piz-daint/

[9] SuperMUC-NG, Tier-0 system at LRZ, Germany:

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

[10] GPAW website: https://wiki.fysik.dtu.dk/gpaw/

[11] A G Sunderland, C J Noble, V M Burke and P G Burke, A Parallel R-matrix Program

PRMAT for Electron-Atom and Electron-Ion Scattering Calculations, Comput. Phys.

Commun. (CPC) 145 (2002), 311–340

[12] MILC code suite: http://www.physics.utah.edu/~detar/milc/

[13] Gray, Alan, and Kevin Stratford. A lightweight approach to performance portability

with targetDP. The International Journal of High Performance Computing Applications

(2016): 1094342016682071, Also available at https://arxiv.org/abs/1609.01479

[14] B. Joo, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. W. Lee, P.

Dubey, and W. Watson III. Lattice QCD on Intel Xeon Phi. International

Supercomputing Conference (ISC’13), 2013

https://www.prace-ri.eu/
https://www.nemo-ocean.eu/
https://forge.ipsl.jussieu.fr/nemo/wiki/Users/ModelInterfacing/InputsOutputs
https://www.nemo-ocean.eu/doc/node75.html#SECTION001421200000000000000
https://geodynamics.org/cig/software/specfem3d_globe/
https://www.cscs.ch/computers/piz-daint/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://wiki.fysik.dtu.dk/gpaw/
http://www.physics.utah.edu/~detar/milc/
http://www.physics.utah.edu/~detar/milc/
https://arxiv.org/abs/1609.01479
https://arxiv.org/abs/1609.01479

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xvi 30.11.2021

[15] R. Babbich, M. Clark, and B. Joo. Parallelizing the QUDA Library for Multi-GPU

Calculations in Lattice Quantum Chromodynamics. SC 10 (Supercomputing 2010)

[16] Constantia Alexandrou et al., Adaptive Aggregation-based Domain Decomposition

Multigrid for Twisted Mass Fermions, Phys.Rev.D 94 (2016) 11, 114509, 1610.02370

[hep-lat]

[17] Lattice QCD multigrid library: https://github.com/sbacchio/DDalphaAMG

[18] A library for lattice QCD on GPUs: https://lattice.github.io/quda/

[19] A Python API for lattice QCD applications: https://lyncs-api.github.io/

[20] GADGET-4 website: https://wwwmpa.mpa-garching.mpg.de/gadget4/

[21] Springel, V., Pakmor, R., Zier, O., and Reinecke, M., “Simulating cosmic structure

formation with the GADGET-4 code”, Monthly Notices of the Royal Astronomical

Society 506, 2871-2949 (2021)

[22] DEISA Benchmark Suite. Note: the DEISA Benchmarking Suite website is no longer

online, but a copy can be found via the Internet Archive:

https://web.archive.org/web/20120110132601/http://www.deisa.eu/science/benchmarki

ng

[23] PRACE Accelerator Benchmark Suite. Original GitLab location:

https://misterfruits.gitlab.io/ueabs/ms33.html. This repository is obsoleted by [24].

[24] UEABS, the Unified European Application Benchmark Suite. PRACE GitLab

repository: https://repository.prace-ri.eu/git/UEABS/ueabs/tree/master

[25] Alan D. Simpson, Mark Bull, and Jon Hill. Identification and Categorisation of

Applications and Initial Benchmarks Suite. PRACE-PP Deliverable D6.1, June 27,

2008. https://prace-ri.eu/wp-content/uploads/PP-D6.1.pdf

[26] Peter Michielse, Jon Hill, Guillaume Houzeaux, Olli-Pekka Lehto, and Walter Lioen.

Report on available Performance Analysis and Benchmark Tools, Representative

Benchmark. PRACE-PP Deliverable D6.3.1. November 24, 2008. https://prace-

ri.eu/wp-content/uploads/PP-D6.3.1.pdf

[27] Peter Michielse, Lukas Arnold, Olli-Pekka Lehto, and Walter Lioen. Final Benchmark

Suite. PRACE-PP Deliverable D6.3.2. June 18, 2010. https://prace-ri.eu/wp-

content/uploads/PP-D6.3.2.pdf

[28] Mark Bull, Stefanie Janetzko, Jose Carlos Sancho, and Jeroen Engelberts.

Benchmarking and Performance Modelling on Tier-0 Systems. PRACE-1IP Deliverable

D7.4.2. March 26, 2012. https://prace-ri.eu/wp-content/uploads/1IP-D7.4.2.pdf

[29] Mark Bull. Unified European Applications Benchmark Suite. PRACE-2IP Deliverable

D7.4. July 26, 2013. https://prace-ri.eu/wp-content/uploads/2IP-D7.4.pdf

[30] Mark Bull. UEABS Benchmarking Results. PRACE-3IP Deliverable D7.3.2. February

20, 2014. https://prace-ri.eu/wp-content/uploads/3IP-D7.3.2.pdf

[31] G. Hautreux, D. Dellis, C. Moulinec, A. Sunderland, A. Gray, A. Proeme, V. Codreanu,

A. Emerson, B. Eguzkitza, J. Strassburg, and M. Louhivuori. Description of the initial

accelerator benchmark suite. PRACE White Paper WP212. https://prace-ri.eu/wp-

content/uploads/WP212.pdf

[32] Victor Cameo Ponz. Application performance on accelerators. PRACE-4IP Deliverable

D7.5. March 24, 2017. https://prace-ri.eu/wp-content/uploads/4IP-D7.5.pdf

[33] Victor Cameo Ponz. Performance and energy metrics on PCP systems. PRACE-4IP

Deliverable D7.7. January 8, 2018. https://prace-ri.eu/wp-content/uploads/4IP-D7.7.pdf

[34] Walter Lioen, Miguel Avillez, Valeriu Codreanu, Dimitris Dellis, Sagar Dolas, Andrew

Emerson, Jacob Finkenrath, Cédric Jourdain, Martti Louhivuori, Cristian Morales,

https://github.com/sbacchio/DDalphaAMG
https://lattice.github.io/quda/
https://lyncs-api.github.io/
https://wwwmpa.mpa-garching.mpg.de/gadget4/
https://web.archive.org/web/20120110132601/http:/www.deisa.eu/science/benchmarking
https://web.archive.org/web/20120110132601/http:/www.deisa.eu/science/benchmarking
https://misterfruits.gitlab.io/ueabs/ms33.html
https://repository.prace-ri.eu/git/UEABS/ueabs/tree/master
https://prace-ri.eu/wp-content/uploads/PP-D6.1.pdf
https://prace-ri.eu/wp-content/uploads/PP-D6.3.1.pdf
https://prace-ri.eu/wp-content/uploads/PP-D6.3.1.pdf
https://prace-ri.eu/wp-content/uploads/PP-D6.3.2.pdf
https://prace-ri.eu/wp-content/uploads/PP-D6.3.2.pdf
https://prace-ri.eu/wp-content/uploads/1IP-D7.4.2.pdf
https://prace-ri.eu/wp-content/uploads/2IP-D7.4.pdf
https://prace-ri.eu/wp-content/uploads/3IP-D7.3.2.pdf
https://prace-ri.eu/wp-content/uploads/WP212.pdf
https://prace-ri.eu/wp-content/uploads/WP212.pdf
https://prace-ri.eu/wp-content/uploads/4IP-D7.5.pdf
https://prace-ri.eu/wp-content/uploads/4IP-D7.7.pdf

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xvii 30.11.2021

Charles Moulinec, Arno Proeme, and Andrew Sunderland, authors. Giannis Koutsou

and Srijit Paul, contributors. Evaluation of Accelerated and Non-accelerated

Benchmarks. PRACE-5IP Deliverable D7.5. PRACE, April 18, 2019. https://prace-

ri.eu/wp-content/uploads/5IP-D7.5.pdf

[35] Stephen Booth. Technical lessons learnt from the implementation of the joint PCP for

PRACE-3IP. PRACE-3IP Deliverable D8.3.4, January 10, 2018. https://prace-ri.eu/wp-

content/uploads/3IP-D8.3.4.pdf

[36] CORAL Benchmarks: https://asc.llnl.gov/coral-benchmarks

[37] CORAL-2 Benchmarks: https://asc.llnl.gov/coral-2-benchmarks

[38] Code_Saturne: https://www.code-saturne.org/cms/web/

[39] AmgX: https://github.com/NVIDIA/AMGX

[40] Benjamin Lindner, Loukas Petridis, Roland Schulz, and Jeremy C. Smith. Solvent-

Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in

Molecular Dynamics Simulation. Biomacromolecules 2013, 14, 10, 3390–3398.

http://pubs.acs.org/doi/abs/10.1021/bm400442n

[41] Intel-Optimised Math Library for Numerical Computing

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html

[42] Tomorov, Dongara, Baboulin. Towards dense linear algebra for hybrid GPU

accelerated manycore systems, Parallel Computing 36 (2010) 232–240

[43] MAGMA for Matrix Algebra on GPU and Multicore architectures

https://icl.cs.utk.edu/magma/

[44] LAPACK: Linear Algebra PACKage www.netlib.org/lapack

[45] AMD BLAS Library https://developer.amd.com/amd-aocl/blas-library/

[46] ICL Research Profile https://www.icl.utk.edu/research/magma

[47] Cray XC Advanced Power Management Updates:

https://cug.org/proceedings/cug2018_proceedings/includes/files/pap174s2-file1.pdf

List of Acronyms and Abbreviations

aisbl Association International Sans But Lucratif

(legal form of the PRACE-RI)

AMD Advanced Micro Devices

AmgX Algebraic Multigrid Solver library (NVIDIA)

API Application Programming Interface

ARM previously Advanced RISC Machine, originally Acorn RISC Machine

ASE Atomic Simulation Environment: A Python library for working with atoms

AVX Advanced Vector Extensions

BCO Benchmark Code Owner

BLAS Basic Linear Algebra Subprograms

BSD Berkeley Software Distribution

BXI Bull eXascale Interconnect

CAPMC Cray Advanced Platform Monitoring and Control

CC C Compiler

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CIG Computational Infrastructure for Geodynamics

CORAL Collaboration Oak Ridge, Argonne, Livermore

CP2K Car-Parinello 2k

https://prace-ri.eu/wp-content/uploads/5IP-D7.5.pdf
https://prace-ri.eu/wp-content/uploads/5IP-D7.5.pdf
https://prace-ri.eu/wp-content/uploads/3IP-D8.3.4.pdf
https://prace-ri.eu/wp-content/uploads/3IP-D8.3.4.pdf
https://asc.llnl.gov/coral-benchmarks
https://asc.llnl.gov/coral-2-benchmarks
https://www.code-saturne.org/cms/web/
https://github.com/NVIDIA/AMGX
http://pubs.acs.org/doi/abs/10.1021/bm400442n
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://icl.cs.utk.edu/magma/
http://www.netlib.org/lapack
https://developer.amd.com/amd-aocl/blas-library/
https://www.icl.utk.edu/research/magma
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap174s2-file1.pdf

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xviii 30.11.2021

CPU Central Processing Unit

cuBLAS CUDA BLAS (NVIDIA)

CUDA Compute Unified Device Architecture (NVIDIA)

cuDNN CUDA DNN (NVIDIA)

cuFFT CUDA FFT (NVIDIA)

cuFFTW CUDA FFTW (NVIDIA)

DAVIDE Development for an Added Value Infrastructure Designed in Europe

DBCSR Distributed Block Compressed Sparse Row

DDR4 Double Data Rate 4

DEEP Dynamical Exascale Entry Platform

DEISA Distributed European Infrastructure for Supercomputing Applications EU

project by leading national HPC centres

DFT Density-Functional Theory

DFTB Density-Functional based Tight Binding

DNN Deep Neural Network

DoA Description of Action (formerly known as DoW)

DP Double Precision

DRAM Dynamic RAM

EC European Commission

EDF Électricité de France R&D

EDR Enhanced Data Rate

ELPA Eigenvalue Solvers for Petaflop Applications

ESSL Engineering Scientific Subroutine Library (IBM)

FCC Face-Centred Cubic

FFT Fast Fourier Transform

FFTW Fastest Fourier Transform in the West

flop floating-point operation

FMM Fast-Multipole Method

FP32 32-bit Floating-Point

FP64 64-bit Floating-Point

FWI Full Waveform Imaging

GADGET GAlaxies with Dark matter and Gas intEracT

GAPW Gaussian Augmented Plane Wave method

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/s Giga (= 109) bits per second, also Gbit/s

GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GCC GNU Compiler Collection

GDR GPUDirect (NVIDIA)

Gflop/s Giga (= 109) floating-point operations (usually in 64-bit, i.e. DP) per second,

also GF/s

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GNU GNU’s Not UNIX

GPGPU General-Purpose GPU

GPL GNU Public License

GPU Graphic Processing Unit

GPW Gaussian Plane Wave method

GROMACS GROningen MAchine for Chemical Simulations

GSL GNU Scientific Library

HBM High Bandwidth Memory

HDF5 Hierarchical Data Format 5

HDR High Data Rate

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xix 30.11.2021

HFI Host Fabric Interface

HIP Heterogeneous-Computing Interface for Portability

HPC High Performance Computing; Computing at a high performance level at any

given time; often used synonym with Supercomputing

HPE Hewlett Packard Enterprise

HPL High Performance LINPACK

IB InfiniBand

IBM International Business Machines

IC Initial Condition

ICL Innovative Computing Laboratory (University of Tennessee)

ICT Information Communication Technology

IO Input/Output

IPMB Intelligent Platform Management Bus/Bridge

ISC International Supercomputing Conference; European equivalent to the US based

SCxx conference. Held annually in Germany.

JU Joint Undertaking

JUWELS Jülich Wizard for European Leadership Science

KB Kilo (= 210 ~103) Bytes (= 8 bits), also Kbyte

KNC Knights Corner (Intel)

KNL Knights Landing (Intel)

LAPACK Linear Algebra Package

LGPL GNU Lesser General Public License

LINPACK Software library for Linear Algebra

MB Management Board (highest decision making body of the project)

MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte

MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s

MCDRAM Multi-Channel DRAM

MD Molecular Dynamics

Mflop/s Mega (= 106) floating-point operations (usually in 64-bit, i.e. DP) per second,

also MF/s

MIC Many-Integrated Core (Intel)

MILC MIMD Lattice Computation

MIMD Multiple Instruction Multiple Data

MKL Math Kernel Library (Intel)

MOOC Massively open online Course

MoU Memorandum of Understanding.

MPI Message Passing Interface

MPICH MPI over CHameleon

MPT Message Passing Toolkit (HPE)

NAMD Nanoscale Molecular Dynamics

NCCL NVIDIA Collective Communications Library

NEMO Nucleus for European Modelling of the Ocean

NetCDF Network Common Data Form

NUMA Non-Uniform Memory Access

OMP OpenMP

OMPI Open MPI

oneAPI an open standard for a unified API

OPA Omni-Path (Intel)

OpenACC Open Accelerators

OpenCL Open Computing Language

OpenMP Open Multi-Processing

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xx 30.11.2021

OpenMPI Open MPI

OS Operating System

PA Preparatory Access (to PRACE resources)

PABS PRACE Application Benchmark Suite

PAPI Performance Application Programming Interface

PB Peta (= 250 ~ 1015) Bytes (= 8 bits), also PByte

PC Personal Computer

PCH Platform Controller Hub

PCI Peripheral Component Interconnect

PCIe PCI express

PCP Pre-Commercial Procurement

Pflop/s Peta (=1015) floating-point operations (usually in 64-bit, i.e. DP) per second, also

PF/s

PGI Portland Group, Inc (acquired by NVIDIA)

PLE Parallel Locator Exchange (coupling library)

PRACE Partnership for Advanced Computing in Europe; Project Acronym

PRACE 2 The upcoming next phase of the PRACE Research Infrastructure following the

initial five year period.

PRMAT Parallel R-matrix Program

PWscf Plane-Wave Self-Consistent Field

PyCUDA Python CUDA

QCD Quantum Chromodynamics

QE Quantum ESPRESSO

QM/MM Quantum Mechanics/Molecular Mechanics

QUDA A library for QCD on GPUs

RAM Random-Access Memory

RI Research Infrastructure

RISC Reduced Instruction Set Computer

RUR Resource Utilisation Reporting

SC Supercomputing Conference (in the US)

ScaLAPACK Scalable LAPACK

SCF Self-Consistent Field method

SDK Software Development Kit

SDV Software Development Vehicle (DEEP-ER prototype)

SEM Spectral-Element Method

SFC Space-Filling Curve

SHOC Scalable HeterOgeneous Computing

SIMD Single Instruction Multiple Data

SKL Skylake (Intel)

SKU Stock-Keeping Unit

Slurm Slurm Workload Manager, formerly known as Simple Linux Utility for

Resource Management

SM Streaming Multiprocessor

SPH Smoothed-Particle Hydrodynamics

SSD Solid-State Disk

STMV Satellite Tobacco Mosaic Virus

SuSE Software und System-Entwicklung

SVE Scalable Vector Extension (ARM)

TACC Texas Advanced Computing Center

TB Technical Board (group of Work Package leaders)

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xxi 30.11.2021

Tflop/s Tera (= 1012) floating-point operations (usually in 64-bit, i.e. DP) per second,

also TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the

Supercomputing Research Infrastructure would host the Tier-0 systems; national

or topical HPC centres would constitute Tier-1

TPU Tensor Processing Unit

TreePM Tree Particle Mesh

UCX Unified Communication – X framework library (Mellanox)

UEABS Unified European Applications Benchmark Suite

US United States

WLM WorkLoad Manager

XIOS XML-IO Server

List of Project Partner Acronyms

BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der

Wissenschaften, Germany (3rd Party to GCS)

BILKENT Bilkent University, Turkey (3rd Party to UHEM)

BSC Barcelona Supercomputing Center - Centro Nacional de

Supercomputacion, Spain

CaSToRC The Computation-based Science and Technology Research Center

(CaSToRC), The Cyprus Institute, Cyprus

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives,

France (3rd Party to GENCI)

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to

UANTWERPEN)

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación

de Galicia, Spain, (3rd Party to BSC)

CINECA CINECA Consorzio Interuniversitario, Italy

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd

Party to GENCI)

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to

GENCI)

CSC CSC Scientific Computing Ltd., Finland

CSIC Spanish Council for Scientific Research (3rd Party to BSC)

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to

PNSC)

DTU Technical University of Denmark (3rd Party of UCPH)

EPCC EPCC at The University of Edinburgh, UK

EUDAT EUDAT OY

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland

GCS Gauss Centre for Supercomputing e.V., Germany

GÉANT GÉANT Vereniging

GENCI Grand Equipement National de Calcul Intensif, France

GRNET National Infrastructures for Research and Technology, Greece

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to

BSC)

INRIA Institut National de Recherche en Informatique et Automatique, France

(3rd Party to GENCI)

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xxii 30.11.2021

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd

Party to UC-LCA)

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic

IUCC Machba - Inter University Computation Centre, Israel

JUELICH Forschungszentrum Jülich GmbH, Germany

KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU)

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to

UANTWERPEN)

LiU Linkoping University, Sweden (3rd Party to SNIC-UU)

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V.,

Germany (3rd Party to GCS)

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,

Bulgaria

NTNU The Norwegian University of Science and Technology, Norway (3rd

Party to SIGMA2)

NUI-Galway National University of Ireland Galway, Ireland

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium

PSNC Poznan Supercomputing and Networking Center, Poland

SDU University of Southern Denmark (3rd Party to UCPH)

SIGMA2 UNINETT Sigma2 AS, Norway

SNIC-UU Uppsala Universitet, Sweden

STFC Science and Technology Facilities Council, UK (3rd Party to UEDIN)

SURF SURF is the collaborative organisation for ICT in Dutch education

and research

TASK Politechnika Gdańska (3rd Party to PNSC)

TU Wien Technische Universität Wien, Austria

UANTWERPEN Universiteit Antwerpen, Belgium

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada,

Portugal

UCPH Københavns Universitet, Denmark

UEDIN The University of Edinburgh

UEVORA University of Évora, Portugal (3rd Party to UC-LCA)

UHEM Istanbul Technical University, Ayazaga Campus, Turkey

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien)

UiO University of Oslo, Norway (3rd Party to SIGMA2)

UL UNIVERZA V LJUBLJANI, Slovenia

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN)

U Luxembourg University of Luxembourg

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA)

UmU Umea University, Sweden (3rd Party to SNIC-UU)

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA)

UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS)

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC)

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 xxiii 30.11.2021

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 1 30.11.2021

Executive Summary

This deliverable presents the results of running the Unified European Application Benchmark

Suite (UEABS). This work has been undertaken by Task 7.4 “Supporting European HPC

Researchers” in the PRACE Sixth Implementation Phase (PRACE-6IP) project and is an

extension of the work carried out in previous PRACE Implementation Phase projects.

The UEABS is a set of currently 13 application codes taken from the pre-existing DEISA

Benchmark Suite, the PRACE Application Benchmark suite, and the PRACE Accelerator

Benchmark Suite. The objective is providing a single benchmark suite of scalable, currently

relevant and publicly available application codes and datasets, of a size which can realistically

be run on large systems, and maintained in the future.

We present benchmark results and performance analyses on the current PRACE Tier-0 systems

and for some applications on the recently available EuroHPC pre-exascale system HPC Vega.

Furthermore, we compare the energy efficiency from an application point of view of systems

where energy measurements at job level are possible. Finally, we conclude with a high-level

comparison of the benchmark systems: starting with the ubiquitous LINPACK performance;

followed by both application performance (time to solution, or speed) as well as energy

efficiency (energy to solution). For this we combine all benchmark results and derive a

comparison of the overall performance of the systems, and a comparison of the energy

efficiency for the systems where we obtained energy measurements.

The results demonstrate that for some benchmarks there are significant differences in the

performance obtained on the different architectures, and no one architecture gives the best

performance on all the benchmarks.

The energy efficiency of the systems where energy measurements are possible strongly depends

on the application benchmark / dataset / problem size / node count. Where usable, the GPU-

based systems are the most energy efficient.

As expected, the optimal system/architecture strongly depends on the application benchmark /

dataset / problem size / node count. The conclusion might be that LINPACK performance still

is a reasonable indicator for application performance, but most people – including the

LINPACK originators themselves – will disagree.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 2 30.11.2021

1 Introduction

The Unified European Application Benchmark Suite (UEABS) [24] is a set of currently 13

application codes taken from the pre-existing DEISA Benchmark Suite [22], the PRACE

Application Benchmark suite (PABS) [27], and the PRACE Accelerator Benchmark Suite [32].

The objective is providing a single benchmark suite of scalable, currently relevant and publicly

available application codes and datasets, of a size which can realistically be run on large

systems, and maintained in the future.

1.1 UEABS History and Previous Work

The PRACE benchmarking activity was started during the PRACE-PP project [25][26][27] and

the benchmark activities continued in PRACE-1IP [28]. The UEABS itself was only publicly

released (Version 1.0) by the PRACE-2IP project [29]. Benchmarking activities continued in

PRACE-3IP resulting in a new release (Version 1.1) and a benchmark report [30].

In PRACE-4IP the UEABS was updated twice (Version 1.2 and 1.3) and a separate activity on

the PRACE Accelerator Benchmark Suite was started. The Accelerator Benchmark Suite [31]

was based on a subset of the UEABS Version 1.2, where some applications were removed

because of a lack of accelerator potential; and one application and a synthetic benchmark have

been added. The Accelerator Benchmark Suite was published as GitLab repository [23], and a

benchmark report targeting GPUs and Xeon Phi has been produced [32]. In the PRACE-4IP

extension, a benchmark report targeting the PCP prototypes was produced [33].

In PRACE-5IP we re-integrated the accelerator versions and moved the UEABS to the PRACE

git repository. The original benchmark scope has been extended by including two PRACE-3IP

PCP [35] prototype systems: DAVIDE and Frioul; the Mont-Blanc 3 prototype system Dibona;

and the DEEP-ER prototype system SDV. The UEABS was updated twice (Version 2.0

and 2.1). Finally, an extensive benchmark report was published [34].

1.2 Work Described in this Report

In the PRACE-6IP DoA we committed the following: “This task will also update and maintain

the Unified European Applications Benchmark Suite (UEABS), including versions for standard

CPUs and for GPUs. We will evaluate the results on PRACE systems using both the standard

benchmarks and the accelerated benchmarks, compare where both are available, and will strive

to identify reasons for, and patterns in, the performance. Task 7.4 will also investigate the

maturity of energy measurement tools and, where possible, use these to analyse the energy

usage of the benchmarks. UEABS can be used in future procurements and can help guide

European researchers selecting systems that are most appropriate for their computational

requirements.” We improved the presentation of the UEABS at the PRACE git repository,

following the setup of the CORAL Benchmarks [36][37]. We updated applications and datasets,

and ported the applications to new systems. Apart from the updates, we replaced the synthetic

SHOC benchmark suite by TensorFlow, a well-known and frequently used software library for

machine learning and artificial intelligence. For the benchmarking itself, we focused on the

PRACE Tier-0 systems, but managed to extend the original scope a bit by including the recently

available HPC Vega system (a EuroHPC pre-exascale system) for two of the UEABS

applications.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 3 30.11.2021

In December 2021 we will release UEABS Version 2.2 an updated version that reflects the

applications and datasets as described and used in this report.

1.3 Outline

Section 2 describes the application benchmarks, the test problems and datasets. Section 3

provides descriptions of the benchmark systems. Section 4 presents the benchmark results per

application. Finally, in Section 5 – based on the benchmark results – a comparison is presented

on the relative performance of the benchmark systems.

1.4 Intended Audience

The UEABS can be used as one of the benchmarks in future procurements and it can help

European researchers chose systems that are appropriate for their computational requirements.

2 Application Benchmarks

Currently, the UEABS is a set of 13 application codes. In the sections below, we describe the

benchmark applications, the benchmark problems and the datasets.

2.1 Alya

2.1.1 Code Description

The Alya System is a computational mechanics code capable of solving different types of

physics, each one with its own model characteristics, in a coupled way. Among the problems it

solves are: convection-diffusion reactions, incompressible flows, compressible flows,

turbulence, bi-phasic flows and free surface, excitable media, acoustics, thermal flow, quantum

mechanics (DFT) and solid mechanics (large strain).

From scratch, Alya was specially designed for massively parallel supercomputers, and the

parallelisation embraces four levels of the computer hierarchy. A substructuring technique with

MPI as the message passing library is used for distributed memory supercomputers. At the node

level, both loop and task parallelisms are considered using OpenMP as an alternative to MPI.

Dynamic load balance techniques have been introduced as well to better exploit computational

resources at the node level. At the CPU level, some kernels are also designed to enable

vectorisation. Finally, accelerators like GPUs are also exploited through OpenACC pragmas or

with CUDA to further enhance the performance of the code on heterogeneous computers.

2.1.2 Test Cases

 Test Case A: A 132 million element mesh representing the flow around a sphere. 25-step

simulation.

 Test Case B: A 1056 million element mesh representing the flow around a sphere.

100-step simulation.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 4 30.11.2021

2.2 Code_Saturne

2.2.1 Code Description

Code_Saturne [38] is an open-source multi-purpose CFD software, primarily developed by

EDF R&D and maintained by them. The main discretisation relies on the finite volume method

and a collocated arrangement of unknowns to solve the Navier-Stokes equations, for

incompressible or compressible flows, laminar or turbulent flows and non-Newtonian and

Newtonian fluids. Another discretisation, based on the Compatible Discrete Operators strategy

is currently under development in the code. A highly parallel coupling library (Parallel Locator

Exchange – PLE) is also available in the distribution to account for other physics, such as

conjugate heat transfer and structure mechanics. For the incompressible solver, the pressure is

solved using an integrated Algebraic Multi-Grid algorithm and the scalars are computed by

conjugate gradient-like methods or Gauss-Seidel/Jacobi.

The original version of the code is written in C for pre-postprocessing, IO handling,

parallelisation handling, linear solvers and gradient computation, and Fortran95 for most of the

physics implementation. More and more modules of the codes are now translated into C. MPI

is used on distributed memory machines and OpenMP pragmas have been added to the most

costly parts of the code. The version used in this work (also freely available) relies also on

external libraries, such as AmgX [39] for the pressure, and CUDA to take advantage of potential

GPU acceleration.

The equations are solved iteratively using time-marching algorithms, and most of the time spent

during a time step is usually due to the computation of the velocity-pressure coupling, for simple

physics. For this reason, the test cases chosen for the benchmark suite have been designed to

assess the velocity-pressure coupling computation, and rely on the same configuration, with

Test Case A being the baseline test case and the 3 others being obtained by mesh multiplication

(or global refinement), the time step being divided by 3, after each refinement, to ensure

stability of the simulations.

2.2.2 Test Cases

Four test cases are dealt with the mesh size and the time step being changed. Depending on the

architecture run on and the type of physics investigated, it is expected that 10,000 to 40,000

cells per MPI task are required to keep good performance.

 Test Case A: A 13 million tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-

driven cavity.

 Test Case B: A 111 million tetrahedral cell mesh to simulate a laminar flow in a 3-D

lid-driven cavity. It is obtained by triggering mesh multiplication once, with the mesh

being generated on-the-fly, or written on the disk, and read again for other tests. The

time-step is divided by 3 compared to Test Case A.

 Test Case C: A 888 million tetrahedral cell mesh to simulate a laminar flow in a 3-D

lid-driven cavity. It is obtained by triggering mesh multiplication twice, with the mesh

being generated on-the-fly, or written on the disk, and read again for other tests. The

time-step is divided by 9 compared to Test Case A.

 Test Case D: A 7 billion tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-

driven cavity. It is obtained by triggering mesh multiplication three times, with the mesh

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 5 30.11.2021

being generated on-the-fly, or written on the disk, and read again for other tests. The

time-step is divided by 27 compared to Test Case A.

2.3 CP2K

2.3.1 Code Description

CP2K is a freely available quantum chemistry and solid-state physics software package for

performing atomistic simulations. It can be used to perform atomistic simulations of biological,

chemical, liquid, crystal, molecular and solid-state systems. At the core of the density-

functional theory calculations in CP2K is the QuickStep algorithm which is based on the

Gaussian and Plane-Waves method (GPW). This makes use of a dual basis of atom centred

Gaussian orbital and plane waves. CP2K has a wide variety of features such as molecular

dynamics, QM/MM, vibrational analysis, minimisation, Monte Carlo, core level spectroscopy.

Supported theory levels include DFTB, LDA, GGA, MP2, RPA, semi-empirical methods

(AM1, PM3, PM6, RM1, MNDO, ...), and classical force fields.

CP2K is written in Fortran and is fully MPI parallelised. It also contains threaded OpenMP

regions and can be run in hybrid MPI+OpenMP mode. This has the advantage of allowing for

greater memory usage across processes. OpenMP has been increasingly added to the code and

is now present in all key areas. CP2K can also make use of GPU accelerators through the

addition of offloading via CUDA. At present GPU offloading has been enabled in CP2K’s

DBCSR library and its collocate and integrate grid operations. There is also support for using

the CUDA libraries cuFFTW and cuBLAS.

CP2K makes use of LAPACK, ScaLAPACK, and BLAS for its numerical operations and these

libraries are required to install CP2K. In addition, the FFTW library is also highly recommended

for good performance of FFTs. Other libraries are also recommended for improving the

performance of key areas of the code such as ELPA for diagonalisation and libxsmm and Cosma

for matrix operations. Some features and options in CP2K are only available when it is built

with particular libraries. Libint is needed for calculations of the Hartree-Fock exchange, and

Libxc provides additional exchange-correlation functionals. Additional libraries supported

include Sirius, Plumed, Libvori and spglib.

2.3.2 Test Cases

Test Case A – H2O-512

Test Case A is an ab initio molecular dynamics simulation of 512 liquid water molecules. The

Born-Oppenheimer approach is used along with Quickstep density-functional theory (DFT).

The local density approximation is used for the exchange-correlation functional and the TZV2P

basis set is used. The plane wave energy cut off is set to 280 Ry. The molecular dynamics

simulation runs for 10 steps.

Test Case B – LiH-HFX

Test Case B is a single point energy calculation of a 216 atom LiH crystal. The DFT calculation

is done with Quickstep GAPW (augmented GPW) and the hybrid Hartree Fock exchange

(HFX) is used for the exchange-correlation energy. The plane wave energy cutoff is 300 Ry.

This calculation is memory intensive and requires a memory parameter (MAX_MEMORY) to

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 6 30.11.2021

be set at run time to set the amount of memory to be assigned to the HFX module. The choice

for this value depends on the amount of memory available per process, which depends on the

memory per node and the number of MPI processes used at run time. Because of the high

memory requirements this calculation may benefit from using multiple threads with a

combination MPI+OpenMP, which increases the available memory per MPI process. For a

benchmark run a converged SCF wavefunction must be supplied in order to assist with the

calculation of the initial electron density.

Test Case C – H2O-DFT-LS

Test Case C is a single energy point calculation of 2048 water molecules (6144 atoms). It uses

linear scaling DFT which allows for much better scaling for simple systems, with scaling up to

1 million atoms. The LDA functional is used with a DZVP molecular optimised (MOLOPT)

basis set and a 300 Ry plane wave energy cutoff. The main component of this calculation

involves sparse matrix-matrix multiplications which are done through the DBCSR library. This

library includes operations which are offloaded to GPU.

2.4 GADGET

2.4.1 Code Description

GADGET-4 (GAlaxies with Dark matter and Gas intEracT) is an N-body/smoothed particle

hydrodynamics code that is used primarily in cosmological simulations coupling gas and dark

matter, and galaxies evolution (including collisions among them) taking into account the

galaxies’ disks, bulge, halo, and dark matter all distributed in particles. The code can also be

used in classical gas dynamics problems in one, two and three dimensions.

The code includes major improvements on several algorithms over previous versions,

GADGET-2 and GADGET-3. In particular the improvements occurred in the force calculation

accuracy, in time-stepping, in adaptivity to a large dynamic range in time-scales, in

computational efficiency, and a more-sophisticated domain decomposition algorithm. It offers

several variants of Poisson solvers, among them a classic one-side tree-based multipole

expansion or a fast-multipole method (FMM), both up to triakontadipole (5th) order, and

optional combinations of them with an FFT-based particle-mesh algorithm for the long-range

gravitational field. GADGET-4 includes complex functionality for IC generation and

postprocessing, such as on the fly group finders and light cone outputs.

A novelty in the code is the parallel scalability through a special MPI/shared-memory

parallelisation and communication strategy based on MPI 3. When more than one MPI task is

used, the code will use a hybrid communication scheme in which data stored by different MPI

tasks on the same compute node are accessed directly via shared-memory. The code

automatically detects groups of MPI ranks running on the same node. If more than one node is

in use, at least one MPI task on each node is set aside for asynchronously serving incoming

communication requests from other nodes (if only a single shared-memory node is used, this is

not done). This means that multi-node jobs must have a minimum of two MPI ranks on each

node. On multicore single nodes, MPI is still needed as it forms the base of the inter-core

communications.

This new version of GADGET, developed by Volker Springel (the main developer) and

collaborators, is mostly written in C++ (C++11 standard) and runs on Linux/Unix platforms,

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 7 30.11.2021

including MacOS and other BSD based facilities using GSL, FFTW3, and HDF5 libraries. It

can be found at [20] and is presented in a paper published in the Monthly Notices of the Royal

Astronomical Society journal in 2021 [21].

2.4.2 Test Cases

2.4.2.1 Test Case A: Cosmological Dark Matter-only Simulation

This test case involves the three-dimensional simulation of the structure formation in the

universe in a small box of linear length (in each direction) of 50 Mpc/h (pc denotes a parsec =

3.086×1016 m; Mpc = 106 pc; h denotes the Hubble constant) using 5123 dark matter particles.

The initial conditions are created on the fly after start-up of the simulation at redshift 𝑍 = 63.

The simulation evolves until redshift 𝑍 = 50. In order to minimise memory consumption 32-

bit arithmetic is used.

2.4.2.2 Test Case B: Blob Test

The blob test described in [21] and references therein consists in the simulation of a spherical

cloud (blob) that is placed in a wind tunnel in pressure equilibrium with the surrounding

medium. The cloud has a temperature and a density 10 times lower and higher, respectively,

than the surrounding medium. This test allows for the development of hydrodynamical

instabilities at the cloud surface, e.g. Kelvin-Helmholtz and Rayleigh-Taylor, leading to the

cloud breakup with time. The cloud is setup with 1 million SPH particles. A more sizeable test

is done with 10 million particles.

2.5 GPAW

2.5.1 Code description

GPAW [10] is a density-functional theory (DFT) program for ab initio electronic structure

calculations using the projector augmented wave method. It uses a uniform real-space grid

representation of the electronic wave functions that allows for excellent computational

scalability and systematic converge properties.

GPAW is written mostly in Python but includes also computational kernels written in C as well

as leveraging external libraries such as NumPy, BLAS, LAPACK, and ScaLAPACK.

Parallelisation is based on message-passing using MPI without support for multithreading.

GPAW is a CPU-based code. There is, however, a GPU version under development (again, as

the first effort started in 2012 but died) by a group at CSC with no official releases so far. That

code is based on CUDA (PyCUDA, cuBLAS, cuFFT, and custom CUDA kernels) but currently

being ported to AMD GPUs using HIP to be ready for the upcoming LUMI pre-exascale system.

GPAW is freely available under the GPL license.

Given that the GPU version is currently under heavy development and very immature, the

benchmarking in PRACE-6IP is restricted to the CPU version.

2.5.2 Test Cases

The test cases were re-developed for GPAW 20.1.0 and 20.10.0. Test Cases M and L do not

work well with older versions of GPAW. During the course of the PRACE-6IP project, version

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 8 30.11.2021

21.1.0 and 21.6.0 also became available. 21.1.0 was also tested but is not fully compatible with

the L test case. 21.6.0 became available too late in the project to test.

2.5.2.1 Test Case S: Carbon Nanotube

A ground state calculation for a carbon nanotube in vacuum. By default, uses a 6-6-10 nanotube

with 240 atoms (freely adjustable) and serial LAPACK with an option to use ScaLAPACK.

Expected to scale up to 100 MPI tasks.

2.5.2.2 Test Case M: Copper Filament

A ground state calculation for a copper filament in vacuum. By default it uses a 2×2×3 FCC

lattice with 71 atoms (freely adjustable) and ScaLAPACK for parallelisation. Expected to scale

up to 1000 MPI tasks.

2.5.2.3 Test Case L: Silicon Cluster

A ground state calculation for a silicon cluster in vacuum. By default, the cluster has a radius

of 15 Å (freely adjustable) and consists of 702 atoms, and ScaLAPACK is used for

parallelisation. Expected to scale up to 2500 MPI tasks after which scaling becomes poor on

most clusters.

2.6 GROMACS

2.6.1 Code Description

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian

equations of motion for systems with hundreds to millions of particles. It is primarily designed

for biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated

bonded interactions, but since GROMACS is extremely fast at calculating the non-bonded

interactions (that usually dominate simulations) many groups are also using it for research on

non-biological systems, e.g. polymers. GROMACS supports all the usual algorithms you expect

from a modern molecular dynamics implementation, but there are also quite a few features that

make it stand out from the competition.

GROMACS provides extremely high performance compared to all other programs. A lot of

algorithmic optimisations have been introduced in the code. In recent versions of GROMACS,

on almost all common computing platforms, the innermost loops are written in C using intrinsic

functions that the compiler transforms to SIMD machine instructions, to utilise the available

instruction-level parallelism. These kernels are available in either single or double precision,

and support all the different kinds of SIMD instructions found in x86-family (and other)

processors. It is capable of hybrid parallelisation, i.e. both MPI and OpenMP and supports

offloading to accelerators using CUDA.

GROMACS is free software, available under the GNU Lesser General Public License (LGPL),

version 2.1 or later.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 9 30.11.2021

2.6.2 Test Cases

2.6.2.1 Test Case A: GluCl Ion Channel

The ion channel system is the membrane protein GluCl, which is a pentameric chloride channel

embedded in a lipid bilayer. The GluCl ion channel was embedded in a DOPC membrane and

solvated in TIP3P water. This system contains 142k atoms, and is a quite challenging

parallelisation case due to the small size. However, it is likely one of the most wanted target

sizes for biomolecular simulations due to the importance of these proteins for pharmaceutical

applications. It is particularly challenging due to a highly inhomogeneous and anisotropic

environment in the membrane, which poses hard challenges for load balancing with domain

decomposition. This test case was used as the “Small” test case in previous PRACE-2IP–5IP

projects. Benchmark is a 50000 MD steps run. It is reported to scale efficiently up to 300–1000

cores on recent x86 based systems.

2.6.2.2 Test Case B: Lignocellulose

A model of cellulose and lignocellulosic biomass in an aqueous solution [40]. This system of

3.3 million atoms is inhomogeneous. Reaction-field electrostatics are used instead of PME and

therefore scales well. Benchmark is a 50000 MD steps run. This test case was used as the

“Large” test case in previous PRACE-2IP–5IP projects. It is reported in previous PRACE

projects to scale efficiently on 10000+ recent x86 cores.

2.6.2.3 Test Case C: STMV.28M

This is a 3×3×3 replication of the original NAMD STMV dataset from the official NAMD site,

created during PRACE-6IP project. Benchmark is a 10000 MD steps run. The system contains

roughly 28 million atoms and is expected to scale efficiently up to few tens of thousands x86

cores.

2.7 NAMD

2.7.1 Code Description

NAMD is a widely used molecular dynamics application designed to simulate bio-molecular

systems on a wide variety of compute platforms. NAMD is developed by the “Theoretical and

Computational Biophysics Group” at the University of Illinois at Urbana Champaign. In the

design of NAMD particular emphasis has been placed on scalability when utilising a large

number of processors. The application can read a wide variety of different file formats, for

example force fields, protein structures, which are commonly used in bio-molecular science. A

NAMD license can be applied for on the developer’s website free of charge. Once the license

has been obtained, binaries for a number of platforms and the source can be downloaded from

the website. Deployment areas of NAMD include pharmaceutical research by academic and

industrial users. NAMD is particularly suitable when the interaction between a number of

proteins or between proteins and other chemical substances is of interest. Typical examples are

vaccine research and transport processes through cell membrane proteins. NAMD is written in

C++ and parallelised using Charm++ parallel objects, which are implemented on top of MPI,

supporting both pure MPI and hybrid parallelisation. Offloading to accelerators is implemented

for both GPU and MIC (Intel Xeon Phi).

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 10 30.11.2021

2.7.2 Test Cases

The datasets are based on the original “Satellite Tobacco Mosaic Virus (STMV)” dataset from

the official NAMD site. The memory optimised build of the package and datasets are used in

benchmarking. Data are converted to the appropriate binary format used by the memory

optimised build.

 Test Case A: STMV.8M

This is a 2×2×2 replication of the original STMV dataset from the official NAMD site.

The system contains roughly 8 million atoms. Benchmark is a 10000 MD steps run. This

dataset scales efficiently up to 1000 x86 cores.

 Test Case B: STMV.28M

This is a 3×3×3 replication of the original STMV dataset from the official NAMD site,

created during PRACE-2IP project. Benchmark is a 50000 MD steps run. The system

contains roughly 28 million atoms and is expected to scale efficiently up to few tens of

thousands x86 cores.

 Test Case C: STMV.210M

This is a 5×6×7 replication of the original STMV dataset from the official NAMD site.

The system contains roughly 210 million atoms and is expected to scale efficiently up

to more than hundred thousand recent x86 cores. Due to its size, benchmark is a 1200

MD steps run.

2.8 NEMO

2.8.1 Code Description

NEMO (Nucleus for European Modelling of the Ocean) [2] is a mathematical modelling

framework for research activities and prediction services in ocean and climate sciences

developed by a European consortium. It is intended to be a tool for studying the ocean and its

interaction with the other components of the earth climate system over a large number of space

and time scales. It comprises of the core engines namely OPA (ocean dynamics and

thermodynamics), SI3 (sea ice dynamics and thermodynamics), TOP (oceanic tracers) and

PISCES (biogeochemical process).

Prognostic variables in NEMO are the three-dimensional velocity field, a linear or non-linear

sea surface height, the temperature and the salinity. In the horizontal direction, the model uses

a curvilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or

s-coordinate, or a mixture of the two. The distribution of variables is a three-dimensional

Arakawa C-type grid for most of the cases.

The model is implemented in Fortran 90, with pre-processing (C-pre-processor). It is optimised

for vector computers and parallelised by domain decomposition with MPI. It supports modern

C/C++ and Fortran compilers. All input and output is done with third party software called

XIOS with a dependency on NetCDF (Network Common Data Form) and HDF5. It is highly

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 11 30.11.2021

scalable and a perfect application for measuring supercomputing performances in terms of

compute capacity, memory subsystem, I/O and interconnect performance.

2.8.2 Test Cases

The GYRE configuration has been built to model the seasonal cycle of the double gyre box

model. It consists of an idealised domain over which a seasonal forcing is applied. This allows

for studying a large number of interactions and their combined contribution to large scale

circulation.

The domain geometry is rectangular bounded by vertical walls and flat bottom. The

configuration is meant to represent the idealised North Atlantic or North Pacific basin. The

circulation is forced by analytical profiles of wind and buoyancy fluxes. The wind stress is

zonal and its curl changes sign at 22 and 36. It forces a subpolar gyre in the north, a subtropical

gyre in the wider part of the domain and a small recirculation gyre in the southern corner. The

net heat flux takes the form of a restoring toward a zonal apparent air temperature profile.

A portion of the net heat flux which comes from the solar radiation is allowed to penetrate

within the water column. The fresh water flux is also prescribed and varies zonally. It is

determined such that, at each time step, the basin-integrated flux is zero.

The basin is initialised at rest with vertical profiles of temperature and salinity uniformity

applied to the whole domain. The GYRE configuration is set through the namelist_cfg file.

The horizontal resolution is determined by setting nn_GYRE as follows:

Jpiglo = 30 × nn_GYRE+ 2

Jpjglo = 20 × nn_GYRE + 2

In this configuration, we use a default value of 30 ocean levels, depicted by jpkglo=31. The

GYRE configuration is an ideal case for benchmark tests as it is very simple to increase the

resolution and perform both weak and strong scalability experiment using the same input files.

We use two configurations as follows:

2.8.2.1 Test Case A:

 nn_GYRE = 48 suitable up to 1,000 cores

 Number of Time steps: 101

 Time step size: 20 mins

 Number of seconds per time step: 1200

We performed benchmark tests on 1024 cores using Test Case A.

2.8.2.2 Test Case B:

 nn_GYRE = 192 suitable up to 20,000 cores.

 Number of time step: 101

 Time step size(real): 20 mins

 Number of seconds per time step: 1200

We performed benchmark tests on 10,240 cores using Test Case B.

Both these test cases can give us quite good understanding of node performance and

interconnect behaviour. The ln_bench attribute should be set to true for benchmarking. We

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 12 30.11.2021

switch off the generation of mesh files by setting the flag ln_meshmask to false in the

namelist_ref file. Recall that NEMO utilises XIOS for IO operations. NEMO supports both

attached and detached modes of the XIOS. In the attached mode all cores are responsible for

both computation and IO, whereas in the detached mode each core is only responsible for either

computation or IO. This option is controlled by the using_server attribute defined in

iodef.xml file. If it is set to false, NEMO runs on attached mode, whereas if it is set to true,

NEMO runs on detached mode.

Since NEMO supports both weak and strong scalability, Test Case A and Test Case B both can

be scaled down to run on smaller number of processors while keeping the memory per processor

constant achieving similar results for step time.

2.9 PFARM

2.9.1 Code Description

PFARM is part of a suite of programs based on the ‘R-matrix’ ab initio approach to the

variational solution of the many-electron Schrödinger equation for electron-atom and electron-

ion scattering [11]. The package has been used to calculate electron collision data for

astrophysical applications (such as: the interstellar medium, planetary atmospheres) with, for

example, various ions of Fe and Ni and neutral O, plus other applications such as plasma

modelling and fusion reactor impurities. The code has recently been adapted to form a

compatible interface with the UKRmol suite of codes for electron (positron) molecule collisions

thus enabling large-scale parallel outer-region calculations for molecular systems as well as

atomic systems.

In the R-matrix approach, configuration space is partitioned into internal, external and

asymptotic regions and the calculation is adapted accordingly for each region (Figure 1). Inner

region calculations use a separate program. To enable efficient computation, the external region

calculation takes place in two distinct stages, named EXDIG and EXAS, with intermediate files

linking the two.

EXDIG is dominated by the assembly of sector Hamiltonian matrices and their subsequent

eigensolutions, with full sets of both eigenvalues and eigenvectors required. The sector

Hamiltonian matrices are dense, real, and symmetric. For electron-atom or electron-ion

calculations (e.g. Test Case 1a – 1d), a very fine energy mesh is required at the lower end of

the energy range in order to resolve clustered Rydberg resonances converging to all thresholds.

This necessitates a large number of Legendre basis functions in the sector Hamiltonian leading

to relatively large matrix sizes with closely-coupled eigenvalues. However, this level of

accuracy is computationally wasteful for scattering energies at the mid-to-higher end of the

energy range. To resolve this problem, the external region is configured twice within EXDIG,

firstly for the FINE mesh (fewer, larger matrices) and then a COARSE mesh (more, smaller

matrices). Therefore, two series of sector calculations take place within the same run. Matrix

sizes are constant with each mesh.

EXAS propagates scattering energies across the external region configuration space and uses a

combined functional/domain decomposition approach where good load-balancing is essential

to maintain efficient parallel performance. Each of the main stages in the calculation is written

in Fortran 2003, is parallelised using MPI and is designed to take advantage of highly optimised,

numerical library routines. Hybrid MPI/OpenMP parallelisation has also been introduced into

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 13 30.11.2021

the code via shared memory enabled numerical library kernels. Given the high computation,

high memory load and high storage load, EXDIG is chosen here as the PFARM benchmark

application code.

The MPI/OpenMP version of EXDIG employs a high-level MPI parallelisation, which assigns

the complete calculation of each sector (or sub-region) to an MPI task – a ‘sector MPI task’.

The sector Hamiltonian matrix assembly and eigensolution is undertaken by each individual

sector MPI task. Highly optimised platform-specific numerical libraries employing parallel

threads, such as Intel MKL [41] and MAGMA [42] [43] are used to optimise the eigensolutions

of the sector Hamiltonian matrices. Given the required full set of closely-coupled eigenpairs

the eigensolver routine DSYEVD is favoured, which employs a divide-and-conquer algorithm.

In this model, the maximum number of MPI tasks is equivalent to the number of sectors defined.

With 1 MPI task per node, the number of OpenMP threads is usually set to the number of

physical cores in a node. With multiple MPI tasks per node, the total available physical cores

for OpenMP threading is divided equally between the MPI tasks

Accelerator-based implementations have been implemented for EXDIG. The GPU-enabled

version of EXDIG uses the MAGMA numerical library routine MAGMA_DSYEVD to employ

multiple GPUs per node for the eigensolution. The Xeon Phi-enabled version of EXDIG uses a

machine-optimised version of Intel MKL, akin to the CPU version.

A fully distributed-data version using MPI with ScaLAPACK/ELPA routines is also available

(though not benchmarked here). This version is suitable for very large cases, where memory

within a node is insufficient for a single sector Hamiltonian matrix.

Given that the overall runtime is dominated by calls to dense linear algebra routines, PFARM

performance usually attains a relatively high fraction of the peak performance of the

architecture.

Figure 1: Partitioning of Configuration Space in PFARM

2.9.2 Test Cases

External region R-matrix propagations take place over the outer partition of configuration

space, including the region where long-range potentials remain important. The length of this

region is determined from the user input and the program decides upon the best strategy for

dividing this space into multiple sub-regions (or sectors). Generally, a choice of larger sector

lengths requires the application of larger numbers of Legendre basis functions (and therefore

larger Hamiltonian matrices) to maintain accuracy across the sector and vice-versa. The test

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 14 30.11.2021

cases chosen for the benchmarking exercise represent a representative range of configurations

for atomic problems.

2.9.2.1 Test Case 1 (Atomic)

This dataset is an electron-atom scattering case with 1181 channels calculating electron

scattering with FeIII. A very fine energy mesh is required at the lower end of the energy range

in order to resolve multiple Rydberg resonances. The computation is divided into fine mesh and

coarse mesh calculations, with larger Hamiltonian matrices associated with each sector of the

fine region and smaller Hamiltonian matrices associated with each sector of the coarse region.

Test Case 1 is replicated into four different configurations to test benchmark performance

across the range of benchmarking platforms.

 Test Case 1a Test Case 1b Test Case 1c Test Case 1d

Sector Hamiltonian Dimension

(Fine Region)
25982 25982 25982 18896

Sector Hamiltonian Dimension

(Coarse Region)
11810 11810 11810 9448

Number of Sectors (Fine Region) 16 256 64 1024

Number of Sectors (Coarse Region) 16 256 64 1024

Table 1: PFARM (EXDIG) benchmarking datasets

Test Cases 1a and 1b are used for runs with 1 MPI task per computational node (usually using

all the available cores for threads). Test Cases 1c and 1d are used for benchmark runs involving

both single MPI tasks per node and multiple MPI tasks per computational node with multiple

threads associated to each MPI task. For the benchmarking runs the multiple MPI task count

per node is usually set to 4. This is set to: a) fit multiple sector Hamiltonian matrices on a node

within node memory limits, and b) make useful GPU node comparisons where current node

architectures usually have 4 GPU devices. Test Cases 1a and 1c are suitable for runs involving

lower number of nodes, whilst 1b and 1d are larger, more demanding calculations that are

suitable for runs involving higher node counts.

2.10 QCD

The QCD benchmark consists of a set of different kernels and comes with three different parts.

Namely a legacy part, which consists of 5 different QCD kernels, taken from software packages

of major European QCD collaborations and representing the most computation intensive

kernels at the early stage of the UEABS benchmark suite. Within the PRACE-4IP project, the

benchmark suite was extended to include kernels capable of using accelerators. Here we report

on performance results obtained from “Kernel E” of the non-accelerated QCD UEABS kernels,

which we will denote here as “Part 1”, as well as the accelerated kernels added during

PRACE-4IP, which we will denote as “Part 2”. Kernel E is extracted from the MILC code suite

(cf. [12]). The performance-portable targetDP model has been used to allow the benchmark to

utilise NVIDIA GPUs, Intel Xeon Phi manycore CPUs, and traditional multi-core CPUs. The

use of MPI (in conjunction with targetDP) allows multiple nodes to be used in parallel (cf. [13]).

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 15 30.11.2021

Part 2 includes kernels from the library QPhiX[14], optimised for Intel architectures such as

Skylake and KNL Xeon Phi cards, and QUDA[15], for NVIDIA GPUs.

2.10.1 Details on Benchmark Kernels:

For the used cases, namely Part 1 and Part 2, the benchmark kernels repeatedly apply the Wilson

Dirac operator on an iteratively updated vector. For all cases, these repeated operator

applications are carried out within a conjugate gradient (CG) method implemented in double

precision, i.e. an iterative Krylov subspace solver, which apart from the operator application

includes BLAS-like linear algebra operations and global reductions. The Wilson Dirac operator

represents a discrete, 4-dimensional covariant derivative, defined on a regular 4-dimensional

Cartesian grid. In a parallel implementation, the lattice volume is decomposed into

4-dimensional sub-domains, using one MPI process per sub-domain. As in any parallel

implementation of such stencil operations, the application of the operator on grid-points of the

sub-domain boundary requires information from the nearest neighbouring processes. This

nearest-neighbour communication, along with a global reduction for the residual required in

iterative solvers, is the most frequent communication required in any lattice QCD application,

which is of the order of once every millisecond.

We perform strong scaling tests of the benchmark kernels using small to moderate problem

sizes, namely V=8×64×64×64 grid points for Part 1 and V=96×32×32×32 and

V=128×64×64×64 grid points for Part 2. The former two fit on typical small HPC systems,

while the later problem size is representative of current state-of-the-art lattice simulations and

can be scaled up to O(1000) of nodes.

2.11 Quantum ESPRESSO

2.11.1 Code Description

Quantum ESPRESSO is an integrated suite of open-source computer codes for electronic-

structure calculations and materials modelling at the nanoscale. It is based on density-functional

theory, plane waves, and pseudopotentials. The distribution consists of a “historical” core set

of components, and a set of plug-ins that perform more advanced tasks, plus several third-party

packages designed to be inter-operable with the core components. For the benchmarking task

we chose the PWscf (Plane-Wave Self-Consistent Field) package since this is the most used

and exists in both standard and accelerated versions. The program is written in Fortran and

parallelised with MPI and OpenMP; the accelerated version instead requires CUDA Fortran

which is available from the NVIDIA HPC SDK toolkit. The application is highly portable and

in general, any combination of compilers and MPI implementations can be used to install the

package, although the use of a well-optimised linear algebra library is beneficial for

performance reasons. The main hardware requirement involves the accelerated version which

currently can only run on NVIDIA GPUs. Because of its popularity, many computer systems

in Europe already provide Quantum ESPRESSO as a pre-compiled module and this was used

when found on the system, otherwise the code was downloaded from the repository and

compiled separately. For the purposes of clarity, we will refer to the PWscf program simply as

“Quantum ESPRESSO”.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 16 30.11.2021

2.11.2 Test Cases

For the benchmark datasets, we use input files from the Quantum ESPRESSO repository, in

particular those referred to as AUSURF, GRIR443 and CNT. These files consist of input files

representing the materials to model, together with a parameter to control various aspects of the

calculation. These datasets have been renamed as small, medium and large in the UEABS

repository to reflect the resources required to perform the benchmark. Since the small dataset

scales only to a few tens of cores, only the medium and large inputs have been used in this

study. It should be recalled that to get the best performance with PWscf it is important to specify

the k-points displayed by the input structure on the command line with the -npool option. For

example, for the medium (GRIR443) dataset we have 4 k-points so PWscf should be run as:

mpirun pw.x -npool 4 -input pw.in

Since MPI tasks are assigned to each k-point, the total number of tasks needs to be divisible by

the number of k-points. For the large (CNT) dataset instead we have only 1 k-point and therefore

this option is not required. Given the high memory requirements of the application, we

frequently use hybrid MPI/OpenMP – in most of our runs we have fixed the number of OpenMP

threads to be 8. Finally, we note that for the benchmarks described here we used Quantum

ESPRESSO versions 6.5–6.8 (according to availability). The minor releases of the code

represent bug fixes and slightly different functionalities, which should not influence the

performance.

2.12 SPECFEM3D

2.12.1 Code Description

In collaboration with Princeton and the University of Pau (France), CIG offers the software

package SPECFEM3D_GLOBE (version 7.0) [5] which simulates global and regional

(continental-scale) seismic wave propagation. More precisely, it simulates three-dimensional

global and regional seismic wave propagation and performs full waveform imaging (FWI) or

adjoint tomography based upon the spectral-element method (SEM). The SEM is a continuous

Galerkin technique [5], which can easily be made discontinuous; it is then close to a particular

case of the discontinuous Galerkin technique, with optimised efficiency because of its

tensorised basis functions. In particular, it can accurately handle very distorted mesh elements

(Oliveira and Seriani 2011). Effects due to lateral variations in compressional-wave speed,

shear-wave speed, density, a 3D crustal model, ellipticity, topography and bathymetry, the

oceans, rotation, and self-gravitation are included. The package can accommodate full

21-parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and

finite-frequency kernel simulations are also included.

This package is one of the very few and still popular open-source codes for the global

computational seismology community. Although the last official release was in 2015; the

SPECFEM3D_GLOBE code is still maintained and still widely used by the community as it

stands out as one of the most advanced codes for 3D global simulations (NVIDIA uses it for

one of its benchmarks). It is also very well suited to parallel implementation on very large

supercomputers as well as on clusters with GPUs as accelerators. As a result,

SPECFEM3D_GLOBE is a reference application for supercomputer benchmarking thanks to

its good scaling capabilities.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 17 30.11.2021

SPECFEM3D_GLOBE is mainly written in Fortran but a subset has been ported to C, in order

to experiment with CUDA, StarSs and OpenCL. This subset contains the main computation

loop of the main application. The full application consists of 100k lines of Fortran, while the

subset contains 20k lines of C. It uses no obsolete or obsolescent features of Fortran. The

package uses parallel programming based upon the Message Passing Interface (MPI), which

use non-blocking MPI for much better performance for medium or large runs [6] and which

includes several performance improvements in mesher and solver. The package includes

support for GPU acceleration [7] and also supports OpenCL.

2.12.2 Test Cases

The test cases simulate the earthquake of June 1994 in Northern Bolivia at a global scale with

the global (3D) shear-wave speed model named S362ANI.

The different test cases correspond to different meshes of the earth. The size of the mesh is

determined by a combination of following variables: NCHUNKS, the number of chunks in the

cubed sphere (6 for global simulations), NPROC_XI, the number of processors or slices along

one chunk of the cubed sphere and NEX_XI, the number of spectral elements along one side of

a chunk in the cubed sphere. These three variables give us the number of degrees of freedom of

the mesh and determine the amount of memory needed per core. The SPECFEM3D_GLOBE

mesher and solver must be recompiled each time we change the mesh size because the solver

uses a static loop size and the compilers know the size of all loops only at the time of

compilation and can therefore optimise them efficiently.

To benchmark and measure the performance of each system we used three test cases.

2.12.2.1 Validation Test Case

A small Validation Test Case called “small_benchmark_run_to_test_more_complex_Earth”

which is a native SPECFEM3D_GLOBE benchmark to validate the compilation and behaviour

of the code. Indeed; the solver calculates seismograms for 129 stations, these histograms allow

to scientifically validate the compilation and the results of the simulation thanks to a Python

script which allows to compare the results of the simulated histograms with the results of

reference histograms.

This benchmark is designed to run on a system with at least 24 x86 cores. The simulation runs

with 24 MPI tasks using hybrid parallelisation (MPI+OpenMP or MPI+OpenMP+CUDA

depending on the system tested) and has the following mesh characteristics: NCHUNKS=6,

NPROC_XI=2 and NEX_XI=80.

2.12.2.2 Test Case A

Test Case A is designed to run on a system that has up to about 1,000 x86 cores, or equivalent.

The simulation runs with 96 MPI tasks using hybrid parallelisation and has the following mesh

characteristics: NCHUNKS=6, NPROC_XI=4 and NEX_XI=384.

2.12.2.3 Test Case B

Test Case B is designed to run on systems up to about 10,000 x86 cores, or equivalent. The

simulation runs with 1,536 MPI tasks using hybrid parallelisation and has the following mesh

characteristics: NCHUNKS=6, NPROC_XI=16 and NEX_XI=384.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 18 30.11.2021

2.13 TensorFlow

2.13.1 Code Description

TensorFlow is a popular open-source library for symbolic math and linear algebra, with

particular optimisation for neural-networks-based machine learning workflow. Maintained by

Google, it is widely used for research and production in both the academia and the industry.

TensorFlow supports a wide variety of hardware platforms (CPUs, GPUs, TPUs) and can be

scaled up to utilise multiple computing devices on one or more compute nodes. The main

objective of this benchmark is to profile the scaling behaviour of TensorFlow on different

hardware, and thereby provide a reference baseline of its performance for different sizes of

applications.

TensorFlow is a Python and C/C++ library rather than a standalone application, and therefore

there are many possible implementations depending on the actual applications. We choose

DeepGalaxy, an astrophysics-oriented scalable galaxy image classification/searching deep

learning network with TensorFlow backend. Within a node or a CPU socket, parallelism is done

with OpenMP. If GPUs are available, most convolutional operations and gradient calculations

are done on the GPUs (with cuDNN being the backend). If GPUs are not available, TensorFlow

makes use of oneAPI (formally MKL-DNN) to speed-up the calculation on Intel CPUs, and the

AVX2 instructions for AMD CPUs. DeepGalaxy is scaled up in the data parallel manner, that

is, the neural network is cloned to make multiple copies, and each copy receives different

training data as input. These training data result in different neural network activation maps,

but they are periodically synchronised to make sure that the weights are updated collectively

and consistently. When DeepGalaxy is trained on multiple nodes, collective communication

protocols such as MPI and NCCL are used to communicate the gradients obtained from each

worker. The AllReduce() primitive in MPI/NCCL is particularly relevant. These

communications are handled by an open-source framework Horovod, which essentially acts as

a wrapper for TensorFlow and PyTorch to handle gradient communications.

DeepGalaxy is written in Python and is open-source and freely available. The datasets required

for training the neural network are also publicly available. DeepGalaxy and its underlying

libraries (TensorFlow, Horovod, MPI, NCCL, cuDNN, oneAPI) are highly optimised, and

therefore this benchmark suite is particularly useful to test the scaling efficiency of HPC

systems: the closer to a linear scaling behaviour, the better scaling efficiency for a HPC system.

2.13.2 Test Cases

The benchmarks can be done on a wide range of systems, from PCs to supercomputers. Three

test cases are designed to systems with different hardware configurations.

2.13.2.1 Test Case A (small)

This test case is designed to test the training performance of a small-to-medium size dataset

(~2 GB compressed, ~100 GB uncompressed) on a medium-size deep neural network (DNN).

The DNN is relatively small (about 17 million parameters) and therefore can be trained on a

single modern GPU.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 19 30.11.2021

2.13.2.2 Test Case B (medium)

This test case is designed to test the training performance of a small-to-medium size dataset

(~2 GB compressed, ~100 GB uncompressed) on a moderately large DNN. The large DNN

contains 64 million parameters. In comparison, the popular ResNet50 architecture for image

classification contains 23 million parameters. This test case requires top-class GPUs with

24 GB of GPU memory or more. Even with such a GPU, the local batch size should usually be

limited to 4, otherwise the GPU memory will be exhausted.

2.13.2.3 Test Case C (large)

This test case is designed to push a HPC system to the limit. The dataset is large (16 GB

compressed, 2 TB uncompressed), running on a large DNN consisting 64 million parameters.

With such a combination, the memory footprint is roughly 160 GB even with a batch size of 1,

making it nearly impossible to fit into any GPU memory. As such, this test case is currently run

on the CPUs. It is possible to run this case on GPUs using unified memory, although in this

case the overhead of transferring data between the host memory and the GPU becomes a

bottleneck.

3 Benchmark Systems

3.1 PRACE Tier-0 Systems

3.1.1 Hawk

Hawk is a Tier-0 system hosted by HLRS in Germany. Hawk is an HPE Apollo machine and

has 5,632 compute nodes (720,896 cores) which are based on AMD EPYC processors. The

system has a peak performance of 26 Pflop/s. Each node consists of:

 2 × 64 core AMD EPYC 7742 processors which operate at 2.25 GHz.

 256 GB of memory, or 2 GB per core.

 A hierarchical architecture where cores are grouped into 4 core complexes which share

an L3 cache of 16 MB.

The interconnect used is InfiniBand HDR200, which has a bandwidth of 200 Gbit/s and an

approximate latency of 1.3 microseconds per link. The interconnect topology is a 9-dimensional

hypercube. Due to the use of topology aware scheduling larger jobs can only request 64, 128,

256, 512, 1024, 2048 or 4096 nodes.

3.1.2 JUWELS

The supercomputer JUelich Wizard for European Leadership Science, known as JUWELS,

consists of two main modules, the Cluster Module based on Intel Xeon Skylake chips and the

Booster Module based on NVIDIA GPGPU A100. The system is hosted by the Jülich

Supercomputing Centre and is currently the fastest system in Europe with 73 Petaflop per

second theoretical peak performance by the Booster Module. Both Modules are connected to

the storage cluster JUST via 350/250 GB/s network from Booster/Cluster respectively. The

older Cluster module consists of 2271 standard compute nodes each with

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 20 30.11.2021

 2 × Intel Xeon Platinum 8168 CPU, 2 × 24 cores, 2.7 GHz

 96 (12× 8) GB DDR4, 2666 MHz

 InfiniBand EDR (Connect-X4)

Additionally, a smaller large memory partition with 240 nodes equipped with 196 GB DDR4,

and a GPU partition with 56 nodes equipped with 4 NVIDIA V100 is available. The network

is a Mellanox InfiniBand EDR fat-tree network with 2:1 pruning at leaf level and top-level

HDR switches. Moreover, it provides a 40 Tb/s connection to the Booster Module for modular

supercomputing.

The newer Booster Module consists of 936 compute nodes each with

 2 × AMD EPYC Rome 7402 CPU, 2 × 24 cores, 2.8 GHz

 512 GB DDR4, 3200 MHz

 4 × NVIDIA A100 GPU, 4 × 40 GB HBM2e

 4 × InfiniBand HDR (Connect-X6, 200 Gbit/s each) with DragonFly+ topology with 20

cells

The 4 NVIDIA A100 GPUs on each node are connected via NVLink3 to each other while the

CPU, GPU, and network adapter are connected via 2 PCIe Gen 4 switches with 16 PCIe lanes

which are going to each device.

3.1.3 Joliot-Curie

Joliot-Curie is a Tier-0 machine hosted by CEA’s Very Large Computing Centre (TGCC) in

France. It is made of several partitions, the main ones being Skylake, KNL, and Rome. The

system's peak performance is 22 Pflop/s.

The two first partitions are based on BULL Sequana X1000 and are split as follows:

 The SKL Irene (Skylake) partition consists of:

i. 1,656 dual-processor Intel Skylake 8168 fine nodes at 2.7 GHz with 24

cores per processor, for a total of 79,488 computing cores and a power

of 6.86 Pflop/s,

ii. 192 GB of DDR4 memory/node (or 4 GB per core),

iii. InfiniBand EDR interconnect network.

 The KNL Irene (Knights Landing) partition consists of:

i. 828 Intel KNL 7250 manycore nodes at 1.4 GHz with 68 cores per

processor, for a total of 56,304 cores and a power of 2 Pflop/s,

ii. 96 GB of DDR4 memory + 16 GB of MCDRAM memory/node,

iii. Bull eXascale Interconnect network (BXI).

The last main partition is built on Bull Sequana XH2000 as:

 The Rome Irene partition consists of:

i. 2292 dual-processor AMD Rome (EPYC) compute nodes at 2.6 GHz

with 64 cores per processor, for a total of 293,376 computing cores and

a power of 11.75 Pflop/s,

ii. 256 GB DDR4 memory/node (or 2 GB per core),

iii. InfiniBand HDR100 interconnect network.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 21 30.11.2021

The SKL partition is ranked 101th in June 2021 TOP500 list and the Rome one 59th in the same

list. Scratch and work Lustre file systems are available, with 4.6 and 8 PB, respectively.

3.1.4 MARCONI100

The MARCONI100 Tier-0 system is hosted by CINECA and consists of 980 compute nodes

based on IBM Power9 processors and NVIDIA V100 GPUs. Each node consists of:

 2 × 16 core IBM Power9 processors running at 3.1 GHz and with 4-way hyperthreading

to give 128 virtual cores

 4 × NVIDIA V100 GPUs each with 16 GB of memory and connected with NVLink 2.0.

 256 GB of main memory.

Each node can provide a performance of 32 Tflop/s, which gives a combined peak performance

of close to 32 Pflop/s for the whole system. In addition, the nodes are connected by a Mellanox

IB EDR DragonFly network and can access 8 PB of disk space.

In the latest TOP500 ranking (June 2021), the MARCONI100 is in 14th position which makes

it the 3rd most powerful supercomputer in Europe. Finally, we note that since the system is

based on a relatively small number of very powerful nodes, the best application performance

will be obtained from applications which demonstrate good GPU acceleration rather than high

parallel scalability.

3.1.5 MareNostrum4

MareNostrum4 is the Tier-0 system hosted by BSC, Spain. It is based on Intel Xeon Platinum

processors from the Skylake generation. It is a Lenovo system composed of SD530 Compute

Racks, an Intel Omni-Path high performance network interconnect and running SuSE Linux

Enterprise Server as operating system. Its current LINPACK Rmax performance is 6.2 Pflop/s.

This general-purpose block consists of 48 racks housing 3456 nodes with a grand total of

165,888 processor cores and 390 TB of main memory. Compute nodes are equipped with:

 2 sockets Intel Xeon Platinum 8160 (Skylake) CPU with 24 cores each @ 2.10 GHz for

a total of 48 cores per node; L1d 32 kB; L1i cache 32 kB; L2 cache 1024 kB; L3 cache

33792 kB

 96 GB of main memory 1.9 GB/core (216 nodes high memory, 10368 cores with

7.9 GB/core)

 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCIe adapter (in a full fat tree

topology)

 10 Gbit Ethernet

 200 GB local SSD available as temporary storage during jobs

3.1.6 SuperMUC-NG

SuperMUC-NG [9] is the Tier-0 system hosted by LRZ, Germany. SuperMUC-NG contains

thin and fat compute nodes which differ in memory size. Properties of those nodes are as

follows:

 6,336 Thin compute nodes each with 96 GB memory

 144 Fat compute node each with 768 GB memory

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 22 30.11.2021

 Both thin and fat compute nodes are equipped with 2 × 24 core Intel Xeon Platinum

8174 (Skylake) processor running at 3.1 GHz.

Therefore, in total the system contains 311,040 compute cores with a main memory of 719 TB

and has a peak performance of 26.9 Pflop/s.

The internal interconnect is an Omni-Path network with 100 Gbit/s. The compute nodes are

bundled into 8 domains (islands). Within one island, the Omni-Path network topology is a ‘fat

tree’ for highly efficient communication. The Omni-Path connection between the islands is

pruned (pruning factor 1:4).

In addition to the compute nodes there are 64 nodes in the Compute Cloud of SuperMUC-NG

(half of them equipped with two GPUs each), and one huge memory node with 6 TB and 192

cores.

3.1.7 Piz Daint

Piz Daint [8] is the Tier-0 system hosted by CSCS, Switzerland. Piz Daint is a Cray XC40/XC50

system:

 5704 XC50 nodes with one Intel Xeon E5-2690 v3 (Haswell) @ 2.60 GHz (12 cores,

64 GB RAM) and one NVIDIA Tesla P100 (16 GB)

 1813 XC40 nodes with two Intel Xeon E5-2695 v4 (Broadwell) @ 2.10 GHz (2 × 18

cores, 64/128 GB RAM).

The system has an Aries interconnect using a Dragonfly topology.

Cray XC40/ XC50 has advanced power monitoring and control features enabled on the compute

blades. This helps system administrators and researchers involved in advanced power

monitoring, power aware computing, and energy efficient computing. All blades developed for

Cray XC platform supports out of band collection of energy statistics by default at 1 Hz.

Node level, cabinet level and system level energy data are exposed via Cray advanced platform

monitoring and control (CAPMC) to the system workload manager (WLM). The additional or

optional way of collecting energy statistics is through pm counters located on

“/sys/cray/PM_COUNTERS” path. Cray supports resource utilisation reporting (RUR) and

PAPI (Performance application performance interface) [47].

Node level power capping on Cray XC50 blade supporting Intel Xeon scalable processors

utilises Intel node manager firmware running on the platform controller hub (PCH). Cray

firmware communicates with the Intel firmware over an Intelligent Platform Management Bus

(IPMB). The implemented power capping utilises the Intel Running Average Power limit.

Additional references for Cray’s energy monitoring and documentation can be found in [47].

3.2 EuroHPC System

3.2.1 HPC Vega

Vega is a Tier-0 system hosted at the IZUM, Slovenia. Vega has three partitions in total: thin

and fat differing in the memory size and an NVIDIA GPU partition. All are based on dual AMD

EPYC Rome CPUs with the following characteristics:

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 23 30.11.2021

 Standard compute nodes partition: 768 dual AMD EPYC Rome CPUs, with a total of

98,304 cores, 256 GB RAM DDR4-3200 per node, corresponding to 2 GB RAM/core.

 Large memory compute nodes partition: 192 dual AMD EPYC Rome CPUs, in a total

of 24576 cores, and 1 TB RAM DDR4-3200 per node, corresponding to 8 GB

RAM/core.

 GPU partition: 60 dual AMD EPYC Rome CPUs (total of 7680 cores) with 512 GB

RAM DDR4-3200 per node, corresponding to 4 GB RAM/CPU core, and quad

NVIDIA Ampere A100 PCIe GPUs (40 GB, 3456 FP64 CUDA cores, 432 Tensor

cores, Peak FP64 9.7 Tflop/s, FP64 Tensor Core 19.5 Tflop/s)

In total the system contains 1020 compute nodes with dual AMD CPUs with 130,560 cores and

414 TB RAM. Sustained performance on all CPUs is 3.8 Pflop/s. 240 GPU accelerators with a

total of 829,440 FP64 CUDA cores and 103,680 Tensor cores perform 3.1 Pflop/s. Overall

Vega has a sustained performance of 6.9 Pflop/s and a peak performance of 10.1 Pflop/s.

The internal interconnect consists of 68 × 40-port Mellanox HDR switches with a Dragonfly+

topology, with all 960 compute nodes, 60 GPU, and 8 login nodes connected through Mellanox

ConnectX-6 (single or dual port).

In addition to the compute nodes and the GPU partitions, Vega has a Lustre-based high-

performance storage tier and a Ceph-based large-capacity storage tier. Furthermore, Vega has

a virtualisation partition composed of 30 dual AMD EPYC 7502 virtualisation nodes, each with

512 GB of RAM DDR4-3200 and two interconnects – 100 GbE DP and InfiniBand HDR100.

3.3 Energy Measurement Capability/Availability

Energy accounting at job level was not available on all systems. Piz Daint has integrated

accounting as it is described in Section 3.1.7 and its references. The MareNostrum4 accounting

system supports the job consumed energy but in the end this energy is not logged for all jobs.

SuperMUC-NG supports job energy accounting but after an update this became unavailable.

Thus, the only system with full energy to solution for all jobs ran is Piz Daint, while for

MareNostrum4 and SuperMUC-NG, these measurements are available for jobs that ran while

the energy accounting was active.

4 Benchmark Results per Application

4.1 Alya

The Alya benchmarks have been performed on systems with different architectures, Skylake

(JUWELS, Irene, SuperMUC-NG, MareNostrum4), AMD (Irene, Hawk), and GPU-NVIDIA

(Piz Daint, MARCONI100). Both Test Case A and Test Case B have been tested on all the

mentioned systems. The version “open-alya” of Alya was used in all the cases.

The elapsed time of only the time-integration phase has been considered, since it is the dominant

part in the production runs of Alya. Likewise, the node workload for each system was selected

according to the similar configurations used in scientific simulations.

The energy measurements were done on MareNostrum4 and Irene-Skylake. During the

allocation period, the energy was not recorded on SuperMUC-NG. The energy measurements

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 24 30.11.2021

were obtained using the sacct command with the field variable ConsumedEnergy. The energy

measurements are from the whole simulation, but the performance is calculated using the time-

integration phase as commented before.

Pure MPI runs were performed for all test cases on all machines. Except for Test Case B on

Skylake systems, all the test were performed on fully occupied nodes. For Test Case B on the

Skylake systems, we observed better performance and better scalability using 46 processes per

node instead of 48.

4.1.1 Performance on Skylake Systems (Test Case A)

Table 2: Alya, Test Case A, MareNostrum4

 – Table 5 present the results for the Skylake systems for Test Case A from 192 cores to 1536

cores. On the four Skylake systems Alya was compiled with Intel Compilers.

We observe better than ideal performance on most of the test cases due to the memory

exhaustion of the smallest runs. We observe that the best performance of Alya on Test Case A

is running it on JUWELS Cluster, but close to SuperMUC-NG and Irene-Skylake. Additionally,

we observe that the slower system is MareNostrum4, due to the lower CPU frequency

(2.1 GHz) compared with the other systems (2.7 GHz). The parallel efficiency is very similar

on the four systems, but slightly better on the JUWELS system.

Nodes Time (s) Speed-up Efficiency

4 148.72 1.00 100%

8 69.94 2.13 106%

16 36.01 4.13 103%

32 20.19 7.37 92%

Table 2: Alya, Test Case A, MareNostrum4

Nodes Time (s) Speed-up Efficiency

4 125.29 1.00 100%

8 57.06 2.20 110%

16 27.93 4.49 112%

32 15.76 7.95 99%

Table 3: Alya, Test Case A, JUWELS

Nodes Time (s) Speed-up Efficiency

4 130.16 1.00 100%

8 59.51 2.19 109%

16 28.99 4.49 112%

32 14.93 8.72 109%

Table 4: Alya, Test Case A, SuperMUC-NG

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 25 30.11.2021

Nodes Time (s) Speed-up Efficiency Energy (kJ)

4 137.95 1.00 100% 279.23

8 64.88 2.13 106% 271.23

16 31.81 4.34 108% 265.23

32 17.67 7.81 98% 280.12

Table 5: Alya, Test Case A, Irene-SKL

4.1.2 Performance on Skylake Systems (Test Case B)

Table 6 – Table 9 present the results for the Skylake systems for Test Case B from 1536 to

12288 cores. As for Test Case A, Alya is compiled with Intel Compilers. As we commented

before, these runs were with 46 MPI tasks per node instead of 48 MPI tasks per node. We

observe better performance on JUWELS and SuperMUC-NG. These systems are the ones with

hyperthreading enabled. Alya’s performance is highly affected by context switches, and when

using hyperthreading, the processor handles the context switches quicker. Also, this is why the

performance is better when we leave two cores free per node for the system processes, therefore

avoiding context switches. Additionally, the scalability of Alya on the Skylake systems are

very similar except for Irene-Skylake, where it is a slightly slower and we observe a lower

scalability.

For both test cases we observe a similar power consumption on MareNostrum4 and Irene-

Skylake. For Test Case B, the energy consumption is higher on Irene, but it is because the

simulation is slower than on MareNostrum4 and it takes more time.

Nodes Time (s) Speed-up Efficiency Energy (kJ)

32 877.01 1.00 100% 11894.84

64 440.55 1.99 100% 13102.04

128 227.02 3.86 97% 12526.71

256 144.15 6.08 76% 13446.46

Table 6: Alya, Test Case B, MareNostrum4

Nodes Time (s) Speed-up Efficiency

32 710.39 1.00 100%

64 349.93 2.03 102%

128 184.78 3.84 96%

256 116.93 6.08 76%

Table 7: Alya, Test Case B, JUWELS

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 26 30.11.2021

Nodes Time (s) Speed-up Efficiency

32 740.12 1.00 100%

64 395.83 1.87 93%

128 201.53 3.67 92%

256 120.24 6.16 77%

Table 8: Alya, Test Case B, SuperMUC-NG

Nodes Time (s) Speed-up Efficiency Energy (kJ)

32 897.84 1.00 100% 12034.11

64 432.52 2.08 104% 12523.14

128 271.15 3.31 83% 16345.45

256 175.87 5.11 64% 17113.82

Table 9: Alya, Test Case B, Irene-SKL

4.1.3 Performance on AMD Systems (Test Case A)

Table 10 and Table 11 present the results for the AMD systems for Test Case A from 512 to

4128 cores. The code was compiled with Intel Compilers enabling the AVX2 instruction set

with the compiler flags. We used a pure MPI configurations on both systems with 128 MPI

tasks per node.

The performance and scalability are very similar on both systems, as they have very similar

CPU and network. If we compare the AMD results with the Skylake results, we observe that

the core-to-core performance are similar, but if we compare the node-to-node performance, the

AMD systems are faster, as they have 128 cores per node.

Nodes Time (s) Speed-up Efficiency

4 68.92 1.00 100%

8 31.11 2.22 111%

16 15.65 4.40 110%

32 8.12 8.49 106%

Table 10: Alya, Test Case A Irene-Rome

Nodes Time (s) Speed-up Efficiency

4 67.92 1.00 100%

8 29.30 2.32 116%

16 14.34 4.74 118%

32 7.44 9.13 114%

Table 11: Alya, Test Case A, Hawk

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 27 30.11.2021

4.1.4 Performance on AMD Systems (Test Case B)

Table 12 and Table 13 present the results of the AMD systems for Test Case B from 2048 to

16384 cores. The code was compiled and run like for Test Case A.

As we have seen for Test Case A, the performance is very similar for both systems. If we

compare the parallel efficiency with the Skylake system results, we observe that on the AMD

systems the efficiency is higher with the largest runs because it is with less nodes than the

largest on the Skylake systems.

Nodes Time (s) Speed-up Efficiency

16 842.94 1.00 100%

32 434.53 1.94 97%

64 236.77 3.56 89%

128 121.12 6.96 87%

Table 12: Alya, Test Case B Irene-Rome

Nodes Time (s) Speed-up Efficiency

16 757.98 1.00 100%

32 419.34 1.81 90%

64 191.82 3.95 99%

128 120.40 6.30 79%

Table 13: Alya, Test Case B, Hawk

4.1.5 Performance on GPU Systems (Test Case A and Test Case B)

Table 14 and Table 15 present the results for the GPU systems for Test Case A and Table 16

and Table 17 present the results for the GPU systems for Test Case B. Alya was compiled on

both systems using PGI and CUDA compilers. All the runs were with 1 MPI task per physical

core and using all the GPUs available on each node, 1 on Piz Daint and 4 on MARCONI100.

Despite the decrease in parallel performance, the GPU on average still runs 2.5 times faster than

the pure CPU implementation on Skylake systems. Although, the parallel efficiency of Test

Case A is slightly worse on the GPU systems compared to the other kind of systems, where we

usually observe ideal scaling. On the other hand, the scalability of Test Case B on the GPU

systems is similar to the other systems.

Nodes Time (s) Speed-up Efficiency

4 335.12 1.00 100%

8 166.67 2.01 101%

16 87.11 3.85 96%

32 44.54 7.52 94%

Table 14: Alya, Test Case A, Piz Daint

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 28 30.11.2021

Nodes Time (s) Speed-up Efficiency

1 320.52 1.00 100%

2 172.27 1.86 93%

3 119.03 2.69 90%

4 92.78 3.45 86%

Table 15: Alya, Test Case A, MARCONI100

Nodes Time (s) Speed-up Efficiency

32 1059.21 1.00 100%

64 538.72 1.81 90%

128 280.15 3.94 98%

256 143.62 6.25 78%

Table 16: Alya, Test Case B, Piz Daint

Nodes Time (s) Speed-up Efficiency

16 723.41 1.00 100%

32 393.04 1.84 92%

64 213.08 3.40 85%

128 117.26 6.17 77%

Table 17: Alya, Test Case B, MARCONI100

4.2 Code_Saturne

The tests have been conducted on 6 machines: SuperMUC-NG, MareNostrum4, Hawk,

JUWELS, Joliot-Curie - Skylake and Joliot-Curie - Rome. Test Case A has been run on all the

machines using the default SFC Morton partitioner. Test Case B has been used on

SuperMUC-NG to investigate the influence of the partitioner on the time to solution to derive

the best strategy to run Test Cases C and D, and beyond. It was also possible to run an extremely

large simulation (8 times the size of Test Case D) on SuperMUC-NG and Hawk and

performance results are included for this case. Finally, with energy measurements taken on

MareNostrum4 and Joliot-Curie - Skylake and Rome, runs were performed for Test Cases A

and B, without and with postprocessing to check the influence of dumping files on the disk.

4.2.1 Performance Results

Runs were performed on fully occupied nodes of each machine, using Code_Saturne

version 7.0 (official release at the time of the project). The mesh size depends on the test case

considered, and the time-step is adapted to fulfil the code's stability requirements. One hundred

time-steps are run for all the tests but the very large ones, where only 5 time-steps are run

because of the cost of these jobs. The timings are computed as the averaged time per time-step

(in seconds), over 97 of these 100 time-steps in order to only account for solver time and not

initialisation nor IO.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 29 30.11.2021

Four of the machines, i.e. SuperMUC-NG, MareNostrum4, JUWELS, and Joliot-Curie -

Skylake are made of nodes consisting of 48 cores each, whereas two of them, Hawk and Joliot-

Curie - Rome have nodes of 128 cores each. It has been decided to first compare the timings of

the first four machines and to identify the fastest of the four ones, then to compare the timings

for the two last machines, and find the fastest of them, before conducting a node-to-node

comparison between the two fastest machines of each group. Node-to-node comparison was

preferred to core-to-core comparison, because this is how HPC centres nowadays usually

allocated compute time.

4.2.1.1 Performance for Test Case A

The default partitioner, e.g. SFC Morton is used for this case. For all the machines, the tests are

carried out using 1 to 16 nodes, all fully populated, using MPI only.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 11.31 100 1 1

2 5.44 103 2.08 2

4 2.58 110 4.38 4

8 1.25 113 9.02 8

16 0.63 113 18.03 16
Table 18: Code_Saturne, Test Case A - SuperMUC-NG

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 11.87 100 1 1

2 5.83 102 2.04 2

4 2.91 102 4.08 4

8 1.46 102 8.15 8

16 0.89 83 13.31 16
Table 19: Code_Saturne, Test Case A - MareNostrum4

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 11.06 100 1 1

2 5.39 103 2.05 2

4 2.64 105 4.19 4

8 1.32 105 8.38 8

16 0.71 97 15.58 16
Table 20: Code_Saturne, Test Case A – JUWELS

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 11.56 100 1 1

2 5.64 102 2.05 2

4 2.82 102 4.10 4

8 1.44 100 8.01 8

16 0.88 82 13.11 16
Table 21: Code_Saturne, Test Case A - Joliot-Curie – Skylake

The four aforementioned tables present the results for nodes consisting of a maximum of 48

physical cores. On all the machines, the time-to-solution decreases when the number of MPI

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 30 30.11.2021

tasks increases. The best time-to-solution and performance observed is for SuperMUC-NG,

where a super-linear behaviour occurs, also going from 1 to 16 nodes.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 5.37 100 1 1

2 2.46 109 2.18 2

4 1.52 88 3.53 4

8 0.60 111 8.92 8

16 0.49 69 10.96 16
Table 22: Code_Saturne, Test Case A - Joliot-Curie - Rome

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1 4.93 100 1 1

2 2.23 111 2.21 2

4 0.96 129 5.15 4

8 0.52 119 9.55 8

16 0.44 71 11.30 16
Table 23: Code_Saturne, Test Case A - Hawk

The two aforementioned tables show that Hawk is the faster machine of the two, even if for

both, the performance is very much reduced for 16 nodes, because the load per MPI task is very

small (about 12,700 cells only per task), and therefore communication plays an important part.

Note that on Joliot-Curie - Rome, the performance observed on 4 nodes is not consistent with

the one on 2 and 8 nodes, showing very poor efficiency. More tests have been conducted for

the same 4-node case with the exact same settings, which showed that computing the pressure

takes about 40% more time than expected in the presented case, most certainly due to bad

communications between MPI tasks, just for this case.

A node-to-node (respectively core-to-core) time-to-solution comparison between Hawk and

SuperMUC-NG shows a speed-up of about 2.29 (respectively 0.86) for 1 node (respectively

core), which drops to 1.44 (respectively 0.54) for 16 nodes (respectively cores), both in favour

of Hawk in case of the node-to-node comparison, showing that for Code_Saturne and Test

Case A, the AMD nodes are faster.

4.2.1.2 Preparing for Larger Runs - Test Case B on SuperMUC-NG

A thorough analysis is carried out using from 8 to 128 nodes, to decide which partitioning tool

translates into the best performance for Code_Saturne itself, between SFC Morton, SFC Hilbert,

METIS, SCOTCH and PT-SCOTCH, for Test Case B. Code_Saturne gives the option to run a

single simulation, where several partitions are created once for good by a given partitioner and

stored into files, named as domain_number_*, where “*” is the number of sub-domains. This

gives the option to use the serial partitioners, METIS and SCOTCH, on fat nodes to take

advantage of their large RAM. For all the tests carried out in this sub-section, the

domain_number_* files, corresponding to a given partitioner are generated beforehand, and

then read at the start of each performance test. The five tables below show efficiency and speed-

up for the various partitioners, and apart for PT-SCOTCH, increasing the number of nodes leads

to a significant decrease in compute time per time-step and decent parallel performance.

Overall, the best performance for this configuration (tetrahedral mesh), based on the solver

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 31 30.11.2021

timings only, comes when the partitioning is serial. METIS provides the best timings, and also

performance, with an efficiency of over 93% going from 8 to 128 nodes, whereas SFC Morton

(respectively SFC Hilbert) are about 74% (respectively 75%).

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 13.19 100 1 1

16 6.46 102 2.04 2

32 3.41 97 3.87 4

64 1.89 87 6.96 8

128 1.09 75 12.04 16
Table 24: Code_Saturne, Test Case B - SFC Morton

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.98 100 1 1

16 6.46 100 2.01 2

32 3.35 97 3.87 4

64 1.78 91 7.31 8

128 1.09 74 11.88 16
Table 25: Code_Saturne, Test Case B - SFC Hilbert

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.10 100 1 1

16 5.88 103 2.06 2

32 2.99 101 4.05 4

64 1.51 100 8.01 8

128 0.81 94 15.01 16
Table 26: Code_Saturne, Test Case B – METIS

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.58 100 1 1

16 6.45 97 1.95 2

32 3.46 91 3.64 4

64 1.57 100 8.01 8

128 0.87 91 14.52 16
Table 27: Code_Saturne, Test Case B – SCOTCH

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 14.48 100 1 1

16 7.84 92 1.85 2

32 7.59 48 1.91 4

64 6.01 30 2.41 8

128 7.09 13 2.04 16
Table 28: Code_Saturne, Test Case B - PT-SCOTCH

The fact that METIS is serial is an issue to use it directly for Test Case C and D, and beyond,

because these tests require a lot of RAM to create the sub-domain partitions. However, given

the gain observed by using METIS over SFC Morton/Hilbert for Test Case B, it was decided

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 32 30.11.2021

that for Test Case C and D, and beyond, the partitions would not be computed on the actual

mesh using SFC Morton/Hilbert, but that the meshes would be generated by Mesh

Multiplication (MM) from Test Case B's mesh, using the partitions generated by METIS for

Test Case B's mesh. All the results presented below are such that the mesh for Test Case B is

read, as well as its sub-domain partition for the given number of MPI tasks, and then several

levels of Mesh Multiplication are applied for the larger cases (1 level for Test Case C, 2 levels

for Test Case D and 3 levels for the largest case).

4.2.1.3 Performance for Test Case B

Very good performance is observed on all the machines up to 64 nodes (efficiency over 80%).

However, for 128 nodes, only the runs on SuperMUC-NG and Hawk keep very good

performance, with an efficiency of about 90%. For this number of nodes, running a node-to-

node comparison between SuperMUC-NG and Hawk shows that the latter is twice as fast as

the former.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.10 100 1 1

16 5.88 103 2.06 2

32 2.99 101 4.05 4

64 1.51 100 8.01 8

128 0.81 94 15.01 16
Table 29: Code_Saturne, Test Case B – METIS - SuperMUC-NG

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 15.75 100 1 1

16 7.93 99 1.99 2

32 4.45 89 3.54 4

64 2.40 82 6.56 8

128 1.90 52 8.28 16
Table 30: Code_Saturne, Test Case B – METIS - MareNostrum4

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.03 100 1 1

16 5.96 101 2.02 2

32 3.20 94 3.76 4

64 1.70 89 7.08 8

128 1.08 70 11.13 16
Table 31: Code_Saturne, Test Case B – METIS – JUWELS

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 12.96 100 1 1

16 6.49 100 2.00 2

32 3.30 98 3.93 4

64 1.99 82 6.52 8

128 1.39 58 9.36 16
Table 32: Code_Saturne, Test Case B – METIS - Joliot-Curie – Skylake

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 33 30.11.2021

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 6.32 100 1 1

16 2.87 110 2.20 2

32 1.38 115 4.59 4

64 0.72 109 8.74 8

128 0.60 66 10.55 16
Table 33: Code_Saturne, Test Case B – METIS - Joliot-Curie – Rome

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

8 5.75 100 1 1

16 2.57 112 2.24 2

32 1.19 121 4.84 4

64 0.68 106 8.51 8

128 0.40 90 14.35 16
Table 34: Code_Saturne, Test Case B – METIS - Hawk

4.2.1.4 Performance for Test Cases C and D

Test Case C (888M)

There are no results on MareNostrum4 because of shortage of resources. Simulations over 256

nodes of Joliot-Curie - Rome could not be completed because of issues with UCX. Again, the

best results are obtained on SuperMUC-NG and Hawk, and for 1024 nodes, running on Hawk

is 2.6 times faster than on SuperMUC-NG, if a node-to-node comparison is performed. Note

that a core-to-core comparison would show a speed-up of 1 between both machines.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

32 28.51 100 1 1

64 14.67 97.16 1.94 2

128 7.72 92.29 3.69 4

256 3.82 93.22 7.46 8

512 2.04 87.34 13.97 16

1024 1.17 76.02 24.33 32
Table 35: Code_Saturne, Test Case C – METIS + MM - SuperMUC-NG

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

32 28.77 100 1 1

64 15.00 96 1.92 2

128 8.50 85 3.38 4

256 5.18 69 5.56 8

512 3.40 53 8.47 16

1024 N/A N/A N/A 32
Table 36: Code_Saturne, Test Case C – METIS + MM – JUWELS

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 34 30.11.2021

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

32 31.33 100 1 1

64 16.33 96 1.92 2

128 8.75 90 3.58 4

256 5.79 68 5.41 8

512 4.42 44 7.08 16

1024 N/A N/A N/A 32
Table 37: Code_Saturne, Test Case C – METIS + MM - Joliot-Curie – Skylake

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

32 16.10 100 1 1

64 7.99 101 2.01 2

128 4.17 97 3.87 4

256 N/A N/A N/A 8

512 N/A N/A N/A 16

1024 N/A N/A N/A 32
Table 38: Code_Saturne, Test Case C – METIS + MM - Joliot-Curie – Rome

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

32 14.83 100 1 1

64 7.33 101 2.02 2

128 3.50 106 4.24 4

256 1.74 107 8.53 8

512 0.90 103 16.52 16

1024 0.67 69 22.17 32
Table 39: Code_Saturne, Test Case C – METIS + MM - Hawk

Test Case D (7B)

The same trend is observed for this case as for Test Case C, Hawk being the machine where the

code is running the fastest, in case of a node-to-node comparison. And for 2048 nodes, it is just

over twice as fast as on SuperMUC-NG. However, a core-to-core comparison would show a

speed-up of 0.77.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

256 36.51 100 1 1

512 18.99 96.10 1.92 2

1024 9.85 92.67 3.71 4

2048 5.56 82.09 6.57 8

2500 4.84 77.27 7.55 9.77
Table 40: Code_Saturne, Test Case D – METIS + MM - SuperMUC-NG

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

256 38.51 100 1 1

512 20.01 96 1.92 2

1024 14.18 68 2.72 4
Table 41: Code_Saturne, Test Case D – METIS + MM – JUWELS

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 35 30.11.2021

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

256 42.17 100 1 1

512 25.02 84 1.69 2
Table 42: Code_Saturne, Test Case D – METIS + MM - Joliot-Curie – Skylake

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

256 19.21 100 1 1

512 9.08 106 2.12 2

1024 4.58 105 4.19 4

2048 2.74 88 7.00 8
Table 43: Code_Saturne, Test Case D – METIS + MM - Hawk

4.2.1.5 Very Large Simulation on SuperMUC-NG and Hawk (56B)

The largest case is made of a mesh of about 56 billion cells (56B), by using the same strategy,

e.g. Mesh Multiplication (3 levels) from Test Case B and corresponding partitions. On both

machines, very good performance is achieved, with over 92% parallel efficiency on 4,096 nodes

(524,288 cores) of Hawk.

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

2048 68.59 100 1 1

2500 56.87 99 1.21 1.22
Table 44: Code_Saturne, Very large case (56B) – METIS + MM - SuperMUC-NG

nodes Time (s) Efficiency Speed-up (SU) Ideal SU

1024 68.96 100 1 1

2048 34.77 99 1.98 2

4096 18.68 92 3.69 4
Table 45: Code_Saturne, Very large case (56B) – METIS + MM - Hawk

4.2.2 Energy Consumption – Comparison for Several Machines

Energy consumption is obtained on 3 machines: MareNostrum4, Joliot-Curie Skylake and

Rome. It is given from the workload accounting logs by using the ‘sacct’ command or

equivalent on these 3 machines. As expected, increasing the number of nodes also increases

energy consumption. Table 46 shows it for Test Cases A, B and C. The time to solution (see

sub-sections 4.2.1.1and 4.2.1.2) for Test Case A (respectively B) on MareNostrum4 is more

than 10% (respectively 20%) expensive than on Joliot-Curie Skylake, but it requires about 40%

(respectively about 100%) more energy. The time to solution for all the tests on Joliot-Curie

Skylake is at least twice as big as their counterparts on Joliot-Curie Rome, but energy

consumption is much less than twice as big, especially when the number of nodes increases.

Unfortunately, there are no results for 256, 512, 1024 nodes on Joliot-Curie Rome for Test Case

C to confirm or infirm the trend observed for Test Case B for the largest number of nodes (64

and 128), where Joliot-Curie Rome's simulations use more energy than Joliot-Curie Skylake

ones, even if they are faster.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 36 30.11.2021

 nodes MareNostrum4 Joliot-Curie Skylake Joliot-Curie Rome

Test Case A

1 1,070 629 369

2 1,080 607 356

4 1,100 627 338

8 1,120 657 436

16 1,220 822 690

Test Case B

8 10,180 5,540 3,270

16 10,220 5,510 3,170

32 6,300 5,800 3,570

64 12,090 7,230 7,600

128 17,890 10,810 17,760

Test Case C

8 N/A 54,130 32,320

16 N/A 55,470 35,150

32 N/A 61,340 44,880
Table 46: Code_Saturne, Energy consumption in kJ - Comparison between machines

4.2.3 Energy Consumption – Comparison Without and With Output on the Disk

For Test Case A it happens that all the times to solution for the solver are smaller in case of

outputting on the disk (W P cases) as shown in Table 47. This explains that the energy

consumption for 1 to 4 nodes is smaller when outputting on the disk, as it does not seem to

introduce any overhead. For 16 nodes however, there is a clear increase in energy consumption

when writing on the disk (W P), for all the machines.

For Test Case B, the trend in energy consumption on 8 and 16 nodes is not easy to identify, but

increasing the number of nodes to 32, 64 and 128 clearly shows the influence of writing on the

disk, as for instance shown for the 128-node case: 33% more energy on MareNostrum4, 12%

more on Joliot-Curie Skylake and 9% more on Joliot-Curie Rome.

 nodes MareNostrum4 Joliot-Curie Skylake Joliot-Curie Rome

 N P W P N P W P N P W P

Test Case A

1 1,070 994 629 600 370 353

2 1,080 924 607 607 356 351

4 1,100 946 627 635 338 504

8 1,120 1,030 657 673 456 414

16 1,220 1,300 821 846 690 797

Test Case B

8 10,180 12,340 5,540 5,650 3,270 3,380

16 10,220 9,850 5,510 5,640 3,170 3,210

32 6,300 7,540 5,800 6,150 3,570 3,800

64 12,090 15,580 7,230 7,430 7,600 7,910

128 17,890 23,940 10,810 12,120 17,760 19,280

Table 47: Code_Saturne, Energy consumption in kJ - Comparison without (N P) and with (W P) output on

(postprocessing)

4.2.4 Conclusions

All the performance tests carried out on the six machines show that Code_Saturne scales very

well, also up to over 0.5M MPI tasks on Hawk, for the 56B case, with a mesh of over 56 billion

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 37 30.11.2021

cells, if good care is taken at the partitioning stage. Here, using METIS and Mesh Multiplication

to generate the meshes from Test Case C on, proves to translate into better timings (and

performance) than using directly SFC Morton/Hilbert for the largest meshes.

Among the 3 machines, where energy consumption was obtained, Joliot-Curie Rome is the one

that shows best values for a small number of nodes, with respect to the mesh size, but Joliot-

Curie Skylake is less energy demanding (even if slower than Joliot-Curie Rome), when the

number of nodes is increased.

4.3 CP2K

4.3.1 Installation of CP2K

Version 8.1 of CP2K was used in all test cases. The GCC compilers are the recommended

compilers for CP2K, with the most up to date versions being supported. Therefore, the GCC

compilers were used for all machine builds. The MPI library used depends on the availability

on each system; the MPI library must be compatible with the GCC compilers, and when

possible, the system recommended MPI library is used. BLAS, LAPACK, and ScaLAPACK

are required by default for MPI builds, for all systems these can be provided from a central

system install either through MKL, OpenBLAS, or LibSci. FFTW is also required for good

performance of FFTs, and again this is available centrally on most systems, however it is

installed if there is not a GCC compatible version. Version 3.3.8.8 is used. Other optional

libraries can be installed in order to improve the performance, and in this case ELPA (v2020-05)

and libxsmm (v16.1) have been used. These offer improved performance for diagonalisation

and matrix multiplication respectively. Libsxmm is used only on CPUs however ELPA is

suitable for GPU and CPU builds, with GPU offloading of diagonalisation routines. Libint,

which offers support for calculations of the Hartree-Fock exchange is installed as it is required

for Test Case B.

The GPU architectures all use NVIDIA GPUs, and therefore CUDA was used to compile the

accelerated code. The CP2K compile flags -D_ACC and -D__DBCSR_ACC enable accelerator

support for matrix multiplications within CP2K’s DBCSR library and the -D__PW_CUDA flag

gives CUDA support for plane wave calculations.

Prior to starting the benchmarking, the builds were tested by running the CP2K test suite and

doing a quick performance check to compare the performance with the centrally installed

CP2K. In all cases the performance was similar or better than the central install.

4.3.2 Running Benchmarks

Runs were performed on fully occupied nodes of each machine. Hybrid MPI+OpenMP was

used for each test case, with thread values set as to sensibly occupy the NUMA regions,

ensuring no threads span multiple regions. For each test case multiple runs were performed

where the number of OpenMP threads was varied. This allows us to find the optimum number

of threads which gives the best performance in each case. Below we present results for the

thread values which gave the best performance and show which configuration (number of

threads per MPI task) this result was for.

Test Case B has an adjustable parameter to set the memory per process used in the HFX module.

This value was set on each system to use the maximum amount of memory available.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 38 30.11.2021

For Piz Daint we compare the performance with and without usage of the GPUs. The runs were

both performed on the XC50 GPU enabled compute nodes, however the CPU only build was

compiled without any offloading to the GPU enabled.

For Test Case C out of memory errors are reported on some systems when running on low node

counts. Where possible the run was repeated on high memory nodes, in other cases there is no

result reported.

4.3.3 Benchmark Results

The results below show the best configuration of threads and processes which gave the shortest

time to solution. For the energy consumption results the energy shown is for the corresponding

run time result, however this may not be the lowest energy reported. Each run is performed

three times and the average of the run time and the energy consumed is taken (apart from on

MARCONI100 where some runs were not repeated due to budget constraints). The speed-up

and parallel efficiency are reported with reference to the run time on a single node.

4.3.3.1 Performance on Hawk

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 689.4 1 100 1

2 377.9 1.82 91.21 2

4 235.1 2.93 73.31 2

8 138.7 4.97 62.15 4

16 101.37 6.80 42.50 8

32 74.40 9.27 28.96 4

64 60.03 11.48 17.94 8
Table 48: CP2K, Test Case A, Hawk

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 534.27 1 100 2

2 274.49 1.95 97.32 4

4 139.57 3.83 95.70 4

8 72.09 7.41 92.64 4

16 37.85 14.11 88.21 8

32 21.96 24.33 76.04 4

64 14.00 38.16 59.62 8

128 9.80 54.50 42.58 8

256 10.09 52.93 20.68 16
Table 49: CP2K, Test Case B, Hawk

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 39 30.11.2021

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 588.36 1 100 8

2 329.68 1.78 89.23 8

4 183.75 3.20 80.05 8

8 98.27 5.99 74.84 4

16 54.11 10.87 67.95 8

32 34.35 17.12 53.52 8

64 25.51 23.06 36.03 16

128 19.77 29.77 23.26 8

256 19.54 30.11 11.76 8
Table 50: CP2K, Test Case C, Hawk

4.3.3.2 Performance on Irene-Rome (Joliot-Curie)

Nodes Best time Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 663.97 1 100 145 1

2 380.05 1.75 87.35 421 2

4 230.88 2.87 71.90 503 2

8 169.72 3.91 48.90 639 4

16 134.97 4.92 30.75 1353 2

32 105.99 6.26 19.58 1684 4
Table 51: CP2K, Test Case A, Irene-Rome

Nodes Best time Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 499.04 1 100 310 2

2 255.38 1.95 97.71 330 2

4 130.55 3.82 95.56 353 2

8 68.37 7.30 91.24 369 2

16 37.60 13.27 82.96 370 4

32 23.87 20.90 65.32 470 4

64 16.42 30.39 47.49 653 16

96 14.37 34.71 36.16 859 16
Table 52: CP2K, Test Case B, Irene-Rome

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 40 30.11.2021

Nodes Best time Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 593.32 1 100 359 8

2 334.80 1.77 88.61 402 4

4 191.56 3.10 77.43 426 4

8 109.12 5.44 67.97 505 4

16 69.50 8.54 53.36 575 8

32 49.24 12.05 37.65 747 16

64 37.83 15.68 24.51 1185 8

96 31.71 18.71 19.49 1562 8
Table 53: CP2K, Test Case C, Irene-Rome

4.3.3.3 Performance on JUWELS

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 1347.24 1.00 100.00 2

2 833.10 1.62 80.86 1

4 419.01 3.22 80.38 2

8 258.91 5.20 65.04 1

16 176.75 7.62 47.64 2

32 166.10 8.11 25.35 4
64 126.92 10.62 16.59 12

Table 54: CP2K, Test Case A, JUWELS

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 1179.99 1.00 100.00 4

2 596.18 1.98 98.96 2

4 304.84 3.87 96.77 4

8 157.20 7.51 93.83 4

16 80.44 14.67 91.69 2

32 42.32 27.88 87.13 12

64 23.82 49.54 77.41 24

128 15.48 76.21 59.54 24

256 11.17 105.66 41.28 24

512 15.11 78.08 15.25 24
Table 55: CP2K, Test Case B, JUWELS

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 41 30.11.2021

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

1 941.58 1.00 100.00 4

2 525.80 1.79 89.54 4

4 291.88 3.23 80.65 4

8 157.83 5.97 74.57 4

16 101.34 9.29 58.07 4

32 56.93 16.54 51.68 24

64 42.89 21.95 34.30 12

128 27.74 33.95 26.52 24

256 21.34 44.13 17.24 24
Table 56: CP2K, Test Case C, JUWELS

4.3.3.4 Performance on MareNostrum4

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 1511.23 1.00 100.00 1322 2

2 830.96 1.82 90.93 1426 1

4 478.20 3.16 79.01 1357 2

8 306.75 4.93 61.58 1911 2

16 196.86 7.68 47.98 2107 2

32 154.59 9.78 30.55 2733 4

64 138.77 10.89 17.02 4520 4
Table 57: CP2K, Test Case A, MareNostrum4

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 1856.62 1.00 100.00 961 4

2 934.07 1.99 99.38 1019 4

4 476.75 3.89 97.36 1063 12

8 246.50 7.53 94.15 1239 2

16 125.39 14.81 92.54 1234 4

32 66.19 28.05 87.66 1154 12

64 36.06 51.48 80.44 1226 12

128 23.38 79.41 62.04 1560 12

192 17.74 104.68 54.52 1354 24
Table 58: CP2K, Test Case B, MareNostrum4

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 42 30.11.2021

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 1133.11 1.00 100.00 1188 4

2 619.03 1.83 91.52 1013 4

4 335.35 3.38 84.47 1134 2

8 180.57 6.28 78.44 1265 4

16 106.85 10.60 66.28 1293 4

32 61.54 18.41 57.54 1523 4

64 43.35 26.14 40.84 1682 12

128 32.63 34.72 27.13 2301 12

192 31.24 36.27 18.89 3208 12
Table 59: CP2K, Test Case C, MareNostrum4

4.3.3.5 Performance on MARCONI100

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

2 3959.804 1.00 100.00 16

4 2098.29 1.89 94.36 8

8 1198.94 3.30 82.57 8

16 785.5965 5.04 63.01 16

32 525.29 7.54 47.11 8
Table 60: CP2K, Test Case A, MARCONI100

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

2 1492.34 1.00 100.00 8

4 639.03 2.34 116.77 16

8 326.56 4.57 114.25 16

16 215.67 6.92 86.50 8

32 105.59 14.13 88.33 16

64 67.76 22.02 68.82 16

128 41.82 35.68 55.75 16

256 33.93 43.98 34.36 16
Table 61: CP2K, Test Case B, MARCONI100

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 43 30.11.2021

Nodes Best time (s) Speed-up Parallel

efficiency

Configuration

(threads per MPI

task)

2 253.13 1.00 100.00 8

4 153.19 1.65 82.62 16

8 98.92 2.56 63.97 16

16 66.93 3.78 47.28 8

32 43.08 5.88 36.72 16

64 31.15 8.13 25.39 16

128 21.67 11.68 18.25 8

192 19.04 13.30 13.85 4
Table 62: CP2K, Test Case C, MARCONI100

4.3.3.6 Performance on Piz Daint GPU

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 3261.21 1.00 100.00 699 2

2 1716.09 1.90 95.02 798 1

4 952.85 3.42 85.56 808 3

8 588.73 5.54 69.24 942 3

16 338.87 9.62 60.15 1079 3

32 255.01 12.79 39.96 1544 3

64 135.68 24.04 37.56 1733 3

128 114.26 28.54 22.30 2645 6
Table 63: CP2K, Test Case A, Piz Daint GPU

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 5300.28 1 100 1063 3

2 2673.49 1.98 99.13 1058 3

4 1375.68 3.85 96.32 1084 6

8 712.25 7.44 93.02 1120 3

16 382.18 13.87 86.70 1235 1

32 199.81 26.53 82.90 1246 6

64 104.89 50.53 78.96 1594 6

128 59.22 89.50 69.92 1552 6

256 37.46 141.48 55.27 1971 12

512 34.86 152.05 29.70 3758 3
Table 64: CP2K, Test Case B, Piz Daint GPU

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 44 30.11.2021

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

8 240.71 1.00 100.00 458 2

16 145.02 1.66 82.99 538 2

32 95.12 2.53 63.27 632 3

64 60.70 3.97 49.57 891 2

128 42.67 5.64 35.26 1037 12

256 31.89 7.55 23.59 1772 6

512 24.24 9.93 15.52 4300 3
Table 65: CP2K, Test Case C, Piz Daint GPU

4.3.3.7 Performance on Piz Daint CPU

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 5121.66 1.00 100.00 1044 1

2 2552.14 2.01 100.34 1041 1

4 1430.27 3.58 89.52 1199 1

8 783.48 6.54 81.71 1280 1

16 447.41 11.45 71.55 1512 1

32 246.92 20.74 64.82 1514 3

64 142.97 35.82 55.97 1790 3

128 123.25 41.55 32.46 2831 3
Table 66: CP2K, Test Case A, Piz Daint CPU

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 5260.95 1.00 100.00 1023 1

2 2654.45 1.98 99.10 1017 1

4 1362.65 3.86 96.52 1064 1

8 693.89 7.58 94.77 1079 1

16 353.36 14.89 93.05 1051 6

32 180.29 29.18 91.19 1191 1

64 94.86 55.46 86.65 1161 6

128 50.15 104.89 81.95 1279 3

256 27.31 192.67 75.26 2238 1

512 22.94 229.36 44.80 3314 3

1024 25.12 209.45 20.45 7512 2
Table 67: CP2K, Test Case B, Piz Daint CPU

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 45 30.11.2021

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

8 718.95 1.00 100.00 1187 1

16 387.39 1.86 92.79 1299 2

32 201.14 3.57 89.36 1368 1

64 109.23 6.58 82.28 1463 2

128 63.46 11.33 70.80 1531 12

256 38.79 18.53 57.92 2664 2

512 23.79 30.22 47.23 3547 2
Table 68: CP2K, Test Case C, Piz Daint CPU

4.3.3.8 Performance on SuperMUC-NG

Nodes Best time (s) Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 1287.93 1.00 100.00 493 2

2 681.04 1.89 94.56 561 1

4 419.60 3.07 76.74 606 2

8 249.53 5.16 64.52 778 1

16 165.82 7.77 48.55 883 2

32 136.47 9.44 29.49 1241 4

64 120.02 10.73 16.77 2005 4
Table 69: CP2K, Test Case A, SuperMUC-NG

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 1773.00 1.00 100.00 503 1

2 904.64 1.96 97.99 527 2

4 456.54 3.88 97.09 537 1

8 236.96 7.48 93.53 569 1

16 122.74 14.45 90.29 565 4

32 65.33 27.14 84.82 605 4

64 35.89 49.41 77.20 642 24

128 23.08 76.84 60.03 791 12

256 13.52 131.13 51.22 No value 24

512 11.06 160.32 31.31 No value 24
Table 70: CP2K, Test Case B, SuperMUC-NG

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 46 30.11.2021

Nodes Best time

(s)

Speed-up Parallel

efficiency

Energy

consumed

(kJ)

Configuration

(threads per MPI

task)

1 963.94 1.00 100.00 5451 4

2 549.52 1.75 87.71 441 4

4 303.43 3.18 79.42 468 4

8 165.04 5.84 73.01 513 4

16 97.40 9.90 61.86 589 4

32 58.31 16.53 51.66 693 4

64 41.62 23.16 36.19 883 12

128 31.28 30.82 24.08 1306 12
Table 71: CP2K, Test Case C, SuperMUC-NG

4.3.4 Performance Comparison

The results presented in this section are for the run time of the best performing configuration of

threads and processes at that particular node count on each system. Hence, we present a

comparison of the most optimal runs on each system for each test case. Figure 2 shows a

performance comparison of the systems for Test Case A.

Figure 2: CP2K run times for Test Case A.

The figure illustrates the effect on the run time due to the differing processor type and cores per

node across the different systems. Irene-Rome and Hawk which have two 64 core AMD Rome

EPYC processors per node have similar results at low node counts and are the best performing

systems for this test case on a node-for-node comparison. Hawk slightly outperforms Irene-

Rome at higher node counts due to better performing MPI calls at this scale (as shown in the

CP2K log files) owing to its higher interconnect bandwidth. JUWELS, MareNostrum4 and

SuperMUC-NG, which each have two 24 core Intel Xeon Skylake processors per node have

similar performance with SuperMUC-NG outperforming slightly are higher node counts. For

Piz Daint, where we have reported the performance on its 12 core Intel processors with an

NVIDIA GPU but run with and without offloading to the GPU itself, the results show that

offloading to the GPUs is mostly optimal, however at high node counts the CPU and GPU

results are similar. MARCONI100, which has 4 V100 GPUs per node, shows worse

performance than the other systems across all node counts. From looking at the CP2K logs this

1 This result was performed on the high memory nodes due to the memory requirements.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 47 30.11.2021

appears to be because this test case is dominated by the diagonalisation routines which were

not offloaded to GPU. On MARCONI100 it is suggested to run with 4 MPI processes per node

(1 per GPU), and therefore without good GPU utilisation performance will be reduced.

Figure 3: CP2K run times for Test Case B.

Figure 3 shows the performance for Test Case B. Most of the systems show good scaling up to

128 nodes with a parallel efficiently around 70%. As with Test Case A, there is similarity

between the performance of Hawk and Irene-Rome (which have the same processor

architecture), with Irene-Rome doing better at low node counts and Hawk slightly

outperforming Irene-Rome at higher node counts. Of the Intel Xeon Skylake systems

(JUWELS, SuperMUC-NG and MareNostrum4) JUWELS is the best performing with

MareNostrum4 and SuperMUC-NG having similar performance. For Piz Daint the CPU and

GPU performance is similar. From the CP2K log files it can be seen that this test case is

dominated by the computation of the Hartree Fock exchange which is currently handled by the

Libint library and not offloaded to GPU. MARCONI100 shows better performance than Piz

Daint for this test case. This may be due to the large amount of memory available per process

when running on MARCONI100. There is 242 GB per node, which is divided amongst the 4

processes used per node to give around 60 GB per process. The performance of the HFX

calculation in this test case is affected by the memory assigned to it through the

MAX_MEMORY input parameter which is set to 55 GB in this case.

Figure 4 shows the performance for Test Case C on the different Tier-0 systems. The key

operation in this test case in matrix-matrix multiplication, which is handled in the DBCSR

library and can be offloaded to GPU. As a result of this the performance of GPU-based systems

is much improved compared to the other test cases, MARCONI100 is among the best

performing systems across all node counts, and the GPU build of Piz Daint clearly outperforms

the CPU version. For the Cpu-based systems there is a similar trend to the other test cases, with

there being a gap between the 128 core AMD EPYC systems and the smaller 48 core Intel Xeon

systems.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 48 30.11.2021

Figure 4: CP2K run times for Test Case C.

In general, the systems with larger nodes performed best across the three test cases when taking

a node-for-node comparison. Hawk performed slightly better than Irene-Rome at higher node

counts, perhaps owning to its larger interconnect bandwidth. The three Intel Xeon Skylake

systems (JUWELS, SuperMUC-NG and MareNostrum4) had similar performance for the test

cases, with JUWELs exceeding the performance of the other two systems in Test Case B and C.

For Piz Daint offloading to GPU was more performant than CPU for Test Case A and C,

however this effect diminishes at higher node counts due to the increased contribution of MPI

communications. MARCONI100 was the worst performing for Test Case A but among the best

performing for Test Case C. The main computation effort in Test Case C is handled by the

DBCSR library, which is offloaded to GPU, and therefore the GPU-based systems perform well

in this test case. Overall, the performance of the GPU-based systems is dependent on the test

case.

4.3.5 Threading Options

As previously mentioned for each system we run each test case with various choices for the

number of threads and then select the best performing configuration at each node count. These

are summarised in Table 72 for Test Case A and Table 73 for Test Case C.

N
o
d

es

H
a
w

k

Ir
en

e-
R

o
m

e

S
u

p
er

M
U

C
-N

G

M
a
re

N
o
st

ru
m

4

J
U

W
E

L
S

P
iz

 D
a
in

t
G

P
U

P
iz

 D
a
in

t
C

P
U

M
A

R
C

O
N

I1
0
0

1 1 1 2 2 2 2 1 -

2 2 2 1 1 1 1 1 16

4 2 2 2 2 2 3 1 8

8 4 4 1 2 1 3 1 8

16 8 2 2 2 2 3 1 16

32 4 4 4 4 4 3 3 16

64 8 8 4 4 12 3 3 -
Table 72: CP2K – the optimum number of threads for Test Case A.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 49 30.11.2021

N
o
d

es

H
a
w

k

Ir
en

e-
R

o
m

e

S
u

p
er

M
U

C
-N

G

M
a
re

N
o
st

ru
m

4

J
U

W
E

L
S

P
iz

 D
a
in

t
G

P
U

P
iz

 D
a
in

t
C

P
U

M
A

R
C

O
N

I1
0
0

1 8 8 4 4 4 - - -

2 8 4 4 4 4 - - 16

4 8 4 4 2 4 - - 16

8 4 4 4 4 4 2 1 16

16 8 8 4 4 4 2 2 16

32 8 16 4 4 24 3 1 16

64 16 8 12 12 12 2 2 16

128 8 8 12 12 24 12 12 8
Table 73: CP2K – the optimum number of threads for Test Case C.

Most systems show the trend of the optimum number of threads increasing when run on more

nodes. This can be explained by the improved performance of MPI calls when running on more

threads. Multi-threading usually allows for less inter-node messages. The tables also show that

the systems with similar processors typically have the similar values for the optimum number

of threads. This can be seen when comparing Hawk and Irene-Rome, and SuperMUC-NG,

MareNostrum4 and JUWELS. The GPU-based systems tend to perform better with more

threads per process. For MARCONI100 it is recommended to use 4 processes per node and

therefore more threads can utilise more of the cores. It is worth noting that when using 16

threads there are 2 threads running on a core.

4.3.6 Energy Consumption Comparison

In this section we report the energy consumed by running each of the CP2K test cases on the

Tier-0 systems. In each case the total energy for running the job on the system is given from

the workload accounting logs by using the ‘sacct’ command or similar. This energy includes

contributions from both the node energy and the switch energy. Unfortunately, some of the

systems do not report this energy, hence we present results only for Piz Daint, Irene-Rome,

SuperMUC-NG and MareNostrum4. It is worth noting that for Irene-Rome in some runs the

energy was not reported or gave an excessively high value, so these runs were repeated.

The total energy consumed for running Test Case A is shown in Figure 5. In all cases the energy

consumption increases when running on more nodes. When comparing the Piz Daint CPU and

GPU builds, we can see that the energies are similar, however the GPU requires less energy

overall. This is likely since the run time when using the GPU is shorter, and in this case the

energy consumption is proportional to the performance for both builds. SuperMUC-NG and

MareNostrum4 had similar run times for this test case, however the energy consumption for

MareNostrum4 is over 2 times larger. Irene-Rome has the lowest energy used at smaller node

counts, but this increases the most when going to larger node counts. This was among the best

performing systems for this test case.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 50 30.11.2021

Figure 5: CP2K energy consumption for Test Case A.

Figure 6 shows the energy consumed for Test Case B. For this test case for most systems the

energy used increases slowly up to around 64 nodes and then more rapidly above this. For Piz

Daint the energy for the GPU and CPU build is similar, reflecting the almost matching

performance for these builds with this test case. MareNostrum4 again has a higher energy

consumption than SuperMUC-NG despite having the same processor and showing similar

performance for this test case. Irene-Rome uses less energy than the other machines, due to its

better performance.

Figure 6: CP2K energy consumption for Test Case B.

Figure 7 shows the energy consumed for Test Case C. Here the energy used by Irene-Rome,

SuperMUC-NG and Piz Daint GPU are similar with these consuming less energy than

MareNostrum4 and Piz Daint CPU in most cases. The energy results for Piz Daint again reflect

the performance with the energy used per second being similar for both builds. This shows that

this test case benefits from being run on the GPU.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 51 30.11.2021

Figure 7: CP2K energy consumption for Test Case C.

Overall MareNostrum4 consumed the most energy in all three test cases. Irene-Rome consumed

least energy in most cases and was one of the better performing machines when taking a node-

for-node comparison. The energy consumed by the GPU and CPU builds on Piz Daint is

proportional to the run time of the builds, with the better performing GPU build using less

energy.

4.3.7 Energy Usage Considerations

The energy consumption results presented are shown for the best performing configuration of

threads and processes. However, considering the global need to reduce energy usage, and that

some HPC centres are now beginning to charge based on energy used rather than on core hours

used, it may be worth finding the configuration with the lowest overall energy consumption

instead. Therefore, in this section we will look at the impact of choosing the configuration

which uses the least energy rather than the best performing.

As an example, Table 74 shows the run times and energy consumption for the best performing

and lowest energy consuming configurations for Test Case C on Piz Daint GPU.

Nodes Best performance Lowest energy Energy

ratio

Run

time

ratio
Energy

(kJ)

Run

time (s)

Config

(threads

per MPI

task)

Energy

(kJ)

Run

time (s)

Config

(threads

per MPI

task)

8 457.57 240.71 2 433.20 241.72 3 0.95 1.00

16 538.22 145.02 2 506.19 147.42 3 0.94 1.02

32 632.15 95.12 3 596.65 97.64 6 0.94 1.03

64 891.17 60.70 2 729.49 61.86 12 0.82 1.02

128 1036.90 42.67 12 1036.90 42.67 12 1.00 1.00

256 1772.32 31.89 6 1772.32 31.89 6 1.00 1.00

512 4300.24 24.24 3 2970.91 26.77 12 0.69 1.10
Table 74: CP2K – run times and energy consumption for Test Case C on Piz Daint GPU.

The table shows that the lowest energy configuration typically has more threads per process

than the best performing configuration. In most cases there is only a slight reduction in energy

used when choosing the lowest energy configuration (and in some cases the lowest energy and

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 52 30.11.2021

best performing configurations are the same). However, some results show it is possible to

reduce the energy used by 20–30% with only a small negative effect on the performance. On

512 nodes running on 12 threads per process rather than 3 threads per process reduces the

energy by 30%, for only a 10% increase in the run time. In some circumstances, it may be

preferable to choose this configuration.

4.3.8 Conclusions

In summary, we investigated the performance and energy consumption of three CP2K test cases

on the PRACE Tier-0 systems. When taking a node-for-node comparison of the performance it

was seen that Hawk and Irene-Rome (which have two 64 core AMD EPYC processors per

node) performed better than the other systems, as they have more cores per node. However,

these are less performant when taking a core-for-core comparison. The three Intel Xeon Skylake

systems had similar performance in most cases, however, JUWELS had better performance in

Test Case B and C. The performance of the GPU-based systems was shown to be dependent on

the test case. For Test Case C GPU offloading was shown to be advantageous but this was not

the case for Test Case B.

The energy consumption was mostly reflective of the run time, with the best performing runs

using less energy. However, MareNostrum4 consumed more energy than SuperMUC-NG

despite having similar performance. We also briefly investigated how changing the number of

threads might affect the energy consumption, and whether it could be advantageous to choose

the lowest energy configuration at a slight loss to performance. It was shown that this may be

possible in some cases, but this would require more detailed investigation.

4.4 GADGET

4.4.1 System Software Environment

The GADGET-4 benchmarks have been performed on systems with Skylake architecture using

the Intel Platinum CPU (Irene-SKL, JUWELS, and MareNostrum4).

GADGET-4 requires a C++ compiler (C++11 standard), Message Passing Interface (MPI)

version 3.0 or higher, the GNU scientific library (GSL), the Fastest Fourier Transform in the

West (FFTW3), the Hierarchical Data Format version 5 (HDF5), and the hardware locality

library (hwloc). In addition, the code requires the Vector Class Library by Agner Fog for

explicit vectorisation via the AVX instruction set is enabled.

The FFTW3 library is not explicitly required (it makes no difference whether it is available or

not as GADGET-4 implements its own communication routines when MPI is used). FFTW is

only needed for simulations that use the TreePM algorithm, or if power spectra are estimated,

or cosmological ICs are created. The hwloc library is useful for allowing the code to probe the

processor topology it is running on and enable a pinning to individual cores. This library is

optional as many MPI libraries nowadays enable pinning by default. The code also makes use

of GNU make and Python as part of its build process.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 53 30.11.2021

The software versions used in each machine are displayed in Table 75.

Machine C++ compiler MPI flavour FFTW3 GSL HDF5 Hwloc

Irene-SKL Intel 2020.2 Intel MPI 2020.0 3.3.8 2.6 1.10.1 2.2.0

JUWELS Intel 2020.2 Intel MPI 2021.2 3.3.8 2.6 1.10.6 2.4.1

MareNostrum4 Intel 2019.5 Intel MPI 2018.4 3.3.8 2.7 1.10.5 2.0.0
Table 75: Software versions used in GADGET-4 benchmarks

4.4.2 Code Compilation and Extra MPI Tasks for Incoming Communications

After setting up the software environment through modules, GADGET-4 is compiled from its

top-level directory using GNU make and the configuration file (Config.h) that contains the

compile-time options. As the location and versions of the C++ compiler and libraries needed to

run the code vary among different machines, the Makefile is divided into 4 files: (i) the Makefile

which should not be changed in any significant way, (ii) a Makefile.systype file in which the

system type is declared, (iii) a Makefile.comp file with the compilation flags, and (iv) a

Makefile.path file with the lib and include paths of FFTW3, GSL, HDF5, hwloc, and

vectorclass. Note that the latter library is bundled with the GADGET-4 source. Thus, the user

only needs to adapt these files to the machine being used and the code compilation is straight

forward. The code does not need to be recompiled for a different number of cores, or for a

different problem size. However, when using multi nodes, there is the need to include an extra

MPI task to handle for asynchronously serving incoming communication requests from other

nodes.

4.4.3 Setup of the Runs

In order to study the scalability of the software two approaches were considered:

a) A core-based performance analysis where 1 MPI task per core, 16 cores per socket, that

is 16 MPI tasks per socket, and 1 extra core per compute node to handle communications

when multiple compute nodes were used. For the runs on a single node (that is with the

number of cores varying between 1 and 32) no extra core was considered.

b) A node-based performance analysis where 1 MPI task per core, and all cores in the

socket, that is 24 MPI tasks per socket, including an extra core for MPI communications

when multiple nodes are used. For runs on a single node there is no need to use an extra

core for communications.

In both setups the compute nodes were used with exclusivity. These approaches allow us to

identify which setup provides the better performance for the GADGET-4 code.

4.4.4 Performance Results

Test Case A (Cosmological dark matter-only simulation). The timings, speed-up, and

parallel efficiency of this test measured in JUWELS and MareNostrum4 are displayed in Table

76 and Table 77, while the energy consumption is shown in Table 78. The energy measurements

were obtained using the sacct command with the field variable ConsumedEnergy.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 54 30.11.2021

Nodes # Cores # Cores

for

Comm

JUWELS

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

1 8 0 5062 1.00 100.0

1 16 0 2592 1.95 97.6

1 32 0 1425 3.55 88.8

2 64 2 842 6.01 75.1

4 128 4 399 12.69 79.3

8 256 8 234 21.63 67.6

16 512 16 150 33.75 52.7

32 1024 32 118 42.90 33.5

64 2048 64 120 42.18 16.5

128 4096 128 221 22.91 4.5
Table 76: Timings, speed-up, and parallel efficiency of Test Case A of GADGET-4 on JUWELS

Nodes # Cores # Cores

for

Comm

MareNostrum4

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

1 8 0 7762 1.00 100.0

1 16 0 4037 1.92 96.1

1 32 0 2179 3.56 89.1

2 64 2 1252 6.20 77.5

4 128 4 577 13.45 84.1

8 256 8 328 23.67 74.0

16 512 16 211 36.79 57.5

32 1024 32 164 47.33 37.0

64 2048 64 156 49.76 19.4

128 4096 128 160 48.51 9.5
Table 77: Timings, speed-up, and parallel efficiency of Test Case A of GADGET-4 on MareNostrum4

Figure 8: Speed-up comparisons for Test Case A with GADGET-4 on JUWELS and MareNostrum4.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 55 30.11.2021

Figure 9: Parallel efficiency for Test Case A with GADGET-4 on JUWELS and MareNostrum4.

Nodes # Cores # Cores for Comm MareNostrum4

Energy [kJ]

1 8 0 2810.0

1 16 0 1600.0

1 32 0 526.3

2 64 2 643.3

4 128 4 588.6

8 256 8 684.7

16 512 16 854.2

32 1024 32 1260.0

64 2048 64 2230.0

128 4096 128 4880.0
Table 78: Energy measurements for GADGET-4 Test Case A on MareNostrum4.

Test Case B (The Blob test). The core-based and node-based performance approaches were

used in this test and are named “Test Case B-c” and “Test Case B-n”, respectively. The timings,

speed-up, and parallel efficiency of this test measured in Irene-SKL, JUWELS, and

MareNostrum4 are displayed in Table 79 and Table 80.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 56 30.11.2021

Test Case B – c (Core-based approach)

Benchmark #Nodes #Cores

#Cores

for

comm.

Total

#cores

Irene-SKL

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

Test Case B - c 1 2 0 2 9064 1.00 100.0

Test Case B - c 1 4 0 4 4962 1.83 91.3

Test Case B - c 1 8 0 8 2452 3.70 92.4

Test Case B - c 1 16 0 16 1298 6.98 87.3

Test Case B - c 1 32 0 32 749 12.10 75.6

Test Case B - c 2 64 2 66 439 20.65 64.5

Test Case B - c 4 128 4 132 299 30.31 47.4

Test Case B - c 8 256 8 264 273 33.20 25.9

Test Case B - c 16 512 16 528 267 33.95 13.3

Test Case B - c 32 1024 32 1056 422 21.48 4.2

Test Case B - c 64 2048 64 2112 1031 8.79 0.9
Table 79: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach) obtained with

GADGET-4 on Irene-SKL.

Benchmark #Nodes #Cores

#Cores

for

comm.

Total

#cores

JUWELS

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

Test Case B - c 1 2 0 2 8184 1.00 100.0

Test Case B - c 1 4 0 4 4540 1.80 90.1

Test Case B - c 1 8 0 8 2381 3.44 85.9

Test Case B - c 1 16 0 16 1255 6.52 81.5

Test Case B - c 1 32 0 32 672 12.18 76.1

Test Case B - c 2 64 2 66 421 19.44 60.7

Test Case B - c 4 128 4 132 279 29.33 45.8

Test Case B - c 8 256 8 264 234 34.97 27.3

Test Case B - c 16 512 16 528 210 38.97 15.2

Test Case B - c 32 1024 32 1056 249 32.87 6.4

Test Case B - c 64 2048 64 2112 576 14.21 1.4
Table 80: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach) obtained with

GADGET-4 on JUWELS.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 57 30.11.2021

Benchmark #Nodes #Cores

#Cores

for

comm.

Total

#cores

MareNostrum4

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

Test Case B - c 1 2 0 2 10826 1.00 100.0

Test Case B - c 1 4 0 4 6974 1.55 77.6

Test Case B - c 1 8 0 8 3507 3.09 77.2

Test Case B - c 1 16 0 16 1859 5.82 72.8

Test Case B - c 1 32 0 32 956 11.32 70.8

Test Case B - c 2 64 2 66 565 19.16 59.9

Test Case B - c 4 128 4 132 396 27.34 42.7

Test Case B - c 8 256 8 264 344 31.47 24.6

Test Case B - c 16 512 16 528 325 33.31 13.0

Test Case B - c 32 1024 32 1056 399 27.13 5.3

Test Case B - c 64 2048 64 2112 1360 7.96 0.8
Table 81: Timings, speed-up and parallel efficiency of Test Case B-c (core-based approach) obtained with

GADGET-4 on MareNostrum4.

Test Case B – n (Node-based approach)

Benchmark #Nodes #Cores

#Cores

for

comm.

Total

#cores

Irene-SKL

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

Test Case B-n 1 2 0 2 9064 1.00 100.0

Test Case B-n 1 4 0 4 4962 1.83 91.3

Test Case B-n 1 8 0 8 2452 3.70 92.4

Test Case B-n 1 16 0 16 1298 6.98 87.3

Test Case B-n 1 32 0 32 749 12.10 75.6

Test Case B-n 2 64 2 66 446 20.32 63.5

Test Case B-n 3 128 3 131 382 23.73 37.1

Test Case B-n 6 256 6 262 303 29.91 23.4

Test Case B-n 11 512 11 523 389 23.30 9.1

Test Case B-n 22 1024 22 1046 565 16.04 3.1

Test Case B-n 44 2048 44 2092 1457 6.22 0.6
Table 82: Timings, speed-up and parallel efficiency of Test Case B-n (node-based approach) obtained with

GADGET-4 on Irene-SKL.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 58 30.11.2021

Benchmark #Nodes #Cores

#Cores

for

comm.

Total

#cores

JUWELS

Timings

[s]

Speed-

up

Parallel

Efficiency

[%]

Test Case B-n 1 2 0 2 8184 1.00 100.0

Test Case B-n 1 4 0 4 4540 1.80 90.1

Test Case B-n 1 8 0 8 2381 3.44 85.9

Test Case B-n 1 16 0 16 1255 6.52 81.5

Test Case B-n 1 32 0 32 672 12.18 76.1

Test Case B-n 2 64 2 66 421 19.44 60.7

Test Case B-n 3 128 3 131 315 25.98 40.6

Test Case B-n 6 256 6 262 283 28.92 22.6

Test Case B-n 11 512 11 523 290 28.22 11.0

Test Case B-n 22 1024 22 1046 331 24.73 4.8

Test Case B-n 44 2048 44 2092 789 10.37 1.0
Table 83: Timings, speed-up and parallel efficiency of Test Case B-n (node-based approach) obtained with

GADGET-4 on JUWELS.

Note that only the results obtained with Irene-SKL and JUWELS are displayed here as their

comparison is enough to conclude on the relative importance of the two approaches. It should

also be mentioned that the timings, speed-up, and parallel efficiency only differ from those

obtained in the core-based approach when more than 64 cores, that is more than 2 compute

nodes, are used as it should be expected. Hence, what should be looked at is the variation on

performance for more than 2 compute nodes. Figure 10 – Figure 12 display the run time, speed-

up, and parallel efficiency vs. number of cores for the two approaches used in Test Case B.

Figure 10: Simulation time for Test Case B - c (core-based approach; solid lines) and Test Case B-n (node-

based approach; dashed lines) obtained with GADGET-4 on Irene-SKL, JUWELS, and MareNostrum4.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 59 30.11.2021

Figure 11: Speed-up for Test Case B - c (core-based approach; solid lines) and Test Case B-n (node-based

approach; dashed lines) obtained with GADGET-4 on Irene-SKL, JUWELS, and MareNostrum4.

Figure 12: Parallel efficiency for Test Case B - c (core-based approach; solid lines) and Test Case B-n (node-

based approach; dashed lines) obtained with GADGET-4 on Irene-SKL, JUWELS, and MareNostrum4.

4.4.5 Discussion

Test Case A (Cosmological dark matter-only simulation). The timings on JUWELS are

faster than on MareNostrum4, which can be explained by the different clock speeds of the SKL

Platinum CPUs used in the two machines (2.7 GHz for JUWELS vs. 2.1 GHz for

MareNostrum4). The speed-ups of GADGET-4 on the two machines are similar up to 128 cores

showing a departure for a larger number of cores. The parallel efficiency of the code in both

machines has a similar evolution with JUWELS having the lower efficiency that becomes

noticeable above 128 cores varying from 80%–84% (JUWELS-MareNostrum4) to less than

20% and 10% for 2048 and 4096 cores, respectively, for both machines. This is consistent with

the breaking of the scalability of the code above 1024 cores. This efficiency is related mostly

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 60 30.11.2021

to the code functions dealing with the tree-structure for the force field and the imbalance and

communications losses.

Energy consumption typically decreases with the increase in the number of cores in a single

compute node, but shows a slow increase with the number of compute nodes added to the

calculations.

Test Case B (Blob test). The results of the test runs are displayed in Table 79 – Table 83 and

in Figure 10 – Figure 12. MareNostrum4 holds the worst performance in this test as a result of

the CPU clock speed being lower than that used in JUWELS and Irene-SKL for the Platinum

CPUs. Both JUWELS and Irene-SKL show similar timings up to 64 cores, at this point the

scaling is completely lost and there is no point in adding more resources. This breakup in

performance results from the domain decomposition algorithm, while the actual SPH

calculations still performs well at this point, although imbalance and communication losses are

quite noticeable (see discussion [21]).

The differences between the two approaches are quite noticeable when the number of compute

nodes becomes larger than 2. The core-based approach is more efficient than the node-based

approach as can be seen in Figure 10 for the test runs with JUWELS and Irene-SKL. However,

the benefits of using the core-based approach come at a price – per compute node there are 15

cores not being used (this number comes from taking 16 cores per socket for the calculations

plus 1 core to handle the communications giving a total of 33 cores per compute node).

This loss of scalability of GADGET-4 for this test is easily explained by its size – it uses 1

million SPH particles. A more sizeable problem, with 10 million SPH particles, shows a better

scalability with the three Tier-0 machines up to 640 cores.

4.5 GPAW

4.5.1 Performance Results

Two setups of GPAW were tested for this release of the UEABS:

 Python 3.8.7, NumPy 1.18.5, SciPy 1.5.4, ASE 3.19.3 and GPAW 20.1.0

 Python 3.9.4, NumPy 1.19.5, SciPy 1.5.4, ASE 3.20.1 and GPAW 20.10.0

The exception is SuperMUC-NG, where we had to fall back to NumPy 1.18.5 for GPAW

20.10.0 also as SciPy 1.5.4 would not compile with NumPy 1.19.5.

Note that even though GPAW does not pose an upper limit on the NumPy and SciPy versions,

older versions of GPAW produce lots of deprecated feature warnings with newer versions so

the versions of NumPy and SciPy were also chosen according to this.

More recent patch levels of Python 3.8 and 3.9 made changes to installation process of Python

packages that also break the installation procedure that was used.

On all systems the Intel compilers and Intel MKL were used, also on AMD EPYC systems, as

the centres did not discourage it and used it themselves in many software installations. On Irene,

Open MPI was used instead of Intel MPI, and on Hawk most tests were done with the vendor-

proprietary HPE MPT library and Open MPI.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 61 30.11.2021

Note also that GPAW in many cases favours the use of regular configurations with the same

number of processes on each node rather than filling some nodes completely and leaving one

or more cores unused on other nodes. Hence, the number of cores chosen for comparing the

benchmark results is a compromise: We took some regular numbers that were tested on all

clusters, and then sets in functions of the number of cores per node for both the Skylake-based

clusters and the AMD Rome based clusters. Not all cases could be run on all core configurations

due to the limited resources available and in some cases also due to problems occurring on some

clusters in some configurations.

The reported times are as reported by GPAW. This removes a lot of the setup overhead and

ensures that it does not become a file system benchmark as the start-up of large Python jobs can

be expensive due to the number of files involved.

4.5.1.1 Test Case S

The small test case was run on the Skylake-based clusters JUWELS, SuperMUC-NG and

MareNostrum4, and on the AMD Rome-based clusters Irene (Rome section) and Hawk. On

Hawk, both the vendor-provided MPT and Open MPI were used.

However, on Irene GPAW failed to start if the requested number of cores was not a multiple of

the number of cores per node, leading to only one result for this test case. As we have more

results on Irene for the other benchmarks, we do give the results here too for completeness.

GPAW 20.1.0 / Test Case S

Cores JUWELS SuperMUC-NG MareNostrum4

Irene-

Rome

Hawk

(MPT)

Hawk

(OMPI)

1 1607 s 2207 s 2387 s 1619 s 1638 s

10 181 s 242 s 260 s 295 s 173 s

24 94.2 s 1178 s 133 s 168 s 84.6 s

25 97.7 s 120 s 138 s 162 s 88.2 s

32 80.4 s 96.8 s 108 s 124 s 68.2 s

48 72.2 s 78.5 s 91.3 s 88.4 s 59.9 s

50 52.2 s 64.2 s 74.3 s 81.9 s 57.8 s

64 48.3 s 60.2 s 68.0 s 72.7 s 53.4 s

96 41.0 s 47.0 s 54.4 s 51.4 s 46.3 s

100 37.3 s 44.8 s 51.0 s 50.5 s 51.1 s

128 34.5 s 39.0 s 44.7 s 44.2 s 41.3 s 45.2 s

144 32.6 s 36.8 s 43.1 s 40.7 s 41.4 s
Table 84: Benchmark run time, GPAW 20.1.0, Test Case S

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 62 30.11.2021

GPAW 20.10.0 / Test Case S

Cores JUWELS SuperMUC-NG MareNostrum4

Irene-

Rome

Hawk

(MPT)

Hawk

(OMPI)

1 1636 s 2258 s 2378 s 1613 s 1630 s

10 187 s 250 s 263 s 296 s 174 s

24 96.6 s 122 s 132 s 84.9 s

25 102 s 124 s 137 s 162 s 88.6 s

32 82.6 s 99.1 s 107 s 124 s 68.5 s

48 74.4 s 80.6 s 101 s 59.1 s

50 53.4 s 66.4 s 73.2 s 81.7 s 56.7 s

64 49.5 s 61.8 s 69.5 s 72.6 s 53.3 s

96 42.5 s 48.2 s 55.5 s 51.1 s 46.7 s

100 37.9 s 46.3 s 51.5 s 50.7 s 50.8 s

128 35.3 s 39.6 s 47.2 s 44.1 s 41.2 s 45.1 s

144 33.4 s 37.9 s 43.1 s 40.4 s 42.2 s
Table 85: Benchmark run time, GPAW 20.10.0, Test Case S

For all systems except for Irene, we also computed the efficiency by comparing the compute

time and number of cores used with the time for a run on a single core.

GPAW 20.1.0 / Test Case S

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT) Hawk (OMPI)

1 100% 100% 100% 100% 100%

10 89% 91% 92% 55% 95%

24 71% 78% 75% 40% 81%

25 66% 74% 69% 40% 74%

32 63% 71% 69% 41% 75%

48 46% 59% 55% 38% 57%

50 62% 69% 64% 40% 57%

64 52% 57% 55% 35% 48%

96 41% 49% 46% 33% 37%

100 43% 49% 47% 32% 32%

128 36% 44% 42% 31% 28%

144 34% 42% 39% 28% 28%
Table 86: Efficiency with respect to a single core run, GPAW 20.1.0, Test Case S

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 63 30.11.2021

GPAW 20.10.0 / Test Case S

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT) Hawk (OMPI)

1 100% 100% 100% 100% 100%

10 88% 90% 90% 55% 94%

24 71% 77% 75% 80%

25 65% 73% 70% 40% 74%

32 62% 71% 69% 41% 74%

48 46% 58% 49% 57%

50 61% 68% 65% 40% 58%

64 52% 57% 54% 35% 48%

96 40% 49% 45% 33% 36%

100 43% 49% 46% 32% 32%

128 36% 45% 39% 31% 28%

144 34% 41% 38% 28% 27%
Table 87: Efficiency with respect to a single core run, GPAW 20.10.0, Test Case S

A few things are worth noting.

It is not surprising that MareNostrum4 is slower than JUWELS as its CPUs have a lower clock

speed. The nominal clock speed of the CPU used in SuperMUC-NG is higher than on JUWELS

which is not reflected in the results. It appears that due to energy management issues it is run at

a lower clock speed. Even when running within a node, the efficiency decreases faster on

JUWELS though. Possible causes may be a different internode communication strategy (most

MPI implementations support multiple options, with some requiring a kernel extension), but it

may also be due to the dynamic way in which Intel processors change their clock speed

depending on the load of a socket and the type of instructions used which may be different on

SuperMUC-NG and JUWELS. It is possible that the single core result on JUWELS is a bit

increased by a small boost in clock speed, or that that particular high-frequency SKU sees a

larger reduction in clock speed when AVX512 instructions are used and all cores are used,

lowering the result on a full node, and this behaviour would also be reflected in a lower

efficiency when more cores are used.

What is also surprising is the poor scaling on Hawk. This is even more remarkable as all runs

up to 128 cores stay within a single node. With MPT, the scaling is already surprisingly bad

using only a limited number of cores, while with Open MPI, the scaling is OK at low core

counts but becomes nearly as bad as with MPT when using half or more of the cores of a node.

This is because with MPT, processes are by default allocated sequentially from core 0 while

with Open MPI processes were spread over the full node. E.g. in the 10 MPI ranks case with

MPT the run time is close to 300 s while with Open MPI the run time is around 170 s. With

MPT all processes were running in the first NUMA domain and competing for memory

bandwidth in that domain while with Open MPI they were spread over all NUMA domains.

Therefore, the run with MPT is already more memory bandwidth constrained. When nearly all

cores are used, the benchmark times (and efficiency as the single core times are about the same)

become comparable again as in both cases cores on both sockets are used. The fact that using

10 cores we see such a big influence of the distributions of processes over the cores of the node

indicates that certainly on AMD Rome processors this benchmark is already memory bandwidth

bound rather than compute bound which is somewhat surprising for a DFT code that supposedly

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 64 30.11.2021

makes good use of BLAS operations and FFT in optimised libraries, though another explanation

could be that the BLAS and FFT libraries do not sufficiently recognise the sizes of the L2 and

L3 cache on the AMD Rome CPU and therefore cause a heavier load on the memory system

(we used MKL for BLAS but FFTW for the FFT operations). When the processes are more

spread out as is the case with Open MPI, going from 96 cores (3 cores/CCU) to 128 cores (4

cores/CCU) does not really give any benefit at all so this may be an example of a code where

for a given number of nodes it may make sense to not use all cores on 64-cores-per-socket AMD

Rome CPUs.

Also somewhat surprising is the performance of the Rome partition of Irene. According to the

documentation, the nominal clock speed is 2.6 GHz while for Hawk the nominal clock speed is

2.25 GHz, yet the full node result on Irene is worse than on Hawk. The compilers we used were

of the same generation. On Irene, we failed to produce results using partial nodes due to

problems with the process starter, making the comparison somewhat limited.

There is also no noticeable difference between GPAW 20.1.0 and 20.10.0, despite the latter

using a newer version of Python that is claimed to have improved memory management and

except on SuperMUC-NG also a newer version of NumPy. Both setups were using the same

compilers and same optimised mathematics libraries though.

As a node-based on the AMD EPYC Rome CPU is likely not much more expensive than a

node-based on Intel Skylake CPUs, it may make sense to also look at the run times on a node

base. Compute centres running AMD hardware often admit that the core performance of AMD

is lower than for recent Intel processors but that this is more than compensated by the fact that

you get a lot more cores for the same amount of money. For GPAW 20.1.0, we get

GPAW 20.1.0 / Test Case S

Nodes JUWELS SuperMUC-NG MareNostrum4

Irene-

Rome

Hawk

(MPT)

Hawk

(OMPI)

1 72.2 s 78.5 s 91.3 s 44.2 s 41.3 s 45.2 s

2 41.0 s 47.0 s 54.4 s
3 32.6 s 36.8 s 43.1 s

Table 88: Benchmark run time per node, GPAW 20.1.0, Test Case S

Two nodes of JUWELS or SuperMUC-NG or three nodes of MareNostrum4 (which all have

48 cores per node) are needed to get a similar run time as on one 128-core node of Hawk or

Irene.

4.5.1.2 Test Case M

The medium test case was run on the same machines and in the same configurations as the small

test case: the Skylake-based clusters JUWELS, SuperMUC-NG and MareNostrum4, and the

AMD Rome-based clusters Irene (Rome section) and Hawk. On Hawk, both the vendor-

provided MPT and Open MPI were used. As for Test Case S, runs that were not using all cores

on all allocated nodes failed to start with error messages from the resource manager on Irene.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 65 30.11.2021

GPAW 20.1.0 / Test Case M

Cores JUWELS SuperMUC-NG MareNostrum4

Irene-

Rome

Hawk

(MPT)

Hawk

(OMPI)

48 1967 s 1967 s 2091 s 2613 s 1507 s

50 1541 s 1899 s 2030 s 2819 s 1830 s

100 924 s 1015 s 1102 s 1510 s 1293 s

128 709 s 730 s 839 s 1082 s 1122 s 1073 s

240 528 s 602 s 680 s 781 s 782 s

250 526 s 619 s 676 s 781 s 804 s

256 429 s 495 s 543 s 620 s 671 s 636 s

480 260 s 303 s 354 s 403 s 395 s

500 286 s 320 s 354 s 416 s 412 s

512 231 s 259 s 292 s 306 s 329 s 333 s

720 203 s 229 s 289 s 303 s 293, s

768 173 s 200 s 280 s 229 s 290 s 248 s

960 162 s 186 s 237 s 252 s 220 s

1000 169 s 196 s 232 s 249 s 225 s

1008 153 s 182 s 219 s 208 s

1024 144 s 166 s 178 s 183 s 201 s 192 s
Table 89: Benchmark run times, GPAW 20.1.0, Test Case M

GPAW 20.10.0 / Test Case M

Cores JUWELS SuperMUC-NG MareNostrum4

Irene-

Rome

Hawk

(MPT)

Hawk

(OMPI)

48 1983 s 1983 s 2093 s 2568 s 1522 s

50 1536 s 1846 s 2017 s 2814 s 1843 s

100 918 s 1010 s 1090 s 1520 s 1301 s

128 714 s 732 s 833 s 1062 s 1118 s 1063 s

240 536 s 584 s 682 s 782 s 753 s

250 523 s 603 s 682 s 786 s 791 s

256 431 s 496 s 553 s 620 s 669 s 637 s

480 260 s 290 s 361 s 405 s 394 s

500 280 s 322 s 357 s 418 s 428 s

512 229 s 257 s 295 s 308 s 326 s 335 s

720 204 s 235 s 281 s 300 s 292 s

768 174 s 199 s 273 s 230 s 286 s 248 s

960 161 s 190 s 237 s 257 s 218 s

1000 171 s 190 s 232 s 250 s 224 s

1008 154 s 176 s 203 s 207 s

1024 142 s 166 s 177 s 179 s 200 s 190 s
Table 90: Benchmark run times, GPAW 20.10.0, Test Case M

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 66 30.11.2021

As was the case for Test Case S, SuperMUC-NG is not doing better than the other Skylake-

based cluster despite its processor SKU with higher nominal clock speed and scaling is worse

than on JUWELS. However, Irene is now slightly faster than Hawk which is more in line with

the expectations based on the nominal clock speed of their processors.

To have a better look at the scaling behaviour we first compute the efficiency with respect to a

48-core run (one full node on the Skylake-based clusters) for those clusters for which we have

results for a 48-core run.

GPAW 20.1.0 / Test Case M

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT) Hawk (OMPI)

48 100% 100% 100% 100% 100%

50 123% 99% 99% 89% 79%

100 102% 93% 91% 83% 56%

128 104% 101% 94% 87% 53%

240 75% 65% 62% 67% 39%

250 72% 61% 59% 64% 36%

256 86% 75% 72% 73% 44%

480 76% 65% 59% 65% 38

500 66% 59% 57% 60% 35%

512 80% 71% 67% 75% 43%

720 65% 57% 48% 57% 34%

768 71% 62% 47% 56% 38%

960 61% 53% 44% 52% 34%

1000 56% 48% 43% 50% 32%

1008 61% 52% 46% 60%

1024 64% 56% 55% 61% 37%
Table 91: Efficiency with respect to a 48-core run, GPAW 20.1.0, Test Case M

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 67 30.11.2021

GPAW 20.10.0 / Test Case M

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT) Hawk (OMPI)

48 100% 100% 100% 100% 100%

50 124% 103% 99% 88% 79%

100 104% 94% 92% 81% 56%

128 104% 102% 94% 86% 54%

240 74% 68% 61% 66% 40%

250 73% 63% 59% 63% 37%

256 86% 75% 71% 72% 45%

480 76% 69% 58% 63% 39%

500 68% 59% 56% 59% 34%

512 81% 72% 67% 734% 43%

720 65% 56% 48% 57% 35%

768 71% 62% 48% 56% 38%

960 61% 52% 44% 50% 35%

1000 56% 50% 43% 49% 33%

1008 62% 54% 49% 59%

1024 65% 56% 55% 60% 38%
Table 92: Efficiency with respect to a 48-core run, GPAW 20.10.0, Test Case M

Here JUWELS scales slightly better than the other two Skylake-base clusters SuperMUC-NG

and MareNostrum4, and MareNostrum4 often shows the worst efficiency. The outlier on

JUWELS for the 50-core case is due to the way the MPI processes are distributed on JUWELS.

Each 48-core node receives 25 MPI processes and they are properly distributed over the cores

by default. We did not experiment with process pinning to see if similar results could be

obtained on the Skylake systems.

The results for both MPI implementations on Hawk should be compared with care. The Open

MPI runs only scale worse because the 48-core run time is much shorter than with MPT, again

due to the process distribution across the 128-core node. The MPT process starter packs all 48

processes on the first socket, while the Open MPI process starter lets them migrate over the

whole node. In fact, comparing actual run times instead shows that Open MPI performs better

than MPT on this benchmark, even when all cores are used as is the case for the 128, 256, 512,

768 and 1024 core runs. It is also hard to compare Hawk to the three Skylake-based system as

there is no common reference point. As the 48-core run on Hawk does not even fill an entire

socket, the memory bandwidth available to each core may be better than on a fully loaded node.

This produces a better-than-expected run time for the reference case, reducing the efficiency

for the cases using more cores. The MPT results are probably most relevant as a reference point

and they would put Hawk in the middle of the ballpark.

To compare the two AMD EPYC systems, we also computed the efficiency with respect to a

single node run on those two systems:

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 68 30.11.2021

GPAW 20.1.0 / Test Case M

Cores Irene-Rome Hawk (MPT) Hawk (OMPI)

128 100% 100% 100%

256 87% 84% 84%

512 88% 85% 81%

768 79% 65% 72%

1024 74% 70% 70%
Table 93: Efficiency with respect to a single node run on AMD EPYC, GPAW 20.1.0, Test Case M

GPAW 20.10.0 / Test Case M

Cores Irene-Rome Hawk (MPT) Hawk (OMPI)

128 100% 100% 100%

256 86% 84% 84%

512 86% 86% 79%

768 77% 65% 71%

1024 74% 70% 70%
Table 94: Efficiency with respect to a single node run on AMD EPYC, GPAW 20.10.0, Test Case M

Here we see that there is no noticeable difference in the scaling behaviour of the AMD Rome

partition of Irene and Hawk. The results for MPT and Open MPI on Hawk are also more or less

the same but remember that the actual run times with Open MPI are always shorter than with

MPT. The fact that this is also the case for a single full node may indicate that the intra-node

communication is faster in Open MPI than in MPT.

To compare the benchmark time in function of the number of nodes, we again restrict ourselves

to GPAW 20.1.0:

Figure 13: Benchmark time for GPAW 20.1.0, Test Case M, as function of the number of nodes

128 s

256 s

512 s

1024 s

2048 s

0,25 0,5 1 2 4 8 16

b
en

ch
m

ar
k

ti
m

e

nodes

benchmark time GPAW 20.1.0, case M

JUWELS SuperMUC-NG MareNostrum4

Irene-rome Hawk (MPT) Hawk (OMPI)

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 69 30.11.2021

As expected, in terms of the number of nodes, the AMD-based clusters are superior again.

4.5.1.3 Test Case L

For Test Case L we took 10 nodes on a Skylake cluster as the minimal configuration. On Irene

again runs not employing all cores on all assigned nodes failed with error message from the

process starter / resource manager. In the interest of time, we restricted ourselves on Hawk to

the vendor-provided MPT implementation (also triggered by some failures with Open MPI

which we could not diagnose in time).

The following tables show the run times as reported by GPAW:

GPAW 20.1.0

Cores JUWELS SuperMUC-NG MareNostrum4 Irene-Rome Hawk (MPT)

480 1031 s 1151 s 1446 s 1627 s

500 993 s 1073 s 1242 s 1568 s

512 992 s 1090 s 1245 s 1444 s 1494 s

960 586 s 645 s 828 s 942 s

1000 605 s 614 s 981 s 901 s

1024 560 s 614 s 690 s 749 s 805 s

2000 362 s 391 s 759 s 559 s

2048 345 s 367 s 503 s 453 s 491 s

2400 309 s 374 s 476 s 507 s

4096 232 s 271 s 419 s 353 s 394 s

4800 221 s 249 s 419 s 387 s

5000 233 s 248 s 379 s 403 s

6144 205 s 233 s 317 s 324 s

8192 193 s 206 s 437 s 289 s 350 s

9600 191 s 296 s 412 s

9884 248 s

10000 227 s 197 s 310 s 500 s

10032 196 s 353 s 410, s

10240 203 s 354 s 300 s 429 s
Table 95: Benchmark run times, GPAW 20.1.0, Test Case L

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 70 30.11.2021

GPAW 20.10.0

Cores JUWELS SuperMUC-NG MareNostrum4 Irene-Rome Hawk (MPT)

480 1031 s 1159 s 1458 s 1626 s

500 1009 s 1098 s 1242 s 1577 s

512 1006 s 1105 s 1222 s 1457 s 1493 s

960 594 s 655 s 824 s 939 s

1000 609 s 626 s 984 s 903 s

1024 566 s 618 s 690 s 7647 s 801 s

2000 366 s 375 s 768 s 558 s

2048 349 s 370 s 512 s 467 s 492 s

2400 315 s 339 s 499 s 508 s

4096 238 s 255 s 433 s 358 s 392 s

4800 226 s 236 s 391 s 397 s

5000 236 s 232 s 375 s 404 s

6144 206 s 231 s 320 s 327 s 387 s

8192 191 s 185 s 431 s 291 s 347 s

9600 172 s 322 s 411 s

9884 246 s

10000 183 s 310 s 498 s

10032 184 s 336 s 409 s

10240 191 s 351 s 301 s 419 s
Table 96: Benchmark run times, GAPW 20.10.0, Test Case L

The 9884-core run failed on all three 48-core node systems and on Hawk. Note also that there

is some irregularity in the results. This is because of the algorithms used in this benchmark.

Some core configurations work considerably better than others.

However, another problem also becomes immediately clear from this table. Test Case L is no

longer suited for modern systems or at least does not live up to the promises of being suitable

for up to 10,000 cores which was the original intent of this case. Even from the timings we can

already see that using more than roughly 2500 cores makes no sense.

Another remarkable issue is that Hawk stops scaling completely at a lower core and node

number than Irene-Rome and neither of the two AMD-based clusters can reach the minimum

run times obtained on JUWELS and SuperMUC-NG (but neither can MareNostrum4).

However, on all five clusters this is already outside the range of number of cores or nodes that

is reasonable from an economical point of view.

As for Test Case M, two sets of tables are computed to compare the efficiency of the systems:

One for all systems on which a 480-core run worked, and one for the two AMD systems, using

4 full nodes as the reference configuration.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 71 30.11.2021

GPAW 20.1.0

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT)

480 100% 100% 100% 100%

500 100% 103% 112% 100%

512 97% 99% 109% 102%

960 88% 89% 87% 86%

1000 82% 90% 71% 87%

1024 86% 88% 98% 95%

2000 68% 71% 46% 70%

2048 70% 74% 67% 78%

2400 67% 62% 61% 64%

4096 52% 50% 41% 48%

4800 47% 46% 35% 42%

5000 43% 45% 37% 39%

6144 39% 39% 36% 33%

8192 31% 33% 19% 27%

9600 30% 24% 20%

10000 22% 28% 22% 16%

10032 28% 20% 19%

10240 27% 19% 18%
Table 97: Efficiency with respect to a 480-core run, GPAW 20.1.0, Test Case L

GPAW 20.10.0

Cores JUWELS SuperMUC-NG MareNostrum4 Hawk (MPT)

480 100% 100% 100, 100%

500 98% 101% 113% 99%

512 96% 98% 112% 102%

960 87% 89% 89% 70%

1000 81% 89% 71% 64%

1024 85% 88% 99% 95%

2000 68% 74% 46% 49%

2048 69% 73% 67% 77%

2400 65% 68% 59% 64%

4096 51% 53% 39% 49%

4800 46% 49% 37% 41%

5000 42% 48% 37% 39%

6144 39% 39% 36% 33%

8192 32% 37% 20% 28%

9600 34% 23% 20%

10000 30% 23% 16%

10032 30% 21% 19%

10240 28% 20% 18%
Table 98: Efficiency with respect to a 480-core run, GPAW 20.10.1, Test Case L

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 72 30.11.2021

For this test case, there is little difference in the scaling behaviour between SuperMUC-NG and

JUWELS, but MareNostrum4 performs worse. In the 1024–2048 core range, which may

realistically be the maximum for this benchmark if cost efficiency matters, Hawk does very

well compared to the other systems.

We again compared both AMD systems using 4 full nodes as the reference.

GPAW 20.1.0 / Test Case L

Cores Irene-Rome Hawk (MPT)

512 100% 100%

1024 96% 93%

2048 80% 76%

4096 51% 47%

6144 37% 33%

8192 31% 27%

9884 30%

10240 24% 17%
Table 99: Efficiency with respect to a 512-core run, GPAW 20.1.0, Test Case L

GPAW 20.10.0 / Test Case L

Cores Irene-Rome Hawk (MPT)

512 100% 100%

1024 95% 93%

2048 78% 76%

4096 51% 48%

6144 37% 32%

8192 31% 27%

9884 31%

10240 24% 18%
Table 100: Efficiency with respect to a 512-core run, GPAW 20.10.0, Test Case L

On Test Case L, Irene scales slightly better than Hawk.

Finally, we compare the benchmarks times for GPAW 20.1.0 in function of the number of nodes

rather than the number of cores:

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 73 30.11.2021

Figure 14: Benchmark time for GPAW 20.1.0, Test Case L, in function of the number of nodes.

Up to around 32 nodes the AMD-based clusters are superior, but after that JUWELS and

SuperMUC-NG take over.

4.5.2 Energy Performance

The energy performance results for the GPAW benchmark are rather limited. Tests were run in

a period that energy measurements were not available on SuperMUC-NG. On MareNostrum4,

results were easily obtained but turned out to be somewhat unreliable, maybe due to the

relatively short run time of the benchmark. Several tests had to be rerun several times to get a

credible result as some results were as much as 50% off of the expectations, and one can expect

that the error margin on the reported results is significant. We did not obtain energy results for

Irene on time as there is no direct access to the information.

Based on the energy consumption and run time as measured by Slurm, we also report the power.

The power is computed based on the time reported by Slurm and not the benchmark time used

before (which does not include some initialisations) as that is the time that corresponds to the

interval over which the energy consumption was measured. As the results for both versions of

GPAW tested are very similar, we restrict the results to GPAW 20.10.0.

200 s

400 s

600 s

800 s

1000 s

1200 s

1400 s

1600 s

4,00 8,00 16,00 32,00 64,00 128,00

b
en

ch
m

ar
k

ti
m

e

nodes

benchmark time GPAW 20.1.0, case L

JUWELS SuperMUC-NG MareNostrum4 Irene-rome Hawk (MPT)

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 74 30.11.2021

The results for Test Case S are:

GPAW 20.10.0 / Test Case S

Cores Energy Power Node hours

1 361 kJ 0.15 kW 0.663

10 60 kJ 0.22 kW 0.077

24 42 kJ 0.29 kW 0.040

25 41 kJ 0.28 kW 0.041

32 36 kJ 0.32 kW 0.032

48 42 kJ 0.37 kW 0.032

50 48 kJ 0.54 kW 0.049

64 44 kJ 0.59 kW 0.041

96 40 kJ 0.66 kW 0.034

100 50 kJ 0.86 kW 0.048

128 46 kJ 0.89 kW 0.043

144 53 kJ 0.92 kW 0.048
Table 101: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case S

The total energy consumption for the single core run is very high, though as expected the power

draw is the lowest of all. This is because the measurement is for the full node even though only

one core is used. As confirmed by the Slurm logs, the other cores do clock back but there is still

a considerable power consumption in those idle cores. It is not unexpected that the minimal

power consumption occurs at a rather small configuration, as with more cores there is a

significant communication overhead that also costs energy (even though the energy spent by

the switches in the communication network is not measured). In this case the optimum is

actually at the 32-core run which is two thirds of a node, though the increase beyond that point

remains reasonable with another local minimum at 96 cores which is two full nodes.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 75 30.11.2021

The results for Test Case M are:

GPAW 20.10.0 / Test Case M

Cores Energy Power Node hours

48 1100 kJ 0.52 kW 0.58

50 1231 kJ 0.61 kW 1.13

100 1141 kJ 1.04 kW 0.91

128 970 kJ 1.14 kW 0.71

240 1255 kJ 1.81 kW 0.97

250 1588 kJ 2.29 kW 1.16

256 1165 kJ 2.06 kW 0.94

480 1275 kJ 3.49 kW 1.01

500 1249 kJ 3.38 kW 1.13

512 966 kJ 3.08 kW 0.96

720 1508 kJ 5.01 kW 1.25

768 1526 kJ 5.37 kW 1.26

960 1608 kJ 6.11 kW 1.46

1000 1648 kJ 6.65 kW 1.45

1008 1241 kJ 5.72 kW 1.27

1024 1244 kJ 6.65 kW 1.14
Table 102: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case M

The optimum in terms of power consumption now appears to be at 128 or 512 cores, though

especially the latter result is somewhat suspicious. However, it is not surprising that in terms of

node hours consumed a single node configuration is best.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 76 30.11.2021

The results for Test Case L are:

GPAW 20.10.0 / Test Case L

Cores Energy Power Node hours

480 5396 kJ 3.67 kW 4.08

500 4163 kJ 3.33 kW 3.82

512 4150 kJ 3.36 kW 3.77

960 5355 kJ 6.40 kW 4.65

1000 6531 kJ 6.52 kW 5.84

1024 5092 kJ 7.21 kW 4.31

2000 7319 kJ 9.34 kW 9.15

2048 7762 kJ 14.70 kW 6,31

2400 7667 kJ 14.92 kW 7.14

4096 11456 kJ 25.34 kW 10.80

4800 11804 kJ 29.36 kW 11.17

5000 10816 kJ 27.45 kW 11.49

6144 13461 kJ 40.30 kW 11.88

8192 21752 kJ 48.02 kW 21.52

9600 20301 kJ 59.53 kW 18.94

10000 19833 kJ 60.84 kW 18.93

10032 21604 kJ 60.86 kW 20.61

10240 22624 kJ 61.15 kW 21.99
Table 103: Power and cost data for MareNostrum4, GPAW 20.10.0, Test Case L

Here the optimum did not occur in the smallest configuration which was 10 nodes completely

filled or 480 cores, but at a 512-core configuration, employing 11 nodes. There is another local

minimum at 1024 cores but at a 22% higher power consumption than in the 512 core

computation. The optimum in terms of node hours is also reached at 512 MPI processes.

4.5.3 Discussion

Although GPAW can scale to fairly large clusters, GPAW may not be an ideal benchmark for

procurements. In favour of GPAW is that it uses a FFT library (with FFTW interface) and

BLAS, LAPACK, and ScaLAPACK, so it also tests several libraries that are often delivered

with vendor-specific optimisations by cluster vendors. However, as it is Python-based and also

uses NumPy and SciPy, the installation of the software is complicated. To avoid library

conflicts, one should ensure that NumPy/SciPy and GPAW use the same FFT, BLAS and

LAPACK library. The build process of optimised Python software is far from straightforward.

Python has its own processes for building Python packages from C/C++ sources, but it does not

support proper building of MPI-based packages nor is it straightforward (or is there a universal

way) to specify additional libraries that should be used. Moreover, the development process of

NumPy and SciPy seems to favour new features over stabilising the code and adapting to

modern language standards. The amount of compiler warnings when using recent compilers is

overwhelming (to the extent the actual problems are easily overlooked) and there is no easy-to-

find documentation about the test sets to diagnose the source of failing tests. On parallel file

systems, installing GPAW puts a very high stress on the file system. Even a fairly minimal

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 77 30.11.2021

installation, with a Python installed from scratch partly disabling several of the standard library

packages that are not needed for the benchmarks, produces an installation of over 20,000 mostly

very small files. On some of the PRACE Tier-0 machines a single compile took over 4 hours,

so getting a quick turnaround time in case of correcting compile or performance problems is

very hard to impossible if it involves re-installing from Python itself or NumPy up. Several pure

Python packages take minutes to install on a parallel file system while they install in under a

second on a local workstation SSD.

Some combinations of Python, NumPy and SciPy would not install on all machines tested even

though the dependency files in the Python packages showed this as a valid combination and

even though often compiler versions only differed at the patch level. Hence installation

instructions for the benchmark may not only see changes between clusters to accommodate for

a different set of optimised BLAS libraries, but may even see changes in the versions of Python

packages used.

GPAW itself also contains two annoying problems that do not seem to get fixed and do not

show up in every installation. One (causing runtime crashes) may be due to a different

interpretation of the OpenMP standard. A clause is used to indicate that it is safe to vectorise a

particular loop, but the data is not always correctly aligned. Even though the 64-bit x86

instruction set does support unaligned memory access, this is ambiguous. The instructions for

aligned memory access are faster. The Intel compiler assumes that “safe for vectorisation” also

implies that all memory accesses are correctly aligned and uses the AVX instructions for

correctly aligned data, causing runtime errors in some cases. Other compilers may not make

that assumption. The solution is to either turn off OpenMP SIMD support in the compiler or to

develop a patch that removes the OpenMP pragmas from the offending loop. A second problem

is within the installation procedure which uses a mix of compilation through setup tools for

parts of the code that do not involve MPI and direct calls to the compiler for other parts.

However, it does turn out that at least one of the files that does contain the MPI header file gets

compiled without calling the MPI compiler wrapper. On systems where the regular compiler is

configured to use CPATH to search for extra include files and where the MPI headers are also

added to CPATH, compilation proceeds without problems but on other systems compilation

fails and GPAW must be forced to use the MPI compiler wrappers for everything.

Another problem is that GPAW regularly breaks compatibility with input files for older

versions, so any benchmark may be short-lived. Test Cases M and L cases needed significant

redevelopment when upgrading from the GPAW version used in PRACE-5IP to GPAW 20.1.0

which restricted the time available to actually look for the best run configuration. Test Case L

is no longer compatible with GPAW 21.1.0, which changed some models considerably and

made the old behaviour optional. Both the final solution and convergence behaviour change

significantly.

4.6 GROMACS

4.6.1 System Software Environment

GROMACS requires a C/C++ compiler, MPI, the FFTW library, and for GPU support a CUDA

SDK installation. The FFTW 3.3.8 library was compiled from source on all systems using the

underlying compilers. GROMACS version 2020.3 was used on all systems. This was the latest

during first runs. The software stack used on the machines is summarised in Table 104.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 78 30.11.2021

Machine C/C++ compiler MPI flavour CUDA

Hawk GCC 9 HP-MPI

Irene Intel 19 OpenMPI 4.0.2

JUWELS Intel 20 ParaStation MPI

MARCONI100 GCC 8 Spectrum MPI 10.2

MareNostrum4 Intel 19 Intel MPI

Piz Daint Cray CC (GCC 8.3) Cray MPICH 10.1

SuperMUC-NG Intel 19 Intel MPI
Table 104: Software environment used in GROMACS Benchmarks

4.6.2 Performance Results

Since GROMACS uses hybrid MPI/OpenMP parallelisation, before running the full

benchmarks on each machine, a number of small runs was performed in order to find the

combination of tasks per node / threads per task that yields the best performance. Performance

is reported by GROMACS in its logfile. Performance results are presented grouped by system

type in Table 105 – Table 107. Test Case A is small for multi-GPU systems like MARCONI100.

Additional performance results are presented for MARCONI100 using 1 and 2 GPUs and the

corresponding number of cores/threads. It should be noted that for Test Case C the GPU

memory requirements can be fulfilled by a minimum of 8 nodes. Energy to solution accounting

was not available on all systems. On some of the systems, only partial energy accounting is

available.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 79 30.11.2021

 Hawk Irene

Nodes Tasks / Node Threads Task Performance [ns / day]

Test Case A

1 128 1 107.332 120.407

2 128 1 171.061 177.344

4 128 1 209.473 230.406

8 128 1 298.657 253.150

16 128 1 268.477

Test Case B

1 128 1 5.148 6.282

2 128 1 10.717 12.405

4 128 1 20.134 23.659

8 128 1 35.139 42.817

16 128 1 64.596 72.798

32 128 1 101.897 91.091

64 128 1 162.760 147.331

128 128 1 272.654 177.306

256 128 1 414.019 238.696

Test Case C

1 128 1 0.390 0.468

2 128 1 0.818 0.918

4 128 1 1.589 1.799

8 128 1 2.654 3.487

16 128 1 6.074 7.236

32 128 1 11.466 12.005

64 128 1 20.008 22.259

128 128 1 35.723 31.269

256 128 1 42.324
Table 105: GROMACS performance on AMD EPYC based Systems

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 80 30.11.2021

 SuperMUC-NG MareNostrum4 JUWELS

Nodes Tasks/Node -

Threads / Task

Performance

[ns / day]

Energy to

solution

[kJ]

Tasks / Node -

Threads / Task

Performance

[ns /day]

Energy to

solution

[kJ]

Tasks / Node -

Threads / Task

Performance

[ns / day]

Test Case A

1 48 - 2 59.652 76.2 48 - 1 38.381 48 - 2 47.539

2 48 - 2 94.901 112.2 48 - 1 85.908 48 - 2 84.157

4 48 - 2 145.120 136.8 48 - 1 132.370 48 - 2 118.165

8 48 - 2 235.283 200.0 48 - 1 183.030 48 - 2 167.114

16 48 - 2 305.863 335.8 48 - 1 240.189 48 - 2 194.980

Test Case B

1 48 - 2 2.956 1194 48 - 1 2.462 48 - 2 3.235

2 48 - 2 5.695 1162 48 - 1 4.590 48 - 2 6.561

4 48 - 2 11.598 1184 48 - 1 8.125 48 - 2 12.621

8 48 - 2 21.352 1267 48 - 1 15.859 48 - 2 23.838

16 48 - 2 40.511 1420 48 - 1 27.764 48 - 2 41.741

32 48 - 2 60.335 1843 48 - 1 44.268 48 - 2 61.207

64 48 - 2 88.026 2657 48 - 1 67.036 48 - 2 86.013

Test Case C

1 48 - 2 0.239 3587 48 - 1 0.191 3601

2 48 - 2 0.480 3495 48 – 1 0.376 3671 48 - 2 0.470

4 48 - 2 0.956 3554 48 - 1 0.758 3792 48 - 2 0.889

8 48 - 2 1.960 3464 48 - 1 1.417 3844 48 - 2 1.797

16 48 - 2 3.190 4210 48 - 1 2.898 3765 48 - 2 3.286

32 48 - 2 6.461 4098 48 - 1 5.057 4494 48 - 2 6.008

64 48 - 2 10.648 5117 48 - 1 7.672 5971 48 - 2 9.715

128 48 - 2 13.817 8286 48 - 1 11.162 7594 48 - 2 10.970

256 48 - 2 25.382 10644 48 - 1
Table 106: GROMACS performance on Skylake based Systems

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 81 30.11.2021

 Piz Daint MARCONI100

Nodes Tasks / Node -

Threads / Task

Performance

[ns / day]

Energy to

solution

[kJ]

Tasks / Node -

Threads / Task

Performance

[ns /day]

Test Case A

¼ 8 - 4/1 GPU 15.64

½ 16 - 4/2 GPUs 23.26

1 4 - 6 43.729 71.5 16 - 8 56.367

2 4 - 6 74.680 84.7 16 - 8 59.461

4 4 - 6 110.815 108.9

8 4 - 6 142.546 167.9

16 4 - 6 165.268 267

Test Case B

1 4 - 6 3.104 773 32 - 4 10.939

2 4 - 6 6.098 772 32 - 4 15.003

4 12 - 2 10.132 991 32 - 4 21.071

8 12 - 2 20.056 985 32 - 4 21.235

16 12 - 2 35.530 1110 32 - 4 23.614

32 4 - 6 62.909 1290

64 4 - 6 103.251 1380

128 12 - 2 129.250 2340

Test Case C

1 32 - 4 0.506

2 32 - 4 0.986

4 32 - 4 1.700

8 12 - 2 1.231 3210 32 - 4 2.895

16 12 - 2 2.286 3660 32 - 4 4.361

32 12 - 2 3.833 4140 32 - 4 6.158

64 12 - 2 5.245 4650

128 12 - 2 8.653 6220

256 12 - 2 13.844 8920
Table 107: GROMACS performance on GPU-based Systems

4.6.3 GROMACS Performance Comparison.

Benchmark measurements are presented in tables Table 105 – Table 107 grouped by system

type and shown in Figure 15.

The two AMD EPYC based systems have similar performance at low node count given the

difference in frequency. Irene is slightly faster with low node count. As node count increases,

the execution speed is affected by the interconnect characteristics and parameters. At these

ranges, the Hawk interconnect seems to exhibit better performance.

The three Skylake systems also exhibit similar behaviour given the differences in CPU

frequency, hyperthreading settings and interconnect types.

The two GPU-based systems are quite different. Piz Daint has one GPU and interconnect per

node while MARCONI100 has four GPUs and one interconnect per node. Test Case A is small

enough to reach the full performance of GPUs for both systems. With Test Case B, it seems

that one MARCONI100 node with its 4 GPUs has marginally higher performance than four Piz

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 82 30.11.2021

Daint nodes. This is consistent with the similar in performance GPUs. As the node count

increases the efficiency decreases, with MARCONI100 decreasing faster as function of number

of nodes.

Comparing the three types of systems, with their relatively small differences in performance

we see that AMD EPYC nodes are roughly two times faster than Skylake nodes. This is

expected since AMD EPYC based nodes have roughly 2.5× number of cores. AMD EPYC

systems exhibit higher performance per node than Piz Daint. MARCONI100 is faster when

using up to 4 nodes and large datasets.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 83 30.11.2021

Figure 15: GROMACS performance comparison as function of number of nodes.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 84 30.11.2021

Job energy accounting was available for all jobs only on Piz Daint and partially on SuperMUC-

NG and MareNostrum4. Energy to solution is similar between two types of machines with Piz

Daint being more efficient. As node count increases the energy to solution increases. This is the

result mainly of reduced parallel efficiency. The parallel efficiency with respect the lower

possible node count is reported in Table 108 for all runs on all systems.

Nodes

Parallel Efficiency [%]
H

a
w

k

Ir
en

e

J
U

W
E

L
S

M
a
re

N
o
st

ru
m

4

S
u

p
er

M
U

C

P
iz

 D
a
in

t

M
A

R
C

O
N

I1
0
0

 Test Case A

1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 79.7 73.6 88.5 111.9 79.5 85.4 52.7

4 48.8 47.8 62.1 86.2 60.8 63.4

8 34.8 26.3 43.9 59.6 49.3 40.7

16 15.6 25.6 39.1 32.0 23.6

Test Case B

1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

2 104.1 98.7 101.4 93.2 96.3 98.2 68.6

4 97.8 94.2 97.5 82.5 98.1 81.6 48.1

8 85.3 85.2 92.1 80.5 90.3 80.8 24.2

16 78.4 72.4 80.6 70.5 85.6 71.5 13.5

32 61.9 45.3 59.1 56.2 63.8 63.3

64 49.4 36.6 41.4 42.5 46.5 52.0

128 41.4 22.1

256 31.4 14.8

Test Case C

1 100.0 100.0 100.0 100.0 100.0 100.0

2 104.9 98.1 94.6 98.4 100.4 97.1

4 101.9 96.1 95.6 99.2 100.0 83.3

8 85.1 93.1 87.4 92.7 102.5 100.0 71.1

16 97.3 96.6 79.9 94.8 83.4 92.8 53.4

32 91.9 80.2 64.6 82.7 84.5 77.8 37.7

64 80.2 74.3 36.5 62.7 69.6 53.3

128 71.6 52.2 45.6 45.2 43.9

256 42.4 41.5 35.1
Table 108: GROMACS parallel efficiency for all Test Cases and Systems.

4.7 NAMD

4.7.1 System Software Environment

NAMD requires a C/C++ compiler, MPI except for GPU enabled builds, the FFTW library and

for GPU support a CUDA SDK installation. The FFTW 3.3.8 library was compiled from source

an all systems using the underlying compilers. In addition, to be able to compile, an extra flag

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 85 30.11.2021

was added in the corresponding NAMD arch file: arch/Linux-POWER.cuda10, --

compiler-options=-mno-float128. The software stack used on the machines is

summarised in Table 109.

Machine C/C++ compiler MPI flavour CUDA

Hawk GCC 9 HP-MPI

Irene Intel 19 OpenMPI 4.0.2

JUWELS Intel 20 ParaStation MPI

MARCONI100 IBM XL 16 ibverbs was used

instead of MPI +

hydra process

management.

10.1

MareNostrum4 Intel 19 Intel MPI

Piz Daint Cray CC (GCC 8.3) Cray GNI 10.2

SuperMUC-NG Intel 19 Intel MPI
Table 109: Software environment used in NAMD Benchmarks

4.7.2 Performance Results

NAMD uses hybrid MPI/ Threads parallelisation. For each task one has to reserve one core for

the communicator between processes. Thus, the cores available for computation decrease by

one for each task. Before running the full benchmarks on each machine, a number of test runs

was performed in order to find the combination of tasks per node / threads per task that yields

the best performance. NAMD reports various timings in its logfile. Typically, the WallClock

reported at the end of logfile is what one needs. NAMD reads 2 large datafiles at startup, does

the distribution among processes and then starts calculations. It was noted that this startup time

has large deviations between machines and even when repeating runs on the same machine. In

some cases, the startup time varied from 0.6 seconds up to 90 seconds. This can be omitted for

runs where the calculation is hours or days as it happens in real production runs but introduces

an inconsistency for runs where the real calculations need less than 1 minute. At the end of the

run, NAMD also writes two large output datafiles, that also have variable times. For these

reasons, the startup and final write files times have to subtracted from the total wall time. Startup

time is reported in the logfile as Info: Finished startup at and writing final output

files as The last position output (seq=-2) takes and The last velocity

output (seq=-2) takes. The reported wall time has these startup and finishing times

subtracted. Performance results are presented grouped by CPU type in Table 110 – Table 112.

Energy to solution accounting was not available on all systems. On some of the systems, only

partial energy accounting is available.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 86 30.11.2021

 Hawk Irene

Nodes Tasks / Node –

Threads / Task

Wall Time

[s]

Tasks / Node –

Threads / Task

Wall Time

[s]

Test Case A

1 8 - 16 4997.8

2 16 - 8 2675.6

4 4 - 32 1310.7 8 - 16 1429.8

8 4 - 32 670.4 8 - 16 779.6

16 16 - 8 346.6 16 - 8 419.2

32 8 - 16 181.0 8 - 16 240.0

64 8 - 16 93.4 8 - 16 136.7

128 4 - 32 65.5 8 - 16 83.3

256 4 - 32 38.3 16 - 8 38.6

512 16 – 8 29.6

Test Case B

8 8 - 16 2224.9 8 - 16 2476.2

16 8 - 16 1144.0 8 - 16 1291.8

32 8 - 16 618.4 8 - 16 693.2

64 8 - 16 285.7 16 - 8 335.8

128 8 - 16 154.6 16 - 8 182.6

256 8 - 16 84.7 8 - 16 105.5

512 8 - 16 54.1 16 - 8 64.1

1024 16 - 8 47.4

Test Case C

8 8 - 16 2375.0 16 - 8 2421.9

16 8 - 16 1180.4 16 - 8 1191.1

32 8 - 16 589.2 8 - 16 609.0

64 8 - 16 322.4 8 - 16 306.9

128 8 - 16 161.0 8 - 16 166.5

256 8 - 16 90.8 8 - 16 96.1

512 8 - 16 45.6 16 - 8 48.7

1024 16 - 8 34.3

Table 110: NAMD performance on AMD EPYC based Systems

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 87 30.11.2021

 SuperMUC-NG MareNostrum4 JUWELS

Nodes Tasks / Node –

Threads / Task

Wall time

[s]

Energy to

solution

[kJ]

Tasks / Node –

Threads /Task

Wall time

[s]

Energy to

solution

[kJ]

Tasks / Node -

Threads / Task

Wall time

[s]

Test Case A

1 2 - 48 13157.9 4996 2 - 24 15429.5

2 2 – 48 6629.1 5367 2 - 24 7913.8

4 2 - 48 3597.0 5151 2 - 24 3991.4

8 2 - 48 2243.0 7194 2 - 24 2013.2

16 2 - 48 1308.3 7783 2 - 24 1050.9 2 - 48 737.9

32 24 - 4 637.0 8878 2 - 48 475.4

64 24 - 4 447.9 11744 2 - 48 291.2

128 24 - 4 383.3 19211 2 - 48 262.1

Test Case B

2 8 - 12 23413.2 18280 2 - 24 26790.4

4 8 - 12 11497.8 19343 2 - 24 13478.0

8 8 - 12 6518.0 18956 2 - 24 6823.9 2 - 48 5234.1

16 8 - 12 2920.0 20112 2 - 24 3519.3 2 - 48 2447.4

32 8 - 12 1839.3 19855 2 - 24 1756.8 2 - 48 1271.6

64 8 - 12 940.2 2 - 24 921.2 2 - 48 827.5

128 8 - 12 624.0 32672 2 - 24 548.8 23134 2 - 48 564.3

256 24 - 4 489.4 53203 4 - 12 330.0

Test Case C

16 8 - 12 2985.9 19344 2 - 24 3512.3 19368 2 - 48 2523.8

32 2 - 48 1412.1 18184 2 - 24 1934.5 19323 2 - 48 1288.0

64 2 - 48 726.1 19098 2 - 24 887.0 20063 2 - 48 640.5

128 2 - 48 383.8 21191 2 - 24 452.0 21253 2 - 48 339.0

256 2 - 48 208.4 26463 2 - 24 238.1 23556

512 2 - 48 136.2 37460

1024 8 - 12 104.1
Table 111: NAMD performance on Skylake based Systems

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 88 30.11.2021

 Piz Daint MARCONI100

Nodes Tasks / Node -

Threads / Task

Wall time

[s]

Energy to

solution

[kJ]

Tasks / Node -

Threads / Task

Wall time

[s]

Test Case A

1 1 - 24 4295 1010 4 - 32 5639.2

2 1 - 24 2189 1060 4 - 32 1034.0

4 1 - 24 1152 1100 4 - 32 766.6

8 1 - 24 628 1240 4 - 32 1641.4

16 1 - 24 351 1340

32 1 - 24 205 1500

64 1 - 24 122 1700

Test Case B

2 4 - 32 5050.4

4 1 - 24 4573.2 4070 4 - 32 2441.5

8 1 - 24 2040.3 4080 4 - 32 1984.3

16 1 - 24 1029.6 4050 4 - 32 2559.7

32 1 - 24 579.7 4370

64 1 - 24 323.2 4640

128 1 - 24 192.5 7610

256 1 - 24 140.4 6730

Test Case C

6 4 - 32 1059.7

8 1 - 24 4 - 32 735.6

16 1 - 24 4 - 32 376.2

32 1 - 24 578.6 4700 4 - 32 224.6

64 1 - 24 285.3 4760

128 1 - 24 146.3 5280

256 1 - 24 87.1 6240

512 1 - 24 82.2 9870
Table 112: NAMD performance on GPU-based Systems

4.7.3 NAMD Performance Comparison

Benchmark results for NAMD are presented in Table 110 – Table 112 grouped by system type.

The two AMD EPYC based systems have similar performance as function of number of nodes,

with Hawk being slightly faster.

The three Skylake based systems have also similar performance given the differences in CPU

frequency and interconnect.

Results from GPU accelerated systems start from a number of nodes that provide the necessary

amount of GPU memory. This is quite different between Piz Daint and MARCONI100 due to

the number of GPUs per node. The minimum number of nodes to run Test Case C is 6 for

MARCONI100 and 32 for Piz Daint.

Comparing the three types of systems, with their relatively small differences in performance

for each type, we see that the AMD EPYC based nodes are 2 to 2.5 faster than Skylake based

nodes. AMD EPYC based systems exhibit with all Test Cases similar performance with Piz

Daint using the same number of nodes. Finally, although the number of performance

measurements is small on MARCONI100 compared to the other systems, it seems to be roughly

2–3 times faster than AMD EPYC based machines at low node counts with Test Cases B and C.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 89 30.11.2021

Figure 16: NAMD Performance as function of number of nodes.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 90 30.11.2021

Job energy accounting was available for all jobs only on Piz Daint and partially on

SuperMUC-NG. It seems from these measures that Piz Daint is roughly 3–5 times more energy

efficient than SuperMUC-NG. This is expected since Piz Daint is GPU accelerated.

4.8 NEMO

Comparative benchmarking of NEMO has been performed on the homogenous CPU system

Hawk, Irene (both Skylake and Rome partitions), JUWELS, MARCONI100 (CPU only),

MareNostrum4, and SuperMUC-NG. We did not use Piz Daint since it is only available to users

who use GPU.

4.8.1 Installation

We have installed NEMO version 4.0 with XIOS 2.5 on all machines. We used Intel compilers

on Irene, JUWELS, MareNostrum4, SuperMUC-NG; and GNU compilers on Hawk and

MARCONI100. We used Intel MPI on MareNostrum4 and SuperMUC-NG, OpenMPI on

Irene, ParaStation MPI on JUWELS, MPT MPI on Hawk, and IBM Spectrum MPI on

MARCONI100.

4.8.2 Performance Results

We report the performance in terms of total time to solution as well as total consumed energy

to solution whenever possible. This helps us to compare systems in a standard manner across

all combinations of system architectures.

As we mentioned NEMO supports both attached and detached mode of the IO server. In the

attached mode all cores perform both computation and IO, whereas in the detached mode each

core performs either computation or IO. It is reported that NEMO performs better with detached

mode for especially large number of cores [3]. Therefore, we performed benchmarks for both

attached and detached modes. We utilise 15:1 ratio for the detached mode [3]. That is, we divide

1024 cores as 960 compute cores and 64 IO cores for Test Case A, whereas we divide 10240

cores as 9600 compute cores and 640 IO cores for Test Case B.

Performance comparison between Test Cases A and B run on 1024 and 10240 processors,

respectively, can be considered as something between weak and strong scaling. That is, number

of processors are increased ten times, however the increase in the mesh size is approximately

16 times, when we go from Test Case A to B. We should note here that MARCONI100 does

not allow us to use more than 8192 cores, so we used 8192 cores for attached and 7680+512

cores for detached mode of Test Case B. Table 113 shows the number of allocated nodes for

each test case and for each Tier-0 system. Note that as we will discuss later, we allocate more

than enough nodes for some cases.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 91 30.11.2021

Tier-0 System
Test Case A Test Case B (16 times larger than Test Case A)

attached

(1024 cores)
detached

(960+64 cores)
attached

(10240 cores)
detached

(9600+640 cores)
Hawk 8 8 120 80

Irene-Rome 8 8 128 80

Irene-Skylake 22 22 214 214

JUWELS 22 22 320 214

MARCONI100 32 32 256 256

MareNostrum4 22 22 300 214

SuperMUC-NG 22 22 285 214

Table 113: Number of allocated nodes for NEMO for each Test Case and for each machine.

Table 114 shows the time to solution and energy to solution values for both attached and

detached modes obtained on various Tier-0 systems. In the table “-” denotes not applicability.

For example, Hawk does not log energy.

Tier-0 System

Test Case A Test Case B (16 times larger than Test Case A)

attached

(1024 cores)

detached

(960+64 cores)

attached

(10240 cores)

detached

(9600+640 cores)

Time

(s)

Energy

(kJ)

Time

(s)

Energy

(kJ)

Time

(s)

Energy

(kJ)

Time (s) Energy (kJ)

Hawk 13.98 - 17.63 - 41.03 - 62.05 -

Irene-Rome 21.41 167.61 18.45 44.09 73.89 5,674.85 43.01 2,903.77

Irene-Skylake 18.11 327.72 18.72 393.43 81.32 9,509.90 46.27 6,570.76

JUWELS 14.92 - 20.82 - 474.89 - 272.36 -

MARCONI100 15.03 - 14.84 - 117.98 - 76.96 -

MareNostrum4 18.96 366.01 17.63 357.07 112.76 54,357,76 62.05 29,649.80

SuperMUC-NG 19.54 - 29.58 - 115.33 - 62.58 -

Table 114: Time and energy to solution of NEMO for both test cases on 1024 and 10240 cores of each

machine.

Results obtained from Test Case A attained with attached mode show that systems display

comparable performance (between about 15 and 20 seconds), where Hawk, JUWELS and

MARCONI100 attain relatively better performance (about 15 seconds). Results attained with

detached mode show that Hawk, Irene (both Rome and Skylake clusters) and MareNostrum4

display very close performance (about 18 seconds), whereas MARCONI100 shows

considerably better performance (about 15 seconds) and SuperMUC-NG shows considerably

worse performance (about 30 seconds). When attached and detached modes are compared,

mostly detached mode attains better performance than the attached mode as expected. Detached

mode performs worse than the attached mode for Hawk, JUWELS, and SuperMUC-NG. We

believe that this stems from the distribution of the IO and computation cores among nodes.

Results obtained from Test Case B show variance across Tier-0 systems, where Hawk is the

best for attached mode, whereas Irene-Rome partition is the best for the detached mode. Recall

that time to solution values displayed in Table 114 contain IO times. We observed that the

application becomes IO bound as the number of cores increases. This is because each core

writes its output to a file periodically. The most notable example for the IO bound anomaly is

the running of Test Case B with attached mode on JUWELS. The running time increases to

474.89 seconds, which is more than the 10 times of the fastest machine (Hawk). Therefore, for

a better comparison of the Tier-0 systems, we also present solution times excluding IO times in

Table 115. As seen in Table 115, JUWELS achieves the fastest running time on Test Case B

with attached mode excluding IO times.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 92 30.11.2021

Tier-0 System

Test Case A Test Case B (16 times larger than Test Case A)

attached

(1024 cores)

detached

(960+64 cores)

attached

(10240 cores)

detached

(9600+640 cores)

Time (second) Time (second) Time (second) Time (second)

Hawk 7.92 11.20 15.62 35.22

Irene-Rome 10.27 11.72 23.64 20.94

Irene-Skylake 8.92 9.46 20.66 18.32

JUWELS 7.54 13.15 10.17 41.64

MARCONI100 6.39 9.18 15.16 64.17

MareNostrum4 7.32 11.21 12.27 35.22

SuperMUC-NG 9.78 25.07 14.99 36.83

Table 115: Time to solution (excluding IO time) of NEMO for both test cases on 1024 and 10240 cores of

each machine.

Regarding the above reported experimental results, we should first note that the amount of work

done for both attached and detached modes are the same. Therefore, the amount of work per

core is higher for the detached mode, since some of the cores are only responsible for the IO

operations. That is the increase in the time values of the detached mode compared to attached

mode is expected. We should also note here that Test Case B has the larger grid size to be

solved. That is these values show a kind of weak scaling results. We increase the problem size

about 4 × 4 = 16 times, whereas we increase the number of processors 10 times. As a result,

we achieve about 10 times speed-up on JUWELS and SuperMUC-NG, 8 times speed-up on

Hawk, and 7 times on Irene for the attached mode. These speed-up values are obtained by

dividing the runtime of large test by 16, in order to obtain speed-up values like strong scaling.

On the other hand, although the detached mode achieves generally much less actual times, it

does not scale as good as attached mode.

We should also note that Test Case B using attached mode, main memory of a single node

becomes insufficient for some Tier-0 systems if we use all cores of each node. In order to

overcome this problem, we allocate more than enough nodes and use some of the cores in each

node. For example, on Hawk, there are 128 cores on a node, but we allocated 120 nodes (as

seen in Table 113) instead of 80 nodes to reach total number of cores of 10240. Similarly, we

allocated 128 nodes on Irene-Rome. For JUWELS, MareNostrum4 and SuperMUC-NG each

node has 48 cores. As also seen in Table 113, we allocated 320, 300 and 285 nodes on JUWELS,

MareNostrum4 and SuperMUC-NG, respectively. We tried to select the minimum number of

nodes, which enables running the application.

4.9 PFARM

4.9.1 Benchmarking Setup

PFARM benchmark runs were undertaken on a range of PRACE Tier-0 systems. The compilers

and numerical libraries used are summarised Table 117. Compilation optimisation is

undertaken through -Ofast options (also -mtune=skylake where appropriate).

4.9.1.1 Hybrid MPI / OpenMP Configurations on CPUs

Performance experiments with alternative placement of threads and bindings have been

undertaken on a range of compute nodes. It has been established that the default thread

placements usually give optimal performance for PFARM (EXDIG). For hybrid MPI/OpenMP

runs involving 1 MPI task per node it is often beneficial to performance to under-populate the

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 93 30.11.2021

node with the number of runtime cores used (mainly due to memory bandwidth saturation). We

found this to be the case on the two AMD EPYC Rome-based systems tested (32/128 available

cores utilised) and two of the Intel Xeon-based systems (24/48 cores utilised), see Table 116. It

was found that configuring the hybrid runs with multiple MPI tasks per node was always

advantageous to performance, though memory limits on compute nodes necessitate that the

maximum number of MPI tasks per node is restricted to 4 (each MPI task needs to store the

data for a complete sector calculation). Due to the computational characteristics of the dense

linear algebra involved, hyperthreading is found to be never advantageous for this code.

System (CPU Node Architecture)

Number of

physical

CPU cores

per node

Node config.

for 1 MPI task /

Cores per MPI

task

 Node config. for

multiple MPI

tasks / Cores

used per MPI

task

Hawk (AMD EPYC Rome) 128 1 / 32 4 / 16

Irene-Rome (AMD EPYC Rome) 128 1 / 32 4 / 16

Irene-SKL (Intel Xeon Skylake) 48 1 / 48 4 / 12

JUWELS (Intel Xeon Skylake) 48 1 / 24 4 / 12

MareNostrum4 (Intel Xeon

Skylake)
48 1 / 48 4 / 12

SuperMUC-NG (Intel Xeon

Skylake)
48 1 / 24 4 / 12

Table 116: Hybrid MPI/OpenMP configurations used for PFARM (EXDIG)

4.9.1.2 GPU Node Configurations

Benchmark runs on GPU accelerated nodes use a combination of MPI and CUDA (CUDA

within the MAGMA library) for the parallelisation. Computations involving MAGMA have the

capacity to distribute the matrix computations across multiple GPU devices, if required. We

found this feature to be beneficial, rather than assigning specific matrix computations to specific

single GPU devices. Setups involving 1 MPI task per node and 4 MPI tasks per node were used

for the benchmarking. Both these configurations use the 4 GPU devices available on

MARCONI100 and JUWELS Booster. Using 4 MPI tasks per node proved to be universally

beneficial to performance for the benchmark datasets.

4.9.1.3 Numerical Libraries used for the Eigensolver Calculation

Previous benchmarking exercises have determined that the overwhelming bulk of the compute

time is usually spent undertaking symmetric sector Hamiltonian matrix diagonalisations [34]

inside the numerical library eigensolver routine DSYEVD. DSYEVD uses a highly efficient

and robust algorithm that exploits a divide-and-conquer approach for determining eigenvectors

and eigenvalues of a symmetric matrix [44]. Implementations of this routine are available in

LAPACK, MKL, ESSL, and MAGMA numerical libraries. The recommended higher-level

dense linear algebra library for AMD architecture, LibFLAME [45] does not support a

DSYEVD implementation, therefore a combination of Intel MKL and the recommended BLIS

library for BLAS functionality was used [45]. The Intel MKL library has not been specifically

tuned for AMD processors, but the environment settings MKL_DEBUG_CPU_TYPE=5 and

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 94 30.11.2021

MKL_ENABLE_INSTRUCTIONS=AVX2, as advised by the Hawk machine documentation,

were set for both benchmarked AMD platforms.

Performance tests were run for all Test Cases 1a, 1b, 1c and 1d, however this section will

analyse results from Test Cases 1c and 1d, as these are the most appropriate for modern large-

scale HPC architectures and systems.

Machine Compiler Numerical Libraries

Hawk GNU Fortran, gcc v9.2.0 Intel MKL, BLIS

Irene-Rome Intel Fortran v2020 Intel MKL

Irene-Skylake Intel Fortran v2020 Intel MKL

JUWELS Intel Fortran v2020 Intel MKL

JUWELS

Booster
Intel Fortran v2020 Magma v2.5.4 / Intel MKL

MARCONI100 GNU Fortran, gcc v8.4.0
Magma v2.5.3, ESSL v6.2.1

LAPACK v3.9.0, OpenBLAS 0.3.9

MareNostrum4 Intel Fortran v2020 Intel MKL

SuperMUC-NG Intel Fortran v2020 Intel MKL

Table 117: Numerical Libraries used for PFARM (EXDIG)

4.9.2 PFARM Performance Results

All performance charts included show the PRACE Tier-0 systems grouped by architecture, i.e.

from left to right, two AMD Rome-based systems, four Intel Xeon-based systems and two

NVIDIA GPU-accelerated systems. All the runs are MPI/OpenMP parallelised apart from the

runs on the two GPU accelerated systems which use MPI and CUDA.

4.9.2.1 Test Case 1c

Figure 17 shows the performance results for Test Case 1c on the PRACE Tier-0 systems. The

timings from JUWELS Booster are significantly faster than any other systems. This is primarily

due to the performance of the new NVIDIA A100 devices. MAGMA has now been optimised

for NVIDIA A100 GPUs [46] and performance 2–3 times faster than on comparable NVIDIA

V100 GPU systems is to be expected, depending on the problem size. This is evident here when

comparing JUWELS-Booster performance against the V100-based MARCONI100, though it

should also be noted that the CPU hosts differ between the two machines, which will also affect

overall performance. As expected, the four Xeon Skylake-based architectures tested produce

similar performance figures, with JUWELS marginally fastest. The two AMD EPYC Rome-

based systems, Hawk and Irene-Rome are slowest for this calculation, mainly due to the

relatively slow performance of the Sector Hamiltonian eigensolver calculation (see Figure 19

and Figure 20). Single node performance on both AMD machines is quite variable and generally

relatively slow compared to more highly parallelised runs (hence parallel efficiencies of over

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 95 30.11.2021

often 100% reported in Table 120). This appears to be due to the variability of I/O overheads

for the lengthy single node runs. These overheads become less variable for the shorter runs

involving more nodes. For Test Case 1c, parallel efficiency, defined as (
𝑆𝑝𝑒𝑒𝑑−𝑢𝑝

𝐼𝑑𝑒𝑎𝑙 𝑆𝑝𝑒𝑒𝑑−𝑢𝑝
 × 100),

is generally excellent on all the systems tested, ranging from 84.9% on JUWELS Booster to

around 88–96% on the Xeon-based systems and to around 100% on Hawk and Irene-Rome.

Figure 17: Parallel performance of PFARM (EXDIG) on PRACE Tier-0 systems for Test Case 1c

4.9.2.2 Test Case 1d

Figure 18 shows the performance results for Test Case 1d on the PRACE Tier-0 systems. Here

each sector Hamiltonians is of smaller dimension than 1c, but the number of sectors is increased

to 1024. The dataset is suitable for scaling to large numbers of compute nodes and due to the

smaller matrix size a relatively smaller proportion of time is spent in the eigensolver (matrix

eigensolver operations required are of order n3). For example, on JUWELS around 78% time is

spent in DSYEVD for Test Case 1c vs 92% for Test Case 1d). Matrix data transfer between

host and device (order n2) also relatively impacts more on performance when n is smaller (i.e.

surface area to volume ratio).

Again, JUWELS Booster is the fastest machine by a significant margin, though performance

scaling is stalling between 128 and 256 nodes, where only a 7% improvement is achieved. This

scaling slowdown is mainly due to I/O becoming more of a relative overhead, as two large

output files are produced for each sector. MARCONI100 performance was again slower, but at

the largest scale was only 2.6× slower than JUWELS Booster, down from 4.1× with Test

Case 1c. Although the parallel efficiency for this range of node counts on the CPU-only systems

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 96 30.11.2021

is once again very good (79–100%), the AMD platforms are again slowest, but by a less

significant margin, especially for Irene-Rome. The Intel Xeon Skylake machines all produce

similar performance results, though parallel efficiency for these node counts varies between

77% on JUWELS to 95% on MareNostrum4 indicating superior I/O performance on the latter.

SuperMUC-NG was the fastest Xeon-based machine at scale.

Figure 18: Parallel performance of PFARM (EXDIG) on PRACE Tier-0 systems for Test Case 1d

4.9.2.3 Performance Benchmark Data

For completeness, the raw performance data from the benchmarked machines is listed in Table

118 – Table 121. Parallel efficiency is computed as (
𝑆𝑝𝑒𝑒𝑑−𝑢𝑝

𝐼𝑑𝑒𝑎𝑙 𝑆𝑝𝑒𝑒𝑑−𝑢𝑝
 × 100).

Nodes

(Total

MPI

Tasks)

Cores

Used

Time (s)
Speed-

up
Efficiency Time (s)

Speed-

up
Efficiency

JUWELS (Intel Xeon) MareNostrum4 (Intel Xeon)

Test Case 1c

1 (4) 48 4710.84 1.00 100 % 5897.28 1.00 100 %

2 (8) 96 2452.57 1.92 96.04 % 2968.36 1.99 99.33 %

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 97 30.11.2021

Nodes

(Total

MPI

Tasks)

Cores

Used

Time (s)
Speed-

up
Efficiency Time (s)

Speed-

up
Efficiency

JUWELS (Intel Xeon) MareNostrum4 (Intel Xeon)

4 (16) 192 1207.97 3.90 100 % 1485.79 3.96 99.23 %

8 (32) 384 611.25 7.71 96.34 % 756.16 7.80 96.49 %

16 (64) 768 313.63 15.02 93.87 % 380.34 15.51 96.91 %

Test Case 1d

64 (256) 3072 541.03 1.00 100.00 % 619.21 1.00 100.00 %

128 (512) 6144 367.32 1.47 73.64 % 330.85 1.87 93.58 %

256 (1024) 12288 175.59 3.08 77.03 % 170.74 3.63 90.67 %

Table 118: Parallel Performance of PFARM (EXDIG) on Xeon-based systems (i) for Test Cases 1c and 1d

Nodes

(Total

MPI

Tasks)

Cores

Used

Time (s)
Speed-

up
Efficiency Time (s)

Speed-

up
Efficiency

SuperMUC-NG (Intel Xeon) Irene-SKL (Intel Xeon)

Test Case 1c

1 (4) 48 4972.55 1.00 100.00 % 5191.65 1.00 100.00 %

2 (8) 96 2486.06 2.00 100.01 % 2646.55 1.96 98.08 %

4 (16) 192 1246.05 3.99 99.77 % 1329.86 3.90 97.60 %

8 (32) 384 682.37 7.29 91.09 % 666.51 7.79 97.37 %

16 (64) 768 350.84 14.17 88.58 % 335.87 15.46 96.61 %

Test Case 1d

64 (256) 3072 525.57 1 100 % 574.97 1.0 100.00 %

128 (512) 6144 265.07 1.98 99.14 % 305.83 1.88 94.00 %

256 (1024) 12288 135.80 3.87 96.75 % 188.11 3.06 76.41 %

Table 119: Parallel Performance of PFARM (EXDIG) on Xeon-based systems (ii) for Test Cases 1c and 1d

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 98 30.11.2021

Nodes

(Total

MPI

Tasks)

Cores

Used

Time (s)
Speed-

up
Efficiency Time (s)

Speed-

up
Efficiency

Hawk (AMD Rome) Irene-Rome (AMD Rome)

Test Case 1c

1 (4) 64 9734.95 1.00 100.00 % 8674.32 1.00 100.00 %

2 (8) 128 4809.14 2.02 101.21 % 3305.60 2.62 131.21 %

4 (16) 256 2387.8 4.08 101.92 % 1662.62 5.21 130.43 %

8 (32) 512 1178.34 8.26 103.27 % 831.83 10.43 130.43 %

16 (64) 1024 507.61 19.18 119.86 % 418.35 20.73 129.95 %

Test Case 1d

64 (256) 4096 1002.84 1.00 100.00 % 680.81 1.00 100.00 %

128 (512) 8192 442.63 2.27 113.28 % 350.93 1.94 97.00 %

256 (1024) 16384 246.81 4.06 101.58 % 214.28 3.17 79.43 %

Table 120: Parallel Performance of PFARM (EXDIG) on AMD-based systems for Test Cases 1c and 1d

Nodes

(Total

MPI

Tasks)

Cores

Used*

Time (s)
Speed-

up
Efficiency Time (s)

Speed-

up
Efficiency

Marconi100 (IBM Power &

V100 GPU)

Juwels-Booster (AMD Rome &

A100 GPU)

Test Case 1c

1 (4) N/A* 4630.74 1.00 100.00 % 1061.39 1.00 100.00 %

2 (8) N/A* 2340 1.98 98.93 % 548.95 1.93 99.33 %

4 (16) N/A* 1207.97 3.90 97.49 % 275.53 3.85 99.23 %

8 (32) N/A* 611.25 7.53 94.18 % 141.42 7.51 96.49 %

16 (64) N/A* 313.63 14.43 90.24 % 78.15 13.58 96.91 %

Test Case 1d

64 (256) N/A* 541.03 1.00 100.00 % 164.83 1.00 100.00 %

128 (512) N/A* 367.32 1.94 96.96 % 80.00 2.06 103.02 %

256 (1024) N/A* 175.59 3.70 92.49 % 74.76 2.21 55.12 %

Table 121: Parallel Performance of PFARM (EXDIG) on GPU-accelerated systems for Test Cases 1c

and 1d. (* The number of cores to be used in MAGMA calculations is not user-specified, though MAGMA

uses pthread parallelism for some CPU-based operations)

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 99 30.11.2021

4.9.2.4 Eigensolver Performance

PFARM (EXDIG) calculations primarily involve assembling and diagonalising symmetric real

sector Hamiltonian matrices to determine all eigenvalues and associated eigenvectors to then

calculate sector surface amplitude matrices of the same dimension for output. The performance

of the numerical library-based eigensolver is therefore central to the performance of the overall

calculation and is worthy of some analysis. Matrix diagonalisations take place within compute

nodes so shared memory routines are used. Figure 19 and Figure 20 summarise the intra-node

performance of DSYEVD for two different Hamiltonian matrices in EXDIG from test Case 1c.

The relative performance of DSYEVD on the different machines maps closely to the overall

run times from Figure 17 and Figure 18. For example, in a calculation involving 4 sector

Hamiltonian matrices, the figures show that using 4 concurrent MPI tasks per node each with

¼ of physical cores as OpenMP threads is preferable to using 1 MPI task with all compute node

resources 4 times in succession for each sector calculation. However, for very large matrices it

may be necessary to utilise all the memory on a single node via 1 MPI task. The 4 MPI tasks,

4 NVIDIA A100 performance of MAGMA is particularly impressive for the larger matrix,

comparatively around 4× faster than the NVIDIA V100 and around 6× faster than the Xeon-

based MKL eigensolver. For the smaller matrix, MAGMA performance is relatively lower due

to higher (order n2) host-device data transfer overheads relative to matrix computation

operations (order n3).

Figure 19: Sector Hamiltonian Eigensolver performance using DSYEVD with 1 MPI task per node.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 100 30.11.2021

Figure 20: Sector Hamiltonian Eigensolver performance using DSYEVD with 4 MPI tasks per node

4.9.2.5 Energy Usage of Benchmark Runs

Energy monitoring has been used to collect data from four machines. Three of these are CPU-

based machines – Irene-SKL, Irene-Rome, MareNostrum4 and one is a CPU/GPU-accelerated

system – MARCONI100. Energy used for the benchmarking runs is summarised in Table 122

and Table 123. The energy reports from MARCONI100 only report energy usage data from the

GPU devices, rather than the whole CPU/GPU node. The MARCONI100 values tabulated are

therefore unsuitable for direct comparisons with the other platforms. Of the three CPU node

systems, Irene-SKL is the most energy efficient with Irene-Rome only a little behind.

Comparable runs on MareNostrum4 are reporting a higher level of power usage.

Generally, the pattern of energy consumption for runs using a range of nodes on a machine

tends to be proportional to parallel scaling efficiency. For example, the energy consumption of

Irene-SKL for Test Case 1d is 19% lower on 64 nodes than 256 nodes. The associated drop in

parallel scaling efficiency (from ideal scaling) between the two node counts is 24%. Likewise,

for MareNostrum4, energy consumption on 64 nodes is around 7% lower than on 256 nodes

relating to a drop in parallel scaling efficiency of 5%.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 101 30.11.2021

Nodes

Total Energy (kJ)

Irene-SKL Irene-Rome

1 MPI Task / 48

OpenMP threads

per task

4 MPI tasks / 12

OpenMP threads

per task

1 MPI Task / 32

OpenMP threads

per task

4 MPI tasks / 16

OpenMP threads per

task

1 1128 2507 1844 2496

2 1166 2566 1931 2567

4 1189 2580 1265 2585

8 1213 2591 1212 2582

16 1247 2605 1246 2619

Nodes

Total Energy (kJ)

MareNostrum4 MARCONI100 (GPU usage only)
1 MPI Task / 48

OpenMP threads

per task

4 MPI tasks / 12

OpenMP threads

per task

1 MPI Task / 4 GPU

devices

4 MPI tasks / 4 GPUs

devices

1 1885 2321 512 1121

2 1856 3498 479 1418

4 1879 4125 484 1417

8 1882 4143 422 1446

16 1914 4464 429 1383
Table 122: Energy Consumption of PFARM (EXDIG) benchmarking runs for Test Case 1c.

Nodes

Total Energy (kJ)

Irene-SKL Irene-Rome
1 MPI Task / 48

OpenMP threads

per task

4 MPI tasks / 12

OpenMP threads

per task

1 MPI Task / 32

OpenMP threads

per task

4 MPI tasks / 16

OpenMP threads per

task

64 18387 17248 20709 16643

128 18485 17790 21423 17411

256 19120 20521 21941 20947

Nodes

Total Energy (kJ)

MareNostrum4 MARCONI100 (GPU usage only)
1 MPI Task / 48

OpenMP threads

per task

4 MPI tasks / 12

OpenMP threads

per task

1 MPI Task / 4 GPU

devices

4 MPI tasks / 4 GPUs

devices

64 30635 28504 7770 12833

128 30731 29005 7898 13136

256 31544 30449 13952
Table 123: Energy Consumption of PFARM (EXDIG) benchmarking runs for Test Case 1d.

4.10 QCD

The QCD kernels that are part of the UEABS Benchmark Suite are unchanged since

PRACE-4IP, with the exception of adding software packages with capabilities to run on

accelerator devices, like Intel Xeon Phi processors or NVIDIA GPGPUs. Since PRACE-4IP

these kernels have benchmarked most of the PRACE Tier-0 systems, with the exception of

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 102 30.11.2021

Irene-Rome, which makes it possible to compare the older Tier-0 systems with state-of-the-art

machines, like JUWELS Booster.

While for most of the machines performance results are provided, energy consumption

measurements of the QCD-test cases are very limited. This is due to the fact that new results

within PRACE-6IP were obtained only on the newest machines, namely Hawk, SuperMUC-

NG, JUWELS Booster and MARCONI100, which are all missing a log of energy usage for

single jobs.

4.10.1 Test Case: Part 1

Figure 21: Relative speed-up of the performance using UEABS QCD Part 1 compare to the single node

performance on SuperMUC-NG equipped with Intel Xeon Skylake chips. For the benchmark application

strong scaling towards multiple nodes on PRACE Tier-0 machines with a test size of V=8×64×64×64 is used.

The test size of benchmark kernel Part 1 is given by V=8×64×64×64, a relatively small lattice

size for state-of-the-art lattice QCD simulations. In Figure 21 the speed-up relative to the

performance on one Skylake node of SuperMUC-NG is shown. The test case, which consists

of 1000 iterations of a conjugate gradient solver, takes 186 secs on SuperMUC-NG using a

Hybrid parallelisation consisting of 8 MPI tasks each with 6 OpenMP threads to utilise all 48

Skylake cores. The performance results can be summarised as:

 SuperMUC-NG, Skylake: The obtained data is used as the reference to calculate the

speed-up towards a larger number of nodes. The kernel scales almost perfectly on up to

64 nodes, while still solid speed-up is obtained on 512 nodes. Due the scalability of Intel

Xeon Skylake, 512 SuperMUC-NG nodes outperform all other architectures, giving a

speed-up of a factor 168 relative to the performance on a single node.

 Irene-KNL: The runs were performed using one MPI task with 68 OpenMP threads per

card. The performance matches the numbers obtained from using Intel Xeon Skylake

on up to 32 nodes, while for larger numbers of nodes the performance drops compared

to the Skylake case matching the performance obtained on Piz Daint using 128 nodes.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 103 30.11.2021

 Piz Daint, NVIDIA P100: The runs were performed with one MPI task per node,

utilising each NVIDIA P100 per node. While a single P100 node outperforms a single

Skylake node by a factor 3.5, it reaches similar performance on 32 nodes.

 MARCONI100, NVIDIA V100: MARCONI100 nodes are each equipped with

4 NVIDIA GPGPU V100, which reaches with 4 MPI task on a single node a relative

speed-up by a factor 13.2 compare to a single SuperMUC-NG Skylake node. Similar to

Piz Daint P100 node scalability is slightly decreasing and stagnating for larger node

counts than 8.

 JUWELS Booster, NVIDIA A100: The single node performance of JUWELS Booster

outperforms all other systems in case 4 NVIDIA A100 GPGPU are used. The A100

performance is in all cases a factor 2× faster than the 4 NVIDIA V100 GPGPU nodes.

Nodes Irene

KNL
Irene

SKL
JUWEL

S
JUWEL

S

Booster

Marconi
100

MareNos

trum4
SuperM

UC-NG
Piz

Daint

1 148.68 219.68 182.49 9.02 14.07 186.40 186.05 53.73

2 79.35 114.22 91.83 6.48 10.36 94.63 94.79 32.38

4 48.07 58.11 46.58 4.50 8.04 47.22 48.71 19.13

8 28.42 32.09 25.37 3.14 5.36 25.86 31.09 12.78

16 17.08 14.35 11.77 3.54 5.54 11.64 12.71 9.20

32 10.56 7.28 5.43 2.35 5.59 7.02 6.35

64 9.01 4.18 2.65 2.65 3.92 6.41

128 5.08 1.39 2.48 3.30 5.95

256 1.38 1.93 5.84

512 0.89 1.11
in sec MPI = 1,

omp = 68
MPI = 8,

omp = 6
MPI = 8,

omp = 6
MPI = 4 MPI = 4 MPI = 8,

omp = 6
MPI = 8,

omp = 6
MPI = 1

Table 124: The table shows the sustained performance of the UEABS QCD Part 1 with volume

V=8×64×64×64 using strong scaling in time to solution (in seconds) on the different PRACE Tier-0

machines.

4.10.2 Test Case: Part 2 - V = 32×32×32×96

Within Part 2 of the UEABS QCD case state-of-the-art lattice QCD kernels are used, which

implement the sparse matrix stencil given by Wilson Dirac applications within the conjugate

gradient method. The first test case is given by a lattice volume of V=32×32×32×96, a relatively

small volume but it fits to the memory of a single Intel Xeon Phi KNC. The size limits the

expected strong scaling window roughly to 16 nodes, where most of the machines show some

degradation from ideal scaling. On a single node the sparse matrix stencil is bandwidth bound,

roughly given by a theoretical ratio of 1:1 for compute to memory requirements. Using a

consistent test case since PRACE-4IP enables us to compare different computing hardware of

the last decade. This can be used to illustrate the progress of increasing node performance, due

to hardware and software developments. We depict the sustained performance achieved on a

single node and on 16 nodes in dependence of the theoretical peak memory bandwidth, as

provided by the different vendors, in Figure 22. Overall, the performance improvements over

the years scales very well with the increase in bandwidth of the different computing devices.

Moreover, as shown by the scaling dependence on the peak bandwidth the kernel on a single

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 104 30.11.2021

node is bandwidth bound while this is changing on multiple nodes, being for some architectures

communication bound. Note that the obtained performance results are shown in Table 124.

In the following, we will discuss in detailed some of the key observations of the different HPC

computing devices shown in Figure 22

 Intel Xeon (Haswell, Skylake, Cascade Lake): The shown performance results of Intel

Xeon chips are obtained on SuperMUC-NG with Haswell architecture (4 MPI task with

7 OpenMP threads), SuperMUC-NG, JUWELS Cluster, MareNostrum4, Irene SKL

with Skylake architecture (8 MPI task with 6 OpenMP threads) and Frontera at TACC,

US with Cascade Lake (8 MPI tasks with 7 OpenMP threads). The Intel Xeon

architecture shows very good scalability for the selected test case, while no major

difference between architectures without and with AVX512 capability is observed.

 Intel Xeon Phi (KNC, KNL): Performance results are obtained on a local Xeon Phi

cluster (CaSToRC) equipped with Intel Xeon Phi KNC cards (1 MPI task with 60

OpenMP threads) and on Marconi-KNL and Frioul (CINES test system) equipped with

Intel Xeon Phi KNL. The single node performance of KNLs can vary due to the memory

configuration, booted here in cache mode, and could be tuned to higher values if a

different memory configuration is selected. As shown, scalability is difficult to achieve,

already breaking down for 16 nodes in case of KNLs.

 ARM (Marvell ThunderX2): The benchmark was performed within PRACE-5IP on

the Mont Blanc system Dibona using a Wilson Dirac kernel, optimised for ARM

architectures from the software package grid. The performance is below the one

obtained on Intel Skylakes, although more theoretical peak bandwidth is provided by

Marvell’s chip. In general, the results show that there is potential for additional

optimisation. Moreover, a European Fujitsu’s ARM A64fx is missing and with-it

performance results, but the architecture will find its entry with the Portuguese

EuroHPC-JU system Deucalion into the European HPC scene.

 AMD EPYC (Rome): The depicted results are obtained on HLRS Hawk using the

AMD EPYC Rome processors (32 MPI tasks with 8 OpenMP threads with QPiX). The

single node performance matches Intel Xeon Phi KNL ones and shows perfect scaling

on 16 nodes, outperforming the Intel Xeon chips. Due to the more complex memory

structure AMD EPYCs are trickier to tune and can show performance improvements at

larger node numbers in strong scaling tests due to cache effects. In general AMD

EPYC’s performance trends are similar to Intel Xeon’s, while showing higher overall

performance.

 NVIDIA GPGPU (K20, K40m, P100, V100, A100): The results are obtained on a

local cluster (CaSToRC) equipped with NVIDIA K20, on SURF’s Cartesius with

K40m, on Piz Daint and Davide (CINECA GPU test system) with P100, on

MARCONI100 with V100 (each node is equipped with 4 GPUs each) and JUWELS

Booster with A100 (similar to Marconi, each node comes with 4 GPUs) using QUDA

(version 0.7–1.0.1). For all generations the performance is depicted on a single GPU,

while for the latter two machines, MARCONI100 and JUWELS Booster, also the

performance is shown utilising all 4 GPUs. However, in this case the number for

theoretical peak bandwidth is not increased within the figure because they would

overlap with the Intel Xeon results on 16 nodes. The single node performance numbers

show clearly the performance improvements on the architecture but also on the software

side. Namely the performance is not only increasing with the increase of the theoretical

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 105 30.11.2021

memory bandwidth but also with newer versions of QUDA, where version 0.7 was used

for K40m and version 1.0.1 for the A100. Moreover, these improvements on the

software side also impact scalability, where for the later generation direct

communication between GPUs via GDR is enabled, enhancing scalability performance.

The single node performance of JUWELS Booster using 4 A100 tops all other

architectures with 3840 Gflop/s in double precision, while reaching 15,950 Gflop/s on

16 nodes. Note that reduction in scalability is expected for the relatively small test size

on 64 GPUs.

Figure 22: Sustained performance of the UEABS QCD Part 2 with the smaller volume of V=32×32×32×96

on a single node and on 16 node in dependece of the theoretical peak memory bandwith of the corresponding

architecture. The figure shows obtained results within PRACE-4IP to PRACE-6IP. Note that all numbers

were obtained using double precision.

N
o

d
es

H
a

w
k

Ir
e
n

e
S

K
L

J
U

W
E

L
S

J
U

W
E

L
S

B
o

o
st

er

M
A

R
C

O
N

I1
0

0

M
a

re
N

o
st

ru
m

4

S
u

p
er

M
U

C
-N

G

P
iz

 D
a

in
t

1 177,83 134.38 132.26 3836.90 2112.99 142.34 146.92 387.66

2 408.84 240.85 245.60 6261.74 3861.76 263.36 275.61 755.31

4 857.49 460.04 456.23 11875.60 4628.68 480.52 515.15 1400.06

8 1980.97 754.66 864.96 17751.30 6570.62 895.28 951.26 1654.21

16 4200.71 1366.21 1700.95 15947.40 3475.38 1632.87 1820.73 2145.69

32 11702.00 2603.90 3199.98 18345.90 4737.90 2923.7 3517.53 2923.98

64 4122.76 5167.48 1109.96 4118.70 5501.95 2332.71

128 4703.46 7973.90 4050.41 7217.27

256 3130.42

512 3421.25

in

Gflop/s

MPI = 32

omp = 8

MPI = 8

omp = 6

MPI = 8

omp = 6

4 GPU

per node

4 GPU

per node

MPI = 8

omp = 6

MPI = 8

omp = 6

1 GPU

Table 125: Sustained performance of the UEABS QCD Part 2 test size V=96×32×32×32 using strong scaling

on the current PRACE Tier-0 machines. The number obtained are collected using double precision kernels.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 106 30.11.2021

Note that the scalability of the QPhiX kernel is hard limited by the local volume per MPI task. This is

reached in case of 32 Nodes on Hawk, thus limit the scaling towards larger number of nodes in the chosen

parallelisation.

4.10.3 Test Case: Part 2 - V = 64×64×64×128

The second volume of the Part 2 of the UEABS QCD is a factor 10.7 larger than the smaller set

and extends the strong scaling capability to up to 500 nodes. Moreover, it represents currently

common QCD partition sizes. Here, we will show results achieved on the newer PRACE Tier-0

systems, namely SuperMUC-NG, Hawk, MARCONI100 and JUWELS Booster, all equipped

with different hardware. As depicted in Figure 23 the A100 nodes of JUWELS Booster

outperforms the CPU machines, already reaching 61 Tflop/s in double precision on 32 Nodes

with 4 GPUs. Here, GDR via the QUDA option ‘export QUDA_ENABLE_GDR=1’ was

enabled to utilise direct GPU to GPU communication. This improves scalability drastically,

namely finding improvements of 1.8 on 32 nodes. The performance of Marconi’s V100 is

roughly the half of JUWELS Boosters A100 and strong scaling breaks down after reaching 16

nodes with 64 GPUs. Here, enabling direct GPU communication does not significantly improve

the scalability. The CPU machines Hawk and SuperMUC-NG are showing excellent scalability,

which is mildly stagnating from 128 nodes.

Figure 23: Strong scaling of QCD Part 2 Test Case 2: The sustained performance on the newer PRACE

Tier-0 machines is shown for Test Case 2 with volume 128×64×64×64 is shown in dependence on the number

of nodes. In all cases the double precision benchmark kernels were used.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 107 30.11.2021

N
o

d
es

H
a

w
k

Ir
e
n

e
S

K
L

J
U

W
E

L
S

J
U

W
E

L
S

B
o

o
st

er

M
A

R
C

O
N

I1
0

0

M
a

re
N

o
st

ru
m

4

S
u

p
er

M
U

C
-N

G

P
iz

 D
a

in
t

1 200.45 141.31 134.97 144.32

2 392.57 267.28 263.64 7904.11 4070.01 280.68 287.38

4 753.75 503.04 496.47 15265.00 7819.70 514.96 545.89

8 1489.70 922.19 954.66 28671.60 14923.80 930.95 1022.88 2694.00

16 2876.30 1607.92 1787.43 40877.70 11319.50 1778.23 1932.51 5731.56

32 5596.72 3088.02 3289.02 61469.80 16737.10 2635.74 3732.18 7779.29

64 8717.53 4787.89 5952.80 15038.20 5264.16 6652.35 10607.20

128 19467.90 5750.35 10315.30 7998.56 11247.60 13560.50

256 15370.90 18177.20 21725.90

512 26972.60 35291.50

In

Gflop/s

MPI = 32

omp = 8

MPI = 8

omp = 6

MPI = 8

omp = 6

4 GPU

per node

4 GPU

per node

MPI = 8

omp = 6

MPI = 8

omp = 6

1 GPU

Table 126: Strong scaling of QCD Part 2 using the larger test size of V=128×64×64×64. The quoted numbers

are sustained performance in Gflop/s using double precision.

4.10.4 Comments on Future Developments

New and future architectures will not be supported by the QPhiX kernel, such as the ARM SVE

instruction sets, due to that support beyond PRACE-6IP will need to be shifted towards QUDA.

Here, within the DoE exascale project and thanks to NVIDIA’s support the package QUDA is

currently under optimisation to support up-coming hardware, such as deployed within US

exascale machines and Europe’s EuroHPC-JU machines. Due to that the QPhiX kernel of Part

2 should be replaced in a future release by the generic QUDA kernel (still under development),

which will guarantee a continuation of the performance metric used within QUDA since

PRACE-4IP.

The current set of test cases is missing a large-scale set, which has the potential to scale to a

full PRACE Tier-0 machine. In light of so-called master-field simulations such a large set might

be relevant in the near future but could be easily added via a weak-scaling test case or a large

set such as V=64×64×64×128.

Furthermore, the computing intensive workload of QCD applications are shifted from purely

large-scale sparse matrix stencil operation towards more dense and smaller sparse matrix stencil

operation, needed in multigrid approaches. Nowadays for all common lattice operators,

multigrid methods are known and outperform traditional methods by more than an order of

magnitude (e.g. [16]). Moreover, the needed more dense matrix applications also shift the

technical limits of the benchmark kernels from bandwidth towards latency bound. To cope with

this development future extension of the QCD part of UEABS should be extended to include

coarse matrix vector stencils, which are available within DDalphaAMG [17] and QUDA [18]

Note that a simple access to these kernels can be provided by the community python API lyncs

which is under development under the PRACE-6IP WP8 project LyNcs [19].

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 108 30.11.2021

4.10.5 Conclusion

In all three test cases JUWELS Booster is showing the best overall performance. Compared to

older NVIDIA hardware, scalability is widely improved on the new generation of NVIDIA

A100 due to direct communications between GPUs. The CPU machines show for most of the

cases excellent scalability; however, they cannot reach the overall performance provided by an

NVIDIA A100. For a final conclusion the energy consumption of the different architectures

would be an important metric, namely to estimate the energy consumption of 32 nodes each

with 4 NVIDIA A100 compared to 512 Skylake nodes. These measurements are not available

on the machine where the QCD benchmarks within PRACE-6IP are conducted. To conclude,

the results of the UEABS QCD part confirm that QCD workloads will perform also efficiently

on the up-coming EuroHPC-JU petascale and pre-exascale systems, which will be mostly

equipped with NVIDIA A100, such as CINECA’s Leonardo or IT4I’s Karolina.

4.11 Quantum ESPRESSO

The PWscf module of Quantum ESPRESSO has been benchmarked on several European

systems by measuring the wall time (in seconds) of a single iteration of an electronic structure

optimisation (i.e. “time-to-solution”) as a function of computer resources, i.e. testing strong

parallel scaling. We note that weak scaling experiments cannot be performed with this

application. The version used varied from 6.5 to 6.8, depending on the installation available on

the benchmark platform, but we do not expect this to influence the results in so far as software

updates between minor versions of Quantum ESPRESSO involve bug fixes or added

functionality, rather than performance enhancements.

4.11.1 MARCONI100

In this section, we analyse the GPU performance of the application with the medium test case

on MARCONI100 system and compare with the non-accelerated version on the same system.

To reduce the memory per task for the CPU tests, we used 8 OpenMP threads per task and, for

the CPU-only runs, 8 tasks per node. For the GPU tests we used 1 MPI task per GPU, and

therefore 4 tasks per node. The time-to-solution data are given in Table 127 and Table 128, and

are plotted in Figure 24. As can be seen from the data, the GPU version of Quantum ESPRESSO

shows a high performance for small numbers of nodes compared to the CPU-only tests, but it

does not scale. The highest performance in fact can be obtained at with large numbers of CPU-

only nodes which exhibit higher parallel efficiencies.

Nodes Time-to-solution (s) Parallel Efficiency (%)

4 296 100

8 251 59

16 247 30

32 283 13
Table 127: Performance and parallel efficiency of Quantum ESPRESSO for the medium test case on

MARCONI100 GPU nodes

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 109 30.11.2021

Nodes Time-to-solution (s) Parallel Efficiency (%)

10 606 100

20 305 99

30 209 97

40 161 94
Table 128: Performance and parallel efficiency of Quantum ESPRESSO for the medium test case on

MARCONI100 using only CPUs

Figure 24: Time-to-solution as a function of MARCONI100 nodes for the medium test case of Quantum

ESPRESSO. We show data for both the CPU and GPU versions of the application.

4.11.2 Benchmarks for MareNostrum4, JUWELS, and SuperMUC-NG

In the following subsection we compare results for the CPU partitions of three major

supercomputers in Europe: MareNostrum4, JUWELS, and SuperMUC-NG. For each

benchmark we measure the time-to-solution for both the medium test case and the large test

case. We note that in some cases it was necessary to use large-memory partitions (often called

“fat nodes”) to run the large test case results. For each run the hybrid mode of Quantum

ESPRESSO was run, using 12 MPI tasks per node and 4 OpenMP threads/task.

The performance data for the benchmarks are given in Table 129 and Table 130 while Figure

24 and Figure 25 show the corresponding plots. We can observe for both test cases that the data

show very similar trends but with MareNostrum4 giving slightly higher performances overall.

It is not clear why the MareNostrum4 performances are higher than those of JUWELS and

SuperMUC-NG, particularly as the latter two machines have processors which have clock

frequencies higher than those of the Barcelona supercomputer. On the other hand, at high node

counts, the results are essentially identical.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40 45

ti
m

e-
to

-s
o

lu
ti

o
n

(s
)

M100 nodes

M100 medium test case benchmarks

M100 CPU M100 GPUs

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 110 30.11.2021

 Medium Test Case Time-to-solution (s)

#nodes MareNostrum4 JUWELS SuperMUC-NG

10 482 460 547

20 153 263 196

30 122 197 213

40 107 157 169

50 125 143 147

60 134 131

70 133 108
Table 129: Comparison of the performance of Quantum ESPRESSO for the medium test case on

MareNostrum4, JUWELS, SuperMUC-NG.

 Large Test Case Time-to-solution (s)

#nodes MareNostrum4 JUWELS SuperMUC-NG

10 716 819 1021

20 343 470 572

30 288 375 449

40 245 319 339

50 225 303 330

60 237 309 324
Table 130: Comparison of the performances of Quantum ESPRESSO for the large test case for

MareNostrum4, JUWELS and SuperMUC-NG

Figure 25: Performance with the medium test case on MareNostrum4, JUWELS and SuperMUC-NG

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90

ti
m

e-
to

-s
o

lu
ti

o
n

(s
)

#nodes

Performance with medium test case

MareNostrum Juwels SuperMuc-NG

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 111 30.11.2021

Figure 26: Performance with the large test case for MareNostrum4, JUWELS and SuperMUC-NG

4.11.3 Energy Efficiencies

It was not possible to perform energy measurements of the calculations with the architectures

tested with Quantum ESPRESSO.

4.12 SPECFEM3D_GLOBE

The SPECFEM3D_GLOBE benchmarks have been performed on systems with different

processors: AMD EPYC, Intel Knights Landing, Intel Skylake, Intel Broadwell and IBM

Power9, some of them have different graphics processing units (GPUs): NVIDIA V100, P100

and A100. Distributed parallelism (MPI) was used on all systems. On the accelerated systems,

GPU parallelisation was used at the expense of the OpenMP parallelisation model, which was

not used because no performance was obtained by coupling these two parallelisation paradigms

(OpenMP and GPU). Hybrid parallelisation (MPI and OpenMP) was exploited on platforms

with x86 processors only.

4.12.1 System Software Environment

SPECFEM3D_GLOBE requires Fortran and C compilers, MPI and in case of GPU support a

CUDA SDK installation. We used the development version of SPECFEM3D Globe 7.0.1 of

October 31th, 2015 (Git commit #b1d6ba9). The MPI compiler and library used depends on the

availability on each system, the choice is sometimes restricted due to instabilities in the

simulation with certain MPI compiler and library combinations.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70

ti
m

e-
to

-s
o

lu
ti

o
n

(s
)

#nodes

Performance with large test case

MareNostrum Juwels SuperMUC-NG

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 112 30.11.2021

The software stack used on the machines is summarised in Table 131.

PRACE Tier-0 Fortran

compiler

MPI flavour CUDA

x86

platforms

Hawk EPYC™ 7742 GCC 9 HPE-MPI 2.23 N/A

Joliot-Curie EPYC™ 7H12 Intel 20 Open MPI 4.0.5 N/A

Joliot-Curie KNL 7250

Intel

oneAPI

21.3.0

Intel MPI

2019.5.281

N/A

Joliot-Curie Skylake 8168 Intel 20 Open MPI 4.0.5 N/A

JUWELS Skylake 8168

Intel 19 Intel MPI

2019.7.217

N/A

MareNostrum4 Skylake 8160 Intel 20 Intel MPI 2018.4 N/A

SuperMUC-NG Skylake 8174 Intel 17.4 Intel MPI 2017.4 N/A

Vega 2 × EPYC™ 7H12 GCC 9 Open MPI 4.0.5 N/A

GPU

platforms

JUWELS Booster 2 × AMD

EPYC™ 7402 4 × NVIDIA

A100

Intel 21 ParaStation MPI

5.4.10

11.3

MARCONI100 IBM POWER9 +

4 × NVIDIA V100

IBM XL Spectrum MPI

10.3.1

10.1

Piz Daint Broadwell E5-2695 v4

+ NVIDIA P100

CRAY ftn

2.7.3

cray-mpich 7.7.16 11.0

Vega 2 × EPYC™ 7H12 + 4 ×

NVIDIA A100

GCC 9 Open MPI 4.0.5 10.1

Table 131: Software environment used in SPECFEM3D_GLOBE Benchmarks

4.12.2 Results

4.12.2.1 Validation Test Case

All simulations were performed on one node, using 24 MPI tasks. Table 132 shows the results

of the runtime for the mesher and solver part of the Geophysics code.

PRACE Tier-0
Mesher

(s)

Solver

(s)

x86

platforms

Hawk EPYC™ 7742 74 6127

Joliot-Curie EPYC™ 7H12 52 6437

Joliot-Curie KNL 7250 352 7783

Joliot-Curie Skylake 8168 72 3968

JUWELS Skylake 8168 54 1969

MareNostrum4 Skylake 8160 56 3224

SuperMUC-NG Skylake 8174 63 2666

JUWELS Booster 2 × AMD EPYC™ 7402 4 ×

NVIDIA A100

40

234

GPU

platforms

MARCONI100 IBM POWER9 + 4 × NVIDIA V100 192 176

Piz Daint Broadwell E5-2695 v4 + NVIDIA P100 73 451

HPC - Vega 2 × EPYC™ 7H12 + 4 × NVIDIA A100 73 175
Table 132: SPECFEM3D_GLOBE Validation Test Case

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 113 30.11.2021

The part of the code that deals with mesh creation does not include a GPU implementation, and

this is clearly seen in the table above. Thus, the mesh creation times are relatively close whether

on a GPU or x86 platform. The results of this first test case highlight the spectacular

performance of the code on GPU platforms, which are of the order of a hundred seconds for the

solver part of the calculation, whereas they are of the order of thousands of seconds for x86

platforms.

These results make it difficult to really compare the parallelisation performances since on x86

platforms only MPI parallelisation was used while on GPU platforms both (MPI+GPU) were

used. This is why the following results present this hybrid parallelisation.

4.12.2.2 Test Case A

All simulations have been performed on 24 nodes, using 96 MPI tasks. Table 133 presents the

run times of the best performing configuration of OpenMP threads with this particular node

count on each system.

PRACE Tier-0
Mesher

(min)
Solver (s)

Threads

OpenMP

x86

platforms

Hawk EPYC™ 7742 12 781 32

Joliot-Curie EPYC™ 7H12 7 576 32

Joliot-Curie KNL 7250 54 1662 16

Joliot-Curie Skylake 8168 7 682 12

JUWELS Skylake 8168 6 637 12

MareNostrum4 Skylake 8160 9 751 12

SuperMUC-NG Skylake 8174 9 671 12

JUWELS Booster 2 × AMD EPYC™

7402 4 × NVIDIA A100 7 25

N/A

GPU

platforms

MARCONI100 IBM POWER9 + 4 ×

NVIDIA V100 28 44

N/A

Piz Daint Broadwell E5-2695 v4 +

NVIDIA P100 12 212

N/A

Vega 2 × EPYC™ 7H12 + 4 × NVIDIA

A100 13 49

N/A

Table 133: SPECFEM3D_GLOBE Test Case A

The mesh creation times are still very close whether on a GPU or x86 platform with again a

mesh time at least quadrupled on the KNL compared to the other architecture and at least

doubled on the Power9 of MARCONI100. Concerning the x86-only platforms, we still find

that the AMD Rome partition of Joliot-Curie performs best on the Validation Test Case and

Test Case A.

4.12.2.3 Test Case B

All simulations have been performed on 384 nodes, using 1536 MPI tasks. Table 134 presents

the run times of the best performing configuration of OpenMP threads with this particular node

count on each system.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 114 30.11.2021

PRACE Tier-0
Mesher

(min)
Solver (s)

Threads

OpenMP

x86

platforms

Hawk EPYC™ 7742 1 151 32

Joliot-Curie EPYC™ 7H12 1 137 32

Joliot-Curie Skylake 8168 1 101 12

JUWELS Skylake 8168 1 128 12

MareNostrum4 Skylake 8160 1 162 12

SuperMUC-NG Skylake 8174 2.5 147 12
Table 134: SPECFEM3D_GLOBE Test Case B

Simulations on GPU platforms could not be performed because a 384-nodes submission is not

possible on these platforms. Furthermore, this test case will not take full advantage of the CPU-

GPU resources. Indeed, this test case makes sense on x86 CPU systems but on GPU systems,

the solver part will compute too fast, and only the communication performance will count.

4.12.3 Performance Comparison

In this section, we compare the performance of the PRACE Tier-0 systems using scalability

and strong scalability curves by also reporting the speed-up and parallel efficiency factors.

Weak scalability has not been used because the SPECFEM3D_GLOBE software has numerical

and software instabilities on some mesh configurations and the number of processors used,

making it impossible to produce weak scalability curves.

4.12.3.1 Scalability

The results presented in this section cover the execution times of the mesher and the solver by

gradually increasing the size of the meshes (which is reflected in the value of the variable

NEX_XI, the number of spectral elements along one side of a piece of the cubic sphere). Figure

27 and Figure 28 show a comparison of the performance of the Joliot-Curie system partition

with two AMD Rome processors, JUWELS Cluster module with its 24 core Intel Xeon Skylake

processors and Vega which has two AMD Rome processors and four NVIDIA A100 graphics

cards per node. The simulation is run on 24 compute nodes.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 115 30.11.2021

Figure 27: Mesher scaling on 24 computes nodes by increasing the NEX_XI

The Vega and Joliot-Curie systems have the same processors but the Joliot-Curie configuration

allows more performance to be achieved on the CPUs only. The mesh part of the

SPECFEM3D_GLOBE code does not benefit from GPU acceleration. The results for the Joliot-

Curie system and the JUWELS Cluster module are of the same order for small mesh sizes and

for larger mesh sizes the JUWELS system configuration performs better overall.

Figure 28: Solver scaling on 24 computes nodes by increasing the NEX_XI

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 116 30.11.2021

Figure 28 highlights the efficiency of the GPU acceleration of the SPECFEM3D_GLOBE

solver. While the execution times of the Joliot-Curie and JUWELS systems explode when the

mesh size increases, the execution times on Vega do not exceed several tens of seconds, i.e.

about ten times less execution time for fine meshes. The limiting factor of these curves is the

memory required for meshes with a NEX_XI higher than 480, the memory required to run the

test cases on the systems becomes insufficient.

It is surprising to see that the JUWELS Cluster module performs better than the Joliot-Curie

AMD Rome partition, indeed JUWELS Cluster module has 48 cores per node against the 64

per node of Joliot-Curie; this can be partly explained by the AVX512 vectorisation present on

JUWELS against the AVX2 vectorisation of Joliot-Curie AMD Rome.

4.12.3.2 Strong Scaling

In this section, we present the strong scaling results only for the solver part of the

SPECFEM3D_GLOBE code.

4.12.3.2.1 Small Benchmark Run to Test More Complex Earth

On the “small benchmark to test a more complex land” native test case we tested a large scale-

up, starting with a problem size of 600 MB per process on 1 node (original test design) and

depopulating it on 2, 4 and 8 nodes. Only six systems were compared for this test case, the

systems compared were chosen to highlight the differences in efficiency depending on the

architecture used to run the code (results for more systems will be presented in the next section

for Test Case A which is closer to a real simulation). The following tables present the solver

execution times, speed-up and parallel efficiency of different systems. The speed-up and

parallel efficiency are reported with reference to the run time on a single node.

Nodes Time (s) Speed-up Parallel efficiency (%)

1 6437 1.00 100

2 4362 1.48 73

4 1997 3.22 80

8 2014 3.20 40
Table 135: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Joliot-Curie Rome

Nodes Time (s) Speed-up Parallel efficiency (%)

1 1969 1.00 100

2 1099 1.79 89

4 1949 1.01 25

8 1130 1.74 21
Table 136: SPECFEM3D_GLOBE, strong scaling Validation Test Case on JUWELS Cluster module

Nodes Time (s) Speed-up Parallel efficiency (%)

1 3968 1.00 100

2 3105 1.27 64

4 3332 1.19 29

8 2853 1.39 17
Table 137: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Joliot-Curie Skylake

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 117 30.11.2021

Nodes Time (s) Speed-up Parallel efficiency (%)

1 175 1.00 100

2 97 1.80 90

4 68 2.57 64

8 31 5.65 70
Table 138: SPECFEM3D_GLOBE, strong scaling Validation Test Case on Vega

Nodes Time (s) Speed-up Parallel efficiency (%)

1 176 1.00 100

2 103 1.71 85

4 75 2.35 58

8 39 4.51 56
Table 139: SPECFEM3D_GLOBE, strong scaling Validation Test Case on MARCONI100

Nodes Time (s) Speed-up Parallel efficiency (%)

1 234 1.00 100

2 118 1.98 99

4 82 2.85 71

8 44 5.32 66
Table 140: SPECFEM3D_GLOBE, strong scaling Validation Test Case on JUWELS Booster

On all machines, the runtime decreases when the number of nodes increases. For this test case,

we observe in particular that on GPU platforms the parallel efficiency remains good up to 8

nodes (56% on MARCONI100 which is the worst result) while on x86 platforms only the

parallel efficiency results are bad beyond 2 nodes (lower than 30%) except on the AMD Rome

system of Joliot-Curie which remains above 70% up to 4 nodes.

In order to have all the tools to compare the systems, we have drawn the strong scalability

curves (Figure 29), the speed-up (Figure 30) and parallel efficiency results (Figure 31).

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 118 30.11.2021

Figure 29: SPECFEM3D_GLOBE, strong scaling on Validation Test Case: small benchmark run to test on

more complex earth

The results in the three tables above (Table 135, Table 136 and Table 138) suggest that the

Joliot-Curie (2 × EPYC™ 7H12) system scales best among the CPU-only systems. Although

the parallel efficiency of Joliot-Curie (2 × EPYC™ 7H12) is relatively good up to 8 nodes; by

analysing Figure 29, we understand that this system is in fact the least suitable for this test case.

Indeed, the reference time on the Joliot-Curie AMD Rome system is 3 times higher than on

JUWELS Cluster module

Concerning the two benchmarked Intel Xeon Skylake systems (JUWELS and Joliot-Curie),

JUWELS exceeds the performance of Joliot-Curie even though they have an almost identical

hardware configuration (identical memory, CPU, interconnect and nominal clock speed), these

differences can only be explained by the use of the Intel MPI library on JUWELS and

OpenMPI 4 on Joliot-Curie.

Again, the performance of GPU systems greatly exceeds the performance of x86 systems. The

simulation on a Vega node performs 36 times better than on Joliot-Curie (2 × EPYC™ 7H12)

and 6 times better compared to the JUWELS Cluster model system.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 119 30.11.2021

Figure 30: SPECFEM3D_GLOBE, speed-up on Validation Test Case: small benchmark run to test on more

complex earth

Although the results obtained on JUWELS are better than those obtained on Joliot-Curie

Skylake, the scaling trends are almost identical. The same remark applies to the Vega and

JUWELS Booster systems, but this time the Vega configuration achieves the best performance.

MARCONI100 with its four GPUs and Power9 processors achieves similar performance to

these two other systems with four NVIDIA A100 cards and two AMD Rome processors.

Figure 31: SPECFEM3D_GLOBE, parallel efficiency on Validation Test Case: small benchmark run to test

on more complex earth

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 120 30.11.2021

4.12.3.2.2 Test Case A

The tests were performed on 12, 24 and 48 nodes on Test Case A. As described in Section 2.12.2

the SPECFEM3D_GLOBE mesher and solver must be recompiled each time we change the

mesh size because the solver uses a static loop size. Not all systems are reported because some

allocations were insufficient or the software environment of some systems did not allow for a

stable compilation and execution of the software to perform all the tests. The systems compared

nevertheless allow us to highlight the efficiency of the code on very different architectures. The

following tables present the solver execution times, speed-up and parallel efficiency of different

systems. Parallel speed-up and efficiency are reported with reference to execution time on 12

nodes, except for the JUWELS Booster and Piz Daint systems where the simulation could not

be run at 12 nodes. Indeed, on some systems the test case cannot be run on fewer nodes as the

simulation requires a minimum amount of memory.

Nodes Time (s) Speed-up Parallel efficiency (%)

12 772 1.00 100

24 576 1.34 67

48 572 1.35 33
Table 141: SPECFEM3D_GLOBE, strong scaling Test Case A on Joliot-Curie Rome

Nodes Time (s) Speed-up Parallel efficiency (%)

12 737 1.00 100

24 758 0.97 48

48 732 0.63 16
Table 142: SPECFEM3D_GLOBE, strong scaling Test Case A on Hawk

Nodes Time (s) Speed-up Parallel efficiency (%)

12 1041 1.00 100

24 637 1.63 81

48 433 2.4 60
Table 143: SPECFEM3D_GLOBE, strong scaling Test Case A on JUWELS Cluster module

Nodes Time (s) Speed-up Parallel efficiency (%)

12 1083 1.00 100

24 682 1.58 79

48 467 2.32 58
Table 144: SPECFEM3D_GLOBE, strong scaling Test Case A on Joliot-Curie Skylake

Nodes Time (s) Speed-up Parallel efficiency (%)

12 42 1.00 100

24 50 0.84 42

48 19 2.2 55
Table 145: SPECFEM3D_GLOBE, strong scaling Test Case A on Vega

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 121 30.11.2021

Nodes Time (s) Speed-up Parallel efficiency (%)

12 64 1.00 100

24 43.6 1.46 73

48 N/A N/A N/A
Table 146: SPECFEM3D_GLOBE, strong scaling Test Case A on MARCONI100

Nodes Time (s) Speed-up Parallel efficiency (%)

12 N/A N/A N/A

24 25 1.00 100

48 43 1.72 86
Table 147: SPECFEM3D_GLOBE, strong scaling Test Case A on JUWELS Booster

Nodes Time (s) Speed-up Parallel efficiency (%)

12 N/A N/A N/A

24 212 1.00 100

48 109 1.94 97
Table 148: SPECFEM3D_GLOBE, strong scaling Test Case A on Piz Daint

It is difficult to define a trend for GPU systems as we have results per system, but overall, these

GPUs show good parallel efficiency (over 70%) except for Vega which has 42% parallel

efficiency on 24 nodes, but this is partly explained by the better performance on the reference

time on 12 nodes.

The Skylake systems (JUWELS Cluster module and Joliot-Curie) show good scaling up to 48

nodes with a parallel efficiency of about 60% (on 48 nodes) while the AMD Rome systems

(Joliot-Curie and Hawk) show a scaling below 67% from 24 nodes.

In order to have all the tools to compare the systems, we have drawn the strong scalability

curves (Figure 32), and the speed-up (Figure 33) and parallel efficiency results (Figure 34).

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 122 30.11.2021

Figure 32: SPECFEM3D_GLOBE, strong scaling on Test Case A

Figure 32 highlights again the performance gain on accelerated systems (runtime is 17 times

higher on 12 Vega nodes than on 12 Hawk nodes, 25 times higher than on 12 Joliot-Curie

Skylake nodes). Piz Daint contains one GPU per node; the performance obtained on this system

compared to other systems with four GPUs per node is consistent (in terms of proportionality).

The execution time of the solver remains much lower compared to systems with only x86

processors. The AMD EPYC™ systems perform better than Skylake systems when the problem

size is suited to the number of resources, but as soon as the problem becomes too small for the

node, performance stalls. The JUWELS and Joliot-Curie Skylake systems achieve similar

parallel performance, speed-up and parallel efficiency with again a slight lead for the JUWELS

Cluster module system.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 123 30.11.2021

Figure 33: SPECFEM3D_GLOBE, speed-up on Test Case A

Figure 34: SPECFEM3D_GLOBE, parallel efficiency on Test Case A

4.12.3.3 Energy Consumption Comparison

In this section, we present the energy consumed by the execution of the Validation Test Case

and Test Case A of SPECFEM3D_GLOBE on the Tier-0 systems. In each case, the total energy

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 124 30.11.2021

for the execution of the task on the system is given from the workload accounting logs using

the 'sacct' command or similar. This energy measure includes contributions from both node

energy and switch energy.

Due to the fact that this measure is considered by many to be inaccurate (although it is the only

one present on most systems), some systems do not provide this energy measure. We therefore

only present results for Joliot-Curie KNL, Joliot-Curie-Rome, Joliot-Curie Skylake, Piz Daint,

SuperMUC-NG, MareNostrum4 and Vega. For Test Case B, we only report the values for

MareNostrum4 and Joliot-Curie-Rome, the other systems returning outliers.

Figure 35: SPECFEM3D_GLOBE, energy consumption for the Validation Test Case

PRACE Tier-0 Solver (s) Energy (kJ)

x86

platform

Joliot-Curie EPYC™ 7H12 576 2978

Joliot-Curie KNL 7250 1662 1918

Joliot-Curie Skylake 8168 682 1479

MareNostrum4 Skylake 8160 751 2412

SuperMUC-NG Skylake 8174 671 850

GPU

platform

Piz Daint Broadwell E5-2695 v4 +

NVIDIA P100 212

419

Table 149: SPECFEM3D_GLOBE, energy consumption and solver time for the Validation Test Case

Figure 35 is not very representative for the consumption of a real SPECFEM3D_GLOBE

calculation since this test case was designed to run on 24 cores, and to validate the functioning

of the software relatively quickly. Nevertheless, we observe that MareMostrum4 is already

more power hungry than the Skylake partition of Joliot-Curie while MareNostrum4 is clocked

at 2.1 GHz against 2.7 GHz for Joliot-Curie Skylake. We also notice that the simulation on the

AMD Rome partition of Joliot-Curie consumed more energy than on the other platforms while

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 125 30.11.2021

the calculation took the least time. The high power consumption of the KNL, which is only

clocked at 1.4 GHz, is explained by the long simulation time on the architecture.

Figure 36: SPECFEM3D_GLOBE, energy consumption for Test Case A

PRACE Tier-0 Solver (s)
Energy

(kJ)

x86 platforms

Joliot-Curie EPYC™ 7H12 576 9818

Joliot-Curie KNL 7250 1662 21869

Joliot-Curie Skylake 8168 682 9363

MareNostrum4 Skylake 8160 751 17088

SuperMUC-NG Skylake 8174 671 7479

GPU platforms
Piz Daint Broadwell E5-2695 v4 + NVIDIA P100 212 3280

Vega 2 × EPYC™ 7H12 + 4 × NVIDIA A100 49 11396
Table 150: SPECFEM3D_GLOBE, energy consumption and solver time for Test Case A

Figure 36 and Table 150 above confirm part of the trend of the Validation Test Case, namely

that MareNostrum4 is even more energy consuming than its Joliot-Curie Skylake counterpart.

Joliot-Curie KNL is this time the most energy consuming but is also the simulation that took

the longest time (about 3 times longer than on the other x86 platforms). For Test Case A,

SuperMUC-NG is still the most energy-efficient x86-only system. Piz Daint with its single

GPU still achieves the best result in terms of energy consumption. As for Vega with its 4 GPUs,

its energy consumption remains consistent in terms of proportion compared to Piz Daint and its

energy consumption is relatively moderate compared to the CPU-only system. This

performance can be explained by the fact that the simulation times are much shorter than for

CPU-only systems.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 126 30.11.2021

Figure 37: SPECFEM3D_GLOBE, energy consumption for Test Case B

PRACE Tier-0 Solver (s) Energy (kJ)

x86 platforms
Joliot-Curie EPYC™ 7H12 137 31294

MareNostrum4 Skylake 8160 162 32520
Table 151: SPECFEM3D_GLOBE, energy consumption and solver time for Test Case B

Figure 35, Figure 36 and Figure 37 show that the energy performance of

SPECFEM3D_GLOBE simulations on AMD Rome processors depends on the workload given

to the processors, but that when using many AMD Rome nodes, the energy consumption

remains in the same order of magnitude as on Skylake architectures.

To conclude, Piz Daint obtains the best energy results of all the systems combined,

SuperMUC-NG seems to be the architecture using Skylake processors with the best energy

performance; and finally, the AMD system obtains correct performances but depends on the

good distribution of the workload which is difficult to find on these systems.

The comparison of energy performance between current Tier-0 architectures is not very

meaningful since for the SPECFEM3D_GLOBE test cases we use a constant number of nodes

for each test case. AMD EPYC systems have more cores per node and are therefore more power

hungry. Systems with graphics cards are supposed to consume more power because in addition

to powering the CPUs the GPUs need to be powered, but some systems (Piz Daint) make up

for this over-consumption because the execution times are much lower.

Another problem for the energy comparison is that the sacct command is not very reliable,

sometimes it returns nonsense values; and finally, some Tier-0s do not disclose the energy

information, which makes the exhaustive energy comparison impossible.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 127 30.11.2021

4.12.4 Conclusions

The SPECFEM3D_GLOBE code exploits the parallelism of the GPUs very well and the

performance of these systems in terms of solution time is far ahead of the performance of CPU-

only systems, which has a positive impact on the energy performance of the systems. Systems

with four GPUs per node have performances of the same order (a few tens of seconds of runtime

against several hundred for x86 platforms only) but which slightly differ (from simple to double

for the runtime) depending on the configuration of the simulations.

The four Skylake systems have similar performance given their difference in CPU frequency

and interconnect, with JUWELS being slightly faster (see Table 132 and Table 133).

The code fails to perform well on the KNL architecture, with times two to three times longer

than on other x86 platforms without GPUs. Several OpenMP threading configurations have

been tested without satisfactory results.

The SPECFEM3D_GLOBE code struggles to get performance out of AMD Rome processors,

when the problem size is adapted to the number of resources the code achieves good

performance, but as soon as the problem becomes too small for the node, the performance stalls.

So, there is some work to do to adapt the simulation configuration of SPECFEM3D_GLOBE

to these AMD Rome with 128 cores per node.

The MPI parallelisation is a bit disappointing for this code, we quickly drop below 70% parallel

efficiency when we increase the amount of computing resources (from 4 to 8 nodes). The code

requires a good configuration of the computing resources used (task placement, number of

OpenMP threads, compiler and MPI libraries used) and a preliminary study to determine the

optimal configuration (number of cores and memory per MPI process) on a given system.

The architectures are still evolving and currently are very heterogeneous; some have 4 GPUs

per node, the number of cores per node varies between 12 and 128 cores. Comparing systems

when there are so many variables becomes complicated. Anyway, it is still a good code for

benchmarking HPC systems, as its code can and does adapt to a wide range of architectures,

including CPU-only, GPU-only and even new generation AMD processors. It has a lot of MPI

communication and can require a lot of memory depending on the configuration of the test

cases.

4.13 TensorFlow

We carried out the TensorFlow benchmark with Test Case A, since it is small enough to train

on both CPUs and GPUs. While TensorFlow and other deep learning frameworks are known to

be GPU oriented, we still carry out the benchmark on both CPU and GPU systems. This is

because in some cases, the training data and/or model can be too large to fit into the GPU

memory, hence doing deep learning on CPU becomes a viable option.

The benchmark is carried out on Hawk, SuperMUC-NG, and Lisa (SURF). The command to

run all benchmark is:

export OMP_NUM_THREADS=<number_of_cores_per_sockets>

 HOROVOD_FUSION_THRESHOLD=134217728 \

 mpirun --np <number_of_mpi_workers> \

 --map-by ppr:1:socket:pe=$OMP_NUM_THREADS \

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 128 30.11.2021

 --report-bindings \

 --oversubscribe \

 -x LD_LIBRARY_PATH \

 -x HOROVOD_FUSION_THRESHOLD \

 -x OMP_NUM_THREADS=$OMP_NUM_THREADS \

 python dg_train.py -f output_bw_512.hdf5 --num-camera 3 --arch EfficientNetB4 \

--epochs 5 --batch-size <batch_size>

The placeholders <number_of_cores_per_sockets> and

<number_of_mpi_workers> should be replaced by the number of CPU cores in a CPU

socket and the number of copies of the neural network is trained in parallel. For example, if a

simulation is running on 4 nodes, each of which with two CPU sockets, and each CPU has 64

cores, then number_of_cores_per_sockets = 64 and <number_of_mpi_workers> = 8

(4 nodes, 2 MPI workers per node). The <batch_size> parameter is specific to machine

learning rather than HPC, but users should choose a proper batch size to make sure that the

hardware resources are fully utilised but not overloaded.

This configuration results in the following MPI-OpenMP binding:

[BB/BB][../..] Host #1, socket #1

[../..][BB/BB] Host #1, socket #2

[BB/BB][../..] Host #2, socket #1

[../..][BB/BB] Host #2, socket #2

……

[BB/BB][../..] Host #n, socket #1

[../..][BB/BB] Host #n, socket #2

In the diagram above, each “[]” indicates a CPU socket, and each core is wrapper with “/”. The

“BB” inside a “/BB/” indicates that the CPU supports hyperthreading. This mapping shows that

an MPI process is pinned to a CPU socket, on which all cores are fully utilised (parallelised by

OpenMP).

Working in a data parallel manner, the gradients calculated by each worker have to be

communicated periodically so that the model can be updated collectively. In an ideal system

without communication overhead, the processors are fully occupied by the computation of

gradients and reduction of gradients from other processors, spending no time waiting for the

gradients to be transferred. In reality, communication overhead does exist (depends on the type

of communications such as point-to-point or global, the network topology, and the data

placement therein), so the processors will have to spend time in the synchronization barriers,

which subsequently lowers the scaling efficiency. Therefore, by plotting the scaling efficiency

as a function of the number of processors (or compute nodes), one can obtain insights into the

communication overheads of the underlying system.

The behaviour of a TensorFlow multi-node training can be understood from the following

timeline. The training starts at t = 0 s, followed immediately by the initialisations of software

libraries and hardware. Before the first epoch starts, each worker reads the corresponding part

of the compressed training dataset. For instance, if the training is parallelised on 4 MPI workers,

then worker #1 reads the first quarter of the dataset and decompresses in its memory, worker

#2 reads the second quarter of the dataset and also does the same decompression, and so on.

The dataset is balanced, i.e. each class contains the same amount of training samples, and each

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 129 30.11.2021

worker will read the same amount of training data. This makes sure that the scaling is not

hampered by an imbalanced data distribution scenario where all other workers are waiting for

the last one to finish the data load and gradients calculation. By the time all training data are in

place, epoch 1 starts, but between its completion and the starting of epoch 2, there is a

significant gap due to the initialisation effect (TensorFlow and Horovod are allocating all kinds

of tensors to facilitate the exchange of gradients. The gap is narrowed between epoch 2 and 3,

and following the third epoch the gap becomes sufficiently small. By this time, the training is

stabilised. The 5 blocks of operations in Figure 38 corresponds to the 5 epochs of a test run.

Figure 38: The Horovod timeline showing how the neural network gradients from different nodes are

communicated and reduced. This figure only contains information about the communication between

nodes; the actual computation time spent on individual nodes is not shown.

If we zoom-in to each epoch block, it looks like Figure 39. The NEGOTIATE_ALLREDUCE

bar represents a phase when all workers send to rank 0 the signal that they are ready to reduce

the given tensor (rank 0 is in charge of the general coordination among all workers). The

ALL_REDUCE bars correspond to the actual phase when the hardware (CPUs or GPUs) is

performing the reduction. There is also memory transfer of tensors, shown by the bars

MEMCPY_IN_FUSION_BUFFER and MEMCPY_OUT_FUSION_BUFFER. The empty part of

the timeline is the computational time on individual processors. Ideally, the overhead in

NEGOTIATE_ALLREDUCE, MEMCPY_IN and MEMCPY_OUT should be minimised, which

means that the time is mostly spent on the calculation on each processor. In practice, however,

data transfer between processors also takes a significant amount of time, and this part depends

on the size of gradient tensors to communicate.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 130 30.11.2021

Figure 39: A zoom-in view of Figure 38 showing the communication between nodes in microsecond

timescales.

In DeepGalaxy, the throughput is calculated with a timing call back. The timing starts

immediately before an epoch starts, and stops immediately after an epoch finishes. That is, the

preloading time is excluding in this timing, but communication overheads are included in this

timing, and therefore it will affect the throughput. An example output looks like this:

[Performance] Epoch 0 takes 403.65 seconds. Throughput: 0.31 images/sec (per worker), 2.52 images/sec (total)

[Performance] Epoch 1 takes 328.76 seconds. Throughput: 0.39 images/sec (per worker), 3.09 images/sec (total)

[Performance] Epoch 2 takes 316.82 seconds. Throughput: 0.40 images/sec (per worker), 3.21 images/sec (total)

[Performance] Epoch 3 takes 319.10 seconds. Throughput: 0.40 images/sec (per worker), 3.18 images/sec (total)

[Performance] Epoch 4 takes 318.56 seconds. Throughput: 0.40 images/sec (per worker), 3.19 images/sec (total)

As mentioned, the gaps between epochs 1–2 and epochs 2–3 are substantial, which are also

observed in the output of the timing call back in DeepGalaxy: the throughput is initially low,

and eventually stabilised as of epoch 3. Therefore, a reliable and stable throughput is obtained

by averaging the per-epoch throughput values from epoch 3 to the end of the training.

4.13.1 Performance on Hawk

Hawk is a CPU-based supercomputer, and therefore we carry out the benchmark using

TensorFlow-CPU. Each node is equipped with 2 × AMD EPYC 7742 (Rome) processors, and

each processor has 64 cores. For deep learning related tasks, the AVX2 instruction set is

particularly useful in speeding up the tensor calculations. The CPU version of TensorFlow is

compiled to take advantage of the AVX2 instruction set.

We pin each MPI worker to a CPU socket, which means that a worker should make full use of

the 64 cores. Since hyperthreading is supported on each core, we set OMP_NUM_THREADS =

128 to make full utilisation of the processing power of the CPUs. We then alter the number of

MPI workers (Np). When Np > 2, inter-node communication is needed, and the speed of the

interconnect among the compute nodes is reflected in the scaling efficiency.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 131 30.11.2021

As shown in Figure 40,TensorFlow scales nicely on Hawk, thanks to its 200 Gbps InfiniBand

HDR connectivity. The scaling is almost linear for Np <= 64. Also, thanks to its new 64-core

AMD EPYC 7742 CPUs, the throughput per MPI worker is decent.

Figure 40: The scaling efficiency of TensorFlow on Hawk, annotated by blue numbers in the figure. The

dashed line indicates a perfectly linear scaling where the speed-up factor (S) grows as a function of the

number of MPI workers (Np), and the black thick curve indicates the actual speed-up factor. The green

curve is the throughput of the system as a whole (in the units of images per second).

We have inspected the CPU load on the compute node, and found that in general the CPUs

cannot be 100% utilised. As shown below, the CPU is loaded at a capacity of 2/3. We have

explored increasing the number of MPI ranks, but that doesn’t make the CPU usage higher.

Alternating the batch size can affect the CPU utilisation, since a larger batch size makes the

TensorFlow more computationally bound than communication bound. However, if the batch

size is too large, the workload becomes more memory bound, and when the local memory

bandwidth becomes a bottleneck, the CPU utilisation is hampered as well. We found that a local

batch size of 16 gives an optimal performance.

top - 16:52:29 up 2 days, 18:37, 1 user, load average: 97.81, 24.86, 18.52

Tasks: 2795 total, 1 running, 2794 sleeping, 0 stopped, 0 zombie

%Cpu(s): 64.6 us, 1.8 sy, 0.0 ni, 32.8 id, 0.0 wa, 0.6 hi, 0.2 si, 0.0 st

MiB Mem : 257303.9 total, 219708.4 free, 35957.4 used, 1638.1 buff/cache

MiB Swap: 0.0 total, 0.0 free, 0.0 used. 219704.1 avail Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 371112 iprmacai 20 0 32.3g 14.7g 185992 S 8382 5.9 45:03.86 python

 371113 iprmacai 20 0 32.3g 14.7g 186096 S 8372 5.8 45:18.13 python

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 132 30.11.2021

4.13.2 Performance on SuperMUC-NG

SuperMUC-NG is an Intel Skylake powered supercomputer, and therefore the TensorFlow

benchmark is carried out on the CPUs. With the Intel Skylake architecture, advanced instruction

sets such as AVX2 and AVX512 are available to speed-up the calculation of linear algebra

operations in deep learning. The TensorFlow-CPU binary is compiled with these instruction

sets enabled. TensorFlow makes use of oneAPI (formally known as MKL-DNN) as the low-

level optimisation library.

Each SuperMUC-NG node has 2 × Xeon Platinum 8174 CPUs, each of which has 24 cores and

supports hyperthreading to 48 threads in parallel. As such, we set OMP_NUM_THREADS to

48 to make full utilisation of the CPU computing power. Each MPI worker is pinned to a CPU

socket. Within a CPU socket, there is no communication needed between OpenMP threads, but

the gradients are communicated via MPI across CPU sockets and across compute nodes.

The scaling performance is shown in Figure 41. For the scenario of Np <=64, the scaling is

nearly linear, but this decays with larger Np. Also, with fewer CPU cores and an older CPU

architecture, the throughput of the system is less efficient. With 256 workers (6,144 cores,

12,288 OpenMP threads) the system can deliver about 380 images per second.

Figure 41: The scaling efficiency of TensorFlow on SuperMUC-NG, annotated by blue numbers in the

figure. The dashed line indicates a perfectly linear scaling where the speed-up factor (S) grows as a function

of the number of MPI workers (Np), and the black thick curve indicates the actual speed-up factor. The

green curve is the throughput of the system as a whole (in the units of images per second).

4.13.3 Performance on Lisa

Lisa is a high-performance compute cluster (located at SURF) with consumer-class GPUs. It

has a GPU partition, in which each node is equipped with 4 × NVIDIA Titan RTX GPU (24 GB

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 133 30.11.2021

GPU memory). To understand the effectiveness of GPUs for a deep learning workload, we

carry out a TensorFlow-GPU benchmark on this cluster. TensorFlow invokes the linear algebra

primitives with cuDNN, which is in turn accelerated with CUDA.

Figure 42 shows the scaling and throughput performance. Lisa is not originally designed for

scaling, so the scaling performance beyond 4 nodes (16 workers) starts to decay. However, its

throughput is excellent: a single GPU card delivers about 10× the performance of a CPU socket.

This test demonstrates that GPUs are indeed a better architecture for deep learning workloads.

Figure 42: The scaling efficiency of TensorFlow on Lisa, annotated by blue numbers in the figure. The

dashed line indicates a perfectly linear scaling where the speed-up factor (S) grows as a function of the

number of MPI workers (Np), and the black thick curve indicates the actual speed-up factor. The green

curve is the throughput of the system as a whole (in the units of images per second).

5 Conclusions

The whole purpose of benchmarking is providing a metric for comparing systems. Clearly, one

single (application) benchmark will not provide the answer to what the fastest/most efficient or

most energy efficient system is. For this we will combine the previous results and derive a

comparison of the overall performance of the systems. We will also derive a comparison of the

energy efficiency for the few systems where we obtained energy measurements.

If you want to select the optimal system/architecture for a given application, please have a look

at the corresponding Section 4 subsection where we present performance and energy efficiency

results, analyses, and conclusions per application.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 134 30.11.2021

5.1 Performance Comparison of all Benchmark Systems

5.1.1 LINPACK Performance

To set a baseline, we provide the TOP500/HPL performance of the current PRACE Tier-0

systems in Table 152. In the last two columns, we provide the HPL performance per core (for

GPUs we consider the SM units as cores), and a relative core performance (normalised using

the maximum value). Although there is a lot to argue about the relevance of HPL for real

applications performance, it still can be used as a starting point in comparing system

performance. (It is relevant for dense linear algebra and other codes that can efficiently use

AVX/SIMD instructions.) The ranking is more-or-less as expected, from highest to lowest: the

NVIDIA A100 system (JUWELS-Booster), the highest clocked Skylake system (SuperMUC-

NG), the NVIDIA V100 (MARCONI100) and P100 (Piz Daint) systems, the Skylake systems,

the Rome systems and the Knights Landing system last. The Skylake systems’ order correlates

with their clock speed. The same is true for the two Rome systems. The lowest clocked KNL

system still is close to the Rome systems since it can – like Skylake – perform AVX512

instructions, whereas Rome is limited to AVX256 instructions.

PRACE Tier-0

system

Rpeak

(Pflop/s)

Rmax

(Pflop/s)
 Cores

Rmax per core

(Gflop/s/core)

Relative core

performance

JUWELS-Booster 70.980 44.120 449,280 98.20 1.00

SuperMUC-NG 26.874 19.477 305,856 63.68 0.65

MARCONI100 29.354 21.640 347,776 62.22 0.63

Piz Daint 27.154 21.230 387,872 54.73 0.56

JUWELS-Cluster 9.891 6.178 114,480 53.96 0.55

Irene-SKL 6.636 4.066 79,488 51.15 0.52

MareNostrum4 10.296 6.471 153,216 42.23 0.43

Irene-Rome 12.039 6.988 197,120 35.45 0.36

Hawk 25.160 19.334 698,880 27.66 0.28

Irene-KNL 2.340 1.311 56,304 23.29 0.24
Table 152: TOP500 performance of PRACE Tier-0 systems

5.1.2 Application Performance

In Section 4 we provided a plethora of benchmark results, i.e. for many application benchmark

/ dataset / problem size – system combinations. If you are a PRACE user and are interested in

running one of the UEABS applications, you are advised to study the relevant subsection. On

the other hand, we want to provide some insight in the relative application performance of the

benchmark systems presented in Section 3 and the additional systems that have been used in

Section 4 for some of the applications. For this reason, we took a similar approach as in

Section 5.1.1 and used selected performance results from the benchmark results in Section 4. If

performance was determined as time to solution, we took the inverse value and divided this by

the number of cores. If performance already was determined as some speed, we also divided

this by the number of cores. Thus, we obtained an abstract speed metric per core. Subsequently,

we normalised these values per application-test case combination by dividing all values by the

highest abstract speed per core metric. This results in a relative application speed per core.

Finally, we colour coded the relative speed per core: green for relative speed 1 (highest) and

red for the lowest; and sorted the columns on their average speed. The results are presented in

Table 153.

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 135 30.11.2021

Application

T
es

t
C

a
se

P
iz

 D
a

in
t

C
P

U

M
A

R
C

O
N

I1
0

0
 C

P
U

J
U

W
E

L
S

 C
lu

st
er

Ir
e
n

e-
S

K
L

S
u

p
er

M
U

C
-N

G

M
a

re
N

o
st

ru
m

4

H
a

w
k

Ir
e
n

e-
R

o
m

e

L
is

a

P
iz

 D
a

in
t

J
U

W
E

L
S

 B
o

o
st

er

H
P

C
 V

eg
a

M
A

R
C

O
N

I1
0

0

Ir
e
n

e-
K

N
L

Alya
A 0.95 0.84 1.00 0.74 0.75 0.69 0.24 0.17

B 1.00 0.66 0.97 0.81 0.73 0.72 0.57 0.26

Code_Saturne

A 0.88 0.73 1.00 0.70 0.54 0.57

B 0.75 0.58 1.00 0.42 0.75 0.41

C 0.69 0.53 0.99 1.00 0.84

D 1.00 0.80 0.90 0.68

CP2K

A 1.00 0.49 0.51 0.44 0.62 0.44 0.19 0.03

B 0.37 0.31 0.42 0.80 1.00 0.85 0.05 0.04

C 1.00 0.56 0.76 0.73 0.70 0.47 0.17 0.14

GADGET A 0.72 1.00

GPAW

S 1.00 0.89 0.77 1.00 0.78

M 1.00 0.87 0.81 0.72 0.79

L 1.00 0.93 0.44 0.55 0.66

GROMACS

A 0.64 1.00 0.79 0.73 0.62 0.38 0.20

B 0.98 1.00 0.76 0.44 0.25 0.52 0.14

C 0.82 0.95 0.83 1.00 0.88 0.36 0.24

NAMD

A 0.33 0.23 0.66 0.42 0.42 1.00 0.11

B 0.35 0.41 0.60 0.69 0.58 1.00 0.16

C 1.00 0.41 0.71 0.70 0.65 0.73 0.79

NEMO

AaX 0.93 0.94 0.77 0.72 0.74 1.00 0.65

AdX 1.00 0.71 0.79 0.50 0.84 0.84 0.80

Aa 1.00 0.85 0.72 0.65 0.87 0.81 0.62

Ad 1.00 0.70 0.97 0.37 0.82 0.82 0.78

BaX 0.35 0.09 0.50 0.36 0.36 1.00 0.56

BdX 0.56 0.16 0.93 0.69 0.69 0.69 1.00

Ba 0.67 1.00 0.49 0.68 0.83 0.65 0.43

Bd 0.29 0.44 1.00 0.50 0.52 0.52 0.87

PFARM

1a 0.93 0.88 1.00 0.87 0.24 0.25 0.26 0.17

1b 0.89 0.84 1.00 0.84 0.20 0.24 0.20 0.18

1c 1.00 0.93 0.89 0.82 0.23 0.28 0.40 0.13

1d 0.77 0.72 1.00 0.80 0.21 0.24 0.18 0.09

QCD

1 0.59 1.00 0.47 0.84 0.13 0.36 0.39 0.29

2v1 0.59 0.47 0.63 0.47 1.00 0.19 0.42 0.02

2v2 0.27 0.31 0.36 0.33 0.30 0.39 1.00 0.16

Quantum

Espresso

M 1.00 0.46 0.50 0.69 0.06

L 0.77 0.73 1.00

SPECFEM3D

V 0.32 0.16 0.24 0.20 0.04 0.04 1.00 0.27 0.31 0.47 0.06

A 0.39 0.37 0.37 0.33 0.12 0.16 0.83 1.00 0.43 0.74 0.11

B 0.79 1.00 0.68 0.62 0.25 0.28

TensorFlow A 1.00 0.48 0.54

Table 153: Selected relative speed per core per application-dataset combination

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 136 30.11.2021

Clearly, NEMO Test Cases BaX and BdX (B, attached and detached, including XIOS time) on

JUWELS Cluster are outliers. For this reason, these values have not been taken into account

while sorting the columns.

Looking at the green colours – and as expected – no single system gives the best results on all

the benchmarks. It is therefore important for users to choose the best system for a given

application in order to maximise the scientific output for a given amount of compute resources.

Not all applications are suitable for running efficiently on GPUs. If so, the most recent GPUs

in JUWELS Booster perform best. For non-accelerated codes, the fastest Skylake systems are

attractive, but depending on the application characteristics also Rome systems can perform best.

The least performant is the KNL system but that is no problem since Intel discontinued the

Xeon Phi line. Please note that the previous comparison is based on core performance (or SM

unit performance in the case of GPUs). A per node comparison or including power envelopes

(see Section 5.2.2 below) will shift the picture: some system designs chose lower frequency

SKUs to optimize for energy efficiency rather than single core performance, or chose a faster

interconnect for application performance; Intel Skylake has AVX512 whereas AMD Rome has

AVX256; an AMD Rome CPU has much more cores than an Intel Skylake CPU. These design

approaches can lead to similar performance-per-cost ratios.

5.2 Energy Efficiency

5.2.1 LINPACK Energy Efficiency

To set a baseline, we provide the Green500/HPL energy efficiency – if listed – of the current

PRACE Tier-0 systems in Table 154. In the last column we provide the relative energy

efficiency (normalised using the maximum value). The ranking is as expected. The GPU-based

systems score best ranked from most recent architecture to least recent architecture (NVIDIA

A100, V100, and P100, respectively). Next are the AMD Rome systems the lowest clocked

SKUs first. The Skylake are last and ordered from highest clock frequency to lowest.

PRACE Tier-0

system

Rmax

(Pflop/s)

Power

(kW)

Power Efficiency

(Gflop/J)

Relative power

efficiency

JUWELS-Booster 44.120 1764 25,008 1.00

MARCONI100 21.640 1476 14,661 0.59

Piz Daint 21.230 2384 8,904 0.36

Hawk 19.334 3906 4,950 0.20

Irene-Rome 6.988 1436 4,866 0.19

JUWELS-Cluster 6.178 1361 4,539 0.18

Irene-SKL 4.066 917 4,434 0.18

MareNostrum4 6.471 1632 3,965 0.16

Table 154: Green500 energy efficiency of PRACE Tier-0 systems

5.2.2 Energy to Solution

In Table 155 we selected energy to solution measurements from Section 4 with (application,

test case, size)-combinations having the largest system coverage but having at least

measurements on two different systems. We normalised using the minimum energy for a given

application-test case. Higher values mean higher energy to solution. We also added colouring

D7.4 Evaluation of Benchmark Performance

PRACE-6IP- INFRAEDI-823767 137 30.11.2021

green (for the baseline, 1) – red (for the highest value). Clearly, NEMO Test Case AdX (A,

detached, including XIOS time) on Irene-SKL is an outlier.

Application
Test

Case
Size

Ir
en

e-
R

o
m

e

Ir
en

e-
S

K
L

M
A

R
C

O
N

I1
0
0

M
a
re

N
o
st

ru
m

4

S
u

p
er

M
U

C
-N

G

P
iz

 D
a
in

t
G

P
U

P
iz

 D
a
in

t
C

P
U

Code_Saturne

A 16 nodes 1.00 1.19 1.77

B 128 nodes 1.64 1.00 1.65

C 128 nodes 1.00 1.37

CP2K

A 32 nodes 1.36 2.20 1.00 1.24 1.22

B 128 nodes 1.09 1.97 1.00 1.96 1.62

C 128 nodes 1.51 2.22 1.26 1.00 1.48

GROMACS

A 16 nodes 1.26 1.00

B 64 nodes 1.93 1.00

C 128 nodes 1.22 1.33 1.00

NAMD

A 64 nodes 6.91 1.00

B 128 nodes 3.04 4.29 1.00

C 256 nodes 3.78 4.24 1.00

NEMO

AaX 1024 cores 1.00 1.96 2.18

AdX 1024 cores 1.00 8.92 8.10

BaX 10240 cores 1.00 1.68 9.58

BdX 10240 cores 1.00 2.26 10.21

PFARM

1a 16 nodes 3.07 2.90 1.00 4.46

1b 128 nodes 2.71 2.34 1.00 3.89

1c 16 nodes 1.89 1.88 1.00 3.23

1d 256 nodes 1.50 1.47 1.00 2.18
Table 155: Selected relative energy to solution measurements

There is not sufficient data to justify general conclusions. There are only two GPU-based

systems in this table. PFARM is the only application for which MARCONI100 energy to

solution results have been produced. Here, MARCONI100 is the clear winner. For other GPU

enabled codes, Piz Daint is the clear winner. This is completely in line with the results in Table

154. From the CPU-based systems, Irene-Rome is the most energy efficient for Code_Saturne

and NEMO followed by SuperMUC-NG for CP2K. Unfortunately, we cannot relate these

results to Green500 results, since they are not available for SuperMUC-NG.

