

E-Infrastructures

H2020- INFRAEDI-2018-2020

INFRAEDI-01-2018: Pan-European High Performance Computing

infrastructure and services (PRACE)

PRACE-6IP

PRACE Sixth Implementation Phase Project

Grant Agreement Number: INFRAEDI-823767

D8.4

Interim progress report: Public Software release (docs, testing, issue

tracker) and integration in external codes (SSC feedback)

Final

Version: 1.0

Author(s): Fabio Affinito, Joost VandeVondele, Alex Upton

Date: 19.04.2021

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 i 19.04.2021

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: INFRAEDI-823767

Project Title: PRACE Sixth Implementation Phase Project

Project Web Site: http://www.prace-project.eu

Deliverable ID: D8.4

Deliverable Nature: Report

Dissemination Level:

PU

Contractual Date of Delivery:

30/04/2021

Actual Date of Delivery:

EC Project Officer: Leonardo Flores Añover

Document Control Sheet

Document Title: Interim progress report: Public Software release (docs, testing,

issue tracker) and integration in external codes (SSC feedback)

ID: D8.4

Version: 1.0 Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2016

File(s): D8.4_v1.0

Authorship Written by: Fabio Affinito, Joost VandeVondele, Alex

Upton

http://www.prace-project.eu/
http://www.prace-project.eu/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 ii 19.04.2021

Contributors: Fabio Affinito, Momme Allalen, Simone

Bacchio, Vicenç Beltran, Marco Bettiol,

Mauro Bianco, John Biddiscombe, Ricard

Borrell, Fabian Bösch, David Brayford,

John Brennan, Dirk Brömmel, Tomáš

Brzobohatý, Mark Bull, Zahra Chitgar,

Laurent Chôné, Olivier Coulaud, Tilman

Dannert, Edoardo Di Napoli, Myles Doyle,

Jacob Finkenrath, Christophe Geuzaine,

Paul Gibbon, Luc Giraud, Aleksander Grm,

Kenneth Hanley, Berk Hess, Koen

Hillewaert, Victor Holanda, Guillaume

Houzeaux, Luigi Iapichino, Alberto

Invernizzi, Niclas Jansson, Joe Jordan,

Prashanth Kanduri, Sebastian Keller, Leon

Kos, Marcin Krotkiewski, Chiara Latini,

Carlos Lopez, Martti Louhivuori, Georgios

Markomanolis, Michele Martone, Michal

Merta,Teodor Nikolov, Henrik Nortamo,

Lee O'Riordan, Adam Peplinski, Janes

Povh, Lara Querciagrossa, Cristóbal

Samaniego, Mikael Simberg, Matthieu

Simonin, Ujjwal Sinha, Raffaele Solcà,

Thomas Toulorge, Alex Upton, Joost

VandeVondele, Ivona Vasileska, Radim

Vavřík, Jonathan Vincent, Xinzhe Wu,

Shuhei Yamamoto, Artem Zhmurov

Reviewed by:

Approved by: MB/TB

Document Status Sheet

Version Date Status Comments

0.1 01.04.2021 1st Draft 1st version with input

from all projects

0.2 15/04/2021 2nd Draft 2nd version addressing

reviewer comments

1.0 19/04/2021 Final version Final version addressing

comments from the two

internal reviews

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 iii 19.04.2021

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Exascale, Forward-looking

software solutions

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in accordance

with the Consortium Agreement and the Grant Agreement n° INFRAEDI-823767. It solely reflects

the opinion of the parties to such agreements on a collective basis in the context of the Project and

to the extent foreseen in such agreements. Please note that even though all participants to the Project

are members of PRACE AISBL, this deliverable has not been approved by the Council of PRACE

AISBL and therefore does not emanate from it nor should it be considered to reflect PRACE

AISBL’s individual opinion.

Copyright notices

 2021 PRACE Consortium Partners. All rights reserved. This document is a project document of

the PRACE project. All contents are reserved by default and may not be disclosed to third parties

without the written consent of the PRACE partners, except as mandated by the European

Commission contract INFRAEDI-823767 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are

acknowledged as owned by the respective holders.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 iv 19.04.2021

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet ... i

Document Status Sheet ... ii

Document Keywords .. iii

List of Figures .. vi

References and Applicable Documents ... vii

List of Acronyms and Abbreviations ... ix

List of Project Partner Acronyms ... x

Executive Summary ... 1

1 Introduction ... 2

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation 3

2.1 Introduction and summary ... 3

2.2 Production software release .. 3

2.3 Community outreach and integration ... 4

2.4 Outlook for pre-exascale and benchmark projections ... 5

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for Heterogeneous

Exascale Architectures ... 7

3.1 Introduction and summary ... 7

3.2 Production software release .. 7

3.3 Community outreach and integration ... 9

3.4 Outlook for pre-exascale and benchmark projections ... 10

4 NB-LIB: Performance portable library for N-body force calculations at the Exascale . 11

4.1 Introduction and summary ... 11

4.2 Production software release .. 11

4.3 Community outreach and integration ... 12

4.4 Outlook for pre-exascale and benchmark projections ... 12

5 LoSync – Synchronisation reducing programming techniques and runtime support ... 14

5.1 Introduction and summary ... 14

5.2 Production software release .. 15

5.3 Community outreach and integration ... 15

5.4 Outlook for pre-exascale and benchmark projections ... 15

6 FEM/BEM based domain decomposition solvers .. 17

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 v 19.04.2021

6.1 Introduction and summary ... 17

6.2 Production software release .. 17

6.3 Community outreach and integration infrastructure .. 18

6.4 Outlook for pre-exascale and benchmark projections ... 18

7 Performance portable linear algebra .. 20

7.1 Introduction and summary ... 20

7.2 Prototype software release .. 21

7.2.1 DLA-Future and DLA-Interface .. 21

7.2.2 ChASE library ... 22

7.3 Community outreach and integration ... 22

7.3.1 DLA-Future and DLA-Interface .. 22

7.3.2 ChASE library ... 22

7.4 Outlook for pre-exascale and benchmark projections ... 23

7.4.1 DLA-Future and DLA-Interface .. 23

7.4.2 ChASE library ... 23

8 GHEX: Generic Halo-Exchange for Exascale .. 25

8.1 Introduction and summary ... 25

8.2 Production software release .. 26

8.3 Community outreach and integration ... 27

8.4 Outlook for pre-exascale and benchmark projections ... 28

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and library support for

the discovery of new physics .. 30

9.1 Introduction and summary ... 30

9.2 Production software release .. 30

9.3 Community outreach and integration ... 32

9.4 Outlook for pre-exascale and benchmark projections ... 33

10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale Computers 34

10.1 Introduction and summary ... 34

10.2 Production software release .. 35

10.3 Community outreach and integration ... 35

10.4 Outlook for pre-exascale and benchmark projections ... 36

11 QuantEx: Efficient Quantum Circuit Simulation on Exascale Systems 38

11.1 Introduction and summary ... 38

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 vi 19.04.2021

11.2 Production software release .. 38

11.3 Community outreach and integration ... 40

11.4 Outlook for pre-exascale and benchmark projections ... 40

12 Conclusions .. 42

List of Figures

Figure 1: Compact laser-plasma particle and x-ray sources .. 3

Figure 2: OOPD1 CPU and OOPD1 50% GPU comparison with ngrid=10000, dtfactor= 0.001,

run for 200 timesteps .. 5

Figure 3: Strong scaling comparison between EPOCH refactored version and the latest official

version. The benchmark used a 2D moving window with 5 million cells and 10 particles/cell 6

Figure 4: Turbulent flow in a fusion plasma simulation .. 7

Figure 5: Overview of NB-LIB .. 11

Figure 6: State transition diagram for tasks (blocking mode) .. 14

Figure 7: Frequency response of the electric motor case computed using 450 nodes of the

Salomon cluster at IT4Innovations in 714 s (15 million degrees of freedom, 60 frequency

samples). ... 17

Figure 8: Scalability of the multi-GPU assembly of Schur complement matrices on NVIDIA

DGX A100 machine. .. 19

Figure 9: Eigensolver workflow ... 20

Figure 10: Comparison of the weak-scaling performance of DLA-Future Cholesky decomposition

compared with other libraries (left: multicore implementations, right: CUDA implementations) 21

Figure 11: Comparison of the weak-scaling performance of the unreleased optimisations of

DLAF ... 23

Figure 12: Performance of ChASE on JUWELS Booster (matrix BSE 76k , OMP = 12,

nev=2350, nex=200)... 24

Figure 13: Halo Exchange weak scaling on Piz Daint using in-node direct remote memory access

(RMA) through system/shared memory ... 25

Figure 14: Overview of GHEX .. 26

Figure 15: Comparison of halo exchange on Cartesian grids, with GHEX and HWCART, and

simple MPI implementation on 65536 cores. 1 data field and 5 halo lines. GHEX with HWCART

gives 2x improvements in execution times (the baseline is 27 compute nodes) 28

Figure 16: Left: per-node bandwidth on Piz Daint GPU partition, 1 rank per node, exchanging

one single field on GPU using unstructured mesh. Right: exchange times on Piz Daint, GPU

partition, GHEX halo exchange is compared with Atlas built-in halo exchange........................... 29

Figure 17: Important algorithmic steps in the Krylov accelerated multigrid solver developed in

the LyNcs project ... 30

Figure 18: Iterative mesh adaptation, governed by a hypersonic flow facing a cylinder generated

with Madlib. ... 34

Figure 19: Vortical structure of the flow around a simplified rotor obtained with the AMR branch

of Nek5000 ... 36

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 vii 19.04.2021

Figure 20: Strong scaling of a turbulent pipe case on JUWELS Booster system. Results for CPU

and GPU are presented. A single node corresponds to 4 A100 GPUs or to 48 EPYC CPU cores.

A mesh consists of 823632 elements with polynomial order 10. ... 37

Figure 21: Expected area of applicability of simulation methods .. 38

Figure 22: Overview of how the packages work together to provide a simulation workflow for

quantum circuits ... 39

References and Applicable Documents

[1] https://bitbucket.org/lecad-peg/oopd1/src/

[2] https://bitbucket.org/lecad-peg/bit1/src

[3] https://gitlab.version.fz-juelich.de/SLPP/epoch/epoch-dev

[4] https://gitlab.version.fz-juelich.de/SLPP/epoch/test-cases

[5] https://www.score-p.org

[6] https://github.com/MoPHA/

[7] https://www.genecode.org/

[8] https://github.com/fmihpc/vlasiator/tree/openacc

[9] https://github.com/ursg/vlasiator/tree/openacc_hackathon_2020

[10] https://github.com/ursg/vlasiator/tree/openacc_taskbased

[11] https://github.com/MoPHA/sympife-vmax

[12] https://github.com/MoPHA/strugepic

[13] https://bitbucket.org/lecad-peg/simpic/

[14] https://manual.gromacs.org/documentation/2021/download.html

[15] https://gitlab.com/gromacs/gromacs

[16] https://gitlab.com/gromacs/nb-lib

[17] https://bioexcel.eu/webinar-nb-lib-a-performance-portable-library-for-computing-forces-

and-energies-of-multi-particle-systems-2021-03-11/

[18] https://github.com/bsc-pm/ompss-2-releases

[19] https://github.com/bsc-pm/llvm

[20] https://github.com/bsc-pm/tampi

[21] https://github.com/ParaStation/psmpi

[22] https://github.com/Mantevo/miniAMR

[23] https://github.com/LLNL/LULESH

[24] https://github.com/Mantevo/HPCCG

[25] https://doi.org/10.1109/CLUSTER49012.2020.00017

[26] https://doi.org/10.1109/CLUSTER49012.2020.00042

[27] https://github.com/bsc-pm/tagaspi

[28] https://github.com/ludwig-cf/ludwig

[29] http://numbox.it4i.cz/

[30] https://github.com/It4innovations/espreso

[31] https://github.com/It4innovations/espreso/wiki

[32] http://www.msca-expertise.eu/

[33] http://www.netlib.org/scalapac

[34] https://elpa.mpcdf.mpg.de/software

https://bitbucket.org/lecad-peg/oopd1/src/
https://bitbucket.org/lecad-peg/bit1/src
https://gitlab.version.fz-juelich.de/SLPP/epoch/epoch-dev
https://gitlab.version.fz-juelich.de/SLPP/epoch/test-cases
https://www.score-p.org/
https://github.com/MoPHA/
https://www.genecode.org/
https://github.com/fmihpc/vlasiator/tree/openacc
https://github.com/ursg/vlasiator/tree/openacc_hackathon_2020
https://github.com/ursg/vlasiator/tree/openacc_taskbased
https://github.com/MoPHA/sympife-vmax
https://github.com/MoPHA/strugepic
https://bitbucket.org/lecad-peg/simpic/
https://manual.gromacs.org/documentation/2021/download.html
https://gitlab.com/gromacs/gromacs
https://gitlab.com/gromacs/nb-lib
https://bioexcel.eu/webinar-nb-lib-a-performance-portable-library-for-computing-forces-and-energies-of-multi-particle-systems-2021-03-11/
https://bioexcel.eu/webinar-nb-lib-a-performance-portable-library-for-computing-forces-and-energies-of-multi-particle-systems-2021-03-11/
https://github.com/bsc-pm/ompss-2-releases
https://github.com/bsc-pm/llvm
https://github.com/bsc-pm/tampi
https://github.com/ParaStation/psmpi
https://github.com/Mantevo/miniAMR
https://github.com/LLNL/LULESH
https://github.com/Mantevo/HPCCG
https://doi.org/10.1109/CLUSTER49012.2020.00017
https://doi.org/10.1109/CLUSTER49012.2020.00042
https://github.com/bsc-pm/tagaspi
https://github.com/ludwig-cf/ludwig
http://numbox.it4i.cz/
https://github.com/It4innovations/espreso
https://github.com/It4innovations/espreso/wiki
http://www.msca-expertise.eu/
http://www.netlib.org/scalapac
https://elpa.mpcdf.mpg.de/software

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 viii 19.04.2021

[35] https://github.com/STEllAR-GROUP/hpx

[36] https://doi.org/10.1145/3313828

[37] https://github.com/eth-cscs/DLA-Future

[38] https://github.com/eth-cscs/DLA-interface

[39] https://chase-library.github.io/ChASE/index.html

[40] https://github.com/electronic-structure/SIRIUS

[41] http://schleife.matse.illinois.edu/

[42] http://www.flapw.de/MaX-5.0/

[43] https://www.quantum-espresso.org/

[44] https://github.com/GridTools/GHEX

[45] https://github.com/GridTools/ghexbench

[46] https://github.com/NordicHPC/hwcart

[47] https://github.com/GridTools/ghexbench

[48] https://github.com/Lyncs-API

[49] https://github.com/sy3394/DDalphaAMG/tree/multirhs

[50] http://librsb.sourceforge.net/

[51] https://github.com/michelemartone/pyrsb

[52] https://octave.sourceforge.io/sparsersb/

[53] https://gitlab.inria.fr/solverstack/fabulous

[54] https://github.com/Lyncs-API

[55] https://github.com/Lyncs-API/lyncs.setuptools

[56] https://github.com/Lyncs-API/lyncs.utils

[57] https://github.com/Lyncs-API/lyncs.cppyy

[58] https://github.com/Lyncs-API/lyncs.mpi

[59] https://github.com/Lyncs-API/lyncs.io

[60] https://github.com/Lyncs-API/lyncs.clime

[61] https://github.com/Lyncs-API/lyncs.DDalphaAMG

[62] https://github.com/Lyncs-API/lyncs.tmLQCD

[63] https://github.com/Lyncs-API/lyncs.quda

[64] https://github.com/Lyncs-API/tuneit

[65] https://dask.org/

[66] http://gitlab.inria.fr/

[67] https://gitlab.inria.fr/solverstack/spack-repo

[68] https://hpc.guix.info/

[69] https://github.com/sy3394/DDalphaAMG

[70] https://sourceforge.net/projects/librsb/files/

[71] https://savannah.gnu.org/search/?words=sparsersb&type_of_search=bugs&Search=Search

&exact=1#options

[72] https://bugs.debian.org/cgi-bin/pkgreport.cgi?package=librsb-dev

[73] https://github.com/michelemartone/pyrsb

[74] https://pypi.org/project/pyrsb/

[75] https://octave.sourceforge.io/sparsersb/

[76] https://spack.readthedocs.io/en/latest/package_list.html#librsb

[77] https://gitlab.inria.fr/guix-hpc/guix-hpc/-/blob/master/lrz/librsb.scm

https://github.com/STEllAR-GROUP/hpx
https://doi.org/10.1145/3313828
https://github.com/eth-cscs/DLA-Future
https://github.com/eth-cscs/DLA-interface
https://chase-library.github.io/ChASE/index.html
https://github.com/electronic-structure/SIRIUS
http://schleife.matse.illinois.edu/
http://www.flapw.de/MaX-5.0/
https://www.quantum-espresso.org/
https://github.com/GridTools/GHEX
https://github.com/GridTools/ghexbench
https://github.com/NordicHPC/hwcart
https://github.com/GridTools/ghexbench
https://github.com/Lyncs-API
https://github.com/sy3394/DDalphaAMG/tree/multirhs
http://librsb.sourceforge.net/
https://github.com/michelemartone/pyrsb
https://octave.sourceforge.io/sparsersb/
https://gitlab.inria.fr/solverstack/fabulous
https://github.com/Lyncs-API
https://github.com/Lyncs-API/lyncs.setuptools
https://github.com/Lyncs-API/lyncs.utils
https://github.com/Lyncs-API/lyncs.cppyy
https://github.com/Lyncs-API/lyncs.mpi
https://github.com/Lyncs-API/lyncs.io
https://github.com/Lyncs-API/lyncs.clime
https://github.com/Lyncs-API/lyncs.DDalphaAMG
https://github.com/Lyncs-API/lyncs.tmLQCD
https://github.com/Lyncs-API/lyncs.quda
https://github.com/Lyncs-API/tuneit
https://dask.org/
http://gitlab.inria.fr/
https://gitlab.inria.fr/solverstack/spack-repo
https://hpc.guix.info/
https://github.com/sy3394/DDalphaAMG
https://sourceforge.net/projects/librsb/files/
https://savannah.gnu.org/search/?words=sparsersb&type_of_search=bugs&Search=Search&exact=1#options
https://savannah.gnu.org/search/?words=sparsersb&type_of_search=bugs&Search=Search&exact=1#options
https://bugs.debian.org/cgi-bin/pkgreport.cgi?package=librsb-dev
https://github.com/michelemartone/pyrsb
https://pypi.org/project/pyrsb/
https://octave.sourceforge.io/sparsersb/
https://spack.readthedocs.io/en/latest/package_list.html#librsb
https://gitlab.inria.fr/guix-hpc/guix-hpc/-/blob/master/lrz/librsb.scm

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 ix 19.04.2021

[78] https://github.com/Nek5000/Nek5000

[79] https://svn.cenaero.be/MAdLib/trunk

[80] https://gitlab.onelab.info/gmsh/gmsh

[81] https://gitlab.com/bsc-alya/projects/alya-ueabs

[82] https://gitlab.com/rickbp/gempa

[83] https://github.com/JuliaQX

[84] https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html

[85] https://fosdem.org/2021/schedule/event/containerized_hpc/

[86] https://github.com/QuantumBFS/Yao.jl

[87] https://github.com/aspuru-guzik-group/tequila

[88] https://hpc.fau.de/research/tools/likwid/

List of Acronyms and Abbreviations

aisbl Association International Sans But Lucratif (legal form of the PRACE-RI)

AMR Adaptive-mesh refinement

BETI Boundary element tearing and interconnecting

CoE Centre of Excellence

CPU Central Processing Unit

CHASE Chebyshev Accelerated Subspace iteration eigensolver

CUDA Compute Unified Device Architecture (NVIDIA)

DCCRG Distributed Cartesian cell refinable grid

DoA Description of Action (formerly known as DoW)

EC European Commission

EuroHPC European High-Performance Computing Joint Undertaking

FETI Finite element tearing and interconnecting

FMM Fast-multipole method

GASPI Global Address Space Programming Interface

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/s Giga (= 109) bits per second, also Gbit/s

GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second, also

GF/s

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GPU Graphic Processing Unit

HPC High Performance Computing; Computing at a high performance level at any given

time; often used synonym with Supercomputing

https://github.com/Nek5000/Nek5000
https://svn.cenaero.be/MAdLib/trunk
https://gitlab.onelab.info/gmsh/gmsh
https://gitlab.com/bsc-alya/projects/alya-ueabs
https://gitlab.com/rickbp/gempa
https://github.com/JuliaQX
https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html
https://fosdem.org/2021/schedule/event/containerized_hpc/
https://github.com/QuantumBFS/Yao.jl
https://github.com/aspuru-guzik-group/tequila
https://hpc.fau.de/research/tools/likwid/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 x 19.04.2021

HPL High Performance LINPACK

KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte

LINPACK Software library for Linear Algebra

MB Management Board (highest decision making body of the project)

MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte

MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s

MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per second, also

MF/s

MoU Memorandum of Understanding.

MPI Message Passing Interface

NIH US National Institutes of Health

PFC Plasma-facing component

PIC Particle-in-cell

PM Person-month

PRACE Partnership for Advanced Computing in Europe; Project Acronym

QCD Quantum chromodynamics

RI Research Infrastructure

SIMD Single instruction multiple data

SOL Scrape-off layer

SPMD Single program multiple data

SSC Scientific Steering Committee

SVD Singular value decomposition

TAMPI Task-aware MPI

TAGASPI Task-aware GASPI

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per second, also

TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the

Supercomputing Research Infrastructure would host the Tier-0 systems; national or

topical HPC centres would constitute Tier-1

WP8 Work Package 8 of PRACE-6IP

List of Project Partner Acronyms

BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Germany (3rd Party to GCS)

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 xi 19.04.2021

BILKENT Bilkent University, Turkey (3rd Party to UHEM)

BSC Barcelona Supercomputing Center - Centro Nacional de Supercomputacion,

Spain

CaSToRC The Computation-based Science and Technology Research Center

(CaSToRC), The Cyprus Institute, Cyprus

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives, France

(3rd Party to GENCI)

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to

UANTWERPEN)

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación de

Galicia, Spain, (3rd Party to BSC)

CINECA CINECA Consorzio Interuniversitario, Italy

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd

Party to GENCI)

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to GENCI)

CSC CSC Scientific Computing Ltd., Finland

CSIC Spanish Council for Scientific Research (3rd Party to BSC)

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to

PNSC)

DTU Technical University of Denmark (3rd Party of UCPH)

EPCC EPCC at The University of Edinburgh, UK

EUDAT EUDAT OY

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland

GCS Gauss Centre for Supercomputing e.V., Germany

GÉANT GÉANT Vereniging

GENCI Grand Equipement National de Calcul Intensif, France

GRNET National Infrastructures for Research and Technology, Greece

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to BSC)

INRIA Institut National de Recherche en Informatique et Automatique, France (3rd

Party to GENCI)

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd

Party to UC-LCA)

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic

IUCC Machba - Inter University Computation Centre, Israel

JUELICH Forschungszentrum Jülich GmbH, Germany

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 xii 19.04.2021

KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU)

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to UANTWERPEN)

LiU Linkoping University, Sweden (3rd Party to SNIC-UU)

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., Germany

(3rd Party to GCS)

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,

Bulgaria

NTNU The Norwegian University of Science and Technology, Norway (3rd Party

to SIGMA2)

NUI-Galway National University of Ireland Galway, Ireland

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium

PSNC Poznan Supercomputing and Networking Center, Poland

SDU University of Southern Denmark (3rd Party to UCPH)

SIGMA2 UNINETT Sigma2 AS, Norway

SNIC-UU Uppsala Universitet, Sweden

STFC Science and Technology Facilities Council, UK (3rd Party to UEDIN)

SURF SURF is the collaborative organisation for ICT in Dutch education and

research

TASK Politechnika Gdańska (3rd Party to PNSC)

TU Wien Technische Universität Wien, Austria

UANTWERPEN Universiteit Antwerpen, Belgium

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada, Portugal

UCPH Københavns Universitet, Denmark

UEDIN The University of Edinburgh

UHEM Istanbul Technical University, Ayazaga Campus, Turkey

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien)

UiO University of Oslo, Norway (3rd Party to SIGMA2)

UL UNIVERZA V LJUBLJANI, Slovenia

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN)

U Luxembourg University of Luxembourg

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA)

UmU Umea University, Sweden (3rd Party to SNIC-UU)

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA)

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 xiii 19.04.2021

UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS)

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC)

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 1 19.04.2021

Executive Summary

Work Package 8 of PRACE-6IP successfully runs ten projects developing forward-looking

software solutions. Eight of these projects started in April 2019, whilst two projects started in

January 2020, after selection in a second call for proposals. This deliverable reports on the public

release of production quality software by all projects. This deliverable follows-up on the earlier

deliverable D8.3, which documented the prototype releases, their availability on GitHub and

similar services, and information on the use of a modern development infrastructure, including

version control, automated continuous integration (CI), and standard documentation formats. This

deliverable furthermore describes the outreach the projects have done, how they interacted with

European actors such as CoEs and EuroCC, and how they have integrated their efforts in

community codes, providing availability of these results to users of HPC infrastructure. Each of

the projects reports an outlook for pre-exascale and projections of benchmark performance.

Additional developments and results require the availability of the node architectures of the

European pre-exascale systems themselves and are planned for the remaining period. All projects

have made good progress towards or exceeded the project goals so far, and some impressive results

have been delivered. The second phase of this Work Package can be considered successful.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 2 19.04.2021

1 Introduction

Work Package 8 (WP8) of PRACE-6IP focuses on ‘Forward-looking Software Solutions’ and has

the objective to deliver high quality, transversal software that addresses the challenge posed by the

rapidly changing HPC pre-exascale landscape. These challenges include the diversity of hardware

and software complexity. It will advance strategic and long-term projects, allowing for disruptive

approaches to modernise HPC software. The main outcome is open source software in the form of

libraries or significantly refactored codes. All of the projects aim to provide software solutions that

enable the use of modern HPC systems, such as the planned EuroHPC pre-exascale systems.

The ten projects within WP8 have been selected based on competitive, peer reviewed calls, as

reported on in deliverables D8.1 and D8.2. This includes eight projects funded from the start of

PRACE-6IP, and two projects funded via a second call, with a starting date of January 2020. These

projects cover a wide range of scientific domains, from fundamental topics such as tasking

runtimes, halo-exchange libraries, to mathematical libraries including sparse and dense linear

algebra, to application domain related software targeted at science and engineering like plasma

physics, biophysics, finite elements, and fluid dynamics, or emerging domains such as quantum

computing.

The ten projects work independently, following their roadmaps as presented in the project

proposals. In an earlier deliverable D8.3, a report on a public prototype release of the software, as

well as an update on the development infrastructure used was provided. This early release helped

to ensure that software sustainability is taken in serious consideration, using industry standard

tools, issue tracking, continuous integration, validation and verification, documentation, etc. This

deliverable D8.4 goes one step further and documents a next stage, namely production-quality

software release, with the aim of bringing this software into the hands of users for the European

HPC infrastructure. It provides information on availability, and performance of the software, and

the outreach that has been performed by the projects. Highlights of the results obtained include the

QuantEx project that enables distributed quantum circuit simulation on HPC systems, the exascale

enabling of the whole software stack required for sparse linear solvers in the LyNcs project, the

demonstrated portability and performance of a library for halo exchanges on different architectures

and grids (GHEX), the higher efficiency of the EPOCH code at high core numbers, and iterative

eigensolvers with a performance exceeding that of the industry standard. Several more results are

described in detail in the sections below. This document is structured per project, providing a brief

introduction for each of them, a description of the production-quality releases made, a section on

community outreach and integration, and an outlook for (pre-)exascale and benchmark projections.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 3 19.04.2021

2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation

2.1 Introduction and summary

Figure 1: Compact laser-plasma particle and x-ray sources

Particle in Cell (PIC) codes have become one of the main tools for many areas in plasma physics,

for example for modelling particle acceleration with high-power lasers, or to understand detailed

dynamics and transport processes near the edge, the so called scrape-off layer (SOL) of magnetised

plasma confinement vessels. The PicKeX project focuses on two important community codes:

EPOCH, a fully relativistic, electromagnetic model and BIT1/OOPD1, a sophisticated

PIC/Monte-Carlo model.

For both codes the project has enabled substantial refactoring work to be performed which would

have been difficult to realise for a conventional research team utilising the code for scientific

investigation. As a result, enhanced versions of both codes are now publicly available for rigorous

testing by user groups. In particular, this includes OOPD1, a new GPU version of BIT1. The new

version of EPOCH incorporates a significantly faster moving window algorithm, which is

extensively used for an important class of problems based on laser-based particle accelerator

schemes.

2.2 Production software release

The PIC codes OOPD1 and BIT1 have complex structures consisting of many interdependent

sources that also include hard-coded atomic physics (cross-sections, particle collisions, etc.). Both

use a particle mover and field solver as main algorithms and additionally a Monte Carlo algorithm

for particle collisions. They share the same roots while OOPD1 is an object-oriented rewrite of

PD1 from which BIT1 enhanced the physics part. The refactored version of OOPD1 and BIT1 have

the following changes:

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 4 19.04.2021

 Based on the work done on the prototype SIMPIC code for a full CPU to GPU port, a GPU

version of the particle mover algorithm of OOPD1 using a global kernel was implemented.

 The extensive refactoring of OOPD1 for better modularisation (delineating algorithms from

data) including the GPU particle mover is available under [1] in the ‘feature/refactoring’

branch.

 The refactored BIT1 code builds upon the same ideas as the OOPD1 refactoring under the

refactoring branch on [2]. The BIT1 code is intended to be a basis for a OOPD1 physics

upgrade and not a final product and therefore at this stage the BIT1 repository is not public.

The test environment for OOPD1 and BIT1 codes is based on numerous simulation cases inside

OOPD1 that can be matched to BIT1 input format with the same physics. Enhanced physics and

data parts from BIT1 require OOPD1 input update along with upgraded physics refactored from

BIT1.

The refactored version of EPOCH contains the following major changes:

 The moving window code has been changed to be invoked after the window has traversed

a minimum number of cells instead of for individual, single cells.

 The MPI communication to exchange the field boundaries has been restructured to reduce

the number of MPI_SendRecv calls by a factor of 60.

These two changes together have reduced the overall amount of time spent in the moving window

by 90%. The refactored version of EPOCH is available as the default branch at [3].

The test environment for EPOCH includes a number of test cases in 2D and 3D that have been

created from community input to represent a number of common use cases of the code. They also

include pure benchmarking cases to focus on specific aspects. All of those can be run from JUBE.

The JUBE environment and test cases used for the EPOCH development are available at [4].

2.3 Community outreach and integration

The OOPD1 is an open source PIC/MC code, which is used for plasma tokamak simulations. Since

we are working directly with the PIC/MC codes, its refactoring and GPU improvement, will

directly benefit all people who are using these codes. As an example, more than 2 months are

required for reaching the steady state of the plasma using a CPU version of the codes. With this

implementation and providing a GPU version of the PIC codes we will reduce the time needed for

plasma simulations.

EPOCH is an open source plasma physics simulation code with over 1200 registered users

worldwide and has been extensively used for high energy density physics (HEDP), LWFA, and

plasma astrophysics studies. To date it has not yet been extensively used within the PRACE

framework, but does commonly feature in national Tier1 compute time allocations. The refactored

version is already being field tested within local projects at FZJ and external users have been

directly approached to provide feedback. The Warwick developer team is expected to test and

integrate the enhancements into the production version before the end of the project lifetime.

https://bitbucket.org/lecad-peg/oopd1/src/
https://bitbucket.org/lecad-peg/bit1/src
https://gitlab.version.fz-juelich.de/SLPP/epoch/epoch-dev
https://gitlab.version.fz-juelich.de/SLPP/epoch/test-cases

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 5 19.04.2021

2.4 Outlook for pre-exascale and benchmark projections

The original proposal foresaw the implementation of a task-based programming model for both

community codes. For the BIT1 application this has been partially achieved through a StarPU

version of the reduced physics mini-app SIMPIC (see Section 3.2), which will serve as a template

for future optimisation of the BIT1 framework. In the PicKeX project however, priority was given

to creating a GPU-enabled version OOPD1, which has been successfully implemented for the

computationally intensive particle mover component, and a GPU version of the field solver is

currently undergoing testing. Currently the BIT1/OOPD1 code is ported to GPU to about 50%. To

see how fast the code works, a comparison between a CPU OOPD1 code and partly GPU OOPD1

was done (Figure 2 below). In this benchmark the same test case was used. The OOPD1 which has

GPU parts is approximately 30% faster than the purely CPU version. By the end of the project a

complete GPU version of the BIT1/OOPD1 will be made available.

Figure 2: OOPD1 CPU and OOPD1 50% GPU comparison with ngrid=10000, dtfactor= 0.001, run for 200 timesteps

Concerning EPOCH, an early strategic decision was made to leave the data structures intact in

order to maintain compatibility with other development branches and facilitate integration of the

performance enhancements with the main production version. A rigorous analysis of EPOCH using

the Score-P toolset [5] allowed two major bottlenecks to be identified: i) the ‘moving window’

algorithm, in which the entire grid is rezoned to follow the dynamics of a plasma wake just behind

a laser pulse; and ii) the particle pusher with its integrated current deposition. Both of these

components consume a large fraction of the simulation time and represent good candidates for

improvement. A comparison between the refactored version and current production version shows

the new version to be 30-40% faster at high core numbers for LWFA studies (see Figure 3), which

https://www.score-p.org/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 6 19.04.2021

should lead to significant savings in production runs. Further reduction of MPI redundancies and

full realisation of vectorisation and multi-threading potential should lead to an improvement of

overall scalability to 104 - 105 cores on currently available Tier-0 machines.

Figure 3: Strong scaling comparison between EPOCH refactored version and the latest official version. The

benchmark used a 2D moving window with 5 million cells and 10 particles/cell

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 7 19.04.2021

3 MoPHA – Modernisation of Plasma Physics Simulation Codes for
Heterogeneous Exascale Architectures

3.1 Introduction and summary

Code modernisation efforts are needed for many scientific software applications to fully benefit

from the upcoming heterogeneous exascale systems. This is true also for plasma simulation codes,

such as ELMFIRE, GENE, and Vlasiator. Task-based parallelism potentially offers better

scalability and portability than traditional approaches by abstracting hardware-specific

optimisations away from the scientific algorithms. Some frameworks, such as StarPU or AMReX,

even offer a relatively easy way to achieve both task-based parallelism and support for GPUs.

In the MoPHA project, we have explored task-based parallelism for plasma simulations and tested

ways to add support for GPUs or other accelerators to plasma simulation codes. The aim has been

to pave the way for the plasma simulations codes to be ready for the upcoming pre-exascale

systems.

Figure 4: Turbulent flow in a fusion plasma simulation

3.2 Production software release

In the MoPHA project we have developed a number of different codes, some of which are hosted

in their own repositories, but the main site for publishing prototype mini-apps and documentation

related to the project is on GitHub [6]

GENE: Experimental GENE version with partial support for task-based parallelism with StarPU.

The main goal to achieve in this code version is the taskification of the computationally intensive

parts, such as the right-hand side in the Vlasov equations and the solution of the fields, with StarPU.

At this point, we provide an implementation that computes the right-hand side of a time step where

we partially exploit the inherent task-based parallelism of the application using StarPU for a

specific test scenario. The computation of a time step consists of 4 stages of a Runge-Kutta method

https://github.com/MoPHA/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 8 19.04.2021

and in each stage several terms of the right-hand side are computed. The individual terms are

computed through a cache-optimised block loop and were taskified so that the execution of these

individual tasks can overlap, provided that the data dependencies allow it. Additional parallelism

was added in the calculation by grouping terms and using local buffers which are sum reduced at

the end of the computation to form the actual RHS. In an earlier version, the execution of the tasks

was done only on the CPU (on a single node, one MPI rank per node). In the current version, it is

possible to compute some of the terms on the GPU thanks to the integration, refactoring and code

reuse from the GENE's GPU branch. GENE can be accessed via [7]

VLASIATOR: Experimental Vlasiator version with partial support for GPUs using OpenACC

directives. Implemented a set of the main computational algorithms for offloading to the GPUs

using a directive based approach, focusing on the semiLag solver in the velocity space acceleration

update.

Initial results are promising, but further improvements are needed to optimise data movement

between host and device memory. For this purpose, two improved prototype versions were

developed for comparison, one based on managed memory to alleviate the concerns with the data

transfers and one based on a tasks concept, where each OpenMP thread creates an asynchronous

queue and sends OpenACC calls, to partially overlap computation and communication. Initial

results are promising, but some concerns remain, e.g. with load-balance and the fact that the CPU

cannot send enough requests to fully use the GPU. Further improvements and changes in the data

structures are still needed.

The code is available as a separate branch in the main Vlasiator git repository: [8]. The managed

memory version is available at: [9]. The task-based version is available at: [10]

SYMPIFE-VMAX/ELMFIRE: Mini-app for particle-in-finite-elements Vlasov-Maxwell

systems with multiple species. The mini-app serves as a basis for the refactoring of the ELMFIRE

code. The prototype code uses the MFEM finite elements framework from which it leverages

versatile mesh-handling and refining infrastructure, and arbitrary order mixed-elements spaces.

The prototype implements symplectic integrators of order 1, 2 and 4 based on Lie-Trotter splitting

for the VM system. The MFEM infrastructure allows the use of complex meshes and automatic

domain decomposition, as well as hybrid parallelism [11]

STRUGEPIC/ELMFIRE: Mini-app for structure preserving PIC simulations using AMReX. It

demonstrates the use of the scalable framework AMReX for creating PIC plasma simulations. The

main purpose of the mini-app is to serve as an example of features and functionality provided by

AMReX for plasma simulations. In addition, it also performs well enough that it can be used for

proper plasma simulations by itself. Together with the SYMPIFE-VMAX mini-app, it serves as a

basis for the refactoring of the ELMFIRE code [12]

SIMPIC: Mini-app for simple PIC simulations using StarPU. It demonstrates the use of the StarPU

framework for task-based parallelism in plasma simulations. Due to its general applicability,

SIMPIC can serve as a how-to guide for other PIC codes.

At this stage, we provide a full GPU version of the SIMPIC mini-app, using CUDA. The code has

two main algorithms, the first is a particle mover and the second a field solver. To make a CPU to

GPU transfer for the particle mover and field solver, a moverparticlesGPU() function with

global_kernel and a fieldsolverGPU() function with cuSPARSE solver were created. In addition,

benchmarking on different cluster architectures and integration with the StarPU simulator was

done. For better visualisation of the memory transfer between the host and the device, profiling

https://www.genecode.org/
https://github.com/fmihpc/vlasiator/tree/openacc
https://github.com/ursg/vlasiator/tree/openacc_hackathon_2020
https://github.com/ursg/vlasiator/tree/openacc_taskbased
https://github.com/MoPHA/sympife-vmax
https://github.com/MoPHA/strugepic

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 9 19.04.2021

and tracing were done with the TAU and NVIDIA profilers. The code can also serve as base for

CPU to GPU transfer in a more complex PIC code. In this version the code works only with one

GPU, but the idea is that the last version of this mini-app will work on multiple GPUs.

The GPU version and documentation of the profiling and tracing results are available at the SIMPIC

repository [13]

3.3 Community outreach and integration

GENE: GENE is a well-established open source plasma micro turbulence code that is widely used

by the community of plasma physics. Since we are working directly with the GENE code, its

modernisation and any performance improvement achieved by the task-based parallelisation with

StarPU and the use of heterogeneous hardware, will directly benefit all the members of the large

and growing user base of GENE around the world. As an example of code integration, we would

like to mention the Whole Device Modeling application (WDMApp) of the Exascale Computing

Project (ECP), of which GENE is part and is coupled to another gyrokinetic code for the simulation

of the edge of a magnetic confinement device. Transfer of knowledge is also continuously done in

our monthly meetings and slack channel.

VLASIATOR: Vlasiator simulates the Earth's magnetosphere in kinetic physics. It solves the

Vlasov equation (6D advection equation) with a sparse phase space simulation and implements

semi-Lagrangian advection solvers coupled with a constrained transport field solver. It has proven

to be really accurate and is a well-known tool that has also provided the first full global 6D hybrid-

Vlasov simulation of the magnetosphere. In light of the upcoming pre-exascale European HPC

systems, porting of some of the kernels to GPUs is an active line of development. The Vlasiator

team organises and participates in hackathons and presents their science in various conferences.

All the efforts are public and are actively communicated to the whole community. All code

developed in this project is publicly available as separate branches in the main code repository of

Vlasiator or its main developer's code repository.

SYMPIFE-VMAX/STRUGEPIC/ELMFIRE: STRUGEPIC and SYMPIFE-VMAX are both

being used by the ELMFIRE research group at Aalto University for prototyping new structure-

preserving algorithms for the full and reduced Vlasov-Maxwell-Landau systems. Their use is

planned within the EUROfusion Theory, Simulation, Verification and Validation (TSVV) activity

for probing the limits of gyrokinetic simulations when the gyrokinetic ordering may be violated.

Both these activities are part of a collaboration with the Numerical Methods for Plasma Physics

division at the Max-Planck Institute for Plasma Physics. Development of space-physics relevant

features is also ongoing in collaboration with the Esa Kallio group at Aalto University.

SIMPIC: SIMPIC is an open source prototype PIC code, which contains only two algorithms

without any cross sections and particle collisions. For this reason, the GPU version of the code was

implemented in a more complex PIC code. With this transfer we speed up the code and we reduce

the memory transfer. This mini-app helped to reduce the time needed for plasma simulations in the

other PIC codes. At this stage of the project, most of the work has been done. All updates of the

code were disseminated in our monthly meetings.

https://bitbucket.org/lecadpeg/simpic/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 10 19.04.2021

3.4 Outlook for pre-exascale and benchmark projections

GENE: Although there is still work to do and issues to solve, results show overlaps in the execution

of tasks on homogeneous and heterogeneous hardware (CPU and GPU). This gives us the

confidence that we are on the right path towards an implementation that efficiently uses all the

available computing resources. The objective of MoPHA for GENE is to modernise, modularise,

refactor, and implement a task-based parallelisation of GENE as well as to transfer any knowledge

gained in the process. Cross-review of the code structures and modularisation of GENE has been

done. Development of simplified test code, test of StarPU with test code and test of StarPU in the

GENE code were also completed. At this stage of the project, we are implementing computational

kernels using StarPU, which in some cases require further refactoring of the modules.

We expect that the code will perform better/faster than the current version of GENE in pre-exascale

systems for problems with large computationally intensive kernels, for example nonlinear

problems. In these cases, the tasks are large enough that they can be broken into smaller tasks to

be distributed for execution across the available hardware but still large enough so that the task

scheduling and StarPU internals can be neglected. For problems with small size tasks, the

scheduling and StarPU internal operations add up to the entire runtime and make the solution of

the problem often slower. From our initial results, we can infer that the code will be able to use all

of the computational resources. However, additional work is still necessary to investigate the

different schedulers and how to further break or merge the available tasks so that the schedulers

can make an optimal distribution of the tasks to the hardware.

VLASIATOR: Although there is still work to be done on the GPU version, the CPU code scales

to hundreds of thousands of CPUs. Since the code has potential to scale really well, we expect that

with a proper porting of the code to GPUs, it will scale also really well to a large number of GPUs.

Of course, there are many challenges and further improvements are still needed e.g. to optimise

some of the data structures and to verify which programming model is the most efficient and

portable.

SYMPIFE-VMAX/STRUGEPIC/ELMFIRE: SYMPIFE-VMAX is GPU-ready (both CUDA

and HIP through the MFEM backends), but scaling tests and benchmarks on multiple GPUs are

necessary. A multi-GPU CUDA version of the STRUGEPIC has also been developed. Further

scaling tests and optimisation is required for scale-up on many nodes. Porting to HIP is desirable

in the future, but HIP support in AMReX is only experimental at the moment. The physics

benchmarks and further optimisation will be pursued in particular within the EUROfusion TSVV

activity, and with support from the Advanced Computing Hubs of the EUROfusion Theory and

Advanced Simulation Coordination.

SIMPIC: Benchmarking of the code with a single GPU was done and looks promising, but after

the final version of the code with multi-GPU support is ready, thorough benchmarking should be

done. Based on the results from implementing this mini-app into other PIC codes such as BIT1 in

the PiCKeX project, it is evident that that our code is already fully workable. Also a StarPU version

of the code was done and was tested on different HPC clusters.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 11 19.04.2021

4 NB-LIB: Performance portable library for N-body force calculations
at the Exascale

4.1 Introduction and summary

Figure 5: Overview of NB-LIB

A large number of scientific applications use particle interactions (e.g. Molecular Dynamics, Monte

Carlo or multiscale simulations in life sciences or materials), and several smaller codes or

combinations of codes have unique features that allow novel workflows. However, while

computers have become more specialised, many codes are not optimised for GPUs or other

accelerators and it is increasingly hard to achieve parallelisation. This will make these codes

increasingly difficult to use on next-generation, exascale systems.

One of those codes currently undergoing exascale optimisation efforts is GROMACS, also among

the benchmark codes for pre-exascale machines coming online in 2020. While it has a long track

record as a widely used and highly performant HPC code, it is very difficult to offer in a single

application all the unique features and niche use-cases that the various many-body codes combined

support. The goal of the NonBonded-LIBrary (NB-LIB) is therefore to make the cutting-edge

performance of GROMACS available through a high-level C++ API to its non-bonded force

kernels. In combination with the system setup functionality that NB-LIB offers in addition, users

will then be able to implement arbitrary workflows that might be required for their special use case

while leveraging the performance of GROMACS for the force calculations. This way, future

acceleration, porting, and library features will benefit all applications.

4.2 Production software release

The NB-LIB project is bundled with the public release of GROMACS 2021. This means that NB-

LIB is installed by default on HPC resources all over the world because GROMACS is one of the

most popular scientific codes in the HPC landscape. There are a number of ways for users to get

access to the bundled version of NB-LIB included in the GROMACS 2021 release, including

through the public GROMACS documentation [14] as well as via the GROMACS GitHub page

https://manual.gromacs.org/documentation/2021/download.html

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 12 19.04.2021

[15]. Additionally, for users who desire access to the most up-to-date version of NB-LIB, it is also

possible to access via the NB-LIB GitHub page [16].

The NB-LIB repository includes extensive documentation as well as sample scripts that

demonstrate library usage. Though NB-LIB is written in state of the art C++, care has been taken

to make it simple for end users to write scripts using NB-LIB, allowing sample scripts that read

like Python code.

The core functionality of NB-LIB is to allow performant nonbonded calculations, and this is the

central feature of the public release. Nonbonded forces can be calculated on both CPU and GPU,

and since GROMACS has backends for CUDA, OpenCL, and SYCL, users with diverse hardware

can expect good performance. In addition to the core nonbonded force calculation, NB-LIB

provides a molecular topology API allowing users to easily construct the input data for NB-LIB

calculations. However, since the public methods of NB-LIB only take elementary types, users can

call NB-LIB with data from other sources as well. Finally, NB-LIB also provides a listed forces

API allowing calculation of bond, angle, dihedral, etc. forces, as well as a simple integrator. This

means that users can write a complete MD code using NB-LIB.

4.3 Community outreach and integration

The NB-LIB project is closely aligned with a number of longer term development goals of the

GROMACS project, which is currently funded to a large extent by the BioExcel CoE. This has

meant that there has been a near-constant dialogue between core GROMACS developers and NB-

LIB developers. This dialogue, combined with the rigorous code review standards for new code

being accepted into GROMACS has helped ensure that NB-LIB has high code quality standards in

the GROMACS 2021 release of which NB-LIB is a part. The NB-LIB topology specification, and

the corresponding system setup API were designed after discussions with members of the

OpenMM and OpenFF consortiums. This means that NB-LIB should in principle be compatible

with those popular molecular simulation codes. Discussions have also happened with the core

developers of the HADDOCK docking code, and some work is ongoing to enable the types of use

cases needed for drug docking workflows. Given that this is not a core goal of NB-LIB; it is not

certain that all functionality needed for such workflows would be completed before the project end.

One very successful outreach effort was a recent webinar [17], hosted by the BioExcel CoE. This

had an audience of more than 40 participants from all over the world. Many participants had

questions about how to enable the workflows that would be meaningful to them, and discussions

are ongoing to see how and if effort can be prioritised to help meet any of these use cases.

4.4 Outlook for pre-exascale and benchmark projections

Overall, NB-LIB has exceeded many of the project goals. The primary goal of NB-LIB is to expose

a performant API for non-bonded force calculation. Since NB-LIB relies on and exposes the known

performance of the GROMACS non-bonded force calculation engine, this goal can reasonably be

said to have been achieved. Additionally, NB-LIB provides a convenient API for system setup, a

force calculator for bonds, angles, etc., and a simple integrator. This means that users wanting good

performance in particle simulations can potentially use NB-LIB for entire projects, as NB-LIB can

be used to write molecular simulation mini-apps. Currently, to run NB-LIB across multiple nodes,

for instance using MPI, the user would need to manage all data transfer themselves. Work is

ongoing to expose the GROMACS domain decomposition code in order to reduce this data

https://gitlab.com/gromacs/gromacs
http://gitlab.com/gromacs/nb-lib
https://bioexcel.eu/webinar-nb-lib-a-performance-portable-library-for-computing-forces-and-energies-of-multi-particle-systems-2021-03-11/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 13 19.04.2021

management burden on users. Unlike the achieved objectives of NB-LIB, which mostly entailed

designing and implementing APIs and glue code, the work on domain decomposition requires

significant refactoring of core GROMACS functionalities. This means that there is some chance

that at the completion of the current NB-LIB project, it may still be up to users to manage the

complexity of domain decomposition, but significant effort is being put into the necessary

GROMACS refactoring that would allow exposing a domain decomposition API.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 14 19.04.2021

5 LoSync – Synchronisation reducing programming techniques and
runtime support

5.1 Introduction and summary

The LoSync project aims to improve the scalability of applications by removing unnecessary

synchronisation and serialisation, and by fully exploiting the potential for overlapping

computations and communications. To do this, we make use of modern features of well-

standardised APIs, to ensure portability and relevance.

Efficiently implementing a pure task-based programming on distributed memory systems is very

challenging. Instead, we propose a hybrid model which uses task-based programming inside a node

and traditional message-passing between nodes. To minimise synchronisation and expose as much

parallelism as possible, our experience has shown that communications as well as computations

should be expressed as tasks. However, standard communication libraries are difficult to use like

this without encountering the risk of deadlocks, for example where all threads are executing tasks

containing blocking communication calls. In LoSync we are developing and evaluating task-aware

versions of MPI and GASPI libraries (called TAMPI and TAGASPI) which are integrated with

OmpSs and OpenMP task-based runtimes. In TAMPI and TAGASPI, tasks blocked on

communication calls are paused, freeing their executing threads to process other tasks, until the

communications complete and the paused tasks can be resumed.

Figure 6 below shows the state transition diagram for tasks in this model. Whenever a running task

is blocked in MPI (for example), its status is changed to paused, and the executing thread is released

to be able to execute other tasks (either computation or communication). When the blocking MPI

call completes, the task becomes ready again, and can be rescheduled for execution when resources

are available. TAMPI also supports another mode which allows the task to complete but only

release its dependencies when the MPI call completes: this mode is easier to integrate with existing

OpenMP implementations, but requires extensions to the MPI interface.

Figure 6: State transition diagram for tasks (blocking mode)

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 15 19.04.2021

5.2 Production software release

The OmpSs-2 programming model [18] is released twice a year coinciding with ISC and SC events.

In the latest release (20.11) we have included our new LLVM-based OmpSs-2 compiler, a

lightweight instrumentation system based on CTF format and a user-friendly configuration file to

manage all runtime options. It is worth noting that our LLVM distribution [19] also includes a

modified OpenMP LLVM runtime that can be used with TAMPI and TAGASPI libraries.

The Task-Aware MPI (TAMPI) library is also publicly available [20] and periodically updated

with new features, performance improvements and bug-fixes. Since the last reporting period, we

have extended TAMPI to support MPI one-sided operations. Now it is possible to safely use

MPI_Get, MPI_Put and MPI_Win_Fence operations inside tasks. To implement this new feature

in TAMPI we have first extended ParaStationMPI [21] with a new MPI_Win_Ifence operation,

that is the non-blocking counterpart of the standard MPI_Win_Fence. TAMPI leverages this non-

blocking MPI_Win_Ifence to implement the support of one-sided MPI operations.

The work on applications has also progressed since the last report. We have ported, evaluated and

analysed three well-known mini-apps that combine OmpSs-2/OpenMP and TAMPI: miniAMR

[22], Lulesh [23] and HPCCG [24], and the results have been included in two research papers [25],

[26].

The work on the Task-Aware GASPI (TAGASPI) library, which leverage GASPI one-sided

operations and notifications, has been finished and a complete evaluation using the miniAMR,

Gauss-Seidel, IFSKer and HPCCG benchmarks will be submitted to the SC’21 conference. The

initial version of this library is publicly available on GitHub [27].

5.3 Community outreach and integration

BSC has developed training material which covers the OmpSs + TAMPI programming model

combination, including hands-on programming exercises. This material forms part of the

“Heterogeneous Programming on GPUs with MPI + OmpSs” course, which was run most recently

as part of the PATC training programme in March 2021. A basic guide to TAMPI is available

online [20] and we will continue to develop a more comprehensive best-practice guide to this style

of hybrid programming.

In the next phase of the project, we plan to implement a larger application code using the OmpSs

+ TAMPI - we are currently evaluating Ludwig [28], a Lattice-Boltzmann simulation code as the

target for this. There are some potential synergies with other WP8 projects, such as NB-LIB and

MoPHA which we will explore in the near future.

5.4 Outlook for pre-exascale and benchmark projections

So far in the LoSync project we have shown, by implementing a range of mini-apps from a variety

of computational science domains, that the model of using tasks within a node and conventional

communication (e.g. with MPI) between nodes can be very successful. The ability to wrap the

communication calls inside tasks has been demonstrated to be very valuable. As well as avoiding

unnecessary serialisation, it provides a much more flexible and effective mechanism for

overlapping computation and communication than can be achieved with standard non-blocking

MPI calls. This is because it allows any available task to be executed while waiting for the

https://github.com/bsc-pm/ompss-2-releases
https://github.com/bsc-pm/llvm
https://github.com/bsc-pm/tampi
https://github.com/ParaStation/psmpi
https://github.com/Mantevo/miniAMR
https://github.com/LLNL/LULESH
https://github.com/Mantevo/HPCCG
https://doi.org/10.1109/CLUSTER49012.2020.00017
https://doi.org/10.1109/CLUSTER49012.2020.00042
https://github.com/bsc-pm/tagaspi
https://github.com/bsc-pm/tampi
https://github.com/ludwig-cf/ludwig

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 16 19.04.2021

communication to complete, and the polling for completion can be undertaken by threads inside

the runtime.

Getting the granularity of tasks right is critical for good performance. If we have too few large

tasks, cores will be left idle. If we have too many small tasks, the overheads of scheduling and

managing task dependencies may become a bottleneck. With more complex applications we can

have many different types of task, each with their own “natural” granularity. However, it is

important to be able to chunk up small tasks into larger ones. This can lead to a significant number

of tuneable parameters (i.e. the grain sizes for each type for task) which results in an optimisation

problem which can be hard to solve. Some heuristic methods have been developed to deal with

this, but a more comprehensive mechanism might be beneficial. Another technique which has been

explored with some promising results is the use of parallel loop tasks: a set of independent loop

iterations can be treated as a single task for dependency analysis and scheduling purposes, but the

iterations can be executed in parallel by multiple threads.

For applications with fairly regular data access patterns, converting from a conventional MPI data

decomposition, and/or statically scheduled parallel loops, to tasks can result in a loss of locality.

This can be addressed, to some extent, by the runtime by preferring to schedule dependent tasks on

the same core as their parent, but the runtime may lack sufficient information about the amount of

data movement implied by the dependencies. Further work is required to address this limitation.

Some applications have a clear and obvious correspondence between data structures and

computational tasks, while others do not. In the latter case, this can lead to synchronisation points

where all tasks acting on a shared data structure must be completed before any subsequent tasks

can run. In molecular dynamics, for example, we may find that all force updates to particles must

be completed before any velocity and position updates may occur. A technique to overcome this is

to apply data decomposition method inside a node – this may be simply the existing decomposition

method already used between processes in the application, or it may exploit additional levels of

parallelism. Communication between decomposed data structures becomes explicit (as

read/writes), and this enables the synchronisation to be relaxed.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 17 19.04.2021

6 FEM/BEM based domain decomposition solvers

6.1 Introduction and summary

The aim of the project is to extend the existing domain decomposition library ESPRESO [29] to

support highly scalable efficient solution of harmonic analysis and sound scattering problems. The

distributed memory parallelisation of the code is based on the FETI method and its variants.

In order to achieve this, a number of activities are on-going. These include the development of

suitable preconditioners for the parallel harmonic analysis solver – currently, three types of

preconditioners are implemented in the code, each suitable for different kinds of problems, as the

preconditioners differ in the way that they construct an artificial coarse space for the FETI method.

In addition, GPU acceleration of computationally intensive parts of the code has been undertaken,

and tested using NVIDIA V100 and A100 GPUs. Work has also continued on the Solver as a

Service platform, with the ultimate goal to enable users without a HPC background to use the

application. Further improvements to the harmonic analysis solver have also continued, which for

example now also includes the pre-stress harmonic analysis in rotor dynamics solver.

Coupled to this, testing and documentation is on-going, with continuous updates to the

documentation in project repository. Finally, development has also begun on the module for the

parallel solution of acoustic problems.

Figure 7: Frequency response of the electric motor case computed using 450 nodes of the Salomon cluster at

IT4Innovations in 714 s (15 million degrees of freedom, 60 frequency samples).

6.2 Production software release

The developed code is publicly available within the master branch of the ESPRESO library in its

official repository at GitHub [30]. Most of the functionalities described in the previous section are

available in the public code. Currently, the code supports solution of the harmonic analysis

problems in real domain parallelised across both frequency and spatial domains. Three

preconditioners based on an artificial coarse space for the FETI method are available. The code in

the master branch now supports the GPU acceleration of the computationally intensive sections of

the code. Moreover, besides the installation instructions and generic information about the solver,

http://numbox.it4i.cz/
https://github.com/It4innovations/espreso

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 18 19.04.2021

the manual available in the GitHub repository now contains solver-specific documentation with

examples of usage of the harmonic analysis solver (see the Wiki section of the repository [31]).

6.3 Community outreach and integration infrastructure

The developed ESPRESO library is being integrated into the Solver as a Service online platform

at IT4Innovations. The goal is to make the supercomputing resources available to engineers without

HPC background. The user will be able to submit a job via web interface either by directly

uploading the ESPRESO configuration file or by using an online GUI to specify the problem to be

solved. The front-end of the service is now implemented, while development of the back-end is

currently in progress.

The above-described developed parallel solver for harmonic analysis has already been used in two

significant projects. First of them is focused on the development of the digital twin of an

electromotor in cooperation with the Siemens company. The second project (EXPERTIZE [32])

aims to create a European training network that trains the experts in nonlinear structural mechanics

of turbomachinery and high-performance computing.

Moreover, the ESPRESO library provides an API that can be used to call the solver from external

software. In the past, it has been used, e.g. within the Elmer library.

6.4 Outlook for pre-exascale and benchmark projections

Although the goal of the project was to develop a highly scalable solver for both harmonic analysis

and sound scattering problems, due to the initial problems with the efficiency of the preconditioners

for the harmonic analysis, the development of the sound scattering module has been delayed.

Therefore, the currently available benchmarks only describe the scalability of the harmonic

analysis module. From the implementation point of view, we have been able to achieve most of the

goals stated in the project proposal. The structure of the ESPRESO library has been refactored and

several parts of the code, e.g. system matrix assembly, have been optimised and significantly

accelerated. Due to the heterogeneous design of current and future pre-exascale machines, a GPU

acceleration is also a crucial and unavoidable part of modern code. We have successfully

accelerated the most time-consuming parts of the code and tested the acceleration using the modern

NVIDIA V100 and A100 architectures (see Figure 8 below). For the distributed memory

parallelisation, we use the combination of parallelisation in spatial and frequency domain, which

enables us to further extend the scalability. So far, the code has been tested on up to 450 nodes

(10800 cores) of the Salomon cluster solving a problem with 15 million spatial degrees of freedom

and 60 frequencies. Further tests are planned and the ESPRESO team has submitted a proposal for

a preliminary access to the LUMI supercomputer for extended testing. Furthermore, a PRACE

Preparatory Access project will be submitted to further optimise and benchmark the code on large

machines.

https://github.com/It4innovations/espreso/wiki
http://www.msca-expertise.eu/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 19 19.04.2021

Figure 8: Scalability of the multi-GPU assembly of Schur complement matrices on NVIDIA DGX A100 machine.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 20 19.04.2021

7 Performance portable linear algebra

7.1 Introduction and summary

Linear algebra algorithms play a central role in scientific applications, for example, in the particular

case of Materials Science, many applications rely heavily on linear algebra to solve complex tasks.

Overall, the diversity of linear algebra operations together with the large size of the operands

motivates the necessity of high-performance implementations of distributed algorithms. For

example, modern electronic structure methods rely on the Density Functional Theory (DFT)

method, which highly depends on the solution of either dense or sparse eigenvalue problems.

To solve the dense eigenvalue problems, applications are mainly using the ScaLAPACK [33] or

ELPA [34] libraries. ScaLAPACK is the de-facto standard for distributed dense linear algebra since

1992. However, the fork-join approach used for its implementation is not suitable for modern node

architectures.

A more modern approach consists in the task based implementation of the algorithms and the goal

of this project is to deliver a modern and efficient distributed linear algebra package (DLA-Future)

based on HPX [35] (a C++ tasking library which tests the proposals of C++ standard about tasks),

that can replace ScaLAPACK in scientific applications.

Figure 9: Eigensolver workflow

http://www.netlib.org/scalapac
https://elpa.mpcdf.mpg.de/software
https://github.com/STEllAR-GROUP/hpx

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 21 19.04.2021

An alternative strategy in the development of an eigensolver is to leverage well-known and well-

established iterative algorithms such as subspace iteration. A modern example of such an algorithm

has recently been implemented in the Chebyshev Accelerated Subspace iteration Eigensolver

(ChASE) library [36]. When tackling sequences of Hermitian eigenproblems, as they often appear

in electronics structure codes, ChASE takes advantage of the distinctive features connecting

adjacent problems in a sequence.

7.2 Prototype software release

7.2.1 DLA-Future and DLA-Interface

Currently, DLA-Future functionalities include the Cholesky decomposition and the solution of the

triangular system of equations for distributed multi-core and NVIDIA GPU (CUDA) systems. The

library includes the transformation of a generalised eigenvalue problem to a standard eigenvalue

problem as well for multi-core systems. DLA-Future sources are available in GitHub at the

following link [37].

The team has invested a lot of time to make asynchronous MPI functions work efficiently with

HPX, and therefore the implementation of some of the algorithms of the eigensolver has been

delayed.

We performed a weak scaling analysis of the library comparing it to other libraries on CSCS’ Piz

Daint (Figure 10). DLA-Future outperforms ScaLAPACK and Slate and the performances are

comparable with DPLASMA, but with a slightly worse scaling (which will be fixed in the next

release, see Section 7.4.1).

Figure 10: Comparison of the weak-scaling performance of DLA-Future Cholesky decomposition compared with

other libraries (left: multicore implementations, right: CUDA implementations)

We decided to develop DLA-Future as a pure C++ library, and to provide ScaLAPACK like C and

Fortran bindings through DLA-interface, which is available at the following link [38]

Currently DLA-Interface provides the binding for the Cholesky factorisation. The plan is to add

the eigensolver and generalised eigensolver bindings when they are ready in DLA-Future.

https://doi.org/10.1145/3313828
https://github.com/eth-cscs/DLA-Future
https://github.com/eth-cscs/DLA-interface

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 22 19.04.2021

7.2.2 ChASE library

The ChASE library is a modern C++ numerical library implementing one of the oldest and most

respected iterative algorithms. With the advent of massively parallel architectures, the algorithm at

the base of ChASE can leverage very efficient low-level BLAS-like kernels and achieve a very

competitive parallel efficiency. Being an iterative eigensolver, ChASE can solve only for up to

20% of the extremal spectra of Standard and Generalized Complex Hermitian and Real Symmetric

Eigenvalue problems. Among its most salient functionalities, the ChASE library features multiple

data distribution geometries: custom-block, block-cyclic, and element-wise cyclic (Elemental).

Thanks to its templated data type, it can solve problems in both single and double precision. ChASE

is effective for solving sequences of eigenvalue problems for which it can take advantage of

approximate solutions and experience speedups up to 3x. In addition, the algorithm of the

Chebyshev filter has been optimised to minimise the number of FLOPs necessary to converge the

desired eigenpairs.

ChASE comes in several different parallel flavours. It can be executed with a parallel MPI-

OpenMP over distributed multi-core clusters. It also features a parallel MPI-CUDA hybrid

execution on distributed many-core clusters with multiple GPUs per node. A tailored

implementation using MPI+HPX is currently under testing and it will be available by the end of

the project. The library is available in the newly launched GitHub repository [39].

7.3 Community outreach and integration

7.3.1 DLA-Future and DLA-Interface

As discussed in 7.2.1 the problems of integrating the communication layer in HPX delayed the

development of some of the parts of the eigensolver.

Therefore, the current DLA-Future effort is in implementing and optimising the algorithms for the

eigensolver, which, when ready, will be tested in the SIRIUS [40] library.

7.3.2 ChASE library

The ChASE library has been successfully integrated in a code for Optoelectronic simulations

developed and maintained at the University of Illinois Urbana-Champaign (UIUC) and NCSA [41].

There is an ongoing effort to fully integrate ChASE within the FLEUR [42] code for Material

simulations based on Density Functional Theory. There is also a preliminary agreement to test the

use of ChASE both in the Yambo and Quantum Espresso [43] (QE) codes. Both FLEUR and the

QE suite are part of the MaX-II Center of Excellence and have a large base of users in a wide

community.

https://chase-library.github.io/ChASE/index.html
https://github.com/electronic-structure/SIRIUS
http://schleife.matse.illinois.edu/
http://www.flapw.de/MaX-5.0/
https://www.quantum-espresso.org/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 23 19.04.2021

7.4 Outlook for pre-exascale and benchmark projections

7.4.1 DLA-Future and DLA-Interface

As shown in section 7.2.1, the weak scaling behaviour of DLA-Future is not in line with the

performance of DPLASMA. However, a couple of optimisations in the communication code (use

of MPI asynchronous functions and better memory usage) are showing promising results.

Figure 11: Comparison of the weak-scaling performance of the unreleased optimisations of DLAF

vs best performing libraries in Figure 10

Unfortunately, the poor performance on square MPI grids (DLA-Future is running two ranks per

node), is still preventing these optimisations from being released.

7.4.2 ChASE library

Particularly when executed on the newest AMD cluster with multiple A100 Nvidia GPUs

(JUWELS Booster), ChASE is performing well and the relative performance of the various kernels

relative to each other is in line with the computational cost that is expected. This result is achieved

thanks to the extensive use of cuSOLVER.

On the other hand, when run in parallel on CPU-only, ChASE shows a growing bottleneck due to

the QR decomposition. We are in the process of designing a new distributed algorithm for such a

kernel that would balance again the relative cost among the main kernels of ChASE. Ultimately

we plan to benchmark the code of eigenproblems with size > O(100k).

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 24 19.04.2021

Figure 12: Performance of ChASE on JUWELS Booster (matrix BSE 76k , OMP = 12, nev=2350, nex=200)

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 25 19.04.2021

8 GHEX: Generic Halo-Exchange for Exascale

8.1 Introduction and summary

GHEX is a library for halo-update in scientific applications. While halo-update is ubiquitous in

HPC, its implementation (typically using MPI) is highly dependent on the details of the problems

being solved. The main characteristics that distinguish the different applications are: the grid type

(Cartesian, structured, unstructured), the periodicity of boundaries, the types of the values, the

dimensionality and the number of fields being updated, the number of halo-lines exchanged, and

more.

Most of the existing halo-update solutions have been designed for MPI-based applications, with

extensions to MPI+X, where X is usually OpenMP. With the advent of many-cores architectures,

like accelerator-based and hybrid, the need for modern programming models becomes more and

more pressing. For instance, exploring multithreading architectures more efficiently than the

typical MPI+X approaches could improve the effect of some latency-hiding techniques, and hence

scalability.

Figure 13: Halo Exchange weak scaling on Piz Daint using in-node direct remote memory access (RMA) through

system/shared memory

From the design point of view there are two distinct aspects of GHEX. On the high level is the

user-facing, unified and intuitive halo exchange API. Instead of accepting data as arguments,

GHEX API accepts functions with defined interfaces. These functions allow the users to pass the

required information, while GHEX remains oblivious to the specifics (e.g. the data layout) of the

application. On the lower level GHEX defines a future- and callback-based APIs, which is close to

the hardware and the computing platform. They provide access to low-level transport layers (in

addition to MPI, for instance UCX and Libfabric), and exploit shared memory interprocess

communication mechanisms (e.g. using XPMEM and CUDAIPC). These lower level transport

layers have more flexible interfaces that can in some cases result in better performance than MPI.

GHEX uses these interfaces in the high level halo exchanges to enable latency-hiding and to

overlap computations with communication. In addition, GHEX users can also directly access the

transport layer API, which is especially well suited for highly asynchronous, task-based computing

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 26 19.04.2021

models. Both the interfaces are portable, so that the applications can be easily run on different

platforms with different transport layers.

Figure 14: Overview of GHEX

8.2 Production software release

The code is publicly available on GitHub at [44] under the BSD-3-Clause license. CI is

implemented through GitHub Actions, with runs tests on every pull-request and on demand. Tests

are run on a single node virtualised environment and cover: high level exchange API, low level

MPI / UCX / libfabric transport layers (both with future-based and callback-based API), single /

multi-threaded modes, structured / unstructured grids (including support for inflated-cube grids and

Atlas bindings) and RMA on shared-memory regions.

The current set of supported functionalities, in addition to the one tested with CI/CD, includes also

NVIDIA and AMD GPU and hybrid CPU/GPU communications, support for XPMEM, CUDA-

IPC to perform remote memory accesses to neighbour ranks, GridTools bindings, and Fortran

bindings. Clearly, the testing space, in terms of functionality and performance is huge, and the

current CI/CD frameworks are incapable of supporting automatic testing that covers all of the

available features, which would require access to a wide variety of different computers. We plan

to gradually add CI/CD features in the future, especially in collaboration with CSCS CI/CD

initiatives. To compensate for this difficulty, we are actively collecting benchmarking results and

scripts in another repository [45].

During code optimisation for AMD EPYC CPUs it became clear that the multi-level, hierarchical

memory architecture poses a substantial challenge to performance. Data exchange speed between

ranks and threads within the same compute node varies a lot depending on the memory domain

they are bound to. To address this, we have developed HWCART, a hardware-aware Cartesian

MPI communicator, which allows the user to map ranks to cores in a way that maximises

https://github.com/GridTools/GHEX
https://github.com/GridTools/ghexbench

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 27 19.04.2021

communication speed between the neighbours and minimises off-node communication. The code

is available under BSD-3 license from a separate repository [46], since this is a useful utility not

only for GHEX users.

8.3 Community outreach and integration

GHEX is part of the GridTools ecosystem, and available in the GitHub organisation of the same

name. GridTools is a set of libraries and tools aimed at the weather and climate community to

develop models using modern technologies.

GHEX has been ported to the weather model COSMO, and improvements on the performance of

9% have been observed. Since COSMO went into a feature-freeze by the time we were able to

demonstrate the advantage of GHEX, it was not possible to include it in the COSMO code. Further

integration with climate models, in this case by ECMWF, is facilitated by Atlas bindings. Atlas is

currently developed at ECMWF for providing parallel data structures for Earth System models.

GHEX has been included in a benchmark application, called GTBench, which is currently used to

benchmark architectures against the typical weather and climate computation patterns, and was

part of the benchmarks for the procurement process for the computer acquired by the LUMI

consortium. We are currently integrating GHEX as a transport layer in a Python-driven weather

application framework named GT4Py. GT4Py is a strategic tool adopted by several partners,

especially the Center for Climate Systems Modeling (C2SM) at ETH Zurich, in a multi-year

project.

At University of Oslo we have worked to integrate GHEX with two community codes:

 Bifrost - a stellar atmosphere simulation code, a classical MPI-based single-threaded code,

where each rank runs on a single CPU core and computes on a regular, cubic sub-domain.

After each timestep all ranks exchange halos with their neighbours. GHEX's ability to

handle multiple data fields and large halos more efficiently than native MPI does improve

the overall Bifrost performance by up to 8%.

 DISPATCH is a task-based framework, in which each task handles a grid, which is not

necessarily aligned with all other grids (e.g. grids can overlap and be rotated). DISPATCH

is heavily multi-threaded, with threads picking up tasks as they become free. In this case

we have integrated the code with GHEX transport layer API. It provides direct access to

UCX and libfabric, and proves to be more efficient than MPI when it comes to multi-

threaded applications.

Both codes are implemented in Fortran, and hence use GHEX Fortran bindings. In both cases

integration with GHEX was done in a non-invasive way, i.e. the original codes do not require

GHEX to compile and run. Instead, they can choose to use the legacy MPI communication

implementation, or the GHEX backend with a compile-time option. This demonstrates that GHEX

can be used as a plug-and-play solution with relatively little effort.

GHEX presentations at international meetings

 Fifth Workshop on Programming Abstractions for Data Locality (PADAL'19), September

2019, Halo-Update Communication Layer for Hybrid Computing, by Mauro Bianco, ETH

Zurich

 PRACE Inter-WP Topical Session “Exascale for European Datacentres”, Design for

Portability of Performance in Halo-Exchanges, by Mauro Bianco, ETH Zurich

https://github.com/NordicHPC/hwcart

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 28 19.04.2021

 LUMI researcher workshop, 31st March, 2020: GHEX: Generic Halo Exchange for

Exascale, by Marcin Krotkiewski, University of Oslo

 Whole Sun Virtual Meeting 2021, GHEX: Generic Exascale-ready library for halo-

exchange operations on various grids/meshes by Mauro Bianco, ETH Zurich

8.4 Outlook for pre-exascale and benchmark projections

From the hardware point of view, we focused on modern CPU and GPU architectures. The

benchmark suite [47] suite enables direct performance evaluation of pure halo-exchange operations

for a 3-dimensional cartesian grid. It features different backends (pure MPI, gridtools::gcl, and

ghex), which allow comparison to different halo-exchange libraries. The number of halo points,

the number of fields, as well as the number of threads per rank are some of the inputs we can vary.

This benchmark suite was instrumental in evaluating different exchange strategies presented in this

section.

In systems based on AMD processors, the cores share memory resources on multiple levels (L3

cache, NUMA-node, socket). To optimise performance on such systems we developed a memory

domain aware Cartesian communicator for MPI (HWCART), which allows the user to fine-tune

the rank placement. In Figure 15 below we show the impact of HWCART and GHEX on

performance and scalability on Betzy, a system with 1300+ dual-socket compute nodes with AMD

EPYC 7742 and connected with HDR100 InfiniBand.

Figure 15: Comparison of halo exchange on Cartesian grids, with GHEX and HWCART, and simple MPI

implementation on 65536 cores. 1 data field and 5 halo lines. GHEX with HWCART gives 2x improvements in

execution times (the baseline is 27 compute nodes)

On GPU architectures, we focused on the one hand on efficiently gathering the data to be

exchanged in specialised kernels, and on the other hand on using GPU-aware MPI

https://github.com/GridTools/ghexbench

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 29 19.04.2021

implementations or the UCX transport layer, which are actively developed by GPU vendors,

making both NVIDIA and AMD GPUs supported.

Figure 16 shows results for GPU runs for unstructured grids, with 100 structured added, which is

a typical number in weather/climate applications.

Figure 16: Left: per-node bandwidth on Piz Daint GPU partition, 1 rank per node, exchanging one single field on

GPU using unstructured mesh. Right: exchange times on Piz Daint, GPU partition, GHEX halo exchange is

compared with Atlas built-in halo exchange.

From these preliminary results, we are confident on the scalability of GHEX on pre-exascale

computers, especially the one provided by the LUMI consortium. Future benchmarking plans will

include more extensive investigations of application codes, and additional transport layers, like the

libfabric API which will be well supported by future HPE-CRAY computers.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 30 19.04.2021

9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and
library support for the discovery of new physics

9.1 Introduction and summary

Figure 17: Important algorithmic steps in the Krylov accelerated multigrid solver developed in the LyNcs project

The project, Linear Algebra, Krylov-subspace methods, and multigrid solvers for the discovery of

New Physics (LyNcs), is addressing challenges for iterative solvers with large sparse matrices

which are arising on modern and upcoming architectures due to massive parallelisation. LyNcs is

targeting efficient solutions for linear systems based on large sparse matrices by pooling together

software development efforts across Europe. LyNcs will provide the European communities with

the next generation of parallel libraries for solving sparse linear systems at the exascale. The project

is led by the Computation-based Science and Technology Research Centre (CaSToRC) of The

Cyprus Institute, which joins forces with partners from the French Institute for Research in

Computer Science and Automation (INRIA) and the Leibniz Supercomputing Centre (LRZ).

Part of LyNcs is the development of an API that is targeting massive parallel machines to perform

advanced task management with shared memory among huge parallel partitions. This LyNcs API

together with implementing cutting-edge sparse linear solver algorithms, the development of novel

block Krylov solvers and optimisation of existing parallel codes will enable community software

to efficiently use the up-coming pre-exa and exascale machines. The software improvements target

all levels of the scientific application software stack, from the basic Sparse BLAS library to fully-

fledged simulation codes. Namely, LyNcs is targeting the Fast-Accurate Block Linear Krylov

Solver (Fabulous), the Lattice QCD community solver library DDalphaAMG and at the lowest

level the efficient sparse matrix support software Librsb.

9.2 Production software release

LyNcs is targeting software which spans all levels of the scientific software stack to ensure

readiness for the up-coming massively parallel pre-exascale and exascale systems. Part of the

developed software are:

 LyNcs -API: [48]

https://github.com/Lyncs-API

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 31 19.04.2021

 DDalphaAMG: [49]

 Librsb: [50]

 PyRSB: [51]

 GNU Octave “sparsersb” [52]

 Fabulous: [53]

LyNcs-API: The LyNcs API, written in python, is available on GitHub under the organisation [54]

and published under a BSD 3-Clause license. Within the last year major changes towards a first

version are made based on separation of concerns creating a modular infrastructure of all LyNcs-

API packages. Within this structure dedicated modules are created for general purpose [55], [56],

[57], [58], [59] and for interfaces to lattice QCD libraries [60], [61], [62], [63] and a tool for

optimisation and cross-checks of calculations [64]. Using the GitHub CI/CD capability new

commits and merges are constantly checked to ensure coverage and usability of the package. To

ensure a user friendly environment and visibility the source code is well documented and a user

guide is at the moment given in the various readme of the packages. The task management of the

API is based on the Dask package [65], which enables simple memory shared task management

especially designed for large allocations for the next generation of High Performance Computing

Systems. The LyNcs API is recently adapted by the Extended Twisted Mass Collaboration as the

backend driver for porting the major Simulation code to GPUs. This guarantees the software

support of LyNcs-API beyond PRACE-6IP.

Fabulous: Fabulous implements Block Krylov solver methods, is written in C++ and its

development is ongoing. Within LyNcs new capabilities enabling flexible preconditioner are

enabled though the implementation of the block GCR with inexact breakdown detection. The

implementation of a novel Block Krylov solver, a flexible Block GCRO technique with deflation

at restart and inexact breakdown detection has been achieved. This latter feature enables the

detection of the convergence of some right-hand sides (or linear combination of right-hand sides)

and automatically reduces the block size to reduce the computational effort. In addition, this solver

allows to recycle spectral information between sequences of multiple right-hand-sides making it

well suited for the coarse grid solve of a multigrid context. Integration of Fabulous in Maphys++

(Maphys’ redesign using modern C++ genericity) is ongoing and will allow greater flexibility for

the user and for software interconnection. Fabulous is distributed under CeCill license and available

at the Inria gitlab [66], it should be noted that the GitLab page for Inria linear algebra software

packages (Chameleon, Fabulous, Maphys) uses continuous integration, issue tracking, unitary

testing, and complex scenarios testing. Integration is enabled through two high performance

software distributions: spack [67] and guix-hpc [68]. A new release of Fabulous with the novel

capabilities has been made and has been benchmarked using various Blas and sparse Blas,

including librsb, libraries.

DDalphaAMG with multiple right-hand sides: Within LyNcs a new public version of

DDalphaAMG is released, which enables multiple right-hand side together with the optional usage

of advanced Block Krylov solver methods enabled in a linkage of Inria’s solver library Fabulous.

The major change within the development under LyNcs are the vector ordering which enables row

major ordering. This adds flexibility capabilities by having vectorisation during compilation

without explicitly using vector instructions. This guarantees portability without major performance

lost to different CPU architectures, like ARM, Intel or AMD CPUs. The public released version is

https://github.com/sy3394/DDalphaAMG/tree/multirhs
http://librsb.sourceforge.net/
https://github.com/michelemartone/pyrsb
https://octave.sourceforge.io/sparsersb/
https://gitlab.inria.fr/solverstack/fabulous
https://github.com/Lyncs-API
https://github.com/Lyncs-API/lyncs.setuptools
https://github.com/Lyncs-API/lyncs.utils
https://github.com/Lyncs-API/lyncs.cppyy
https://github.com/Lyncs-API/lyncs.mpi
https://github.com/Lyncs-API/lyncs.io
https://github.com/Lyncs-API/lyncs.clime
https://github.com/Lyncs-API/lyncs.DDalphaAMG
https://github.com/Lyncs-API/lyncs.tmLQCD
https://github.com/Lyncs-API/lyncs.quda
https://github.com/Lyncs-API/tuneit
https://dask.org/
http://gitlab.inria.fr/
https://gitlab.inria.fr/solverstack/spack-repo
https://guix-hpc.bordeaux.inria.fr/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 32 19.04.2021

available under GitHub [69] and is successfully tested on various systems, like SuperMUC-NG,

Hawk and Frontera and the ARM prototype system BSC-CTR.

Librsb: The librsb library [50] is a complete Sparse BLAS for shared memory parallel computers.

Its first public release dates to 2013. Originally it consisted of C99 and OpenMP, and has bindings

in several languages. Is licensed under LGPLv3. Since the start of the LyNcs project, librsb has

been developed further and regularly updated (with release tarballs on [70]). The recent updates

have fixed many minor bugs and improved the documentation. The primary pillar of this activity

has been a consistent expansion of the internal test suite. This has allowed reaching a very high

coverage test rate: >90% code lines and >98% of functions. A good fraction of the bugs has been

identified thanks to the aggressive coverage testing expansion. Other bugs have been identified

after community reports (e.g. see [71] or [72]). The Python interface [73] has been brought to a

production level (Linux binaries installable via [74]). The GNU Octave access layer [75] has been

updated regularly. Thanks to the Debian and Cygwin volunteer community, Linux and Cygwin

users can benefit from using pre-compiled binaries after each librsb and sparsersb release. Since

2020, librsb has been included in the "Spack" HPC software distribution [76], as well as GUIX-

HPC [77]. The recent development activity in librsb has been in creating templated C++ kernels

for multiplying sparse matrices by multiple right-hand-sides (SpMM). These changes are totally

internal to librsb and benefit transparently any code using it, including the most recent Maphys,

adapted by the Inria partners to use librsb. Preliminary benchmarks on SuperMUC-NG and AMD

EPYC Rome 7742 reveal performance competitive or exceeding that of Intel MKL on large

matrices by Inria and CaSToRC.

9.3 Community outreach and integration

Opportunities for outreach identified by the LyNcs partners include international and national

community conferences, PRACE, EuroHPC JU, EuroCC and other dissemination events. Although

most of the conferences were cancelled due to the pandemic, we could participate and engage with

the community in various online events, which we will outline within this section.

LyNcs activities were disseminated through PRACE-6IP activities such as the WP8 virtual F2F in

September 2020 and the virtual PRACE Inter WP meeting in October 2020. In addition, our

activities were part of a poster presented at the EuroHPC Summit Week in March 2021, and Shuhei

Yamamoto had the opportunity to contribute an invited virtual Seminar talk at Riken, Kobe in

September 2020 and at the major community conference APLAT2020 on his work on multiple

right-hand sides in DDalphaAMG. The community outreach to one of the major lattice QCD

collaborations, Extended Twisted Mass Collaboration (ETMC), by Simone Bacchio resulted in the

adaptation of the LyNcs-API as the backend for the new simulation code of the collaboration

dedicated for GPU machines. This is a major success, not only for the LyNcs project but also for

PRACE-6IP, since adoption of the API by a major European collaboration is a substantial step in

ensuring sustainability of our efforts and allows for future extensions of the project.

In the current state, integration between the different software tasks and packages is complete.

Those that are beyond prototype status have also been made part of the software releases. This

includes the integration of the community software package tmLQCD, DDalphaAMG, QUDA, and

c-lime within the LyNcs-API and integration of Fabulous with the DDalphaAMG-multi rhs. While

the ETMC transitions to the LyNcs API, the integration of tmLQCD will help support testing and

the CI/CD activities thus allowing tmLQCD to be maintained as a legacy code. All interfaces of

the different software libraries are updated and in a ready-to-use stage. This includes Fabulous,

https://github.com/sy3394/DDalphaAMG
http://librsb.sourceforge.net/
https://sourceforge.net/projects/librsb/files/
https://savannah.gnu.org/search/?words=sparsersb&type_of_search=bugs&Search=Search&exact=1#options
https://bugs.debian.org/cgi-bin/pkgreport.cgi?package=librsb-dev
https://github.com/michelemartone/pyrsb
https://pypi.org/project/pyrsb/
https://octave.sourceforge.io/sparsersb/
https://spack.readthedocs.io/en/latest/package_list.html#librsb
https://gitlab.inria.fr/guix-hpc/guix-hpc/-/blob/master/lrz/librsb.scm

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 33 19.04.2021

with the new parameters for the newly available IB-BGCRO-DR solver, DDalphaAMG-multi-rhs,

which can now be called with or without Fabulous, and various interfaces for librsb, such as the

python-linkage PyRSB.

9.4 Outlook for pre-exascale and benchmark projections

Algorithm and software development within the LyNcs project are linked to four different tasks,

and the separation of concerns within our software packages and tasks gives us the opportunity to

flexibly adapt to new, unforeseen, trends, such as for example enabling HIP-support within the

solver library QUDA to target the pre-exascale machine LUMI at CSC Finland.

While originally intended as a linkage to solver libraries, namely fabulous, DDalphaAMG and

QUDA, to provide a common interface for community simulation codes, the API now enables task

parallelism via Dask and is using community simulation codes for CI/CD. This community code

linkage, formerly designed to be from the community codes to the API, is providing a platform for

solid software developments using cross-checking and enabling a novel, flexible python API,

which will enable exascale simulations. The redefinition proved very timely, since the API will

become the backend for the future community simulation code of the Extended Twisted Mass

Collaboration (ETMC). Within this effort, the existing linkage to the simulation code tmLQCD

and the GPU solver package QUDA is essential. The usage by ETMC will guarantee software

support for the API beyond PRACE-6IP WP8. This also shows that community software support

is and was needed outside of the European CoE structure and shows the impact of PRACE-6IP

WP8 for the European community.

Towards D8.5 within PRACE-6IP, we will benchmark the developed software codes on various

architectures and PRACE Tier 0 machines. This will include:

 Strong scaling runs of DDalphaAMG on Frontera, TACC and SuperMUC-NG, LRZ

 Performance evaluation of librsb on BEAST, LRZ and SuperMUC-NG, LRZ

 Performance and Capability runs of LyNcs-API on JUWELS Booster, JSC

 Performance evaluation of HIP ports at CSC-Frankfurt and CSC-Finland

 Performance evaluation of Block-Krylov solvers with DDalphaAMG

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 34 19.04.2021

10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale
Computers

10.1 Introduction and summary

One of the key capabilities required for CFD codes to take advantage of leading-edge computing

resources is the automation of the mesh generation and adaptation processes. Manual mesh

generation and tuning is not conceivable in an exascale simulation workflow. Adaptive Mesh

Refinement (AMR) eliminates those bottlenecks providing higher efficiency and robustness to the

codes. ParSec brings together well-known CFD practitioners with the aim of sharing best practices,

and collaboratively modernise the AMR implementation of three leading-edge CFD community

codes. The partners involved in the project are the Barcelona Supercomputing Center, the KTH

Royal Institute of Technology and together Cenaero and Université de Liège. The community

codes brought to the project by these institutions are: Nek5000, the scalable high-order solver for

computational fluid dynamics from KTH/UIUC, Alya, the high performance computational

mechanics solver from BSC, and Argo, the high order multiphysics solver from Cenaero. These

three CFD solvers cover the main approaches for the solution of PDEs using both structured and

unstructured meshes: finite element, finite volume, and spectral elements. Beyond the AMR-

enabled legacy codes, a number of open-source libraries providing mesh functionalities are

included into the project, namely: MAdLib, that includes all mesh functionalities of Argo, Gmsh,

a finite element mesh generator with a large community of users, and GeMPa including all the

geometric mesh partitioning tools included into Alya.

Figure 18: Iterative mesh adaptation, governed by a hypersonic flow facing a cylinder generated with Madlib.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 35 19.04.2021

10.2 Production software release

Nek5000 AMR and GPU implementations are developed in a private git repository. However,

KTH is in contact with Nek5000 developers at Argonne National Laboratory and coordinate their

private repository with the main repository. In this case their OpenACC GPU code is an extension

of the existing branch at [78]. KTH plans as well to add their AMR branch to the main code v21

release, which should appear this year.

The mesh adaptation library MAdLib now includes high-order anisotropic solution-based mesh

adaptation features, as well as a new C-compatible interface. The latter will be present in the official

release (2.2.0) of MAdLib, whereas the anisotropic mesh adaptation will come with the next release

(2.3.0). Both functionalities are included in the development version of MAdLib, which can be

downloaded from [79]. The latest stable release of the mesh generation library Gmsh (4.8.1) [80]

now includes a new 3D multi-threaded meshing kernel that can handle non-manifold geometries

and arbitrary sized isotropic fields, available either as a standalone application or through its C,

C++, Python and Julia API.

Alya [81] now includes AMR capability for general unstructured finite element meshes. It has

required major restructuring of the code to support dynamic meshes and the parallelisation has been

based on an interface freezing approach. The remeshing part is supported by Gmsh which has been

integrated into Alya. Moreover, the mesh partitioning functionalities have been released into the

stand-alone library GeMPa [82]. This library supports parallel mesh partitioning based on space-

filling curves.

10.3 Community outreach and integration

For Nek5000 both the AMR and GPU implementations are in the development phase, however,

they have already been shared with external users, e.g. within the framework of the EXCELLERAT

EU project. Another example is a collaboration with CINECA (Italy), where both implementations

are tested and developed. The result of this is a simulation of a simplified rotor, shown in Figure

19 below, which is a test run before a real drone rotor would be modelled.

https://github.com/Nek5000/Nek5000
https://svn.cenaero.be/MAdLib/trunk
https://gitlab.onelab.info/gmsh/gmsh
https://gitlab.com/bsc-alya/projects/alya-ueabs
https://gitlab.com/rickbp/gempa

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 36 19.04.2021

Figure 19: Vortical structure of the flow around a simplified rotor obtained with the AMR branch of Nek5000

A new pure C language API has been added into MAdLib so that it can be easily interfaced to other

software apart from Argo. It is now about to be linked with Alya, which would take advantage of

its sequential anisotropic mesh adaptation features. The partitioning work would be let to Alya

itself. The integration of the Gmsh C API in Alya is completed and is under testing. An initial

integration of the Gmsh C++ API in MAdLib is under way. Moreover, Gmsh has an outstanding

community of users (~5000) that benefit from the developments carried out in ParSec.

Finally, Alya is part of the software hub of various Centres of Excellence (EXCELLERAT, CoEC,

EoCoE, CombioMed, Raise), the use cases of those CoEs are directly benefiting from the AMR

capabilities developed within ParSec. GeMPa will be integrated in the community codes of ParSec

in the last phase of the project.

10.4 Outlook for pre-exascale and benchmark projections

There are two main aspects of the Nek5000 development within ParSec: enhancement of the

Adaptive Mesh Refinement algorithm and improved parallel performance on the heterogeneous

architectures. In the second case we focus on the OpenACC/OpenMP based GPU implementation,

which was currently tested on 1500 GPUs. Although the mortar elements or p-refinement strategies

have not been considered yet, the AMR implementation has been significantly enhanced making it

a robust tool for performing simulations relevant for industry. This has been achieved by

reimplementation and modularisation of the code, exploring different partitioning libraries,

improving pressure preconditioning and investigating various strategies for generating high-order

hex-based meshes. Regarding heterogeneous architectures, the work has focused on the GPU-

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 37 19.04.2021

version of Nek5000 relying on an OpenACC/CUDA framework, which is currently being upgraded

to an OpenMP/HIP framework. Its performance on JUWELS Booster system for the turbulent pipe

case (conformal mesh) on NVIDIA /AMD architecture is shown in Figure 20 below, indicating

scaling up to 512 GPUs with good efficiency.

Figure 20: Strong scaling of a turbulent pipe case on JUWELS Booster system. Results for CPU and GPU are

presented. A single node corresponds to 4 A100 GPUs or to 48 EPYC CPU cores. A mesh consists of 823632

elements with polynomial order 10.

MAdLib has two distinct features: i) its data structures for distributed mesh management that have

been implemented and demonstrated through their use in large-scale, fixed-mesh computations

with Argo, and ii) its mesh adaptation algorithms that currently work only sequentially. Our current

effort consists in implementing a parallel mesh adaptation strategy that combines these two

ingredients, including a load-balancing step between partitions that have been independently

adapted, in order to obtain a scalable adaptation procedure.

Concerning Gmsh, most of the efforts in the next months will be focused on performance testing

and on the continuing integration with MAdLib. Finally, regarding Alya, the first goal of ParSec

has been achieved by completing and validating the overall AMR workflow. At this point the focus

is set on the optimisation of the code to run on (pre)exascale supercomputers. The initial focus of

the optimisation has been the 3D interpolation models for the migration of the solution between

consecutive meshes. Regarding the mesh partitioning tools of Alya, those have been used on

production runs for meshes of several billions of elements, those results will be now reproduced

with the recently released stand-alone library GeMPa.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 38 19.04.2021

11 QuantEx: Efficient Quantum Circuit Simulation on Exascale
Systems

11.1 Introduction and summary

The QuantEx project aims to develop a scalable, extensible framework for quantum circuit

simulation on large distributed clusters using tensor network methods. These methods provide a

complementary approach to quantum circuit simulation which can enable the simulation of circuits

with more qubits than is possible with full wave-function simulators. This approach is particularly

effective for low depth quantum circuits which makes them very relevant for the simulation of

NISQ inspired circuits.

Figure 21 below shows a cartoon of their expected area of applicability compared to full wave-

function simulation methods. Depth in the figure below refers to circuit depth (related to

entanglement in the circuit). It should be noted that there is a trade-off that for fewer qubits full

wave-functions simulations will be more performant. For larger numbers of qubits, full wave-

functions simulation is no longer possible due to memory requirements, and tensor network

simulators can work well in this regime but only up to a certain circuit depth

Figure 21: Expected area of applicability of simulation methods

Julialang has been chosen as the primary language for this project. This is because it provides a

good balance between productivity and performance, has many useful packages in its ecosystem

to aid development and offers the ability to easily tie together packages and tools written in other

languages.

11.2 Production software release

The public software release consists of five Julia packages which together provide an extensible

framework for performing quantum circuit simulations on large distributed memory clusters. These

packages can be found on GitHub under the JuliaQX organisation at [83] and are also registered as

Julia packages making them easily accessible. Each package features comprehensive unit tests and

automatically generated documentation which make use of CI features of GitHub. The container

diagram in Figure 22 shows how the packages work together to provide a simulation workflow for

quantum circuits. A short description of each of the packages follows below.

https://github.com/JuliaQX

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 39 19.04.2021

Figure 22: Overview of how the packages work together to provide a simulation workflow for quantum circuits

QXZoo: Provides data structures and functions for representing and generating quantum circuits.

QXTns: This package provides data structures and utilities for manipulating tensor networks with

particular features for tensor networks derived from quantum circuits. It includes the ability to

automatically identify and track hyper-indices of tensors which can lead to significant performance

improvements.

QXGraphDecompositions: This package provides data structures and functions for analysing and

manipulating graph representations of tensor networks. In particular, it provides functions for

finding efficient tree decompositions and for identifying sets of indices which when sliced can

reduce the tree width of the selected tree decomposition. This makes it possible to distribute

computations across multiple processes/nodes.

QXContexts: This package implements runtime contexts for performing the tensor contraction

computations. The MPI wrapper MPI.jl is used to distribute computations and GPU support is

provided by JuliaGPU packages (yet to be integrated into final software release).

QXSim: This package ties together the other packages to provide a consistent quantum circuit

simulation workflow which consists of the following steps:

1. Circuits are built and represented as QXZoo circuits.

2. The QXZoo circuit is converted to a QXTns tensor network.

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 40 19.04.2021

3. This network is converted to a graph data structure provided by QXGraphDecompositions

and a suitable tree decomposition and set of edges to slice are identified.

4. Using the tree decomposition and set of edges to slice a DSL representation of the

computation is generated. This is then used as input to QXContexts to perform the

computation using the context and settings that make the best use of the available resources.

11.3 Community outreach and integration

During the initial project planning phase and at various stages throughout the project there has been

engagement with project stakeholders and potential users. This has been in the form of online

meetings and workshops where design plans and prototypes were presented and stakeholders gave

their feedback and recommendations.

To coincide with the full public software release, a number of outreach activities are planned to

promote the project and reach out to potential users. These plans include stories on the ICHEC,

LRZ and PRACE websites and social media channels as well as a series of workshops to introduce

interested users to the tools that have been developed. In addition to this we have submitted

proposals to give presentations and posters at Juliacon and ISC.

A containerised version of the software workflow was demonstrated in a cloud based HPC cluster

at the Supercomputing 2020 (SC’20) tutorial “Practical OpenHPC: Cluster Management, HPC

Applications, Containers and Cloud” [84]. At FOSDEM 2021 HPC container presentation,

“Deploying Containerized Applications on Secure Large Scale HPC Production Systems” [85], the

QuantEx software workflow was presented as an important use case for containerised workflows

on traditional HPC systems.

As well as engaging with potential users, efforts are ongoing to identify suitable opportunities to

integrate the developed tools into commonly used quantum circuit simulation frameworks. Two

particular directions the QuantEx team are exploring are the possibility of integrating QuantEx as

a backend for the Yao.jl [86] and tequila [87] ecosystems with the hope of enabling these

frameworks to be used with pre-exascale and exascale HPC clusters.

11.4 Outlook for pre-exascale and benchmark projections

To successfully scale to use large exascale clusters requires the ability to decompose the problem

at multiple levels. For contracting tensor networks derived from quantum circuits there are multiple

levels of parallelism that can be used. This means that in theory these methods should be capable

of scaling to match the available resources. In reality it is difficult to tune each level to achieve

good overall performance. The levels that will be used by the QuantEx framework are:

1. At the highest level it is possible to compute the amplitudes for different sets of bit-strings

independently on different subsets of nodes

2. The next level is to decompose over the partitions corresponding to different combinations

of values on sliced bonds. These can be performed independently and only require a

summation over the resulting scalars

3. For the individual contraction operations, it is possible to make use of CPU and GPU

threads as well as vectorised operations to extract the maximum performance from the

https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html
https://fosdem.org/2021/schedule/event/containerized_hpc/
https://github.com/QuantumBFS/Yao.jl
https://github.com/aspuru-guzik-group/tequila

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 41 19.04.2021

underlying hardware. Optimising for memory layout and minimising memory allocation

are key considerations here

While these levels of parallelism are used in the current implementation, significant effort is still

required to profile and optimise the current implementation and improve performance on the target

architectures. Work that is ongoing to characterise and improve performance include:

 Testing and performance characterisation across target architectures. This has included

Intel Xeon, AMD and ARM CPUs and NVIDIA V100 GPUs to date

 Instrumentation of developed tools with the LIKWID [86] profiling tool to enable the

collection of performance diagnostics

 Investigation and comparison of threading performance and use of vectorisation when using

Intel-MKL and OpenBLAS libraries

 Containerisation of workflows and its effects on performance

Pilot access to additional HPC systems with more nodes and including newer NVIDIA and AMD

GPUs is planned in future.

One of the potential issues faced by the developers of modern non-traditional HPC workflows

developed using “high productivity” languages such as Julia is the deployment of their workflows

on much more restrictive HPC systems. The difference in these development philosophies often

results in the transition from the developer environment to the HPC system being extremely

complicated and requiring a lot of time and effort by the developers and HPC centres to build and

maintain the software workflows.

To enable scientists to take advantage of the massive amount of compute resources available on

large HPC systems we need to find a mechanism that enables them to deploy their workflows and

software in a way that is simple and does not require a lot of modification to their code and

workflow, but also respects the existing HPC system environment, workflows and security policies.

To achieve this, we employ the use of HPC containers.

https://hpc.fau.de/research/tools/likwid/

D8.4 Interim progress report: Public Software release and integration in external codes

PRACE-6IP- INFRAEDI-823767 42 19.04.2021

12 Conclusions

In this deliverable, we report on the status of the ten projects running under the WP8 of PRACE-

6IP. Eight of these ten projects started their work from the start of the PRACE-6IP, while the two

remaining started only in January 2020, after a second call. These projects have all reached the

stage in which quality software could be made available for users, either as standalone apps and

libraries, or merged upstream. The projects have a public repository and a development

infrastructure that is at a high level (i.e. continuous integration, issue tracking, integrated

documentation, etc.). The projects have documented their outreach to their user communities and

stakeholders, including several actors in the European landscape such as CoEs and EuroCC. No

critical issues in the management of these projects emerged so far, as it also appears from the results

reported here. Only a few projects had some staffing issues, with staff joining later than expected

or leaving. The COVID-19 pandemic did have some impact, for example hiring people from

abroad, or having in person meetings and hackathons, but generally, this impact has been well

mitigated. One external factor that will impact the final phase of these projects is the later than

expected installation and operation of the EuroHPC pre-exascale infrastructure. Whereas several

codes have made efforts to support the planned architectures, for example by providing both

NVIDIA and AMD GPU support, information is missing at this point on the 3rd system, and actual

benchmark results need to be delayed till after the originally planned end of the projects of WP8

(Oct 2021).

