

E-Infrastructures

H2020- INFRAEDI-2018-2020

INFRAEDI-01-2018: Pan-European High Performance Computing

infrastructure and services (PRACE)

PRACE-6IP

PRACE Sixth Implementation Phase Project

Grant Agreement Number: INFRAEDI-823767

D8.5

Final report: Including performance results on (pre)Exascale

systems

Final

Version: 0.7

Author(s): Alex Upton, ETH Zürich

 Joost VandeVondele, ETH Zürich

 Fabio Affinito, CINECA

Date: 30.06.2022

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 i 30.06.2022

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: INFRAEDI-823767

Project Title: PRACE Sixth Implementation Phase Project

Project Web Site: https://www.prace-ri.eu/about/ip-projects/

Deliverable ID: D8.5

Deliverable Nature: Report

Dissemination Level:

PU*

Contractual Date of Delivery:

30/06/2022

Actual Date of Delivery:

30/06/2022

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for members of the

consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision

2005/444/EC.

Document Control Sheet

Document

Title: Final report: Including performance results on (pre)Exascale

systems

ID: D8.5

Version: 0.7 Status: Final

Available at: https://www.prace-ri.eu/about/ip-projects/

Software Tool: Microsoft Word 2016

File(s): D8.5_v0.7_final.docx

Authorship

Written by: Alex Upton, ETHZ

Joost VandeVondele, ETHZ

Fabio Affinito, CINECA

https://www.prace-ri.eu/about/ip-projects/
https://www.prace-ip.eu/about/ip-projects/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 ii 30.06.2022

Contributors: Fabio Affinito, CINECA

Momme Allalen, LRZ

Simone Bacchio, CaSToRC

Vicenç Beltran, BSC

Marco Bettiol, ETH Zürich

Mauro Bianco, ETH Zürich

John Biddiscombe, ETH Zürich

Ricard Borrell, BSC

Fabian Bösch, ETH Zürich

David Brayford, LRZ

John Brennan, ICHEC

Dirk Brömmel, JUELICH

Tomáš Brzobohatý, IT4I

Mark Bull, EPCC

Zahra Chitgar, JUELICH

Laurent Chôné, CSC

Olivier Coulaud, CENAERO

Tilman Dannert, MPCDF

Edoardo Di Napoli, JUELICH

Myles Doyle, ICHEC

Jacob Finkenrath, CaSToRC

Christophe Geuzaine, ULIEGE

Paul Gibbon, JUELICH

Luc Giraud, INRIA

Aleksander Grm, UL

Kenneth Hanley, ICHEC

Berk Hess, KTH

Koen Hillewaert, ULIEGE

Victor Holanda, ETH Zürich

Guillaume Houzeaux, BSC

Luigi Iapichino, LRZ

Alberto Invernizzi, ETH Zürich

Niclas Jansson, KTH

Joe Jordan, KTH

Prashanth Kanduri, ETH Zürich

Sebastian Keller, ETH Zürich

Leon Kos, UL

Marcin Krotkiewski, UiO

Chiara Latini, CINECA

Carlos Lopez, MPCDF

Martti Louhivuori, CSC

Georgi-os Markomanolis, CSC

Michele Martone, LRZ

Michal Merta, IT4I

Teodor Nikolov, ETH Zürich

Henrik Nortamo, CSC

Lee O'Riordan, ICHEC

Adam Peplinski, KTH

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 iii 30.06.2022

Janes Povh, UL

Lara Querciagrossa, CINECA

Michel Rasquin, CENAERO

Cristóbal Samaniego, BSC

Mikael Simberg, ETH Zürich

Matthieu Si-monin, INRIA

Ujjwal Sinha, JUELICH

Raffaele Solcà, ETH Zürich

Thomas Toulorge, CENAERO

Alex Upton, ETH Zürich

Joost VandeVondele, ETH Zürich

Ivona Vasileska, UL

Radim Vavřík, IT4I

Jonathan Vincent, KTH

Xinzhe Wu, JUELICH

Shuhei Yamamoto, CaSToRC

Artem Zhmurov, KTH

Reviewed by: Thomas Eickermann, JUELICH

Pedro Alberto, UCoimbra

Approved by: MT/TB

Document Status Sheet

Version Date Status Comments

0.1 04.10.2021 1st Draft 1st version with input

from all projects

0.2 19.10.2021 2nd Draft 2nd version following

internal review

0.3 25.10.2021 3rd Draft Final ‘pre-submission’

version following

internal review, will be

updated with annexes in

May 2022

0.4 10.06.2022 4th Draft Updated version with

annex following WP8

extension

0.5 21.06.2022 5th Draft Updated version

following internal review

0.6 22.06.2022 6th Draft Updated version

0.7 30.06.2022 7th Draft Final version for EC

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 iv 30.06.2022

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Exascale, Forward-looking

software solutions

Disclaimer

This deliverable has been prepared by the responsible work package of the project in accordance

with the Consortium Agreement and the Grant Agreement n° INFRAEDI-823767. It solely reflects

the opinion of the parties to such agreements on a collective basis in the context of the project and

to the extent foreseen in such agreements. Please note that even though all participants to the project

are members of PRACE aisbl, this deliverable has not been approved by the Council of PRACE

aisbl and therefore does not emanate from it nor should it be considered to reflect PRACE aisbl’s

individual opinion.

Copyright notices

 2022 PRACE Consortium Partners. All rights reserved. This document is a project document of

the PRACE project. All contents are reserved by default and may not be disclosed to third parties

without the written consent of the PRACE partners, except as mandated by the European

Commission contract EINFRA-730913 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are

acknowledged as owned by the respective holders.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 v 30.06.2022

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet ... i

Document Status Sheet .. iii

Document Keywords ... iv

List of Figures .. vii

List of Tables .. xi

References and Applicable Documents ... xii

List of Acronyms and Abbreviations .. xv

List of Project Partner Acronyms .. xvii

Executive Summary ... 1

1 Introduction ... 2

2 Compatibility of PRACE-6IP WP8 projects on leading European HPC systems 3

3 PiCKeX: Particle Kinetic codes for Exascale plasma simulation 7

3.1 Introduction and summary ... 7

3.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 8

3.3 Interactions with stakeholders, users, outreach and publications 12

3.4 Overall assessment of achievements and future developments 13

4 MoPHA: Modernisation of Plasma Physics Simulation Codes for Heterogeneous

Exascale Architectures ... 14

4.1 Introduction and summary ... 14

4.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 15

4.3 Interactions with stakeholders, users, outreach and publications 24

4.4 Overall assessment of achievements and future developments 25

5 LoSync: Synchronisation reducing programming techniques and runtime support 27

5.1 Introduction and summary ... 27

5.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 28

5.3 Interactions with stakeholders, users, outreach and publications 32

5.4 Overall assessment of achievements and future developments 33

6 FEM/BEM based domain decomposition solvers .. 35

6.1 Introduction and summary ... 35

6.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 36

6.3 Interactions with stakeholders, users, outreach and publications 39

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 vi 30.06.2022

6.4 Overall assessment of achievements and future developments 40

7 Performance portable linear algebra .. 41

7.1 Introduction and summary ... 41

7.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 42

7.3 Interactions with stakeholders, users, outreach and publications 48

7.4 Overall assessment of achievements and future developments 49

8 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support for

the discovery of new physics .. 51

8.1 Introduction and summary ... 51

8.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 52

8.3 Interactions with stakeholders, users, outreach and publications 58

8.4 Overall assessment of achievements and future developments 60

9 QuantEx: Efficient Quantum Circuit Simulation on Exascale Systems 62

9.1 Introduction and summary ... 62

9.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 63

9.3 Interactions with stakeholders, users, outreach and publications 67

9.4 Overall assessment of achievements and future developments 68

10 GHEX: Generic Halo-Exchange for Exascale .. 70

10.1 Introduction and summary ... 70

10.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 72

10.3 Interactions with stakeholders, users, outreach and publications 77

10.4 Overall assessment of achievements and future developments 79

11 ParSec: Parallel Adaptive Refinement for Simulations on Exascale Computers 81

11.1 Introduction and summary ... 81

11.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 82

11.3 Interactions with stakeholders, users, outreach and publications 87

11.4 Overall assessment of achievements and future developments 89

12 NB-LIB: Performance portable library for N-body force calculations at the Exascale

 91

12.1 Introduction and summary ... 91

12.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems 92

12.3 Interactions with stakeholders, users, outreach and publications 95

12.4 Overall assessment of achievements and future developments 97

13 Conclusions .. 99

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 vii 30.06.2022

Annex A: Benchmarking and performance results obtained on leading HPC systems during

WP8 extension .. 101

A.1 PiCKeX: Particle Kinetic codes for Exascale plasma simulation 101

A.2 MoPHA: Modernisation of Plasma Physics Simulation Codes for Heterogeneous

Exascale Architectures ... 103

A.3 Performance portable linear algebra ... 105

A.4 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support for

the discovery of new physics .. 108

A.5 QuantEx: Efficient Quantum Circuit Simulation on Exascale Systems 110

A.6 GHEX: Generic Halo-Exchange for Exascale .. 113

A.7 ParSec: Parallel Adaptive Refinement for Simulations on Exascale Computers 115

A.8 NB-LIB: Performance portable library for N-body force calculations at the Exascale

 .. 117

List of Figures

Figure 1: Proton acceleration by circularly polarized, multi-petawatt laser pulse 7

Figure 2: The strong scaling using the moving window algorithm with a simulation window

comprising 25000 X 6400 cells with 10 particles per cell for 8000 timesteps. (a) Comparison of

the strong scaling results between the initial and new version of EPOCH from 32 to 1536 nodes

(1536 to 73728 CPU cores) on JUWELS. (b) Comparison of the strong scaling results between

the initial and the new version of EPOCH from 32 to 512 nodes (4096 to 65536 CPU cores) on

JURECA-DC. ... 9

Figure 3: (a) Speed-Up obtained by the new version of EPOCH over the initial version from 32 to

1536 nodes (1536 to 73728 CPU cores) on JUWELS. (b) Speed-Up obtained by the new version

of EPOCH over the initial version from 32 to 512 nodes (4096 to 65536 CPU cores) on

JURECA-DC. ... 10

Figure 4: a) CPU version b) GPU version of the particle mover algorithm in OOPD1 11

Figure 5: Test case in OOPD1 .. 11

Figure 6: Benchmark of the CPU and full particle mover GPU version of OOPD1 12

Figure 7: Turbulent flow in a fusion plasma simulation .. 14

Figure 8: Gantt diagram of the tasks performed during the computation of the right-hand side

vector (rhs) required in the time-step and how they were distributed on the available hardware. . 16

Figure 9: Gantt diagram of the computation of the rhs. The new task-based parallelism allows to

overlap the computation of entire terms (which is not possible in the MPI implementation) and

now they can be computed concurrently in both the CPU (upper part) and GPU (lower part). 17

Figure 10: Scalability study of Vlasiator on the Mahti supercomputer with total time (blue) and

propagation time (red) in seconds. ... 19

Figure 11: Scaling of StruGePiC on Puhti ... 20

Figure 12: SIMPIC workflow diagram. It shows the general algorithm flow of the PIC codes

which consists of two algorithms: Particle mover and field solver. ... 21

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 viii 30.06.2022

Figure 13: Comparing performance of various accelerated versions of SIMPIC on the VIZ

cluster. Left: Runtime Plot of the Particle Mover against number of particles. Right: Runtime plot

of field solver against number of cells. .. 23

Figure 14: Timeline of One Time Step of the full SIMPIC GPU version. 23

Figure 15: Timeline for StarPU particle mover task. ... 24

Figure 16: Software architecture for hybrid applications using TAMPI and TAGASPI libraries . 27

Figure 17: State transition diagram for tasks (blocking mode) .. 28

Figure 18: Gauss-Seidel strong scaling with a 256Kx128K matrix and 1000 timesteps in MN4

from 1 to 256 nodes. Due to the memory available in each node, we use a large input for the

experiments from 16 to 256 nodes, and a 16x smaller input (64Kx32K matrix and 1000

timesteps) for the experiments from 1 to 8 nodes. ... 29

Figure 19: Gauss-Seidel throughput varying the block size with a 128Kx128K matrix and 500

timesteps in Marenostrum4 with 128 nodes. .. 30

Figure 20: miniAMR strong scaling in Marenostrum4 from 1 to 256 nodes. The lower shows the

efficiency for both the total time and assuming a negligible refinement time (NR). Due to the

memory available in each node, we use a large input for the experiments from 16 to 256 nodes,

and a 16x smaller input for the experiments from 1 to 8 nodes. .. 31

Figure 21: miniAMR throughput varying the number of computed variables in Marenostrum4

with 128 nodes. The figure shows the throughput for both the total time and assuming a

negligible refinement time (NR). Notice that the vertical axis (throughput) starts at 1000

GUpdates/s. .. 32

Figure 22: Capabilities of the ESPRESO library. .. 35

Figure 23: Frequency response of the electric motor case computed using 450 nodes of the

Salomon cluster at IT4Innovations in 714 s (15 million DOFs, 60 frequency samples). 36

Figure 24: Strong parallel scalability of the harmonic analysis solver on JUWELS Booster

module. ... 37

Figure 25: Scalability of the individual phase of mesh manipulation on the JUWELS cluster

module .. 38

Figure 26: Scalability of the READ + PARSE and MESHING phases on the Karolina system ... 39

Figure 27: Overview of DLA-Future ... 41

Figure 28: Cholesky factorization on Daint MC. Left: we present the strong scaling for a matrix

of size 20k. Right: we present the weak scaling for 400M elements per node (20k x 20k matrix

for the run on a single node. ... 43

Figure 29: Cholesky factorization on Daint GPU. Left: we present the strong scaling for a matrix

of size 20k. Right: we present the weak scaling for 400M elements per node (20k x 20k matrix

for the run on a single node). .. 43

Figure 30: Cholesky factorization on Marconi 100. Left: we present the strong scaling for a

matrix of size 40k. Right: we present the weak scaling for 1.6G elements per node (40k x 40k

matrix for the run on a single node). .. 44

Figure 31: Triangular solver on Daint GPU. Left: we present the strong scaling for a matrix of

size 20k. Right: we present the weak scaling for 400M elements per node (20k x 20k matrix for

the run on a single node). ... 44

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 ix 30.06.2022

Figure 32: Transformation from generalized to standard eigenproblem on Daint GPU. Left: we

present the strong scaling for a matrix of size 20k. Right: we present the weak scaling for 400M

elements per node (20k x 20k matrix for the run on a single node). .. 45

Figure 33: Trace of 1 rank (over a total of 4) for the execution of 4 independent Cholesky

decompositions. The tasks of each factorization are depicted with a different color. (Due to a

limitation of the trace utility, MPI communications cannot be identified, therefore they are all

colored in light-green). The trace above shows the case in which after each factorization a

synchronization point is added, the trace below shows the case in which the factorizations are

allowed to overlap. ... 45

Figure 34: Runtime of ChASE as a vertical stacked bar plot, including includes the fractions of

runtime of numerical modules .. 46

Figure 35: Speedup of the ChASE GPU implementation compared with the ChASE CPU

implementation ... 47

Figure 36: ChASE weak scaling results across increasing number of nodes 48

Figure 37: Important algorithmic steps in the Krylov accelerated multigrid solver developed in

the LyNcs project ... 51

Figure 38: (Left) Strong scaling study of the QUDA Dirac operators on the fine (D), intermediate

(Dc) and coarsest (Dcc) grids for a lattice of size 963 x 128. (Right) Strong scaling of the coarsest

operator Dcc varying the number of right-hand sides (rhs) inverted at the same time. 55

Figure 39: (Left) Median of speedup ratio between SpMM measurements with by-rows operands

layout and by-columns, on different machines and for different right hand sides count. The by-

rows layout is recommended in LIBRSB-1.3 because of its better locality in the lower level loops

improves performance. Notice how for NRHS=1, that is SpMV, the layout is the same, and so the

performance difference vanishes. (Right) Median of speedup when comparing LIBRSB-1.3

samples to LIBRSB-1.2 ones. Notice how with one exception, each machine/NRHS combination

has been (overall) improved over LIBRSB-1.2. .. 56

Figure 40: Strong scaling of DDalphaAMG with several lattice sizes and number of right hand

sides. ... 57

Figure 41: Comparison between the total iteration count of different Block-Krylov methods at the

coarsest level of an 3 level multi-grid approach using a lattice with volume 64*32*32*32

employing twisted mass fermions. ... 58

Figure 42: Expected area of applicability of simulation methods .. 62

Figure 43: Computation of 2048 amplitudes for the 5x5x24 RQC, with a single sliced bond, on 4

nodes with an increasing number of processes .. 64

Figure 44: NVIDIA Nsight profiler analysis report of code on heterogeneous Marconi100

System, with an overall summary highlighting the bottlenecks. .. 67

Figure 45: Overview of GHEX .. 71

Figure 46: Transport layer benchmark results on Betzy .. 74

Figure 47: Impact of HWCART on the performance of halo exchange on Betzy 75

Figure 48: Results obtained on the Piz Daint Multicore partition .. 75

Figure 49: Benchmark results on the Piz Daint GPU partition .. 76

Figure 50: GHEX scaling on the Piz Daint multicore and hybrid partitions 77

Figure 51: Weak scaling benchmarks on the Piz Daint GPU partition using unstructured meshes

 .. 77

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 x 30.06.2022

Figure 52: A vortical structure of the flow around a simplified rotor (left) and the refinement

level structure for the same simulation (right). Work performed in collaboration with CINECA.81

Figure 53: Scaling of the OpenACC version of Nek5000 on several GPU enabled machines. (left)

Results in JUWELS Booster. (right) Results including JUWELS Booster at Jülich in Germany,

Berzelius at NSC in Sweden, Longhorn at TACC in the USA and Piz Daint at CSCS in

Switzerland. .. 82

Figure 54: Cube adapted mesh with respect to a radial anisotropic size-field, obtained with a 768

cores parallel mesh adaptation. Left: the final mesh with around 7.2 million elements. Right:

partition represented by different colours. ... 83

Figure 55: Strong scaling test for anisotropic refinement of a mesh within a Cube, through two

refinement steps the mesh size is multiplied by 2.25x. .. 84

Figure 56: Mesh of a nozzle (courtesy NASA Glenn Research Center) with a priori mesh size

constraints, leading to about 420 million tetrahedra. Three zoom levels on a visualization of the

mesh. .. 84

Figure 57: Parallel AMR workflow implemented in Alya. .. 86

Figure 58: Strong scaling of the AMR implementation of Alya in a tetrahedral mesh of 16M

elements, using the Hawk supercomputer from HLRS. ... 86

Figure 59: 20M elements mesh of the Preccinsta burner obtained through adaptive mesh

refinement from 3M elements mesh. Test case studied in the CoEC Center of Excellence. 88

Figure 60: NB-LIB interface and data flow. A series of pre-processing steps prepares user

supplied data so that the NB-LIB interface is generic, accepting only elementary types. 91

Figure 61: MPI communication time for 100,000 particles MPI-OpenMP vs MPI-OpenACC .. 101

Figure 62: Particle mover time for 100,000 particles single GPU vs multiple GPU 102

Figure 63: Vlasiator scaling on LUMI-C ... 103

Figure 64: Scaling of StruGePiC on LUMI-C ... 104

Figure 65: The trace of the execution of a generalized eigensolver for a 10240×10240 matrix.

Above the algorithms are executed sequentially, below they are allowed to overlap. 105

Figure 66: Triangular solver on LUMI-EAP. We present the strong scaling for a matrix of size

40k. ... 106

Figure 67: Cholesky decomposition on Ampere GPUs. Left: we present the strong scaling for a

matrix of size 40k. Right: we present the weak scaling for 1.6G elements per node (40k x 40k

matrix for the run on a single node). .. 106

Figure 68: Triangular solver on Ampere GPUs. Left: we present the strong scaling for a matrix of

size 40k. Right: we present the weak scaling for 1.6G elements per node (40k x 40k matrix for

the run on a single node). ... 107

Figure 69: Transformation from generalized to standard eigenproblem on Ampere GPUs. Left:

we present the strong scaling for a matrix of size 40k. Right: we present the weak scaling for

1.6G elements per node (40k x 40k matrix for the run on a single node). 107

Figure 70: Strong scalability of DDalphaAMG-multiple rhs on IT4I system Karolina 108

Figure 71: librsb 1.3 vs librsb 1.2 ... 109

Figure 72: Weak scaling of a QXContexts simulation on JUWELS Booster. As test cases, 1024

probability amplitudes per node were computed for both a 53 qubit rochester circuit and a 70

qubit bristlecone circuit. ... 110

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xi 30.06.2022

Figure 73: Strong scaling of a QXContexts simulation on JUWELS Booster. A total of 65536

probability amplitudes of a 53 qubit rochester circuit were computed as a test case................... 111

Figure 74: Strong scaling of a simulation within a single node on JUWELS Booster. As test

cases, both 64 and 512 probability amplitudes were computed for a 49 qubit random quantum

circuit with 32 layers of entangling gates. .. 111

Figure 75: Strong scaling results for a simulation of a 70 qubit circuit on a single node on

JUWELS Booster. Results are shown for both the computation of 1024 and 2048 probability

amplitudes. We observe close to ideal scaling with respect to the number of GPUs used on a

single node. ... 112

Figure 76: Bi-directional communication bandwidth on LUMI-C (Slingshot 10, 100Gb/s)for

messages of different sizes. Left: 1 thread, 1 message in-flight. Right: 16 threads, 10 messages in-

flight ... 113

Figure 77: Weak scaling of HE with GHEX and native MPI on LUMI-C. Each rank handles

double-precision fields of size 128^3. Left: 1 data field, halo width 1. Right: 5 data fields, halo

width 5. ... 114

Figure 78: Weak scaling of BIFROST with GHEX and native MPI halo exchange on Betzy and

LUMI-C. Single-precision, 64^3 grid points per rank ... 114

Figure 79: Strong scaling of Argo on LUMI-C@CSC (left) and Hawk@HLRS (right), it should

be noted that the dashed lines refer to efficiency ... 116

List of Tables

Table 1: WP8 Project compatibility on EuroHPC systems (++ actual results obtained, +

architecture supported, 0 untested architecture, - architecture unsupported) 3

Table 2: WP8 Project compatibility on PRACE Tier-0 systems (++ actual results obtained, +

architecture supported, 0 untested architecture, - architecture unsupported) 5

Table 3: Hardware configuration of JSC supercomputers benchmarks performed on 9

Table 4: Results for Vlasiator scalability on Mahti. The propagation time does not include

initialization, IO, and load balancing. .. 18

Table 5: Computation of the harmonic analysis with combined spatial-frequency domain

parallelization. Solution of the system using iterative solver in [s]. .. 37

Table 6: Overview of the major achievements of the project in software development 52

Table 7: Key features of the different architectures evaluated on BEAST 65

Table 8: Time to compute various quantum circuits on Marconi100 system 66

Table 9: Scaling test for the generation of a 420M elements mesh of a nozzle. Parallelization base

on threading using OpenMP on an AMD Epyc Rome 7542 CPUs at 2.9 GHz. 85

Table 10: Comparison of Alya SFC-based mesh partitioning vs Zoltan v 3.8.3. Partition of a

250M elements mesh around an airplane. .. 87

Table 11: Benchmark performance of NB-LIB vs GROMACS using a system of 157464 Argon

atoms .. 95

Table 12: Vlasiator scalability on LUMI-C ... 103

Table 13: Strong scaling of Argo on AMD Rome architecture with 4 threads per MPI and 32 MPI

per node: LUMI-C@CSC (left) and Hawk@HLRS (right). .. 115

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xii 30.06.2022

References and Applicable Documents

[1] https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/

[2] https://www.cineca.it/en/hot-topics/Leonardo-announce

[3] https://eurohpc-ju.europa.eu/news/deucalion-new-eurohpc-world-class-green-

supercomputer-portugal

[4] https://siliconcanals.com/news/meet-vega-eurohpcs-first-supercomputer/

[5] https://sofiatech.bg/en/petascale-supercomputer/

[6] https://www.cesnet.cz/wp-content/uploads/2021/04/branislav_jansik_CESNET25-1.pdf

[7] https://luxprovide.lu/technical-structure/

[8] https://www.cscs.ch/computers/piz-daint/

[9] https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html/

[10] https://www.hpc.cineca.it/hardware/marconi100

[11] https://www.bsc.es/support/MareNostrum4-ug.pdf

[12] https://doku.lrz.de/display/PUBLIC/SuperMUC-NG

[13] http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm

[14] https://www.hlrs.de/systems/hpe-apollo-hawk/

[15] https://prace-ri.eu/hpc-access/hpc-systems/

[16] https://gitlab.jsc.fz-juelich.de/SLPP/epoch/test-cases

[17] I. Vasileska, P. Tomsic and L. Kos, Modernization of the PIC codes for exascale plasma

simulation, 43rd International Convention on Information, Communication and Electronic

Technology MIPRO 2020 https://doi.org/10.23919/MIPRO48935.2020.9245299

[18] I. Vasileska, L. Bogdanovic and L. Kos, Particle-in-Cell Code for GPU Systems, 44rd

International Convention on Information, Communication and Electronic Technology

MIPRO 2021, in press

[19] I. Vasileska, Task based parallelisation of the Particle-In-Cell codes, ASHPS (First Austrian-

Slovenian HPC meeting) https://ashpc21.si/booklet-of-abstracts/#dearflip-df_2168/

[20] I. Vasileska, Plasma physics simulations with PIC codes, Autumn PRACE School 2020

https://events.prace-ri.eu/event/1049/timetable/

[21] P. Gibbon, U. Sinha, D. Brömmel, P. Otte, Z. Chitgar and J. Chew, Exascaling Strategies for

the EPOCH Community Code, invited talk at the 40th Hirschegg Meeting on High-Energy

Density Physics with Intense Ion and Laser Beams (26th January - 1st February, 2020):

special session on PIC codes.

https://indico.gsi.de/event/8925/attachments/27830/34747/Hirschegg_2020_Program_V5.p

df

[22] Palmroth et al., 2018, Vlasov methods in space physics and astrophysics, Living Reviews in

Computational Astrophysics, https://doi.org/10.1007/s41115-018-0003-2

[23] github.com/fmihpc/vlasiator

[24] J. Xiao and H. Qin, Explicit structure-preserving geometric particle-in-cell algorithm in

curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic

simulations of tokamak physics, Plasma Sci. Technol. 2021, https://doi.org/10.1088/2058-

6272/abf125

https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.cineca.it/en/hot-topics/Leonardo-announce
https://eurohpc-ju.europa.eu/news/deucalion-new-eurohpc-world-class-green-supercomputer-portugal
https://eurohpc-ju.europa.eu/news/deucalion-new-eurohpc-world-class-green-supercomputer-portugal
https://siliconcanals.com/news/meet-vega-eurohpcs-first-supercomputer/
https://sofiatech.bg/en/petascale-supercomputer/
https://www.cesnet.cz/wp-content/uploads/2021/04/branislav_jansik_CESNET25-1.pdf
https://luxprovide.lu/technical-structure/
https://www.cscs.ch/computers/piz-daint/
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html/
https://www.hpc.cineca.it/hardware/marconi100
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://prace-ri.eu/hpc-access/hpc-systems/
https://gitlab.jsc.fz-juelich.de/SLPP/epoch/test-cases
https://doi.org/10.23919/MIPRO48935.2020.9245299
https://ashpc21.si/booklet-of-abstracts/#dearflip-df_2168/
https://events.prace-ri.eu/event/1049/timetable/
https://indico.gsi.de/event/8925/attachments/27830/34747/Hirschegg_2020_Program_V5.pdf
https://indico.gsi.de/event/8925/attachments/27830/34747/Hirschegg_2020_Program_V5.pdf
https://doi.org/10.1007/s41115-018-0003-2
https://doi.org/10.1088/2058-6272/abf125
https://doi.org/10.1088/2058-6272/abf125

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xiii 30.06.2022

[25] Kevin Sala, Alejandro Rico and Vicenç Beltran, Towards Data-Flow Parallelization for

Adaptive Mesh Refinement Applications. CLUSTER 2020: 314-325

10.1109/CLUSTER49012.2020.00042

[26] Marcos Maroñas, Xavier Teruel, J. Mark Bull, Eduard Ayguadé, and Vicenç Beltran,

Evaluating Worksharing Tasks on Distributed Environments. CLUSTER 2020: 69-80

https://doi.org/10.1109/CLUSTER49012.2020.00017

[27] Kevin Sala, Sandra Macià and Vicenç Beltran, Combining One-Sided Communications with

Task-Based Programming Models, CLUSTER 2021, in press.

[28] https://github.com/It4innovations/espreso/

[29] Riha L., Brzobohaty T., Markopoulos A., Meca O. and Kozubek T. Massively Parallel

Hybrid Total FETI (HTFETI) Solver. In: Platform for Advanced Scientific Computing

Conference, PASC. ACM. 2016 https://pasc16.pasc-conference.org/program/index-of-

contributors/

[30] http://www.msca-expertise.eu

[31] https://www.it4i.cz/en/welcome-to-the-national-competence-center-in-hpc

[32] www.dihostrava.cz/en

[33] http://www.netlib.org/scalapack

[34] https://github.com/STEllAR-GROUP/hpx

[35] https://en.cppreference.com/w/cpp/thread/future

[36] ACM Trans. Math. Softw. 45, 2, Article 21. doi: 10.1145/3313828

[37] Comp. Phys. Comm. 267 (2021) 108081 doi.org/10.1016/j.cpc.2021.108081

[38] https://wg21.link/p2300

[39] SIAM J. Sci. Comput., 43(4), A2660–A2684. doi: 10.1137/20M1313933

[40] https://github.com/Lyncs-API

[41] https://gitlab.inria.fr/solverstack/fabulous

[42] https://github.com/sy3394/DDalphaAMG/tree/multirhs

[43] http://librsb.sourceforge.net/

[44] https://github.com/michelemartone/pyrsb

[45] https://octave.sourceforge.io/sparsersb/

[46] https://gitlab.inria.fr/solverstack/maphys/maphyspp

[47] W. T. L. P. Lavrijsen and A. Dutta, "High-Performance Python-C++ Bindings with PyPy and

Cling," 2016 6th Workshop on Python for High-Performance and Scientific Computing

(PyHPC), 2016, pp. 27-35, doi: 10.1109/PyHPC.2016.008

[48] https://doi.org/10.25080/majora-1b6fd038-00e

[49] Villalonga, et al., "Establishing the Quantum Supremacy Frontier with a 281 Pflop/s

Simulation'', Quantum Sci. and Tech., 5 034003, (2020), https://doi.org/10.1088/2058-

9565/ab7eeb

[50] Bridgeman and Chubb, "Hand-waving and interpretive dance: an introductory course on

tensor networks.'' Journal of Physics A: Mathematical and Theoretical, 50(22):223001,

(2017), https://doi.org/10.1088/1751-8121/aa6dc3

[51] Biamonte and Bergholm, "Tensor networks in a nutshell,'' 2017, arXiv:1708.00006

[52] https://github.com/JuliaQX

https://doi.org/10.1109/CLUSTER49012.2020.00017
https://github.com/It4innovations/espreso/
https://pasc16.pasc-conference.org/program/index-of-contributors/
https://pasc16.pasc-conference.org/program/index-of-contributors/
http://www.msca-expertise.eu/
https://www.it4i.cz/en/welcome-to-the-national-competence-center-in-hpc
http://www.dihostrava.cz/en
http://www.netlib.org/scalapack
https://github.com/STEllAR-GROUP/hpx
https://en.cppreference.com/w/cpp/thread/future
https://doi.org/10.1145/3313828
https://doi.org/10.1016/j.cpc.2021.108081
https://wg21.link/p2300
https://doi.org/10.1137/20M1313933
https://github.com/Lyncs-API
https://gitlab.inria.fr/solverstack/fabulous
https://github.com/sy3394/DDalphaAMG/tree/multirhs
http://librsb.sourceforge.net/
https://github.com/michelemartone/pyrsb
https://octave.sourceforge.io/sparsersb/
https://gitlab.inria.fr/solverstack/maphys/maphyspp
file:///C:/Users/Thomas%20Eickermann/Documents/PRACE/6IP/Deliverables/10.1109/PyHPC.2016.008
https://doi.org/10.25080/majora-1b6fd038-00e
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/1751-8121/aa6dc3
https://arxiv.org/abs/1708.00006
https://github.com/JuliaQX

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xiv 30.06.2022

[53] Bezanson et al., "Julia: A Fresh Approach to Numerical Computing''. SIAM Review,

59(1):65-98, (2017). Publisher: Society for Industrial and Applied Mathematics,

https://doi.org/10.1137/141000671

[54] https://hpc.fau.de/research/tools/likwid

[55] Boixo et al., “Characterizing quantum supremacy in near-term devices”. Nature Phys 14,

595–600 (2018). https://doi.org/10.1038/s41567-018-0124-x

[56] Arute et al., “Quantum supremacy using a programmable superconducting processor”.

Nature 574, 505–510 (2019) https://doi.org/10.1038/s41586-019-1666-5

[57] JuliaCon Virtual Poster “Distributed Quantum Circuit Simulation”

https://www.youtube.com/watch?v=IuZ2b-

b4baY&ab_channel=TheJuliaProgrammingLanguage

[58] JuliaCon Virtual Poster “Introducing QXGraphDecompositions”

https://www.youtube.com/watch?v=h6FeH4krtJY&t=4s&ab_channel=TheJuliaProgrammi

ngLanguage

[59] https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html

[60] https://fosdem.org/2021/schedule/event/containerized_hpc

[61] https://github.com/QuantumBFS/Yao.jl

[62] https://github.com/JuliaQX/YaoQX.jl

[63] Pednault et al., “Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction

Deferral”, http://arxiv.org/abs/1710.05867

[64] R. Shutski et al., "Simple heuristics for efficient parallel tensor contraction and quantum

circuit simulation''. Phys. Rev. A 102, 062614, (2020). Doi:

https://doi.org/10.1103/PhysRevA.102.062614

[65] Cupjin Huang et al., “Classical Simulation of Quantum Supremacy Circuits”

arXiv:2005.06787, 2020

[66] Pan, Feng and Zhang, Pan “Simulating the Sycamore quantum supremacy circuits”

https://arxiv.org/abs/2103.03074

[67] https://github.com/boeschf/hwmalloc

[68] https://github.com/NordicHPC/hwcart

[69] https://github.com/boeschf/oomph

[70] https://github.com/GridTools/GHEX

[71] https://github.com/GridTools/ghexbench

[72] https://gridtools.github.io/gridtools/latest/index.html,

[73] SIGMA2 LUMI system researcher meeting, 31 March - 1st April 2020,
https://www.sigma2.no/lumi-system-researcher-preparation#program

[74] Fifth Workshop on Programming Abstractions for Data Locality, September 9-11, 2019,
https://sites.google.com/a/lbl.gov/padal-workshop/padal19

[75] https://gitlab.com/bsc-alya/alya/-/wikis/home

[76] https://gitlab.com/rickbp/gempa

[77] https://arxiv.org/abs/2109.03592v2

[78] https://gmsh.info

[79] https://www.excellerat.eu

https://doi.org/10.1137/141000671
https://hpc.fau.de/research/tools/likwid
https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41586-019-1666-5
https://www.youtube.com/watch?v=IuZ2b-b4baY&ab_channel=TheJuliaProgrammingLanguage
https://www.youtube.com/watch?v=IuZ2b-b4baY&ab_channel=TheJuliaProgrammingLanguage
https://www.youtube.com/watch?v=h6FeH4krtJY&t=4s&ab_channel=TheJuliaProgrammingLanguage
https://www.youtube.com/watch?v=h6FeH4krtJY&t=4s&ab_channel=TheJuliaProgrammingLanguage
https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html
https://fosdem.org/2021/schedule/event/containerized_hpc
https://github.com/QuantumBFS/Yao.jl
https://github.com/JuliaQX/YaoQX.jl
http://arxiv.org/abs/1710.05867
https://doi.org/10.1103/PhysRevA.102.062614
https://arxiv.org/abs/2005.06787
https://arxiv.org/abs/2103.03074
https://github.com/boeschf/hwmalloc
https://github.com/NordicHPC/hwcart
https://github.com/boeschf/oomph
https://github.com/GridTools/GHEX
https://github.com/GridTools/ghexbench
https://gridtools.github.io/gridtools/latest/index.html
https://www.sigma2.no/lumi-system-researcher-preparation#program
https://sites.google.com/a/lbl.gov/padal-workshop/padal19
https://gitlab.com/bsc-alya/alya/-/wikis/home
https://gitlab.com/rickbp/gempa
https://arxiv.org/abs/2109.03592v2
https://gmsh.info/
https://www.excellerat.eu/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xv 30.06.2022

[80] https://coec-project.eu/

[81] https://cordis.europa.eu/project/id/956104/es

[82] https://prace-ri.eu/news-media/publications/software-strategy-for-european-exascale-

systems/

[83] https://www.top500.org/lists/top500/2022/06/

[84] https://github.com/ngnrsaa/qflex/tree/master/config/circuits

List of Acronyms and Abbreviations

aisbl Association International Sans But Lucratif (legal form of the PRACE-RI)

AMR Adaptive-mesh refinement

BETI Boundary element tearing and interconnecting

CoE Centre of Excellence

CPU Central Processing Unit

CHASE Chebyshev Accelerated Subspace iteration eigensolver

CUDA Compute Unified Device Architecture (NVIDIA)

DCCRG Distributed Cartesian cell refinable grid

DoA Description of Action (formerly known as DoW)

EC European Commission

EuroHPC European High-Performance Computing Joint Undertaking

FETI Finite element tearing and interconnecting

FMM Fast-multipole method

GASPI Global Address Space Programming Interface

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/ s Giga (= 109) bits per second, also Gbit/s

GB/ s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second, also

GF/s

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GPU Graphic Processing Unit

HPC High Performance Computing; Computing at a high performance level at any given

time; often used synonym with Supercomputing

HPL High Performance LINPACK

KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte

LINPACK Software library for Linear Algebra

MB Management Board (highest decision making body of the project)

https://coec-project.eu/
https://cordis.europa.eu/project/id/956104/es
https://prace-ri.eu/news-media/publications/software-strategy-for-european-exascale-systems/
https://prace-ri.eu/news-media/publications/software-strategy-for-european-exascale-systems/
https://www.top500.org/lists/top500/2022/06/
https://github.com/ngnrsaa/qflex/tree/master/config/circuits

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xvi 30.06.2022

MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte

MB/ s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s

MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per second, also

MF/s

MoU Memorandum of Understanding.

MPI Message Passing Interface

NIH US National Institutes of Health

PFC Plasma-facing component

PIC Particle-in-cell

PM Person-month

PRACE Partnership for Advanced Computing in Europe; Project Acronym

QCD Quantum chromodynamics

RI Research Infrastructure

SIMD Single instruction multiple data

SOL Scrape-off layer

SPMD Single program multiple data

SSC Scientific Steering Committee

SVD Singular value decomposition

TAMPI Task-aware MPI

TAGASPI Task-aware GASPI

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per second, also

TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the

Supercomputing Research Infrastructure would host the Tier-0 systems; national or

topical HPC centres would constitute Tier-1

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xvii 30.06.2022

List of Project Partner Acronyms

BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Germany (3rd Party to GCS)

BILKENT Bilkent University, Turkey (3rd Party to UHEM)

BSC Barcelona Supercomputing Center - Centro Nacional de Supercomputacion,

Spain

CaSToRC The Computation-based Science and Technology Research Center

(CaSToRC), The Cyprus Institute, Cyprus

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives, France

(3rd Party to GENCI)

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to

UANTWERPEN)

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación de

Galicia, Spain, (3rd Party to BSC)

CINECA CINECA Consorzio Interuniversitario, Italy

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd

Party to GENCI)

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to GENCI)

CSC CSC Scientific Computing Ltd., Finland

CSIC Spanish Council for Scientific Research (3rd Party to BSC)

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to

PNSC)

DTU Technical University of Denmark (3rd Party of UCPH)

EPCC EPCC at The University of Edinburgh, UK

EUDAT EUDAT OY

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland

GCS Gauss Centre for Supercomputing e.V., Germany

GÉANT GÉANT Vereniging

GENCI Grand Equipement National de Calcul Intensif, France

GRNET National Infrastructures for Research and Technology, Greece

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to BSC)

INRIA Institut National de Recherche en Informatique et Automatique, France (3rd

Party to GENCI)

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd

Party to UC-LCA)

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xviii 30.06.2022

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic

IUCC Machba - Inter University Computation Centre, Israel

JUELICH Forschungszentrum Juelich GmbH, Germany

KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU)

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to UANTWERPEN)

LiU Linkoping University, Sweden (3rd Party to SNIC-UU)

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., Germany

(3rd Party to GCS)

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,

Bulgaria

NTNU The Norwegian University of Science and Technology, Norway (3rd Party

to SIGMA2)

NUI-Galway National University of Ireland Galway, Ireland

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium

PSNC Poznan Supercomputing and Networking Center, Poland

SDU University of Southern Denmark (3rd Party to UCPH)

SIGMA2 UNINETT Sigma2 AS, Norway

SNIC-UU Uppsala Universitet, Sweden

STFC Science and Technology Facilities Council, UK (3rd Party to UEDIN)

SURF SURF is the collaborative organisation for ICT in Dutch education and

research

TASK Politechnika Gdańska (3rd Party to PNSC)

TU Wien Technische Universität Wien, Austria

UANTWERPEN Universiteit Antwerpen, Belgium

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada, Portugal

UCPH Københavns Universitet, Denmark

UEDIN The University of Edinburgh

UHEM Istanbul Technical University, Ayazaga Campus, Turkey

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien)

UiO University of Oslo, Norway (3rd Party to SIGMA2)

UL UNIVERZA V LJUBLJANI, Slovenia

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN)

U Luxembourg University of Luxembourg

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA)

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 xix 30.06.2022

UmU Umea University, Sweden (3rd Party to SNIC-UU)

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA)

UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS)

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC)

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 1 30.06.2022

Executive Summary

From April 2019 to June 2022, Work Package 8 of PRACE-6IP oversaw a number of projects

developing forward-looking software solutions. These projects were selected following two

competitive calls for proposals; eight started in April 2019 following the first call for proposals,

and two additional projects started in January 2020 following the second call for proposals. Eight

of the projects were active, albeit with a reduced level of activity, during the WP8 extension period,

which ran from November 2021 to June 2022. This deliverable builds upon the previous deliverable

D8.3, that provided an overview of the first phase of the project, and deliverable D8.4, that provided

an overview of the second phase of the project. A comprehensive overview is provided of the

progress of the projects during WP8, including a summary of the compatibility of the WP8 projects

on the leading European HPC systems, as well as individual sections about each of the projects

with 1) a summary of each projects and the goals 2) benchmarking results on leading HPC systems

3) engagement with stakeholders and outreach activities and 4) an overall assessment of

achievements and areas for future developments. A separate annex is included that provides an

overview of the performance and benchmarking results obtained by the eight projects that were

active during the WP8 extension period. Overall, it is fair to say that the projects have carried out

a thorough level of work, and have contributed to the success of Work Package 8 of PRACE-6IP.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 2 30.06.2022

1 Introduction

From April 2019 to June 2022, Work Package 8 (WP8) of PRACE-6IP focused on ‘Forward-

looking Software Solutions’, with the overall objective of delivering high quality, transversal

software that addresses the challenge posed by the rapidly changing HPC pre-exascale landscape.

In addition to the challenges posed by the diversity of hardware and software complexity, the late

delivery of the leading pre-exascale EuroHPC systems, due to procurement issues as a result of the

pandemic, resulted in limited access to this latest generation of HPC systems. Despite this, the

projects achieved good scaling results across a diverse range of HPC systems in Europe, including

PRACE Tier-0 and EuroHPC machines, that included a broad range of HPC architectures.

During the course of WP8, ten projects were chosen, as a result of two competitive, peer reviewed

calls, as reported on in deliverables D8.1 and D8.2. Eight projects were funded from the beginning

of PRACE-6IP in April 2019, and a further two began in January 2020 following the second

competitive call. The projects in WP8 covered a wide range of scientific domains, from

fundamental topics such as tasking runtimes, halo-exchange libraries, to mathematical libraries

including sparse and dense linear algebra, to application domain related software targeted at science

and engineering like plasma physics, biophysics, finite elements, and fluid dynamics, or emerging

domains such as quantum computing.

Each of the ten WP8 projects worked autonomously, in accordance with the development roadmaps

that they included as part of the project proposals that were submitted to the competitive peer-

reviewed calls. Two earlier deliverables, D8.3 and D8.4, have helped to contribute to the

sustainability and quality of the software. Namely, in deliverable D8.3, a report on a public

prototype release of the software was provided, as well as details on the development infrastructure

used. This early release helped to ensure that software sustainability was taken into serious

consideration, using industry standard tools, issue tracking, continuous integration, validation and

verification, documentation, etc. Deliverable D8.4 then went one step further and documented a

production-quality software release, with the aim of bringing this software into the hands of users

for the European HPC infrastructure, and provided information on the availability and performance

of the software, in addition to outreach efforts carried out by the projects.

This deliverable, D8.5, is the final report from WP8. The document presents an overview of the

compatibility of the ten projects on the leading European HPC systems, including the EuroHPC

systems and the PRACE Tier-0 systems. Following that, it is arranged per project. A brief

introduction and summary is provided for each project, followed by benchmark results on leading

European HPC systems, an overview of stakeholder engagement and outreach, and then concludes

with an assessment of the achievements of each project and directions for future developments.

Finally, an annex with an overview of the performance and benchmarking results of the eight

projects active during the WP8 extension is included, summarising the work carried out between

November 2021 and June 2022.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 3 30.06.2022

2 Compatibility of PRACE-6IP WP8 projects on leading European HPC systems

In the following section, an overview is presented of the compatibility of the WP8 projects on the leading European HPC systems. Table 1

gives an overview of the EuroHPC systems, whilst Table 2 gives an overview of the PRACE Tier-0 systems.

 EuroHPC Pre-exascale systems EuroHPC Petascale systems

 LUMI1 Leonardo2 MareNostrum53 Deucalion4 Vega5 Discoverer6 Karolina7 MeluXina8

Node Architecturea CPU:AMD

GPU: AMD

CPU:INT

GPU: NVD

CPU: TBD

GPU: TBD

CPU: FJU

GPU: N/A

CPU:AMD

GPU:NVD

CPU: AMD

GPU: N/A

CPU: AMD

GPU:NVD

CPU: AMD

GPU: NVD

Project Code 0

PiCKeX EPOCH - - 0 + - + - -

PiCKeX OOPD1 + + 0 - + - + ++

MoPHa GENE/tasks 0 + 0 0 + + + +

MoPHa SIMPIC 0 + 0 - + + + +

MoPHa StruGePiC ++ + 0 - + + + +

MoPHa SymPiFE-

VMax
+ + 0 - + + + +

MoPHa Vlasiator ++ 0 0 - +

NB-LIB 0 + 0 0 + + + +

LoSync + + 0 + + + +

LyNcs + + 0 + + + ++ +

GHEX ++ + 0 + + + + +

PPLA DLA-Future + + 0 0 + + + +

PPLA ChASE 0 + 0 0 + + +

FEM/BEM + + 0 0 + + ++ +

ParSec + + 0 + + + + +

QuantEx 0 + 0 + + + + +

Table 1: WP8 Project compatibility on EuroHPC systems (++ actual results obtained, + architecture supported, 0 untested architecture, - architecture

unsupported)

aNode Architecture: AMD - AMD, INT - Intel, NVD - NVIDIA, FJU - Fujitsu A64FXs, TBD - to be decided, N/A - not applicable

1LUMI pre-exascale supercomputer, located in Kajaani Finland, peak performance 550 petaflops. Architecture: CPUs - AMD EPYC, GPUS - AMD Instinct [1]

2Leonardo pre-exascale supercomputer, located in Bologna Italy, peak performance 250 petaflops. Architecture: CPUs - Intel, GPUs - NVIDIA Tensor Core [2]

https://www.lumi-supercomputer.eu/lumi-one-of-the-worlds-mightiest-supercomputers/
https://www.cineca.it/en/hot-topics/Leonardo-announce

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 4 30.06.2022

3MareNostrum5 pre-exascale supercomputer, located in Barcelona Spain, peak performance 11 petaflops. Architecture: TDB.

4Deucalion petascale supercomputer, located in Minho Portugal, peak performance 10 petaflops. Architecture: CPUs - Fujitsu A64FXs [3]

5Vega petascale supercomputer, located in Maribor Slovenia, peak performance 10 petaflops. Architecture: CPUs - AMD EPYC, GPUs - NVIDIA A100 [4]

6Discoverer petascale supercomputer, located in Sofia Bulgaria, peak performance 6 petaflops. Architecture: CPUs - AMD EPYC [5]

7Karolina petascale supercomputer, located in Ostrava Czech Republic, peak performance 15 petaflops. CPUs- AMD EPYC, GPUs - NVIDIA A100 [6]

8MeluXina petascale supercomputer, located in Bissen Luxembourg, peak performance 10 petaflops. Architecture: CPUs - AMD EPYC, GPUs - NVIDIA A100 [7]

https://eurohpc-ju.europa.eu/news/deucalion-new-eurohpc-world-class-green-supercomputer-portugal
https://siliconcanals.com/news/meet-vega-eurohpcs-first-supercomputer/
https://sofiatech.bg/en/petascale-supercomputer/
https://www.cesnet.cz/wp-content/uploads/2021/04/branislav_jansik_CESNET25-1.pdf
https://luxprovide.lu/technical-structure/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 5 30.06.2022

 PRACE Tier-0 systems

 PizDaint9 JUWELS

Cluster10a

JUWELS

Booster10b

Marconi

10011

Mare

Nostrum41

2

SuperMUC13 Joliot-

Curie

KNL14a

Joliot-Curie

Rome14b

Joliot-Curie

SKL14c

Hawk15

Node

Architectureb

 CPU: INT

GPU: NVD

CPU: INT

GPU: NVD

CPU: AMD

GPU: NVD

CPU: IBP

GPU: NVD

CPU: INT

GPU: N/A

CPU: INT

GPU: N/A

CPU:

INT

GPU:

N/A

CPU: AMD

GPU: N/A

CPU: INT

GPU: N/A

CPU: AMD

GPU: NVD

Project Code

PiCKeX EPOCH - ++ - - + + + + + +

PiCKeX OOPD1 + - + ++ - - - - - +

MoPHa GENE/tasks + + + + + + + + + +

MoPHa SIMPIC + + + ++ + + + + + +

MoPHa StruGePiC + + + 0 + + + + + +

MoPHa SymPiFE-VMax + + + 0 + + + + + +

MoPHa Vlasiator + + + + + ++

NB-LIB ++ + + + + + + + +

LoSync + + ++ + + +

LyNcs + ++ ++ + + ++ + + + ++

GHEX ++ + + ++ + + - + + +

PPLA DLA-Future ++ + + ++ + + 0 + + +

PPLA ChASE + ++ ++ 0 + + 0 + + +

FEM/BEM + ++ ++ 0 + + + + + +

ParSec ++ ++ ++ + ++ + + + + ++

QuantEx + ++ ++ ++ + ++ + + + +

Table 2: WP8 Project compatibility on PRACE Tier-0 systems (++ actual results obtained, + architecture supported, 0 untested architecture, - architecture

unsupported)

bNode Architecture: AMD - AMD, INT - Intel, NVD - NVIDIA, N/A - not applicable, IBP - IBM Power9

9Piz Daint PRACE Tier-0 supercomputer, located in Lugano Switzerland, peak performance 27 petaflops. Architecture: CPUs - Intel Xeon, GPUs - NVIDIA P100

[8]

10aJUWELS Cluster PRACE Tier-0 supercomputer, located in Jülich Germany, peak performance 12 petaflops. Architecture: CPUs - Intel Xeon, GPUs - NVIDIA

V100 [9]

10bJUWELS Booster PRACE Tier-0 supercomputer, located in Jülich Germany, peak performance 71 petaflops. Architecture: CPUs - AMD EPYC, GPUs

- NVIDIA A100 [9]

https://www.cscs.ch/computers/piz-daint/
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html/
https://apps.fz-juelich.de/jsc/hps/juwels/configuration.html/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 6 30.06.2022

11Marconi100 PRACE Tier-0 supercomputer, located in Bologna Italy, peak performance 32 petaflops. Architecture: CPUs - IBM Power9, GPUs - NVIDIA

V100 [10]

12MareNostrum4 PRACE Tier-0 supercomputer, located in Barcelona Spain, peak performance 11 petaflops. Architecture: CPUs - Intel Xeon E5 [11]

13SuperMUC-NG PRACE Tier-0 supercomputer, located in Garching Germany, peak performance 27 petaflops. Architecture: CPUs - Intel Xeon Skylake [12]

14aJoliot-Curie KNL PRACE Tier-0 supercomputer, located in Paris France, peak performance 2 petaflops. Architecture: CPUs - Intel KNL [13]

14bJoliot-Curie PRACE Tier-0 supercomputer, located in Paris France, peak performance 12 petaflops. Architecture: CPUs - AMD EPYC, [13]

14cJoliot-Curie SKL PRACE Tier-0 supercomputer, located in Paris France, peak performance 6 petaflops. Architecture: CPUs - Intel Skylake [13]

15Hawk PRACE Tier-0 supercomputer, located in Stuttgart Germany, peak performance 26 petaflops. Architecture: CPUs - AMD EPYC, GPUs - NVIDIA A100

[14]

Overview of PRACE Tier-0 systems: [15]

https://www.hpc.cineca.it/hardware/marconi100
https://www.bsc.es/support/MareNostrum4-ug.pdf
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
http://www-hpc.cea.fr/en/complexe/tgcc-JoliotCurie.htm
https://www.hlrs.de/systems/hpe-apollo-hawk/
https://prace-ri.eu/hpc-access/hpc-systems/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 7 30.06.2022

3 PiCKeX: Particle Kinetic codes for Exascale plasma simulation

3.1 Introduction and summary

Figure 1: Proton acceleration by circularly polarized, multi-petawatt laser pulse

Particle in Cell (PIC) codes have become one of the main tools for many areas in plasma physics,

for example in modelling laser-accelerated particle beams (Figure 1), studies which are

instrumental in the development of compact particle GeV-class accelerators, or to understand the

detailed dynamics and transport processes near the outer scrape-off layer (SOL) of nuclear fusion

vessels containing a magnetically confined plasma. The PicKeX project focuses on two important

community codes: EPOCH, a fully relativistic, electromagnetic model and BIT1, a sophisticated

PIC/Monte-Carlo model.

For both codes the project has enabled substantial refactoring work to be performed which would

have been difficult to realise for a conventional research team utilising the code for scientific

investigation. As a result, enhanced versions of both codes are now publicly available for rigorous

testing by user groups. In particular, this includes OOPD1, a new GPU version of BIT1. The new

version of EPOCH incorporates a significantly faster moving window algorithm - up to 40% on

thousands of cores, which is extensively used for an important class of problems based on laser-

based particle accelerator schemes. The BIT1 and OOPD1 codes have two main algorithms:

particle mover, which updates position and velocities of the simulated “super” particles according

to the well-known Newton's laws of motion, and the field solver which calculates the fields inside

the simulated spatial region at some grid points. In the new version of the code a fully GPU version

of the particle mover was introduced also giving performance improvements of 40%.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 8 30.06.2022

3.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

The JUBE benchmarking environment allows the user to perform complete testing workflows -

compilation, configuration, execution and verification - from a single script. The data is written in

a format such that the desired information can be obtained automatically using either pre- or post-

processing scripts. We have created a JUBE script-based framework comprising various test cases

which can be used to test EPOCH on different petascale/pre-Exascale systems and evaluate the

results [16]. The tests can be performed using any desired simulation domain, compiler

environments and allow direct comparison of multiple versions of the code. Additional tests can

be added to this framework as needed.

In most laser-based accelerator schemes, the physics of interest lies in the region surrounding the

laser or the particle beam moving close to the speed of light. For this widely considered class of

applications it is prudent to make use of a “moving window” algorithm, such that the simulation

follows the region of interest and does not simulate the entire system. The moving window

approach keeps the mesh stationary with respect to the background, creating new particles and

fields at the leading edge, shifting the particles and fields to neighbouring mesh points, and

discarding any particles and fields in the trailing edge. If dx is the grid size and dt is the timestep,

then the Courant condition for an electromagnetic particle-in-cell code requires that cdt < dx, which

limits the maximum displacement of the simulation window per timestep to be less than dx. The

moving window algorithm shifts the simulation window by integral multiples of the grid size (dx)

which requires the algorithm to be invoked after n timesteps such that ndt > dx where n>1.

EPOCH is a parallel, pure-MPI code written using simple cartesian domain decomposition. The

entire simulation window is decomposed into small domains where each domain is handled by one

MPI rank. After every timestep, each rank communicates with its neighbours to exchange particles

and fields. To facilitate this exchange, the domains are surrounded by ghost cells. The number of

ghost cells (ng) allocated in each direction depends on the particle shape with a minimum value of

4 for the top-hat shape and a maximum of 6 for the third-order b-spline interpolation. The field

boundary conditions exchange the field information in the ghost cells between neighbouring ranks.

The initial version of the code invoked the moving window algorithm whenever the mesh was

displaced by dx, each time requiring MPI calls to be made to communicate the field and particle

boundary conditions to the neighbouring ranks. Furthermore, the field boundary conditions were

invoked in all directions which is unnecessary, as the mesh is shifted only along the direction of

propagation. Performance analysis of the code using the Score-P toolkit showed that up to 20% of

the simulation time was spent in the moving window routine.

In the new version, we modified the moving window algorithm such that it is called only after the

mesh has traversed ng cells and the boundary values of the field quantities are communicated only

to the ranks in the propagation direction. These modifications significantly reduce the

communication overhead due to the shifting of fields and particles and the number of MPI calls. In

addition, we introduced a new data structure to communicate the field boundary values that enable

us to send and receive all the three components of the fields using a single MPI_SendRecv call.

This data structure reduces the latency effects. These modifications allow the new version of

EPOCH to be ~40% faster than the original version.

Benchmarks were performed on the PRACE Tier-0 JUWELS Cluster and Tier-1 JURECA-DC

supercomputers at the Jülich Supercomputing Center (JSC). These machines are CPU-based

clusters and ideal for EPOCH as it employs pure MPI based parallelism. The hardware

configuration of these systems is listed in Table 1. Although not yet explicitly tested, we would

https://gitlab.jsc.fz-juelich.de/SLPP/epoch/test-cases

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 9 30.06.2022

expect similar speedup on the Intel- and AMD-based systems in the table, as well as future ARM-

based systems.

 JUWELS JURECA-DC

Number of nodes 2271 576

Processor Intel Xeon Platinum 8168 CPU AMD EPYC 7742 CPU

Node configuration 2 X 24 cores 2 X 64 cores

Clock speed 2.7 GHz 2.25 GHz

Memory 96 (12× 8) GB DDR4, 2666 MHz 512 (16× 32) GB DDR4, 3200 MHz

Network InfiniBand EDR (Connect-X4) InfiniBand HDR100 (NVIDIA

Mellanox Connect-X6)

Table 3: Hardware configuration of JSC supercomputers benchmarks performed on

To obtain the scaling results, we carry out 2D simulations of a relativistic laser pulse moving

through a uniformly distributed electron-proton plasma using the PIC code EPOCH. A simulation

window moving with the laser pulse in the x-direction is used. The window is resolved using 25000

cells along the x-direction and 6400 cells along the y-direction with 10 particles per cell. The total

time of simulation was 800 fs with a timestep dt = 0.1fs. During the first 100fs of the simulation,

the laser was allowed to propagate through the plasma to its centre. After this time, the moving

window was started and thus invoked for ~88% of the total run time. Figure 2 shows the strong

scaling results on JUWELS (Figure 2a) and JURECA-DC (Figure 2b). The new version of EPOCH

is ~30-45% faster than the initial version for this range of core numbers (Figure 3).

Figure 2: The strong scaling using the moving window algorithm with a simulation window comprising 25000 X

6400 cells with 10 particles per cell for 8000 timesteps. (a) Comparison of the strong scaling results between the

initial and new version of EPOCH from 32 to 1536 nodes (1536 to 73728 CPU cores) on JUWELS. (b) Comparison

of the strong scaling results between the initial and the new version of EPOCH from 32 to 512 nodes (4096 to 65536

CPU cores) on JURECA-DC.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 10 30.06.2022

Figure 3: (a) Speed-Up obtained by the new version of EPOCH over the initial version from 32 to 1536 nodes (1536

to 73728 CPU cores) on JUWELS. (b) Speed-Up obtained by the new version of EPOCH over the initial version

from 32 to 512 nodes (4096 to 65536 CPU cores) on JURECA-DC.

The OOPD1 (Objected Oriented Plasma Device 1D) code is a PIC code with a Monte Carlo

algorithm for calculation of particle interactions and collisions. The code was run on the VIZ

supercomputer at the Faculty of Mechanical Engineering in Ljubljana, which has 24 processor

cores (2x 12-core Intel Xeon E5-2680V3 processor clocked at 2.5 GHz), 256 GB of DDR4 memory

running at 2133 MHz with ECC, 3x NVIDIA Tesla K80 graphics interface and 250 GB of RAM.

OpenMPI/3.1.4-GCC-8.3.0 compiler and tk/8.6.8/intel-18.0.2-kzhkvu6 with xgrafix graphical

library were used for running interpretation of the results. The GPU optimisation of the fully

particle mover was carried out as follows:

1. The code consists of a lot of objects and header files placed in one directory. For better

organization first a code refactoring was done. All header files were divided in different

subdirectories depending on the calculation functions. The source files written in C++ were

in a separate directory. Based on this refactoring it was easier to optimize the code because

the functions of the particle mover, field solver, Monte Carlo, particle cross sections and

atomic database were organised.

2. A typical particle mover algorithm in the CPU version would be something like (Figure

4a):

a. Gather field at particle position

b. Calculate new velocity using field

c. Calculate new position using new velocity

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 11 30.06.2022

Figure 4: a) CPU version b) GPU version of the particle mover algorithm in OOPD1

For GPU optimisation we generate all particles in the GPU to avoid the memory transfer.

Then all calculation functions were rewritten in the GPU version using CUDA

programming. When the new position was calculated then all GPU outputs were copied

back to the CPU version to start the field solver. For this reason, we called the new version

half GPU optimised code.

3. As a test case for benchmarking we used a simple case where only electrons were used with

an electrostatic (Poisson’s equation) field solver (see Figure 5). The simulation geometry

corresponds to a simple one dimensional case, with self and applied electric fields directed

along coordinate x. There are no variations in y or z directions. The plane parallel problem

consists of single (electron) species. The electrons were simulated between two electrodes.

The applied voltage on the left hand side electrode is 25000 V, the right hand side electrode

was grounded.

Figure 5: Test case in OOPD1

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 12 30.06.2022

This case first was run on the CPU and then on the GPU version with fully optimized particle

mover. For running this case we used 10000 grid points, 0.001 fractions on time, and we ran the

case with 200 timesteps. The results of the benchmarking are performed in Figure 6

Figure 6: Benchmark of the CPU and full particle mover GPU version of OOPD1

From the results it can be concluded that with only a full particle mover in the GPU we have a

nearly 40% reduced computation time compared to the CPU version. Because this case was very

simple, only electrons without any collisions in the electrostatic field solver were simulated, and

most of the complex functions were not used. In future the field solver will also be transferred to

GPU, which will enable runs with more complex cases including ions and neutrals. One of the

biggest problems that will occur are the particle cross section calculations and particle reactions.

For that reason, heterogeneous computing with StarPU will be used.

The BIT1 code has structures similar to OOPD1. For that reason, the same steps, which were used

for optimisation of the OOPD1 will be implemented in BIT1. At this moment only a BIT1

refactoring was done. With this refactoring the main algorithms were separated from the atomic

molecular processes and cross sections. At this moment only the first steps of creating particles in

the GPU were completed.

3.3 Interactions with stakeholders, users, outreach and publications

Regarding EPOCH, the primary interaction has been with the main developer group based at

Warwick University, where the production version of the code is maintained. This repository has

been mirrored at JSC to avoid undue interference with the physics module development. The

optimisations achieved in the PicKeX project have been pushed to the main branch, where they are

pending approval by the Warwick group. Early exchanges with this team made sure that any

changes implemented by the project would be compatible with improvements to the main branch,

but also that more radical improvements such as domain decomposition and load balancing would

entail a fundamental re-engineering of the core code structures, which would have risked a fork

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 13 30.06.2022

from the community version. A change of repositories at U. Warwick also caused delays in

contributing our changes to the official version. At least one current PRACE project using the

EPOCH code has been identified and contacted as a potential adopter of the new version. Finally,

the JUBE-based benchmarking methodology introduced during the project is also publicly

available and should generally benefit the user community.

In terms of dissemination, the Ljubljana group presented two conference publications at MIPRO

2020 [17] and 2021 [18]. The first publication describes how the GPU optimization was done in

the prototype PIC code. The second publication describes the fully GPU field solver of OOPD1.

Also we have participated in ASHPS (First Austrian-Slovenian HPC meeting) [19] and Autumn

PRACE School in 2020 [20]. There we presented the GPU method for optimization on PIC codes.

Intermediate results for the optimized EPOCH code were presented at a special session on PIC

codes at the annual Hirschegg Meeting on High-Energy Density Physics [21].

3.4 Overall assessment of achievements and future developments

In summary, the PiCKeX project has resulted in two major milestones: first, significant speed-ups

of up to 40% for the EPOCH code when applied to frequently studied laser-based particle

accelerator schemes; and second, the creation of a new GPU-enabled version of the BIT1 code

(OOPD1), which will serve as a basis for future developments of this important tokamak edge

physics model.

Given that EPOCH is still a pure MPI code, more fundamental restructuring of its core elements

would be necessary in order to implement an efficient hybrid OpenMP-MPI scheme, or to enable

GPU capabilities. This was not realistic within the scope of the present project without risking a

disconnected fork of the code which would have been difficult to reconcile with the production

branch. The extensive analyses of the present version will however guide future consultation with

the main developer group in Warwick on whether/how to proceed with further

optimisations/restructuring, such as a more robust load-balancing scheme or better domain

decomposition.

The OOPD1 GPU code developed within the project is structurally very close to the production

BIT1 code, but currently lacking the collisional physics modules. Once the electrostatic field solver

is ported to GPU, a possible route for full GPU-capability of BIT1 would be opened up with the

help of the StarPU programming model for mixed CPU-GPU operation. The latter approach is

likely to become a key design point in future modular exascale systems.

http://dx.doi.org/10.23919/MIPRO48935.2020.9245299
https://ashpc21.si/booklet-of-abstracts/#dearflip-df_2168/
https://events.prace-ri.eu/event/1049/timetable/
https://indico.gsi.de/event/8925/attachments/27830/34747/Hirschegg_2020_Program_V5.pdf

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 14 30.06.2022

4 MoPHA: Modernisation of Plasma Physics Simulation Codes for
Heterogeneous Exascale Architectures

4.1 Introduction and summary

Code modernisation efforts are needed for many scientific simulation codes to fully benefit from

the upcoming heterogeneous exascale systems. This is true also for plasma simulation codes, such

as ELMFIRE, GENE, and Vlasiator. Task-based parallelism potentially offers better scalability

and portability than traditional approaches by abstracting hardware-specific optimisations away

from the scientific algorithms. Some frameworks, such as StarPU or AMReX, even offer a

relatively easy way to achieve both task-based parallelism and support for GPUs.

In the MoPHA project, we have explored task-based parallelism for plasma simulations and tested

ways to add support for GPUs or other accelerators to plasma simulation codes, targeting the three

codes ELMFIRE, GENE and Vlasiator. There are three questions to answer:

 How much work is the refactoring of the existing code base to make use of an existing

framework like StarPU or AMReX?

 What is the performance of a task-based code compared to the original code?

 How portable is the performance to different upcoming heterogeneous architectures?

The ways to explore these questions have been different for the three codes, but the aim has been

to pave the way for the plasma simulation codes to be ready for the upcoming pre-exascale and

exascale systems.

Figure 7: Turbulent flow in a fusion plasma simulation

GENE: Taking the large Fortran codebase and some GPU-ported code paths as a starting point,

the introduction of StarPU showed to be a rather complex task. The complexity of StarPU

combined with an additional Fortran layer, together with the class hierarchy of GENE made an

adaptation a difficult challenge. We decided to focus on a single-node implementation of a single

code path. We could show that different iterations of a loop rewritten as tasks can overlap with

different physics computations of the right-hand side of the Vlasov equation. To really get an

improvement and to answer the above mentioned second and third question, further work is needed.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 15 30.06.2022

ELMFIRE: Particle simulation in the field of nuclear fusion is a well-established technique which

has spawned dozens of codes around the world through years (e.g. BIT1, VPIC, VSIM, OSIRIS,

REMP, EPOCH, SMILEI, FBPIC, WARP, PEPC) with varying degrees of specialization for

different physics areas and accessibility. Particle-in-cell (PIC) codes simulate numerous plasma

phenomena on HPC systems. Today, flagship supercomputers feature GPUs per compute node to

achieve unprecedented computing power at high power efficiency. PIC codes require new

algorithm design and implementation for exploiting such accelerated platforms.

Major refactoring of the ELMFIRE code is needed to harness this power, as well as to expand its

capabilities to simulate tokamak plasma accurately, including electromagnetic effects, realistic

magnetic backgrounds (diverted), and realistic wall geometry. The limited amount of memory per

cores available on GPUs also motivates the use of more local and explicit algorithms. To achieve

these objectives, we have elected to rely on scalable and versatile frameworks for mesh-based

simulations, as well as recent developments in structure-preserving algorithms. Such algorithms

enjoy discrete conservation laws that are crucial for stability and accurate simulations of turbulent

steady states (>106 time steps).

We designed three mini-apps that use different existing frameworks (AMReX, MFEM, and

StarPU) to explore different aspects of the work. StruGePiC is a mini-app based on the AMReX

framework, which includes support for most HPC architectures and has potential for very good

scalability. SymPiFE-VMax is a similar mini-app based on the MFEM framework that offers more

flexibility and allows for more detailed control of the finite-element mesh, but requires one to write

many of the algorithms by hand. Both of these mini-apps explore how to leverage an existing HPC

framework for PIC plasma simulations and potentially offer a way to get good performance and

highly portable codes aiming for the heterogeneous exascale systems. Additionally, we designed

and optimised a simple PIC code called SIMPIC to explore task-based parallelism on GPUs with

the StarPU framework. First we provide a fully GPU SIMPIC code and show that the run time is

50 % reduced compared to CPU runs. In future this code will be used as a test example for

modifying the other more complex PIC codes in terms of CPU to GPU migration.

Based on the lessons learned, the ELMFIRE community is actively developing the work further

with the aim of an accurate, explicit simulation code of plasma tokamaks that is able to fully utilise

the upcoming heterogeneous pre-exascale and exascale systems.

Vlasiator: The Vlasiator team has worked to understand how to port various parts of the code to

GPUs, participating to GPU Hackathons, profiling the code, and optimizing. The initial approach

of porting to OpenACC did not perform as expected. Then we started investigating porting to

CUDA which is under development, solving bugs and optimizing. As the code is in advanced C++,

we have also identified some bugs with the NVIDIA compiler.

4.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

GENE/tasks: GENE solves the gyrokinetic integro-differential Vlasov-Maxwell system of

equations on a 5D phase-space grid with an explicit Runge-Kutta method. It is used by many users

to simulate microturbulence in fusion and space plasmas. While usually using a static MPI domain

decomposition of the 5D phase space as parallelization paradigm, in this project the usage of a

task-based approach for parallelization has been added and evaluated. The well-known StarPU

framework has been used to introduce tasks in addition to the original domain decomposition.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 16 30.06.2022

The code developed during this project is the first implementation that explores the natural task-

based parallelism of GENE. The implementation uses a task-based approach and it is intended to

run with StarPU, a runtime system that efficiently maps computation tasks to hardware. This task-

based version of GENE (GENE-SPU), is based on the latest CUDA branch of GENE and required

a non-trivial extension and refactoring of the original class design. The reuse of the existing objects

for the computation of the tasks as much as possible was mandatory as well as to change as little

as possible of the original code to preserve readability and code structure. The former is very

important since GENE has been highly optimized over the years and we intend to keep the original

code structure as an alternative. The latter was also necessary since the amount of code required by

StarPU increases considerably with the number of tasks, and the resulting code might bury the

original code, making it hard to read, hard to develop new physics or modify it by other users and/or

developers.

The current version of GENE-SPU can compute the time-step for linear problems with the local

discretization approach using StarPU tasks only. For the profiling shown in Figure 8 and Figure 9,

we used an external tracing application FxT for tracing purposes, with the resulting trace visualised

using the ViTE visualization program.

Figure 8 shows a Gantt diagram of the tasks performed during the computation of the right-hand

side vector (rhs) required in the time-step and how they were distributed on the available hardware.

Figure 8: Gantt diagram of the tasks performed during the computation of the right-hand side vector (rhs)

required in the time-step and how they were distributed on the available hardware.

In Figure 8, the computational hardware is shown on the left in blue (in this case only CPUs, an

entire node), and the tasks are shown as coloured blocks in front of the hardware which executes

them. The x-axis is time (in ms) and the length of the block is the duration of the task. Red bars

mean that the hardware is idle. This occurs due to synchronization or a bottleneck inherent to the

algorithm. At the bottom, white circles denote the different events performed by StarPU, such as

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 17 30.06.2022

task insertion, synchronization, data partitioning, etc. and the arrows denote memory movements.

Blocks with the same colour perform the same operation but on different data, for example, all

yellow tasks compute the dfielddxy term. An important addition / feature in GENE-SPU is that not

only the tasks required to compute one term (i.e. same colour) can be overlapped but also the

computation of the terms. This means that tasks of different colours can be overlapped and be

executed in different hardware as can be seen in Figure 9. Note that in contrast to the previous

diagram, there is only one task for the computation of each term to fully use the GPU, otherwise

tasks will be too small and more memory transfers from CPU to GPU will be required.

Figure 9: Gantt diagram of the computation of the rhs. The new task-based parallelism allows to overlap the

computation of entire terms (which is not possible in the MPI implementation) and now they can be computed

concurrently in both the CPU (upper part) and GPU (lower part).

The current GENE-SPU implementation works on a single node using 1 MPI-rank and all available

cores and has support for GPUs. Nevertheless, to become exascale ready, running on many

accelerated nodes with an underlying MPI parallelization is necessary. StarPU in principle supports

this, but it has not yet been included in GENE-SPU. It is then also necessary to schedule the tasks

on all available CPUs and GPUs.

Vlasiator: Vlasiator models the near-Earth space plasma by propagating the six-dimensional (3D

position, 3D velocity) particle velocity distribution function for ions using the Vlasov equation,

under the effect of the Lorentz force caused by the electromagnetic fields [22]. The equation is

therefore coupled to the Maxwell equations in the Darwin approximation. The system is closed

through the generalised Ohm’s law including the Hall and electron pressure gradient terms and

hence electrons are approximated as a charge-neutralising fluid. The code [23] is open source and

parallelisation is done leveraging MPI, OpenMP, vectorisation as well as hyperthreading when

available. Porting effort to GPUs is on-going with initial testing done using OpenACC offloading

and current work focusing on restructuring the code as needed and using CUDA directly.

https://doi.org/10.1007/s41115-018-0003-2
file:///C:/Users/Thomas%20Eickermann/Documents/PRACE/6IP/Deliverables/github.com/fmihpc/vlasiator

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 18 30.06.2022

The test case chosen corresponds to a 6D magnetospheric run with four levels of adaptive spatial

mesh refinement identical to a production run performed on Hawk at HLRS in 2021, run from t =

0 for 20 steps. To make this test more realistic the temperature of the plasma was made

inhomogeneous spatially by a factor of 4, increasing the imbalance in computational load as

compared to a uniform case. This is more characteristic of the pronounced spatial disparity in

computational load experienced in production conditions.

Mahti is the largest Finnish national supercomputer with a theoretical peak performance of 9.5

petaflops. It is a Bull Sequena XH2000 system with an architecture similar to the Vega EuroHPC

petascale system. Mahti has a CPU partition of 1404 nodes with two 64-core AMD Rome 7H12

CPUs and 256 GB of memory on each compute node, and 200 Gbps HDR link for the network

interconnection, and a GPU partition of 24 nodes with four NVIDIA A100 GPUs. Benchmarking

results shown below were obtained on the CPU partition of the Mahti supercomputer. Similar

scalability was also seen on the Hawk supercomputer at HLRS.

On Mahti, the test case for Vlasiator scales well up to 160 compute nodes with a speedup of 12

times compared to 20 nodes as can be seen in Table 4 and Figure 10.

Nodes Cores Total time (s) Propagation time (s)

20 2560 2767 1855

40 5120 1693 1086

80 10240 646 388

160 20480 172 147

200 25600 213 111

Table 4: Results for Vlasiator scalability on Mahti. The propagation time does not include initialization, IO,

and load balancing.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 19 30.06.2022

Figure 10: Scalability study of Vlasiator on the Mahti supercomputer with total time (blue) and propagation

time (red) in seconds.

The figures reported here include both the total time with the not very well threaded initialisation,

one IO call, two load balance calls, as well as the pure propagation time that excludes initialisation,

IO and load balance. IO was performed using optimised MPI IO calls using the VLSV library

(github.com/fmihpc/vlsv). Runtime snapshots have a typical size of 20 GB each and are output at

a cadence of a few per wall time hour. Restarting checkpoint files are typically stored every 12 or

24 hours and can be up to several TB. The standard procedure is to keep the minimum number of

restart files on disk to secure the continuation of the run in case of a file corruption or similar issue

arises.

StruGePiC / SymPiFE-VMax: StruGePiC (Structure-preserving Geometric PiC) and SymPiFE-

VMax (Symplectic Particle-in-Finite-Element Vlasov-Maxwell) are both codes developed to

simulate the same system, the Vlasov-Maxwell equations for full-orbit (6D) charged particles. The

numerical methods employed, explicit symplectic time integration of Lagrangian markers and

discretisation of fields on de-Rham preserving finite differences/finite-elements are essentially

identical. The two software are distinguished by the use of different frameworks as building block:

the adaptive mesh refinement framework AMReX in the case of StruGePiC, and high-performance

finite element framework MFEM in the case of SymPiFE-VMax. Both frameworks are written in

C++, as are the softwares. The frameworks offer extensive parallel infrastructure for MPI, as well

as for threading on the CPU or the GPU, enabled by architecture-agnostic macros. This permits

very flexible porting of the software, once the conversion to a threaded version has been performed.

AMReX and MFEM support a variety of backends, which include CUDA and HIP. AMReX

readily supports PiC methods, which made the implementation of our particular scheme of choice

straightforward. Conversely, MFEM is designed for pure finite-element applications, which poses

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 20 30.06.2022

some challenges to implement efficiently certain methods of MPI-parallelisation common in large

scale PiC simulations (i.e. halo regions and domain cloning).

The test cases used for the scaling tests are a non-linear wave conversion case, and a simple plasma

oscillations case. The first consists of a slab simulation domain separated between a region

occupied by plasma, and a region of vacuum. A constant magnetic background is used, and an

electromagnetic wave (X-mode) is traveling in the vacuum region towards the plasma, which

nonlinearly excites oscillations with different frequency and polarisation (Bernstein wave). The

second test case consists of a slab simulation domain filled with plasma of uniform density and

temperature. In this case the charges move freely, and generate electromagnetic Langmuir waves

at the so-called plasma frequency.

Porting of StruGePiC was made on national machines Puhti (architecture similar to SuperMUC-

NG), Puhti-AI (similar to JUWELS Cluster) and Mahti (similar to Vega and MeluXina). Mahti is

also equipped with NVIDIA A100 GPUs, however scaling tests were only conducted on Puhti and

Puhti AI. As can be seen in Figure 11, StruGePiC showed excellent scaling on one GPU node, and

good scaling up to four GPU NVIDIA V100 nodes. Further optimisation work is ongoing to

improve the scaling on more nodes in realistic cases. Porting to AMD GPU machines has not been

performed, however StruGePiC relies on AMReX’s architecture-agnostic macros for handling

GPU threads, hence it can readily be ported to the architectures that AMReX supports i.e. for GPUs,

NVIDIA (CUDA), AMD (HIP) and Intel (DPC++).

Figure 11: Scaling of StruGePiC on Puhti

SIMPIC: SIMPIC (Simple PIC) is a simplified Particle in Cell code. The SIMPIC code was

developed under certain hypotheses which make the simulation significantly easier. There is

assumed to be no collisions between particles, no magnetic field and only free electron particles

(no ions). As per these assumptions, the complicated Maxwell’s equations boil down to solving

only a Poisson equation for the potential. This is easily done using the well-known finite difference

method. Now, the field can be calculated simply by taking the gradient of the potential. In a PIC

code, the whole plasma region is divided into sub regions called cells. Inside each of these cells,

there are some particles (ions/electrons). We give an initial random distribution of particles inside

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 21 30.06.2022

the plasma device. Then, we apply an external electromagnetic field to these particles usually in

the form of a voltage source. After this initialization, the PIC code follow a common algorithm as

seen in Figure 12 for SIMPIC.

Figure 12: SIMPIC workflow diagram. It shows the general algorithm flow of the PIC codes which consists of

two algorithms: Particle mover and field solver.

The code was run on the VIZ supercomputer at the Faculty of Mechanical Engineering in Ljubljana,

which has two 12-core CPUs (Intel Xeon E5-2680V3, 2.5 GHz), 256 GB of DDR4 memory

running at 2133 MHz with ECC, three NVIDIA Tesla K80 GPUs and 250 GB of memory per node,

and on Marconi100 at CINECA, which has two 16-core CPUs (IBM POWER9 AC922, 3.1 GHz),

four NVIDIA Volta V100 GPUs with Nvlink 2.0 and 16 GB RAM memory of the GPU, and 256

GB of memory per node. We used OpenMPI 3.1.4 and CUDA 10.1 with the GCC compiler on VIZ

and OpenMPI 4.0.3 and CUDA 10.1 with the GCC compiler on Marconi100.

The GPU optimization of the fully particle mover was done in the following steps:

1. Optimisation of the Particle mover

Before we can move the particles, we need to know what forces are acting on each particle.

This force is derived from the surrounding electric field. However, this is not so trivial. It

is important to understand that cells in the plasma region form a grid and the potential and

electric fields are calculated only at these “grid points”. A typical particle mover algorithm

would be something like:

 a. Gather field at particle position;

 b. Calculate new velocity using field;

 c. Calculate new position using new velocity.

 One should also note that the GPU has its own memory space. Hence, we decided to create

the particles in the GPU alone to avoid this memory transfer. We also implemented an

optimised algorithm for particles that go beyond the plasma region using a Boolean array

to flag particles alive/dead. This aids in vectorised processing on GPUs.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 22 30.06.2022

2. Optimization of the Field solver

To calculate the electric potential, the code has to compute the solution of a tridiagonal

matrix system which comes from the Poisson’s equation, and this is a very sequential

calculation. There are many algorithms designed to do this calculation, but CUDA comes

with a library called cuSPARSE for algebraic calculations on GPU. This library contains a

function which calculates the solution for this tridiagonal system. The parallelization

process for the rest of computations of the field solver part is similar to the particle mover,

but in this case, each thread is assigned to a grid point.

 In summary, the parallelization of the field solver follows the next steps:

 a. Solves the tridiagonal matrix using an external library;

 b. Corrects electric potential with the boundary values;

 c. Calculates the electric field with the electric potential.

3. Create tasks

Now, we can make even better use of the computing resources if we can use both the CPU

and GPU for computation. This is done by creating tasks or ‘codelets’ using StarPU, which

is a software tool which can schedule tasks to run on heterogeneous architectures

(CPU+GPU). All memory transfers and allocations in the application is done by StarPU

itself, which saves some amount of code. We have to note that the two last steps are

independent and, consequently, efficient for GPU calculations. Using the same case, we

produced benchmarks on VIZ HPC and Marconi100 with CPU, GPU and StarPU version

of the code.

Our benchmarks of the SIMPIC versions show that the GPU versions have much better

performance than the CPU version. The GPU particle mover shows a speedup of greater than 5x,

which is to be expected as the particle calculations are well parallelised and the CPU-GPU memory

transfers have been optimised. However, this speedup seems to saturate as we increase the number

of particles above 105 particles. Hence, this calculation limits the performance of our code. With

regard to this, it can also be observed that the number of particles per cell (PPC) affects the speedup.

This could mean that the performance would be better if we have more cells for a given number of

particles. On the other hand, the CPU-GPU memory transfer of the bigger density arrays associated

with a larger number of grid points also requires more time. Hence, we observed that there is an

optimal number of particles per cell which would give us the best speedup for the particle mover.

On the other hand, for the field solver, we see that the GPU version is slower than the CPU one for

low numbers of grid points, and it is faster for a high number of grid points. This time consumption

mainly comes from the tridiagonal solver which is not efficient in GPU for low numbers of grid

points but its calculation time remains more or less constant with the number of grid points. It

should be noted that the most time expensive part of this code can be the generation of the

diagnostic logs that should be turned off for performance. As can be seen on the plot on the right

in Figure 13, there is a constant difference between the GPU fields + particles (red curve) and GPU

fields + particles w/o diags (dotted curve), which indicates the amount of time consumed by the

diagnostic operations.

Our StarPU version of SIMPIC shows good speedup when compared to the CPU version. However,

this is not as much as our CUDA-only GPU version. The particle mover runtimes for the StarPU

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 23 30.06.2022

version are slightly faster than the GPU version. This is because the StarPU data management is

more efficient at data transfers.

Figure 13: Comparing performance of various accelerated versions of SIMPIC on the VIZ cluster. Left:

Runtime Plot of the Particle Mover against number of particles. Right: Runtime plot of field solver against

number of cells.

For the SIMPIC GPU version profiling we used the NVIDIA Visual Profiler to visualize the

profiling done on the full CUDA version of SIMPIC. The NVIDIA visual profiler comes along

with the CUDA toolkit and hence does not need to be installed separately. In Figure 14 the timeline

for the fully GPU version of SIMPIC is outlined.

Figure 14: Timeline of One Time Step of the full SIMPIC GPU version.

From Figure 14 one can see very minimal data transfers between the host and the device when

using our optimized data transfer algorithm. The particle mover accounts for close to 70% of the

compute time whereas the remaining compute time is taken by the cuSparse matrix solver for fields.

This shows that we have been able to incorporate the two main computationally intensive parts of

a Particle-in-Cell code in GPU.

For the profiling of the StarPU version we again made use of the external tracing application FxT

for tracing purposes, with the resulting trace visualised using the ViTE visualization program. The

profiling timeline for the application is presented in Figure 15.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 24 30.06.2022

Figure 15: Timeline for StarPU particle mover task.

From Figure 15 we can see explicitly the memory transfers from the CPU memory to the GPU

memory as white arrows. The green bars indicate the StarPU tasks. The first task is the GPU particle

mover task and the smaller green bar later is the field solver GPU task. The red parts indicate that

the PU is idle. Note that there are no explicit memory transfer calls in our code. All the required

memory transfers are taken care of by the StarPU memory management and scheduler

automatically. The timeline looks very similar to the previous GPU version, which is to be expected

as it is essentially the same code but with the kernels executed as StarPU tasks.

4.3 Interactions with stakeholders, users, outreach and publications

GENE/task: GENE is a well-established plasma micro turbulence code that is widely used by the

plasma physics community. Since we are working directly with the GENE code, its modernization

and any performance improvement achieved by the task-based parallelisation with StarPU and use

of heterogeneous hardware will directly be a benefit for all developers and users of the code. All

code modifications have been in discussion with GENE developers and are therefore easily adapted

and integrated in the production version.

VLASIATOR: A presentation is scheduled at the upcoming PRACE Autumn School 2021:

Harnessing the EuroHPC Flagship Supercomputers with the title ‘Program acceleration with GPU

using CUDA’ - Dr. Talgat Manglayev (October 13th 2021).

SYMPIFE-VMAX/STRUGEPIC: Peer-reviewed articles of the numerical methods developed

with the mini-apps SymPiFE-VMax and StruGePiC are in preparation. Both SymPiFE-VMax and

StruGePiC are being used by the ELMFIRE team at Aalto University. Further developments and

use for physics research are ongoing within the EUROfusion Theory, Simulation, Validation and

Verification program (TSVV-4). This activity, in direct collaboration with the Max-Planck Institute

for Plasma Physics (Garching, Germany) aims at demonstrating the use of these simulations in

regions near the tokamak edge, where the validity of gyrokinetic theory is in question (motivating

simulations with full-orbit particles), installing them among reference tools for the European

community.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 25 30.06.2022

The mini-apps are also central to two projects pending review from the Academy of Finland, in

collaboration with leading experts of plasma-gas PIC simulations at the Institute of Plasma Physics

(Prague, Czech Republic), in order to access strongly multiphase regimes (so-called detached

plasma).

SIMPIC: We produced two conference publications on MIPRO 2020 [17] and 2021 [18]. The first

publication describes how the GPU optimization was done in the prototype PIC code. The second

publication describes the fully GPU field solver of OOPD1. We also participated in ASHPS (First

Austrian-Slovenian HPC meeting) [19] and Autumn PRACE School in 2020 [20]. There we

presented the GPU method for optimization on PIC codes.

4.4 Overall assessment of achievements and future developments

Overall, the project has been a success with many of the main objectives achieved, but due to the

complexity of the problems tackled not everything could be finished within the project timeline.

Further work is planned and it is expected that all of the original objectives will be met or exceeded

in the near future.

Mini-apps

In-line with the project goals, three plasma physics mini-apps were developed and/or ported to

GPUs during the project. These mini-apps explored various approaches and ease the adoption of

the lessons learned by the community.

SIMPIC: The methods for PIC codes optimization in GPU and explored task-based parallelism

using StarPU were developed. These methods have been implemented also in more complex PIC

codes such as BIT1 and OOPD1. Future work is planned to produce a workable SIMPIC on

multiple GPUs and carry over the GPU implementation to even more complex PIC codes.

SymPiFE-VMax: A new mini-app for particle-in-finite-elements Vlasov-Maxwell systems with

multiple species was developed. It demonstrates the use of the MFEM framework for creating PIC

plasma simulations on both CPUs and GPUs. Together with the StruGePiC mini-app, it serves as

a basis for the refactoring of the ELMFIRE code (see below).

StruGePiC: A new mini-app was developed for structure preserving PIC simulations using

AMReX to implement an explicit structure-preserving algorithm [24]. It demonstrates the use of

the scalable framework AMReX for creating PIC plasma simulations on both CPUs and GPUs.

Together with the SymPiFE-VMax mini-app, it serves as a basis for the refactoring of the

ELMFIRE code (see below).

GENE/tasks

The main objective was to implement and to explore task-based parallelism in GENE. We clearly

underestimated the amount of work that it requires for such an implementation. One difficulty

comes from the fact that GENE is written in modern Fortran, but the Fortran layer of StarPU is not

as mature as the C layer. Hence, several contacts to the StarPU developers with feature requests

and bug fixes were necessary to make the full functionality of StarPU available from Fortran.

The resulting code can now compute a time step in the Runge-Kutta scheme using a local approach

with StarPU for a single test scenario. However, since the implementation required a modification

and refactoring of interfaces present in the code path of the test problem, the implementation for

other paths that use the same interfaces require minimal changes to complete its taskification. This

https://doi.org/10.1088/2058-6272/abf125

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 26 30.06.2022

is true even for the global approach. The design of a class hierarchy that fits into the existing object

structure of GENE needed several attempts and a lot of implementation work.

Due to the time constraints, not enough research was done regarding the optimal task size to be

used in the critical GENE components, the different schedulers, the performance models and the

portability of the code. We plan to work on single node optimization now that the tasks are available

for CPU and GPU and only the necessary synchronization points have been kept. These tests will

improve our understanding of the effects of each component in the task-based parallelization.

Finally, we have plans to support MPI in GENE-SPU. Either GENE is launched with just one MPI

rank per node and StarPU pauses during MPI communication and resumes to use MPI as usual, or

we use the MPI library provided by StarPU.

Vlasiator

The main objectives for Vlasiator were to look into porting some of the main algorithms to GPUs

and to explore the possibilities of task-based approaches. Initial GPU porting efforts were put into

investigating how well OpenACC could be utilised to offload main computational routines to

GPUs. As part of this, the team participated in a NVIDIA mentored GPU Hackathon and worked

on the code with the guidance of an expert. Even though initial impressions were positive,

achieving good performance was difficult e.g. due to overheads from data movements that could

not be mitigated without major restructuring of the code and its data structures. In the end, the

decision was to proceed with the GPU porting by restructuring the code as needed, but to use

CUDA instead of OpenACC to gain more direct control of the detailed implementation. Moreover,

the CUDA code can then be readily ported to HIP and thus one will be able to support all the

EuroHPC systems. The new 3D capability of the Vlasiator simulation is based on using a

suboptimal numerical grid for computations, as the simplest first step was to implement an adaptive

mesh refinement (AMR), which is static in time. The work is on-going.

ELMFIRE

Two mini-apps (SymPiFE-VMax and StruGePiC) have been developed which demonstrate the use

of structure-preserving numerical methods for plasma turbulence simulations aimed at accelerated

architectures. Relying on existing frameworks has made it possible to produce such parallel

softwares in a relatively short time, although the features absent from MFEM have induced

significant challenges in the development of SymPiFE-Vmax. We expect however that this will be

compensated by the very high versatility of MFEM, which will facilitate simulations in realistic

geometry using curvilinear meshes. In addition, one mini-app (SIMPIC) was used to explore task-

based parallelism using the StarPU framework.

Further developments are planned both to improve performance and scaling, and to add features

expanding the domain of applicability of the simulation (such as collisions or relevant boundary

conditions).

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 27 30.06.2022

5 LoSync: Synchronisation reducing programming techniques and
runtime support

5.1 Introduction and summary

The LoSync project aims to improve the scalability of applications by removing unnecessary

synchronisation and serialisation, and by fully exploiting the potential for overlapping

computations and communications. To do this, we make use of modern features of well-

standardised APIs, to ensure portability and relevance.

Efficiently implementing a pure task-based programming on distributed memory systems is very

challenging. Instead, we propose a hybrid model which uses task-based programming inside a node

and traditional message-passing between nodes. To minimise synchronisation and expose as much

parallelism as possible, our experience has shown that communications as well as computations

should be expressed as tasks. However, standard communication libraries are difficult to use like

this without encountering the risk of deadlocks, for example where all threads are executing tasks

containing blocking communication calls. In LoSync we are developing and evaluating task-aware

versions of MPI and GASPI libraries (called TAMPI and TAGASPI) which are integrated with

OmpSs-2 and OpenMP task-based runtimes. In TAMPI and TAGASPI, tasks blocked on

communication calls are paused, freeing their executing threads to process other tasks, until the

communications complete and the paused tasks can be resumed.

Figure 16 illustrates the software stack for our solution. The application sits on top of the TAMPI

and TAGASPI libraries (normally an application would choose one or the other, but to call both

libraries from the user level is possible). The user interface for these is mostly the same as for the

underlying MPI and GASPI libraries, with a small number of extensions. The TAMPI and

TAGASPI libraries in turn interface with the underlying communication libraries and the tasking

runtime system (OmpSs-2 or OpenMP).

Figure 16: Software architecture for hybrid applications using TAMPI and TAGASPI libraries

Figure 17 shows the state transition diagram for tasks in this model. Whenever a running task is

blocked in MPI (for example), its status is changed to paused, and the executing thread is also

paused, but the CPU that was running that thread is able to execute other tasks (either computation

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 28 30.06.2022

or communication). When the blocking MPI call completes, the task becomes ready again, and can

be rescheduled for execution when resources are available. TAMPI also supports another mode

which allows the task to complete but only release its dependencies when the MPI call completes:

this mode is easier to integrate with existing OpenMP implementations, but requires extensions to

the MPI interface. A similar model is used in the TAGASPI implementation.

Figure 17: State transition diagram for tasks (blocking mode)

5.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

We have evaluated the performance and programmability of the Task-Aware MPI (TAMPI) and

Task-Aware GASPI (TAGASPI) libraries on a number of mini-applications. In this section, we

focus on just two of these - Gauss-Seidel and miniAMR. Further results can be found in the

publications cited in Section 4.3. For both codes, we evaluate (1) an optimized two-sided MPI-only

approach, (2) a two-sided hybrid MPI+OmpSs-2 variant that leverages TAMPI, and (3) a one-sided

hybrid GASPI+OmpSs-2 variant that leverages the TAGASPI library.

We run our experiments in the Marenostrum4 supercomputer with up to 256 nodes (12288 cores).

Each node has two sockets Intel Xeon Platinum 8160 (2.10GHz) with 24 cores each (48 total cores),

96 GB of memory, and an Intel Omni-Path HFI Silicon 100 Series network. We also use 16 nodes

(1024 cores) of the CTE-AMD cluster. Each node has a single AMD EPYC 7742 (2.250GHz) with

64 cores (SMT is disabled), 1TB of memory, and a Mellanox InfiniBand HDR100 network. We

use the Intel 2017.4 compilers and Intel MPI 2017.4 on Marenostrum4, while Intel 2018.4 and

OpenMPI 4.0.5 on CTE-AMD.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 29 30.06.2022

A. Gauss-Seidel

We first use the iterative Gauss–Seidel method that solves the Heat equation, a parabolic partial

differential equation describing the heat distribution in a region over time. This benchmark uses a

2–D matrix logically divided into blocks. The matrix is distributed across ranks assigning a

consecutive set of rows to each one, so processes exchange the boundary rows with the upper and

lower neighbors only.

We evaluate an optimized MPI-only version that uses non-blocking MPI primitives. We also

evaluate two hybrid MPI+OmpSs-2 variants that taskify both computations and communications

and leverage the TAMPI non-blocking support (TAMPI_Iwait) and TAGASPI one-sided support

respectively.

We evaluate this benchmark in Marenostrum4; the MPI-only spawns 48 ranks/node, and the hybrid

variants use one rank/socket (24 cores/rank) to avoid NUMA effects. Figure 18 shows the strong

scaling experiment using the optimal block size of each variant. The upper figure shows the

speedup, and the lower presents the parallel efficiency.

Figure 18: Gauss-Seidel strong scaling with a 256Kx128K matrix and 1000 timesteps in MN4 from 1 to 256 nodes.

Due to the memory available in each node, we use a large input for the experiments from 16 to 256 nodes, and a 16x

smaller input (64Kx32K matrix and 1000 timesteps) for the experiments from 1 to 8 nodes.

The MPI-only version is only competitive on a single node, its performance starts to degrade with

two nodes and it ends performing worse at 128 and 256 nodes. The TAMPI version improves that

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 30 30.06.2022

performance in this latter scenario, but TAGASPI is the version that scales best. At 256 nodes,

TAGASPI outperforms MPI-only and TAMPI by 1.15x and 1.06x, respectively.

We run another experiment to observe how the variants behave when putting more pressure on

communication. Figure 19 shows their throughput at 128 nodes, halving the previous input size

and modifying the block size. Notice that changing the block size implies changing the computation

and communication granularities, as well as the task granularity for the two hybrid versions.

TAGASPI outperforms the rest in all cases, especially for configurations with a small block size,

where the communication cost has a larger impact. The lower performance of TAMPI for small

block sizes can be explained by threading contention inside the MPI library. TAGASPI using small

blocks of 128x128 still works at an acceptable 60% of the peak throughput, while MPI-only is at

41% and TAMPI at 30%.

Figure 19: Gauss-Seidel throughput varying the block size with a 128Kx128K matrix and 500 timesteps in

Marenostrum4 with 128 nodes.

B. miniAMR

The second application is the miniAMR, which mimics the communication, refinement, and load-

balancing of larger adaptive mesh refinement applications. MiniAMR simulates the physics

conditions of a 3–D domain when objects move across it. These objects create turbulent conditions

in the regions they are present in and miniAMR increases the simulation accuracy in those parts.

The domain is initially divided into 3–D blocks and distributed among processes, but due to the

dynamism of the simulation, turbulent blocks are refined into smaller blocks and redistributed

periodically. MiniAMR features multiple phases of computation and communication interleaved,

and then a refinement and load-balancing phase periodically.

We run the following experiments in Marenostrum4; the MPI-only uses 48 ranks/node, and hybrids

use 4 ranks/node and 12 cores/rank. That is the optimal configuration for hybrid approaches in

miniAMR, given that the refinement phase is not fully taskified. In the TAGASPI variant, we also

use TAMPI during the load-balancing stage to demonstrate that both libraries can work together.

The load-balancing stage represents a small portion of the total time and does not present

improvement opportunities, so this stage is still implemented with tasks that call two-sided TAMPI

services.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 31 30.06.2022

Firstly, we perform a strong scaling experiment using 20 variables at each mesh point. The number

of variables per grid point can be varied via an input parameter – larger numbers of variables

increase the computation to communication ratio. The hybrid variants send/receive/write each

boundary block face from a different task (separate messages). This is not the optimal configuration

but provides competitive performance and puts more pressure on the communication phases. We

show the speedup of a strong scaling experiment on the upper part of Figure 20, and the parallel

efficiency on the lower part. We compute the speedup with respect to the throughput of the MPI-

only variant in one node. We calculate the efficiency with respect to each variant’s throughput in

one node. Again, since the input is very large, we use a 16x smaller input from 1 to 8 nodes.

Figure 20: miniAMR strong scaling in Marenostrum4 from 1 to 256 nodes. The lower shows the efficiency for both

the total time and assuming a negligible refinement time (NR). Due to the memory available in each node, we use a

large input for the experiments from 16 to 256 nodes, and a 16x smaller input for the experiments from 1 to 8 nodes.

In this case, TAGASPI achieves the best scalability and efficiency; it improves both MPI-only and

TAMPI by 1.41x at 256 nodes. The efficiency of TAGASPI is significantly better since it ends

with an efficiency of 0.84, while MPI-only is at 0.73 and TAMPI at 0.58 (non-refinement). Notice

that TAMPI scales well up to 32 nodes, but it starts decreasing the efficiency from 64 nodes due to

the high pressure on the communication. In those cases, TAMPI would need to increase the

communication granularity to mitigate that effect.

We perform another experiment with 128 nodes using the previous input but varying the computed

variables from 10 to 40 to see the impact on each variant. Figure 21 shows the throughput of each

variant in this experiment. Again, TAGASPI performs better in all configurations with significant

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 32 30.06.2022

differences. MPI-only is barely affected by the number of variables but has lower performance.

The hybrid versions computing 10 variables show low throughput because the small granularity of

computation tasks brings up the tasking runtime’s overheads. TAMPI improves as we increase the

computed variables and reduce the pressure on the communication side. The largest differences are

with 20 variables, where TAGASPI outperforms MPI-only and TAMPI by 1.46x and 1.40x (non-

refinement), respectively.

Figure 21: miniAMR throughput varying the number of computed variables in Marenostrum4 with 128 nodes. The

figure shows the throughput for both the total time and assuming a negligible refinement time (NR). Notice that the

vertical axis (throughput) starts at 1000 GUpdates/s.

During an analysis of the execution traces of the hybrid variants with 20 variables, we observed

that the tasks using TAGASPI communications are much faster than with TAMPI. For instance,

the sender and receiver tasks using TAGASPI are around 5x and 100x faster than the TAMPI ones,

respectively. This difference is mainly explained by the high contention inside the MPI library

when calling MPI_Isend and MPI_Irecv concurrently from several tasks. In contrast, the GASPI

model allows GPI-2 to implement communications with lower threading synchronization.

5.3 Interactions with stakeholders, users, outreach and publications

Outreach and stakeholder engagement activities were unfortunately much reduced from what we

had anticipated due to the pandemic, especially with regard to hands-on training or hackathon-style

workshops. This project has produced three main publications. The first publication [25], describes

how the TAMPI library can be leveraged to improve the performance of the miniAMR mini-app

that has a complex and dynamic communication pattern. The second publication [26] describes the

implementation of the Lulesh and HPCCG mini-apps using TAMPI. It shows the importance of

task granularity control and how worksharing tasks can reduce overheads. The third publication

[27] presents the new TAGASPI library that eases the integration of tasking models such as

OpenMP and OmpSs-2 with the one-sided primitives of GASPI.

We have participated in the minisymposium “Bringing Task-Based Programming to the

Mainstream” collocated with the PASC 2021 conference. We presented the work done on the

LoSync project to improve hybrid programming with the TAMPI and TAGASPI libraries.

We have had successful collaborations with other EU-funded projects. The TAMPI and TAGASPI

libraries have been used in the DEEP-EST project to evaluate the Modular Supercomputing

file:///C:/Users/Thomas%20Eickermann/Documents/PRACE/6IP/Deliverables/10.1109/CLUSTER49012.2020.00042
https://doi.org/10.1109/CLUSTER49012.2020.00017

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 33 30.06.2022

Architecture (MSA). Specifically, TAMPI has been used to implement the communications

required to split applications across different modules. The TAGASPI library is also being used in

the EPEEC project.

5.4 Overall assessment of achievements and future developments

The project has developed the new TAGASPI library, and ported a wide range of benchmarks and

mini-apps from pure MPI or conventional MPI + OpenMP to hybrid models leveraging the TAMPI

and TAGASPI libraries. These include miniMD, Gauss-Seidel, miniAMR, HPCCG, N-Body,

Lulesh, Matmul, and Co-MD. In many cases we have demonstrated performance gains from the

task-aware communication library approach, especially in strong scaling scenarios where

communication overheads start to dominate at high core counts. We have also put effort into

improving the support for these models in the Extrae tracing facility, so that the behaviour and

performance characteristics of these highly asynchronous codes can be more readily visualised.

This project has also allowed us to understand much more clearly the limitations of our approach

and to focus on what needs to be done to improve it. Topics for further investigation include the

following:

Software engineering issues

We did not succeed in implementing a large-scale application code using our programming

model(s), as we underestimated the porting and refactoring effort involved in translating pure MPI

or conventional MPI + OpenMP codes to fully exploit TAMPI or TAGASPI. In assessing some

larger codes for porting feasibility, we noted that otherwise beneficial software engineering

practices, such as encapsulating MPI communications, or allowing use of different intra-node

parallel APIs (e.g. OpenMP and CUDA) from the same source base, significantly add to the

complexity of porting. This is often a result of deep-seated assumptions being made that intra-node

parallel computations and inter-node communications do not overlap with each other. The design

of data structures can also be a poor match for the tasks with dependencies approach. For a

successful implementation of a large scale application using TAMPI or TAGASPI, it would be far

preferable to start with a task-based implementation in mind early in the design process, but this

was not feasible with the effort available in this project. A topic for future work would be to design

applications “ground-up” with the programming model specifically in mind.

Task granularity and locality

As with all tasking approaches, the granularity of tasks can strongly affect performance. With too

many small tasks, the overheads of task creation and scheduling may dominate. On the other hand,

too few large tasks risks leaving cores idle due to load imbalance or lack of available parallelism

at certain points in the computation. Optimising the granularity typically requires parameterising

the size of tasks, by grouping together multiples of the application’s “natural” tasks to form larger

tasks.

In OmpSs-2 and OpenMP this often has to be done quite manually, adding to code complexity, and

making reasoning about task dependencies more difficult. Including communication in tasks can

compound the problem, due to internal synchronisation and contention for shared resources inside

the communication library. This is especially a problem in most MPI implementations, and the

main reason why TAGASPI can outperform TAMPI is thanks to the better thread-safety design in

GASPI. We found that the fine-grained communication tasks naturally found in classical molecular

dynamics codes such as miniMD and Co-MD were particularly problematic. The code paths in the

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 34 30.06.2022

MPI library most exercised by TAMPI are not the same as the ones usually exercised by

conventional MPI applications, and therefore may have not been optimised for multi-threaded

execution. Future work will focus on optimizing the TAMPI library to reduce thread contention

inside MPI.

If there are many different kinds of tasks in an application, all of which have parameterised

granularity, we face a challenging optimisation problem to find the best set of task size parameters.

Coupling parameters together, as we did for Lulesh, for example, in [26] can simplify the problem

but may lead to a suboptimal solution. Exposing these parameters to an auto-tuning framework

could be a possible way to handle this, but it would be even better if the “natural” tasks could be

automatically coalesced by the runtime, though this is not trivial in the presence of complex

dependency patterns.

Tasking is well known to be most beneficial for irregular computations. However, the use of

TAMPI or TAGASPI has the potential to benefit regular applications by providing more effective

overlapping of computation and communication than is possible with conventional MPI, for

example. For such regular applications, the use of tasks can introduce unwanted overheads of task

packaging and scheduling, as well as degrading locality (and therefore cache utilisation) due to the

unpredictable patterns with which tasks are scheduled to cores. The use of worksharing tasks [26]

goes some way towards solving this problem, but further research in this direction is required.

Library coverage

At present, the TAMPI library does not implement the whole of MPI, and in particular it would be

useful to extend the coverage to include MPI 4.0 features such as MPI_info hints, and persistent

collectives.

Tracing and debugging tools

When programming with TAMPI or TAGASPI, the out-of-order execution of both computation

and communication tasks can make reasoning about both correctness and performance very hard

for the application developer. Developing robust tool support is highly effort intensive, and in this

project we have worked hard on improving support in the Extrae tracing package for TAMPI and

TAGASPI, though more remains to be done.

https://doi.org/10.1109/CLUSTER49012.2020.00017
https://doi.org/10.1109/CLUSTER49012.2020.00017

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 35 30.06.2022

6 FEM/BEM based domain decomposition solvers

6.1 Introduction and summary

ESPRESO [28] is a massively parallel framework based on the finite element method focusing on

engineering applications. The main objective of its development team is to create a robust open

source package applicable for a wide range of complex engineering simulations in areas such as

mechanical engineering, civil engineering, biomechanics, and energy industry. It features scalable

I/O tools, tools for mesh processing and morphing, finite element library, and massively parallel

solver (see Figure 22 below). The solver parallelized in the distributed memory is based on the

non-overlapping FETI (finite element tearing and interconnecting) domain decomposition method.

In the past it has already shown an excellent scalability when applied to problems such as linear

elasticity or heat transfer on machines like Titan at Oak Ridge National Laboratory or Piz Daint at

CSCS [29]. The main goal of the project was to extend the framework’s functionality to support

massively parallel solution of harmonic analysis and acoustic problems, thus providing new

capabilities in these engineering areas.

Figure 22: Capabilities of the ESPRESO library.

Within this project, several tasks had to be tackled, these included:

 The refactoring and optimization of the ESPRESO library;

 Development of the harmonic analysis and acoustic module;

 Acceleration of computationally intensive code using GPUs;

 Inclusion of the solver into the Solver as a Service online platform at IT4Innovations.

In Figure 23 we employ the developed software to compute the frequency response of the electric

motor case discretized into 15 million degrees of freedom.

https://github.com/It4innovations/espreso/
https://pasc16.pasc-conference.org/program/index-of-contributors/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 36 30.06.2022

Figure 23: Frequency response of the electric motor case computed using 450 nodes of the Salomon cluster at

IT4Innovations in 714 s (15 million DOFs, 60 frequency samples).

6.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

The code has been tested on several European systems, including Salomon and Karolina at

IT4Innovations National Supercomputing Center in Czech Republic or JUWELS Cluster and

JUWELS Booster modules at Jülich Supercomputing Center in Germany. The Salomon cluster

consists of 1009 nodes, each equipped with two 24-core Intel Xeon E5-2680v3 processors and 128

GB of RAM. The Karolina cluster consists of 829 compute nodes, totalling 106752 cores, giving

over 15.7 PFLOP/s theoretical peak performance. The JUWELS Cluster module is equipped with

2271 standard nodes with two 24-core Intel Xeon 8168 CPUs and 96 GB of RAM. The JUWELS

Booster module consists of 936 nodes with two AMD Epyc Rome 7402 CPUs, 512 GB of RAM

and four NVIDIA A100 GPUs.

Parallel performance of the harmonic analysis module

The harmonic analysis module allows combined parallelization both in spatial and frequency

domains. This significantly improves scalability on large machines. On the other hand, load balance

may be affected since iterative solution of respective linear systems on nodes handling frequencies

close to eigenfrequency requires a larger amount of iterations. The combined spatial-frequency

decomposition was benchmarked on the Salomon cluster using cubical domain with 43 million

degrees of freedom, testing frequency response in 36 sample frequencies ranging from 0 to 15000

Hz. We used six groups of 72 compute nodes (10368 MPI processes in total). Within each group,

the whole spatial domain was decomposed using the FETI domain decomposition method and 6

frequencies were resolved. Duration of iterative solvers for individual frequencies is depicted in

Table 5. While the load balance is far from optimal, it still enables us to solve significantly larger

problems than using only spatial or frequency decomposition separately.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 37 30.06.2022

nodes 0-72 nodes 73-144 nodes 144 -216 nodes 145 -288 nodes 289 - 360 nodes 361 - 432

24.965 27.992 31.528 27.784 30.174 32.645

24.988 27.844 27.55 27.708 27.378 32.089

24.73 27.915 29.295 28.404 24.379 30.626

25.069 28.003 28.397 28.226 27.799 38.301

24.643 31.793 30 28.797 33.298 29.451

25.064 30.782 27.351 30.394 32.792 28.443

Total time

149.459 174.329 174.121 171.313 175.82 191.555

Table 5: Computation of the harmonic analysis with combined spatial-frequency domain parallelization.

Solution of the system using iterative solver in [s].

Scalability of the GPU accelerated code

Since the heterogenous architectures are currently prevailing in HPC, the code has to be accelerated

using GPUs in order to leverage the full power of modern supercomputers. We employ the local

Schur complement approach within our FETI solver. This enables us to work with dense Schur

complement matrices instead of sparse system matrices which are common in FEM. Therefore, we

are able to replace direct solution of large sparse systems by iterative solution with small dense

matrices which can be efficiently performed on GPUs.

Figure 24: Strong parallel scalability of the harmonic analysis solver on JUWELS Booster module.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 38 30.06.2022

Strong parallel scalability of the accelerated code tested on JUWELS Booster module in Jülich

Supercomputing Center is depicted in Figure 24. For this test we used a spatial domain decomposed

into 6 million degrees of freedom. The parallel efficiency reaches approximately 90% on 256

nodes.

Performance of optimized I/O

The ESPRESO package is primarily an engineering software. Since the engineering meshes are

usually stored in unstructured sequential database files often containing hundreds of millions

nodes, we provide an interface for their efficient parallel loading and manipulation. This interface

has been optimized within the project and extended to support additional file formats. Scalability

of the individual phases of mesh manipulation on the JUWELS Cluster module is depicted in

Figure 25.

Figure 25: Scalability of the individual phase of mesh manipulation on the JUWELS cluster module

Reading the mesh from the drive initially scales well, however soon reaches the limit given by the

underlying hardware. During the BUILD phase the mesh is assembled in parallel from the loaded

data and the MESHING phase prepares the mesh for usage in the parallel solver. These phases

scale well until approximately 3000 processes when the parallel overhead starts to dominate.

Finally, the STORE phase is again limited by the capabilities of the underlying hardware.

Similar results were obtained on the Karolina cluster at IT4Innovations. In Figure 26 we only

present the behaviour of the READ + PARSE phase and MESHING phase. While the first phase

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 39 30.06.2022

reaches the hardware bandwidth limit at approximately 1024 - 2048 MPI processes, the MESHING

phase scales well up to 4096 MPI processes.

Figure 26: Scalability of the READ + PARSE and MESHING phases on the Karolina system

6.3 Interactions with stakeholders, users, outreach and publications

Within the EXPERTISE project [30], IT4I has established cooperation in the application of parallel

solution of harmonic problems and its application especially to nonlinear harmonic balance

method. EXPERTISE is a European Training Network (ETN) that will contribute to train the next

generation of mechanical and computer science engineers with a common basic knowledge on the

challenges, the paradigms, the technologies and the methodologies in the field of nonlinear

structural dynamics of turbomachinery and High Performance Computing. The results achieved

within the PRACE project were presented at regular project meetings and the findings were

consulted with individual members of WP3 - Structural dynamics of turbine and its components.

IT4Innovations national supercomputing centre has an ongoing cooperation with SIEMENS Czech

Republic. Siemens Electric Machines s.r.o., Frenštát is one of the leading producers of low-voltage

asynchronous electric motors. Their primary customers are producers of pumps, compressors, and

air-conditioning equipment. One of the priorities of the Siemens company includes the production

of electric motors with highly efficient cooling systems, allowing smooth operation of these

machines even under extreme conditions. In cooperation with experts from the Siemens company,

we are pursuing development of a digital twin of an electric motor in order to improve the efficiency

of asynchronous electric motors. Within the national project focused on the development of a

digital twin of the electric motor, the results of the PRACE project are applied to calculations of

the structural harmonic response from forces generated by electromagnetism. The project is funded

by the Ministry of Industry and Trade of the Czech Republic. We would like to apply the ESPRESO

solver also to solve acoustics generated by electromagnetism.

Effective utilization of HPC systems has a significant impact on the validity of spending financial

resources into HPC infrastructures from a global point of view.

In the context of the digital twins’ concept, the use of the ESPRESO framework will allow a

combination of numerical simulations of complex physical problems and a deep learning approach.

This approach will consist of using the ESPRESO framework to create a large number of data sets

containing the results of complex simulations for a wide range of initial and boundary conditions.

These data sets can then be used to train neural networks that can then be used for simulation and

prediction of the behaviour of a given product represented by a digital twin in real time.

http://www.msca-expertise.eu/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 40 30.06.2022

Within the activities of the National Competence Centre of the EuroCC project under the European

Union’s Horizon 2020 [31], Digital Innovation Hub Ostrava [32], and IT4Innovations provides

knowledge, technology transfer and services based on PRACE project results to IT4Innovations

clients and as such contributes to the improvement of their processes, products, and services and

thus provides added value for their customers and society at large, and creates new business

opportunities.

ESPRESO is also newly involved in the European Pilot for eXascale (EUPEX) project. The

objective is to enable the ESPRESO FEM framework on the EUPEX modular architecture and to

optimize its performance for the SiPearl Rhea chips in order to leverage both SVE vectorization

and HBM memory, as the ESPRESO solver is mostly memory bound.

Due to the Covid-19 related travelling restrictions, most of the planned conferences have been

cancelled. However, the ESPRESO package was presented, e.g., at the Supercomputing 2019

conference in Colorado, Denver.

6.4 Overall assessment of achievements and future developments

Within the project, several goals specified in the proposal have been tackled:

Refactoring and optimization of the original code:

We have optimized the parallel input workflow and the global matrix operations, created new

interfaces to external solvers and mesh partitioners (such as Pardiso, SuperLU, Watson Sparse

Matrix Package, HYPRE, PT-Scotch), and redesigned the ESPRESO configuration file. We have

also optimized the system matrix assembler by replacing the BLAS routines by manually tuned

code for small matrices. We have also extended the functionality of the code to support mortar type

gluing conditions enabling computation with non-matching meshes.

Development of the harmonic analysis module:

The ESPRESO module for harmonic analysis has been implemented. It supports hybrid MPI and

OpenMP parallelization as well as acceleration using GPUs. Within its development, the main

obstacle was development and implementation of the regularization of the system matrices and

preconditioner by the artificial coarse problem. We have implemented three approaches for

assembly of the artificial coarse problem that can be used as a preconditioner for various types of

problems. Their development and debugging slowed down the overall progress of the project.

GPU acceleration of the code:

Some of the computationally intensive parts of the code have been accelerated using GPUs. We

have accelerated the solver part using the local Schur complement approach that enables us to

replace the large sparse system matrix by smaller dense matrices more suitable for GPU processing.

The scalability of the accelerated code has been tested on clusters equipped with NVIDIA A100

GPU.

Development of the acoustic module:

Due to the issues with the regularization and coarse problem assembly for the harmonic analysis

module, the development of the acoustic module was delayed and has not yet been finished.

Currently, the acoustic problems are treated using direct a sparse solver which limits the maximum

problem size and parallel scalability. We plan to continue working on the module after the end of

the PRACE project.

https://www.it4i.cz/en/welcome-to-the-national-competence-center-in-hpc
http://www.dihostrava.cz/en

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 41 30.06.2022

Incorporation into the Solver as a Service platform at IT4Innovations:

Although the original plan was to include the harmonic analysis solver into the Solver as a Service

(SaaS) platform at IT4Innovations and enable users not familiar with HPC to use the software on

a supercomputer, due to a developer leaving the team, the implementation of the SaaS platform is

not yet finished. Its development will continue in future.

Comparison with the boundary-element-based solvers

This part has been cancelled in order to fully focus on the development of the harmonic analysis

module.

7 Performance portable linear algebra

7.1 Introduction and summary

Scientific applications, especially Material Science ones, rely heavily on Linear Algebra to tackle

complex tasks. A key issue, both in terms of importance and of performance, is the solution of

distributed dense eigenvalue problems. For example, modern electronic structures methods, like

Density Functional Theory (DFT), manipulate many-body Schrödinger equations to obtain (dense

or sparse) eigenvalue problems or linear systems.

ScaLAPACK [33] is considered the de-facto standard library for distributed linear algebra.

However, its performance is strongly limited by modern supercomputer architectures: multi-socket

nodes and multi-core CPUs (replacing single-core nodes) and the availability of GPU accelerators

make the fork-join mechanism unscalable. Along with communication minimization strategies,

task-based libraries improve efficiency by executing in parallel independent tasks, on different

cores.

The goal of this project is to provide a modern and efficient distributed task-based linear algebra

package, called DLA-Future (DLAF), based on HPX [34], a tasking library. The main goal of

DLAF is the implementation of a generalized eigenvalue solver for Hermitian matrices.

Figure 27: Overview of DLA-Future

HPX futures [35] allow tasks of different routines/algorithms to run concurrently, creating a single

dependency graph for the full application. The choice of MPI as the communication library allows

http://www.netlib.org/scalapack
https://github.com/STEllAR-GROUP/hpx
https://en.cppreference.com/w/cpp/thread/future

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 42 30.06.2022

DLAF to be compatible with existing applications. GPU acceleration is exploited by relying on

CUDA and cuBLAS: a custom standard-conforming asynchronous API has been specifically

written and will be upstreamed to HPX. Matrices are divided into submatrices, called tiles,

distributed according to a 2D block cyclic distribution scheme and with column-wise layout (both

for tiles and their elements). Algorithms have been rearranged to take advantage of this tile layout,

further enhancing performance.

An alternative strategy in the development of a distributed eigensolver for dense eigenproblems is

to leverage well-known and well-established iterative algorithms such as subspace iteration, e.g.,

the Chebyshev Accelerated Subspace iteration Eigensolver (ChASE) library [36]. When tackling

sequences of Hermitian eigenproblems, as they often appear in electronics structure codes, ChASE

takes advantage of the distinctive features connecting adjacent problems in a sequence. ChASE is

able to scale well on large-scale distributed supercomputers because of its algorithmic design. The

most important kernel in ChASE is the Hermitian Matrix-Matrix Multiplication (HEMMs). As a

typical BLAS-3 operation, the performance of an efficient implementation of distributed HEMM

is able to approach the peak performance of any system.

The objective of this project regarding ChASE is to port it onto modern distributed multi-GPUs

supercomputers with the support of multiple data distribution geometries: custom-block, block-

cyclic, and element-wise cyclic (Elemental). ChASE is expected to feature a parallel MPI-CUDA

hybrid execution on distributed many-core clusters with multiple GPUs per node. Another

important objective is to redesign and develop a more complete and user-friendly documentation

for ChASE, which includes more examples to use this library as a standalone solver as well as

integrating it in application software, especially in the domain of Condensed Matter Physics.

7.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

DLA-Future:

We executed a strong scaling and a weak scaling analysis of the DLA-Future Cholesky

implementation on the following systems and we compared the performance achieved with the

state-of-the-art libraries available. Figure 27 presents the results on Piz Daint MC, a Cray XC40

system whose nodes are equipped with two 18 cores Intel Xeon E5-2695 v4 running at 2.10GHz

and 64/128 GB of DDR4 memory. We compare the results with optimized implementations of

ScaLAPACK, SLATE and DPLASMA.

We benchmarked each library using different values for the blocksize of the 2D block-cyclic

distribution (for each series of data the blocksize is indicated in the legend as the number inside the

parenthesis). DLA-Future performance is better than ScaLAPACK and SLATE and very similar

to DPLASMA. However, DPLASMA weak scaling results show a sudden drop in performance

with 256 and 384 block size.

https://doi.org/10.1145/3313828

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 43 30.06.2022

Figure 28: Cholesky factorization on Daint MC. Left: we present the strong scaling for a matrix of size 20k.

Right: we present the weak scaling for 400M elements per node (20k x 20k matrix for the run on a single

node.

Figure 28 presents the results of the same problems on Daint GPU, a Cray XC50 system whose

nodes are equipped with a 12 cores Intel Xeon E5-2690 v3 running at 2.60GHz, 64 GB of DDR4

memory and a NVIDIA P100 GPU (16 GB HBM2 memory). Similarly, we present the strong and

weak scaling with a matrix of size 20k.

Figure 29: Cholesky factorization on Daint GPU. Left: we present the strong scaling for a matrix of size 20k.

Right: we present the weak scaling for 400M elements per node (20k x 20k matrix for the run on a single

node).

DLA-Future clearly performs better than the competitors. It can be noted that we presented results

for DPLASMA only with small block sizes. Unfortunately, any attempt to run it with block size of

1024 or 2048 resulted in a failure.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 44 30.06.2022

Figure 29 presents the results of Cholesky factorization on Marconi100 system, an IBM POWER9

system whose nodes are equipped with two 16 cores IBM POWER9 AC922 running at 3.10GHz,

256 GB of memory and 4 NVIDIA Volta V100 GPUs (16 GB memory).

Figure 30: Cholesky factorization on Marconi 100. Left: we present the strong scaling for a matrix of size 40k.

Right: we present the weak scaling for 1.6G elements per node (40k x 40k matrix for the run on a single node).

The results show a clear performance advantage of DLA-Future compared to SLATE. We

attempted to compare the results against DPLASMA as well, but all the combinations of nodes and

block size we tried resulted in a failure of this library. The results of the other algorithms we present

have been produced on Piz Daint GPU. Figure 30 presents the scaling of the triangular solver.

Figure 31: Triangular solver on Daint GPU. Left: we present the strong scaling for a matrix of size 20k. Right:

we present the weak scaling for 400M elements per node (20k x 20k matrix for the run on a single node).

DLA-Future performs better than the two competitors. In certain cases, DLA-Future is twice as

fast as DPLASMA and SLATE. Moreover, DPLASMA runs with larger block-sizes (1024 and

2048) failed as weak scaling runs with 256 and 512 nodes.

Similarly Figure 31 shows the result of the transformation from generalized to standard

eigenproblem. The results of DLA-Future are very good and better than SLATE. (note: this

algorithm is not implemented in DPLASMA). As the performance of SLATE is poor (we didn’t

go beyond 32 nodes in the weak scaling because the performance is too low) and in the best cases

equal or generally lower than the performance of the CPU available in the system, one may think

that the GPU is not used. A trace of the SLATE algorithm shows that some operations are executed

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 45 30.06.2022

on the GPU, however it shows a lot of host/device copies as well, which might be the reason for

the poor performance.

Figure 32: Transformation from generalized to standard eigenproblem on Daint GPU. Left: we present the

strong scaling for a matrix of size 20k. Right: we present the weak scaling for 400M elements per node (20k x

20k matrix for the run on a single node).

Figure 32 demonstrates the advantage of task based libraries. The traces show the execution of 4

independent Cholesky factorizations of matrix size 10k on 4 nodes of Piz Daint MC. To simplify

the figure, the trace presented represents only the threads and the tasks executed on a single rank.

The figures for the remaining ranks are similar.

The upper trace illustrates the case in which a synchronization is put after each factorization

(simulating standard libraries), while the trace below shows how a full task based application can

improve the execution time. For 4 independent Cholesky factorizations of size 10k, the execution

time drops from 1.57 seconds to 0.98 seconds.

Figure 33: Trace of 1 rank (over a total of 4) for the execution of 4 independent Cholesky decompositions. The tasks

of each factorization are depicted with a different color. (Due to a limitation of the trace utility, MPI communications

cannot be identified, therefore they are all colored in light-green). The trace above shows the case in which after each

factorization a synchronization point is added, the trace below shows the case in which the factorizations are allowed

to overlap.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 46 30.06.2022

ChASE:

ChASE has been comprehensively tested on all major clusters (JUWELS Cluster and Booster,

JURECA-DC and JUSUF) at the Juelich Supercomputing Centers (JSC). Thanks to the variety of

the JSC clusters, ChASE is ported and ready to work on both Intel-based and AMD-based CPUs

together with NVIDIA multi-GPUs.

For the purpose of this report, we benchmarked ChASE’s behaviour in the strong and weak scaling

regime. For all the tests, we selected 4 MPI ranks per node, with 1 GPU and 32 threads assigned

to each rank. We present here results of the benchmark of ChASE executed on the JURECA-DC

supercomputer. Each node of JURECA-DC is equipped with two 64 cores AMD EPYC 7742 CPUs

@ 2.25 GHz (16x32GB DDR4 Memory) and four NVIDIA Tesla A100 GPUs (4x40GB high-

bandwidth memory). In these benchmarks, ChASE is compiled with GCC 9.3.0, OpenMPI 4.1.0

(UCX 1.9.0), CUDA 11.0 and Intel MKL 2020.4.304.

Strong scaling

Figure 33 below illustrates the results of the strong scaling experiment of ChASE using an artificial

matrix of size N = 130000. The subspace dimension of ChASE is fixed as 1300, which is 10% of

the matrix size. The counts of compute nodes are selected to be square numbers 1, 4, 9, ..., 64. This

figure reports the runtime of ChASE as a vertical stacked bar plot, which also includes the fractions

of runtime of numerical modules, such as Filter, Lanczos-based DoS (Lanczos), QR factorization

(QR), Rayleigh-Ritz (RR) projection and Residual computation (Resid). As it is visible from the

leftmost bar in the plot, the computation is heavily dominated by the Filter. Consequently,

achieving a good scaling for this module is paramount. Within the Filter the most important kernel

is the execution of repeated calls to HEMM within a 3-terms recurrence calculation. The blue bar

in the plot shows that our customized distributed multi-GPUs HEMM, achieves very good strong

scaling performance.

Figure 34: Runtime of ChASE as a vertical stacked bar plot, including includes the fractions of runtime of

numerical modules

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 47 30.06.2022

For the Filter, ChASE with 64 nodes achieves 8x speedup over the test with 1 node. As the impact

of Filter on the overall computational time decreases with the increase of the number of nodes,

other BLAS/LAPACK operations in ChASE (QR and part of RR), which were computed

redundantly, become the new bottlenecks. For other modules such as Lanczos and Resid, which

also employ the multi-GPUs HEMM, only 1.2x speedup has been attained. These are not as

scalable as the Filter due to their limited operational intensity. As shown in Figure 34 below, the

distributed multi-GPUs version of ChASE with 1 compute node has the maximal speedup over the

CPU version, which is 8.1. With the increase of count of compute nodes, the speedup finally keeps

constantly ~5.

Figure 35: Speedup of the ChASE GPU implementation compared with the ChASE CPU implementation

Overall, ChASE achieves good strong scaling performance at the beginning. However, with the

increase of the number of compute nodes, the decrease of total runtime of ChASE becomes

negligible.

Weak scaling

Figure 35 below shows the results of the weak scaling experiments. The weak scaling tests have

been set up so that only one iteration has been performed without full convergence. This ensures a

constant workload for the Filter. The test matrix sizes are 30k, 60k, 90k, …, 360k, with the numbers

of compute nodes 1, 4, 9, …, 144, respectively. The maximal size of active subspace is fixed as

3000. Overall, the runtime of ChASE increases with the augmentation of problem size and compute

node count. ChASE time-to-solution increases 4.6x, when the node count increases from 1 to 144.

Despite the overall trend, the weak scaling performance of the customized distributed multi-GPUs

HEMM is good, which confirms the efficiency of its implementation. With the increase of problem

size, QR and RR, which are executed redundantly on each node, become more and more dominant.

In order to improve on these results, we plan to redesign the algorithmic realization of less scaling

modules and explore the possibility of a task-based approach.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 48 30.06.2022

Figure 36: ChASE weak scaling results across increasing number of nodes

7.3 Interactions with stakeholders, users, outreach and publications

DLA-Future is a newly developed library which wants to provide a task-based implementation of

the eigenvalue solver. As only some of the algorithms are available, it is too soon to consider

integrating the library in real applications.

A poster regarding the development of the library has been submitted and accepted at the PASC20

conference. Unfortunately, due to the Covid 19 pandemic the conference has been cancelled and

the poster has been presented at PASC21.

ChASE is a relatively new library and as such it is only recently being viewed as a replacement for

more seasoned and well-tested ones. Despite its young age, ChASE has been already integrated in

two active codes in the community of Condensed Matter Physics. In a recent publication [37], we

showcased the improvements in performance when ChASE is used to solve the Bethe-Salpeter

Equation (BSE) in a code developed at the University of Illinois Urbana-Champaign. Moreover,

such integration revealed that ChASE enables the BSE code to increase the size of the physical

system and explore new physical phenomena that were previously unreachable due to the limited

scaling of the previously used eigensolver.

Similarly, ChASE has recently been integrated in the FLEUR code, a work horse in the community

of Density Functional Theory which is also part of the MaX Center of Excellence. The further

integration of the new multi-GPUs porting of ChASE is currently underway. In addition, we are

actively discussing with the developers of the Yambo and Quantum Espresso code on how to

integrate and test ChASE on these two codes.

A very active role in this project as an external partner is played by the Ruđer Bošković Institute

(RBI) in Croatia. Its main PI, Davor Davidovic, has supported and substantially contributed to the

multi-GPU HEMM implementation used in the Filter. In collaboration with the RBI, we carried on

an extensive benchmarking of ChASE. The results of this study, some of which are included in this

report, were submitted to the Proceedings of the SIAM conference on Parallel Processing to be

held in Seattle in March 2022.

https://doi.org/10.1016/j.cpc.2021.108081

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 49 30.06.2022

7.4 Overall assessment of achievements and future developments

DLA-Future:

The objectives of the original proposal have been only partially achieved. The full pipeline for the

generalized eigensolver is not available.

We completed the work (distributed multicore and GPU implementation) on the following

algorithms: Cholesky factorization, transformation from generalized to standard eigenproblem,

triangular solver. Moreover, a local implementation is available for the two stage tridiagonalization

and relative back-transformations. The distributed versions of these algorithms are still in

development. Finally, the development of the tridiagonal eigensolver just started. Similarly, the

support for AMD GPUs is not yet available, but it is planned to be added in the next months.

The reasons for the delay in the development are multiple. On one side the missing functionalities

of the tools available made the development more difficult, for example:

 The use of a C++ heavily templated library (HPX) increases the complexity of the error

messages generated by compilers. A small syntax error may end up in multiple pages of

error messages, in which the useful information is hidden.

 Debugging tools specific for task based programs are not available. Standard debugging

methods are not suitable with task based programming. E.g. the stack, for non-task based

applications, helps to identify the position in the code, the parameters used, etc., while for

task-based applications it just contains the isolated information related to the current task

which is executed.

 Profiling and tracing tools are still in development. In particular APEX, the tracing tool

shipped with HPX, is not mature enough to give all the information needed to identify

performance bottlenecks.

On the other hand, some tasks required more effort. E.g. the move from MPI synchronous collective

communication to asynchronous collective communication introduced performance problems

which haven't been identified in the tests done with the prototype.

Finally, we are using some HPX APIs which are not yet standardized in C++. This introduces the

risk that these APIs are modified before the standardization occurs. This happened with the

promise/future concepts, which have been superseded by the senders/receivers concepts [38]. We

had, therefore, to conduct some experiments with the new APIs in DLA-Future to ensure that the

functionalities needed are still available and the performance is not affected. Future work on the

library will concentrate on the completion of the eigensolver.

ChASE:

The objectives of the original proposal have been achieved. We developed a customized distributed

multi-GPUs HEMM for ChASE, and offloaded selected BLAS/LAPACK operations onto GPUs.

Moreover, the block-cyclic data distribution scheme has been also included into ChASE, which

makes it easy to be integrated into other applications and libraries which mostly employ this

ScaLAPACK-style data distribution. The experiments show a good parallel performance of this

implementation of distributed multi-GPUs HEMM. The version of ChASE ported to distributed

multi-GPUs supercomputers achieves large speedup compared to the CPU version. However, few

weaknesses have also been identified, which we were not aware of at the time the original proposal

https://wg21.link/p2300

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 50 30.06.2022

was written. This was in part possible because ChASE was ported to the newest massive parallel

heterogeneous architectures.

After offloading HEMM to GPUs with excellent parallel efficiency, the QR factorization and the

Rayleigh-Ritz projection, which make use of BLAS/LAPACK multi-threaded routines executed

redundantly on the node, become new bottlenecks. This is quite important when dealing with

matrices of size larger than 100k or requiring the computation of a relatively large fraction of

eigenpairs. In future, we plan to provide customized partially distributed QR and Rayleigh-Ritz

modules for ChASE. The reasons behind the customization have to do with the particular type of

QR factorization ChASE does: it is not enough to execute a standard update on the Q matrix

because of the deflation and locking mechanism change the locked eigenvectors. Moreover,

distributing over the entire MPI grid would enormously increase the communication and erase the

benefits of the distributed parallelization. We plan, instead, a hybrid approach maintaining a careful

balance between redundant computation and a partial distribution over an optimal subset of the

MPI grid.

Another promising development in our future plans is to integrate a well-designed rational filter

[39] into ChASE which is able to compute the eigenpairs within any given interval, rather than the

extremal ones. When an eigenproblem can be split into multiple small intervals and solved in

parallel, the bottlenecks of QR factorization and Rayleigh-Ritz can be removed.

The distributed multi-GPUs version of ChASE supports a flexible configuration of binding

multiple GPUs to each MPI rank, however, current benchmarks show that the configuration which

binds 1 GPUs to each MPI ranks outperforms the others. This is caused by the overheads of

communications between GPUs within each node. In the future, we will explore GPU-aware MPI

for the direct communications between GPUs for the implementation of distributed multi-GPUs

HEMM of ChASE.

https://doi.org/10.1137/20M1313933

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 51 30.06.2022

8 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and
library support for the discovery of new physics

8.1 Introduction and summary

Figure 37: Important algorithmic steps in the Krylov accelerated multigrid solver developed in the LyNcs

project

The project, Linear Algebra, Krylov-subspace methods, and multigrid solvers for the discovery of

New Physics (LyNcs), is addressing challenges encountered with parallel iterative solvers for large

sparse matrices which arise in computational physics on modern and upcoming architectures due

to massive parallelization. LyNcs is targeting efficient solutions for linear systems for large sparse

matrices by pooling together software development efforts across Europe. LyNcs intends to

provide the European communities with the next generation of parallel libraries for solving sparse

linear systems at the Exascale. The project is led by the Computation-based Science and

Technology Research Centre (CaSToRC) of The Cyprus Institute, which joins forces with partners

from the French Institute for Research in Computer Science and Automation (Inria) and the Leibniz

Supercomputing Centre (LRZ).

Along the duration of the project, LyNcs has targeted the design of new software, the development

of existing libraries and the necessary research on new algorithms for the solution of large sparse

matrices. Part of LyNcs is the development of an API that is targeting massively parallel machines

to perform advanced task management with shared and distributed memory among huge parallel

partitions. This LyNcs API together with implementing cutting-edge sparse linear solver

algorithms, the development of novel block Krylov solvers and optimization of existing parallel

codes will enable community software to efficiently utilize the up-coming pre-exa and exascale

machines. The software improvements target all levels of the scientific application software stack,

from the basic Sparse BLAS library up to fully-fledged simulation codes. Namely, LyNCs is

targeting the Fast-Accurate Block Linear Krylov Solver (Fabulous), the Lattice QCD community

solver library DDalphaAMG and at the lowest level the efficient sparse matrix support software

LIBRSB. In the following table we summarise the major achievements of the project in software

development.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 52 30.06.2022

Software Before the project After the project

Lyncs-API [40]  Not existing

 Many libraries available

 Written in C/C++

 Manual cross-checks

 New community software

 Interfaced to LQCD libraries and

common framework

 First Python package

 Automatic cross-checks between

implementations

 High development standards

Fabulous [41]  Version 1.0.1

 Algorithms IB-BGMRES-DR/

IB-GCR/BCG

 Version 1.1.2

 new algorithm IB-BGCRO-DR

(including new stopping criteria and

computational and numerical search

space expansion)

 Improved distribution & documentation

(debian / ubuntu / MacOSX / spack /

brew / guix)

DDalphaAMG [42]  One right-hand side

 SSE intrinsics

 No deflation on coarse grid

 Multiple right-hand sides

 Automatic vectorization and portability

 Deflation on coarse grid

 Interface to Fabulous

 Block solvers

LIBRSB [43]  Version 1.2.0-rc7

 Code/Fun. Coverage:37%/41%

 SpMM via SpMV kernels

 No C++-specific interface

 Versions 1.2.0.10 and 1.3

 Code/Fun. Coverage: 92%/99.9%

 Native SpMM kernels in C++

 Header-only modern C++ interface

 New tests, e.g. using GoogleTest

 Bug-fixes

 Now also on Spack, EasyBuild, guix

PyRSB [44]  Pre-alpha implementation  Stable release

 Compatible with scipy.sparse

GNU Octave “sparsersb” [45]  Version 1.0.6  Version 1.0.9

 Bug-fixes

 New tests

 Improved documentation

Table 6: Overview of the major achievements of the project in software development

8.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

Overview: Within this section we summarize key features and improvements of the software

packages developed within LyNcs in order to address the impact on the community. Within the

project we focused on the implementation of the three “P”s of HPC, namely Performance,

Portability and Productivity. Integration between software packages of the different project

partners were established to separate concerns and extend flexibility and ensure performance and

portability on novel hardware architectures of the software packages. Also modern tools have been

used and novel interfaces have been developed to increase the productivity in our software. In the

following we describe the main achievements in these three categories:

 Performance: Within the Lyncs-API we have been developing for the first time a fully-

fledged Python framework for lattice QCD aiming at high performance interfacing to

optimized libraries. Within LIBRSB we have developed new kernels using C++ templates

and focusing on improving the performance of multi-vector operations. A similar focus

took place in DDalphaAMG, where most of the library has been rewritten for enabling

https://github.com/Lyncs-API
https://gitlab.inria.fr/solverstack/fabulous
https://github.com/sy3394/DDalphaAMG/tree/multirhs
http://librsb.sourceforge.net/
https://github.com/michelemartone/pyrsb
https://octave.sourceforge.io/sparsersb/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 53 30.06.2022

multiple right-hand side calculations and the usage of block solvers linking to Fabulous.

Within Fabulous we have developed a new algorithm for faster convergence and interfaced

to LIBRSB for improved performance.

 Portability: Within the Lyncs-API we have been targeting both CPU and GPU

architectures linking to various libraries and using existing Python tools optimized for this

purpose. New interfaces have been added to LIBRSB and the code has been validated for

various CPU architectures (e.g. such as AMD Epyc or ARM SVE). In particular, interfacing

of LIBRSB within Maphys [46] allows Fabulous (the top of the stack) to profit from this

efficient Sparse BLAS. Within DDalphaAMG we have used compiler flags and pragmas

for achieving automatic vectorization of the computational kernels ensuring portability to

various architecture and replacing the old SSE intrinsics.

 Productivity: Finally, improving productivity has been the main focus of the Lyncs-API

and the choice of using Python for this purpose. We have been bringing under a common

framework the main tools needed for lattice QCD calculations and we have employed

modern approaches and tools in the developments like CI/CD using GitHub actions,

software distribution on pip and online documentation on readthedocs. Also, we have

developed interfaces to LIBRSB for high-level languages like PyRSB for Python and

improved the GNU Octave interface. Also, linking DDalphaAMG to Fabulous allowed us

to test many block-solver algorithms without needing to implement them. And as last, we

have improved the deployment, distribution and documentation of Fabulous.

In the remainder of the section we will provide a technical description of the improvements

including benchmarking results on petascale and Tier-0 systems. Namely we will focus on:

 Lyncs-API: Demonstration and scalability runs on JUWELS-Booster with QUDA;

 Librsb: Performance evaluation on BEAST and SuperMUC-NG at LRZ;

 DDalphaAMG and Fabulous: Scalability runs on SuperMUC-NG and JUWELS.

Lyncs-API:

The Lyncs-API offers Python interfaces to various lattice QCD libraries, which have been

optimised for different architectures, and/or to implement different tools. Such libraries are for

example DDalphaAMG (interfaced in lyncs-DDalphaAMG) that offers multigrid solvers on CPUs,

and QUDA (interfaced in lyncs-QUDA) that offers operators and solvers, including multigrid, on

NVIDIA GPUs and port to HIP and AMD GPUs is in progress. The main goal of the Lyncs-API

is to bring as many libraries as possible under a common framework aiming for performance and

portability, relying on a pool of libraries optimised for various architectures seeking high-coverage

on the tools, and to productivity, choosing Python as programming language and providing a high-

level user-friendly framework.

Therefore, when talking about performance and benchmarks, there are various aspects to analyse

and hereafter we will comment on some of them:

 Overheads introduced by the usage of Python: Python is well known to be a significantly

low-performing programming language (as compared to compiled ones). For this reason,

in the Lyncs-API, it is never used in calculations but always as a driver. All kernels that

process data are implemented in C/C++, compiled upon time and delivered either by the

libraries or other Python modules (e.g., Numpy on CPUs and Cupy on GPUs). Interfaced

libraries are compiled in a shared mode and linked with automatic bindings thanks to cppyy,

https://gitlab.inria.fr/solverstack/maphys/maphyspp

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 54 30.06.2022

which offers high flexibility and high-performance Python-C++ bindings [47]. With such

an approach we maintain all overheads introduced by Python several orders of magnitudes

smaller than the calculations themselves, whose time can vary from a few milliseconds to

many seconds.

 Parallelism and parallel implementation: As it is common in Lattice QCD, all libraries

we consider offer data-parallelism via domain decomposition, distributing equally-sized

subblocks of a 4-dimensional grid (the lattice) between processes. All of them implement

parallelization via MPI with topological communicators, which are well supported in

Python thanks to mpi4py. Therefore, data-parallelism is guaranteed by the libraries, while

none of them implement task-parallelism nor modular computing. These are additional

features that the Lyncs-API aims to offer. We do this in the module lyncs-mpi where we

have implemented an interface that facilitates the usage of Dask with MPI. Dask is a Python

package for easy and seamless task parallelism with a client-server approach, i.e., a client

submits the tasks to be executed, a scheduler manages and optimizes their execution, and

all other processes are idle workers waiting for instructions. In the lyncs-mpi we have

divided workers into groups that internally communicate via MPI and execute library

functions. In such a way we have combined data- and task-parallelism with a user-friendly

approach (Note: this is still an experimental feature that is partially supported in the various

interfaces).

 Multigrid benchmark results on GPUs: Finally, we discuss performance results

measured via benchmark kernels on the Tier-0 system JUWELS Booster equipped with

NVIDIA A100 GPUs. We will focus on the performance of the multigrid solver

implemented in QUDA, which is nowadays one of the most critical components in our

lattice QCD calculations where about 75% of the execution time is spent. For studying the

scaling behaviour of the multigrid, we focus on the performance of its main components:

the fine-grid Dirac operator (D) in double and single precision, as well as the intermediate-

grid (Dc) and coarsest-grid (Dcc) Dirac operators in half precision. As depicted in the left-

hand side of Figure 37, their parallel scalability strongly differs and is affected by the

amount of parallelism that can be exposed on each grid whose size is reduced drastically at

each level by the coarsening procedure. This can be improved, as in the right-hand panel of

the figure, by solving for multiple right-hand sides together. The latter increases the scaling

region but also the memory requirements of the solver, increasing the minimum number of

nodes the solver can run on.

file:///C:/Users/Thomas%20Eickermann/Documents/PRACE/6IP/Deliverables/10.1109/PyHPC.2016.008

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 55 30.06.2022

Figure 38: (Left) Strong scaling study of the QUDA Dirac operators on the fine (D), intermediate (Dc) and coarsest

(Dcc) grids for a lattice of size 963 x 128. (Right) Strong scaling of the coarsest operator Dcc varying the number of

right-hand sides (rhs) inverted at the same time.

LIBRSB and PyRSB:

The project has started with two branches: a stable one (namely LIBRSB-1.2) and a development

one (namely LIBRSB-1.3). Fixes to old bugs making it into LIBRSB-1.3 have been applied in

bugfix releases of LIBRSB-1.2. The most relevant improvement in LIBRSB-1.3 took place in the

native Sparse Matrix-Matrix multiplication (“SpMM”, of which Sparse Matrix-Vector

multiplication, or SpMV, is a subcase); accessible via LIBRSB function rsb_spmm(). Modern C++

code has been written for this purpose, and is selected internally, at kernels’ dispatch time. This

code is templated with the number of right-hand sides as compile-time parameters; indeed, efficient

SpMM is needed to make adoption of block Krylov methods convenient. The API of LIBRSB-1.3

is backward-compatible with LIBRSB-1.2’s: this eases comparisons. Purpose of comparing branch

1.3 against 1.2 is to quantify performance improvement of the new SpMM kernels over old ones:

1.2 had SpMM emulated via repeated block-level SpMV. The performance experiment we report

here involved SuperMUC-NG (smng) and four other experimental CPUs available on the BEAST

(Bavarian Energy Architecture and Software Testbed) cluster: Marvell ThunderX2 (thx), Fujitsu

A64FX (a64fx), Intel Cooper Lake (coop), AMD Rome (rome). The code has been compiled with

’icc -ipo -O3 -no-prec-div -fp-model fast=2 -xHost’ on smng and rome; ‘gcc -Ofast -march=native

-mtune=native’ on the others.

On each machine, eight batches have been run, all with 24 threads (more not needed, given the

bandwidth-bound kernels) and OMP_NUM_THREADS=spread. Each batch has OMP_PLACES

to sockets or cores; SpMM operands layout by-rows (C order) or by-columns (Fortran order);

LIBRSB-1.2 or LIBRSB-1.3. Each batch ran with 44 matrices from different application fields;

these are symmetric or asymmetric (general); the matrices are considered in each of the four BLAS

numerical types, and 1, 2, 4 right-hand sides (denoted NRHS); for a total of 528 records per batch.

Each pair of batches is elementally comparable with another one. We consider SpMM results after

autotuning (rsb_tune_spmm()). Having different matrices is important: performance within a batch

can differ by orders of magnitude, solely because of the sparsity pattern. Lacking a well-defined

“average performance” concept in the context of vastly differently parametrized operations within

one batch (say, SpMV of matrix bone010 as double vs SpMM-2 with matrix rajat31 as double

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 56 30.06.2022

complex), we chose median speedups to get a sound overview. We performed a pretty extensive

experiments campaign, but due to space constraints, omit a detailed results presentation and

discussion, reporting only on the essential findings [48]:

 For NRHS>1, by-rows layout is now the recommended SpMM layout in LIBRSB-1.3 (in

LIBRSB-1.2 it was the by-columns layout). With NRHS=2 it improves 0.6-16% over by-

columns; with NRHS=4, 9-38%, depending on the architecture.

 With one exception (SpMV on thx), LIBRSB-1.3 to LIBRSB-1.2 median ratios indicate an

improvement across all architectures. Specifically, the SpMV speedup median

improvement amounts usually to a few percentage points. If using the recommended

operands’ layout, SpMM with NRHS=2 improves by 8-59%, SpMM with NRHS=4 by 25-

73%, depending on the architecture. Notice that again, these are median values: individual

ratios vary much more.

 LIBRSB-1.3’s SpMM performed (normalized by NRHS) always better than corresponding

SpMV (contrast with certain cases on LIBRSB-1.2 on a64fx, where we observed SpMM

performing less than SpMV). This is important: convenience of block methods relies on

this.

 Invoking autotuning brings relevant SpMM performance improvement (median on each

architecture between 15.6% on coop and 38.0% on thx) in most cases. Largely

recommended for say, > 100 expected SpMMs (a hundred operations’ time being a

reasonable estimate for the amortization cost).

Figure 39: (Left) Median of speedup ratio between SpMM measurements with by-rows operands layout and by-

columns, on different machines and for different right hand sides count. The by-rows layout is recommended in

LIBRSB-1.3 because of its better locality in the lower level loops improves performance. Notice how for NRHS=1,

that is SpMV, the layout is the same, and so the performance difference vanishes. (Right) Median of speedup when

comparing LIBRSB-1.3 samples to LIBRSB-1.2 ones. Notice how with one exception, each machine/NRHS

combination has been (overall) improved over LIBRSB-1.2.

https://doi.org/10.25080/majora-1b6fd038-00e

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 57 30.06.2022

DDalphaAMG and Fabulous: The community multigrid library DDalphaAMG has been

extended to allow simultaneous solves of multiple right-hand sides (rhs) with an optional usage of

advanced Block Krylov solver methods enabled in a linkage of Inria’s solver library Fabulous. A

major change within the low level kernels was implemented by changing the vector ordering from

column to row ordering. This adds flexibility capabilities by having vectorization during

compilation without explicitly using vector instructions. This guarantees portability without major

performance loss to different CPU architectures, like ARM, Intel or AMD CPUs.

Figure 40: Strong scaling of DDalphaAMG with several lattice sizes and number of right hand sides.

The strong scaling tests of the new version of DDalphaAMG with multiple rhs were performed at

various lattice sizes, namely V=64*32*32*32, V=160*80*80*80 and V=192*96*96*96, using

twisted clover fermion where the runs with 4 and 8 rhs are compared to the original version with 1

rhs. For the smaller lattice size, a two level approach is used, while for the larger sizes a three level

approach is used. In all cases the strong scaling region with multiple rhs is extended by a factor 2-

5. Moreover, running with 8 rhs is outperforming the original version by up to a factor 1.5 in the

scaling region utilizing 1 rhs.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 58 30.06.2022

Figure 41: Comparison between the total iteration count of different Block-Krylov methods at the coarsest

level of an 3 level multi-grid approach using a lattice with volume 64*32*32*32 employing twisted mass

fermions.

In the second part of LyNcs, DDalphaAMG was linked to Fabulous, now enabling the use of the

Fabulous library for block Krylov solver methods at all levels of the algebraic multigrid. We

focused on the performance of Fabulous block Krylov solvers on the coarsest level. We found that

although the required coarsest grid solve accuracy is low, namely already effective with residuals

around 0.1, Block Krylov solvers are reducing the overall iteration count. It turns out that the (IB-

)BGCRO-DR was the most effective algorithm, reducing the iteration count by 40% to the native

approach. Note that this approach is working on the fly without additional preconditioning (mu-

shift = 1) or exact deflation as done in QUDA. However, the linkage with Fabulous comes with

additional overheads, namely with an additional 25% from reordering row to column and 75%

communication overhead due to orthogonalization. This increases the overall time to solution by

roughly 40% and needs to be addressed in the future to profit from numerically advanced Block

Krylov solver methods.

8.3 Interactions with stakeholders, users, outreach and publications

Overview: For the dissemination and outreach of LyNcs activities we utilize all our channels to

reach our community including researchers which expressed support via letters. This enabled us to

embed software developed under LyNcs within the community and guarantee future support. For

example, the newly developed software package LyNcs-API is selected by the Extended Twisted

Mass collaboration for their future simulation driver. Moreover, within the project we could focus

on enabling kernels, needed by the European community, such as twisted mass fermion and non-

degenerated twisted mass fermions with the community solver libraries DDalphaAMG and QUDA.

Over the duration of the project linkage between different partner software was made, now enabling

new options to the package Maphys via LIBRSB and DDalphaAMG via fabulous. The

dissemination of Lyncs activities and results started with a contribution to the PRACE Inter-WP

workshop in October 2020, where Lyncs was one of the two selected WP8 projects to represent

WP8. Most of the other dissemination activities focused on the specific software efforts and they

are presented in the following.

Lyncs-API: The Lyncs-API implements middle- and high-level tools distributed via various

Python modules using a modular structure (see https://github.com/Lyncs-API). Being in the middle

of the development chain, the interaction with other developers/users goes in two opposite

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 59 30.06.2022

directions: on one side, towards improving the low-level libraries and Python packages used by the

API, and, on the other side, by interacting with users from various communities that want to employ

the API in their applications. In the first direction, during the duration of this project, we have been

active in adding features and identifying/solving issues to various packages such as the lattice QCD

libraries Quda, DDalphaAMG and tmLQCD, as well as to the Python packages cppyy, h5py, sh

and pylint. In the other direction, instead, we have been working towards i) facilitating the usage

of Python in HPC, developing generic purposes tools like lyncs-io that offers parallel IO for various

file-formats, ii) offering for the first time Python interfaces to various libraries, that are welcomed

by the developers of the libraries themselves as well as users of the libraries that seek for a Python

experience, and iii) developing a high-level framework that aims to be portable and easy-to-use

towards exascale supercomputing. All the developed software is open source and welcomes

contributions from users. It also implements high-quality features of community software like

documentation, issues tracker and CI/CD (short for Continuous Integration / Continuous Delivery)

via GitHub actions.

Over the course of this project, the Lyncs-API has been object of dissemination at:

 Extended Twisted Mass Collaboration Meeting within February and November 2021;

 Seminar at the Cyprus NCC with a presentation (by J. Finkenrath and S. Bacchio);

 Presentation at the Lattice Conference 2021 with a presentation (by S. Bacchio);

 Publication in the Proceedings of the lattice conference (due by end of October 2021).

LIBRSB: Over the course of this project, LIBRSB has been object of dissemination at:

 PRACE Days (March, 2021): Poster by Martone + Video by Bacchio;

 Slideshow with feedback for the the BEAST (Bavarian Energy Architecture and Software

Testbed) user community (March, 2021), by Martone;

 ISC’21 (June, 2021): Poster by Martone, Bacchio, Finkenrath, Giraud and Simonin;

 Scipy’21 (July, 2021): Oral presentation + Proceedings paper by Martone and Bacchio;

 Invited seminar for the Max Planck Institute for Dynamics of Complex Technical Systems

(July, 2021) by Martone.

Further dissemination activities are ongoing. A renewed communication round is ongoing with

past, present, and prospective LIBRSB users and collaborators. Beside performance, points of

interest pertain to new kernels (e.g. the ATA kernel), specific matrices, new code generation

techniques, bindings to other languages, and most novel hardware.

Fabulous: During the project dissemination activities of Fabulous are given as follows:

 A new release has been made available and publicized to our close academic and industrial

collaborators such as Airbus, BSC or Cerfacs to name a few that have expressed the wish

to have such linear solvers.

 The revised version of a paper on the mathematical part of the new Krylov solver IB-

BGCRO-DR has been submitted to SIAM with acknowledgements to the Lyncs project that

enables us to further validate the implementation of IB-BGCRO-DR in Fabulous.

DDalphaAMG: During the project results of the multiple right hand side extension of

DDalphaAMG were disseminated on various events, such as:

 At the major online conference APAC lattice conference 2020 (by S. Yamamoto);

 Invited Riken Kobe seminar contribution, Sept. 2020 (by S. Yamamoto);

 Contributed talk at Lattice Conference 2021 (by S. Yamamoto);

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 60 30.06.2022

 Publication in the Proceeding of lattice conference (due to end of October 2021).

8.4 Overall assessment of achievements and future developments

Within the project LyNcs HPC experts from different European organizations joined forces to

address heterogeneous challenges arising in future European supercomputing. By utilising the wide

range of expertise various tasks could be addressed on all different levels of sparse linear solver

software packages needed in applications of High Energy Physics, such as lattice QCD,

Computational Electrodynamics and Computational Chemistry. This enabled support to prepare

European software for the upcoming European Supercomputers thanks to new synergies among

different teams across Europe. This was possible thanks to the provided funding and infrastructure

by PRACE, which not only connected computational scientists of different fields but also was

timely and crucial to perform the necessary first steps to enable the community to utilize future

computing resources in Europe. Needless to say software efforts such as PRACE-6IP WP8 are

playing a key role to provide support for the diverse HPC community which are not represented by

European Centres of Excellence, such as the High Energy Physics community.

In detail, within LyNcs we achieved readiness of software solutions for the next-generation of

European supercomputing. Among these achievements is LIBRSB-1.3’s very high coverage

statistics, going in pair with newly established unit tests and a rich CI/CD pipeline. Test code

amounts now to circa 10kLOC (10% of total lines). Nearly every bugfix has originated a specific

test. Further tests have originated during refactoring or documentation consolidation and general

fortification. Many of the new tests use the Google Test framework for unit testing. This LIBRSB

fortification activity was mostly concentrated in the first period, and allowed stable ground for

development of new SpMM kernels and new features later on. Once obtained an improved

performance in SpMM, the last project phase went into performance evaluations, dissemination,

and community involvement (especially thanks to the different access layers to LIBRSB). With

Lyncs-API a new portable, user-friendly python interface was developed, which comes with task-

parallelism and linkage to various lattice QCD solver packages such as QUDA and DDalphaAMG

and legacy lattice QCD simulation packages, such as tmLQCD. With the linkage of Fabulous to

DDalphaAMG new combinations of algorithms could be studied and iteration counts could be

improved.

A major challenge in LyNcs was the design and development of the new API. Originally proposed

as a linear solver API on the intermediate level between simulation codes and solver library, the

API became the driver to enable task parallelism and modular supercomputing capabilities. One

reason for this adjustment, is that the lower level kernels are latency bound, making task parallelism

on lower level ineffective. Finding a trade-off between numerical and parallel efficiency remains a

challenge. In the Fabulous package, advanced numerical search space expansion policies have been

introduced to attempt reducing the number of iterations. They are numerically effective under the

constraints of building a basis with a ``good enough” orthonormality of the residual space. In the

current implementation, this is ensured by a modified Gram-Schmidt procedure which

unfortunately is revealed to lead to some latency bottleneck, difficult to overcome without

significant changes in the numerical method.

Future plans for each software package are the following:

 Lyncs-API: The main focus within the project has been the design and creation of the first

Python API for lattice QCD applications. An important step has been interfacing to lattice

QCD libraries as well as the creation of supporting tools like parallel IO. Beside continuing

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 61 30.06.2022

supporting and improving the software developed, in the future we plan to develop mapping

software that will allow for a seamless interchange of functions implemented by different

libraries. Indeed, each library may use a different data layout and ordering. Furthermore,

we will complete the functionalities needed for performing HMC simulations using the

Lyncs-API and we plan experiments for enabling machine learning in lattice QCD.

 LIBRSB: Refining SpMM strategies for large NRHS counts (e.g. >8) can be an object of

further investigation. Performance gains are expected by introducing new block-level

formats that may fit best certain specific matrices (e.g. LQCD matrices may benefit from

BCSR). Adding new kernels for existing formats, but with specific structural characteristics

(e.g. low or high nonzeroes density) may improve overall performance. The autotuning

procedure can be optimized and made faster; its strategy can be improved and lead to faster

SpMM. Matrix assembly routines can be improved in speed and memory usage. Storing

autotuned blocking information in a reusable form may speed-up matrix assembly and spare

repeated autotuning. Supporting mixed arithmetics has not been addressed in this project,

but has potential. GPU integration strategies exploiting the hybrid format nature of RSB

(e.g. coarse-grained parallelism) may be explored.

 Fabulous: in the future we plan to study minimum residual norm block algorithms based

on Householder reflections, that have a higher floating-point arithmetic complexity but

possibly enabling the introduction of blocking algorithms in the orthogonalization phase,

possibly reducing the latency effect. Having such algorithms in Fabulous will provide

higher flexibility and adaptability to enhance the capability to best explore the trade-off

between numerical and computational efficiency.

 DDalphaAMG: possible future steps will be to further optimize the multiple rhs version of

DDalphaAMG towards large scale applications on Fugaku and future European exascale

machines with European chips. The linkage to Fabulous and with it the usage of advance

Block Krylov solver methods such as IB-BGCRO-DR solver can be further intensified,

namely by minimizing communication overheads in order to profit from the numerical

advanced methods. Moreover, support for additional variants of Wilson Dirac operators

including support of different boundary conditions can be added.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 62 30.06.2022

9 QuantEx: Efficient Quantum Circuit Simulation on Exascale
Systems

9.1 Introduction and summary

The QuantEx project aims to provide a quantum circuit simulation framework for Exascale systems

which is scalable and extensible. The ability to simulate quantum circuits is essential for the design

and development of quantum computing hardware and algorithms. With the emergence of Noisy

Intermediate Scale Quantum (NISQ) devices, it has become intractable to simulate devices of this

size using the traditional method of direct evolution of a quantum wave-function, even on the

largest supercomputers [49]. QuantEx uses a representation of quantum states known as tensor

networks which enable the output probability amplitudes to be calculated by contracting a network

of tensors [50] [51]. This approach has achieved state of the art performance when simulating

Random Quantum Circuits (RQC) as part of the recent quantum advantage experiments [49].

Despite these impressive results, it is not competitive for simulating all circuit types. In particular,

for very deep/highly entangled circuits, the tensor network representation can require the same

amount of memory as full wave-function methods. In these cases, full wave-function approaches

with simpler memory management and fewer overheads are generally more efficient. For circuits

targeting NISQ devices, with moderate depth/entanglement and where approximate results suffice,

tensor network approaches can offer significant advantages. Figure 41 below illustrates this area

of application:

Figure 42: Expected area of applicability of simulation methods

The framework developed by the QuantEx project consists of several special purpose software

packages aiming to address different issues that arise in tensor network simulations. These are

QXTools, QXTns, QXGraphDecompositions and QXContexts, each of which we describe below

and are available on github under the JuliaQX organisation [52]. The packages are also registered

as Julia packages making them easily accessible. Julia [53] is used as the primary language, because

of its flexible type system, the ability to wrap components in other languages while also providing

native performance and native support for GPGPU programming. A domain specific language

(DSL) is used to represent the simulation as a set of tensor network operations. This separates the

high level index accounting and contraction planning from the low level implementation of the

tensor network operations and makes it easier to support new hardware and network architectures.

https://doi.org/10.1088/2058-9565/ab7eeb
https://doi.org/10.1088/1751-8121/aa6dc3
https://arxiv.org/abs/1708.00006
https://doi.org/10.1088/2058-9565/ab7eeb
https://github.com/JuliaQX
https://doi.org/10.1137/141000671

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 63 30.06.2022

QXTools is the main QuantEx package for orchestrating a tensor network simulation of a quantum

circuit. It can be used to create a tensor network for a quantum circuit, identify an efficient

contraction scheme for the network and generate simulations files, including tensor data files and

DSL files, that describe how the simulation should be executed on a cluster. It provides a quantum

circuit simulation workflow which consists of the following steps:

1. Circuits are built and represented as QXZoo circuits.

2. The QXZoo circuit is converted to a QXTns tensor network.

3. This network is converted to a graph data structure provided by QXGraphDecompositions

and a suitable tree decomposition and set of edges to slice are identified.

4. Using the tree decomposition and set of edges to slice a DSL representation of the

computation is generated. This is then used as input to QXContexts to perform the

computation using the context and settings that make the best use of the available resources.

QXZoo Provides data structure and functions for representing and generating quantum circuits.

QXTns is a Julia package with data structures and utilities for manipulating tensor networks. As

well as a generic tensor network data structure, it also contains specific data structures for handling

tensor networks derived from quantum circuits. It includes the ability to automatically identify and

track hyper-indices of tensors which can lead to significant performance improvements.

QXGraphDecompositions is a package for analysing and manipulating graph structures

describing tensor networks. It provides data structures and functions for analysing and

manipulating graph representations of tensor networks. In particular, it provides functions for

finding efficient tree decompositions and for identifying sets of indices which when sliced can

reduce the treewidth of the selected tree decomposition. This makes it possible to distribute

computations across multiple processes/nodes.

QXContexts is designed to parse the simulation files created by QXTools and perform the tensor

contractions that constitute the circuit simulation making use of distributed compute resources via

MPI as well as hardware accelerators. It also provides implementations of sampling algorithms

which can be used to generate random bit-strings which are distributed according to the output state

of the simulated quantum circuit.

9.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

The following strategy has been developed for assessing the performance of JuliaQX on multiple

HPC platforms:

 The software has been tested on a number of platforms, including both production machines

available at the sites of the project partners and test systems;

 On multiple platforms, performance diagnostics (in particular, those related to the memory

and cache hierarchy) have been collected by using the command-line, performance tool

suite LIKWID [54];

 A novel trend in the management of HPC workloads is the usage of containers to easily

deploy a whole software environment on any given architecture. Motivated by the

increasing interest of the community in this solution, we benchmarked JuliaQX with and

without use of containers on multiple architectures;

https://hpc.fau.de/research/tools/likwid/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 64 30.06.2022

 Finally, GPU support has been added and tested.

To evaluate the performance of the JuliaQX software, we use as a test case the problem of

computing probability amplitudes for a list of possible bitstring outputs of a quantum circuit. The

quantum circuits we use in these test cases are instances of random quantum circuits (RQC) defined

in [55] and used in Google’s quantum advantage experiments [56]. These circuits consist of a 2

dimensional array of qubits with several layers of quantum gates acting on all qubits. For our initial

scaling calculations, simulation files were generated for a RQC with a 5 by 5 grid of qubits and 24

layers of gates.

Initial scaling results were computed on ICHEC’s Kay cluster of 336 nodes where each node has

2x 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) processors, 192 GB of RAM, a 400 GB local

SSD for scratch space and a 100Gbit OmniPath network adaptor. In Figure 42 below, we take the

case of computing 2048 amplitudes for the 5x5x24 RQC, with a single sliced bond, on 4 nodes

with an increasing number of processes.

Figure 43: Computation of 2048 amplitudes for the 5x5x24 RQC, with a single sliced bond, on 4 nodes with an

increasing number of processes

Additional tests of other HPC architectures have been performed on the BEAST system at LRZ.

The Bavarian Energy Architecture and Software Testbed (BEAST) is a collection of systems for

the research and evaluation of new hardware technologies. Currently BEAST consists of three

different CPU architectures: AMD X86, and Arm Fujitsu A64fx. An additional system segment is

equipped with Arm ThunderX2, but the LIKWID tool was not fully functional on this architecture

at the time of testing and therefore we leave it for future investigation.

The AMD systems consists of two node Rome GPU 2U servers, with two AMD EPYC 7742 with

64 cores along with 512GB of DDR4-3200, two 1.9 Terabyte SSD and two AMD Radeon MI-50

GPUs with 32 Gigabytes of high bandwidth memory (HBM). The interconnections between the

nodes are Mellanox InfiniBand: HDR 200Gb/s.

https://doi.org/10.1038/s41567-018-0124-x
https://doi.org/10.1038/s41586-019-1666-5

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 65 30.06.2022

Finally, The Fujitsu A64fx system is an eight node HPE system consisting of Arm Fujitsu A64fx

CPUs with 64 cores and two 512-bit vector units and 32 gigabytes HBM2 memory that is connected

with a Mellanox InfiniBand EDR interconnect.

Table 7 below lists the key features of the different architectures evaluated on BEAST. Extensive

benchmarking and optimisation work is still ongoing but these tests serve to validate that the

QuantEx framework can run with these architectures. A point of reference (third column) is

provided by the Intel Xeon Scalable Processors (“Skylake”) of SuperMUC-NG. The table also

presents some performance diagnostics collected using LIKWID, namely run time, arithmetic

throughput, and measured memory bandwidth of our framework. The test cases used for these tests

were computations of amplitudes from 12 and 24 qubit GHZ circuits. We note that the increased

run-time in going from a 12 qubit circuit to a 24 qubit circuit reflects a non-trivial increase in both

the workload and memory requirements of the computation.

 ARM A64FX Intel SKL (SuperMUC-

NG)

AMD-ROME EPYC

7742

Run-time (s) - 12 Qubits 0.14 0.061 0.030

Run-time (s) - 24 Qubits 245.4 124.92 59.06

FLOPS DP (MFLOP/s) -

 12 Qubits

93.74 196.26 Not available on this

architecture

FLOPS DP (MFLOP/s) -

 24 Qubits

823.17 511.7 Not available on this

architecture

Memory

Bandwidth (Mbytes/s) -

12 Qubits

389.44 546.99 496.4

Memory

Bandwidth (Mbytes/s) -

24 Qubits

1665.42 4310.1 3110.72

Base-Frequency (MHz) 425 2300 2250

SIMD (bit) 2048 512 256

Cores /node 48 48 64

Table 7: Key features of the different architectures evaluated on BEAST

Beside testing the software on the HPC architectures listed above, a complementary part of our

benchmarking efforts has been to deploy it via Charliecloud HPC containers on the BEAST

segments and compare the performance against the “bare metal” deployment. For a detailed

description of our procedures and results we refer the reader to a forthcoming publication with title

“Deploying Containerized QuantEX Quantum Simulation Software on HPC Systems”, accepted

for the 3rd International Workshop on Containers and New Orchestration Paradigms for Isolated

Environments in HPC at Supercomputing 2021 (SC21), Sunday, November 14th, 2021.

The use of HPC specific containers significantly reduces the deployment effort of the software on

different HPC systems. It is relatively simple to build, configure the quantum gate simulation

software developed in Julia on multiple different HPC systems with different CPU architectures

and instruction sets. In addition, we were also able to show that the runtime performance difference

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 66 30.06.2022

for QXContexts between containerized and bare metal versions is negligible using the LIKWID

profiling software.

JuliaQX’s NVIDIA GPU support was tested using a 16GB NVIDIA Volta V100 GPU on Cineca’s

Marconi100 system. Here, we measured the time to compute a single amplitude on both a GPU

and on one of Marconi100’s 16-core IBM POWER9 processors. The time was measured for

several, progressively difficult, quantum circuits and the results are displayed in Table 8 below.

Each row contains the results of a different circuit with the first column giving the name of the

circuit. The second column contains the treewidth of the simulation which is a proxy for how

difficult the simulation is as the complexity of the simulation is exponential in the treewidth. The

memory column shows the maximum memory footprint of the process over the course of the

calculation. The measured times show a clear benefit to using the GPU for larger circuits.

Circuit Treewidth Memory CPU time GPU time

GHZ 2 160 B 1.29 ms 2.538 ms

RQC 4x4x24 11 18 KB 21.572 ms 53.372 ms

RQC 6x6x24 19 4.2 MB 229.1 ms 112.1 ms

RQC 5x5x32 23 67.1 MB 342.7 ms 167.9 ms

RQC 7x7x24 24 128.5 MB 1.296 s 292.2 ms

RQC 6x6x32 27 512 MB 9.141 s 384.9 ms

RQC 7x7x32 32 16.4 GB 16 s* 1.25 s*

Table 8: Time to compute various quantum circuits on Marconi100 system

Note, for the largest circuit (marked with asterisks in the Table above), the memory footprint

exceeded the memory capacity of the Volta V100. In this case, slicing was used to split the

calculation into two subtasks and reduce the memory requirements of the calculation. The

measured time is the time to complete one of these subtasks.

To port our framework to the Marconi100 heterogeneous system (CPUs and GPUs) the Julia

package CUDA.jl was used to add NVIDIA GPU support to QXContexts. This also enabled us to

use NVIDIA profiling tools to analyse our software’s performance. NVIDIA Nsight profiler tool

has been used to measure the performance of our code. This tool facilitates performance analysis

and guided optimization, provides memory transfer, I/O as well as load host to device transfer.

After configuring and adapting the NVIDIA NVTX instrumentation on the Julia framework the

profiling was more detailed and it was very useful for observing the behaviour of our algorithms,

and to make informed decisions and solve problems as they appeared. We can see that all host-to-

device transfers happen for output commands; moreover, the profiling clearly shows which code

parts take the longest runtime, e.g: “ncon” made up of a permute and the cuBLAS libraries: cgemm,

gemv or broadcast kernel depending on the case, see Figure 43 below. The optimised version of

our framework has been used and the time for each quantum circuit was measured and the results

are displayed in the table above.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 67 30.06.2022

Figure 44: NVIDIA Nsight profiler analysis report of code on heterogeneous Marconi100 System, with an

overall summary highlighting the bottlenecks.

9.3 Interactions with stakeholders, users, outreach and publications

At various stages throughout the project there has been engagement with project stakeholders and

potential users. This has been in the form of online meetings and a hands-on workshop for external

stakeholders where design plans and our initial prototype PicoQuant were presented. A set of

introductory Jupyter notebooks were prepared with examples of quantum circuit simulations and

explanations of background theory. These allowed the stakeholders to interact with the prototype

software and gain an understanding of how it works before giving their feedback and

recommendations.

A number of dissemination efforts were also undertaken to promote the QuantEx as a viable

quantum circuit simulation tool. To coincide with the full public software release, a number of

outreach activities were organised to promote the project and reach out to potential users. These

activities include stories on the ICHEC, LRZ and PRACE websites and social media channels as

well as a series of workshops to introduce interested users to the tools that have been developed.

In addition to these efforts, virtual posters were presented at JuliaCon 2021 with the titles

“Distributed Quantum Circuit Simulation” and “Introducing QXGraphDecompositions”. The first

presented the Julia package QXTools.jl as the main QuantEx Julia package for setting up and

running quantum circuit simulations. The second presented the Julia package

QXGraphDecompositions.jl as a solution to finding efficient contraction orders for tensor

networks. The posters were well received and published on the Julia Programming Language

YouTube channel [57] [58]. A virtual poster was also presented at the ISC High Performance 2020

https://www.youtube.com/watch?v=IuZ2b-b4baY&ab_channel=TheJuliaProgrammingLanguage
https://www.youtube.com/watch?v=h6FeH4krtJY&t=4s&ab_channel=TheJuliaProgrammingLanguage

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 68 30.06.2022

international conference illustrating the tensor network techniques used by QuantEx to simulate

quantum circuits and the parallel decomposition methods used to break a simulation into smaller

tasks.

A containerized version of the software workflow was demonstrated in a cloud-based HPC cluster

at the Supercomputing 2020 (SC’20) tutorial “Practical OpenHPC: Cluster Management, HPC

Applications, Containers and Cloud” [59]. At FOSDEM 2021 HPC container presentation,

“Deploying Containerized Applications on Secure Large Scale HPC Production Systems” [60].

QuantEx software workflow was presented as an important use case for containerized workflows

on traditional HPC systems. In addition, the paper "Deploying Containerized QuantEX Quantum

Simulation Software on HPC Systems." has been accepted for the 3rd International Workshop on

Containers and New Orchestration Paradigms for Isolated Environments in HPC at

Supercomputing 2021 (SC21), Sunday, November 14th, 2021 (see also Section 9.2). Furthermore,

a paper titled "Tensor Network Circuit Simulation at Exascale." has also been accepted for the

Second International Workshop on Quantum Computing Software at Supercomputing 2021

(SC21).

As well as engaging with potential users, efforts are ongoing to identify suitable opportunities to

integrate the developed tools into commonly used quantum circuit simulation frameworks. One

particular direction the QuantEx team is exploring is the possibility of integrating QuantEx as a

backend for the popular Yao.jl [61] framework. The Julia package YaoQX.jl [62] was developed

with the hope of enabling Yao.jl users to take advantage of distributed systems and pre-Exascale

and Exascale HPC clusters to simulate quantum circuits.

9.4 Overall assessment of achievements and future developments

The QuantEx project was successful in developing a modular flexible quantum simulator using

modern software development techniques (CI, PR driven development, automatically generated

documentation) and leveraging the novel programming language for scientific computing

JuliaLang. The simulator is open source and available at [52]. The software includes

implementations of state of the art techniques such as using hypergraph representations of tensor

networks [63] to reduce both time and space resources required by a simulation and a novel tree

trimming method [64] for automatic efficient tensor network slicing to decompose a simulation

into independent tasks that can be processed in parallel. The software was successfully tested on

Intel and AMD CPUs and on NVIDIA GPUs and future work includes expanding the supported

hardware to include AMD GPUs and Intel GPUs.

During the development process, we defined a domain specific language (DSL) to represent

primitive tensor network operations. The DSL can be used to describe a quantum circuit simulation

as a sequence of tensor contractions and to instruct how a simulation is to be executed on a cluster.

In QXTools.jl, the DSL is represented by a tree structure indicating data dependence between

tensor operations, allowing for various optimization passes to be made before writing the described

simulation scheme to a simulation file. For instance, the tree representation of the DSL can be used

to identify the global connectivity of hyperedges in the tensor network leading to further reductions

in the space complexity of the simulation. Continuing and expanding this work is of interest to

many groups working on intermediate representations for tensor network calculations and could be

an impactful future direction to follow.

Other possible future directions focus on optimizing simulations via improved network contraction

planning capabilities and better bitstring sampling methods. One method for improving a

https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html
https://fosdem.org/2021/schedule/event/containerized_hpc/
https://github.com/QuantumBFS/Yao.jl
https://github.com/JuliaQX/YaoQX.jl
https://github.com/JuliaQX
http://arxiv.org/abs/1710.05867
https://doi.org/10.1103/PhysRevA.102.062614

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 69 30.06.2022

contraction plan for a tensor network is that of local optimization [65]. This involves replacing

subtrees of a contraction tree with optimal alternatives found using an exhaustive search and

potentially offers significant improvements in computational cost of a simulation. For an

implementation of local optimization to be integrated with QXTools an exhaustive search method

for finding optimal contraction trees would be required which could account for features like

hyperedges that are already implemented. Developing such a technique would be of value to other

projects that involve searching for optimal contraction plans for hypergraphs. An approach to

optimising bitstring sampling using memoization was proposed recently [66] and offers large

reductions in the time complexity of a simulation. The method consists of designing a contraction

plan for a tensor network with a natural checkpoint which a simulation can return to between

samples to avoid recontracting a large portion of the network. A rewarding direction of future work

would be to integrate this technique with QXContexts to greatly improve efficiency and possibly

generalise the method to identify optimal checkpoints in arbitrary contraction plans, rather than

only carefully designed plans, broadening the contraction planning algorithms that can be used

with this technique.

https://arxiv.org/abs/2005.06787
https://arxiv.org/abs/2103.03074

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 70 30.06.2022

10 GHEX: Generic Halo-Exchange for Exascale

10.1 Introduction and summary

Halo exchange is a fundamental component of parallel Finite Difference, Finite Volume, and Finite

Element solvers of Partial Differential Equations (PDE). Grid-based PDE solvers are amongst the

most widely used numerical methods in scientific HPC, e.g., in atmospheric sciences, astrophysics,

structural and mechanical engineering, automotive industries, and geology. In these numerical

methods the spatial domain is discretized using a grid, and split into compact subdomains that are

assigned to individual Processing Elements (PE). To satisfy the PDE across the sub-domain

boundaries, the PEs have to exchange the boundary values with their spatial neighbours. This

operation is known as the halo-exchange, or the ghost-cell exchange.

Modellers from different scientific domains use various types of grids: 2D or 3D, regular Cartesian

grids, block-structured grids, or unstructured meshes. The implementation of the halo exchange

depends on the grid type, and on the underlying data structures. One can use some of the existing

libraries (such as PETSc), which perform the halo exchange for certain grid types, but at the same

time impose the programming language and the data structures that have to be used by the

application. Hence, adapting existing applications may require a large amount of work. Instead, the

developers often choose to implement the halo exchange themselves using MPI. This approach has

two major drawbacks: 1) the generic halo exchange code is re-implemented and re-optimized

multiple times, often by non-experts 2) the performance and its portability is limited to what MPI

can provide, which leaves out many optimizations available on today's HPC hardware.

We have developed GHEX - a generic halo exchange library for modern HPC architectures. GHEX

features a unified C++ halo exchange API suitable for arbitrary grid types, periodicity, data types,

and problem dimensions. It is implemented as an asynchronous communication primitive, hence it

allows for overlapping computations and communication. It does not use any global

synchronization. The arguments of the API are functions with defined interfaces, which makes it

oblivious to the specifics (e.g., the data layout) of the application. GHEX does not impose a specific

data structure on the user, but rather adapts to the user’s data structures. Fortran and Python

bindings make sure that the library can be used by a wide audience. Figure 44 below shows a

general overview of the GHEX ecosystem, with library concepts on the left-hand side

(communication pattern and iteration spaces), and user implemented ones on the right-hand side

(for describing domain decomposition, halos and data). The communication object is the place

where the halo exchange is actually implemented, making use of lower level APIs for the transport

layer and the communication strategies.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 71 30.06.2022

Figure 45: Overview of GHEX

During the development and optimization of GHEX it became clear that to tackle the complexity

of modern HPC architectures, several additional software components are needed. Within the

GHEX project we have developed a number of general-purpose tools that can benefit a wide range

of HPC codes:

 HWMALLOC [67] - a multi-threaded, NUMA-aware memory allocator;

 HWCART [68] - a hardware-aware Cartesian MPI communicator;

 OOMPH [69] - a transport API, which uses fabric-specific transport backends (e.g., UCX,

libfabric) and can be used as a partial alternative to MPI;

 GHEX [70] - the halo exchange API, together with optimized implementations for a number

of common grid types;

 GHEXBENCH [71] - a sophisticated halo exchange benchmark, which compares a number

of GHEX implementations to the standard MPI approach.

Each of the above codes is a separate git repository under the ghex-org github organization.

GHEX has been integrated into two astrophysics codes developed and maintained at the University

of Oslo: BIFROST and DISPATCH. BIFROST is a classical finite difference code, in which the

MPI ranks are single-threaded, and each rank handles a sub-domain of the global simulation space.

DISPATCH is a heavily multithreaded task-based modeling framework, in which the work is

assigned to the threads in a dynamic fashion. GHEX has been integrated in unstructured

applications as well. Generic unstructured patterns deduction is part of the GHEX core, and explicit

user-facing functions are already implemented for common use cases such as unstructured graphs

in CSR format and ECMWF's Atlas library.

https://github.com/boeschf/hwmalloc
https://github.com/NordicHPC/hwcart
https://github.com/boeschf/oomph
https://github.com/GridTools/GHEX
https://github.com/GridTools/ghexbench

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 72 30.06.2022

10.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

For the benchmarking purposes we used the following HPC systems:

 Piz Daint - an Intel Xeon based Cray X40/X50 system with Gemini interconnect,

accelerated (NVIDIA Tesla P100) and non-accelerated partitions, located in Switzerland

 Betzy - an AMD Epyc 2 system (BullSequana XH2000) with Mellanox IB HDR100

interconnect, located in Norway

The CPU architecture of Betzy is similar to that of LUMI, a pre-exascale system assembled in

Finland, which will host compute nodes equipped with AMD Epyc CPUs and MI200 GPUs, and

interconnected with the Slingshot network. Although Betzy does not have GPUs at the moment,

we have tested GHEX on other accelerated test machines based on AMD Vega10 and Vega20

architectures.

Efficient memory access is a major performance challenge of modern architectures, and the main

optimization target for the halo exchange. Consider Betzy, which consists of dual-socket compute

nodes. One Epyc CPU has 4 NUMA nodes, each NUMA node consists of 4 Core Complexes

(CCX) of 4 cores, for a total of 64 cores. Cores within the same CCX share an L3 cache. CCX’s

and sockets are interconnected with the Infinity Fabric. On this NUMAcc system, accessing the

memory located in the different memory domains has a different cost. During the halo exchange

the data is copied between different memory domains, both in- and off-node. The total

communication cost (and thus the performance) highly depends on how the grid sub-domains are

assigned to compute nodes and cores. In addition, removing any unnecessary copying of data, as

well as avoiding re-allocation of memory also improves the execution time.

Description of developed software components

HWCART is a hardware-aware Cartesian communicator that gives the user the possibility to define

an optimal rank-to-memory domain mapping by hierarchically arranging the lower-level domains

into grids inside the higher-level domains. For example, on an AMD Epyc 2 system with two

sockets per compute node, at the lowest level of the hierarchy are the cores. Groups of 4 cores

belong to a CCX (L3 cache domain), 4 CCX modules make a NUMA node, 4 NUMA nodes

comprise a socket, finally there are 2 sockets on each compute node. Here, the cores inside a CCX

can be arranged into a [4, 1, 1] rank grid. 4 CCX units can then be arranged into a [1, 2, 2] grid,

and so on. With this approach the user has a direct control over each rank’s neighborhood, which

results in the minimization of the off-node communication, and maximization of the performance

of in-node, shared-memory data exchange.

HWMALLOC is a multi-threaded, NUMA-aware memory allocator. Similar to other existing

solutions, for each memory domain (NUMA, accelerator) we keep several pools with memory

blocks of different predefined sizes. What distinguishes HWMALLOC is that it provides fabric-

specific hooks (currently MPI, UCX, libfabric) for memory initialization and registration. Hence,

the newly allocated memory is immediately ready to be used in RMA operations. Applications that

rely on frequent allocation and freeing of large memory buffers (e.g., DISPATCH) are able to do

so without any penalty connected with transport-specific memory registration.

OOMPH is a multi-threaded transport library that can be used as an alternative to MPI tagged

messages. OOMPH uses low-level transport backends (UCX and libfabric), or a generic MPI

backend. In the multi-threaded scenarios, each rank has one shared recv worker, and one private

send worker per thread. This implementation results in a significantly better multi-threaded

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 73 30.06.2022

performance than when using standard multi-threaded MPI libraries. Communication progress and

completion is managed either by MPI-like requests, or by callback functions, which get called

whenever a request is completed. OOMPH also supports a “send and forget” model, in which the

send buffers are automatically freed upon completion. These features significantly simplify the

communication stage in task-based codes, like DISPATCH.

The GHEX library provides highly optimized halo exchange implementations for a number of

commonly used grids (regular structured, cubed sphere, unstructured). For structured grids, GHEX

eliminates unnecessary data copies within a shared memory node by implementing direct memory

access to neighbour rank’s data structures using XPMEM on CPUs, or CUDAIPC on GPUs. Each

process (rank) registers raw memory pointers to its data grids. Other ranks on the same shared

memory node can access those pointers directly, if they are neighbours and need to exchange the

halos. This way the code combines the simplicity of a pure MPI application with all the benefits of

a multi-threaded approach: there is no need for packing/unpacking into/from additional memory

buffers when exchanging data within a compute node. To fully benefit from this approach, we use

HWCART to maximize the number of per-node neighbours and minimize the surface to volume

ratio of in-node sub-domains. For unstructured meshes, where an explicit sparse matrix - vector

product is often used, GHEX can exploit optimized memory layouts, in which the non-local vector

parts are stored in a contiguous chunk of the vector. In this case, the recv request can be submitted

using the destination part of the vector directly, without using an extra buffer and an unpack. For

all grid types GHEX can merge the halo data for multiple fields into a single buffer in order to

decrease the number of exchanged messages, and improve the effective communication bandwidth.

GHEXBENCH is a sophisticated halo exchange benchmark that allows the users to observe the

impact of all the developed software components, and compare the optimized GHEX code with a

standard MPI implementation. The benchmark emulates a typical halo exchange pattern which

arises in many scientific codes using a 3D cartesian grid, where each subdomain is connected to 26

neighbour domains. GHEXBENCH uses HWCART, or MPICart, GPUs, or CPUs, a pure MPI

model, or a multithreaded model. The parameters also include grid size, data type (float, double),

halo width, number of exchanged fields, in addition to a number of different halo exchange

algorithms and strategies. GHEXBENCH can be used to choose an optimal implementation for a

given architecture.

Transport layer benchmarks

The transport benchmarks measure the bi-directional point-to-point communication bandwidth in

multi-threaded applications. Two versions of the benchmarks are compared: an OOMPH

implementation, and an equivalent MPI implementation. The code launches two MPI ranks, one

per compute node. The ranks spawn Nthr threads, and each thread keeps Ninfl messages in-flight.

As soon as any asynchronous send/recv requests are completed, new ones are submitted. This

behaviour emulates applications, in which communication is fully asynchronous, like DISPATCH.

Figure 45 below shows the benchmark results on Betzy. In the sequential case (left plot), all codes,

including the standard OSU benchmark, perform similarly. In the multithreaded tests (right plot),

OOMPH with the UCX backend shows a much better performance than the MPI equivalents,

especially for smaller messages below 100KB, and is able to saturate the HDR100 bandwidth for

messages of 50kB and larger. On the contrary, the MPI-based benchmarks visibly suffer from

multithreading. Since message sizes below 100KB are realistic in many halo exchange scenarios,

OOMPH has a definite impact.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 74 30.06.2022

Figure 46: Transport layer benchmark results on Betzy

Halo exchange benchmarks

Performance of the high-level halo exchange API was evaluated using GHEXBENCH, by looking

at different isolated tests: impact of the hardware-aware communicator HWCART, impact of RMA

and multithreading strategies, and large-scale weak scaling. In order to both assess the intra- and

inter-node performance, the benchmarks were run on a single node, as well as on 27 nodes (in a

3x3x3 spatial configuration - the smallest number of nodes in 3D that gives a realistic

communication pattern). A larger number of nodes was used for evaluation of the scaling for

Cartesian and, separately, unstructured grids.

Hardware-aware communicators

Figure 46 below demonstrates the impact of HWCART on the performance of halo exchange on

Betzy. Global halo exchange bandwidth, computed as the number of halo bytes divided by the

average exchange time, is shown for different scenarios. In single-node tests, 128 ranks are

arranged into a periodic [8, 4, 4] rank grid. In multi-node runs the global rank grid dimensions are

[24, 12, 12]. The results show the effective memory bandwidth of halo exchange for one data field

of 128^3 double precision numbers per rank. Within a single node the impact of HWCART is small

for the pure MPI code, but substantial for the XPMEM implementation. Overall, GHEX can yield

up to 50% improvement over MPI for large halos. In multi-node runs the impact of HWCART is

much more pronounced also for the pure MPI implementation: the used rank-to-node mapping

resulted in compact per-node subdomains, which maximized the number of in-node neighbours

and minimized the off-node communication. Overall, using GHEX boosts the performance by up

to factor 2 compared to a pure MPI implementation.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 75 30.06.2022

Figure 47: Impact of HWCART on the performance of halo exchange on Betzy

Halo-exchange strategies

Figure 47 below shows the results obtained on the Piz Daint Multicore partition (Cray XC40

compute nodes: dual socket: 2 x 18 cores). We compare a pure MPI implementation with GHEX

(using MPI backend for off-node and XPMEM for in-node communication). Both the pure MPI,

and the MPI+threads scenarios are tested; the former uses 36 ranks per node, the latter starts 1 rank

per socket and 18 threads per rank. The domain size per PE is 128^3 (double precision), 2 fields

are exchanged. All results are obtained using a staged exchange algorithm, where the halos

(including diagonal corner elements) are exchanged along the XYZ axes in three sequential steps.

Although this leads to an increased amount of transferred data compared to a single-stage

exchange, it also reduces the number of messages across the fabric and leads to better performance

in general for this architecture.

Figure 48: Results obtained on the Piz Daint Multicore partition

The performance advantage of direct memory access (using XPMEM between ranks, and shared

memory between threads) is apparent for all configurations and leads to more than three times

throughput increase w.r.t. the pure MPI code for some cases. The difference is particularly striking

in the multi-threaded configurations, where GHEX achieves the highest performance. The multi-

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 76 30.06.2022

node benchmarks also show that GHEX can retain the benefits from the intra-node optimizations

despite the usage of equivalent calls to the same MPI library for off-node transport.

Figure 48 below shows the results from a similar benchmark on the Piz Daint GPU partition

(CrayXC50 compute nodes: 12 cores, 1 NVIDIA Tesla P100). Here, we allocate 4 fields (double

precision) of size 64^3 per rank/thread which reside in the GPU memory. The MPI implementation

uses cuda pack kernels and GPU-aware MPI calls, while GHEX employs direct memory access

among threads (shared memory) and processes (cudaIPC) on the same node and pack/unpack

kernels between nodes. Both the multi-threaded and single-threaded results demonstrate the

speedup gained by GHEX, especially for large halos.

Figure 49: Benchmark results on the Piz Daint GPU partition

Large scale benchmarks

In Figure 49 below, we demonstrate that GHEX scales up to more than 12k cores on Piz Daint

multicore partition and 512 GPUs on Piz Daint Hybrid partition, respectively, with a constant load

per PE using the GHEXBENCH application (halo width=2, 4 fields, double precision). The

execution times are normalized with respect to the fastest time for the baseline of 27 nodes (3x3x3

spatial configuration). We observe that both the multi and single threaded benchmarks scale well

and outperform the respective MPI benchmarks in absolute terms. Furthermore, the usage of

cudaIPC as well as optimized kernels result in twice better performance for the GPU benchmarks.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 77 30.06.2022

Figure 50: GHEX scaling on the Piz Daint multicore and hybrid partitions

Figure 50 below shows weak scaling benchmarks on the Piz Daint GPU partition using

unstructured meshes generated with the Atlas library. The plot on the left shows halo exchange

times with CPU storage and 12 ranks per node, while on the right storage is GPU-only and only 1

rank per node is used. In both cases 4 integer fields are exchanged, with halo depth = 2 and MPI as

the transport backend. The grid is an Octahedral Gaussian grid (the type used e.g. in the FVM of

the IFS model at ECMWF), with 100 vertical layers and respectively 160 and 320 (CPU) and 80

and 160 (GPU) parallels between the Pole and the Equator in the baseline configuration (2 nodes).

When reaching the largest run sizes (512 nodes for the CPU storage and 2048 nodes for the GPU

storage) this translates in both cases to the same two final grid sizes, with a grid spacing of ~5km

for the smaller grid and ~2km for the larger one. The implementation relies on Atlas only for mesh

generation, and uses the GridTools storage module as the backend for the fields.

Figure 51: Weak scaling benchmarks on the Piz Daint GPU partition using unstructured meshes

10.3 Interactions with stakeholders, users, outreach and publications

Throughout the development of GHEX we have been in active contact with BIFROST and

DISPATCH developers at the University of Oslo. The Fortran interface to GHEX has been

designed in such a way as to minimize the amount of work needed to adapt both codes. Both

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 78 30.06.2022

DISPATCH and BIFROST have been modified to make GHEX calls instead of the native MPI

calls. In both cases the codes have been adapted with little effort, and in a flexible manner: the user

can decide whether to use GHEX, or the original implementation at compile time. We have also

started GHEX branches in the main development repositories of both BIFROST and DISPATCH

at the University of Oslo. Consequently, any new development on the scientific side can be quickly

merged with our communication backend.

GHEX integrates with unstructured applications as well by supporting communication patterns

based on unstructured meshes. By passing to the halo-exchange setup functions the proper function

to gather the halo information, GHEX can handle those cases similarly to the Cartesian ones. As

for the Cartesian use cases, we developed user-side functions for typical cases, for instance general

unstructured graphs in CSR format, and for interfacing the mesh and domain decomposition done

by the Atlas library. Atlas is developed at the ECMWF where it is used in weather and climate

production applications such as IFS. As a proof of concept we also developed user-side functions

for inflated-cubes meshes, used in other weather and climate models, such as FV3, which is the

NOAA global weather forecasting model. The latter is being evaluated to speed up the

communication operations from the Python driven models.

GHEX has been introduced in GTBench, which is a mini diffusion-advection application to

represent typical weather and climate computations. The application uses GridTools [72] to allow

the execution on both CPUs and GPUs, and GHEX can be used to perform halo-update operations.

This code had been used in the procurement phase of the LUMI pre-exascale computer.

An important effort actively pursued at ETH is the development of a Python framework for

developing weather and climate applications, whose main component is GT4Py, a high-level

interface to specify computational kernels in the field. The collaboration with the GT4Py team led

to the implementation of the Python bindings for GHEX, and improved the implementation quality

of GHEX itself by making it more uniform and amenable to automatic code generation, which is

an important target for that project.

GT4Py is also used by another group to develop a Python version of FV3. The use of GHEX is

being introduced to overcome a limitation due to the ability of GHEX to reduce the number of

communications steps in their application, which requires frequent round-trips to Python. The

initial results are very encouraging.

GHEX has also been actively presented in workshops, such as SIGMA2 LUMI workshop [73], or

PADAL [74], where international researchers working in HPC applications discuss the hard topic

of data locality and movement. GHEX received great interest from the attendees. While there was

skepticism on the adoption of UCX, our benchmarks show now that it was the right choice to make.

The library was presented at several venues, including: PASC’21 conference; PRACE Inter-WP

Topical Session “Exascale for European Datacentres"; and WP8 Online Session and Project Input

for Yr1 Progress Report; vulcan Inc, USA; WholeSun workshop 2021 where partners working on

DISPATCH, BIFROST and other applications attended.

Publications

GHEX has been presented at the PASC21 conference (“GHEX: Performance Portable

Communication for Grid Applications”, Marco Bettiol, Fabian Bösch, Mauro Bianco, John

Biddiscombe & Marcin Krotkiewski).

https://gridtools.github.io/gridtools/latest/index.html
https://www.sigma2.no/lumi-system-researcher-preparation#program
https://sites.google.com/a/lbl.gov/padal-workshop/padal19

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 79 30.06.2022

We are currently in the process of describing the details of the implementation, optimization

strategies and benchmarking results in a paper (“GHEX: Generic Halo-Exchange for Exascale”,

not yet published).

10.4 Overall assessment of achievements and future developments

The major goal of the GHEX project was to develop a future-proof and performance-portable halo

exchange library for modern and future HPC architectures that will be relevant for a large scientific

audience. To achieve this goal, the design and the development were performed in a close

collaboration with the strategic scientific communities: the developers at ETH and their

collaborators in the weather and climate modelling, and the researchers at the RoCS astrophysics

Centre of Excellence at the University of Oslo. From the functional point of view, GHEX now

supports a number of common grid types, the modern C++ implementation is clean and overhead-

free, and the Fortran and Python bindings further extend the reach of the code. The code is portable

and has been tested on Intel and AMD CPUs and GPUs. It supports the pure MPI programing

model, as well as the multi-threaded model, and is suitable for both classical grid-based

applications, as well as task-based environments. Modern software development methodologies

have been adopted, from agile development to the implementation of CI/CD workflows, which are

currently based on GitHub actions. Finally, we’ve adapted BIFROST and DISPATCH to use our

interfaces and made sure that the integration is smooth and relatively simple.

The major focus points throughout the development of GHEX were scalability and performance.

GHEX was an experimental arena, where we tested several ideas on how to improve the

performance of the halo exchange: using direct memory access instead of MPI-like communication

for threads and ranks within the same compute node (using XPMEM for CPUs and CUDAIPC for

GPUs), using different communication backends in addition to MPI (UCX and libfabric),

implementing a range of different exchange algorithms (direct 26 neighbours vs. staged,

exchanging field by field vs. packing all fields into a single buffer). We compared the performance

to simple synthetic benchmarks, the roofline model (the memory and interconnect bandwidth), as

well as a pure MPI implementation. During the project it became clear that to properly optimize

the code for some architectures, and to provide a decent speedup over standard MPI, several more

software components in addition to the originally planned halo exchange library were needed.

Consequently, we have developed a range of general-purpose tools that we believe are useful and

can benefit many HPC applications.

HWMALLOC is a hardware-aware memory allocator for HPC. The existing memory allocators

only manage CPU memory, and only keep allocation pools for relatively small allocations. Large

buffers, such as the ones used in DISPATCH, are immediately released to the OS upon freeing.

Since DISPATCH relies on frequent (de)allocation of message buffers, standard allocators result

in large overheads connected with memory allocation. Moreover, the existing allocators do not

provide user-specified hooks to initialize the memory. HWMALLOC manages both CPU and GPU

memory domains, and provides a method to automatically register the memory for use with RDMA

operations of modern interconnects, which makes it more suitable for HPC.

The need for HWCART arose when optimizing GHEX for AMD Epyc based nodes, where the

memory hierarchy consists of more levels than on most other architectures to date. Depending on

how the ranks are bound to the cores, the performance can differ by a factor 2, especially when

using direct memory access between the ranks/threads. The native MPI Cartesian communicator

assigns ranks to PEs in a linear, Z-first order. Instead, HWCART can be used to build compact

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 80 30.06.2022

cubes of ranks, minimize the surface to volume ratio of per-node grid subdomains, maximize the

shared memory communication, and minimize the off-node data transfer. HWCART can benefit

all codes that rely on Cartesian communicators, including pure MPI codes that do not use GHEX

halo exchange.

OOMPH has been developed as an alternative API for the exchange of tagged messages, suitable

for the task-based programing model. An MPI program checks for asynchronous communication

completion by actively testing the request handles. This complicates the code, because the requests

have to be stored, maintained, and explicitly checked. Modern communication libraries, such as

UCX and libfabric, offer the users an alternative completion mechanism based on callbacks. The

user only has to progress the communication backend using, e.g., a progress() function, and the

callbacks are invoked upon the completion of any request. OOMPH provides the callback

functionality as a C++ and Fortran API. Following the modern C++ approach, OOMPH also

implements futures, to which the user can attach continuations. Finally, OOMPH implements a

“send-and-forget '' communication model, in which the backend tracks the state of the send requests

and automatically frees the message buffer upon completion. This further simplifies the task-based

codes like DISPATCH. When used together with HWMALLOC, there is no (re)allocation and

registration overhead connected with this model. Finally, benchmarks have shown that using

OOMPH with UCX and libfabric backends substantially improves multithreaded communication

performance over MPI.

To study the performance and scalability of the developed tools on various architectures, we have

developed GHEXBENCH. This benchmark allows the user to test the performance of GHEX

throughout the large parameter space that includes all the discussed tools, communication

backends, RMA optimizations, exchange algorithms, GPUs vs. CPUs, threads vs. ranks, halo

width, number of fields, and data type.

The goals of the project outlined in the proposal have been reached, and even more useful tools

and knowhow have been developed than initially planned. However, the project is not yet finished

and several more directions can be explored. More performance analysis and optimizations may

bring further improvements, especially for the in-node exchange using RMA. We observe that in

some cases the pure MPI implementation is still faster, although the back of the envelope

performance estimates say it should not be. This is most likely due to some non-trivial memory

and cache effects, which we do not yet understand. Also, more optimizations and tuning might be

necessary for LUMI: although we have tested GHEX on Betzy, which is a similar architecture

CPU-wise, and on AMD and NVIDIA based GPU systems, the actual architectures of the pre-

exascale computers are not available. We will benchmark GHEX on pre-exascale computers as

they become available, especially LUMI, thanks to the project extension.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 81 30.06.2022

11 ParSec: Parallel Adaptive Refinement for Simulations on Exascale
Computers

11.1 Introduction and summary

One of the key capabilities required by CFD codes to take advantage of leading-edge computing

resources is the automation of the mesh generation and adaptation processes. Manual mesh

generation and tuning is not feasible in an Exascale simulation workflow, Adaptive Mesh

Refinement (AMR) automates this process providing higher efficiency and robustness to the codes.

ParSec brings together well-known CFD practitioners with the aim of sharing best practices, and

collaboratively modernise the AMR implementation of three leading-edge CFD community codes.

The partners involved in the project are Barcelona Supercomputing Center, the KTH Royal

Institute of Technology and together Cenaero and Université de Liège. The community codes

brought by these institutions are: Nek5000, the scalable high-order solver for computational fluid

dynamics from KTH/UIUC, Alya, the high performance computational mechanics solver from

BSC, and Argo, the high order multiphysics solver from Cenaero. These three CFD solvers cover

the main approaches for the solution of PDEs using both structured and unstructured meshes: finite

element, finite volume, and spectral elements.

Beyond the AMR-enabled CFD codes, some libraries providing mesh functionalities are included

in the project, namely: MAdLib, an open source library including all the mesh functionalities of

Argo, Gmsh an OS finite element mesh generator with a large community of users and GeMPa an

OS including all the geometric mesh partitioning tools available in Alya.

Figure 52: A vortical structure of the flow around a simplified rotor (left) and the refinement level structure

for the same simulation (right). Work performed in collaboration with CINECA.

Throughout the project, we have achieved qualitative advances in all the codes. Alya and Argo (via

MAdLib) have evolved from a sequential version of AMR to a finished and tested parallel

implementation. The developers of both codes have opted for an interface freezing approach that

interleaves interface displacement and local remeshing. For MAdLib, a load balancing mechanism

has been included in the remeshing phase. It has been tested for the generation of anisotropic

meshes using up to 768 CPU cores. For Alya, scalability results have been reported using up to

4096 MPI processes.

Nek5000 started the project with an already working parallel AMR implementation, which has

been optimized by reimplementation and modularisation of the code: exploring different

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 82 30.06.2022

partitioning libraries, improving pressure preconditioning, and investigating various strategies for

generating high-order hex-based meshes. Moreover, a GPU-version of Nek5000 relying on an

OpenACC/Cuda framework for NVIDIA accelerators has been developed and tested in various

systems.

Regarding Gmsh, several improvements have been implemented and tested in the mesh generation

pipeline. Both the coarse-grained parallelism of 1D and 2D algorithms and the fine-grained

multithreading of the new 3D Delaunay mesher and optimizer have been improved. The

developments have been tested in a 420 million tetrahedra mesh of a nozzle, courtesy of NASA

Glenn Research Center. Moreover, during the project, Gmsh has been integrated within MAdLib

and Alya. Finally, the mesh partitioning functionality of Alya has been extracted into the stand-

alone OS library GeMPa.

11.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

Nek5000 - KTH

There are two main aspects of the Nek5000 development within ParSec: an improvement of an

Adaptive Mesh Refinement (AMR) algorithm and parallel performance on the heterogeneous

architectures. Although we did not consider the mortar elements or p-refinement strategies, we

have significantly enhanced AMR making it a robust tool for performing industrially relevant

simulations. We achieved it by reimplementation and modularisation of the code, exploring

different partitioning libraries, improving pressure preconditioning and investigating various

strategies for generating high-order hex-based meshes. Regarding heterogeneous architectures, we

have been working on a GPU-version of Nek5000 relying on a OpenACC/Cuda framework for use

on NVIDIA accelerators and we are also currently porting this to a OpenMP/HIP framework for

use with AMD systems.

The performance of Nek5000 has been examined on various systems. For these measurements we

used the turbulent pipe case (conformal mesh) case. In Figure 52 (left), we consider the

performance on the JUWELS Booster system based on NVIDIA A100 GPUs and AMD EPYC

7402 CPUs. The results demonstrate scalability up to 512 GPUs (128 nodes) with good efficiency.

Figure 53: Scaling of the OpenACC version of Nek5000 on several GPU enabled machines. (left) Results in

JUWELS Booster. (right) Results including JUWELS Booster at Jülich in Germany, Berzelius at NSC in

Sweden, Longhorn at TACC in the USA and Piz Daint at CSCS in Switzerland.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 83 30.06.2022

In Figure 52 (right), good scaling results up to 128 GPUs is shown in several systems. The speedup

from using 32 GPUs NVIDIA P100 GPUs on Piz Daint to using 32 NVIDIA A100 GPUs on

JUWELS booster is also consistent with the increase in the dual precision flops on P100 (4.7 TF)

to the A100 (9.7 TF). For larger numbers of GPUs, the effect of the network becomes more

significant and the increase in performance from the faster GPUs is lower.

MAdLib/Argo - CENAERO

During the project, a parallel mesh adaptation approach has been implemented and tested within

the mesh adaptation library MAdLib. Though the adaptation features of this library were initially

available in sequential setting only, it has been possible to take advantage of the sequential

remesher for distributed purposes. Keeping the former implementation as it was, the method

consists in iteratively storing the already adapted part of the mesh and load-balancing the remaining

part of it. Each time the adaptation procedure is called, the interfaces between partitions are fixed,

so that the sequential remesher can work properly. The load-balancing algorithm is based on the

ParMetis library, which has been interfaced within MAdLib. Several 3D test-cases have been run,

involving size-field based mesh adaptation. Two significant aspects have been considered: the

anisotropy handling and the distribution of the meshing load. In order to get a mesh which properly

complies to a strongly anisotropic size-field, the recursive partitioning process described above

evaluates the remaining adaptation work and modifies the partitioning accordingly. The

distribution of the work between the partitions is computed by the evaluation of the difference

between the current mesh and the size-field the adapted mesh should comply to. By combining

these two strategies, the remesher can modify the initial mesh so that it satisfies size-fields which

can be both anisotropic and non-uniform in terms of size-field complexity.

Figure 54: Cube adapted mesh with respect to a radial anisotropic size-field, obtained with a 768 cores

parallel mesh adaptation. Left: the final mesh with around 7.2 million elements. Right: partition represented

by different colours.

Figure 53 shows an anisotropic mesh over a cubic domain used as a test case. It has been run on an

increasing sequence of number of cores, from 24 to 768 cores on Intel Ivy Bridge at 2.7Ghz. An

initial partitioned mesh with around 3 million tetrahedra is considered. Then, a size field is defined

at the vertices of this mesh, and the complexity of it is tuned so that an adapted mesh with respect

to this size-field would be 1,5x finer than the initial mesh. The overall process is repeated twice,

resulting with a mesh which is 2,25x more refined than the initial mesh. As shown in Figure 54

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 84 30.06.2022

below, the method scales well up to several hundreds of cores. This functionality is currently being

integrated within Argo.

Figure 55: Strong scaling test for anisotropic refinement of a mesh within a Cube, through two refinement

steps the mesh size is multiplied by 2.25x.

Gmsh - Université de Liège

Several improvements were implemented and tested in the mesh generation pipeline of Gmsh. Both

the coarse-grained parallelism of 1D and 2D algorithms and the fine-grained multithreading of the

new 3D Delaunay mesher and optimizer were improved. The previously sequential evaluation of

mesh size constraints was fully parallelized using OpenMP, and the partitioning of large meshes

using Metis was also improved, including the creation of the full partition topology. Various GPU

offloading opportunities have also been investigated, in particular for high-order curved mesh

generation. Figure 55 shows typical results obtained with the improved meshing pipeline applied

to a CAD model of a nozzle, courtesy of NASA Glenn Research Center. The full meshing pipeline

(1D, 2D and 3D meshing, followed by mesh optimization) was carried out on AMD Epyc Rome

7542 CPUs at 2.9 GHz. A quality mesh of about 420 million tetrahedra, adapted to a priori mesh

size constraints, was generated in about 15 minutes with 64 threads (see Table 9), using 52 GB of

RAM. While there is still room for improvement, this new level of performance clearly allows one

to envision the generation of quality initial meshes for future exascale applications on complex

geometries.

Figure 56: Mesh of a nozzle (courtesy NASA Glenn Research Center) with a priori mesh size constraints,

leading to about 420 million tetrahedra. Three zoom levels on a visualization of the mesh.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 85 30.06.2022

#CPU-cores Time (s)

1 11888

4 4744

8 2405

16 1326

64 924

Table 9: Scaling test for the generation of a 420M elements mesh of a nozzle. Parallelization base on threading

using OpenMP on an AMD Epyc Rome 7542 CPUs at 2.9 GHz.

Alya - BSC

In the course of the ParSec project, the AMR parallel workflow of Alya has been completed; only

a naïve sequential approach was available before the project start. As shown in Figure 56, the

workflow is a composition of various functionalities. In short, once the solution of the PDE under

study is available, an error estimator is used to define the refinement requirements. Then starts the

process of mesh adaptation/refinement. We have implemented an interface freezing approach

where, at each time step, the nodes at the interface between two subdomains are blocked, and the

interior of the subdomains are remeshed. Then the interface is moved, generating new subdomains,

and the process is repeated until no frozen nodes remain. Once the new mesh is obtained, the fields

defined on the initial mesh are interpolated to the new one through a parallel interpolation module.

Finally, if the adapted mesh distribution is significatively unbalanced, a dynamic load balancing

process based on mesh repartitioning is activated.

In the course of ParSec we have implemented the parallel mesh adaptation process and optimized

the parallel interpolation. For the remeshing part, we have integrated into Alya both MAdLib and

Gmsh. This task has been done in close collaboration with the partners hosting each library. On the

other hand, the error estimation part has been left for application scientists since is a physics-

dependent functionality; we have had a close collaboration with the EXCELLERAT and CoEC

Centers of Excellence in this regard. The parallel load-balancing mechanism was available in Alya

before the project start. All these developments are now available in the open source version of

Alya [75].

https://gitlab.com/bsc-alya/alya/-/wikis/home

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 86 30.06.2022

Figure 57: Parallel AMR workflow implemented in Alya.

In Figure 57, a strong scaling test performed in the Hawk supercomputer from HLRS is presented.

The mesh under consideration has 16M tetrahedra and the number of CPU-cores used ranges from

512 to 4096. The parallel efficiency obtained for the simulation with and without AMR is the same

when using 4096, but for 2048 CPU-cores there are significant differences, further investigation is

required to understand this behaviour and extend the scalability to larger number of CPU-cores.

Figure 58: Strong scaling of the AMR implementation of Alya in a tetrahedral mesh of 16M elements, using

the Hawk supercomputer from HLRS.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 87 30.06.2022

Finally, in ParSec, the SFC-based mesh partitioning tools of Alya have been extracted into the

stand-alone open source library GeMPa [76]. The geometric mesh partitioning implemented in

GeMPa is used in Alya for mesh partitioning and dynamic load balancing purposes. The following

table shows a comparison of the Alya SFC partitioner vs. the well-known library Zoltan (version

3.8.3). Tests were run on the MareNostrum IV supercomputer, and both libraries were compiled

using the intel/18.4 compiler. For Zoltan, the Zoltan_LB_Partition was used with the HSBC option.

The problem under consideration is the mesh around an airplane with 250M elements.

Partitions Nodes uses Time Alya (s) Time Zoltan (s) Speedup

384 8 0.25 0.87 3.5x

768 16 0.15 0.54 3.6x

1536 32 0.10 0.48 4.8x

3072 64 0.07 0.50 7.1x

6144 128 0.08 0.79 9.9x

Table 10: Comparison of Alya SFC-based mesh partitioning vs Zoltan v 3.8.3. Partition of a 250M elements

mesh around an airplane.

These tests show that although at some point the scalability stalls, the cost of generating a partition

is almost negligible: 0.08 seconds to partition a mesh of 250M elements into 6144 subdomains. It

also shows that the SFC-approach implemented in GeMPa clearly outperforms Zoltan. These tests

were performed with Alya, however we have shown that the result and the performance obtained

with GeMPa is equivalent to that obtained with Alya.

11.3 Interactions with stakeholders, users, outreach and publications

Nek5000 - KTH

Although both an AMR and GPU implementations are in the development phase, it has been shared

already with external users e.g., within the framework of EXCELLERAT EU project, or Swedish

e-Science Research Centre (SeRC). One of the examples is collaboration with CINECA (Italy),

where both implementations are tested and developed. In the case of the GPU branch our

collaboration focuses on implementation and optimization of the OpenMP GPU Offloading

version. Two main aspects considered here are: the overlap between data movement between

device/host and computation, and the overlap of multiple kernels over GPUs. We performed

detailed profiling analysis looking for subroutines without data dependences and kernels that do

not occupy a full GPU. Unfortunately, some limitations come from the OpenMP offloading model,

which does not support the explicit execution of multiple kernels in different streams.

Another aspect of our collaboration is joint effort with Texas Tech University, where we investigate

a fully turbulent straight pipe simulation using GPU-based computer systems in the US. In this

case an OpenACC version of Nek5000 is used. We performed a number of benchmarks and

validation tests comparing e.g., profiles computed by Nek5000 and OpenPipeFlow (an open source

code aiming at turbulent pipe simulations). Results of both codes are in perfect agreement. Our

goal is to perform full-scale production runs utilizing as much of the system as is possible. Two

https://gitlab.com/rickbp/gempa

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 88 30.06.2022

specific benchmark runs we can mention here are: 0.3M and 7.2M elements simulation performed

on 128 (Longhorn at TACC) and 4096 (Summit) NVIDIA V100 GPUs respectively.

Regarding the AMR branch, collaboration took place with CINECA that aimed at performing AMR

simulation of the rotating parts e.g., of a drone rotor. This project deals with different aspects of a

whole simulation work-flow starting with a hex-based meshing of a relatively complex object,

through efficient mesh partitioning, and ending with data visualisation. This code version is used

as well by communities in SeRC. In addition, we also prepared a paper for the HPC Asia 2022

Conference further describing the strong scaling results for Nek5000 [77].

MAdLib - Cenaero

In addition to the developments of the parallel adaptation features, MAdLib’s API has been deeply

modified and completed. Indeed, in order to make easier the use of the library with external

software packages, the user interface has been made compatible with the C language, whereas it

was only usable in C++ beforehand. Besides, this API now covers the mesh adaptation features,

both in sequential and parallel settings. These functionalities are already available in the

development trunk of MAdLib, and will be included in the next release 2.3.0. Particularly, the C

API has been used by BSC in this project to integrate MAdLib into Alya as an anisotropic mesh

adaptation tool.

Gmsh - Université de Liège

Gmsh is widely used both in academia and industry, and the improved parallelism resulting from

the Parsec project will benefit all users requiring large scale mesh generation. Moreover, during

the project an initial integration of Gmsh within MAdLib was carried out using the Gmsh C++

API, which will enable the seamless transfer of meshes between both libraries. This will provide

new opportunities for flexible and efficient meshing, adaptation and remeshing pipelines using both

libraries in the future. Finally, a new Fortran port of the Gmsh API was developed during the project

to complement the existing C++, C, Python and Julia APIs, which will ease the integration of Gmsh

in Fortran HPC codes. In fact, the Fortran API has been validated through the integration of Gmsh

with Alya. All the developments carried out during the project will be available in Gmsh 4.9 [78],

scheduled to be released by the end of 2021.

Figure 59: 20M elements mesh of the Preccinsta burner obtained through adaptive mesh refinement from 3M

elements mesh. Test case studied in the CoEC Center of Excellence.

https://arxiv.org/abs/2109.03592v2
https://gmsh.info/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 89 30.06.2022

Alya - BSC

Alya is part of the software hub of various Centers of Excellence, the use cases of those CoEs

directly benefit from the AMR capabilities developed within ParSec. In particular, we have set up

a collaboration with the European Center of Excellence for Engineering Applications

(EXCELLERAT) [79] in which it is being considered a use case for airplane aerodynamics and

flow control via jet actuators; and also a collaboration with the Center of Excellence in Combustion

(CoEC) [80], where the test case under consideration is the Preccinsta burner. An illustrative image

of this test case is shown in Figure 58. The mesh resulting from the AMR process has about 20M

elements, and it was generated from an initial mesh with 3M elements. In the left part of the figure

are depicted the mass centers of the cells as particles, and in the right part, the tetrahedral cells. We

can see how the mesh is well adapted to the vortex structures of the turbulent flow generated within

the combustion cavity. In both cases, the error estimators to determine the refinement requirements

have been studied from the application point of view in the CoEs, while the usability and

performance of the code have been delivered by ParSec. Finally, note that all the developments

carried out in this project are available in the open source version of Alya.

On the other side, the GeMPa library has been realized in the last phase of ParSec, and we have

plans for using it in the context of the EuroHPC project NextSim [81]. NextSim focuses on

preparing the flow solver CODA (the new reference solver for aerodynamic applications inside the

AIRBUS group) for future Exascale computing systems.

11.4 Overall assessment of achievements and future developments

Overall, the four objectives set up for the ParSec proposal were:

1. Analysis of the various separation of concerns (SoC) used for the AMR implementation;

2. Analysis and optimization of the performance of the codes on (pre) Exascale architectures;

3. Deliver self-contained OS software components solving different steps of the AMR

process;

4. Deliver three AMR-enabled CFD legacy codes to exploit (pre) Exascale systems.

Those objectives have been mainly achieved and delivered into production-ready software, taking

advantage of a collaborative partnership. Further details on the various software packages included

in ParSec are provided in the following paragraphs.

Nek5000 - KTH

The main goal of Nek5000 related development within ParSec was to make this code a robust

solver using AMR and heterogeneous architectures and capable of solving industrially relevant

problems. Building on previous work of CRESTA EU project, and through extensive collaboration

with existing EU projects (e.g., EXCELLERAT) and various national organisations (e.g. SeRC)

we have achieved most of our goals, although some problems require future investigation. One of

the achievements is a GPU branch built on OpenMP/OpenACC. It reduces computational time 3-

5 times with respect to the CPU version of Nek5000. However, there is still room for improvement,

as only velocity solvers were optimised and a pressure solver needs more attention. This will be

investigated in the future. On the other hand, there was a significant development of the AMR

branch starting from code refactoring and modularisation, through testing different mesh

partitioners (ParMETIS vs ParRSB) and working on hex-based meshing. It allowed us to perform

the fully AMR simulations of the moderately complex cases e.g., a toy rotor with Reynolds number

equal to 100000.

https://www.excellerat.eu/
https://coec-project.eu/
https://cordis.europa.eu/project/id/956104/es

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 90 30.06.2022

The main issue we have encountered is adaptation of the AMR framework to GPUs. It is because

AMR work-flow relies on various libraries and communication intensive algorithms that pose

problems porting to GPUs. The other important observation is the importance of the proper error

indicator/estimator. Although the whole AMR framework allows dynamic mesh modification, the

final quality of the solution depends mostly on the information where the mesh should be

resolved/coarsened. That is why we devoted more time to the investigation of the solution

sensitivity to the applied refinement (e.g., turbulent statistics in a turbulent pipe simulation) leaving

development of the mortar elements to the future.

MAdLib - Cenaero

The parallel mesh adaptation developments introduced in MAdLib within the Parsec project

constitute a strong basis on which further developments will be done. Indeed, though the parallel

mesh adaptation does not scale on thousands of cores, it has shown great robustness and extends

most of the serial capabilities to parallel settings. In order to improve the scaling for a larger number

of cores, several ways should be investigated. As expected, when the number of cores increases,

the code performances are slowed down by the large number of communications between

partitions, whereas the actual adaptation work represents a smaller part of the full process. To

overcome this issue, the number of interfaces between partitions should be minimized by a load-

balancing correction procedure. This kind of algorithms already exists in the literature and already

showed encouraging results in early tests.

Gmsh - Université de Liège

The improved performance of the parallel mesh generation pipeline in Gmsh introduced during the

Parsec project allows one to envision the generation of quality initial meshes for future exascale

applications on complex geometries. Indeed, quality meshes with hundreds of millions of

tetrahedra can now routinely be generated in a matter of minutes. Also, the new Fortran Gmsh API

developed during Parsec nicely complements the existing C++, C, Python and Julia interfaces,

which will make it easier to access these pipelines from more HPC codes. Future developments

should target further performance improvements in (especially high-order) mesh optimization,

which could benefit substantially from GPU acceleration.

Alya - BSC

In ParSec, the parallel AMR workflow of Alya has been completed and also tested in various

applications in collaboration with the Centers of Excellence EXCELLERAT and CoEC. The

project's main goal was to end up with an AMR-enabled CFD solver, which has been achieved.

Further development will be required to improve some aspects of the implementation, such as

optimizing the interface motion to minimize the iterations needed to complete the mesh adaptation.

Moreover, some communication episodes should also be optimized in order to obtain good parallel

efficiency using larger numbers of MPI-processes. It is important to note that collaboration with

other project partners has supported the progress in the AMR capability of Alya: in the course of

ParSec the libraries Madlib and Gmsh have been integrated into Alya with the support of Cenaero

and Université de Liège. Finally, GeMPa has been successfully extracted as a stand-alone library

for SFC-based mesh partitioning.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 91 30.06.2022

12 NB-LIB: Performance portable library for N-body force calculations
at the Exascale

12.1 Introduction and summary

Figure 60: NB-LIB interface and data flow. A series of pre-processing steps prepares user supplied data so

that the NB-LIB interface is generic, accepting only elementary types.

A large number of scientific applications use particle-particle interactions such as Molecular

Dynamics, Monte Carlo or multiscale simulations in life sciences or materials. Further, several

smaller codes or combinations of codes expose unique feature sets. However, while computers

have become more specialized, many codes are not optimized for GPUs or other accelerators and

it is increasingly hard to achieve parallelization. It is also very difficult to offer in a single

application all the unique features and niche use-cases that the various existing many-body codes

taken together support. This makes these codes increasingly difficult to use on new systems which

are large and can be heterogeneous in terms of hardware.

One of the codes currently undergoing Exascale optimization efforts is GROMACS, also among

the benchmark codes for pre-Exascale machines that have been coming online in recent years.

While it has a long track record as a widely used and highly performant HPC code, it has not been

designed with the goal of interoperability and many modules contain deep dependencies on other

modules. In practice, this means that a potential caller of the GROMACS non-bonded forces code

will have to provide valid instances of a wide range of GROMACS specific data structures that

contain much more information than what would be required for computing non-bonded forces.

The goal of the NonBonded-LIBrary (NB-LIB) is to make the cutting-edge performance of

GROMACS available through a high-level C++ API to its non-bonded force kernels. This goal has

been achieved while also showing that it is possible to have a more BLAS-like interface for non-

bonded force calculations. This interface only takes arrays of elementary types (integer and floating

point numbers) and demonstrates a path forward for reducing module dependencies in GROMACS,

while also making it potentially much easier to interface to other particle simulation codes,

implement novel scientific workflows, or performance tune for specific hardware.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 92 30.06.2022

In order to provide even more performance and utility to users, NB-LIB has also exposed an API

for other types of particle-particle calculations besides non-bonded forces, such as bonds or other

types of two particle interactions, angles or other types of three particle interactions, and so on for

four and five particle interactions. While still using the performant GROMACS kernels under the

hood, this new listed force calculator API significantly simplifies the call stack relative to that in

GROMACS, while also exposing the possibility of future performance optimization to allow cache

reuse by dispatching particles that participate in multiple interactions simultaneously. This API

also significantly streamlines the addition of new multi-particle interactions since only kernels and

parameters need to be added, without the need to modify the dispatch logic.

In combination with the system setup functionality that NB-LIB offers, users are able to implement

arbitrary workflows that might be required for their special use case while leveraging the

performance of GROMACS for the force calculations. This way, future acceleration, porting, and

library features will benefit all applications.

12.2 Benchmarking results on pre-exascale/petascale/Tier-0 systems

Librarization vs. Performance Optimization

The goal of the NB-LIB project has been to expose the underlying performance of the GROMACS

non-bonded force calculation. This has been achieved with the implementation of a very low

overhead abstraction layer that hides the complexity of the multistage setup code required for

building the GROMACS non-bonded force calculation object. Additional complexity in terms of

computing the neighbor lists which requires multiple function calls in GROMACS is also

abstracted behind a single function call in the NB-LIB API. The construction of lists of neighboring

particles, and attendant partitioning of particles across cores on a single node, and multiple nodes

on a high performance computer, is a primary driver of GROMACS’ performance. The other

primary driver of GROMACS’ performance is the fact that so much effort goes into performance

tuning the non-bonded calculations to different hardware.

With the advent of NB-LIB, the excellent single node performance of GROMACS is usable by

researchers in different settings. Firstly, those who want to either perform novel scientific

workflows using a performant particle-particle calculation. Also, by researchers in an HPC context

who want to do performance engineering without having to understand much about the internals

of the GROMACS non-bonded force calculation.

Towards Performance Engineering

In the context of performance engineering, NB-LIB opens up a number of exciting possibilities.

Two main challenges face particle-particle simulation codes in the pre-exascale era. The first is the

proliferation of different accelerators and different compute architectures. The second is the acute

need to be able to scale up calculations to a sufficient size to fully utilize available hardware. NB-

LIB is an important step on both of these fronts.

Taking first the question of targeting heterogeneous architectures, modularization efforts such as

NB-LIB are critical. The reason for this is that different hardwares do and will continue to have

different limitations in terms of latency of data transfers, size of available cache and registers, and

overall throughput per execution unit and device. The way that NB-LIB can be helpful in such a

complex and dynamic environment is that in addition to exposing generic functions for

constructing and using a non-bonded force calculator, it allows complete flexibility in terms of

where computations are performed, in terms of CPU or GPU. It also exposes directly to

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 93 30.06.2022

performance engineers the ability to manage data transfers between host and device. The ability to

manage both where computations are performed, and how data flows between computations is an

important breakthrough that was latent in the existing GROMACS codebase but that is exposed as

a result of the NB-LIB API. With these tools it is now feasible to write custom schedules of non-

bonded force calculations that are finely tuned to the needs and requirements of different hardware

architectures.

NB-LIB also exposes the performance of the GROMACS listed forces (bonds, angles, etc)

calculations. In the case of the non-bonded force calculator, NB-LIB is a thin interface layer to the

underlying GROMACS call stack. In the case of the listed forces calculations, NB-LIB is actually

a rewrite of the call stack, only keeping the force kernels from GROMACS. This is actually highly

relevant for performance. The calculation of listed forces is entirely memory bound. The kernels

are rather simple, and the key aspect for performance is exploiting cache locality so that positions

of particles do not have to be loaded repeatedly to compute forces for the numerous interactions

that a single particle may participate in. While the existing GROMACS implementation does a

decent job of exploiting cache locality, the call stack does not allow for dispatching all the

interactions of a single particle simultaneously. The redesigned call stack in the NB-LIB

implementation, on the other hand, allows complete flexibility in terms of how interaction

computations are allocated. This means that, just like in the case of the NB-LIB non-bonded force

calculation API, it is possible to finely tune force computation schedules to different hardware in

terms of the number of interactions that are grouped, all the while having optimal cache reuse so

that particle positions do not need to be reloaded multiple times for the same particle. Due to the

heavy emphasis on code quality and testing in NB-LIB, we have implemented end-to-end

performance tests which use the Google test framework to ensure that the listed forces calculations

have similar performance in GROMACS and NB-LIB.

In addition, the listed forces implementation is designed such that the same kernels can be reused

for the GPU implementation thereby reducing code duplication and increasing maintainability.

Currently, GROMACS uses an entirely different implementation to compute the listed forces on

the GPU, so new features take longer to be supported on all hardware platforms.

Addressing Challenges of the Exascale

Above we mentioned that another main challenge is that of fully utilizing available compute

resources. This problem will only be compounded as exascale machines come increasingly online.

The various force calculation APIs exposed by NB-LIB are also a step forward in this area. Current

workflows using GROMACS require large amounts of file reading and writing to run multiple

calculations of the same molecular system, and it is not possible to share data between multiple

calculations in memory, without writing to and subsequently reading from disk. This is a major

bottleneck for utilization of large compute resources given that the observables of interest in

particle-particle simulations are statistical quantities that are best computed from large numbers of

statistically independent samples. As such, a necessary workflow for the exascale era is the ability

to simultaneously run very large numbers of calculations sharing system information and

computing statistical properties on the fly in memory, allowing for better and also faster sampling.

The NB-LIB APIs allow such workflows to be written. In this case, the target user is not

performance engineers, but domain experts, who are able to benefit from the performance that NB-

LIB exposes without requiring detailed knowledge of the underlying implementation. In short, NB-

LIB allows a separation of concerns between performance tuning and scientific workflow

generation.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 94 30.06.2022

In this context, it is important to mention that NB-LIB is designed to be agnostic of domain

decomposition and does not itself provide any routines to perform communication between

multiple MPI ranks. Distributing particles across multiple compute nodes is left to the calling code

which in turn may call the NB-LIB API on each of these nodes to compute non-bonded forces. In

the case of GROMACS, these two concerns are not well separated and therefore, in order to take

advantage of the NB-LIB API, the underlying GROMACS implementation requires refactoring

that is currently ongoing.

We have put most emphasis on having an intuitive interface that does not impose significant

overhead, so the main thing to be demonstrated is that the NB-LIB force calculations are similar in

performance to those in GROMACS. This turns out to be challenging for a number of reasons.

First, GROMACS is a complete molecular simulation code, while NB-LIB only exposes some of

the most critical parts of such a code. In particular, NB-LIB has put little emphasis on the ability

to update the positions of particles. We implement a basic update functionality, but have not put

much work into performance in this area, and have also not implemented nor exposed a full update

functionality that would allow such features as temperature and/or pressure coupling, or constraints

of bonds which is an important performance optimization for a full particle-particle simulation.

This means that direct comparison of performance between NB-LIB and GROMACS is somewhat

challenging. The NB-LIB API is a thin interface with very low start-up cost, while GROMACS

has a higher start-up incurred in order to do some moderate hardware detection and targeting.

Currently in NB-LIB it is the responsibility of the user to select the best runtime configuration, so

there is a trade-off between speed and ease of use.

Performance Data

Being primarily an effort for librarizing key features of a molecular simulations package, one way

to evaluate NB-LIB is to perform simulations using standard test cases with it and compare the

throughput with GROMACS. This gives an indication of the performance on a single node which

one can expect when doing a simulation in a custom novel workflow.

The selected examples are run with the same TPR input file, both with NB-LIB and the main

GROMACS simulation engine.

In the field of molecular simulations, a common metric to evaluate real-world performance

outcomes is the number of nanoseconds of simulated time per day in wall-clock (ns/day). In this

metric, higher is better as it represents real-world throughput. We present the following

comparative benchmarks selected to isolate specific features of the library:

 Van der Waals gas simulations on CPU (purely non-bonded interactions)

 Van der Waals gas simulations on GPU (purely non-bonded interactions)

Each of these benchmarks was performed on a single node of the Piz Daint GPU partition. Each

node has an Intel Xeon E5-2690 CPU paired with an NVIDIA P100 GPU. The performance data

is an average of 5 runs of the benchmarking script. Benchmarks 1 & 2 used a system of 157464

Argon atoms.

The whole MD simulation consists of two steps in every iteration, the first being the force

calculations and the second being the integration (or update) step that uses the previously calculated

forces. Of these, the force calculation stage is significantly more computationally demanding.

The integrator is not intended to be a part of NB-LIB, but we implemented a simple CPU version

for benchmarking purposes. By default, GROMACS also performs the integration step on the host

such that we can meaningfully compare the performance with NB-LIB in that case. When passing

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 95 30.06.2022

a special flag to the executable, GROMACS can also perform the integration step directly on the

accelerator, thereby omitting any data transfers between the host and the accelerator. For

completeness, we also report the performance for this configuration. NB-LIB also offers a device-

side API that may be employed to implement an equivalent simulation, but we do not yet provide

an integrator on the GPU to support that use case.

Target, ns/per day NB-LIB GROMACS

CPU-only 28.112 23.898

GPU 57.788 56.848

GPU-integration n/a 71.413

Table 11: Benchmark performance of NB-LIB vs GROMACS using a system of 157464 Argon atoms

Given the clear separation of concerns, and developer-friendly abstractions, it is easier to tune the

NB-LIB implementations for higher performance. Strategies like overlapping compute tasks with

data movement and calculations on the host can be envisioned for complex problems.

The metrics above should give a potential user an idea of the expected performance on NB-LIB for

large systems. Users of NB-LIB can be confident that their programs largely retain the performance

advantages of GROMACS and will inherit the newer updates on the backend automatically as it is

packaged with the latest upcoming releases.

12.3 Interactions with stakeholders, users, outreach and publications

The NB-LIB project was conceived by core developers of the GROMACS package. This made the

GROMACS developer community to be among the key stakeholders. NB-LIB's development

exposed functionality in GROMACS that required significant refactoring and co-design with the

GROMACS development team. Naturally this resulted in design discussions, code review, and

code contributions to the project.

New emerging HPC hardware motivates performance engineering and porting activities within the

GROMACS team. Staying on top of these developments and how they may impact the non-bonded

calculations happening under the hood, especially on accelerators, was crucial for the translation

layer.

NB-LIB primarily consists of two APIs. One side faces the researcher community, which enables

description of molecular topology with a user-friendly interface. This API allows one to write

simple MD simulation programs with a clear data flow. The second side encapsulates the details

of non-bonded calculations behind an interface that uses arrays of elementary data types. The

second one is useful for developers who want to develop performant force calculation routines

using the NB-LIB abstractions as a building block.

In addition to non-bonded interactions, which are distance cut-off based, NB-LIB also has a

modular implementation of particle-specific interactions, which are referred to as listed interactions

for this reason. This interface reuses the same kernels as GROMACS, but the interface allows users

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 96 30.06.2022

to add their own custom potential functions to the simulations. A two-way translation layer is

provided to move from NB-LIB's description to GROMACS and vice-versa. The same kernels are

readily usable on GPUs as well. This provides another opportunity for reuse within GROMACS

which currently uses two entirely different implementations for the listed interactions for use on

CPU-only and GPU-accelerated systems. This code adoption and integration is a part of the

ongoing co-design efforts for the forthcoming releases of GROMACS.

The BioExcel CoE provided avenues to interact with various users of the GROMACS package and

the broader computational biochemistry and biophysics community. Events organized in this

umbrella led to fruitful networking opportunities. This included a presentation of the researcher-

level API for scripting novel workflows using NB-LIB. This covered examples of Monte Carlo

simulations, computing subsets of interactions, swarm simulations among others. This received

encouraging responses leading to further discussions about specific use cases.

The pandemic severely limited possibilities for in-person attendance of conferences. However, a

poster was presented virtually at PASC21 in July describing the features and benefits of NB-LIB

for the research community. This also opened up discussions with potential users looking into

methods for running swarms of protein simulations.

Exploring use-cases with the researcher community led to an understanding of the extent of gaps

between what simulation packages offer as compared to the complex needs of the research

community. Often, we see researchers resorting to fragile concatenations of different packages to

achieve their goals. These modifications become obsolete very soon with each new release, while

compromising on reproducibility and performance.

Another key area where NB-LIB got some positive attention from the user community was by

researchers who do molecular docking, namely the developers of the popular toolkit called

HADDOCK (High Ambiguity Driven bio-molecular DOCKing). Docking is an integral part of

workflows in various applications, especially drug design where it helps predict the preferred

orientation of one molecule to another when bound to form larger complexes. One critical task in

this process is model evaluation, where they rank different configurations based on their energies.

The current workflow uses a suite of python scripts, and a proprietary commercial software to

compute the energies of a specific molecular configuration. NB-LIB can offer a simpler, free and

performant way for evaluating energies of various configurations of a molecular topology. Their

feedback further prioritized exposing energy calculations in our development features roadmap.

Community engagement also provided useful feedback for our development. For instance,

interactions with the OpenFF (Open Force Fields) project gave us concrete constraints on our

topology specification. Design discussion with members of the OpenFF project led to a revision of

the NB-LIB topology specification so that while also being backwards compatible with

GROMACS force field specification, it is also forwards compatible with the novel, generic force

fields now under development. This makes NB-LIB well positioned to be broadly interoperable in

the particle simulation community. One interesting new direction in terms of particle-particle force

fields is the use of machine learning and artificial intelligence to develop potentials. NB-LIB, with

its generic and forward facing topology API is well positioned to be able to play an important role

in these exciting new developments.

Finally, work is currently underway to write up the results of the NB-LIB project so that they can

be published either in scientific software journals or conference proceedings. This way, the

important results achieved in NB-LIB will become even more visible to the broader particle

simulation community.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 97 30.06.2022

12.4 Overall assessment of achievements and future developments

The primary and most important achievement of the NB-LIB project has been showing that it is

possible to have a BLAS-like interface to non-bonded force calculation. This is an extremely

important result, not just for future GROMACS development, but for the larger particle simulation

community. The ability to have an interface that can be constructed with only elementary types has

the potential to facilitate future work on particle simulation code interoperability. In addition to

pointing the way toward future efforts in terms of interoperability of different codes, the work

carried out in NB-LIB has demonstrated that it is possible and desirable to have modular code in

the gromacs codebase itself. Repeated design discussions between the NB-LIB team and the core

GROMACS developers have taken place. In these discussions, the requirements for completely

separating the partitioning of particles into a grid, allowing for parallelization, and the computation

of non-bonded forces has been elucidated. Follow-up work to the NB-LIB project, and/or in the

scope of general GROMACS development has the possibility to actually enact this separation of

concerns, which is one of the key principles of modern software engineering. A more modular

codebase helps in increasing the developer community and simplifies feature development and

performance engineering.

NB-LIB already allows for GPU acceleration for the non-bonded interactions and OpenMP

accelerated listed interactions. The listed forces backend has been designed to allow a GPU port

with minimal effort. Once this work would be completed, it would be possible to upstream the NB-

LIB listed forces implementation into GROMACS, and repeated discussions with GROMACS

developers has indicated that this would be a welcome addition to the GROMACS codebase.

A further area where close interaction with the GROMACS developer community has resulted in

increased modularity within GROMACS is in the area of non-bonded free energy calculations,

which is vital for fields such as drug discovery and development. After close interaction between

the NB-LIB and GROMACS developers, it was determined that a generic interface for non-bonded

free energy calculations could be directly exposed within GROMACS. This interface, while not

yet a part of the NB-LIB API, could be called directly from the same types of scripts that NB-LIB

users would write, and adding this functionality to the NB-LIB API would be a natural extension

to pursue.

One important result of the efforts in the NB-LIB project, is that now it is possible to perform

"embarrassingly parallel" simulations that use multiple MPI ranks to do independent simulations

like in Monte-Carlo workflows without having to read and write files on disk, which is the current

standard workflow when using the GROMACS binaries. However, an important future direction

is the work necessary to expose multi-node force calculations as they exist within GROMACS.

Currently multi-node simulations are possible but only with orchestration by the user. While this

is useful in cases where the desire is to interface with other molecular simulation codes, further

work within the GROMACS project is needed to separate partitioning from non-bonded force

calculation and expose automatic partitioning. The work in the NB-LIB project allowed the

requirements for such a decoupling to be elucidated and co-design between NB-LIB and

GROMACS developers has led to a general agreement on the direction needed to make this a

reality.

NB-LIB supports reading full molecular system descriptions from GROMACS input files. This

allows for more flexibility with using NB-LIB in custom user code because users can either write

their own system description or use existing GROMACS machinery to produce a system

description. This is especially helpful in cases where the interest is performance tuning for

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 98 30.06.2022

particular hardware and/or systems, as it is possible to directly set to work on performance aspects

without having to write lots of setup code. Since the NB-LIB APIs are generic, it was little work

to expose the functionality of reading GROMACS input files. This also suggests that future work

could add reading input files from other popular simulation codes. Another potential future

direction that NB-LIB could facilitate would be the ability to read in system descriptions from

GROMACS, or other MD codes’, input files and then edit the system and/or interaction types.

Since system setup is one of the most challenging parts of molecular simulations, this would likely

be a very welcome functionality.

Future development goals include interfacing with the long-range interactions using methods such

as PME that are already built into GROMACS. This would expand the use-cases for NB-LIB

further. Our abstractions that cleanly split the concerns of various force calculators would allow

easy integration of new methods, such as the Fast Multipole Method which the research community

is keenly exploring due to its promise of higher scalability. Indeed, with the increasing amount of

accelerator compute capacity per node in HPC systems, codes that do not use FMM for long-range

interactions will have an increasingly difficult time fully utilizing available hardware.

NB-LIB has demonstrated that librarizing of an MD package is very much possible and the process

leads to more modularity within the parent codebase. It also leads to tangible benefits for the

researchers whose novel workflows can readily benefit from the performance improvements that

developers work so hard to expose.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 99 30.06.2022

13 Conclusions

Significant investments are currently being made in Europe to provide pre-exascale and exascale

computational resources to the research communities. As already argued in the PRACE position

paper on ‘Software Strategy for European Exascale Systems’ [82], the return on investment will

be directly linked to the productivity of end-users in academia, in industry, and in the public sector.

Key to this productivity is an ecosystem of user-oriented software: scientific applications and

workflows that act as significant multipliers for the investment in hardware. Investments in

software should be a top priority of any HPC strategy. The extent to which these investments are

needed and their real impact are often underestimated.

The work in WP8 is an important pillar in PRACE’s software strategy, as it allowed for significant,

strategic, and long term investments in software, with a direct impact on the scientific software

deployed on Tier-0 systems in Europe. Indeed, WP8 has been able to deliver across 10 projects,

several of which involved multiple partners across Europe, open source software, of high quality

and ready for deployment on large scale infrastructures. This is evident in Table 1 and Table 2 that

demonstrate the deployment on, or readiness for, the top systems in Europe, that are already

installed or, in the case of pre-exascale systems, will be online in the near future. Several of the

projects (see also Annex A), have been able to make codes ready for the new architectures that

have become available for scientific computing (notably AMD GPUs, which, at the time of writing,

power the two machines Europe has in the top 10 on the top500 list [83]). Similarly, projects report

on speedups and improved scalability on other available systems. Rather than list all of these here,

some examples can be highlighted which include the DLA-Future eigensolver outperforming

SLATE and DPLASMA on the PRACE Tier-0 supercomputer Piz Daint, the refactored version of

EPOCH ~30-45% faster on the PRACE Tier-0 supercomputer JUWELS than the original version,

and the integration of GHEX into the atmosphere simulation BIFROST leading to ~20%

improvement in performance on the CPU partition of the LUMI EuroHPC pre-exascale system.

In addition to these common metrics of efficiency, it is noteworthy that these projects also increase

the HPC software engineering expertise, with collaborations between software engineers of various

institutions, as well as pushing the approaches to software engineering adopted in HPC. Examples

of this are the use of containers for deployment, the adoption of new programming languages such

as Julia, the use of message passing formalisms beyond MPI, the use of advanced tasking

mechanisms in line with the C++ language standards, the adoption of CI/CD frameworks and high

levels of unit and coverage testing. It must be emphasised that most of the developments performed

in WP8 have found their way in upstream packages or are already being directly used by scientists.

Additionally, there have also been a number of productive interactions between the WP8 projects

and other actors in the European landscape, one notable example being the Centres of Excellence.

Finally, as part of this last deliverable for WP8, it is worthwhile to look back at what worked well

and what can be improved in the future for similar projects. As such, firstly the two challenges that

have had a negative impact on the project, with the most visible of these being the global COVID-

19 pandemic. This made it significantly more difficult for the teams to meet in person, for example

for hackathons, project meetings, conferences, but also for hiring. Despite this, software engineers

have managed remarkably well to shift to online collaboration and to continue the development of

complex pieces of software. Training the future workforce how to collaborate remotely, with tools

and techniques, will definitely contribute to the resilience of the society. A second challenge has

been the delayed installation of the pre-exascale machines, as WP8 was aligned with the original

plan to start operation before the end of 2020. The projects adjusted by shifting to testing on

https://prace-ri.eu/news-media/publications/software-strategy-for-european-exascale-systems/
https://www.top500.org/lists/top500/2022/06/

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 100 30.06.2022

existing Tier-0 machines and readying for the to-be-installed architecture, rather than for the

particular installed machine. In doing so, projects have found it difficult to access a wide range of

machines for testing and development. Whilst all projects had their own resources, or could access

other resources via development project proposals, a streamlined process to allow access to Tier-0

or EuroHPC systems would be beneficial for future software development projects to ensure timely

and adequate access to the HPC infrastructure. Finally, we highlight two successful aspects of WP8

that are worth repeating in the future. First, is the concept of funding long-term, strategic software

engineering efforts, with deployed software as the main deliverable. This perspective and the

associated funding have led to developments that cannot be made incrementally. Second, comes

the idea of organizing these developments based on a competitive call within the project. The

resulting projects had well defined targets and roadmaps, and could start to work on their goals

very quickly and efficiently, and were continued at the end of this project or taken up by users on

HPC systems in Europe in the majority of cases.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 101 30.06.2022

Annex A: Benchmarking and performance results obtained on leading
HPC systems during WP8 extension

A.1 PiCKeX: Particle Kinetic codes for Exascale plasma simulation

In the PiCKeX project, we have enabled substantial refactoring work of hybrid Particle-in

Cell/Monte-Carlo (PIC/MC) codes and tested ways to add support for multiple GPUs. The aim has

been to work this code in a fully scalable GPU version. In the extension period, we have focused

on producing a multiple GPU prototype PIC code, with a view to future implementation in OOPD1.

The current GPU optimisation of the OOPD1 code is working on a single GPU. We generate all

particles on the GPU to avoid the memory transfers. When the new particle positions are calculated,

all GPU outputs are copied back to the CPU version to start the field solver. For this reason, we

call the new version semi-optimised GPU code.

OOPD1: Objected Oriented Plasma Device 1D is a particle-in-cell code with a Monte Carlo

algorithm for the calculation of particle interactions and collisions. The code was run on the VIZ

supercomputer at the Faculty of Mechanical Engineering in Ljubljana, the Marconi M100

supercomputer at CINECA, and on the EuroHPC MeluXina supercomputer.

For further optimisation, we have implemented a prototype PIC code for testing all GPU

optimisation steps. The previous prototype PIC code written in OpenMP was rewritten in

OpenACC and benchmarked, see Figure 60 below, proving that the code has better scaling with

OpenACC. In addition, using OpenACC is beneficial in terms of future deployment, as although

we are presently running the code on NVIDIA GPU systems, in the future we plan to test the

OOPD1 code on the LUMI supercomputer which uses AMD GPUs.

Figure 61: MPI communication time for 100,000 particles MPI-OpenMP vs MPI-OpenACC

The new version of the prototype PIC also works with multiple GPUs. We ran the same benchmarks

cases comparing single with multiple GPUs, as shown in Figure 61, with 100,000 particles per

GPU. However, it should be noted that whilst there is weak scaling, the prototype PIC code is not

as complex as OOPD1, for which different behaviour might be expected.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 102 30.06.2022

It should also be noted that whilst Figure 60 above is a comparison of MPI communication time

for OpenMP vs OpenACC, Figure 61 below refers to total time in the particle mover for single vs

multiple GPUs.

Figure 62: Particle mover time for 100,000 particles single GPU vs multiple GPU

Finally, it should be added that further developments are planned to improve the OOPD1 code with

a GPU version of the field solver, using the same set of tests done on the prototype PIC code for

OpenACC and using the multi-GPU implementation of OOPD1.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 103 30.06.2022

A.2 MoPHA: Modernisation of Plasma Physics Simulation Codes for Heterogeneous
Exascale Architectures

In the MoPHA project, we have explored task-based parallelism for plasma simulations and tested

ways to add support for GPUs or other accelerators to plasma simulation codes, targeting the three

codes ELMFIRE, GENE and Vlasiator. The aim has been to work towards making plasma

simulation codes ready for the upcoming pre-exascale and exascale systems. In the extension

period, the focus has been on benchmarking selected codes on the LUMI pre-exascale

supercomputer and continuing related porting efforts. Results from the CPU partition of LUMI,

called LUMI-C, are included below. LUMI-C consists of 1536 nodes each with two 64-core AMD

EPYC 7763 CPUs.

Vlasiator: Two benchmarks cases (one in 2D with 2.3 1011 phase-space cells and one in 3D with

4.9 1011 phase-space cells), were run on LUMI-C to test the scalability of Vlasiator on the system.

As can be seen from the results shown in Table 12 and Figure 62, for the 2D benchmark Vlasiator

scales well up to 300 nodes (38400 cores) and for the 3D benchmark Vlasiator shows reasonable

scaling all the way until the maximum number of nodes tested (1452 nodes, 185856 cores).

Nodes Cores 2D

total

time (s)

3D

propagation

time (s)

100 12800 273.7 6079

200 25600 142.7 4055

300 38400 106.0 3752

600 76800 83.8 3060

900 115200 81.5 2458

1452 185856 91.5 1855

Table 12: Vlasiator scalability on LUMI-C

Figure 63: Vlasiator scaling on LUMI-C

StruGePiC / SymPiFE-VMax: Two mini-apps, StruGePiC and SymPiFE-VMax, were also

ported to LUMI-C. Both mini-apps simulate plasma fusion systems with the same Vlasov-Maxwell

equations for full-orbit (6D) charged particles. StruGePiC is implemented using the AMReX

framework and SymPiFE-VMax using the MFEM framework.

As can be seen from Figure 63 below, on LUMI-C StruGePiC has good scaling up to 128 nodes at

which point the performance deteriorates.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 104 30.06.2022

Figure 64: Scaling of StruGePiC on LUMI-C

All in all, StruGePiC showed excellent performance and portability, but is currently limited (in the

field of fusion) to more fundamental applications due to the choice of Cartesian domains in

AMReX. Conversely, SymPiFE-VMax is still facing performance challenges, but already

possesses a number of features that can enable its use in simulating fusion devices. The

performance issues of SymPiFE-VMax, which are related to features not included in MFEM, are

being addressed at the moment. Due to the excellent scalability of MFEM, we expect that when

these issues have been resolved properly, SymPiFE-VMax will have comparable performances to

STruGePiC. Further developments are planned both to improve performance and scaling, and to

add features expanding the domain of applicability of the simulation (such as collisions or relevant

boundary conditions). A GPU-capable prototype for a structure-preserving collisions solver has

been developed by the ELMFIRE team at Aalto University and is being integrated to the

applications.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 105 30.06.2022

A.3 Performance portable linear algebra

The activities on DLA-Future carried out during the extension can be grouped in three main groups:

 development of missing algorithms,

 porting to AMD GPUs,

 benchmarks.

For the algorithm development the focus was on finishing the implementation of the single node

generalized eigensolver. The missing single node algorithms have been implemented, and the

single node generalized eigensolver pipeline is available for multicore and GPU architectures. To

prove the benefits of overlapping, we compared the execution of the algorithms of the eigensolver

one by one with the execution of the full overlapped pipeline in Figure 64 below. The difference is

visible in the traces, however it is also visible that some of the algorithms are not well optimized

yet and suffer from the micro-tasking problem.

Figure 65: The trace of the execution of a generalized eigensolver for a 10240×10240 matrix. Above the

algorithms are executed sequentially, below they are allowed to overlap.

The task environment introduces overheads in the execution. In particular queue handling, stack

creation, and context switching, contribute to a 1-10 μs overhead in HPX. Therefore, the minimum

task size should be set to 1 ms to make the overhead negligible. Combining multiple small tasks in

a larger task helps to solve this problem, however it can limit the parallelism achievable as extra

dependencies are introduced.

Support for AMD GPU has been added. We tested the library on LUMI's GPU Early Access

Partition (64-core AMD CPU with 4 MI100 GPUs). Due to the limited number of nodes available

it has not been possible to carry out a full scaling analysis (jobs are limited to maximum two nodes).

However, as Figure 65 below shows, the results are encouraging.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 106 30.06.2022

Figure 66: Triangular solver on LUMI-EAP. We present the strong scaling for a matrix of size 40k.

On the other hand, results of Cholesky decomposition are not as promising. On a single node the

performance is 7 TFlop/s for a 40960x40960 matrix and 3 TFlop/s for a 20480x20480 matrix,

which is only a small fraction of the theoretical peak performance of 4 MI100 GPUs (46 TFlop/s).

We identified the cause in the rocSOLVER library, in particular in the xPOTRF implementation.

As this kernel is used in a task in a critical path of the DAG it has a great impact on the whole

execution time.

We also tested on a test cluster which is part of the Alps system (a HPE Cray Ex) at CSCS. The

nodes are composed of a 64-core AMD CPU (EPYC 7713) and 4 NVIDIA Ampere GPUs with 95

GiB on HBM memory and 7936 CUDA cores, with HPE Slingshot 10 interconnect. As Figure 66,

Figure 67 and Figure 68 show, the results are promising.

Figure 67: Cholesky decomposition on Ampere GPUs. Left: we present the strong scaling for a matrix of size

40k. Right: we present the weak scaling for 1.6G elements per node (40k x 40k matrix for the run on a single

node).

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 107 30.06.2022

Figure 68: Triangular solver on Ampere GPUs. Left: we present the strong scaling for a matrix of size 40k.

Right: we present the weak scaling for 1.6G elements per node (40k x 40k matrix for the run on a single node).

Figure 69: Transformation from generalized to standard eigenproblem on Ampere GPUs. Left: we present the

strong scaling for a matrix of size 40k. Right: we present the weak scaling for 1.6G elements per node (40k x

40k matrix for the run on a single node).

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 108 30.06.2022

A.4 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support
for the discovery of new physics

During the extension of PRACE-6IP, we continued the developments of the software stack with a

focus on lyncs-API and librsb. Moreover, we benchmarked several kernels, developed within or

related to the project, on EuroHPC-JU machines and corresponding architecture. This includes

strong scaling tests on Karolina as well as performance tuning on novel CPU architecture and

performance checks on AMD Instinct Mi100 GPUs.

DDalphaAMG: In addition to the earlier performance results reported for DDalphaAMG-rhs,

which are mainly obtained on the PRACE Tier-0 machines, we used a preparatory access on the

CPU part of the EuroHPC petascale system Karolina to collect results for AMD Epyc CPUs. Using

a configuration of size V=128x64x64x64 generated at light quark masses tuned to the physical pion

mass, we perform a strong scaling test from 16 nodes to 128 nodes for different numbers of right

hand sides (rhs). We found comparable improvements obtained on HPC machines equipped with

Intel Xeon CPUs, such as the LRZ system SuperMUC-NG.

Figure 70: Strong scalability of DDalphaAMG-multiple rhs on IT4I system Karolina

Lyncs-API: Within LyNcs we developed a novel python API with a focus on achieving portability.

This is done through linkages to different software packages each optimized for different

architectures. A major focus during the extension was given to the module lyncs-quda which

provides a python interface to highly optimized linear solvers and computational kernels for lattice

QCD on NVIDIA GPUs implemented in the software package Quda. In the last months we have

increased the coverage of the python API and enlarged the test suite. A major component still

missing to interface is the multigrid solver provided by Quda which we will focus on in the next

months.

Moreover via the lyncs.quda interface it is straightforward to utilize highly optimized

computational kernels within Machine Learning applications, e.g. within novel update algorithms.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 109 30.06.2022

This provides researchers an easy-to-use tool to develop machine learning applications within a

python framework, such as PyTorch or TensorFlow for lattice QCD. In this direction we are

collaborating with researchers at TU-Berlin and DESY-Zeuthen on the application of machine

learning techniques to Lattice QCD simulations.

Additionally, for most of Quda there exists a HIP port, due to the DoE Exascale project. This

potentially gives lyncs a possibility to utilize AMD Instinct GPU architectures. We tested this HIP-

ported QUDA kernel on the partition of CSC early access system LUMI-EAP based on 4 nodes of

Mi100 and collected performance numbers on up to 8 Mi100 accelerator cards. Performance results

of the Wilson dslash operator applications are comparable to numbers obtained on NVIDIA’s

V100. However, lyncs support for AMD GPUs will depend also on underlaying python modules

for which HIP/rocm support is necessary. This will require efforts beyond PRACE-6IP. Lyncs-

API is currently the only lattice QCD python interface which provides access to Quda kernels. This

will help to further support the development and we expect a larger engagement by the community

in the future.

librsb: During the extension, a new version librsb 1.3 was released, which comes with new

features, such as multiple rhs support and performance improvements for the majority of the

supported kernels compared to the pre lyncs version librsb 1.2. Using the updated optimiser,

performance tuning was carried out on different architectures, including AMD Epyc and Fujitsu

A64fx. As can be seen in Figure 70 below, this has resulted in improved performance in the latest

version of librsb for sparse matrix computations across various HPC architectures including

BEAST and SuperMUC-NG systems.

Figure 71: librsb 1.3 vs librsb 1.2

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 110 30.06.2022

A.5 QuantEx: Efficient Quantum Circuit Simulation on Exascale Systems

The QuantEx code simulates quantum circuits. To this end, the core computational problem

executed is the computation of probability amplitudes of possible measurement outcomes of a

quantum circuit. This is achieved by representing the output quantum state of the circuit by a tensor

network and then contracting the tensor network to produce the desired probability amplitude.

Within the QuantEx code, QXTools can be used to set up a simulation of a particular quantum

circuit and generate a set of simulation files which define the simulation as a sequence of tensor

contraction operations. QXContexts can then be used to parse the simulation files and distribute

the contraction operations amongst compute resources to produce the relevant output.

Weak and strong scaling experiments were carried out on the JUWELS Booster system. The

behaviour of QXContexts is shown below in Figure 71 and Figure 72. As test cases, a number of

probability amplitudes were computed for various quantum circuits developed by Google. QASM

descriptions of the circuits simulated can be found on the qflex repository [84]. The figures show

our application achieves close to ideal scaling when simulations are decomposed across multiple

compute nodes.

Figure 72: Weak scaling of a QXContexts simulation on JUWELS Booster. As test cases, 1024 probability

amplitudes per node were computed for both a 53 qubit rochester circuit and a 70 qubit bristlecone circuit.

https://github.com/ngnrsaa/qflex/tree/master/config/circuits

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 111 30.06.2022

Figure 73: Strong scaling of a QXContexts simulation on JUWELS Booster. A total of 65536 probability

amplitudes of a 53 qubit rochester circuit were computed as a test case.

However, it should be noted that our application initially exhibited poor single-node scaling results

as can be seen in Figure 73 below.

Figure 74: Strong scaling of a simulation within a single node on JUWELS Booster. As test cases, both 64 and

512 probability amplitudes were computed for a 49 qubit random quantum circuit with 32 layers of

entangling gates.

After consulting with the assigned mentor for the project, we identified the issue as a failure to use

multiple cores to execute the processes spawned by our application, resulting in all processes

running on a single core. With the aid of our assigned mentor we were able to rectify this issue,

assign each process to its own CPU core, and obtained close to ideal scaling on a single node as

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 112 30.06.2022

shown in Figure 74 below. It should be noted that the results do not depend on the particular circuit

simulated, the circuit simulation shown below in Figure 74 is different from the simulation shown

in Figure 73.

Figure 75: Strong scaling results for a simulation of a 70 qubit circuit on a single node on JUWELS Booster.

Results are shown for both the computation of 1024 and 2048 probability amplitudes. We observe close to

ideal scaling with respect to the number of GPUs used on a single node.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 113 30.06.2022

A.6 GHEX: Generic Halo-Exchange for Exascale

GHEX is a library for halo-update in scientific applications capable of interfacing with arbitrary

applications regardless of domain decomposition organisation, grid/mesh type, memory layout,

and halo description. GHEX achieves this by providing interfaces that accept, instead of pointers

to data, pointers to functions to retrieve the relevant information. The extension work focused on

extending the range of machines where GHEX can be supported as well as testing applications

using GHEX. In particular, we ran GHEX basic transport-layer benchmarks on LUMI-C. The

results, shown in Figure 75 below, show the raw bandwidth achievable with multithreaded

executions in MPI, UCX and Libfabric (labelled as OFI). These benchmarks demonstrate how

performance varies depending on the use-case (number of thread, message sizes, etc.), which

makes the ability to switch transport layer at execution time very valuable.

Figure 76: Bi-directional communication bandwidth on LUMI-C (Slingshot 10, 100Gb/s)for messages of

different sizes. Left: 1 thread, 1 message in-flight. Right: 16 threads, 10 messages in-flight

We also tested GHEX on the IBM Power architecture of Marconi100, for which we were able to

run the GHEX unit and integration test suite, as well as a simple set of benchmarks.

When we run halo-exchange benchmarks at larger scale, we can see that GHEX offers good weak-

scalability, while the choice of how to arrange computing ranks (e.g. using a custom-built

hardware-aware Cartesian MPI communicator - HWCART, also available at the GHEX GitHub

repository) and transport strategies (e.g. using inter-process communication via XPMEM) offers

opportunities for improving performance.

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 114 30.06.2022

Figure 77: Weak scaling of HE with GHEX and native MPI on LUMI-C. Each rank handles double-precision

fields of size 128^3. Left: 1 data field, halo width 1. Right: 5 data fields, halo width 5.

We also tested applications adapted to use GHEX. In Figure 77 below we show BIFROST, a solar

atmosphere application developed in Fortran, that uses GHEX Fortran bindings. The executions

have been carried out on Betzy, an AMD system at University of Oslo, and on LUMI-C.

Interestingly, the GHEX version of the application is capable of out-performing the original version

by a large margin.

Figure 78: Weak scaling of BIFROST with GHEX and native MPI halo exchange on Betzy and LUMI-C.

Single-precision, 64^3 grid points per rank

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 115 30.06.2022

A.7 ParSec: Parallel Adaptive Refinement for Simulations on Exascale Computers

The Cenaero and ULiège activities carried out during the ParSec extension focused on the

following activities:

 Porting of the mesh libraries Gmsh and MAdLib and the flow solver Argo on the LUMI-C

system at CSC and installation of dependencies;

 Ongoing improvement of scalability in various parts of the code, including blocking

initialization issue;

 Strong scaling tests up to 512 nodes/65536 cores;

 Preparation of two variants of the smooth backward facing step test case for production

runs on 256 LUMI-C nodes, in support of PRACE and EuroHPC allocation requests.

The strong scalability study for the Lagrange-based Discontinuous Galerkin solver Argo and the

mesh library MAdLib on the LUMI-C system at CSC is now briefly presented. The large-scale

parallelism is based on the spatial partitioning of the computational domain. This study has been

performed with an implicit time integration scheme. Computations use a Jacobian-free Newton-

Krylov nonlinear solver with block-Jacobi preconditioning. The test case considered here is the

Taylor-Green vortex (TGV) which ran on a structured cube mesh of 1923 vertices in each direction

(corresponding to 7M hexahedra) with a 3rd order polynomial approximation (P3), corresponding

to a 4th order solution with 0.45 billion dofs/eq.

The results of this strong scaling study performed on the system LUMI-C at CSC are presented in

Table 13 and Figure 78. These results are compared to those obtained on the Hawk system at HLRS,

which is based on a similar architecture, although it should be noted that LUMI-C is equipped with

a slightly higher-clocked and newer generation of AMD CPU. The baseline case ran on 4096 cores.

The lower bound is simply limited by the required memory of the test-case. Four configurations of

the solver are considered with 1, 2, and 4 threads per MPI process on both systems, leading to a

total of 128 threads used per node. Perfect or even super scaling is observed up to 65,536 cores on

LUMI-C (4 core doublings), with only ~100 elements per thread on the largest core count. On

Hawk, the speedup is still 13.83 out of 16 for 4 threads per MPI process on 65,536 cores,

corresponding to an efficiency of 0.87.

AMD Rome LUMI-C @ CSC AMD Rome Hawk @ HLRS

cores absolute

timing (s)

speedup efficiency # cores absolute timing (s) speedup efficiency

4096 99.22 1 1 4096 104.11 1 1

8192 48.65 2.04 1.02 8192 50.71 2.05 1.03

16,384 23.53 4.22 1.05 16,384 24.62 4.23 1.06

32,768 11.96 8.30 1.04 32,768 12.55 8.24 1.03

65,536 6.26 15.85 0.99 65,536 7.50 13.83 0.87

Table 13: Strong scaling of Argo on AMD Rome architecture with 4 threads per MPI and 32 MPI per node:

LUMI-C@CSC (left) and Hawk@HLRS (right).

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 116 30.06.2022

Figure 79: Strong scaling of Argo on LUMI-C@CSC (left) and Hawk@HLRS (right), it should be noted that

the dashed lines refer to efficiency

D8.5 Final report: Including performance results on (pre)Exascale systems

PRACE-6IP- INFRAEDI-823767 117 30.06.2022

A.8 NB-LIB: Performance portable library for N-body force calculations at the
Exascale

The goal at the outset of the NonBonded-LIBrary (NB-LIB) project was to make the cutting-edge

performance of GROMACS available through a high-level C++ API to its non-bonded force

kernels. This goal has been achieved while also showing that it is possible to have a more BLAS-

like interface for non-bonded force calculations. The NB-LIB API allows users to compute non-

bonded forces on both CPU and NVIDIA GPUs. In order to provide even more performance and

utility to users, NB-LIB has also exposed an API for other types of particle-particle calculations

besides non-bonded forces, such as bonds or other types of two particle interactions, angles or other

types of three particle interactions, and so on for four and five particle interactions. These

interactions are known as listed forces since, unlike in the case of non-bonded interactions, the

interactions are fixed by the system topology.

Given that there already exists a SYCL-based backend for non-bonded forces in GROMACS which

targets AMD GPUs on upcoming pre-exascale machines such as LUMI-G, we decided to focus our

limited effort during the extension on ensuring performance portability of the NB-LIB listed forces

implementation. To achieve this performance portability, we implemented the NB-LIB listed

forces kernels as plain C++ functions that can be called on any architecture, including CPUs and

NVIDIA or AMD GPUs with support for common programming frameworks such as CUDA, HIP

and (HIP-)SYCL. This design principle of having shared kernels and mostly shared call stacks for

hardware from different vendors, as well as different types of hardware, CPU or GPU, is critically

important for codes that can run on exascale machines. This allows scientists to add new types of

interaction potentials without having to understand the full complexity of the ever-growing

profusion of architectures. It also allows performance engineers to much more easily port code to

new architectures. If a specific kernel turns out to run poorly, it is also very easy with this setup,

which leverages the extraordinary power of template metaprogramming in C++, to specialize

individual kernels without needing to change the overall call stack.

In order to run on AMD GPUs, the existing CUDA kernel can either be compiled unchanged with

HIP or the aforementioned plain C++ portable interaction kernels can be called from a HIP-SYCL

specific loop over the listed interactions. While the duration of the extension did not ultimately

include the delivery of LUMI-G, we were able to test that the listed forces API gets good

performance on existing machines with Intel CPU and NVIDIA GPU, such as Piz Daint, and

existing machines with AMD CPU, such as Dardel, which has a similar architecture to LUMI-C.

The power and flexibility offered by the NB-LIB force calculation APIs are a major step forward

for particle simulation codes and the extension of the PRACE project has greatly aided setting NB-

LIB on a firm footing with regard to software uptake and sustainability.

