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(CaSToRC), The Cyprus Institute, Cyprus 

CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia 

CEA Commissariat à l’Energie Atomique et aux Energies Alternatives, France 

(3rd Party to GENCI) 

CENAERO Centre de Recherche en Aéronautique ASBL, Belgium (3rd Party to 

UANTWERPEN) 

CESGA Fundacion Publica Gallega Centro Tecnológico de Supercomputación de 

Galicia, Spain, (3rd Party to BSC) 

CINECA CINECA Consorzio Interuniversitario, Italy 

CINES Centre Informatique National de l’Enseignement Supérieur, France (3 rd 

Party to GENCI) 

CNRS Centre National de la Recherche Scientifique, France (3 rd Party to GENCI) 

CSC CSC Scientific Computing Ltd., Finland 

CSIC Spanish Council for Scientific Research (3rd Party to BSC) 

CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd Party to 

PNSC) 

DTU Technical University of Denmark (3rd Party of UCPH) 

EPCC EPCC at The University of Edinburgh, UK  

EUDAT EUDAT OY 

ETH Zurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland 

GCS Gauss Centre for Supercomputing e.V., Germany 

GÉANT GÉANT Vereniging 

GENCI Grand Equipement National de Calcul Intensif, France 

GRNET National Infrastructures for Research and Technology, Greece 

ICREA Catalan Institution for Research and Advanced Studies (3rd Party to BSC) 

INRIA Institut National de Recherche en Informatique et Automatique, France (3rd 

Party to GENCI) 

IST-ID Instituto Superior Técnico for Research and Development, Portugal (3rd 

Party to UC-LCA) 

IT4I Vysoka Skola Banska - Technicka Univerzita Ostrava, Czech Republic 

IUCC Machba - Inter University Computation Centre, Israel 

JUELICH Forschungszentrum Jülich GmbH, Germany 
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KIFÜ (NIIFI)  Governmental Information Technology Development Agency, Hungary 

KTH Royal Institute of Technology, Sweden (3rd Party to SNIC-UU) 

KULEUVEN Katholieke Universiteit Leuven, Belgium (3rd Party to UANTWERPEN) 

LiU Linkoping University, Sweden (3rd Party to SNIC-UU) 

MPCDF Max Planck Gesellschaft zur Förderung der Wissenschaften e.V., Germany 

(3rd Party to GCS) 

NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS, 

Bulgaria 

NTNU The Norwegian University of Science and Technology, Norway (3rd Party 

to SIGMA2) 

NUI-Galway National University of Ireland Galway, Ireland 

PRACE Partnership for Advanced Computing in Europe aisbl, Belgium 

PSNC Poznan Supercomputing and Networking Center, Poland 

SDU University of Southern Denmark (3rd Party to UCPH) 

SIGMA2 UNINETT Sigma2 AS, Norway 

SNIC-UU Uppsala Universitet, Sweden 

STFC  Science and Technology Facilities Council, UK (3rd Party to UEDIN) 

SURF SURF is the collaborative organisation for ICT in Dutch education and 

research 

TASK Politechnika Gdańska (3rd Party to PNSC) 

TU Wien Technische Universität Wien, Austria 

UANTWERPEN Universiteit Antwerpen, Belgium 

UC-LCA Universidade de Coimbra, Labotatório de Computação Avançada, Portugal 

UCPH Københavns Universitet, Denmark 

UEDIN The University of Edinburgh 

UHEM Istanbul Technical University, Ayazaga Campus, Turkey 

UIBK Universität Innsbruck, Austria (3rd Party to TU Wien) 

UiO University of Oslo, Norway (3rd Party to SIGMA2) 

UL UNIVERZA V LJUBLJANI, Slovenia 

ULIEGE Université de Liège; Belgium (3rd Party to UANTWERPEN) 

U Luxembourg University of Luxembourg 

UM Universidade do Minho, Portugal, (3rd Party to UC-LCA) 

UmU Umea University, Sweden (3rd Party to SNIC-UU) 

UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA) 

UnivPorto Universidade do Porto, Portugal (3rd Party to UC-LCA) 
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UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC) 

USTUTT-HLRS Universitaet Stuttgart – HLRS, Germany (3rd Party to GCS) 

WCSS Politechnika Wroclawska, Poland (3rd Party to PNSC) 
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Executive Summary 

 

Work Package 8 of PRACE-6IP successfully runs ten projects developing forward-looking 

software solutions. Eight of these projects started in April 2019, whilst two projects started in 

January 2020, after selection in a second call for proposals. This deliverable reports on the public 

release of production quality software by all projects. This deliverable follows-up on the earlier 

deliverable D8.3, which documented the prototype releases, their availability on GitHub and 

similar services, and information on the use of a modern development infrastructure, including 

version control, automated continuous integration (CI), and standard documentation formats. This 

deliverable furthermore describes the outreach the projects have done, how they interacted with 

European actors such as CoEs and EuroCC, and how they have integrated their efforts in 

community codes, providing availability of these results to users of HPC infrastructure. Each of 

the projects reports an outlook for pre-exascale and projections of benchmark performance. 

Additional developments and results require the availability of the node architectures of the 

European pre-exascale systems themselves and are planned for the remaining period. All projects 

have made good progress towards or exceeded the project goals so far, and some impressive results 

have been delivered. The second phase of this Work Package can be considered successful. 
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1 Introduction 

Work Package 8 (WP8) of PRACE-6IP focuses on ‘Forward-looking Software Solutions’ and has 

the objective to deliver high quality, transversal software that addresses the challenge posed by the 

rapidly changing HPC pre-exascale landscape. These challenges include the diversity of hardware 

and software complexity. It will advance strategic and long-term projects, allowing for disruptive 

approaches to modernise HPC software. The main outcome is open source software in the form of 

libraries or significantly refactored codes. All of the projects aim to provide software solutions that 

enable the use of modern HPC systems, such as the planned EuroHPC pre-exascale systems. 

The ten projects within WP8 have been selected based on competitive, peer reviewed calls, as 

reported on in deliverables D8.1 and D8.2. This includes eight projects funded from the start of 

PRACE-6IP, and two projects funded via a second call, with a starting date of January 2020. These 

projects cover a wide range of scientific domains, from fundamental topics such as tasking 

runtimes, halo-exchange libraries, to mathematical libraries including sparse and dense linear 

algebra, to application domain related software targeted at science and engineering like plasma 

physics, biophysics, finite elements, and fluid dynamics, or emerging domains such as quantum 

computing.  

The ten projects work independently, following their roadmaps as presented in the project 

proposals. In an earlier deliverable D8.3, a report on a public prototype release of the software, as 

well as an update on the development infrastructure used was provided. This early release helped 

to ensure that software sustainability is taken in serious consideration, using industry standard 

tools, issue tracking, continuous integration, validation and verification, documentation, etc. This 

deliverable D8.4 goes one step further and documents a next stage, namely production-quality 

software release, with the aim of bringing this software into the hands of users for the European 

HPC infrastructure. It provides information on availability, and performance of the software, and 

the outreach that has been performed by the projects. Highlights of the results obtained include the 

QuantEx project that enables distributed quantum circuit simulation on HPC systems, the exascale 

enabling of the whole software stack required for sparse linear solvers in the LyNcs project, the 

demonstrated portability and performance of a library for halo exchanges on different architectures 

and grids (GHEX), the higher efficiency of the EPOCH code at high core numbers, and iterative 

eigensolvers with a performance exceeding that of the industry standard. Several more results are 

described in detail in the sections below. This document is structured per project, providing a brief 

introduction for each of them, a description of the production-quality releases made, a section on 

community outreach and integration, and an outlook for (pre-)exascale and benchmark projections. 
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2 PiCKeX- Particle Kinetic codes for Exascale plasma simulation 

2.1 Introduction and summary 

 

 

Figure 1: Compact laser-plasma particle and x-ray sources 

 

Particle in Cell (PIC) codes have become one of the main tools for many areas in plasma physics, 

for example for modelling particle acceleration with high-power lasers, or to understand detailed 

dynamics and transport processes near the edge, the so called scrape-off layer (SOL) of magnetised 

plasma confinement vessels. The PicKeX project focuses on two important community codes: 

EPOCH, a fully relativistic, electromagnetic model and BIT1/OOPD1, a sophisticated 

PIC/Monte-Carlo model. 

For both codes the project has enabled substantial refactoring work to be performed which would 

have been difficult to realise for a conventional research team utilising the code for scientific 

investigation. As a result, enhanced versions of both codes are now publicly available for rigorous 

testing by user groups. In particular, this includes OOPD1, a new GPU version of BIT1. The new 

version of EPOCH incorporates a significantly faster moving window algorithm, which is 

extensively used for an important class of problems based on laser-based particle accelerator 

schemes. 

2.2 Production software release 

The PIC codes OOPD1 and BIT1 have complex structures consisting of many interdependent 

sources that also include hard-coded atomic physics (cross-sections, particle collisions, etc.). Both 

use a particle mover and field solver as main algorithms and additionally a Monte Carlo algorithm 

for particle collisions. They share the same roots while OOPD1 is an object-oriented rewrite of 

PD1 from which BIT1 enhanced the physics part. The refactored version of OOPD1 and BIT1 have 

the following changes: 
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 Based on the work done on the prototype SIMPIC code for a full CPU to GPU port, a GPU 

version of the particle mover algorithm of OOPD1 using a global kernel was implemented. 

 The extensive refactoring of OOPD1 for better modularisation (delineating algorithms from 

data) including the GPU particle mover is available under [1] in the ‘feature/refactoring’ 

branch. 

 The refactored BIT1 code builds upon the same ideas as the OOPD1 refactoring under the 

refactoring branch on [2]. The BIT1 code is intended to be a basis for a OOPD1 physics 

upgrade and not a final product and therefore at this stage the BIT1 repository is not public. 

The test environment for OOPD1 and BIT1 codes is based on numerous simulation cases inside 

OOPD1 that can be matched to BIT1 input format with the same physics. Enhanced physics and 

data parts from BIT1 require OOPD1 input update along with upgraded physics refactored from 

BIT1. 

The refactored version of EPOCH contains the following major changes: 

 The moving window code has been changed to be invoked after the window has traversed 

a minimum number of cells instead of for individual, single cells. 

 The MPI communication to exchange the field boundaries has been restructured to reduce 

the number of MPI_SendRecv calls by a factor of 60. 

These two changes together have reduced the overall amount of time spent in the moving window 

by 90%. The refactored version of EPOCH is available as the default branch at [3]. 

The test environment for EPOCH includes a number of test cases in 2D and 3D that have been 

created from community input to represent a number of common use cases of the code. They also 

include pure benchmarking cases to focus on specific aspects. All of those can be run from JUBE. 

The JUBE environment and test cases used for the EPOCH development are available at [4]. 

2.3 Community outreach and integration  

The OOPD1 is an open source PIC/MC code, which is used for plasma tokamak simulations. Since 

we are working directly with the PIC/MC codes, its refactoring and GPU improvement, will 

directly benefit all people who are using these codes. As an example, more than 2 months are 

required for reaching the steady state of the plasma using a CPU version of the codes. With this 

implementation and providing a GPU version of the PIC codes we will reduce the time needed for 

plasma simulations. 

EPOCH is an open source plasma physics simulation code with over 1200 registered users 

worldwide and has been extensively used for high energy density physics (HEDP), LWFA, and 

plasma astrophysics studies. To date it has not yet been extensively used within the PRACE 

framework, but does commonly feature in national Tier1 compute time allocations. The refactored 

version is already being field tested within local projects at FZJ and external users have been 

directly approached to provide feedback. The Warwick developer team is expected to test and 

integrate the enhancements into the production version before the end of the project lifetime. 

https://bitbucket.org/lecad-peg/oopd1/src/
https://bitbucket.org/lecad-peg/bit1/src
https://gitlab.version.fz-juelich.de/SLPP/epoch/epoch-dev
https://gitlab.version.fz-juelich.de/SLPP/epoch/test-cases
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2.4 Outlook for pre-exascale and benchmark projections 

The original proposal foresaw the implementation of a task-based programming model for both 

community codes. For the BIT1 application this has been partially achieved through a StarPU 

version of the reduced physics mini-app SIMPIC (see Section 3.2), which will serve as a template 

for future optimisation of the BIT1 framework. In the PicKeX project however, priority was given 

to creating a GPU-enabled version OOPD1, which has been successfully implemented for the 

computationally intensive particle mover component, and a GPU version of the field solver is 

currently undergoing testing. Currently the BIT1/OOPD1 code is ported to GPU to about 50%. To 

see how fast the code works, a comparison between a CPU OOPD1 code and partly GPU OOPD1 

was done (Figure 2 below). In this benchmark the same test case was used. The OOPD1 which has 

GPU parts is approximately 30% faster than the purely CPU version. By the end of the project a 

complete GPU version of the BIT1/OOPD1 will be made available. 

 

 

Figure 2: OOPD1 CPU and OOPD1 50% GPU comparison with ngrid=10000, dtfactor= 0.001, run for 200 timesteps 

 

Concerning EPOCH, an early strategic decision was made to leave the data structures intact in 

order to maintain compatibility with other development branches and facilitate integration of the 

performance enhancements with the main production version. A rigorous analysis of EPOCH using 

the Score-P toolset [5] allowed two major bottlenecks to be identified: i) the ‘moving window’ 

algorithm, in which the entire grid is rezoned to follow the dynamics of a plasma wake just behind 

a laser pulse; and ii) the particle pusher with its integrated current deposition. Both of these 

components consume a large fraction of the simulation time and represent good candidates for 

improvement. A comparison between the refactored version and current production version shows 

the new version to be 30-40% faster at high core numbers for LWFA studies (see Figure 3), which 

https://www.score-p.org/
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should lead to significant savings in production runs. Further reduction of MPI redundancies and 

full realisation of vectorisation and multi-threading potential should lead to an improvement of 

overall scalability to 104 - 105 cores on currently available Tier-0 machines. 

 

 

Figure 3: Strong scaling comparison between EPOCH refactored version and the latest official version. The 

benchmark used a 2D moving window with 5 million cells and 10 particles/cell 
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3 MoPHA – Modernisation of Plasma Physics Simulation Codes for 
Heterogeneous Exascale Architectures 

3.1 Introduction and summary 

Code modernisation efforts are needed for many scientific software applications to fully benefit 

from the upcoming heterogeneous exascale systems. This is true also for plasma simulation codes, 

such as ELMFIRE, GENE, and Vlasiator. Task-based parallelism potentially offers better 

scalability and portability than traditional approaches by abstracting hardware-specific 

optimisations away from the scientific algorithms. Some frameworks, such as StarPU or AMReX, 

even offer a relatively easy way to achieve both task-based parallelism and support for GPUs. 

In the MoPHA project, we have explored task-based parallelism for plasma simulations and tested 

ways to add support for GPUs or other accelerators to plasma simulation codes. The aim has been 

to pave the way for the plasma simulations codes to be ready for the upcoming pre-exascale 

systems. 

 

 

Figure 4: Turbulent flow in a fusion plasma simulation 

 

3.2 Production software release 

In the MoPHA project we have developed a number of different codes, some of which are hosted 

in their own repositories, but the main site for publishing prototype mini-apps and documentation 

related to the project is on GitHub [6] 

GENE: Experimental GENE version with partial support for task-based parallelism with StarPU. 

The main goal to achieve in this code version is the taskification of the computationally intensive 

parts, such as the right-hand side in the Vlasov equations and the solution of the fields, with StarPU. 

At this point, we provide an implementation that computes the right-hand side of a time step where 

we partially exploit the inherent task-based parallelism of the application using StarPU for a 

specific test scenario. The computation of a time step consists of 4 stages of a Runge-Kutta method 

https://github.com/MoPHA/
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and in each stage several terms of the right-hand side are computed. The individual terms are 

computed through a cache-optimised block loop and were taskified so that the execution of these 

individual tasks can overlap, provided that the data dependencies allow it. Additional parallelism 

was added in the calculation by grouping terms and using local buffers which are sum reduced at 

the end of the computation to form the actual RHS. In an earlier version, the execution of the tasks 

was done only on the CPU (on a single node, one MPI rank per node). In the current version, it is 

possible to compute some of the terms on the GPU thanks to the integration, refactoring and code 

reuse from the GENE's GPU branch. GENE can be accessed via [7] 

VLASIATOR: Experimental Vlasiator version with partial support for GPUs using OpenACC 

directives. Implemented a set of the main computational algorithms for offloading to the GPUs 

using a directive based approach, focusing on the semiLag solver in the velocity space acceleration 

update. 

Initial results are promising, but further improvements are needed to optimise data movement 

between host and device memory. For this purpose, two improved prototype versions were 

developed for comparison, one based on managed memory to alleviate the concerns with the data 

transfers and one based on a tasks concept, where each OpenMP thread creates an asynchronous 

queue and sends OpenACC calls, to partially overlap computation and communication. Initial 

results are promising, but some concerns remain, e.g. with load-balance and the fact that the CPU 

cannot send enough requests to fully use the GPU. Further improvements and changes in the data 

structures are still needed. 

The code is available as a separate branch in the main Vlasiator git repository: [8]. The managed 

memory version is available at: [9]. The task-based version is available at: [10] 

SYMPIFE-VMAX/ELMFIRE: Mini-app for particle-in-finite-elements Vlasov-Maxwell 

systems with multiple species. The mini-app serves as a basis for the refactoring of the ELMFIRE 

code. The prototype code uses the MFEM finite elements framework from which it leverages 

versatile mesh-handling and refining infrastructure, and arbitrary order mixed-elements spaces. 

The prototype implements symplectic integrators of order 1, 2 and 4 based on Lie-Trotter splitting 

for the VM system. The MFEM infrastructure allows the use of complex meshes and automatic 

domain decomposition, as well as hybrid parallelism [11] 

STRUGEPIC/ELMFIRE: Mini-app for structure preserving PIC simulations using AMReX. It 

demonstrates the use of the scalable framework AMReX for creating PIC plasma simulations. The 

main purpose of the mini-app is to serve as an example of features and functionality provided by 

AMReX for plasma simulations. In addition, it also performs well enough that it can be used for 

proper plasma simulations by itself. Together with the SYMPIFE-VMAX mini-app, it serves as a 

basis for the refactoring of the ELMFIRE code [12] 

SIMPIC: Mini-app for simple PIC simulations using StarPU. It demonstrates the use of the StarPU 

framework for task-based parallelism in plasma simulations. Due to its general applicability, 

SIMPIC can serve as a how-to guide for other PIC codes. 

At this stage, we provide a full GPU version of the SIMPIC mini-app, using CUDA. The code has 

two main algorithms, the first is a particle mover and the second a field solver. To make a CPU to 

GPU transfer for the particle mover and field solver, a moverparticlesGPU() function with 

global_kernel and a fieldsolverGPU() function with cuSPARSE solver were created. In addition, 

benchmarking on different cluster architectures and integration with the StarPU simulator was 

done. For better visualisation of the memory transfer between the host and the device, profiling 

https://www.genecode.org/
https://github.com/fmihpc/vlasiator/tree/openacc
https://github.com/ursg/vlasiator/tree/openacc_hackathon_2020
https://github.com/ursg/vlasiator/tree/openacc_taskbased
https://github.com/MoPHA/sympife-vmax
https://github.com/MoPHA/strugepic
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and tracing were done with the TAU and NVIDIA profilers. The code can also serve as base for 

CPU to GPU transfer in a more complex PIC code. In this version the code works only with one 

GPU, but the idea is that the last version of this mini-app will work on multiple GPUs. 

The GPU version and documentation of the profiling and tracing results are available at the SIMPIC 

repository [13] 

3.3 Community outreach and integration  

GENE: GENE is a well-established open source plasma micro turbulence code that is widely used 

by the community of plasma physics. Since we are working directly with the GENE code, its 

modernisation and any performance improvement achieved by the task-based parallelisation with 

StarPU and the use of heterogeneous hardware, will directly benefit all the members of the large 

and growing user base of GENE around the world. As an example of code integration, we would 

like to mention the Whole Device Modeling application (WDMApp) of the Exascale Computing 

Project (ECP), of which GENE is part and is coupled to another gyrokinetic code for the simulation 

of the edge of a magnetic confinement device. Transfer of knowledge is also continuously done in 

our monthly meetings and slack channel. 

VLASIATOR: Vlasiator simulates the Earth's magnetosphere in kinetic physics. It solves the 

Vlasov equation (6D advection equation) with a sparse phase space simulation and implements 

semi-Lagrangian advection solvers coupled with a constrained transport field solver. It has proven 

to be really accurate and is a well-known tool that has also provided the first full global 6D hybrid-

Vlasov simulation of the magnetosphere. In light of the upcoming pre-exascale European HPC 

systems, porting of some of the kernels to GPUs is an active line of development. The Vlasiator 

team organises and participates in hackathons and presents their science in various conferences. 

All the efforts are public and are actively communicated to the whole community. All code 

developed in this project is publicly available as separate branches in the main code repository of 

Vlasiator or its main developer's code repository. 

SYMPIFE-VMAX/STRUGEPIC/ELMFIRE: STRUGEPIC and SYMPIFE-VMAX are both 

being used by the ELMFIRE research group at Aalto University for prototyping new structure-

preserving algorithms for the full and reduced Vlasov-Maxwell-Landau systems. Their use is 

planned within the EUROfusion Theory, Simulation, Verification and Validation (TSVV) activity 

for probing the limits of gyrokinetic simulations when the gyrokinetic ordering may be violated. 

Both these activities are part of a collaboration with the Numerical Methods for Plasma Physics 

division at the Max-Planck Institute for Plasma Physics. Development of space-physics relevant 

features is also ongoing in collaboration with the Esa Kallio group at Aalto University. 

SIMPIC: SIMPIC is an open source prototype PIC code, which contains only two algorithms 

without any cross sections and particle collisions. For this reason, the GPU version of the code was 

implemented in a more complex PIC code. With this transfer we speed up the code and we reduce 

the memory transfer. This mini-app helped to reduce the time needed for plasma simulations in the 

other PIC codes. At this stage of the project, most of the work has been done. All updates of the 

code were disseminated in our monthly meetings. 

https://bitbucket.org/lecadpeg/simpic/
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3.4 Outlook for pre-exascale and benchmark projections 

GENE: Although there is still work to do and issues to solve, results show overlaps in the execution 

of tasks on homogeneous and heterogeneous hardware (CPU and GPU). This gives us the 

confidence that we are on the right path towards an implementation that efficiently uses all the 

available computing resources. The objective of MoPHA for GENE is to modernise, modularise, 

refactor, and implement a task-based parallelisation of GENE as well as to transfer any knowledge 

gained in the process. Cross-review of the code structures and modularisation of GENE has been 

done. Development of simplified test code, test of StarPU with test code and test of StarPU in the 

GENE code were also completed. At this stage of the project, we are implementing computational 

kernels using StarPU, which in some cases require further refactoring of the modules. 

We expect that the code will perform better/faster than the current version of GENE in pre-exascale 

systems for problems with large computationally intensive kernels, for example nonlinear 

problems. In these cases, the tasks are large enough that they can be broken into smaller tasks to 

be distributed for execution across the available hardware but still large enough so that the task 

scheduling and StarPU internals can be neglected. For problems with small size tasks, the 

scheduling and StarPU internal operations add up to the entire runtime and make the solution of 

the problem often slower. From our initial results, we can infer that the code will be able to use all 

of the computational resources. However, additional work is still necessary to investigate the 

different schedulers and how to further break or merge the available tasks so that the schedulers 

can make an optimal distribution of the tasks to the hardware. 

VLASIATOR: Although there is still work to be done on the GPU version, the CPU code scales 

to hundreds of thousands of CPUs. Since the code has potential to scale really well, we expect that 

with a proper porting of the code to GPUs, it will scale also really well to a large number of GPUs. 

Of course, there are many challenges and further improvements are still needed e.g. to optimise 

some of the data structures and to verify which programming model is the most efficient and 

portable. 

SYMPIFE-VMAX/STRUGEPIC/ELMFIRE: SYMPIFE-VMAX is GPU-ready (both CUDA 

and HIP through the MFEM backends), but scaling tests and benchmarks on multiple GPUs are 

necessary. A multi-GPU CUDA version of the STRUGEPIC has also been developed. Further 

scaling tests and optimisation is required for scale-up on many nodes. Porting to HIP is desirable 

in the future, but HIP support in AMReX is only experimental at the moment. The physics 

benchmarks and further optimisation will be pursued in particular within the EUROfusion TSVV 

activity, and with support from the Advanced Computing Hubs of the EUROfusion Theory and 

Advanced Simulation Coordination. 

SIMPIC: Benchmarking of the code with a single GPU was done and looks promising, but after 

the final version of the code with multi-GPU support is ready, thorough benchmarking should be 

done. Based on the results from implementing this mini-app into other PIC codes such as BIT1 in 

the PiCKeX project, it is evident that that our code is already fully workable. Also a StarPU version 

of the code was done and was tested on different HPC clusters. 
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4 NB-LIB: Performance portable library for N-body force calculations 
at the Exascale 

4.1 Introduction and summary 

 

 

Figure 5: Overview of NB-LIB 

 

A large number of scientific applications use particle interactions (e.g. Molecular Dynamics, Monte 

Carlo or multiscale simulations in life sciences or materials), and several smaller codes or 

combinations of codes have unique features that allow novel workflows. However, while 

computers have become more specialised, many codes are not optimised for GPUs or other 

accelerators and it is increasingly hard to achieve parallelisation. This will make these codes 

increasingly difficult to use on next-generation, exascale systems. 

One of those codes currently undergoing exascale optimisation efforts is GROMACS, also among 

the benchmark codes for pre-exascale machines coming online in 2020. While it has a long track 

record as a widely used and highly performant HPC code, it is very difficult to offer in a single 

application all the unique features and niche use-cases that the various many-body codes combined 

support. The goal of the NonBonded-LIBrary (NB-LIB) is therefore to make the cutting-edge 

performance of GROMACS available through a high-level C++ API to its non-bonded force 

kernels. In combination with the system setup functionality that NB-LIB offers in addition, users 

will then be able to implement arbitrary workflows that might be required for their special use case 

while leveraging the performance of GROMACS for the force calculations. This way, future 

acceleration, porting, and library features will benefit all applications. 

4.2 Production software release 

The NB-LIB project is bundled with the public release of GROMACS 2021. This means that NB-

LIB is installed by default on HPC resources all over the world because GROMACS is one of the 

most popular scientific codes in the HPC landscape. There are a number of ways for users to get 

access to the bundled version of NB-LIB included in the GROMACS 2021 release, including 

through the public GROMACS documentation [14] as well as via the GROMACS GitHub page 

https://manual.gromacs.org/documentation/2021/download.html
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[15]. Additionally, for users who desire access to the most up-to-date version of NB-LIB, it is also 

possible to access via the NB-LIB GitHub page [16]. 

The NB-LIB repository includes extensive documentation as well as sample scripts that 

demonstrate library usage. Though NB-LIB is written in state of the art C++, care has been taken 

to make it simple for end users to write scripts using NB-LIB, allowing sample scripts that read 

like Python code. 

The core functionality of NB-LIB is to allow performant nonbonded calculations, and this is the 

central feature of the public release. Nonbonded forces can be calculated on both CPU and GPU, 

and since GROMACS has backends for CUDA, OpenCL, and SYCL, users with diverse hardware 

can expect good performance. In addition to the core nonbonded force calculation, NB-LIB 

provides a molecular topology API allowing users to easily construct the input data for NB-LIB 

calculations. However, since the public methods of NB-LIB only take elementary types, users can 

call NB-LIB with data from other sources as well. Finally, NB-LIB also provides a listed forces 

API allowing calculation of bond, angle, dihedral, etc. forces, as well as a simple integrator. This 

means that users can write a complete MD code using NB-LIB. 

4.3 Community outreach and integration 

The NB-LIB project is closely aligned with a number of longer term development goals of the 

GROMACS project, which is currently funded to a large extent by the BioExcel CoE. This has 

meant that there has been a near-constant dialogue between core GROMACS developers and NB-

LIB developers. This dialogue, combined with the rigorous code review standards for new code 

being accepted into GROMACS has helped ensure that NB-LIB has high code quality standards in 

the GROMACS 2021 release of which NB-LIB is a part. The NB-LIB topology specification, and 

the corresponding system setup API were designed after discussions with members of the 

OpenMM and OpenFF consortiums. This means that NB-LIB should in principle be compatible 

with those popular molecular simulation codes. Discussions have also happened with the core 

developers of the HADDOCK docking code, and some work is ongoing to enable the types of use 

cases needed for drug docking workflows. Given that this is not a core goal of NB-LIB; it is not 

certain that all functionality needed for such workflows would be completed before the project end. 

One very successful outreach effort was a recent webinar [17], hosted by the BioExcel CoE. This 

had an audience of more than 40 participants from all over the world. Many participants had 

questions about how to enable the workflows that would be meaningful to them, and discussions 

are ongoing to see how and if effort can be prioritised to help meet any of these use cases. 

4.4 Outlook for pre-exascale and benchmark projections 

Overall, NB-LIB has exceeded many of the project goals. The primary goal of NB-LIB is to expose 

a performant API for non-bonded force calculation. Since NB-LIB relies on and exposes the known 

performance of the GROMACS non-bonded force calculation engine, this goal can reasonably be 

said to have been achieved. Additionally, NB-LIB provides a convenient API for system setup, a 

force calculator for bonds, angles, etc., and a simple integrator. This means that users wanting good 

performance in particle simulations can potentially use NB-LIB for entire projects, as NB-LIB can 

be used to write molecular simulation mini-apps. Currently, to run NB-LIB across multiple nodes, 

for instance using MPI, the user would need to manage all data transfer themselves. Work is 

ongoing to expose the GROMACS domain decomposition code in order to reduce this data 

https://gitlab.com/gromacs/gromacs
http://gitlab.com/gromacs/nb-lib
https://bioexcel.eu/webinar-nb-lib-a-performance-portable-library-for-computing-forces-and-energies-of-multi-particle-systems-2021-03-11/
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management burden on users. Unlike the achieved objectives of NB-LIB, which mostly entailed 

designing and implementing APIs and glue code, the work on domain decomposition requires 

significant refactoring of core GROMACS functionalities. This means that there is some chance 

that at the completion of the current NB-LIB project, it may still be up to users to manage the 

complexity of domain decomposition, but significant effort is being put into the necessary 

GROMACS refactoring that would allow exposing a domain decomposition API. 
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5 LoSync – Synchronisation reducing programming techniques and 
runtime support 

5.1 Introduction and summary 

The LoSync project aims to improve the scalability of applications by removing unnecessary 

synchronisation and serialisation, and by fully exploiting the potential for overlapping 

computations and communications. To do this, we make use of modern features of well-

standardised APIs, to ensure portability and relevance. 

Efficiently implementing a pure task-based programming on distributed memory systems is very 

challenging. Instead, we propose a hybrid model which uses task-based programming inside a node 

and traditional message-passing between nodes. To minimise synchronisation and expose as much 

parallelism as possible, our experience has shown that communications as well as computations 

should be expressed as tasks. However, standard communication libraries are difficult to use like 

this without encountering the risk of deadlocks, for example where all threads are executing tasks 

containing blocking communication calls. In LoSync we are developing and evaluating task-aware 

versions of MPI and GASPI libraries (called TAMPI and TAGASPI) which are integrated with 

OmpSs and OpenMP task-based runtimes. In TAMPI and TAGASPI, tasks blocked on 

communication calls are paused, freeing their executing threads to process other tasks, until the 

communications complete and the paused tasks can be resumed.  

Figure 6 below shows the state transition diagram for tasks in this model. Whenever a running task 

is blocked in MPI (for example), its status is changed to paused, and the executing thread is released 

to be able to execute other tasks (either computation or communication). When the blocking MPI 

call completes, the task becomes ready again, and can be rescheduled for execution when resources 

are available. TAMPI also supports another mode which allows the task to complete but only 

release its dependencies when the MPI call completes: this mode is easier to integrate with existing 

OpenMP implementations, but requires extensions to the MPI interface. 

 

 

Figure 6: State transition diagram for tasks (blocking mode) 
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5.2 Production software release 

The OmpSs-2 programming model [18] is released twice a year coinciding with ISC and SC events. 

In the latest release (20.11) we have included our new LLVM-based OmpSs-2 compiler, a 

lightweight instrumentation system based on CTF format and a user-friendly configuration file to 

manage all runtime options. It is worth noting that our LLVM distribution [19] also includes a 

modified OpenMP LLVM runtime that can be used with TAMPI and TAGASPI libraries.  

The Task-Aware MPI (TAMPI) library is also publicly available [20] and periodically updated 

with new features, performance improvements and bug-fixes. Since the last reporting period, we 

have extended TAMPI to support MPI one-sided operations. Now it is possible to safely use 

MPI_Get, MPI_Put and MPI_Win_Fence operations inside tasks. To implement this new feature 

in TAMPI we have first extended ParaStationMPI [21] with a new MPI_Win_Ifence operation, 

that is the non-blocking counterpart of the standard MPI_Win_Fence. TAMPI leverages this non-

blocking MPI_Win_Ifence to implement the support of one-sided MPI operations. 

The work on applications has also progressed since the last report. We have ported, evaluated and 

analysed three well-known mini-apps that combine OmpSs-2/OpenMP and TAMPI: miniAMR 

[22], Lulesh [23] and HPCCG [24], and the results have been included in two research papers [25], 

[26]. 

The work on the Task-Aware GASPI (TAGASPI) library, which leverage GASPI one-sided 

operations and notifications, has been finished and a complete evaluation using the miniAMR, 

Gauss-Seidel, IFSKer and HPCCG benchmarks will be submitted to the SC’21 conference. The 

initial version of this library is publicly available on GitHub [27].  

5.3 Community outreach and integration 

BSC has developed training material which covers the OmpSs + TAMPI programming model 

combination, including hands-on programming exercises. This material forms part of the 

“Heterogeneous Programming on GPUs with MPI + OmpSs” course, which was run most recently 

as part of the PATC training programme in March 2021. A basic guide to TAMPI is available 

online [20] and we will continue to develop a more comprehensive best-practice guide to this style 

of hybrid programming. 

In the next phase of the project, we plan to implement a larger application code using the OmpSs 

+ TAMPI - we are currently evaluating Ludwig [28], a Lattice-Boltzmann simulation code as the 

target for this. There are some potential synergies with other WP8 projects, such as NB-LIB and 

MoPHA which we will explore in the near future. 

5.4 Outlook for pre-exascale and benchmark projections 

So far in the LoSync project we have shown, by implementing a range of mini-apps from a variety 

of computational science domains, that the model of using tasks within a node and conventional 

communication (e.g. with MPI) between nodes can be very successful. The ability to wrap the 

communication calls inside tasks has been demonstrated to be very valuable. As well as avoiding 

unnecessary serialisation, it provides a much more flexible and effective mechanism for 

overlapping computation and communication than can be achieved with standard non-blocking 

MPI calls. This is because it allows any available task to be executed while waiting for the 

https://github.com/bsc-pm/ompss-2-releases
https://github.com/bsc-pm/llvm
https://github.com/bsc-pm/tampi
https://github.com/ParaStation/psmpi
https://github.com/Mantevo/miniAMR
https://github.com/LLNL/LULESH
https://github.com/Mantevo/HPCCG
https://doi.org/10.1109/CLUSTER49012.2020.00017
https://doi.org/10.1109/CLUSTER49012.2020.00042
https://github.com/bsc-pm/tagaspi
https://github.com/bsc-pm/tampi
https://github.com/ludwig-cf/ludwig
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communication to complete, and the polling for completion can be undertaken by threads inside 

the runtime.   

Getting the granularity of tasks right is critical for good performance. If we have too few large 

tasks, cores will be left idle. If we have too many small tasks, the overheads of scheduling and 

managing task dependencies may become a bottleneck. With more complex applications we can 

have many different types of task, each with their own “natural” granularity. However, it is 

important to be able to chunk up small tasks into larger ones. This can lead to a significant number 

of tuneable parameters (i.e. the grain sizes for each type for task) which results in an optimisation 

problem which can be hard to solve. Some heuristic methods have been developed to deal with 

this, but a more comprehensive mechanism might be beneficial. Another technique which has been 

explored with some promising results is the use of parallel loop tasks: a set of independent loop 

iterations can be treated as a single task for dependency analysis and scheduling purposes, but the 

iterations can be executed in parallel by multiple threads.   

For applications with fairly regular data access patterns, converting from a conventional MPI data 

decomposition, and/or statically scheduled parallel loops, to tasks can result in a loss of locality. 

This can be addressed, to some extent, by the runtime by preferring to schedule dependent tasks on 

the same core as their parent, but the runtime may lack sufficient information about the amount of 

data movement implied by the dependencies. Further work is required to address this limitation. 

Some applications have a clear and obvious correspondence between data structures and 

computational tasks, while others do not. In the latter case, this can lead to synchronisation points 

where all tasks acting on a shared data structure must be completed before any subsequent tasks 

can run. In molecular dynamics, for example, we may find that all force updates to particles must 

be completed before any velocity and position updates may occur. A technique to overcome this is 

to apply data decomposition method inside a node – this may be simply the existing decomposition 

method already used between processes in the application, or it may exploit additional levels of 

parallelism. Communication between decomposed data structures becomes explicit (as 

read/writes), and this enables the synchronisation to be relaxed. 

 

  



D8.4 Interim progress report: Public Software release and integration in external codes 

 

PRACE-6IP- INFRAEDI-823767 17 19.04.2021 

6 FEM/BEM based domain decomposition solvers 

6.1 Introduction and summary 

The aim of the project is to extend the existing domain decomposition library ESPRESO [29] to 

support highly scalable efficient solution of harmonic analysis and sound scattering problems. The 

distributed memory parallelisation of the code is based on the FETI method and its variants.  

In order to achieve this, a number of activities are on-going. These include the development of 

suitable preconditioners for the parallel harmonic analysis solver – currently, three types of 

preconditioners are implemented in the code, each suitable for different kinds of problems, as the 

preconditioners differ in the way that they construct an artificial coarse space for the FETI method.  

In addition, GPU acceleration of computationally intensive parts of the code has been undertaken, 

and tested using NVIDIA V100 and A100 GPUs. Work has also continued on the Solver as a 

Service platform, with the ultimate goal to enable users without a HPC background to use the 

application. Further improvements to the harmonic analysis solver have also continued, which for 

example now also includes the pre-stress harmonic analysis in rotor dynamics solver. 

Coupled to this, testing and documentation is on-going, with continuous updates to the 

documentation in project repository. Finally, development has also begun on the module for the 

parallel solution of acoustic problems.  

 

 

Figure 7: Frequency response of the electric motor case computed using 450 nodes of the Salomon cluster at 

IT4Innovations in 714 s (15 million degrees of freedom, 60 frequency samples). 

 

6.2 Production software release 

The developed code is publicly available within the master branch of the ESPRESO library in its 

official repository at GitHub [30]. Most of the functionalities described in the previous section are 

available in the public code. Currently, the code supports solution of the harmonic analysis 

problems in real domain parallelised across both frequency and spatial domains. Three 

preconditioners based on an artificial coarse space for the FETI method are available. The code in 

the master branch now supports the GPU acceleration of the computationally intensive sections of 

the code. Moreover, besides the installation instructions and generic information about the solver, 

http://numbox.it4i.cz/
https://github.com/It4innovations/espreso
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the manual available in the GitHub repository now contains solver-specific documentation with 

examples of usage of the harmonic analysis solver (see the Wiki section of the repository [31]). 

6.3 Community outreach and integration infrastructure 

The developed ESPRESO library is being integrated into the Solver as a Service online platform 

at IT4Innovations. The goal is to make the supercomputing resources available to engineers without 

HPC background. The user will be able to submit a job via web interface either by directly 

uploading the ESPRESO configuration file or by using an online GUI to specify the problem to be 

solved. The front-end of the service is now implemented, while development of the back-end is 

currently in progress. 

The above-described developed parallel solver for harmonic analysis has already been used in two 

significant projects. First of them is focused on the development of the digital twin of an 

electromotor in cooperation with the Siemens company. The second project (EXPERTIZE [32]) 

aims to create a European training network that trains the experts in nonlinear structural mechanics 

of turbomachinery and high-performance computing. 

Moreover, the ESPRESO library provides an API that can be used to call the solver from external 

software. In the past, it has been used, e.g. within the Elmer library. 

 

6.4 Outlook for pre-exascale and benchmark projections 

Although the goal of the project was to develop a highly scalable solver for both harmonic analysis 

and sound scattering problems, due to the initial problems with the efficiency of the preconditioners 

for the harmonic analysis, the development of the sound scattering module has been delayed. 

Therefore, the currently available benchmarks only describe the scalability of the harmonic 

analysis module. From the implementation point of view, we have been able to achieve most of the 

goals stated in the project proposal. The structure of the ESPRESO library has been refactored and 

several parts of the code, e.g. system matrix assembly, have been optimised and significantly 

accelerated. Due to the heterogeneous design of current and future pre-exascale machines, a GPU 

acceleration is also a crucial and unavoidable part of modern code. We have successfully 

accelerated the most time-consuming parts of the code and tested the acceleration using the modern 

NVIDIA V100 and A100 architectures (see Figure 8 below). For the distributed memory 

parallelisation, we use the combination of parallelisation in spatial and frequency domain, which 

enables us to further extend the scalability. So far, the code has been tested on up to 450 nodes 

(10800 cores) of the Salomon cluster solving a problem with 15 million spatial degrees of freedom 

and 60 frequencies. Further tests are planned and the ESPRESO team has submitted a proposal for 

a preliminary access to the LUMI supercomputer for extended testing. Furthermore, a PRACE 

Preparatory Access project will be submitted to further optimise and benchmark the code on large 

machines. 

 

 

 

 

https://github.com/It4innovations/espreso/wiki
http://www.msca-expertise.eu/
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Figure 8: Scalability of the multi-GPU assembly of Schur complement matrices on NVIDIA DGX A100 machine. 
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7 Performance portable linear algebra 

7.1 Introduction and summary 

Linear algebra algorithms play a central role in scientific applications, for example, in the particular 

case of Materials Science, many applications rely heavily on linear algebra to solve complex tasks. 

Overall, the diversity of linear algebra operations together with the large size of the operands 

motivates the necessity of high-performance implementations of distributed algorithms. For 

example, modern electronic structure methods rely on the Density Functional Theory (DFT) 

method, which highly depends on the solution of either dense or sparse eigenvalue problems. 

To solve the dense eigenvalue problems, applications are mainly using the ScaLAPACK [33] or 

ELPA [34] libraries. ScaLAPACK is the de-facto standard for distributed dense linear algebra since 

1992. However, the fork-join approach used for its implementation is not suitable for modern node 

architectures. 

A more modern approach consists in the task based implementation of the algorithms and the goal 

of this project is to deliver a modern and efficient distributed linear algebra package (DLA-Future) 

based on HPX [35] (a C++ tasking library which tests the proposals of C++ standard about tasks), 

that can replace ScaLAPACK in scientific applications. 

 

 

Figure 9: Eigensolver workflow 

 

http://www.netlib.org/scalapac
https://elpa.mpcdf.mpg.de/software
https://github.com/STEllAR-GROUP/hpx
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An alternative strategy in the development of an eigensolver is to leverage well-known and well-

established iterative algorithms such as subspace iteration. A modern example of such an algorithm 

has recently been implemented in the Chebyshev Accelerated Subspace iteration Eigensolver 

(ChASE) library [36]. When tackling sequences of Hermitian eigenproblems, as they often appear 

in electronics structure codes, ChASE takes advantage of the distinctive features connecting 

adjacent problems in a sequence. 

7.2 Prototype software release 

7.2.1 DLA-Future and DLA-Interface 

Currently, DLA-Future functionalities include the Cholesky decomposition and the solution of the 

triangular system of equations for distributed multi-core and NVIDIA GPU (CUDA) systems. The 

library includes the transformation of a generalised eigenvalue problem to a standard eigenvalue 

problem as well for multi-core systems. DLA-Future sources are available in GitHub at the 

following link [37]. 

The team has invested a lot of time to make asynchronous MPI functions work efficiently with 

HPX, and therefore the implementation of some of the algorithms of the eigensolver has been 

delayed. 

We performed a weak scaling analysis of the library comparing it to other libraries on CSCS’ Piz 

Daint (Figure 10). DLA-Future outperforms ScaLAPACK and Slate and the performances are 

comparable with DPLASMA, but with a slightly worse scaling (which will be fixed in the next 

release, see Section 7.4.1). 

 

 

Figure 10: Comparison of the weak-scaling performance of DLA-Future Cholesky decomposition compared with 

other libraries (left: multicore implementations, right: CUDA implementations) 

 

We decided to develop DLA-Future as a pure C++ library, and to provide ScaLAPACK like C and 

Fortran bindings through DLA-interface, which is available at the following link [38] 

Currently DLA-Interface provides the binding for the Cholesky factorisation. The plan is to add 

the eigensolver and generalised eigensolver bindings when they are ready in DLA-Future. 

https://doi.org/10.1145/3313828
https://github.com/eth-cscs/DLA-Future
https://github.com/eth-cscs/DLA-interface
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7.2.2 ChASE library 

The ChASE library is a modern C++ numerical library implementing one of the oldest and most 

respected iterative algorithms. With the advent of massively parallel architectures, the algorithm at 

the base of ChASE can leverage very efficient low-level BLAS-like kernels and achieve a very 

competitive parallel efficiency. Being an iterative eigensolver, ChASE can solve only for up to 

20% of the extremal spectra of Standard and Generalized Complex Hermitian and Real Symmetric 

Eigenvalue problems. Among its most salient functionalities, the ChASE library features multiple 

data distribution geometries: custom-block, block-cyclic, and element-wise cyclic (Elemental). 

Thanks to its templated data type, it can solve problems in both single and double precision. ChASE 

is effective for solving sequences of eigenvalue problems for which it can take advantage of 

approximate solutions and experience speedups up to 3x. In addition, the algorithm of the 

Chebyshev filter has been optimised to minimise the number of FLOPs necessary to converge the 

desired eigenpairs. 

ChASE comes in several different parallel flavours. It can be executed with a parallel MPI-

OpenMP over distributed multi-core clusters. It also features a parallel MPI-CUDA hybrid 

execution on distributed many-core clusters with multiple GPUs per node. A tailored 

implementation using MPI+HPX is currently under testing and it will be available by the end of 

the project. The library is available in the newly launched GitHub repository [39].  

7.3 Community outreach and integration 

7.3.1 DLA-Future and DLA-Interface 

As discussed in 7.2.1 the problems of integrating the communication layer in HPX delayed the 

development of some of the parts of the eigensolver. 

Therefore, the current DLA-Future effort is in implementing and optimising the algorithms for the 

eigensolver, which, when ready, will be tested in the SIRIUS [40] library. 

7.3.2 ChASE library 

The ChASE library has been successfully integrated in a code for Optoelectronic simulations 

developed and maintained at the University of Illinois Urbana-Champaign (UIUC) and NCSA [41]. 

There is an ongoing effort to fully integrate ChASE within the FLEUR [42] code for Material 

simulations based on Density Functional Theory. There is also a preliminary agreement to test the 

use of ChASE both in the Yambo and Quantum Espresso [43] (QE) codes. Both FLEUR and the 

QE suite are part of the MaX-II Center of Excellence and have a large base of users in a wide 

community. 

 

https://chase-library.github.io/ChASE/index.html
https://github.com/electronic-structure/SIRIUS
http://schleife.matse.illinois.edu/
http://www.flapw.de/MaX-5.0/
https://www.quantum-espresso.org/
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7.4 Outlook for pre-exascale and benchmark projections 

7.4.1 DLA-Future and DLA-Interface 

As shown in section 7.2.1, the weak scaling behaviour of DLA-Future is not in line with the 

performance of DPLASMA. However, a couple of optimisations in the communication code (use 

of MPI asynchronous functions and better memory usage) are showing promising results. 

 

 
Figure 11: Comparison of the weak-scaling performance of the unreleased optimisations of DLAF  

vs best performing libraries in Figure 10 

 

Unfortunately, the poor performance on square MPI grids (DLA-Future is running two ranks per 

node), is still preventing these optimisations from being released. 

7.4.2 ChASE library 

Particularly when executed on the newest AMD cluster with multiple A100 Nvidia GPUs 

(JUWELS Booster), ChASE is performing well and the relative performance of the various kernels 

relative to each other is in line with the computational cost that is expected. This result is achieved 

thanks to the extensive use of cuSOLVER.  

On the other hand, when run in parallel on CPU-only, ChASE shows a growing bottleneck due to 

the QR decomposition. We are in the process of designing a new distributed algorithm for such a 

kernel that would balance again the relative cost among the main kernels of ChASE. Ultimately 

we plan to benchmark the code of eigenproblems with size > O(100k). 
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Figure 12: Performance of ChASE on JUWELS Booster (matrix BSE 76k , OMP = 12, nev=2350, nex=200) 
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8 GHEX: Generic Halo-Exchange for Exascale 

8.1 Introduction and summary 

GHEX is a library for halo-update in scientific applications. While halo-update is ubiquitous in 

HPC, its implementation (typically using MPI) is highly dependent on the details of the problems 

being solved. The main characteristics that distinguish the different applications are: the grid type 

(Cartesian, structured, unstructured), the periodicity of boundaries, the types of the values, the 

dimensionality and the number of fields being updated, the number of halo-lines exchanged, and 

more. 

Most of the existing halo-update solutions have been designed for MPI-based applications, with 

extensions to MPI+X, where X is usually OpenMP. With the advent of many-cores architectures, 

like accelerator-based and hybrid, the need for modern programming models becomes more and 

more pressing. For instance, exploring multithreading architectures more efficiently than the 

typical MPI+X approaches could improve the effect of some latency-hiding techniques, and hence 

scalability. 

 

 

Figure 13: Halo Exchange weak scaling on Piz Daint using in-node direct remote memory access (RMA) through 

system/shared memory 

 

From the design point of view there are two distinct aspects of GHEX. On the high level is the 

user-facing, unified and intuitive halo exchange API. Instead of accepting data as arguments, 

GHEX API accepts functions with defined interfaces. These functions allow the users to pass the 

required information, while GHEX remains oblivious to the specifics (e.g. the data layout) of the 

application. On the lower level GHEX defines a future- and callback-based APIs, which is close to 

the hardware and the computing platform. They provide access to low-level transport layers (in 

addition to MPI, for instance UCX and Libfabric), and exploit shared memory interprocess 

communication mechanisms (e.g. using XPMEM and CUDAIPC). These lower level transport 

layers have more flexible interfaces that can in some cases result in better performance than MPI. 

GHEX uses these interfaces in the high level halo exchanges to enable latency-hiding and to 

overlap computations with communication. In addition, GHEX users can also directly access the 

transport layer API, which is especially well suited for highly asynchronous, task-based computing 
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models. Both the interfaces are portable, so that the applications can be easily run on different 

platforms with different transport layers. 

 

 

Figure 14: Overview of GHEX 

 

8.2 Production software release 

The code is publicly available on GitHub at [44] under the BSD-3-Clause license. CI is 

implemented through GitHub Actions, with runs tests on every pull-request and on demand. Tests 

are run on a single node virtualised environment and cover: high level exchange API, low level 

MPI / UCX / libfabric transport layers (both with future-based and callback-based API), single / 

multi-threaded modes, structured / unstructured grids (including support for inflated-cube grids and 

Atlas bindings) and RMA on shared-memory regions.  

The current set of supported functionalities, in addition to the one tested with CI/CD, includes also 

NVIDIA and AMD GPU and hybrid CPU/GPU communications, support for XPMEM, CUDA-

IPC to perform remote memory accesses to neighbour ranks, GridTools bindings, and Fortran 

bindings. Clearly, the testing space, in terms of functionality and performance is huge, and the 

current CI/CD frameworks are incapable of supporting automatic testing that covers all of the 

available features, which would require access to a wide variety of different computers. We plan 

to gradually add CI/CD features in the future, especially in collaboration with CSCS CI/CD 

initiatives. To compensate for this difficulty, we are actively collecting benchmarking results and 

scripts in another repository [45]. 

During code optimisation for AMD EPYC CPUs it became clear that the multi-level, hierarchical 

memory architecture poses a substantial challenge to performance. Data exchange speed between 

ranks and threads within the same compute node varies a lot depending on the memory domain 

they are bound to. To address this, we have developed HWCART, a hardware-aware Cartesian 

MPI communicator, which allows the user to map ranks to cores in a way that maximises 

https://github.com/GridTools/GHEX
https://github.com/GridTools/ghexbench
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communication speed between the neighbours and minimises off-node communication. The code 

is available under BSD-3 license from a separate repository [46], since this is a useful utility not 

only for GHEX users. 

8.3 Community outreach and integration 

GHEX is part of the GridTools ecosystem, and available in the GitHub organisation of the same 

name. GridTools is a set of libraries and tools aimed at the weather and climate community to 

develop models using modern technologies. 

GHEX has been ported to the weather model COSMO, and improvements on the performance of 

9% have been observed. Since COSMO went into a feature-freeze by the time we were able to 

demonstrate the advantage of GHEX, it was not possible to include it in the COSMO code. Further 

integration with climate models, in this case by ECMWF, is facilitated by Atlas bindings. Atlas is 

currently developed at ECMWF for providing parallel data structures for Earth System models. 

GHEX has been included in a benchmark application, called GTBench, which is currently used to 

benchmark architectures against the typical weather and climate computation patterns, and was 

part of the benchmarks for the procurement process for the computer acquired by the LUMI 

consortium. We are currently integrating GHEX as a transport layer in a Python-driven weather 

application framework named GT4Py. GT4Py is a strategic tool adopted by several partners, 

especially the Center for Climate Systems Modeling (C2SM) at ETH Zurich, in a multi-year 

project. 

At University of Oslo we have worked to integrate GHEX with two community codes: 

 Bifrost - a stellar atmosphere simulation code, a classical MPI-based single-threaded code, 

where each rank runs on a single CPU core and computes on a regular, cubic sub-domain. 

After each timestep all ranks exchange halos with their neighbours. GHEX's ability to 

handle multiple data fields and large halos more efficiently than native MPI does improve 

the overall Bifrost performance by up to 8%. 

 DISPATCH is a task-based framework, in which each task handles a grid, which is not 

necessarily aligned with all other grids (e.g. grids can overlap and be rotated). DISPATCH 

is heavily multi-threaded, with threads picking up tasks as they become free. In this case 

we have integrated the code with GHEX transport layer API. It provides direct access to 

UCX and libfabric, and proves to be more efficient than MPI when it comes to multi-

threaded applications. 

Both codes are implemented in Fortran, and hence use GHEX Fortran bindings. In both cases 

integration with GHEX was done in a non-invasive way, i.e. the original codes do not require 

GHEX to compile and run. Instead, they can choose to use the legacy MPI communication 

implementation, or the GHEX backend with a compile-time option. This demonstrates that GHEX 

can be used as a plug-and-play solution with relatively little effort. 

GHEX presentations at international meetings 

 Fifth Workshop on Programming Abstractions for Data Locality (PADAL'19), September 

2019, Halo-Update Communication Layer for Hybrid Computing, by Mauro Bianco, ETH 

Zurich 

 PRACE Inter-WP Topical Session “Exascale for European Datacentres”, Design for 

Portability of Performance in Halo-Exchanges, by Mauro Bianco, ETH Zurich 

https://github.com/NordicHPC/hwcart


D8.4 Interim progress report: Public Software release and integration in external codes 

 

PRACE-6IP- INFRAEDI-823767 28 19.04.2021 

 LUMI researcher workshop, 31st March, 2020: GHEX: Generic Halo Exchange for 

Exascale, by Marcin Krotkiewski, University of Oslo 

 Whole Sun Virtual Meeting 2021, GHEX: Generic Exascale-ready library for halo-

exchange operations on various grids/meshes by Mauro Bianco, ETH Zurich 

8.4 Outlook for pre-exascale and benchmark projections 

From the hardware point of view, we focused on modern CPU and GPU architectures. The 

benchmark suite [47] suite enables direct performance evaluation of pure halo-exchange operations 

for a 3-dimensional cartesian grid. It features different backends (pure MPI, gridtools::gcl, and 

ghex), which allow comparison to different halo-exchange libraries. The number of halo points, 

the number of fields, as well as the number of threads per rank are some of the inputs we can vary. 

This benchmark suite was instrumental in evaluating different exchange strategies presented in this 

section. 

In systems based on AMD processors, the cores share memory resources on multiple levels (L3 

cache, NUMA-node, socket). To optimise performance on such systems we developed a memory 

domain aware Cartesian communicator for MPI (HWCART), which allows the user to fine-tune 

the rank placement. In Figure 15 below we show the impact of HWCART and GHEX on 

performance and scalability on Betzy, a system with 1300+ dual-socket compute nodes with AMD 

EPYC 7742 and connected with HDR100 InfiniBand. 

 

 

Figure 15: Comparison of halo exchange on Cartesian grids, with GHEX and HWCART, and simple MPI 

implementation on 65536 cores. 1 data field and 5 halo lines. GHEX with HWCART gives 2x improvements in 

execution times (the baseline is 27 compute nodes) 

 

On GPU architectures, we focused on the one hand on efficiently gathering the data to be 

exchanged in specialised kernels, and on the other hand on using GPU-aware MPI 

https://github.com/GridTools/ghexbench
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implementations or the UCX transport layer, which are actively developed by GPU vendors, 

making both NVIDIA and AMD GPUs supported. 

Figure 16 shows results for GPU runs for unstructured grids, with 100 structured added, which is 

a typical number in weather/climate applications. 

 

 

Figure 16: Left: per-node bandwidth on Piz Daint GPU partition, 1 rank per node, exchanging one single field on 

GPU using unstructured mesh. Right: exchange times on Piz Daint, GPU partition, GHEX halo exchange is 

compared with Atlas built-in halo exchange. 

 

From these preliminary results, we are confident on the scalability of GHEX on pre-exascale 

computers, especially the one provided by the LUMI consortium. Future benchmarking plans will 

include more extensive investigations of application codes, and additional transport layers, like the 

libfabric API which will be well supported by future HPE-CRAY computers. 
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9 LyNcs: Linear Algebra, Krylov methods, and multi-grid API and 
library support for the discovery of new physics 

9.1 Introduction and summary 

 

 

Figure 17: Important algorithmic steps in the Krylov accelerated multigrid solver developed in the LyNcs project 

 

The project, Linear Algebra, Krylov-subspace methods, and multigrid solvers for the discovery of 

New Physics (LyNcs), is addressing challenges for iterative solvers with large sparse matrices 

which are arising on modern and upcoming architectures due to massive parallelisation. LyNcs is 

targeting efficient solutions for linear systems based on large sparse matrices by pooling together 

software development efforts across Europe. LyNcs will provide the European communities with 

the next generation of parallel libraries for solving sparse linear systems at the exascale. The project 

is led by the Computation-based Science and Technology Research Centre (CaSToRC) of The 

Cyprus Institute, which joins forces with partners from the French Institute for Research in 

Computer Science and Automation (INRIA) and the Leibniz Supercomputing Centre (LRZ). 

Part of LyNcs is the development of an API that is targeting massive parallel machines to perform 

advanced task management with shared memory among huge parallel partitions. This LyNcs API 

together with implementing cutting-edge sparse linear solver algorithms, the development of novel 

block Krylov solvers and optimisation of existing parallel codes will enable community software 

to efficiently use the up-coming pre-exa and exascale machines. The software improvements target 

all levels of the scientific application software stack, from the basic Sparse BLAS library to fully-

fledged simulation codes. Namely, LyNcs is targeting the Fast-Accurate Block Linear Krylov 

Solver (Fabulous), the Lattice QCD community solver library DDalphaAMG and at the lowest 

level the efficient sparse matrix support software Librsb. 

9.2 Production software release 

LyNcs is targeting software which spans all levels of the scientific software stack to ensure 

readiness for the up-coming massively parallel pre-exascale and exascale systems. Part of the 

developed software are: 

 LyNcs -API: [48] 

https://github.com/Lyncs-API
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 DDalphaAMG: [49] 

 Librsb: [50] 

 PyRSB: [51] 

 GNU Octave “sparsersb” [52] 

 Fabulous: [53] 

 

LyNcs-API: The LyNcs API, written in python, is available on GitHub under the organisation [54] 

and published under a BSD 3-Clause license. Within the last year major changes towards a first 

version are made based on separation of concerns creating a modular infrastructure of all LyNcs-

API packages. Within this structure dedicated modules are created for general purpose [55], [56], 

[57], [58], [59] and for interfaces to lattice QCD libraries [60], [61], [62], [63] and a tool for 

optimisation and cross-checks of calculations [64]. Using the GitHub CI/CD capability new 

commits and merges are constantly checked to ensure coverage and usability of the package. To 

ensure a user friendly environment and visibility the source code is well documented and a user 

guide is at the moment given in the various readme of the packages. The task management of the 

API is based on the Dask package [65], which enables simple memory shared task management 

especially designed for large allocations for the next generation of High Performance Computing 

Systems. The LyNcs API is recently adapted by the Extended Twisted Mass Collaboration as the 

backend driver for porting the major Simulation code to GPUs. This guarantees the software 

support of LyNcs-API beyond PRACE-6IP. 

Fabulous: Fabulous implements Block Krylov solver methods, is written in C++ and its 

development is ongoing. Within LyNcs new capabilities enabling flexible preconditioner are 

enabled though the implementation of the block GCR with inexact breakdown detection. The 

implementation of a novel Block Krylov solver, a flexible Block GCRO technique with deflation 

at restart and inexact breakdown detection has been achieved. This latter feature enables the 

detection of the convergence of some right-hand sides (or linear combination of right-hand sides) 

and automatically reduces the block size to reduce the computational effort. In addition, this solver 

allows to recycle spectral information between sequences of multiple right-hand-sides making it 

well suited for the coarse grid solve of a multigrid context. Integration of Fabulous in Maphys++ 

(Maphys’ redesign using modern C++ genericity) is ongoing and will allow greater flexibility for 

the user and for software interconnection. Fabulous is distributed under CeCill license and available 

at the Inria gitlab [66], it should be noted that the GitLab page for Inria linear algebra software 

packages (Chameleon, Fabulous, Maphys) uses continuous integration, issue tracking, unitary 

testing, and complex scenarios testing. Integration is enabled through two high performance 

software distributions: spack [67] and guix-hpc [68]. A new release of Fabulous with the novel 

capabilities has been made and has been benchmarked using various Blas and sparse Blas, 

including librsb, libraries. 

DDalphaAMG with multiple right-hand sides: Within LyNcs a new public version of 

DDalphaAMG is released, which enables multiple right-hand side together with the optional usage 

of advanced Block Krylov solver methods enabled in a linkage of Inria’s solver library Fabulous. 

The major change within the development under LyNcs are the vector ordering which enables row 

major ordering. This adds flexibility capabilities by having vectorisation during compilation 

without explicitly using vector instructions. This guarantees portability without major performance 

lost to different CPU architectures, like ARM, Intel or AMD CPUs. The public released version is 

https://github.com/sy3394/DDalphaAMG/tree/multirhs
http://librsb.sourceforge.net/
https://github.com/michelemartone/pyrsb
https://octave.sourceforge.io/sparsersb/
https://gitlab.inria.fr/solverstack/fabulous
https://github.com/Lyncs-API
https://github.com/Lyncs-API/lyncs.setuptools
https://github.com/Lyncs-API/lyncs.utils
https://github.com/Lyncs-API/lyncs.cppyy
https://github.com/Lyncs-API/lyncs.mpi
https://github.com/Lyncs-API/lyncs.io
https://github.com/Lyncs-API/lyncs.clime
https://github.com/Lyncs-API/lyncs.DDalphaAMG
https://github.com/Lyncs-API/lyncs.tmLQCD
https://github.com/Lyncs-API/lyncs.quda
https://github.com/Lyncs-API/tuneit
https://dask.org/
http://gitlab.inria.fr/
https://gitlab.inria.fr/solverstack/spack-repo
https://guix-hpc.bordeaux.inria.fr/
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available under GitHub [69] and is successfully tested on various systems, like SuperMUC-NG, 

Hawk and Frontera and the ARM prototype system BSC-CTR. 

Librsb: The librsb library [50] is a complete Sparse BLAS for shared memory parallel computers. 

Its first public release dates to 2013. Originally it consisted of C99 and OpenMP, and has bindings 

in several languages. Is licensed under LGPLv3. Since the start of the LyNcs project, librsb has 

been developed further and regularly updated (with release tarballs on [70]). The recent updates 

have fixed many minor bugs and improved the documentation. The primary pillar of this activity 

has been a consistent expansion of the internal test suite. This has allowed reaching a very high 

coverage test rate: >90% code lines and >98% of functions. A good fraction of the bugs has been 

identified thanks to the aggressive coverage testing expansion. Other bugs have been identified 

after community reports (e.g. see [71] or [72]). The Python interface [73] has been brought to a 

production level (Linux binaries installable via [74]). The GNU Octave access layer [75] has been 

updated regularly. Thanks to the Debian and Cygwin volunteer community, Linux and Cygwin 

users can benefit from using pre-compiled binaries after each librsb and sparsersb release. Since 

2020, librsb has been included in the "Spack" HPC software distribution [76], as well as GUIX-

HPC [77]. The recent development activity in librsb has been in creating templated C++ kernels 

for multiplying sparse matrices by multiple right-hand-sides (SpMM). These changes are totally 

internal to librsb and benefit transparently any code using it, including the most recent Maphys, 

adapted by the Inria partners to use librsb. Preliminary benchmarks on SuperMUC-NG and AMD 

EPYC Rome 7742 reveal performance competitive or exceeding that of Intel MKL on large 

matrices by Inria and CaSToRC. 

9.3 Community outreach and integration 

Opportunities for outreach identified by the LyNcs partners include international and national 

community conferences, PRACE, EuroHPC JU, EuroCC and other dissemination events. Although 

most of the conferences were cancelled due to the pandemic, we could participate and engage with 

the community in various online events, which we will outline within this section. 

LyNcs activities were disseminated through PRACE-6IP activities such as the WP8 virtual F2F in 

September 2020 and the virtual PRACE Inter WP meeting in October 2020. In addition, our 

activities were part of a poster presented at the EuroHPC Summit Week in March 2021, and Shuhei 

Yamamoto had the opportunity to contribute an invited virtual Seminar talk at Riken, Kobe in 

September 2020 and at the major community conference APLAT2020 on his work on multiple 

right-hand sides in DDalphaAMG. The community outreach to one of the major lattice QCD 

collaborations, Extended Twisted Mass Collaboration (ETMC), by Simone Bacchio resulted in the 

adaptation of the LyNcs-API as the backend for the new simulation code of the collaboration 

dedicated for GPU machines. This is a major success, not only for the LyNcs project but also for 

PRACE-6IP, since adoption of the API by a major European collaboration is a substantial step in 

ensuring sustainability of our efforts and allows for future extensions of the project.  

In the current state, integration between the different software tasks and packages is complete. 

Those that are beyond prototype status have also been made part of the software releases. This 

includes the integration of the community software package tmLQCD, DDalphaAMG, QUDA, and 

c-lime within the LyNcs-API and integration of Fabulous with the DDalphaAMG-multi rhs. While 

the ETMC transitions to the LyNcs API, the integration of tmLQCD will help support testing and 

the CI/CD activities thus allowing tmLQCD to be maintained as a legacy code. All interfaces of 

the different software libraries are updated and in a ready-to-use stage. This includes Fabulous, 

https://github.com/sy3394/DDalphaAMG
http://librsb.sourceforge.net/
https://sourceforge.net/projects/librsb/files/
https://savannah.gnu.org/search/?words=sparsersb&type_of_search=bugs&Search=Search&exact=1#options
https://bugs.debian.org/cgi-bin/pkgreport.cgi?package=librsb-dev
https://github.com/michelemartone/pyrsb
https://pypi.org/project/pyrsb/
https://octave.sourceforge.io/sparsersb/
https://spack.readthedocs.io/en/latest/package_list.html#librsb
https://gitlab.inria.fr/guix-hpc/guix-hpc/-/blob/master/lrz/librsb.scm
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with the new parameters for the newly available IB-BGCRO-DR solver, DDalphaAMG-multi-rhs, 

which can now be called with or without Fabulous, and various interfaces for librsb, such as the 

python-linkage PyRSB. 

9.4 Outlook for pre-exascale and benchmark projections  

Algorithm and software development within the LyNcs project are linked to four different tasks, 

and the separation of concerns within our software packages and tasks gives us the opportunity to 

flexibly adapt to new, unforeseen, trends, such as for example enabling HIP-support within the 

solver library QUDA to target the pre-exascale machine LUMI at CSC Finland. 

While originally intended as a linkage to solver libraries, namely fabulous, DDalphaAMG and 

QUDA, to provide a common interface for community simulation codes, the API now enables task 

parallelism via Dask and is using community simulation codes for CI/CD. This community code 

linkage, formerly designed to be from the community codes to the API, is providing a platform for 

solid software developments using cross-checking and enabling a novel, flexible python API, 

which will enable exascale simulations. The redefinition proved very timely, since the API will 

become the backend for the future community simulation code of the Extended Twisted Mass 

Collaboration (ETMC). Within this effort, the existing linkage to the simulation code tmLQCD 

and the GPU solver package QUDA is essential. The usage by ETMC will guarantee software 

support for the API beyond PRACE-6IP WP8. This also shows that community software support 

is and was needed outside of the European CoE structure and shows the impact of PRACE-6IP 

WP8 for the European community. 

Towards D8.5 within PRACE-6IP, we will benchmark the developed software codes on various 

architectures and PRACE Tier 0 machines. This will include: 

 Strong scaling runs of DDalphaAMG on Frontera, TACC and SuperMUC-NG, LRZ 

 Performance evaluation of librsb on BEAST, LRZ and SuperMUC-NG, LRZ 

 Performance and Capability runs of LyNcs-API on JUWELS Booster, JSC 

 Performance evaluation of HIP ports at CSC-Frankfurt and CSC-Finland 

 Performance evaluation of Block-Krylov solvers with DDalphaAMG 
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10 ParSec: Parallel Adaptive Refinement for Simulations on Exascale 
Computers 

10.1 Introduction and summary 

One of the key capabilities required for CFD codes to take advantage of leading-edge computing 

resources is the automation of the mesh generation and adaptation processes. Manual mesh 

generation and tuning is not conceivable in an exascale simulation workflow. Adaptive Mesh 

Refinement (AMR) eliminates those bottlenecks providing higher efficiency and robustness to the 

codes. ParSec brings together well-known CFD practitioners with the aim of sharing best practices, 

and collaboratively modernise the AMR implementation of three leading-edge CFD community 

codes. The partners involved in the project are the Barcelona Supercomputing Center, the KTH 

Royal Institute of Technology and together Cenaero and Université de Liège. The community 

codes brought to the project by these institutions are: Nek5000, the scalable high-order solver for 

computational fluid dynamics from KTH/UIUC, Alya, the high performance computational 

mechanics solver from BSC, and Argo, the high order multiphysics solver from Cenaero. These 

three CFD solvers cover the main approaches for the solution of PDEs using both structured and 

unstructured meshes: finite element, finite volume, and spectral elements. Beyond the AMR-

enabled legacy codes, a number of open-source libraries providing mesh functionalities are 

included into the project, namely: MAdLib, that includes all mesh functionalities of Argo, Gmsh, 

a finite element mesh generator with a large community of users, and GeMPa including all the 

geometric mesh partitioning tools included into Alya. 

 

 

 

Figure 18: Iterative mesh adaptation, governed by a hypersonic flow facing a cylinder generated with Madlib. 
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10.2 Production software release 

Nek5000 AMR and GPU implementations are developed in a private git repository. However, 

KTH is in contact with Nek5000 developers at Argonne National Laboratory and coordinate their 

private repository with the main repository. In this case their OpenACC GPU code is an extension 

of the existing branch at [78]. KTH plans as well to add their AMR branch to the main code v21 

release, which should appear this year. 

The mesh adaptation library MAdLib now includes high-order anisotropic solution-based mesh 

adaptation features, as well as a new C-compatible interface. The latter will be present in the official 

release (2.2.0) of MAdLib, whereas the anisotropic mesh adaptation will come with the next release 

(2.3.0). Both functionalities are included in the development version of MAdLib, which can be 

downloaded from [79]. The latest stable release of the mesh generation library Gmsh (4.8.1) [80] 

now includes a new 3D multi-threaded meshing kernel that can handle non-manifold geometries 

and arbitrary sized isotropic fields, available either as a standalone application or through its C, 

C++, Python and Julia API. 

Alya [81] now includes AMR capability for general unstructured finite element meshes. It has 

required major restructuring of the code to support dynamic meshes and the parallelisation has been 

based on an interface freezing approach. The remeshing part is supported by Gmsh which has been 

integrated into Alya. Moreover, the mesh partitioning functionalities have been released into the 

stand-alone library GeMPa [82]. This library supports parallel mesh partitioning based on space-

filling curves. 

10.3 Community outreach and integration 

For Nek5000 both the AMR and GPU implementations are in the development phase, however, 

they have already been shared with external users, e.g. within the framework of the EXCELLERAT 

EU project. Another example is a collaboration with CINECA (Italy), where both implementations 

are tested and developed. The result of this is a simulation of a simplified rotor, shown in Figure 

19 below, which is a test run before a real drone rotor would be modelled. 

 

https://github.com/Nek5000/Nek5000
https://svn.cenaero.be/MAdLib/trunk
https://gitlab.onelab.info/gmsh/gmsh
https://gitlab.com/bsc-alya/projects/alya-ueabs
https://gitlab.com/rickbp/gempa
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Figure 19: Vortical structure of the flow around a simplified rotor obtained with the AMR branch of Nek5000 

 

A new pure C language API has been added into MAdLib so that it can be easily interfaced to other 

software apart from Argo. It is now about to be linked with Alya, which would take advantage of 

its sequential anisotropic mesh adaptation features. The partitioning work would be let to Alya 

itself. The integration of the Gmsh C API in Alya is completed and is under testing. An initial 

integration of the Gmsh C++ API in MAdLib is under way. Moreover, Gmsh has an outstanding 

community of users (~5000) that benefit from the developments carried out in ParSec. 

Finally, Alya is part of the software hub of various Centres of Excellence (EXCELLERAT, CoEC, 

EoCoE, CombioMed, Raise), the use cases of those CoEs are directly benefiting from the AMR 

capabilities developed within ParSec. GeMPa will be integrated in the community codes of ParSec 

in the last phase of the project. 

10.4 Outlook for pre-exascale and benchmark projections 

There are two main aspects of the Nek5000 development within ParSec: enhancement of the 

Adaptive Mesh Refinement algorithm and improved parallel performance on the heterogeneous 

architectures. In the second case we focus on the OpenACC/OpenMP based GPU implementation, 

which was currently tested on 1500 GPUs. Although the mortar elements or p-refinement strategies 

have not been considered yet, the AMR implementation has been significantly enhanced making it 

a robust tool for performing simulations relevant for industry. This has been achieved by 

reimplementation and modularisation of the code, exploring different partitioning libraries, 

improving pressure preconditioning and investigating various strategies for generating high-order 

hex-based meshes. Regarding heterogeneous architectures, the work has focused on the GPU-
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version of Nek5000 relying on an OpenACC/CUDA framework, which is currently being upgraded 

to an OpenMP/HIP framework. Its performance on JUWELS Booster system for the turbulent pipe 

case (conformal mesh) on NVIDIA /AMD architecture is shown in Figure 20 below, indicating 

scaling up to 512 GPUs with good efficiency. 

 

 

Figure 20: Strong scaling of a turbulent pipe case on JUWELS Booster system. Results for CPU and GPU are 

presented. A single node corresponds to 4 A100 GPUs or to 48 EPYC CPU cores. A mesh consists of 823632 

elements with polynomial order 10. 

 

MAdLib has two distinct features: i) its data structures for distributed mesh management that have 

been implemented and demonstrated through their use in large-scale, fixed-mesh computations 

with Argo, and ii) its mesh adaptation algorithms that currently work only sequentially. Our current 

effort consists in implementing a parallel mesh adaptation strategy that combines these two 

ingredients, including a load-balancing step between partitions that have been independently 

adapted, in order to obtain a scalable adaptation procedure. 

Concerning Gmsh, most of the efforts in the next months will be focused on performance testing 

and on the continuing integration with MAdLib. Finally, regarding Alya, the first goal of ParSec 

has been achieved by completing and validating the overall AMR workflow. At this point the focus 

is set on the optimisation of the code to run on (pre)exascale supercomputers. The initial focus of 

the optimisation has been the 3D interpolation models for the migration of the solution between 

consecutive meshes. Regarding the mesh partitioning tools of Alya, those have been used on 

production runs for meshes of several billions of elements, those results will be now reproduced 

with the recently released stand-alone library GeMPa.  
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11 QuantEx: Efficient Quantum Circuit Simulation on Exascale 
Systems 

11.1 Introduction and summary 

The QuantEx project aims to develop a scalable, extensible framework for quantum circuit 

simulation on large distributed clusters using tensor network methods. These methods provide a 

complementary approach to quantum circuit simulation which can enable the simulation of circuits 

with more qubits than is possible with full wave-function simulators. This approach is particularly 

effective for low depth quantum circuits which makes them very relevant for the simulation of 

NISQ inspired circuits.  

Figure 21 below shows a cartoon of their expected area of applicability compared to full wave-

function simulation methods. Depth in the figure below refers to circuit depth (related to 

entanglement in the circuit). It should be noted that there is a trade-off that for fewer qubits full 

wave-functions simulations will be more performant. For larger numbers of qubits, full wave-

functions simulation is no longer possible due to memory requirements, and tensor network 

simulators can work well in this regime but only up to a certain circuit depth 

 

 

Figure 21: Expected area of applicability of simulation methods 

 

Julialang has been chosen as the primary language for this project. This is because it provides a 

good balance between productivity and performance, has many useful packages in its ecosystem 

to aid development and offers the ability to easily tie together packages and tools written in other 

languages. 

11.2 Production software release 

The public software release consists of five Julia packages which together provide an extensible 

framework for performing quantum circuit simulations on large distributed memory clusters. These 

packages can be found on GitHub under the JuliaQX organisation at [83] and are also registered as 

Julia packages making them easily accessible. Each package features comprehensive unit tests and 

automatically generated documentation which make use of CI features of GitHub. The container 

diagram in Figure 22 shows how the packages work together to provide a simulation workflow for 

quantum circuits. A short description of each of the packages follows below. 

 

 

 

https://github.com/JuliaQX
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Figure 22: Overview of how the packages work together to provide a simulation workflow for quantum circuits 

 

QXZoo: Provides data structures and functions for representing and generating quantum circuits. 

QXTns: This package provides data structures and utilities for manipulating tensor networks with 

particular features for tensor networks derived from quantum circuits. It includes the ability to 

automatically identify and track hyper-indices of tensors which can lead to significant performance 

improvements. 

QXGraphDecompositions: This package provides data structures and functions for analysing and 

manipulating graph representations of tensor networks. In particular, it provides functions for 

finding efficient tree decompositions and for identifying sets of indices which when sliced can 

reduce the tree width of the selected tree decomposition. This makes it possible to distribute 

computations across multiple processes/nodes. 

QXContexts: This package implements runtime contexts for performing the tensor contraction 

computations. The MPI wrapper MPI.jl is used to distribute computations and GPU support is 

provided by JuliaGPU packages (yet to be integrated into final software release). 

QXSim: This package ties together the other packages to provide a consistent quantum circuit 

simulation workflow which consists of the following steps: 

1. Circuits are built and represented as QXZoo circuits. 

2. The QXZoo circuit is converted to a QXTns tensor network. 
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3. This network is converted to a graph data structure provided by QXGraphDecompositions 

and a suitable tree decomposition and set of edges to slice are identified. 

4. Using the tree decomposition and set of edges to slice a DSL representation of the 

computation is generated. This is then used as input to QXContexts to perform the 

computation using the context and settings that make the best use of the available resources. 

11.3 Community outreach and integration 

During the initial project planning phase and at various stages throughout the project there has been 

engagement with project stakeholders and potential users. This has been in the form of online 

meetings and workshops where design plans and prototypes were presented and stakeholders gave 

their feedback and recommendations. 

To coincide with the full public software release, a number of outreach activities are planned to 

promote the project and reach out to potential users. These plans include stories on the ICHEC, 

LRZ and PRACE websites and social media channels as well as a series of workshops to introduce 

interested users to the tools that have been developed. In addition to this we have submitted 

proposals to give presentations and posters at Juliacon and ISC. 

A containerised version of the software workflow was demonstrated in a cloud based HPC cluster 

at the Supercomputing 2020 (SC’20) tutorial “Practical OpenHPC: Cluster Management, HPC 

Applications, Containers and Cloud” [84]. At FOSDEM 2021 HPC container presentation, 

“Deploying Containerized Applications on Secure Large Scale HPC Production Systems” [85], the 

QuantEx software workflow was presented as an important use case for containerised workflows 

on traditional HPC systems. 

As well as engaging with potential users, efforts are ongoing to identify suitable opportunities to 

integrate the developed tools into commonly used quantum circuit simulation frameworks. Two 

particular directions the QuantEx team are exploring are the possibility of integrating QuantEx as 

a backend for the Yao.jl [86] and tequila [87] ecosystems with the hope of enabling these 

frameworks to be used with pre-exascale and exascale HPC clusters. 

11.4 Outlook for pre-exascale and benchmark projections 

To successfully scale to use large exascale clusters requires the ability to decompose the problem 

at multiple levels. For contracting tensor networks derived from quantum circuits there are multiple 

levels of parallelism that can be used. This means that in theory these methods should be capable 

of scaling to match the available resources. In reality it is difficult to tune each level to achieve 

good overall performance. The levels that will be used by the QuantEx framework are: 

1. At the highest level it is possible to compute the amplitudes for different sets of bit-strings 

independently on different subsets of nodes 

2. The next level is to decompose over the partitions corresponding to different combinations 

of values on sliced bonds. These can be performed independently and only require a 

summation over the resulting scalars 

3. For the individual contraction operations, it is possible to make use of CPU and GPU 

threads as well as vectorised operations to extract the maximum performance from the 

https://openhpc.github.io/cloudwg/tutorials/sc20/exercise4.html
https://fosdem.org/2021/schedule/event/containerized_hpc/
https://github.com/QuantumBFS/Yao.jl
https://github.com/aspuru-guzik-group/tequila
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underlying hardware. Optimising for memory layout and minimising memory allocation 

are key considerations here 

While these levels of parallelism are used in the current implementation, significant effort is still 

required to profile and optimise the current implementation and improve performance on the target 

architectures. Work that is ongoing to characterise and improve performance include: 

 Testing and performance characterisation across target architectures. This has included 

Intel Xeon, AMD and ARM CPUs and NVIDIA V100 GPUs to date 

 Instrumentation of developed tools with the LIKWID [86] profiling tool to enable the 

collection of performance diagnostics 

 Investigation and comparison of threading performance and use of vectorisation when using 

Intel-MKL and OpenBLAS libraries 

 Containerisation of workflows and its effects on performance 

Pilot access to additional HPC systems with more nodes and including newer NVIDIA and AMD 

GPUs is planned in future. 

One of the potential issues faced by the developers of modern non-traditional HPC workflows 

developed using “high productivity” languages such as Julia is the deployment of their workflows 

on much more restrictive HPC systems. The difference in these development philosophies often 

results in the transition from the developer environment to the HPC system being extremely 

complicated and requiring a lot of time and effort by the developers and HPC centres to build and 

maintain the software workflows. 

To enable scientists to take advantage of the massive amount of compute resources available on 

large HPC systems we need to find a mechanism that enables them to deploy their workflows and 

software in a way that is simple and does not require a lot of modification to their code and 

workflow, but also respects the existing HPC system environment, workflows and security policies. 

To achieve this, we employ the use of HPC containers. 

  

https://hpc.fau.de/research/tools/likwid/
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12 Conclusions 

In this deliverable, we report on the status of the ten projects running under the WP8 of PRACE-

6IP. Eight of these ten projects started their work from the start of the PRACE-6IP, while the two 

remaining started only in January 2020, after a second call. These projects have all reached the 

stage in which quality software could be made available for users, either as standalone apps and 

libraries, or merged upstream. The projects have a public repository and a development 

infrastructure that is at a high level (i.e. continuous integration, issue tracking, integrated 

documentation, etc.). The projects have documented their outreach to their user communities and 

stakeholders, including several actors in the European landscape such as CoEs and EuroCC. No 

critical issues in the management of these projects emerged so far, as it also appears from the results 

reported here. Only a few projects had some staffing issues, with staff joining later than expected 

or leaving. The COVID-19 pandemic did have some impact, for example hiring people from 

abroad, or having in person meetings and hackathons, but generally, this impact has been well 

mitigated. One external factor that will impact the final phase of these projects is the later than 

expected installation and operation of the EuroHPC pre-exascale infrastructure. Whereas several 

codes have made efforts to support the planned architectures, for example by providing both 

NVIDIA and AMD GPU support, information is missing at this point on the 3rd system, and actual 

benchmark results need to be delayed till after the originally planned end of the projects of WP8 

(Oct 2021). 

 


