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Executive Summary 

In this deliverable, we present results obtained in Task 6.2 of Work Package 6 of the PRACE-

6IP project. This task focused on four new services that had the potential to address some of 

the widely recognised needs in scientific computing and were also related with efforts toward 

the exascale transition. These services are: urgent computing, in-situ visualisation, the 

deployment of containers and full virtualised tools into HPC, and data analytics. All of them 

were already investigated within the preceding PRACE-5IP project and were smoothly 

continued within this project. 

The main objective of this deliverable is therefore to present the work done within each service. 

The deliverable has four main sections – one for each service, which contains the main results 

obtained within each service. These results are: (i) pilot implementation of two scientific codes 

in urgent computing mode and incorporating the follow-up activities into a new EU project 

eFlows4HPC, (ii) succesfull installation of three in-situ frameworks (Catalyst, Damaris, 

Melissa) into seven PRACE HPC clusters and instrumentation of several CFD codes to be 

coupled with in-situ frameworks, (iii) several trainings and dissemination activities and support 

for 23 use cases where containers combined with parallelisation were a key-enabling 

technology, and (iv) automatic installation instructions and user manuals for a list of nine data 

services were created. The deliverable also provides links to the other results of the Task 6.2, 

like the scientific papers and white papers containing results obtained during during this task. 

Each section contains a description of each specific service, the list of planned activities, report 

of the work done within PRACE-6IP, final conclusion based on the results of the activities and 

a proposal on how to continue with the service. An Annex contains important results developed 

within the Data analytics service, which are expected to be appreciated by scientific 

communities related to Big Data analysis. 

This document can also act as a basis for preparation of the next PRACE implementation phase 

project, if there will be an opportonuty to prepare it. 

1 Introduction 

An efficient and state-of-the-art pre-exascale HPC infrastructure at a European level should be 

ready to operate innovative services to address scientific, technological and societal challenges. 

In Task 6.2 of the PRACE-6IP project, we have examined four such services. The main 

objective of this deliverable is to report on results, obtained during this task. 

Following the interest of project partners, four groups of partners – one for each new service – 

were defined. The groups were coordinated by ULFME, which was the Task 6.2 coordinator. 

They were composed of:  

- Service 1: Urgent Computing (UC): the coordinator of this service and the only 

member of the working group was PSNC; 

- Service 2: In-situ visualisation: the coordinator of this service was CINECA and 

other partners involved in were INRIA and HLRS; 

- Service 3: The deployment of containers and full virtualised tools into HPC 

infrastructures: work on this service was coordinated by UiO and the other 

contributing partners were INRIA and CEA;  
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- Service 4: Data Analytics: this service was coordinated by IDRIS-CNRS. The other 

partners involved in this service were CINECA, SURF, GRNET, NCSA, UL and 

EPCC. 

During our work, in the first 3 months, we initially developed operational plans for each service 

and then we followed these plans until the end of October 2021, when the main components of 

this deliverable were written. For each service, this deliverable contains the: 

(i) service description 

(ii) description of the work carried out within the PRACE-6IP project on the service 

(iii) proposition on how to continue with this service in the period beyond PRACE-6IP 

project. 

For each service we have also developed one Key Performance Indicator (KPI) which 

encapsulated the main ingredients of the service. These KPIs are reported at the end of each 

service description. 

During the finalisation of Task 6.2, we have collected important technical details in the form of 

several white papers and scientific papers. The main outcomes of the four services are appended 

to this deliverable as an Annex. The deliverable will be an useful reading for technicians that 

work on implementations of different software stacks on an HPC and for researchers who want 

to use these stacks within their research projects and programs. 

2 Service 1: Urgent Computing 

2.1 Description of the service 

Urgent Computing (UC) enables responsible bodies to make conscious decisions by supporting 

computations of simulated predictions of time critical events, usually related to natural hazards. 

Unfortunately, most domains of science cannot afford dedicated resources for their urgent 

computing problems. 

As PRACE is an HPC infrastructure designed for research, the compute-only part of most of its 

supercomputers is not fault-tolerant against several sorts of hardware failure and certainly not 

against power failures. Since redundancy and fault tolerance is not for free, and hardware and 

power failures occur quite infrequently, it is more cost-efficient to spend money on total 

capacity and to simply reschedule and rerun the jobs that have suffered from an occasional 

failure than to spend more money on resilience and redundancy. 

On PRACE systems it is also customary that maintenance intervals are planned and announced 

in advance, without giving users a back-up production site during maintenance. If the 

announcements are well in advance, this is no problem for regular research jobs. For UC jobs 

the matter is quite different. It is a defining hallmark for the context of UC that the demand is 

only foreseeable for a short period prior to execution. Means to synchronise, by delaying or 

speeding up the course of certain events, may be lacking altogether. The urgency usually 

implies that there is no second chance. Starting a job after the deadline has past or having to 

rerun a failed job will make the result, although correct, useless simply because it is too late [1].  

Within PRACE, we are not able to propose a uniform policy of urgent scenario deployment on 

PRACE sites. PRACE sites (Tier-0 and Tier-1) have got their own, independent machine 
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utilisation scenario and, according to the analysis – currently no PRACE site is eligible to run 

UC job without thorough reconfiguration of the local job management system reconfiguration. 

It is worth mentioning, that three PRACE sites were actively involved in UC scenarios 

evaluation in the past: LRZ [2], PSNC [3], and Cyfronet [4]. The following responses to an 

urgent computing request are possible in general: 

1. Scheduling the urgent job as “next-to-run” in a priority queue. This approach is simple 

and highly recommended as a possible response for all resource providers. No running 

computation is killed; the impact on normal use is low. The urgent job will begin when 

all of the running jobs complete for a given set of CPUs. Unfortunately, this wait could 

go up to hours or even days. It is not suitable for UC mode.  

2. Suspending running jobs and immediately launching the urgent job. This will then force 

some memory paging, but the suspended job could be resumed later. Node crashes and 

failed network connections can be an obstacle in reviving suspended jobs. The benefit 

of this policy is that urgent jobs will begin almost immediately, making this option 

attractive in some cases. This scenario was analysed in PRACE-6IP with the support of 

two important real applications.  

3. Forcing a checkpoint/restart of running jobs and re-queuing the urgent job as the next 

to run. This response is similar to the previous response but safely moves the checkpoint 

to a location where it can then be used to restart on alternative resources. Architectures 

supporting system-based checkpoint/restart can be used to support urgent computing 

where reliable. This checkpointing for large-memory systems could take 30 minutes or 

more depending on I/O and storage rates. Also, checkpoint/restart feature might be 

implemented in the application to ensure system independency. 

4. Killing all running jobs and queuing the urgent job as next to run. Clearly this response 

is drastic and frustrating to the users who will lose their computation. Nevertheless, it 

will ensure that extremely urgent computations begin immediately after running jobs 

are killed [5]. The policy is technically easy to implement, but it spoils the ordinary 

users’ trust and definitely decreases an HPC center’s reputation.  

5. Novel architecture exploitation: cloud processing, e.g. Docker SWARM [6]. Docker 

swarm is a container orchestration tool, meaning that it allows the user to manage 

multiple containers deployed across multiple host machines. One of the key benefits 

associated with the operation of a docker swarm is the high level of availability offered 

for applications and a very dynamic environment. The application must be aware of that 

to exploit all pros. This scenario has not been evaluated in PRACE-6IP in the context 

of Urgent Computing due to the lack of native cloud-based infrastructure.  The 

deployment of such technology is a subject to analysis, how the resources shall be 

managed in the future.    

Any operational platform supporting UC case implies that the environment is in a state of 

“warm standby” for the real event. To be, and remain, in a state of warm standby: 

 All needed application software must be pre-installed; 

 One or more data sets suitable for validation must be pre-installed; 

 There must be a validation protocol using pre-installed software and pre-installed data; 

 Runs to execute the validation protocol must be scheduled regularly to verify that the 

applications keep performing as they should, especially after system changes, software 

upgrades on general purpose and computational libraries, etc.; 
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 Validation runs can be regular batch jobs. A budget of sufficient core hours to perform 

these jobs regularly must be allocated; 

 Since pre-installed software and data may be damaged by human error, or hardware 

malfunctioning, or even the above noted updating of other software components, there 

should also be a regularly tested procedure to quickly restore – reinstall, relink, 

recompile, reconfigure, whatever applies – the pre-installed components; 

 While software validation can fit into the regular production environment, the workflow 

of a real event necessarily requires more; 

 Platforms supporting a UC case must have a mechanism to raise the emergency flag, 

which can be executed by a preselected class of users: UC users, UC operators; 

 Raising of the emergency flag must enable the availability of the required compute and 

storage resources in due time; 

 Although it is project dependent, the exact amount of required compute and storage 

resources, and the exact due time should be agreed in advance by the involved parties 

supplying and using the platform; 

 How the freeing of adequate resources in due time is implemented should be at the 

discretion of the platform supplying side. Some sides may want to use pre-emption of 

already running jobs, others may e.g. have a large enough dedicated partition for jobs 

with a fairly short wall clocks time that they can drain from regular job usage - responses 

to an urgent computing request; 

 Complete workflow scenarios, including the availability of resources in due time, must 

be regularly practiced as “dry runs” as well; 

 The regular testing of workflow scenarios is potentially much more disruptive for the 

normal production work than the above-mentioned regular software validation and their 

frequency must be agreed upon in advance, at the intake of a UC project. The budget in 

core hours allocated for a UC project should be sufficient to cover the actual loss of 

economic capacity resulting from the agreed upon level of workflow scenario dry runs.  

The design of the complete UC workflow is not a topic of PRACE-6IP. It will be worked out 

in another EU project eFlows4HPC (contract No 955558) [7]). They work on the 

implementation of real UC workflows for Tsunami simulation and Seismic simulation. 

PRACE-6IP strongly co-operated on testing HPC core kernels in order to discover the 

characteristics of the usage and load parameters on the selected machine.  

2.2 Results achieved during the project 

The goal of the PRACE-6IP project was to propose a PRACE service dedicated to running 

specialised applications with given time constraints. UC mode is the most eligible to adapt such 

scenarios. The paradigm of “on demand computing” is also interesting but it does not address 

the constraints as UC policy must assure. At the time, when the design of the service was 

starting, there was no real customer in Europe known to us. Even more, we were not aware of 

anyone really interested to take the advantage of the advanced features and willing to contribute. 

In Europe, the situation changed in 2019 approximately.  

The plan assumed to find a good example of the real case eligible to run in UC scenario mode 

and according to the observation and analysis during the runtime – preparing the proposal of 

the policy for these applications. We are aware, that the UC mode is uncommon in HPC centers. 

There is only one evidence that the UC mode has been deployed in real environment. It is on 
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the Frontera system (peak performance of 23.5 Petaflops) located in TACC (US). In 2020, the 

machine has been extended for helping fight Covid-19 and producing emergency storm surge 

simulations for hurricanes making landfall in the Gulf of Mexico [8]. The part of the machine 

is being booked for UC runs only. This scenario points out the general decision process, how 

to define SLA for UC and other resources’ users affected by unordered job processing.  

The previous PRACE-5IP project had started piloting co-operation with CoE: Center of 

Excellence for Exascale in Solid Earth (ChEESE), ID: 823844, as described in the PRACE 5IP 

deliverable D6.4 [99]. The development of UC services should be based on the European open 

science and FAIR data policy with matured and operational open codes and use cases including 

all the data and logistics required up to the distilling of the results in forms than can be used for 

expert opinions and decision making.  

This should involve co-design and co-development between ChEESE, PRACE-IP projects and 

the end users. ChEESE CoE considered “urgent” simulations as possible use cases within a 

testing phase to identify and assess the required services, resource management and policy 

access in relation with different workflow patterns and data logistics, while checking the 

feasibility of effectively contributing to future emergencies. ChEESE had a special focus on 

developing at least 10 pilots and services, but 2 of them promised well in making use of urgent 

supercomputing with disaster resilience purposes. The main interesting use case pilots are the 

following: 

Faster than real-time tsunami simulations 

FTRT tsunami computations are crucial in the context of Tsunami Early Warning Systems 

(TEWS) and in the context of post-disaster management. Greatly improved and highly efficient 

computational methods are the first raw ingredient to achieve extremely fast and effective 

calculations. HPC facilities have the role to bring this efficiency to a maximum while drastically 

reducing computational times. In addition, inputs from an urgent seismic simulation can be 

exploited for physics-based urgent tsunami simulations. A typical case of probabilistic tsunami 

forecasting would use from thousands to tens of thousands tsunami simulations for different 

realisations of the parameters describing the causative source. 

Near real-time seismic scenarios 

By including full 3D physical models and topography, the level of details that simulations can 

attain and the quantities of interest that can be inferred (e.g. shaking time, peak ground 

acceleration, and response spectral values at each point on the surface) are highly valuable to 

analyse the outcome of earthquakes with high resolution. If a solution can be attained at time 

spans that are sufficient for disaster management (i.e. hours), urgent computing seismic 

scenario simulations might become useful seismic resilience tools. 

PSNC, as the only PRACE site involved in the UC service became a member of the 

eFlows4HPC consortium. Till that time, the co-operation with the application owners or 

developers was hampered due to lack of any bilateral agreement or legal tender between 

PRACE and another consortium. In PRACE-6IP, the analysis of the selected applications was 

performed. It was expected to get the answer how to organise the machine load policy, what 

would happen with the entire machine state when the UC job is placed immediately in the 

scenario, i.e., by suspending running jobs to memory and immediately launching the urgent job. 
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Testing environment: 

EAGLE PRACE Tier-1 partition: 

9 nodes: [Intel Xeon 6242, 2x16 cores, 384 GB, 8xNvidia V100 32GB]; 0.56 PFlops 

OS: GNU Linux 

LRMS: SLURM 20.11.8. 

Application 1. Faster than real-time tsunami simulations (PTF/FTRT) 

HySEA [9] (Hyperbolic Systems and Efficient Algorithms) software consists of a family of 

geophysical codes based on either single layer, two-layer stratified systems or multilayer 

shallow water models. HySEA is a high-performance software package developed by the 

EDANYA group at the University of Málaga, Spain [10] , for the simulation of geophysical 

flows, including tsunamis generated by earthquakes or landslides, river floodings, sediment 

transport, turbidity currents, etc. 

Tsunami-HySEA is implemented in CUDA language, in double precision and in structured 

meshes, using two-way nested meshes techniques and for multi-GPU architectures. 

Requirements 

 CMake >= 3.0 

 A CUDA-capable GPU 

 CUDA >= 6.0 

 NetCDF 

 PnetCDF (Parallel NetCDF) (only for the simulator) 

Before running the job, some essential files must be prepared: 

 Bathymetry file 

 Parameters input files 

 File for managing the number of GPUs used 

The experimental runs on EAGLE PRACE Tier-1 machine show that typical HySEA job 

requires 9 GB of local memory per 1 GPU. It is also important to make a note, that final output 

data set needs 3.5 TB (depends on the mesh density, number of points). 

As a result of that tests is the theoretical possibility to run Tsunami-HySEA job in UC mode 

without thorough devastation of the machine load performance. It is possible to suspend to 

memory (relatively small) running jobs in order to free resources, however not all GPU jobs 

restarted successfully. The examination of this phenomena was not a goal of PRACE-6IP.  

Application 2. Near real-time seismic scenarios (UCIS4EQ) 

Salvus [11] is a software suite focusing on high-performance full waveform modelling and 

inversion was used for HDF5 meshes generating. It consists of five components: 

 SalvusCompute: Parallel high-performance solver for spectral-element wave 

propagation on unstructured meshes; 

 SalvusMesh: Library and toolbox to build meshes in both two and three dimensions; 

 SalvusFlow: Workflow orchestration and remote job execution framework; 
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 SalvusOpt: Non-linear optimisation framework; 

 SalvusProject: Data and task management ensuring reproducibility and tying together 

various parts of Salvus. 

The experimental runs on EAGLE PRACE Tier-1 machine shows that Salvus job may require 

up to 64 GB of local memory and 1 GPU per node. It is possible to suspend to memory 

(relatively small) running jobs in order to free the nodes.  

For the suspend / resume facility – SLURM scontrol management tool offers the appropriate 

commands [12]:  

scontrol suspend job_list 

    Suspend a running job. The job_list argument is a comma separated 

list of job IDs. Use the resume command to resume its execution. User 

processes must stop on receipt of SIGSTOP signal and resume upon receipt 

of SIGCONT for this operation to be effective. Not all architectures 

and configurations support job suspension. If a suspended job is 

requeued, it will be placed in a held state. The time a job is suspended 

will not count against a job's time limit. Only an operator, 

administrator, SlurmUser, or root can suspend jobs. 

scontrol resume job_list 

    Resume a previously suspended job. The job_list argument is a comma 

separated list of job IDs. 

Before suspending, it might be good to check whether after freeing the node, the remaining 

memory will be large enough to run UC job. 

The GPU suspend/resume facility is been provided by NVIDIA Virtual GPU (vGPU) - VMware 

vSphere Hypervisor (ESXi) [13] 

During the internal discussion with other PRACE system operators, the GPU management is 

still on premature state and it is difficult to prepare a full virtualised stack of subsystems. That 

is the future, when the new machine will be deployed – the new paradigm of HPC resource 

management will be fully deployed (full HPC virtualisation).  

2.3 KPI 

Number of scientific codes was selected for testing in UC mode on at least one PRACE HPC 

system. The expected goal assumed the two different codes being tested on the selected 

machine. The work was conducted on EAGLE by use of HySEA and UCIS4EQ kernel which 

fulfills the requirement.  

2.4 Future of this service 

Nowadays, the natural hazards seem to become more frequent, spectacular and imply higher 

spending for removal of their effects. The future will definitely demonstrate the necessity of 

using computations in urgent scenarios on the selected systems.  

2020/21 top Natural and Biological Disasters [14] [15] [16] 

 The Australian Bushfire (burned an estimated 18.6 million hectares, destroyed over 

5,900 buildings, and killed at least 34 people, while over 400 people were killed due to 

the residual smoke inhalation); 
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 Devastating Floods in Indonesia; 

 Hurricane in United States (more than $60bn in damages); 

 Volcano Eruption in The Philippines (The Volcano left huge ash clouds which caused 

mass evacuations of over 300,000 people); 

 Earthquakes in Turkey, The Caribbean, China, Iran, Russia, Philippines & India (45 

earthquakes characterised over 6 magnitudes. Jamaica and Russia were the worst hit 

with earthquakes over magnitude 7. The earthquake in Turkey claimed 41 lives); 

 Locust Swarms in East Africa & Parts of India & Asia; 

 Cyclone Amphan in India & Bangladesh; 

 Europe Windstorm (Ciara and Alex that cost nearly $6bn and killed 30 people); 

 Covid-19 pandemic; 

 La Palma Cumbre Vieja volcano eruption (ash emissions, strong quakes, lava flowing, 

sulphur dioxide emission, thousands of people evacuated); 

 Human migration due to climate change. 

2020 was a historic year of extremes for the US according to NOAA’s National Centers for 

Environmental Information (NCEI) report [17]. Hence, the attempt to reduce a disaster’s 

influence on the people is inevitable and the UC price will not play the main role in the future.   

The existing Urgent Computing use cases that are not granted access to the dedicated resources 

can benefit from using existing e-Infrastructures, making them valuable for the population. The 

present computational facility is being designed to have common uniform access, the same set 

of tools and similar bunch of scientific applications. Existing infrastructures have got the local 

policies that are in a contradiction with the requirements of urgent computing. The 

technological part of the new policy deployment is feasible according to the policy’s guidelines 

being worked out in the legal tender between HPC center and various stakeholders.  

The new paradigm of computational resource arises; except popular queuing systems on HPC 

machines, the cloud-based solution is gaining the existing areas of job runs. The authors of the 

application workflow must be aware of the characteristics of the environment where the urgent 

job will be placed. 

PRACE has adopted this service and includes it into their portfolio. It is important to understand 

that SLA must agree in advance prior to the technical deployment of the scenario. There is no 

uniform scenario of urgent computing deployment. Each time, when a new request for urgent 

computing usage comes, a new separate tender must be made. The constraints are strictly in 

line with the particular application: e.g., FRTR (tsunami), UCIS4EQ (Seismic Workflow). This 

part of the tender belongs to the application developers and workflow architect. Summing up – 

the configuration of an entire Urgent workflow must be designed by scientific division of the 

application with the co-operation of future PRACE staff.  

3 Service 2: in-situ visualisation 

3.1 Description of the service 

It is well known that more and more time is spent during a simulation for I/O operations and 

post-processing. I/O is recognised to be the main bottleneck to achieve the Exascale computing, 

which is not so far away. The first supercomputer in the TOP500 is the Fugaku system with 

7,630,848 cores, which allowed it to achieve an HPL benchmark score of 442 Pflop/s [18]  

Until recently, the in-situ analysis and visualisation field have been characterised by ad hoc, 

proof-of-concept prototypes that were, at the beginning, designed for monitoring and steering 
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the simulations, and only afterwards they were extended to execute in-situ tasks. The following 

tools fall in this category of ad hoc proof-of-concept prototypes: Cactus, CUMULVS, Damaris, 

EPIC, EPSN, Freeprocessing, Nessie, pV3, QIso, SCIRun, Strawman, VISTLE and yt. A brief 

summary of each infrastructure is described in [19]. However, there are some in-situ 

frameworks that caught our attention for the quality of its implementation and for the features 

they implement: Catalyst, Damaris and Melissa. 

The aim of the project was to deploy these in-situ frameworks on at least three different PRACE 

systems and to evaluate their performance using some realistic use cases, with the perspective 

of making them a service available to the PRACE community. 

Each infrastructure has been coupled with some CFD codes in order to be profiled. This has 

required to spend part of the project effort to develop the adaptors in the code language (e.g. 

Fortran, C++), or to improve the adaptor that has already been developed (e.g. OpenFOAM). 

The adaptor is a key software component to couple the CFD code with an in-situ infrastructure. 

It has to represent the simulation data into a format (e.g. VTK for catalyst) that can be managed 

by the in-situ framework and to read and execute in-situ pipelines (e.g. visualisation pipelines).  

The work on in-situ visualisation done during PRACE-6IP can be summarised as following: 

 We profiled the catalyst in-situ framework coupled with MIGALE, OpenFOAM and 

STREAmS on the GALILEO and M100 clusters. The catalyst framework is profiled 

both using a traditional cluster installation and using a singularity container; 

 We profiled the Damaris in-situ framework coupled with Code Saturne on the Hawk 

cluster; 

 We profiled the Melissa in-situ framework coupled with Parflow and WRF on the 

Juwels cluster. 

In the next section we will describe the results achieved during PRACE-6IP. For each of the 

three in-situ frameworks, we provide a sub-section describing the use-case and profiling results, 

together with some information about the codes and the frameworks used in the service. 

3.2 Results achieved during the project 

3.2.1 In-Situ Visualisation using Catalyst 

ParaView Catalyst [20] is an open-source data processing and visualisation library that enables 

in-situ, in transit and hybrid workflow. Built on top of and designed to interoperate with the 

standard visualisation toolkit VTK, Catalyst enables simulations to perform analysis, produce 

output data and visualise intermediate results during a running simulation concurrently [21]. 

In PRACE-6IP Paraview Catalyst has been tested and profiled with the following codes: 

 MIGALE [22], a High Order Discontinuous Galerkin code developed by Francesco 

Bassi and Alessandro Colombo from University of Bergamo and Andrea Crivellini from 

Marche Polytechnic University; 

 OpenFOAM [23], the well-known free and open source CFD software developed 

primarily by OpenCFD Ltd. since 2004. OpenFOAM uses the finite volume algorithm 

to solve the systems of partial differential equations over  a complex domain that can be 

triangulated in an unstructured mesh of polyhedral cell. In this project, we still worked 

on the ESI version as a follow up of the work done in PRACE-5IP; 
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 STREAmS [24], an open source DNS CFD code of compressible turbulent flows in 

cartesian geometry, solving the unsteady, fully compressible Navier-Stokes equations 

for a perfect gas. Its main developer is Matteo Bernardini from University of La 

Sapienza. 

The codes have been selected for the following reasons: 

 A long and fruitful collaboration with the developers of the codes in EU projects; 

 They implement different algorithms to discretize the Navier-Stokes equations and are 

used in different context: OpenFOAM is mainly used for industrial cases, due to its 

support for complex geometries and unstructured meshes, and the extensive range of 

features to solve complex fluid dynamics problems involving turbulence, heat transfer, 

chemical reactions and multi-phase. STREAMs is used for research CFD problems and 

handles only Cartesian structured meshes. MIGALE is a hybrid code, that targets both 

academic cases and industrial ones; 

 All of them are CFD codes that have been tested and used massively on HPC clusters. 

As mentioned earlier, the development of a Catalyst adaptor is crucial for the coupling of the 

CFD codes with the framework. Regarding MIGALE and STREAmS, WP6 co-developed the 

adaptor together with the main developers of the codes, in particular with Alessandro Colombo 

for MIGALE and Matteo Bernardini for STREAmS. Regarding OpenFOAM, WP6 used the 

updated version of the adaptor previously developed during the PRACE-5IP implementation. 

The HPC clusters where we installed Paraview Catalyst are: GALILEO, MARCONI and 

MARCONI100. All these clusters are hosted at CINECA. GALILEO and MARCONI are CPU-

based clusters with no GPUs in the compute nodes. For these machines, we installed a MESA 

enabled Paraview Catalyst version (version 5.6.3). On the contrary, M100 is an accelerated 

cluster which requires CUDA and EGL Paraview Catalyst version (version 5.8.1). We used 

GALILEO for profiling MIGALE and M100 for profiling OpenFOAM and STREAmS. 

The profiling activities have been carried out to quantify the overhead of post-processing 

pipelines over the total time of the simulation using realistic use-cases. Below we go through 

the three CFD codes mentioned before. 

3.2.1.1 MIGALE 

In-situ visualisation has been tested on the T3L problem [ [25], [26]], part of the ERCOFTAC 

test case suite [27]. For this test case the flow field is characterised at leading edge by a laminar 

separation bubble and, downstream the transition, an attached turbulent boundary layer. A mesh 

made of 38,320 elements with quadratic edges and a seventh-order discretisation P6 was 

considered, resulting in 3.2M degrees of freedom per equation.  

The in-situ approach allowed to clearly investigate the flow features development, e.g., hairpin 

vortices, at different values of the Reynolds number, i.e., ReD = {1,725, 3,450, 6,900}, and free-

stream turbulence intensity at the inlet, i.e., Tu = {0%, 2.3%}. Figure 1 shows some frames of 

the instantaneous iso-surface of the lambda2 criterion, coloured with the x-component of the 

velocity, generated via Catalyst for the different regimes. To assess the implementation of in-

situ visualisation in code MIGALE, the ReD=1725, Tu=0\% flow regime was considered. 

To quantify the computational effort due to in-situ visualisation, the code MIGALE was 

profiled and the computation monitored over four-time steps for polynomial representations of 

the solution ranging from degree 4 to 6. 
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As an output of the visualisation process, a .png file is generated for each time step showing a 

plate with the surface mesh superimposed and identifying the vortex cores by means of an 

isosurface of the lambda2 criterion coloured with the x-component of the velocity, see Figure 

1. For different polynomial degrees of the solutions, i.e., P{4-6}, the cost of in-situ visualisation 

was monitored also varying the number of sub-elements nse = {2,...,k+1}. 

MIGALE has been profiled on GALILEO using 540 cores. The results are reported in Table 1. 

They show that the overhead of the in-situ visualisation strongly depends on the number of sub-

elements used for the vtk representations of the solution, while it is less influenced by the 

polynomial degree. Although reducing nse mitigates the computational cost of visualisation, 

lower values of nse do not guarantee a resolution sufficient to appreciate some flow details, e.g. 

the downstream evolution of the hairpin vortices.    

 

Figure 1: Instantaneous iso-surface of the lambda2 criterion coloured with the x-component of the velocity 

 

K Ndof nse Tpipeline/Ttimestep 

4 35 2 

3 

4 

8.6% 

15.7% 

27.0% 

5 56 2 

3 

4 

5 

13.4% 

28.7% 

53.4% 

90.2% 

6 84 2 

3 

4 

5 

6 

15.1% 

34.0% 

65.4% 

110.1% 

172.9% 

Table 1 MIGALE - T3L: in-situ visualisation relative cost with respect to time spent for advancing the 

solution of a time step without in-situ [Tpipeline/Ttimestep] with the variation of the number of degrees of 

freedom [Ndof] and the number of sub-elements [nse] 
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3.2.1.2 OpenFOAM 

In this project, the delayed version of the X-LES (DX-LES) model has been used for the 

prediction of the pump impeller [28] performance of a centrifugal pump, both at the design- 

and one quarter-loads (off-design). The hybrid model can be seen as an improved version of 

the eXtra Large Eddy Simulation (X-LES) model [29]. The set of governing equations formally 

solved for X-LES consists in Reynolds-averaged Navier-Stokes (RANS) equations closed by a 

turbulent/non-turbulent (TNT) k-omega turbulence model, where the k-equation dynamically 

reduces from the k-equation of the turbulence model to the subgrid [30]. 

The simulations have been carried out with three different hybrid meshes (coarse, medium and 

fine) to investigate the correct spatial resolution needed to carefully describe the fluid features 

that characterise the impeller flow field at both operating conditions. In particular, the full 

geometry has been considered in order to remove the periodic assumption, that is not valid to 

study the instantaneous flow. Furthermore, a flow extension has been considered at the inlet 

section, to reduce possible disturbance induced by the blade leading edge. A diffuser has also 

been added to avoid recirculation at the outflow. 

All computations have been performed using pimpleFoam, which is a transient solver for 

incompressible flows available in OpenFOAM, and the solution is advanced in time with the 

backward differentiation formula (BDF) scheme, a second-order implicit time-integration 

scheme. The simulations have been initialized with the RANS steady state solution (and shear 

stress transport (SST) k-omega turbulence model) with the Multiple Reference Frame (MRF). 

The visualisation pipelines are generated automatically in Paraview and are coded in python, 

see Figure 2. They are built keeping in mind the quantities of interest to visualise in a centrifugal 

pump. The following two pipelines are used for the profiling: 

 Q-criterion: this pipeline computes and renders the iso-surfaces of the Q-criterion 

quantity equal to 0.001. The iso-surfaces are coloured with the magnitude of the 

vorticity field together with the blade edges in the rendering process; 

 2D-streamlines: this pipeline computes the 2D-streamlines over a slice perpendicular to 

the inlet direction. The streamlines are coloured with the velocity magnitude together 

with the blade edges in the rendering process. 

 

Figure 2: Q-criterion (left) and 2D-streamlines (right) visualisation pipelines  

 

The results, shown Table 2 report the overhead of the execution of the two pipelines with respect 

to the elapsed time of ten iterations of the PIMPLE algorithm.  
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We performed six simulations per pipeline changing the size of the mesh (i.e. Coarse, Medium 

and Fine meshes) and the boundary conditions (i.e. Design and Off-design). 

All simulations were performed on Marconi 100 using a number of nodes that keeps constant 

the computational load per core, 128 cores for coarse mesh, 192 cores for the medium mesh 

and 256 cores for the fine mesh. The profiling results reported in Table 2 have been achieved 

by running the simulations for 60 time steps, starting from a fully developed flow. In-situ 

visualisation tasks are executed every 10 time steps. The first 10 time steps are discarded while 

the other 15 are used for the average procedure. 

According to the results of Table 2 we found that the PIMPLE elapsed time is faster in the 

design case with respect to the off-design and that it slightly increases from the Coarse to the 

Fine mesh. The Q-criterion pipeline is faster than the 2D-streamline but the in-situ elapsed time 

of each pipeline does not show a similar linear trend. However, the overhead of the in-situ 

visualisation pipelines over the PIMPLE elapsed time is low since it is in the range of 0.7-1.0% 

for the Q-criterion and 1-3% for the 2D streamline. 

Case PimpleTime Pipeline In-Situ time Weight_10 

Design coarse mesh 9.23s 

9.26s 

Q-criterion 

2D-streamline 

0.91s 

1.11s 

0.99% 

1.19% 

Off-design coarse mesh 11.07s 

11.10s 

Q-criterion 

2D-streamline 

1.03s 

2.75s 

0.93% 

2.48% 

Design medium mesh 11.02s 

10.91s 

Q-criterion 

2D-streamline 

0.87s 

2.93s 

0.79% 

2.68% 

Off-design medium mesh 12.76s 

12.51s 

Q-criterion 

2D-streamline 

1.14s 

3.19s 

0.89% 

2.55% 

Design fine mesh 11.45s 

11.54s 

Q-criterion 

2D-streamline 

1.01s 

3.60s 

0.88% 

3.12% 

Off-design fine mesh 12.58s 

12.78s 

Q-criterion 

2D-streamline 

0.98s 

3.17s 

0.78% 

2.48% 

Table 2: OpenFOAM – pump impeller: in-situ overhead of the Q-criterion and 2D-streamline pipelines 

respect to the elapsed time of ten iterations of the PIMPLE algorithm 

3.2.1.3 STREAmS 

The use-case selected in this project is the most complex of the three configurations that can be 

simulated using STREAmS, namely the shock-turbulent boundary layer interaction. The case 

analysed is the numerical equivalent of the experiment performed by [31], and the main 

parameters are set accordingly as: free-stream Mach number M∞ = 2.28, Reynolds number of 

the incoming boundary layer (based on the momentum thickness) Retheta=5,800 and 

thetashock=8°, being thetashock the deflection angle of the flow crossing the shock. 

The simulations have been carried out with three different Cartesian meshes (coarse, medium 

and fine), ranging from 0.13 to 8 billion. Time integration must be carried out for at least 2 

million time-steps, to capture the significant low-frequency wall-pressure fluctuations as-

sociated with the boundary-layer shock-region interaction. The simulations are performed on 

the M100 cluster using a number of GPUs that keeps constant the computational load per GPU. 

The most important parameters of the simulations are reported in Table 3. 
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Case Re #points 

[billions] 

#GPUs dt [s] Iteration 

time [s] 

Coarse 235 0.13 8 0.0012 0.3 

Medium 475 1.1 64 0.0006 0.3 

Fine 950 8.6 512 0.0003 0.3 

Table 3: STREAmS use-cases parameters: Reynolds number, number of GPUs, non-dimensionaltime-step, 

iteration elapsed time 

 

The constant value of the elapsed time per iteration shows the ideal weak scalability achieved 

by the code, that runs completely on GPUs. From a visualisation point of view, we consider of 

interest six types of objects associated to variables and filters available in ParaView (see Figure 

3 for an example): 

 Density contours in an (x, y) plane (streamwise, wall-normal): visualise the evolution 

of the boundary layer including streamwise convection and development of turbulent 

vortices; 

 Contours of streamwise velocity component in an (x, z) plane (streamwise, spanwise) 

at y=0.1 (wall-normal distance): this visualisation shows the turbulent structure in the 

core of the boundary layer; 

 Contours of streamwise velocity component in an (x, z) plane (streamwise, spanwise) 

at the first y cell (wall-normal distance): since the velocity is zero at the wall, this 

visualisation shows the gradient field (proportional to skin-friction) along the wall-

normal direction; 

 Isosurface of Ducros sensor at value 0.3: identifies impinging and reflected shocks as 

visible surfaces in the three-dimensional domain; 

 Contours of wall-pressure; 

 Isosurface of swirling strength [32]. Useful for visualising turbulent eddies. The 

isosurface can be colored using values from another field, e.g., streamwise velocity 

component. 

 

Figure 3: A visualiSation from full in-situ visualisation pipeline 

 

The pipeline discussed here requires the use of two ParaView filters, namely Slice which 

extracts data along a flat surface of the domain, and Contour, which extracts the isosurface of a 
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certain quantity which can then be possibly coloured using the values of another quantity. For 

the Contour filter, which is computationally much more demanding, there is also an 

implementation available using the VTKm plugin capable, as seen, of exploiting the GPUs. The 

VTKmContour filter is potentially more performant and may in principle avoid data transfers 

from GPU to CPU. 

The elapsed time of an in-situ pipeline generally includes the filter extraction time plus the 

additional time related to data preparation and image rendering. The results are shown in Table 

4 for the coarse, medium, and fine cases. Elapsed times are averaged excluding the first in-situ 

iteration that includes the initialisation time. 

Case Coarse Medium Fine 

 Normal VTK-m Normal VTK-m Normal VTK-m 

Slice filter 

time 

0.4s - 0.4s - 0.3s - 

Contour filter 

time 

5.5s 3.3s 6.1s 3.7s 5.9s 3.5s 

Additional 

times (data 

preparation, 

rendering) 

1.4s 1.6s 1.9s 2.1s 3.3s 2.9s 

Overhead 

Slice filter 

7% N.A. 7% N.A. 10% N.A. 

Overhead 

Contour filter 

23% N.A. 27% N.A. 30% N.A. 

Overhead 

Full Pipeline 

filter 

37% N.A. 

 

40% N.A. 

 

49% N.A. 

 

Table 4: Elapsedd times [s] for in-situ visualisation pipeline sections: slice filter, contour filter, additional 

times (data preparation and image rendering). For contour filter VTKm is also considered 

 

As expected, the Contour filter is much more computationally demanding than the Slice filter. 

Using VTKm substantially improves the contour performances, with percentage savings of 

around 40%. The scalability of filters in the spirit of weak scaling shows that there is a very 

modest variation of the times -- within 10% -- considering the different problem sizes. However, 

it is only valid for filters themselves while additional times -- i.e., rendering and data preparation 

times -- show a significant increasing trend when shifting to larger sizes (elapsed times more 

than double between coarse and fine cases).  

To consistently evaluate the impact of an in-situ pipeline in the context of a STREAmS 

simulation, it is appropriate to consider a realistic scenario in which the image production 

occurs every ninsitu time iterations. Considering the explicit nature of the time integrator of the 

code, the time step is extremely small and, consequently, from the visualization point of view, 

it seems reasonable to consider values of ninsitu around 100.  

The results reported in Table 4 show that the impact of the Slice pipeline is always very modest, 

i.e., around 10% in the worst case corresponding to the fine case. In contrast the impact of the 

contour pipeline is significant and reaches 30% for the fine case. For more complex pipelines, 

e.g. the full pipeline that includes the six visualisations described above, the percentage goes 

close to 50%. 
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3.2.2 In-Situ Visualisation using Catalyst in a Singularity container 

This activity was based on developing a configuration script that would then serve as a recipe 

for building a container using the Singularity [33] development platform. The software 

installation within the container was done using the Spack [34] package management tool. As 

a base point, a CentOS image from the Docker repository was pulled. To have more control in 

the container building process, it was decided not to use containerize feature of the Spack as 

well as not to base the installation on the Docker image with the Spack pre-installed. The first 

step after pulling the image with CentOS 7.8.2003 from the Docker Hub was to install the 

prerequisites for the Spack using the yum package manager. The next step was to clone the 

Spack 0.15.3 from the repository and use it for all the further software installations. In the 

following, we report the list of the software stack installed using Spack: 

 GCC 8.4.0 

 OpenFOAM 1912 

 Paraview 5.6.0 (Release version) 

 Visualisation module for OpenFOAM provided by CINECA 

Some of the additional tasks in the installation process were to determine the appropriate 

versions of the OpenFOAM and Paraview and the compilation flags for the further installation 

steps, and to configure the additional repository in Spack where the visualisation module 

provided by CINECA is located. After creating the container image, the performance tests were 

performed to see how the containerised application scales on a single node as well as on 

multiple nodes, with and without the visualisation process. For that purpose, the ‘Wind Around 

Buildings’ use case provided by OpenFOAM was used, with the number of cells refined 

(increased) to 1,481,887. The tests were done on the Galileo cluster at CINECA by using 

OpenMPI 3.1.6 and Singularity 3.6.1. Table 5 provides the results of the intra-node testing for 

400 time steps, where visualisation occurs every 50-time steps. The overhead of the 

visualisation processing was in this case up to 38 %. 

processes 

per node 

number 

of nodes 

wall time (with 

visualization) [s] 

wall time (without 

visualization) [s] 

Overhead [%] 

2 1 212.95 194.09 9.72 

4 1 121.14 118.14 2.54 

8 1 103.89 80.98 28.29 

16 1 79.14 62.46 26.71 

24 1 67.88 53.65 26.52 

32 1 64.22 48.92 31.28 

36 1 63.42 46.13 37.48 

Table 5: Results of the intra-node scalability testing 

 

Table 6 provides the results of the inter-node tests where the use case was scaled across multiple 

nodes, with one process per node. The overhead is lower with respect to the previous 

benchmark, up to 16%. 
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processes 

per node 

number 

of nodes 

wall time (with 

visualization) [s] 

wall time (without 

visualization) [s] 

Overhead [%] 

1 2 249.88 203.91 22.54 

1 4 148.49 121.37 22.34 

1 8 104.70 88.82 17.88 

1 16 95.82 71.91 33.25 

1 24 87.54 72.55 20.66 

1 32 82.67 72.65 13.79 

1 36 78.77 67.74 16.28 

Table 6: Results of the inter-node scalability testing 

3.2.3 Asynchronous In-Situ Visualisation using Damaris 

The Damaris library [35] provides flexible, multi-use methods for MPI based HPC simulations 

to perform I/O in an asynchronous manner (I/O is referring to data output to disk or in-situ/in-

transit visualisation process). Damaris allows a simulation to run with minimal interference 

with respect to the chosen I/O method. It allocates dedicated resources (either cores on a node, 

or dedicated nodes) which are used to carry out the processing. For in-situ visualisation, the 

Damaris library interfaces with both Visit LibSim and Paraview Catalyst (currently using the 

VTK library). This enables practitioners to have flexibility in the choice of the visualisation 

interface according to the availability software on a system and pre-configured scripting for 

output of the visualisation analysis. Until now, support has been available for particle, 

rectilinear and curved space grid models.  

As a result of Task 6.2, the Damaris Paraview interface provides support for the unstructured-

grid mesh type. The development of the unstructured mesh model adaptor was addressed by the 

use-case of integrating Damaris with Code_Saturne. Code_Saturne [36]  is an open-source, 

flexible, highly scalable CFD code that is well known within PRACE and is one of the standard 

benchmarking targets of the PRACE Unified European Applications Benchmark Suite 

(UEABS). The combined Code_Saturne + Damaris implementation has undergone testing on 

the HLRS Hawk system in Stuttgart, Germany. The results of the tests have been described into 

the PRACE white paper WP310 [37]. A brief overview of the results will be presented here. 

The Hawk supercomputer is an AMD Rome CPU based system, using 2 64-core sockets in an 

8-way NUMA configuration within a node. The nodes are connected in a 9D hypercube 

topology via a 200 Mb/s HDR Infiniband network. 

The models developed for testing Code_Saturne were designed to be of the size expected of 

high-resolution industrial models and ranged from 29M to 115M hexahedral elements. The 

simulations were run from 1 node to a maximum of 32 nodes (i.e., 128 – 4,096 cores). 

Simulation rank placement testing indicated that hybrid MPI+OpenMP configurations are 

optimal, and three OpenMP threads per rank and 32 ranks per node was chosen as an optimal 

distribution. 

We developed three in-situ visualisation pipelines using ParaView Catalyst. They performed 

relatively simple processing, taking cross sections of the model (one or two cross-section, three 

fields, that scaled with model size) and saving to CSV based format, or taking a single cross-

section and a full 3D field (velocity) and saving to VTK XML based format. 

Due to the large number of cores per node on the Hawk system, some optimisation of placement 

of the Damaris cores was found to be important. The white paper (WP310) discusses two 
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choices of placement made in detail. This work also identified that placement options for cores 

should be added to the Damaris configuration file since it would enhance usability and make 

using Damaris less dependent on the system based, non-standardised methods of process 

placement. As part of the core placement work, the effect of changing the number of cores 

allocated to Damaris was also explored and is another area where added usability (Damaris 

server core “free time” logging) would help the users in finding optimal configurations for 

numbers of cores. The two flagged additions to Damaris should be implemented in the next 

Damaris release (v 1.6) and support for unstructured mesh models with Visit LibSim is also 

planned for an upcoming release. 

The results from the Hawk testing of the Damaris integration with Code_Saturne have been 

presented at the Code_Saturne User Meeting 2021, at EDF in Saclay. Discussion with the 

developers of Code_Saturne at the EDF R&D, Yvan Fournier and Chai Koren, has commenced 

about having Damaris as a supported library in a future Code_Saturne release. 

The white paper also discussed the amount of code changes required to add Damaris support to 

Code_Saturne. One large addition was the transfer of the unstructured mesh data to Damaris. 

This should be a highly reusable procedure, that could be incorporated into the Damaris library 

itself. Another was the development of the “fvm” (finite-volume) template I/O structure that 

Code_Satune uses to have a modular I/O library sub-system. This is where the simulation field 

data is passed to Damaris on each requested iteration. Overall, the code additions were limited. 

A higher proportion of code additions were made to the Damaris back-end to support the 

unstructured mesh data, although again this addition only required an extra member inheriting 

from the C++ `Damaris::Mesh` class. 

Some representative scaling results for the 58M cell model are presented in Table 4. The graphs 

show strong scaling results for the three Paraview Catalyst pipelines used in the study. The red 

boxes are distributions of timing for the Code_Satune runs, without using Damaris. The Blue 

boxes are timing distribution quantiles for in-situ processing with Damaris (i.e. processing is 

asynchronous to the simulation) and the green boxes are distributions of timings for iterations 

that did not request in-situ processing (even iterations). In each pipeline the simulation 

timesteps using Damaris are equivalent (between pipelines) and in all cases less than the times 

when in-situ visualisation was done synchronously. The Damaris times are seen to have a small 

overhead compared to no in-situ output iteration data. Also presented on the graphs are the 

times taken for processing on the Damaris server (circle with cross). These are average times 

as individual iteration times for the server are not available in the log data. It can be seen that 

for the 2xCSV slice output, using 4 nodes onwards, the server times end up greater than the 

simulation iteration times. This indicates that the server nodes are overloaded and either more 

resources should be given to them for processing, or less work should be attempted per iteration. 

This kind of overloaded system can result in data loss as Damaris will drop buffered data 

without processing if it runs out of buffer space, so generally should be avoided.  

The white paper goes on to show that in-transit processing can improve performance of the high 

load pipeline. A practical take away of this is that use of optimised I/O routines (such as the 

VTK XML output) is necessary to get the best scaling performance of a system, whether it is 

processed asynchronously or not. 
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Figure 4: Box and whisker plots of strong scaling for 58M model, single CSV output (top left), double CSV 

output (top right), XML output(bottom left). All runs are using 32 processes per node and 3 threads per 

process. Small coloured points are outliers. 

 

To conclude, the Damaris implementation of asynchronous in-situ visualisation for 

Code_Saturne was completed successfully. The implementation and testing carried out during 

the project enhanced the capability of Damaris by adding unstructured mesh model support and 

highlighted usability improvements. The profiling results on the Hawk machine show that the 

Damaris library is a good candidate for adding in-situ visualisation support and improving code 

scalability by performing the in-situ analysis asynchronously. The asynchronous processing 

must be carried out with some planning according to the resources to be used, to fit the finite 

time available for doing the required processing. Tuning the number of computational resources 

and their placement within a node is required, and selection of appropriate algorithms for 

analysis and efficient I/O routines for saving data is important so as not to overload the available 

Damaris resources. Damaris allows for in-situ and in-transit processing providing further 

options for a simulation to obtain the required processing capacity. The resulting white paper 
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documented the work and how to effectively use Damaris, thus supporting users and engineers 

wanting to implement and use Damaris based processing. 

3.2.4 In-Situ Visualisation using Melissa 

Most in-situ processing solutions focus on enabling on-line data processing capabilities for a 

single simulation run instance. Ensemble runs that consist of running several instances of the 

same simulation code, with different parameters, are getting more common as the computing 

power available is increasing. This kind of approach is also referred to as parameter sweep 

Monte Carlo methods. Methods relying on ensemble runs include sensibility analysis, training 

of deep surrogate models, data assimilation, and reinforcement learning to name a few. The 

amount of data generated by an ensemble run, that can consist of thousands of simulations runs, 

each one being already a complex advance parallel simulation code, is quickly overwhelming, 

saturating the system storage, slowing down the simulation executions, but also other users’ 

runs impacted by interference on the I/O system. In–situ solutions, or more precisely in transit 

data processing ones, are thus even more critical in that case than for a single simulation run.  

Melissa [39] is an open source (BSD license) framework dedicated to large scale ensemble runs 

and on-line/in transit data processing. Melissa has been developed with built-in features that 

are essential when targeting Exascale: fault tolerance and elasticity. As an example of Melissa 

capabilities, largest runs for sensibility analysis study so far involved up to 30,000 core, 

executed 80,000 parallel simulations, and generated 288 TB of intermediate data that did not 

need to be stored on the file system. 

 

Figure 5: Melissa Architecture Overview 

 

The Melissa architecture relies on three interacting components, see Figure 5: 

 Melissa runners (clients): the parallel numerical simulation code turned into a client. 

Each client sends its output to the server as soon as available. Clients are independent 

jobs; 

 Melissa server: a parallel executable in charge of iterative (on-line) data processing. 

Upon reception of new data from any one of the connected clients, the server processes 

it to update its on-line computations and discard it, so the memory requirements on the 

server side stay under control;   

 Melissa Launcher: the front-end Python script in charge of orchestrating the execution 

of the ensemble run. This is the user entry point to configure the study of experiment. 
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The launcher is also tightly interacting with the machine batch scheduler to control 

executions, including faults and elasticity.  

Today Melissa supports two types of applications directly:    

 Sensibility analysis where the parallel server computes statistics relying on parallel 

incremental algorithms (for computing the average, variance and co-variance, 

skewness, kurtosis, minimum, maximum, threshold exceedance, quantiles and Sobol' 

indices);  

 Data assimilation where the server implements a parallel EnkF filter or a particle filter, 

with capabilities for load balancing member propagations to clients. 

Melissa related efforts have focused on: 

 Consolidating testing and continuous integration: 
o Extension of the test suite and continuous integration running with several linux 

distributions, supporting several processor architectures (i386, amd64, arm64), 

including CentOS which is very similar to the RedHat Enterprise Linux distributions 

found on most supercomputers;  
o Development of a virtual cluster based on LXD containers. This enables to set-up a 

virtual multi-node cluster with a batch scheduler (OAR and Slurm supported) to test 

Melissa in a more realistic context. Each node (compute nodes and front-end node) 

is a LXD container. A Melissa execution can be started from the front-end node 

exactly as on a supercomputer, using OAR or Slurm for resource allocation. This 

enables to setup distributed functional tests. This is an important tool as Melissa 

interacts tightly with the batch scheduler. In particular, the virtual cluster enables to 

test various failure scenarios that involve scheduler dependent code [38]. The virtual 

cluster is independent from Melissa and can be reused by other projects;  

 Spack package. Spack [34] is emerging into a standard package manager for 

supercomputers. Spack enables an easy installation by users, considering available 

modules. Spack does not even require specific installation on the machine, as Spack get 

installed through a simple “git clone” and Spack package installation does not require 

root access as sometimes required by other package managers (Nix for instance). Within 

this service, we developed Spack support for Melissa. It has been integrated in the Spack 

distribution by Spack developers [39] We also developed a Spack package for the 

Code_Saturne CFD code, the base of an advanced example for Melissa, that has been 

submitted to the Code-Saturne development team. The combination of both enables an 

easy install and deployment of large-scale sensibility analysis with Code_Saturne;   

 Testing of Melissa on different supercomputers: 
o Jean-Zay (France); 

o Jewels (Germany); 

o Marenostrum (Spain). 

 Testing at scale: Leveraging the developments done in the context of the project Energy 

Oriented Center of Excellence: toward exascale for energy (EoCoE-II), leading to an 

operational version of Melissa for data assimilation with two flavours, we led scaling 

tests on Juwels and Jean-Zay supercomputers: 
o Data assimilation with EnKF, with the ParFlow simulation code, relying on Parallel 

Data Assimilation Framework (PDAF) as the data assimilation engine, propagating 

16,384 members on 16,240 cores;  
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o Data assimilation with Particle Filter, with the WRF (Weather Research and 

Forecasting Model) simulation code, an in-house particle filter implementation, 

reaching 2,555 members on 20,442 cores. 

3.2.5 KPI 

We identified at the beginning of the project the following KPI as an interesting indicator of 

the project progress: Number of PRACE HPC systems that enable in-situ visualisation coupled 

with some scientific codes. 

This KPI was monitored since October 2020 with numbers checked every month. We set up a 

minimal requirement of 3 HPC systems to be in-situ enabled. 

This requirement has been satisfied by first installing the in-situ frameworks involved in the 

project (Catalyst, Damaris, Melissa) into the following HPC PRACE clusters: 

 Catalyst installed at: 
o CINECA (GALILEO, MARCONI, MARCONI100) 

 Damaris installed at: 
o HLRS (Hawk) 

 Melissa installed at: 

o Jülich Supercomputing Centre (JEWELS) 

o BSC (MareNostrum) 

o IDRIS (Jean-Zay) 

The next step was to select some scientific CFD codes of relevant importance in the CFD 

community to be in-situ instrumented. We developed a coupling interface or improved an 

existing one for the following codes: 

 MIGALE 

 OpenFOAM 

 STREAmS 

 Code Saturne 

 ParFlow 

 WRF 

The first three codes have been coupled with Catalyst, the fourth with Damaris and the last two 

with Melissa. All the codes have been tested using a real HPC use-case and the first four have 

been profiled in order to evaluate the in-situ visualisation relative cost with respect to time spent 

for advancing the solution of a time step without in-situ. 

3.3 Future of this service 

The usefulness of an in-situ service in the context of high-fidelity CFD simulations is largely 

recognised. Such service will be more and more useful in the upcoming exascale machines. 

Moreover, not only the CFD context can get benefits from such a service. 

The future of this service is surely related to software maintenance activities. The software 

stacks of the in-situ frameworks tested in PRACE-6IP (Catalyst, Damaris, Melissa) needs to be 

updated in the HPC sites where they have been installed. Since the clusters are substituted with 

a frequency of 3-5 years in a HPC site, the software stack should be installed in all the upcoming 

https://www.fz-juelich.de/ias/jsc/EN/Home/home_node.html;jsessionid=9DDC26B5D3933969224CB3A0B8C7FD5E
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machines. Last but not the least, the adaptors of the instrumented codes (MIGALE, 

OpenFOAM, STREAmS, Code Saturne) of PRACE-6IP needs to be maintained as well in order 

to be coupled with the next versions of the in-situ frameworks and to run in the upcoming 

machines. 

This service can also have a future for development activities and for testing new technologies. 

New frameworks can be tested and compared with the ones proposed in this project. New CFD 

codes largely used in the scientific community can be instrumented in order to expand the area 

of influence of such technology. 

Regarding a Melissa related service, a further consolidation for in transit data processing for 

large scale ensemble run requires effort in: 

 Complying with the policy of the Extreme-scale Scientific Software Stack initiative 

[40]. Spack was the first step. If Melissa manages to be integrated into E4S, this will 

ensure Melissa be validated on a wide variety of supercomputers;  
 Extend support to ARM (A64FX in particular) and Risc-V architectures, as part of next 

generation European suppercomputers will likely be based on such architectures. Notice 

that we recently got access to the newly installed TGCC A64FX partition (France), and 

that early tests with Melissa are currently in progress on Fugaku (Japan). 

 Extend the data processing capabilities, in particular with a Python based server 

supporting TensorFlow and Horovod for parallel training, for on-line training from 

ensemble generated data.     

Today the EuroHPC JU has procured seven supercomputers, located across Europe. Two of 

them are top-of-the-range supercomputers, Leonardo capable of executing more than 248 

Petaflops and LUMI more than 375 Petaflops. These HPC machines are paving the way towards 

the exascale frontier, i.e. supercomputers that can perform more than one trillion operations per 

second.  

The cluster Leonardo will be hosted at CINECA and it represents a perfect candidate for testing 

the codes we have instrumented in PRACE-6IP. In this new leadership-class HPC system, the 

choice of performing in-situ tasks during the simulation, e.g. in-situ visualisation, will be of 

primary importance. A similar service we have developed in PRACE can be hosted at Leonardo 

and used for simulations that are able to exploit the huge computation power provided by its 

hybrid architecture. 

4 Service 3: The deployment of containers and fully virtualised 

tools into HPC infrastructures 

4.1 Description of the service 

Linux containerisation is an operating system level virtualisation technology that offers 

lightweight virtualisation. An application that runs as a container has its own root filesystem, 

but shares the kernel with the host operating system. This has many advantages over virtual 

machines. First, containers are much less resource consuming since there are no guest OS. 

Second, a container process is visible on the host operating system, which gives the opportunity 

to system administrators for monitoring and controlling the behaviour of container processes. 

Linux containers are monitored and managed by a container engine which is responsible for 

initiating, managing, and allocating containers. Docker [41] is the most popular platform among 
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users and IT centres for Linux containerisation. A software tool can be packaged as a Docker 

image and pushed to the Docker public repository, Docker hub, for sharing. A Docker image 

can run as a container on any system that has a valid Linux kernel. HPC targeted platforms, e.g. 

Singularity [42] and Sarus [42] , make it possible to use Docker containers in production for 

HPC systems. 

Unikernels are lightweight single application operating systems developed for the cloud, edge 

computing, Internet of Things, etc. They fit into small images, have low memory foot-print, 

and boot in less than one second. They are known for accelerating the execution of programs 

and improving throughput of network applications. This technology has proven its qualities for 

theses domains with numerous unikernels and publications [42] , [43], [44] , [45] , [58] . 

This service is an extension of the lightweight virtualisation service in PRACE-5IP where it has 

targeted evaluation and benchmarking of containerised and fully virtualised workloads on both 

bare-metal and cloud-based HPC clusters in terms. The following conclusions have been drawn: 

 Security: Security issues have been investigated and are resolved in most container 

platforms;  

 Scalability: Scalability tests, performed using singularity with MPI, proved that 

container applications are scalable. Unprivileged container platforms, uDocker and 

Singularity, proved to be scalable in terms of deployment; 

 Performance: There are almost no performance issues (especially for containers).  

In the PRACE-6IP project, this prototypal service has been a collaboration of several PRACE 

sites: UiO/Sigma2, CINECA, CESGA, CSCS, UHeM, UL, CEA, LRZ, and IT4I. After 

evaluating the eligibility of containerisation technology for HPC in general and suitable 

container runtimes in PRACE-5IP, in PRACE-6IP the focus has been to evaluate more recent 

container runtimes “in operation” for HPC applications, in addition to investigating the 

usefulness of unikernel technology for OpenMP applications. Additional container runtimes to 

the previously evaluated Docker and Singularity are: Sarus and Charliecloud [44] [43]. The 

production support of Singularity has also been evaluated. Unikernels have been evaluated for 

HPC workloads (mainly OpenMP). Containerised HPC using elastic composition of HTCondor 

clusters using Docker swarm has also been tested and evaluated.  

It can be fairly concluded that Singularity, Sarus, Charlicloud runtimes are mature and can be 

used in large scale HPC applications with minimal performance overhead. However, containers 

abstract all layers “above” the kernel, not below. This means that, for containers to run 

efficiently on modern processors and GPUs etc. the proper drivers need to be installed and 

correctly configured. However, due to using the host kernel, containers use a lot of system calls. 

This is not the case for unikernels. Unikernel is full virtualisation which provides VM-like 

isolation and runs on the top of a hypervisor. They convert system calls to function calls, which 

makes them more secure than containers. In addition, Unikernels are lightweight. But they are 

still lacking maturity. Currently there are no GPU/IB drivers supported for Unikernels. 

Promoting unikernels for production use is still early. 

4.1.1 Sarus 

Sarus [42] is a container engine for high-performance computing (HPC) systems that provides 

a user-friendly way to instantiate feature-rich containers from Docker images. It has been 

designed to address the unique requirements of HPC installations, such as: native performance 

from dedicated hardware, improved security due to the multi-tenant nature of the systems, 
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support for network parallel filesystems and diskless computing nodes, compatibility with a 

workload manager or job scheduler. 

Sarus relies on industry standards and open-source software to implement a modular 

architecture and to extend the capabilities of the container runtime through external plugin 

programs, called “OCI hooks”. Hooks can customize containers to enable specific high-

performance features, and they can be developed independently by third parties to introduce 

new technologies or improve support for existing ones. 

4.1.2 Charliecloud 

Charliecloud provides user defined software stacks for HPC systems. It uses Linux user 

namespaces to run containers with no privileged operations or daemons and minimal 

configuration changes on center resources. The Charliecloud container images can be built from 

Docker images with a set of simple commands in a terminal window. 

Documented deployment methods 

For deployment on HPC systems, the initial step is to create a Charliecloud image from a docker 

image on a local workstation (this requires root rights not available to regular user accounts on 

LRZ systems), and then copy that image to the target HPC system. 

An LRZ-provided installation of Charliecloud that can be used to start up the container on the 

LRZ HPC systems. For production purposes, the startup procedure is usually submitted as a 

SLURM batch script. 

Using SLURM and Intel MPI, parallel execution of applications installed in the image is 

supported. Furthermore, it is possible to  

● Make host file systems visible and usable inside the image;  

● Set up the environment in the container in the same or similar manner as for the host 

(including the use of the host’s environment module system), if so desired.  

4.1.3 Unikernels 

Unikernels are usually compared to containers because both approaches are a form of 

lightweight virtualisation. However, unikernels have more performance benefits than 

containers. They also reduce the attack surface by including only the kernel code required by 

the executed application. Because unikernels increase the throughput of some applications, they 

may improve HPC applications’ performances. Reducing OS-noise could also improve the 

synchronization between threads inside a single node parallel application, and between nodes 

in MPI applications, leading to an acceleration of their execution. The goal of this study is to 

evaluate what are the benefits that current unikernel technologies can provide in an HPC 

context. 

Unikernel Specialisation 

Because there is only one application running, unikernels execute all code (including user code) 

in supervisor mode (ring 0 on the x86-64 ISA). This allows to speedup system calls performed 

by the application. System calls are known to be a slow operation because they include 

user/kernel world-switches [47]. Indeed, before performing the system call, in a traditional OS 

a user program is being executed in user-mode. When the system call instruction is executed, 

the user-mode execution is stopped, and the processor switches to kernel (supervisor) mode. 

Once the kernel has completed the processing of the system call, it returns its results and 
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switches back to user-mode. In common processors, this mode-switching requires flushing the 

CPU pipeline, saving standardised registers (depending on the system call performed) onto the 

stack, changing protection domain, etc. This process of switching back and forth from user-

mode and kernel requires many CPU cycles [48] . Also, since the discovery of the Meltdown 

vulnerability in processors older than 2018, a new feature has been added in regular kernels that 

is slowing down system calls even more. The KPTI (Kernel page-table isolation) feature 

involves a page table switch each time there is a mode-switch, implying a costly TLB 

(translation lookaside buffer) flush. With unikernels, the application runs in kernel-mode and 

the mode-switching of system calls is not required. This means that concretely the system calls 

are common function calls, saving many CPU cycles. Unikernels have their own way of 

transforming system calls. For example, OSv and HermitCore links the application against a 

custom libC that calls directly the kernel functions instead of performing system calls [49], 

while HermiTux uses binary rewriting to update the system call invocation instruction into 

function call for statically compiled binaries [50]. Running all code in kernel mode results in a 

complete lack of memory isolation within a unikernel instance. However, isolation with the 

other applications, i.e., with other unikernels/virtual machines, is provided by the hypervisor. 

Unikernel Compatibility 

Compatibility with existing applications is an important matter with Unikernels. Some 

unikernels (e.g., HermitCore [49] Rumprun [51] ) will require the source code of an application 

to be recompiled in order to execute it. They are said to be source-compatible and aim to require 

low to no modifications of the application’s code. By recompiling the application, the 

unikernel’s features are linked directly to the target application. The generated binary 

executable contains both the application and the unikernel OS. In this case, the compatibility 

between application and unikernels is handled at compile-time. If a feature is not supported by 

a unikernel, the compilation of the application will generally fail. In this case, the developer 

will need to port an application for the targeted unikernel so that it will compile with the 

unikernel. Another way of handling compatibility between applications and unikernels is by 

providing binary compatibility. Some unikernels (e.g. HermiTux [51] , OSv [52], Unikraft [53] 

) are able to execute Linux executable binaries compiled for a popular OS, Linux. In this case 

the compatibility is handled by the unikernel, which needs to support the features called by the 

binary executable. If a feature is not supported, the application will crash or misbehave at 

runtime. This time it is the responsibility of the unikernel’s developer to implement the missing 

feature in order to get the executable running. If the unikernel maintainer can not implement 

the feature for some reasons, there is still a possibility to try to avoid using the feature. 

Unikernel Models 

Unikernels can be classified in two categories: Language-based unikernels, and POSIX-Like 

unikernels. Language based unikernels are tied to one specific programming language. Their 

degree of compatibility is low as they generally only support applications written in this 

language, and require the application to be written specifically for their own API (Application 

Programming Interface). The concept of “OS as a library” is very well adapted for the 

seskernels, because they really are a set of libraries that need to be included in the application 

source code. Although they provide a very good optimisation and specialisation of the kernel, 

the major downside of these unikernels is that they require more development effort to port an 

application. Language based unikernels are for example MirageOS [54] an OCamL based 

unikernel, and IncludeOS [55] a C++ based unikernel. Contrary to language-based unikernels 

and their specific API, POSIX-like unikernels try to provide the most complete implementation 

of the POSIX API they can. These unikernels offer some compatibility at the source level for 

Linux applications. However, because their implementation of the POSIX API is often 

incomplete, they sometimes require porting efforts to execute a given application. In the best 

cases, only the recompilation of the application sources is required, while in the general case a 
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few porting efforts are required to make it run.  Examples of POSIX-like unikernels are: 

HermitCore [48] HermiTux [50] Rumprun [51] OSv [52], Lupine Linux [46] and Unikraft [52]. 

Unikernel Analysis in the Context of HPC 

This section presents our analysis of several unikernels with respect to their support for HPC 

applications. By HPC applications, we restrict this study to applications meeting the following 

criteria: 

● They are compatible with C, C++ and FORTRAN applications; 

● They can run on multi-core architecture; 

● They are compatible with OpenMP applications. 

The support of languages, multi-core, and OpenMP can be verified by compiling and executing 

a basic OpenMP application that spawns several threads that iterate over a loop. If the 

compilation succeeds, the process monitorhtop can be used to verify that the threads are really 

running simultaneously on distinct cores of the machine. If the application can be compiled and 

can complete its execution, we consider that the unikernel meets our HPC criteria. 

Specific Hardware Support 

Another criterion that was considered is the support of existing drivers for specific HPC 

hardware. Some HPC applications are able to take advantage of dedicated architectures, such 

as high bandwidth network cards or GPGPUs. The support of these particular devices is 

achieved by specific drivers that are often proprietary. However, the field of driver support has 

not been explored by many unikernels. Since they were originally designed for cloud and 

embedded contexts, the mechanisms for driver support have not been implemented. In the 

unikernels we considered for this report, only Rumprun and Lupine Linux may be compatible 

with Infiniband and GPGPU drivers. For other unikernels, the drivers would have to be 

reimplemented from scratch directly in the kernel. This is something we could not afford for 

this study. Hence, we decided to leave this criteria for future work. 

Unikernel Analysis 

The following study is restricted to POSIX-like unikernels, to avoid rewriting applications for 

distinct APIs. By proceeding this way, we greatly reduced the amount of work needed to run 

the benchmarks with unikernels: we only had to make a few modifications to port them for the 

selected unikernels. The following details six unikernels: OSv, Rumprun, Unikraft, 

HermitCore, HermiTux and Lupine Linux unikernels. 

OSv [53]  is a unikernel that was originally developed by Cloudius Systems, interfacing with 

the application at the C Library level. It uses a custom C library based on musl C library2. This 

custom libC is designed to avoid making system calls by directly calling OSv’s kernel 

functions. It aims at efficiency by implementing lock-free algorithms, per-CPUs waiting queues 

for threads, tickless thread scheduling and a lightweight network stack. OSv provides 

compatibility with the Java Virtual Machine, which makes it compatible with Java applications. 

The project is now open-source, and some volunteers still commit changes to the OSv 

repository. OSv support C, C++ and FORTRAN applications however, it does not support 

OpenMP applications. So, we chose to put it aside. 

Rumprun [51] is an unikernel developed by the FreeBSD foundation [57], but not maintained 

anymore. It is based on the NetBSD Rump anykernel. It is a set of drivers and system call 

handlers. Rumprun can run on any platform able to execute C99 code, with only a hundred 

kilobytes of RAM/ROM. This unikernel can run on bare metal, or above a hypervisor. Because 

Rump kernels were originally designed for developing drivers, we believe that this kernel would 

be a good candidate for experimenting with HPC drivers. However, despite its low-level 

architecture compatibility, Rumprun is not compatible with SMP execution. To do so, it 
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requires a ”multi-kernel” approach: Spawning a unikernel on each core, and making them 

communicate through IP-protocol. Also, Rumprun only supports C/C++ applications. These 

points do not meet our criteria; therefore we eliminate Rumprun from our list. 

Unikraft [58]  is a unikernel developed by NEC laboratories. It is designed to be fully modular 

and cus-tomizable, and very efficient due to performance-minded and well designed APIs. It 

tries to improve application performance in two ways. The first method is the gain offered by 

the unikernel paradigm. It reduces the overhead of systems calls, the memory footprint of the 

kernel and can accelerate memory allocation by choosing the right allocator for an application. 

The second way of performance improvement can be achieve by adapting the application to 

take advantage of Unikraft’s specialised APIs, where performance is critical. Unikraft is 

supported by a strong developer’s community, therefore it is a great candidate for our study. 

However, it does not support multi-core yet. Therefore, it is not considered in our study, but it 

will surely be worth looking at in a few years. 

HermitCore [49] is an unikernel developed at RWTH Aachen University (Germany), and 

designed for extreme-scale computing. It is designed with performance in mind, and aims at 

reducing overhead caused by the OS. It uses the New lib3C library, a library originally designed 

for embedded systems, requiring only a few system calls from the OS. It uses a dynamic timer 

to avoid most of the interruptions of the running application - and its threads. It supports multi-

core applications and OpenMP C/C++ and FORTRAN applications, so we use it in our study. 

It is important to note that even if HermitCore is compatible with OpenMP application (thanks 

to an Intel OpenMP runtime shipped with the unikernel), it is not compatible with every 

OpenMP runtime. In this study, we consider the “original” HermitCore unikernel, written in C 

language. It is not actively maintained anymore as the development effort has shifted to the 

Rust version of the unikernel. 

HermiTux [51]  is an unikernel based on HermitCore, developed at Virginia Tech (USA) and 

the University of Manchester (UK). It has been designed to be a binary compatible with Linux 

executables. It does not need recompilation of Linux applications before executing them. By 

doing so, it reduces the effort required to port applications. HermiTux reduces the system calls 

overhead thanks to an optimised system call handler. Even if the unikernel is not maintained as 

often as it was before, it keeps getting support from its main developer. HermiTux supports 

multi-core as well as OpenMP applications. Because of its binary compatibility with Linux 

software, it is compatible with C/C++ and FORTRAN applications. This binary compatibility 

is more permissive for controlling compilation and linking of OpenMP runtime. Hence, we use 

it in our study of unikernels. 

Lupine Linux [48]  is a configuration of the Linux kernel developed by the University of 

Illinois (USA) and IBM research. It specialises the Linux kernel for the execution of a single 

application, and removes what is unneeded in the original kernel for a given application. Lupine 

Linux is not actively maintained anymore. Because it relies on the Linux kernel, we could 

expect a very good compatibility for applications and drivers. Unfortunately, because the 

configuration of the kernel can be time-consuming, we did not had enough time to complete 

our analysis of Lupine Linux and study if we were able to run multi-core OpenMP applications 

with it.  

Discussion  

Table 7 sums up the evaluation of unikernels with respect to our criteria. The main conclusion 

is that the support of multi-core and OpenMP is not a very common feature in unikernels. 

Unikernels have been designed to be suited for the cloud ecosystem rather than the HPC 

context. Because of their lightweight and quick boot time, unikernels tend to be spawned 

multiple times on different cores rather than have a unique instance using several cores. A 
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second conclusion is that HermitCore and HermiTux met our three criteria and are not too 

complex to be handled. The next section describes how to install and use them. 

 

Table 7: HermiTux and HermitCore are the only unikernels that meet our criteria 

4.2 Results achieved during the project 

This section presents the results and experience for deploying and operating several container 

runtimes on different PRACE sites, in addition to benchmarking of Sarus runtime and several 

unikernel platforms for OpenMP. 

4.2.1 Charliecloud  

The following experiences have been collected: 

Stability  

To ensure stability especially at scale it is important to remember that the container is 

running on the HPC system and that the containerised workflow is not performing some 

type of operation that would normally cause the HPC problems. In addition, it is important 

to use the underlying HPC systems MPI environment. 

Resource overheads 

The typical overheads of running the HPC container is negligible in terms of memory and 

performance compared to running the workflow directly on the HPC system. However, 

issues can arise if the workflows memory requirements are pushing up against the amount 

of memory available on the node. Or they are submitting consecutive containerised jobs in 

the same Slurm script (submitting jobs via a loop inside the script), because the system has 

not fully recovered memory from the previous job executed. We can minimise this by 

adding a sleep statement in the loop after each job submission. 

Performance 

It is possible to attain “bare metal” performance from applications and workflows running 

inside containers and in some cases achieving noticeable better performance (loading 

python packages). At LRZ, we have successfully executed an instance of machine learning 

training with TensorFlow on 768 nodes of SuperMUG-NG with multi-PetaFlop 

performance. To achieve this, it is important that the container is fully taking advantage of 

the underlying HPC systems hardware (compute and interconnect). This is achieved by 

installing and configuring the libraries and software for the high-speed interconnect inside 

the container, as well as ensuring that the system-optimised MPI library is being called at 

runtime. This was achieved by binding the module system directory inside the container 

and linking the systems MPI libraries at runtime. 
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Case Studies at LRZ 

1. Enable ExaScale for EverYone (EASEY) 

Issues: 

● Containerised application crashed due to MPI issues - resolved by setting the 

libfabric parameters; 

● Poor performance due to running MPI over TCP - resolved by installing OmniPath 

software inside the container. 

Outcome: 

All the issues with stability and performance were no longer observed and the 

containerised application was able to execute successfully on 100’s of nodes with 8000 

MPI tasks. 

2. Software Fuzzing 

Issues: 

● The applications IO pattern crashed the parallel file system:   

Resolution: 

o Switched to mounting a more performant directory of the parallel file server 

inside the container; 

o Switched to mounting the host systems RAM disk inside the container for 

storing temporary files. 

Outcome: 

Using the RAM disk of host system to store the millions of temporary files generated 

by the containerised application fixed the parallel file system crashes. 

3. QuantEx (SuperMUC-NG) 

Issues: 

● Julia installs packages into ~/julia by default. Charliecloud maps the host ~ directory 

inside the container - resolved by changing the Julia package installation path and 

using the Docker environment instead of the host environment; 

● Profiling the Julia application using LIKWID inside the container - resolved by 

mounting the host module system inside the container. 

Outcome: 

Able to execute and profile the containerised QuantEX software on the HPC systems at 

LRZ. 

Several papers have been produced describing the development and operational experience 

with Charliecloud at LRZ [58] , [59], [60], [61]. 

4.2.2 Singularity in production 

Singularity has been available in CINECA, CESGA and Sigma2 clusters since 2017. In the 

context of PRACE-5IP, benchmark tests were performed both on parallel MPI and GPU 

workloads. The results were reported in scientific papers [62], [63] , [64] 

In the context of PRACE-6IP, CINECA and Sigma2 activities were focused on maintaining 

Singularity as a production tool on all HPC clusters, making available the newer versions and 
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the guide for the users. Dissemination and training activities were also done by CINECA and 

Sigma2 staff. In what follows, the production deployment and usage procedures are described, 

mainly focusing on the actual cluster available. Some details about the dissemination and 

training activities are also reported. 

Production deployment of Singularity in CINECA and usage procedures 

During PRACE-6IP, the available HPC clusters in CINECA were MARCONI [65](in 

production since August 2017), MARCONI 100 [48] (in production since May 2020), 

GALILEO [49](available since March 2018 up to April 2021), GALILEO 100 [50] (in pre-

production since July 2021) and D.G.X [51] (in production since January 2021). 

Singularity has been installed as a production tool on all of them, providing a specific usage 

guide for the users [57]. Due to the different architectures and usage policy of the clusters, the 

production deployment and usage procedures of Singularity are different. In the rest of the 

section, on the basis of similar grouped clusters, the main installation and usage features of 

Singularity are reported. 

 

Installation 

On MARCONI, MARCONI 100 and GALILEO clusters Singularity is installed from source, 

and it is available to the users as a Linux module. All dependencies were installed by system 

administrators via CentOS/RHEL package, except for Go that was installed from source. 

On GALILEO 100 and D.G.X. clusters, Singularity is installed by using the rpm package and 

it is available to the users as a Linux module. 

The Singularity versions available are: 

● GALILEO, MARCONI: version 3.6.1; 

● MARCONI 100: version 3.7.0; 

● GALILEO 100: version 3.8; 

● D.G.X: version 3.5.3. 

In the Linux module building, it does not set the SINGULARITY_HOME variable, to allow 

the automatic binding of the user HOME directory into the container. The 

SINGULARITY_CACHEDIR and SINGULARITY_TMPDIR  are not set, in order to leave 

the users free to choose the preferred directories, if needed. Suggestions about the usage of such 

variables are provided in the user guide. 

For Parallel MPI workflow [66], up to now we have supported only the Singularity “Hybrid 

model”, so in the Linux module there are no automatic bindings with the network and MPI 

libraries directories. To support the users, we have provided basic Singularity container images 

and recipes with all the network and MPI libraries needed: users can build their own container 

starting from such images/recipes. We plan to support the Singularity “Bind model”, by 

introducing the automatic bindings of the system network and MPI directories. 

The Singularity fakeroot feature is not available on any clusters. Only on MARCONI 100, due 

to the fact that it is featured by a Power 9 architecture, we are providing to the users a virtual 

machine in which the “fakeroot” option is available, to allow them to build their own container 

image. 
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Usage procedures 

By default, on all cluster users can run and/or execute their container images only by using a 

Slurm job scheduler. The images can be locally available on the clusters or stored in public 

and/or private hubs. 

By design, users are not allowed to build their own container images on the cluster. An 

exception is done for MARCONI100, where a special virtual machine with the “fakeroot” 

feature is available. 

Since Singularity is well integrated within Slurm, all the resources needed to run the container 

images must be selected by using the Slurm directives. Both Pure MPI, OpenMP and hybrid 

MPI+OpenMP jobs can be run. 

For the MPI workflows, the users can run their application following both the Hybrid and the 

Bind model. In the second case they have to manually set the binding of all the needed network 

and MPI directories.  

For GPU workflows, the option “--nv” must be added into the singularity command.  

4.2.3 Unikernels 

The experiments have been performed on two cluster of Grid’5000  [67]. The information given 

here is extracted from the Grid’5000 documentation [68] 

 Nova is a cluster from the Lyon site of Grid’5000;  

 Gros is a cluster from the Nancy site of Grid’5000.   

 

The hyperthreading feature was disabled. We use HermitCore and HermiTux4from unikernels 

for our studies. Experiments are also performed on a Debian 10 distribution (Linux kernel 

version 4.19.0-14-amd64), to have a base reference. Due to unikernels limitation regarding 

OpenMP and compilers, we have been forced to compile specific executables for Linux and 

each unikernels: 

 Linux executables are compiled with Clang/LLVM version 11, and use the LLVM 

OpenMP runtime version 11 (compiled with Clang v11); 

 HermitCore executables are compiled with HermitCore’s toolchain (GCC v6.3), and 

HermitCore’sOpenMP Intel runtime (v5.0) compiled with GCC v6.3; 

 HermiTux executables are compiled with Clang/LLVM version 11, and linked with the 

LLVM OpenMPruntime version 11 (compiled with Clang v11) thanks to HermiTux’ 

GCC wrapper. 

 

It is important to note that we do not control the compiler used to compile HermitCore 

applications and which OpenMP runtime is used with HermitCore unikernel. As explained 

above, we did not manage to get the LLVM OpenMP runtime working with HermitCore. The 

results regarding HermitCore presented in the following section must be interpreted with 

caution. 

 

Benchmarks Used 

 

Experiments have been made with the Bots and Rodinias benchmarks. 

 

Bots Benchmarks 
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The Bots benchmarks [70] are a set of benchmarks developed by the Barcelona Supercomputing 

Center. They are used for evaluating various OpenMP tasking implementations for some given 

problems. Here is a list of the benchmarks we used, extracted from the documentation of the 

Bots benchmarks: 

 Alignment: Aligns sequences of proteins; 

 FFT: Computes a Fast Fourier Transformation; 

 Floorplan: Computes the optimal placement of cells in a floorplan; 

 Health: Simulates a country's health system; 

 NQueens: Finds solutions to the N Queens problem; 

 Sort: Uses a mixture of sorting algorithms to sort a vector; 

 SparseLU: Computes the LU factorisation of a sparse matrix; 

 Strassen: Computes a matrix multiply with Strassen’s method. 

 

In Table 8, we check the boxes corresponding to the implementations we have at our disposal 

for the codes we used. The different implementations alter the tasks generation of the 

benchmarks: 

 A tied implementation means that the task generation is limited.  If this suffix is not 

present, it means that the task generation is unlimited; 

 An if_clause implementation means that new tasks are generated when a condition is 

fulfilled. This condition is verified by an OpenMP directive; 

 A manual implementation means that new tasks are generated when a condition is 

fulfilled, but this time, the condition is not checked by the OpenMP directive. It is done 

by a “manual” if statement in the sources; 

 The for implementation generates tasks with an omp for directive. In this case, there can 

be multiple task generators; 

 The single implementation means that there will be only a single task generator. 

 

To compile the Bots benchmarks for HermitCore unikernel, a few modifications are performed 

on the sources of the Bots. Because the structure uts name is not defined in HermitCore, the 

program cannot compile with x86_64-hermit-gcc. This structure is returned by the uname() 

system call to describe the kernel name, release, and version. Every use of this structure in the 

benchmarks has been removed. It is not a critical functionality of the benchmarks so this 

deletion does not have any negative impact on the benchmarks. We also removed a call to the 

basename() function that was not supported by HermitCore. Again, it is not a critical feature of 

the benchmarks.  Finally, a symbolic link has been created from /opt/hermit/lib/gcc/x86_64-

hermit/6.3.0/include/memory.h [70] pointing to/opt/hermit/x86_64-

hermit/include/hermit/memory.h. [71]  

These modifications make the Bots benchmarks compatible with HermitCore. 
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Table 8: Problems solved by the Bots benchmarks, and their respective implementations. 

 

Rodinias Benchmarks 

The Rodinias benchmarks [73] are designed to evaluate different accelerators for compute-

intensive applications: OpenMP, OpenCL, and CUDA. They are composed of already existing 

benchmarks, that have their unique behaviour, and come from many domains: Medical Imaging 

(Leukocyte, Heartwall...), Bioinformatics (MUMmerGPU), Fluid Dynamics (CFD Solver), 

Linear Algebra (for example LU Decomposition). Among the many benchmarks composing 

the Rodinias suite, only a subset were been selected for our study. In order to evaluate 

unikernels performance for HPC applications, we are interested in applications with long and 

intensive computation phases. Moreover, we only used the OpenMP version of the Rodinias 

benchmarks to study unikernels behaviour on multi-core CPUs. We observed a bug in 

HermiTux that caused some execution times to be negative. Further investigation showed that 

the bug occurred when using the gettimeofday() system call. This bug has been fixed. Sadly, 

two benchmarks still cause troubles. The bfs benchmark does not spawn threads correctly. The 

problem possibly comes from the unikernels, because the benchmarks always spawn the 

maximum number of threads it can for an execution on vanilla Linux (Debian 10), and only 

spawns one thread when executed with unikernels. The Kmeans benchmark source code 

contains a function definition that conflicts with another located inside HermitCore’s kernel, 

causing errors at compile time. Because the Rodinias benchmarks do not share the common 

operations (such as time measuring, initialising etc.), making modification in these benchmarks 

in order to port them to unikernels is longer than in the Bots benchmarks. Due to a lack of time, 

we had to prioritise other topics. Finally, the benchmarks we managed to get working for both 

HermitCore and HermiTux are the following: 

● lud (LU Decomposition) is a benchmark coming from the field of Linear Algebra. It is 

a benchmark decomposing a matrix as a product of matrices; 

● LavaMD (LavaMD2) is a benchmark coming from the field of Molecular Dynamics. It 

calculates the position of particles in a 3D space considering the forces that apply 

between the particles. 
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4.2.4 Sarus 

The experiments and performance measurements reported in this document were carried out on 

Piz Daint [41] a hybrid Cray XC50/XC40 system in production at the Swiss National 

Supercomputing Centre (CSCS) in Lugano, Switzerland. The system compute nodes are 

connected by the Cray Aries interconnect under a Dragonfly topology, notably providing users 

access to hybrid CPU-GPU nodes. Hybrid nodes are equipped with an Intel Xeon E5-2690v3 

processor, 64 GB of RAM, and a single NVIDIA Tesla P100 GPU with 16 GB of memory. The 

software environment on Piz Daint at the time of the experiments is the Cray Linux 

Environment 6.0.UP07 (CLE 6.0) using Environment Modules to provide access to compilers, 

tools, and applications. The default versions for the NVIDIA CUDA and MPI software stacks 

are, respectively, CUDA version 9.1, and Cray MPT version 7.7.2. 

We installed and configured Sarus on Piz Daint to use the native MPI and NVIDIA Container 

Toolkit hooks, and to mount the container images from a Lustre parallel filesystem. 

Performance measurements 

In experiments comparing native and container performance numbers, each data point presents 

the average and standard deviation of 50 runs, to produce statistically relevant results, unless 

otherwise noted. For a given application, all repetitions at each node count for both native and 

container execution were performed on the same allocated set of nodes. 

4.3 Description of experiments and results 

4.3.1 CUDA N-body 

A fast n-body simulation is included as part of the CUDA Code Samples [42] The CUDA n-

body sample code simulates the gravitational interaction and motion of a group of bodies. The 

code is written with CUDA and C and can make efficient use of multiple GPUs to calculate all-

pairs gravitational interactions. More details of the implementation can be found in this article 

by Lars Nyland et al.: Fast N-Body Simulation with CUDA [42] . 

We use this sample code to show that Sarus is able to leverage the NVIDIA Container Runtime 

hook in order to provide containers with native performance from NVIDIA GPUs present in 

the host system. 

Test case 

For this test case, we run the code with n=200,000 bodies using double-precision floating-point 

arithmetic on 1 Piz Daint compute node, featuring a single Tesla P100 GPU. 

Running the container 

We run the container using the Slurm Workload Manager and Sarus: 

srun -Cgpu -N1 -t1 \ 

sarus run ethcscs/cudasamples:9.2 \ 

/usr/local/cuda/samples/bin/x86_64/linux/release/nbody -benchmark \ 

-fp64-numbodies=200000 
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Running the native application 

We compiled and run the same code on Piz Daint using a similar Cuda Toolkit version 

(cudatoolkit/9.2). 

 
Container image and Dockerfile 

The container image ethcscs/cudasamples:9.2 (based on Nvidia cuda/9.2) used for this test case 

can be pulled from CSCS DockerHub [44]  or be rebuilt with this Dockerfile: 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

FROM nvidia/cuda:9.2-devel 

 

RUN apt-get update && apt-get install -y --no-install-recommends \ 

        cuda-samples-$CUDA_PKG_VERSION && \ 

    rm -rf /var/lib/apt/lists/* 

 

RUN (cd /usr/local/cuda/samples/1_Utilities/bandwidthTest && make) 

RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQuery && make) 

RUN (cd /usr/local/cuda/samples/1_Utilities/deviceQueryDrv && make) 

RUN (cd /usr/local/cuda/samples/1_Utilities/p2pBandwidthLatencyTest && make) 

RUN (cd /usr/local/cuda/samples/1_Utilities/topologyQuery && make) 

RUN (cd /usr/local/cuda/samples/5_Simulations/nbody && make) 

 

CMD ["/usr/local/cuda/samples/1_Utilities/deviceQuery/deviceQuery"] 

 

Results 

We report the gigaflops per second performance attained by the two applications in the 

following table. 

 
Average  Std. deviation 

Native 3059.34 5.30 

Container 3058.91 6.29 

Table 9: gigaflops per second performance attained by the two applications 
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The results show that containers deployed with Sarus and the NVIDIA Container Runtime hook 

can achieve the same performance of the natively built CUDA application, both in terms of 

average value and variability. 

4.3.2 OSU Micro-benchmarks 

The OSU Micro Benchmarks (OMB) [45] are a widely used suite of benchmarks for measuring 

and evaluating the performance of MPI operations for point-to-point, multi-pair, and collective 

communications. These benchmarks are often used for comparing different MPI 

implementations and the underlying network interconnect. 

We use OMB to show that Sarus is able to provide the same native MPI high performance to 

containerised applications when using the native MPICH hook. As indicated in the 

documentation for the hook, the only conditions required are: 

● The MPI installed in the container image must comply with the requirements of the 

MPICH ABI Compatibility Initiative [46]; 

● The application in the container image must be dynamically linked with the MPI 

libraries. 

Test case 

The osu_alltoall benchmark measures the minimum, maximum and the average latency of the 

MPI_Alltoall blocking collective operation across N processes, for various message lengths, 

over a large number of iterations. In the default version, this benchmark reports the average 

latency for each message length up to 1MB. We run this benchmark from a minimum of 2 nodes 

up to 128 nodes, increasing the node count in powers of two. 

Running the container 

We run the container using the Slurm Workload Manager and Sarus. 

srun -C gpu -N2 -t2 \ 

 sarus run --mpi ethcscs/osu-mb:5.3.2-mpich3.1.4 \ 

 ../collective/osu_alltoall 

Running the native application 

We compile the OSU Micro Benchmark suite natively using the Cray Programming 

Environment (PrgEnv-cray) and linking against the optimised Cray MPI (cray-mpich) libraries. 

 

Container image and Dockerfile 

The container image ethcscs/mpich:ub1804_cuda92_mpi314_osu (based on mpich/3.1.4) used 

for this test case can be pulled from CSCS DockerHub [42] or be rebuilt with the Dockerfile at 

[47]. 

Results 

We collect latency values for 1kB, 32kB, 65kB and 1MB message sizes, computing averages 

and standard deviation. The results are displayed in the Figure 6: 
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Figure 6: Results of the OSU All-to-all benchmark for the native MPI and MPICH 3.1.4 container. The 

MPI in the container is replaced at runtime by the native MPICH MPI hook used by Sarus. 

 

We observe that the results from the container are very close to the native results, for both 

average values and variability, across the node counts and message sizes. The average value of 

the native benchmark for 1kB message size at 16 nodes is slightly higher than the one computed 

for the container benchmark. 

It is worthy to note that the results of this benchmark are heavily influenced by the topology of 

the tested set of nodes, especially regarding their variability. This means that other tests using 

the same node counts may achieve significantly different results. It also implies that results at 

different node counts are only indicative and not directly relatable, since we did not allocate the 

same set of nodes for all node counts. 

4.3.3 GROMACS 

GROMACS [48] is a molecular dynamics package with an extensive array of modeling, 

simulation and analysis capabilities. While primarily developed for the simulation of 

biochemical molecules, its broad adoption includes reaserch fields such as non-biological 

chemistry, metadynamics and mesoscale physics. One of the key aspects characterising 

GROMACS is the strong focus on high performance and resource efficiency, making use of 

state-of-the-art algorithms and optimised low-level programming techniques for CPUs and 

GPUs. 
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Test case 

As test case, we select the “3M” atom system from the HECBioSim [49] benchmark suite for 

Molecular Dynamics, a pair of hEGFR tetramers of 1IVO and 1NQL: 

 Total number of atoms = 2,997,924 

 Protein atoms = 86,996  Lipid atoms = 867,784  Water atoms = 2,041,230  Ions = 1,914 

The simulation is carried out using single precision, 1 MPI process per node and 12 OpenMP 

threads per MPI process. We measured runtimes for 4, 8, 16, 32 and 64 compute nodes. The 

input file for the test case is available for download at [51] . 

Running the container 

Assuming that the benchmark.tpr input data is present in a host directory referred by the 

arbitrary environment variable $INPUT, we can run the container on 16 nodes as follows: 

srun -C gpu -N16 sarus run --mpi \ 

    --mount=type=bind,src=${INPUT},dst=/gromacs-data \ 

    ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 \ 

    /usr/local/gromacs/bin/mdrun_mpi -s /gromacs-data/benchmark.tpr -ntomp 12 

Running the native application 

CSCS provides and supports GROMACS on Piz Daint [52]. At the time of this experiment, the 

GROMACS/2018.3-CrayGNU-18.08-cuda-9.1 modulefile was loaded. 

 

Container image and Dockerfile 

The container image ethcscs/gromacs:2018.3-cuda9.2_mpich3.1.4 (based on cuda/9.2 and 

mpich/3.1) used for this test case can be pulled from CSCS DockerHub [51]  or be rebuilt with 

this Dockerfile: 

 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

#!/bin/sh 

FROM ethcscs/mpich:ub1804_cuda92_mpi314 

 

# Install CMake (apt installs cmake/3.10.2, we want a more recent version) 

RUN mkdir /usr/local/cmake \ 

&& cd /usr/local/cmake \ 

&& wget -q https://cmake.org/files/v3.12/cmake-3.12.4-Linux-x86_64.tar.gz \ 

&& tar -xzf cmake-3.12.4-Linux-x86_64.tar.gz \ 

&& mv cmake-3.12.4-Linux-x86_64 3.12.4 \ 

&& rm cmake-3.12.4-Linux-x86_64.tar.gz \ 

&& cd / 

 

ENV PATH=/usr/local/cmake/3.12.4/bin/:${PATH} 
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# Install GROMACS (apt installs gromacs/2018.1, we want a more recent version) 

RUN wget -q http://ftp.gromacs.org/pub/gromacs/gromacs-2018.3.tar.gz \ 

&& tar xf gromacs-2018.3.tar.gz \ 

&& cd gromacs-2018.3 \ 

&& mkdir build && cd build \ 

&& cmake -DCMAKE_BUILD_TYPE=Release  \ 

         -DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON \ 

         -DGMX_MPI=on -DGMX_GPU=on -DGMX_SIMD=AVX2_256 \ 

         -DGMX_BUILD_MDRUN_ONLY=on \ 

         .. \ 

&& make -j6 \ 

&& make check \ 

&& make install \ 

&& cd ../.. \ 

&& rm -fr gromacs-2018.3* 

 
Results 

We measure wall clock time (in seconds) and performance (in ns/day) as reported by the 

application logs. The speedup values are computed using the wall clock time averages for each 

data point, taking the native execution time at 4 nodes as baseline. The results of our 

experiments are illustrated in Figure 7: 

 

Daint.

 

Figure 7: Comparison of wall clock execution time, performance, and speedup between native and 

Sarus-deployed container versions of GROMACS on Piz Daint 
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We observed the container application being up to 6% faster than the native implementation, 

with a small but consistent performance advantage and comparable standard deviations across 

the different node counts. 

4.4 Dissemination and training activities 

Below in this section are reported the main features of the dissemination and training activities 

conducted during PRACE-6IP 

● Container Day - Bologna, 7-8 November 2019  [76] – the main Italian conference 

dedicated to container technologies, virtualisation and associated best practices. 

● Containerisation in HPC, 2-days course - November 2020 [77] : we focused on an 

Introduction to containerisation, following by managing and executing Singularity and 

Docker containers. There were 116 participants, on line, with both theoretical and 

practical sessions. 

● 17th Advanced School in Parallel Computing - Topic: Container tools for HPC, 

Singularity, Docker - March 2021  [78]: this was a PRACE School, focused on an 

Introduction to containerisation, followed by managing and executing Singularity and 

Docker containers. The last day was dedicated to Spack as a flexible package manager 

for HPC Software. There were 95 participants, it was an online event, with both 

theoretical and practical sessions.  

● First PRACE training event for HPC container and Unikernels - 5-9 July 2021 [79]. 

Several platform were presented: Docker, Saarus, Singularity, Charliecloud, 

Unikernels. There were 47 participants, it was an online event, with both theoretical and 

practical sessions. 

 

Use cases 

23 cases have been supported during PRACE-6IP: 

● Purpose of the software: Data analytics: 11 (55%), Virtualisation: 3 (15%), Deep 

learning: 6 (30%), Machine learning: 3 (15%), and Other: 6 (30%) 

● Type of packaging: Virtual Machine: 5 (25%), Containers: 15 (75%). 

● Support for parallelisation: Yes: 17 (85%), No: 3 (15%) 

● Kind of parallelisation: Shared memory: 10 (50%), Distributed memory: 12 (60%) 

● Approximate number of researchers using the software: Less than 5: 2 (10%), Between 

5 and 20: 11 (55%), More than 20: 7 (35%) 

4.5 Future of this service 

Within a possible future PRACE project, this service will be mainly an operational support for 

containerised workload. The service will be providing container runtime platforms on Tier-0, 

Tier-1, and EuroHPC systems (LUMI, VEGA, and LEONARDO technical teams have already 

expressed interest in collaboration), in addition to container clusters (mainly kubernetes) on 

some PRACE sites. Containers can be either imported by users, or provided by PRACE 

repositories that store containerised HPC tools including general purpose and widely used 

MPI/GPU tools and containerised services. In addition, a front-end portal, which can be 
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replicated, with the capability of deploying docker and singularity tools on the fly. The service 

will include the following components: 

● Tool repositories: Sharing of Docker and singularity containers in shared CVMFS and 

Docker registry repos. The repos can be mirrored on multiple sites to avoid 

centralisation; 

● HPC Container runtime platforms: using runtime platforms that are connected to 

PRACE tool repos to pull tools; 

● Frontend: Replicable web-based portal for pulling and running HPC containers 

(Galaxy); 

● Virtualised services & Service orchestration; 

● Container build templates: Github/Gitlab repository for Dockerfiles and Singularity 

recipes for MPI and GPU based containers; 

● Documentation: Admin docs for installing and maintaining container platform runtimes 

and container repos mirrors & User docs for using different container platforms on 

different sites (including docs for MPI and GPU workloads). 

 

To provide these components, the following tools will be used: 

● Repository platforms: CVMFS server, Harbour Docker registry  

Categories of hosted tools: 

o HPC containers (Singularity): ML/DL tools, and other MPI/GPU tools that run as 

HPC jobs 

o Service containers (Docker): Jupyter notebook, RStudio, etc. 

● Virtualized workload platforms: Docker, uDocker, Singularity, PCOCC, SARUS, 

uDocker, enroot 

● Front-end interface: Galaxy portal 

● Service orchestrators: Kubernetes, OpenShift, Docker Swarm 

 

The service site providers of the service components: 

● Virtualised tools: PRACE services/teams that package their tools in containers ; 

● Runtime platform maintainers: CSCS (SARUS), CEA (PCOCC), CESGA (Singularity), 

IDRIS (Singularity), UiO/Sigma2 (Docker, Podman, enroot, uDocker) ; 

● Virtualised workload support: UiO/Sigma2 (SAGA, FRAM, Betzy), CINECA 

(MARCONI, GALILEO, LEONARDO), CESGA (Fenis Terra II), CSC (LUMI (pre-

exascale)), CEA ( TBD), CSCS (Piz Diant) ; 

● Github/Gitlab repository maintenance: UiO/Sigma2, CESGA, CINECA ; 

● Container Repositories: UiO/Sigma2: CVMFS service and Harbour Docker registry ; 

● Container service orchestrators: Sigma2 (Service Platform), CSC: Rahti cluster & 

Kubernetes on LUMI (pre-exascale) ; 

● Galaxy Front-end: UiO/Sigma2: A portable Dockerised Galaxy portal. 

 

The operational KPIs for the future service: 

● Deployment simplicity: The ratio of container use cases that needed major modification 

to the original container file-system (from Docker hub) to all supported container use 

cases (should be minimum.); 

● Portability: Containers that are built/used by one site, and needs modification to run on 

other sites to all PRACE containers (should be minimum); 

● Performance: There should be no noticeable average performance degradation for 

containerised workloads compared to native workloads for similar applications; 

● Stability: Failure incidents of container engines/platforms (should be minimum); 

https://galaxyproject.org/
https://www.sigma2.no/nird-toolkit
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● Reproducibility: Results produced by using one or more containerised tools should be 

reproducible using the same container(s) ; 

● Security: Security related incidents (e.g. users manage to get root privileges) should be 

minimum. 

5 Service 4: Data Analytics 

5.1 Description of the service 

The partners involved in the Data Analytics service are IDRIS (Service leader), SURF, GRNET, 

EPCC, CINECA.  

We identified at the beginning of the project, four objectives to achieve that are listed below: 

 To transform this service into a regular service, meaning, to deploy a set of DL/ML 

services at different PRACE sites; 

 To extend our connection to users to get more feedback that will be used to extend or 

enhance the services; 

 To investigate more deeply the use of the graphical tools and the related issues they 

pose in an HPC environment; 

 To investigate if new machine learning workflow tools can be relevant to orchestrate 

AI jobs (hyper-parameter search, ...) in HPC environments. 

For each of these four goals, we describe in the following sections, the actions we put in place 

and the results we obtained. 

5.2 Results achieved during the project 

5.2.1 Service transformed to a regular service 

The first goal of the working group was to transform the Data Analytics service into a regular 

service, consisting of a set of DL/ML services running at different PRACE sites. To reach this 

goal, we focused on the following actions:  

 Identify the best set of service candidates to put in production. We used the results of 

the user surveys we launched to identify this set of tools. The overall user survey results 

are presented in the Connection to users section below and in the Annex part 7.2. 

 Provide manual and automatic installation instructions. This documentation can be 

found in the Annex part 7.4. 

 Provide user manuals. The manuals can be found in the Annex part 7.5. 

 Several trainings were provided, ranging from site events to WP4 collaborations. 

Given the experience of the Data Analytics group partners in running Data Analytics tasks, we 

proposed initially three core services to be supported in PRACE: Tensorflow, PyTorch and 

Horovod. Then, throughout the project, we paid attention to confirm, adjust and enhance the 

Data Analytics services offer by renewing periodic surveys. 

In this way and given the survey results, the Data Analytics group recommends now to define: 

 Tensorflow 
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 Keras 

 PyTorch 

 SckitLearn 

 Horovod 

 Jupyter 

as the core services for PRACE, for Tiers-0 machines and for Tiers-1 machines running Data 

Analytics projects.  

5.2.2 Connection to users 

One of our concerns was also to extend our connection to users to get more feedback in order 

to enhance the PRACE Data Analytics services offer. However, when trying to contact ML/DL 

users, we realised that the use of these technologies may introduce some confidential issues that 

may not appear with other technologies. Indeed, some ML/DL users do not want to answer to 

user surveys in order to avoid telling which Data Analytics tools they use and even, on which 

topics they work before they have published their results. Given these facts, we decided to 

broaden the way of connecting users along three axes: 

 We created a user questionnaire (see the Annex part Survey form 2021). It focuses on 

several aspects such as the Data Analytics tools used, the benefits obtained in running 

DA tasks on the PRACE infrastructure and the lack and difficulties that were faced; 

 We used the EUSurvey tool to create it and to publish it on-line;  

 We set up a collaboration with PRACE WP3 in order to benefit from the communication 

channel it offers to users. This way, more than 500 users were targeted from all PRACE 

partner countries in 2020 and 2021; 

 We also contacted Tiers-0 and Tiers-1 PRACE WP7 representatives that are used to 

connecting with local users at each site, to get additional answers; 

 We decided also to renew the survey periodically, in order to follow and to fit to the 

user practices. 

 

We got around 70 answers to the questionnaire from all partner countries. The following figures 

describe the major results we got from these surveys. The survey form and additional figures 

can be found in the Annex part 7.2. We received wide distribution of answers by scientific 

domains as shown in Figure 8 below.  

 
Figure 8: Distribution of answers by scientific domain 
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Figure 9 describes the various software stacks, ML/DL frameworks or libraries, used by the 

data analytics researchers. Even, Tensorflow, Keras, ScikitLearn and PyTorch appear to be 

widely used, one can also see that most of researchers use their own proprietary tools. Despite 

its very good performance, Horovod as a distributed training for Tensorflow and PyTorch, does 

not not seem to be widely used. 

 
Figure 9: Software stacks, ML/DL frameworks and libraries 

 

As shown by Figure 10 below, the most popular graphical tools used by ML/DL users are the 

CPU plotting package Matplotlib and Jupyter Notebooks. 

 

 

Figure 10 : Set of graphical tools used by Data Analytics users 

 

Figure 11 below describes the dataset origin. It shows that even though most of the users have 

their dataset locally, a lot of users still have to transfer their data over the Internet which can be 

an issue for large datasets. In the case of public datasets, getting this data over the PRACE HP 

network and from a set of PRACE sites that make the most popular public datasets available to 

their users can solve this issue. 
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Figure 11: Dataset origin 

 

Figure 12 shows the container usage for the Data Analytics tasks. From the set of container 

solutions available, two solutions stand out clearly: Singularity and Docker. It shows also, that 

most of the users did not answer to the question. 

 

Figure 12: Container usage for Data Analytics 

 

5.2.3 Graphical tools in HPC environment 

The following two sections describe the custom environments that have been set up at IDRIS 

and at SURF around Notebooks and Hub from the Jupyter ecosystem. 
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5.2.3.1 Secure architecture to use and deploy secure Jupyter Notebooks and 

Tensorboard applications at IDRIS 

The architecture described in Figure 13 below has been designed to bring a solution to hardware 

and software resources that are not accessible from outside the internal computer network. Also, 

security policies may require that only incoming SSH connections to front-ends are authorised 

and TCP forwarding are not allowed. 

Jupyter Notebooks and Tensorboard are web applications accessible through the http protocol. 

In order to provide an authentication phase, a proxy server is used that supports SSL to encrypt 

communications between a service machine and the compute nodes. In this environment, 

Notebooks as well as Tensorboard that is run using a Notebook plugin can be launched in a 

secure way. 

 

Figure 13: Secure architecture to use Jupyter Notebooks and Tensorboard. 

 

The architecture operation is detailed in the Annex part 7.3. 

5.2.3.2 JupyterHub deployment at SURF 

At SURF, a Jupyter Notebook environment is offered on a SLURM cluster by using on a 

combination of the JupyterHub [80], the JupterHub batchspawner [81]and the JupyterHub 

wrapspawner [82]. Two user groups are targeted with this setup: 

1. Traditional users of the cluster (i.e researchers), who use Jupyter Notebooks e.g. for 

code development or visualisation of results; 

2. Course participants in e.g data science / machine learning courses that require a Python 

or R programming environment. 

Multiple JupyterHub’s are running on a service node inside the cluster. One JupyterHub 

instance is targeted at the first user group. In addition, each course gets its own instance of a 

JupyterHub. Running multiple JupyterHubs allows isolation of the different use cases, and 

allows different configurations for each JupyterHub. For example: the JupyterHub for 

researchers has options to spawn Jupyter Notebooks in allocations with either a single core CPU 

or single GPU, while the JupyterHub’s for courses spawn Jupyter Notebooks with predefined 
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hardware (i.e either CPU or GPU, depending on the course) and in a SLURM reservation 

dedicated to that course. 

Figure 14 shows the technical setup and an example workflow. In this example, the end user 

would go to https://my.hub.url/course2 and the Apache Reverse Proxy will forward this to the 

correct JupyterHub instance. Then, when the user starts the Jupyter Notebook server, the 

SLURM spawner of JupyterHub will submit a job to the SLURM controller. This job starts the 

Jupyter Notebook Server and will run at e.g https://my.hub.url/course2/user/user1. The 

JupyterHub for Course2 will make sure that this address gets forwarded to the right Notebook 

Server User 1, so that the end user is connected to the correct Jupyter Notebook Server instance. 

 

Figure 14: JupyterHub setup on a SLURM cluster at SURF. 

 

5.2.4 Machine learning workflows tools 

Machine learning projects require handling different versions of data, source code, 

hyperparameters, and environment configuration before machine learning models can be 

leveraged in production. We performed a quick evaluation of two tools able to manage this 

process: MLFlow and Polyaxon. We had also a look at Acumos. Despite its interest, it appeared 

not to be enough mature to be run in production in PRACE-6IP. The last tool is Open-CE which 

is run in production at CINECA. 

5.2.4.1 MLFlow 

Mlflow [83] is an open source platform developed by Databricks, to manage the machine 

learning lifecycle, including experimentation, reproducibility and deployment. It consists of 

three main components MLflow tracking, MLflow projects and MLflow models. 

MLflow tracking is an API and a graphical interface (MLflow ui) that track parameters, 

performance indicators (metrics including user-defined metrics), code versions and output files. 

The graphical interface allows visualisation and comparison of results from different models. 

This feature is somewhat similar to Tensorboard but it can be used with various technologies 

https://my.hub.url/course2/user/user1
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as soon as the source code is properly instrumented. MLflow tracking can be used with python, 

R, Java and REST and is designed to work with any machine learning library such as 

Tensorflow, Keras, PyTorch, ScikitLearn.  

MLflow Projects helps in organising and in packaging the code. An MLflow Project describes 

the code dependencies and the way to run the code in order to produce reproductible results. 

MLflow supports several deployment modes and project environments: system environment, 

Conda environment, and Docker container environment on Kubernetes 

An MLflow Model is a standard format for packaging machine learning models. MFflow uses 

the concept of flavors which are conventions that MLflow deployment tools can use to 

understand how to run a given model. This way, a model can be exported in one of these flavors 

to benefit from these deployment tools. The standard MFflow flavors include: python function, 

tensorflow, pytorch, keras, sklearn, spark, onnx. MLflow models can be deployed locally or 

can be packaged as Docker images. 

5.2.4.2 Polyaxon 

Polyaxon [84] is a commercial tool with jointly a Community Edition which is an open source 

platform able to manage the complete machine learning life cycle of large scale deep learning 

applications. It supports the most popular deep learning frameworks and machine learning 

libraries. Unlike MLflow, Polyaxon uses Kubernetes which makes it heavier to deploy but also 

provides additional functionalities. It relies on Kubernetes for managing the cluster resources 

(memory, CPU, GPU), for creating repeatable deployments and for scaling up and down. 

Polyaxon focus on the reproducibility aspect of machine learning in order to allow it to easily 

recreate a workflow or an experiment to get the same results while being language and 

framework agnostic. This feature is based on a specification file (Polyaxonfile). Polyaxon 

supports hyperparameters search and optimization. It has its own dashboard to visualize and 

compare experiments based on results, hyperparameters, versions of training data and source 

code. 

As MLflow, Polyaxon has a similar concept of Model. A Model is a format for packaging and 

managing machine learning models. It is easy to reproduce the way the model was built thanks 

to the information from the provenance of the initial experiment. In order to manage the 

experimentation and the automation process, Polyaxon relies on a set of runtime objects which 

are jobs, distributed jobs, services and DAG. These objects are used to execute a code or to run 

distributed jobs on a Kubernetes cluster. Services and DAG are used respectively to run 

graphical user interface such as Tensorboard or Jupyter Notebooks and to describe the 

workflows including operations and dependencies. 

5.2.4.3 Acumos 

Acumos AI [85] is a platform and open source framework that aims to build share and deploys 

AI applications. Acumos is part of the LF AI Foundation within The Linux Foundation that 

supports open source projects in machine learning and deep learning. Acumos supports the four 

stages of AI development as shown on Figure 15: the creation and On-board models, the model 

enhancement, the model sharing in marketplace and the execution in a target environment.  
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Figure 15: The four stages of AI Development supported by Acumos 

 

The Acumos capabilities can be grouped into the following: 

● Build models  

o Generate model packages for onboarding by CLI or Web; 

o Generate model microservice images based upon docker base images; 

● Share models  

o Onboard models by CLI and Web; 

o Share and publish the models to company and public marketplaces; 

● Deploy models  

o Download for local deployment under docker and kubernetes; 

o Deploy to public and private clouds (OpenStack); 

The Acumos Marketplace is designed to make it easy to discover, explore, and use AI models. 

It allows the searching of models by keyword and filtering by category. 

The Acumos Portal is designed to enable Modelers to easily on-board AI models. It is the place 

where modelers have the possibility to package them into reusable microservices to share then 

and publish the models. These microservices allow users to export AI packaged applications as 

containers to run in public clouds or private environments. Currently, Docker files are 

supported. Singularity containers are planned but not supported yet. 

The Acumos Design Studio is used to chain together multiple models to create machine learning 

applications based on basic building blocks that are the individual models from the user 

community. 

Acumos provides also several client libraries that allow modelers to push their models to the 

Acumos platform. Model On-Boarding instructions are available for several languages and 

environments: Java, Python, R, C++, Spark, ONNX and pre-dockerized models. Models 

sourced from toolkits such as ScikitLearn, TensorFlow or H2O can also be on-boarded. 

PyTorch is currently not supported. 

The Onboarding functionality allows the user to choose to create or not the microservice. When 

a microservice generation is invoked, a docker image for the model is created and uploaded in 
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a Nexus docker repository. Models can currently be deployed into local or cloud Kubernetes 

clusters. The OpenStack deployment is on-going. The deployment to a batch scheduler 

environment like Slurm is currently not supported making it more difficult to adopt Acumos in 

an HPC environment. 

Acumos data brokers provide capabilities for acquiring data from external sources, then using 

the data to train or tune models. 

The Acumos release has been evaluated is Demeter. Even Acumos comes with 2 possible 

installation flows, it remains a heavy solution to deploy.  

5.2.5 Open-CE 

ML/DL frameworks, such as TensorFlow or PyTorch, can often be very difficult to install, also 

because these frameworks have a widely complex dependency chain; for example, TensorFlow 

relies on more than 80 open sources projects. In this task, different installation options, for 

example EasyBuild or Spack, were discussed bearing in mind the final goal of enabling 

researchers to use these tools rather than spending time installing or updating software 

packages.  

Recently, Open-CE was established as a new community-driven set of ML/DL tools, enabling 

some of the best hardware with low-activation energy for users. Open-CE was built using IBM 

Watson Machine Learning Community Edition and OpenPOWER. This new version has a 

similar set of tools but can now be controlled and managed directly by the users who need the 

resource. It can include developers who want full control of all the versions of the tools and 

users who just want compiled binaries.  

The Open-CE community is working to provide both. Open-CE GitHub page [86] focuses on 

providing feedstock to developers and groups while, for example, the Center for Genome 

Research and Biocomputing provides precompiled Conda packages [87]. The GitHub open-ce-

builder [88] provides tools, based on conda-build, to build the conda package from the feedstock 

recipes. It is worth noting that machine learning users seem to be more familiar with tools like 

Conda with respect to Spack. 

Open-CE provides a common dependencies environment for all supported packages, so that not 

only TensorFlow and PyTorch rely on the same version of their common dependencies but they 

could be even installed in the same environment and used in the same code.This has been made 

possible also since conda is multi architecture by default, with a real dependency software that 

is built in, while this is not the case for pip, that lacks a true dependency software. Let us note 

that while pip can be used inside a Conda environment the reverse does not work. 

Open-Ce supports different variants of Python (3.7, 3.8, 3.9) and CUDA (10.2, 11.0, 11.2) that 

can be specified at build time as well as the MPI compiler can be chosen between openMPI or 

one already available on the system on which you are building on, with CUDA the only required 

dependency besides Conda. This seamless management of the whole dependency chain is one 

of the main advantages of the tool. 

5.2.6 KPI 

We identified at the beginning of the project, the following KPI as an interesting number to 

follow: Number of scientific use cases that use the core services (Tensorflow, PyTorch and 

Horovod) available at PRACE HPC systems. 
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This KPI was monitored since October 2020 with numbers checked every month. These 

numbers were fed with two user surveys through the WP3 or WP7 channels, one in 2020 and 

the other in 2021 (report is in Section 7). We set up a minimal requirement of three projects to 

support the core services defined. 

From the set of answers we got, 18 projects used Tensorflow, 3 projects used PyTorch and 1 

project used Horovod. It shows that Tensorflow as one of the first popular deep learning 

framework, has been widely adopted and remains very popular and intensely used among data 

analytics researchers. Despite its rich features and good performance, PyTorch usage appears 

to be still notably below Tensorflow. The use of Keras (fully integrated to Tensorflow since the 

release 2.0) meant that users did not feel the need to migrate their code from Tensorflow to 

PyTorch.  

Despite its very good performance, Horovod as a distributed training for Tensorflow and 

PyTorch does not not seem to be widely used. This can be explained in different ways. First, 

maybe because most of users did not reach a sufficient complexity in their data analytics tasks 

that require distributed training. Secondly, maybe because users may use their own Tensorflow 

or PyTorch distributed training capabilities. Third, because it is now possible to have up to 8 

GPUS on a single machine which pushes back the need to perform distributed training. 

5.3 Future of this service 

With the Data Analytics service being transformed into a regular service in PRACE, this means 

that the activity will be mainly related to the following ones: 

 Monitoring the service at each site. So, the related Icinga reporters will have to be 

developed; 

 Update of the PRACE Service Catalogue; 

 Offer up-to-date tools to users by ensuring software maintenance at each site; 

 Provide periodic surveys in order to check the service usage and follow the user 

requirements. 

The Data Analytics task within some other EuroHPC JU funded activities could evolve in the 

following ways:  

 Follow up of the regular service already started in PRACE (see tasks described above); 

 Evaluation of new Data Analytics frameworks and libraries; 

 User requirements follow up by providing periodic surveys; 

 In EuroHPC JU, the Data Analytics task will have also to take into account the hardware 

evolution, both related to new GPUs generation and quantum computers.  

Indeed, running machine and deep learnings tasks over quantum computers can drastically 

reduce computation times leading to an increasing usage of these technologies. Thus, an 

interesting topic will be to understand which frameworks, tools, applications and data set, 

environments can benefit the most of this new hardware technology.  
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6 Conclusions 

In this deliverable, we present results obtained in Task 6.2 of Work Package 6 of the PRACE-

6IP project. This task focused on four services that had potential to address some of the widely 

recognised needs in scientific computing and were already investigated within the preceding 

project PRACE-5IP: urgent computing, in-situ visualisation, the deployment of containers and 

full-virtualised tools into HPC infrastructures, and data analytics. The teams for each service 

were similar to the teams working on the service in PRACE-5IP, so the work was a smooth 

continuation of the previous project. The work of all teams was coordinated by UL FME. 

Each team has done a long list of activities which have resulted in many test scripts, benchmark 

results, dissemination and training activities and are described in this document. 

This deliverable has therefore four main sections – one for each service. Each section contains 

description of the service, a report of the work done within PRACE-6IP and final conclusion 

based on the results of the activities. We evaluated the KPIs that were defined at the beginning 

of the project and prepared a proposal how each service shall be continued beyond PRACE-

6IP. 

The main outcomes of Urgent computing (Service 1) was pilot implementation of two 

applications: Faster than real-time tsunami simulations (PTF/FTRT) and near real-time seismic 

scenarios (UCIS4EQ) and incorporating follow-up activities into a new EU project 

eFlows4HPC. 

The main outcome of In-situ viasualisation service (Service 2) was succesfull installation of 

three in-situ frameworks (Catalyst, Damaris, Melissa) into the following seven HPC PRACE 

clusters: GALILEO, MARCONI, MARCONI100, Hawk, JEWELS, MareNostrum, and Jean-

Zay. We also selected scientific CFD codes of relevant importance in the CFD community to 

be in-situ instrumented and developed a coupling interface or improved an existing one for the 

following codes: MIGALE, OpenFOAM, STREAmS, Code Saturne, ParFlow, and WRF. The 

first three codes have been coupled with Catalyst, the fourth with Damaris and the last two with 

Melissa.  

The main outcomes of Service 3 (The deployment of containers and fully virtualised tools into 

HPC infrastructures) consist of several trainings and dissemination activities that were 

performed within PRACE and of support for 23 use cases where containers combined with 

parallelisation were a key-enabling technology. 

The main outcome of the Data analytics service (Service 4) consists in the answers provided to 

the user survey that was run in two iterations and gave impotant feedback for the service 

partners. These results were the basis for the list of services, for which automatic installation 

instructions and user manuals were created. Additionally, the work on this service resulted in 

several trainings, ranging from site events to WP4 collaborations.  
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7 Annex to Service 4 – Data Analytics 

7.1 Survey form 2021 

This section describes the survey form for the Data Analytics service sent to users in 2021. 
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7.2 Additional survey results 

This section presents some additional survey results.  Figure 17 describes how users get 

access to the PRACE infrastructure. 

 

 

Figure 16 : Users access to the PRACE infrastructure  

 

It shows that most of them use the project access way, followed by the COVID-19 projects, 

then the preparatory access way. 

Figure 18 describes the project sizes to which the users belong. 

 

 

 

Figure 17 : Project sizes 

 

Figure 19 describes the dataset type that is used if any. 

PRACE Access

Preparatory Access Project Access Multi-year Access

COVID-19 DECI Call SHAPE Call

Project size

1-2 persons 3-5 persons 6-10 persons

11-20 persons > 20 persons
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Figure 18 : Dataset type 

 

7.3 Secure architecture Operation 

The architecture described in Figure 13 is composed of the following components: 

 A front-end 

o A user connects a front-end using ssh 

o The user requests computational resources and runs Slurm job using sbatch 

 A Slurm cluster, composed of: 

o Slurm controllers that allocated resources to jobs on the Slurm workers and run the 

jobs on the Slurm workers 

o Slurm workers that run python process 

o The python process describes here is a web python application, that exposes 

data in http(s) and/or ws (WebSockets) 

o The python intended applications are currently Jupyter Notebook and 

Tensorboard 

o Tensorboard is launched using the jupyter-tensorboard plugin from a Jupyter 

Notebook 

 A service machine that runs: 

o A http server (Apache as a reverse proxy) 

o A sql server (MariaDB to store sessions) 

o PHP pages to interface MariaDB 

 Internet: 

o The user connects the front-end using ssh 

o The user has access through https to Jupyter Notebook or Jupyter Lab and to 

Tensorboard as a plugin of Jupyter 

How this architecture works: 

A user that plans to access to a web application proceeds as follows: 

1) The user uses ssh to connect to a front-end (LDAP authentication backend) 

2) The user submits a sbatch job to the Slurm controller which allocates one or more 

compute resources 

3) On the allocated node(s), the command launched by srun: 

Dataset type

Private Public No answer
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a. reserves free TCP ports that will be used by Jupyter 

b. defines an URL also used by Jupyter 

4) The command launched by srun calls a PHP page running on the Apache server. The 

page will insert a record in MariaDB with the following information: user_id, job_id, 

nodename: port, url. The url parameter is built with nodename and port informations.  

Besides, the command generates a self-signed SSL certificate to encrypt 

communications between the service machine and the execution node. 

5) The command launched by srun generates a random password to secure user access, 

launches a Jupyter server on a compute node allocated by slurm using the address 

https://nodename:port/url. These informations are printed out throught Linux standard 

output and stored into the Jupyter user’s home folder. 

6) The user connects to the public proxy as follows: 

a. https://proxyhost.domain 

b. User authenticates against the LDAP server 

7) Using the LDAP user_id, Apache retrieves from MariaDB the list of running Jupyter 

sessions for this user  

8) The list of sessions is displayed in the Web page and the user selects one 

9) Apache performs the url mapping: 

a. The user sees https://proxyhost.domain/nodename_port/ 

b. Apache maps this address with the cluster internal one: https://nodename:port  

c. Apache rewrites the urls in both directions using the mod_proxy and mod_rewrite 

Apache modules 

10) For security reasons, a second password authentication is carried out by Jupyter. The 

password was generated in step 5. 

11) When the command launched by srun ends, a PHP page is called to delete the related 

record in MariaDB. In case of epilog dysfunction, a scheduled SQL script purges the 

orphan and/or inactive sessions 

 

7.4 Installation instructions 

7.4.1 Anaconda 

7.4.1.1 Anaconda installation 

Anaconda is a Python distribution platform that is intensively used for data science and 

machine learning.  

Anaconda includes :  

 a package manager  

 an environment manager  

 a Python/R data science distribution  

 large a collection of open-source packages  

The conda utility makes it easy to manage multiple data environments (conda environment) 

that can be maintained and run separately.  

To install Anaconda:  

 Download the installer [89] 

 Set the execution right, then run the installer script (for Linux) :  

o chmod u+x Anaconda3-2021.05-Linux-x86_64.sh  

o ./Anaconda3-2021.05-Linux-x86_64.sh  

https://nodename:port
https://proxyhost.domain/
https://proxyhost.domain/nodename_port/
https://nodename:port
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7.4.1.2 Anaconda verification 

To check that anaconda has been properly installed, run :  

conda list 

 

# packages in environment at /xxxx/xxxx/anaconda3 : 

# 

# Name                    Version                   Build  Channel 

_ipyw_jlab_nb_ext_conf    0.1.0                    py38_0 

alabaster                 0.7.12             pyhd3eb1b0_0 

anaconda                  2021.05                  py38_0 

anaconda-client           1.7.2                    py38_0 

anaconda-navigator        2.0.3                    py38_0 

anaconda-project          0.9.1              pyhd3eb1b0_1 

anyio                     2.2.0            py38hecd8cb5_1 

appdirs                   1.4.4                      py_0 

... 

Anaconda provides more that 300 packages.  

7.4.2 Tensorflow 

7.4.2.1 Install TensorFlow precompiled binaries with pip 

According to TensorFlow documentation the following operating systems are supported: 

 Ubuntu 16.04 or later (64-bit) 

 macOS 10.12.6 (Sierra) or later (64-bit) (no GPU support) 

 Windows 7 or later (64-bit) 

 Raspbian 9.0 or later  

7.4.2.1.1 Prerequisites 

 Python 3.5-3.7 

 pip 19.0 or later 

 GPU support requires a CUDA-enabled card  

7.4.2.1.2 TensorFlow 2 

The following TensorFlow 2 packages are available: 

 tensorflow : Latest stable release with CPU and GPU support (Ubuntu and Windows) 

 tf-nightly : Preview build (unstable). Ubuntu and Windows include GPU support.  

7.4.2.1.3 Older TensorFlow versions 

For TensorFlow 1.x, CPU and GPU packages are separate: 

 tensorflow==1.15 : Release for CPU-only 

 tensorflow-gpu==1.15 : Release with GPU support (Ubuntu and Windows) 

7.4.2.2 Build and Install TensorFlow 2.x from Source 

The following instructions have been tested on CentOS 6 and CentOS 7, but they are generic 

enough to work on other distributions as well. 
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7.4.2.2.1 Prerequisites 

 Python 3.5 (we used 3.7.6, build instructions included below) 

 Bazel 0.26.1 

 GCC supporting c++14 (we used successfully GCC 6.5.0 and GCC 8.3.0. Do not use 

GCC 9.x because it is not supported by CUDA) 

 Java 1.8.0 

 CUDA (we used v. 10.1.168) 

 NCCL (we used v. 2.4.7) 

 cuDNN 

 An MPI implementation (if you want to also install Horovod)  

We also used 

 Make 4.2 

 Cmake 3.7.2 

 Git 2.7.2 (Git 1.7.x that is by default installed on CentOS 6 will not work!)  

Python, Bazel and TensorFlow have to be installed in the same isolated tree. From now on we 

assume the root of this tree is ${TENSORFLOWROOT}. 

We also assume that ${COMPILER_GNUROOT} points to the installation directory of GCC. 

For example, if which gcc returns /x/y/z/bin/gcc then COMPILER_GNUROOT should 

be /x/y/z 

7.4.2.2.2 Python 

In case your OpenSSL is old (EL6) you need to install a recent OpenSSL (we used openssl-

1.1.1d) before compiling Python: 

tar zxf openssl-1.1.1d.tar.gz 

cd openssl-1.1.1d 

./Configure --prefix=${TENSORFLOWROOT} linux-x86_64; make; make install 

Download Python's gzipped source tarball from https://www.python.org/downloads/source/ . 

Untar, configure and build: 

tar zxf Python-3.7.6.tgz 

cd Python-3.7.6 

./configure --prefix=${TENSORFLOWROOT} --enable-shared --disable-ipv6 --

with-openssl=${TENSORFLOWROOT} 

make 

make install 

After installing Python the following values should be prepended to the environment variables 

PYTHONPATH, PATH and LD_LIBRARY_PATH : 

PYTHONPATH       ${TENSORFLOWROOT}/lib/python3.7/site-packages 

PATH             ${TENSORFLOWROOT}/bin 
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LD_LIBRARY_PATH  ${TENSORFLOWROOT}/lib/python3.7/lib-

dynload:${TENSORFLOWROOT}/lib 

In your ${TENSORFLOWROOT}/bin directory, create a 'python' symbolic link pointing to 

python3 : 

cd ${TENSORFLOWROOT}/bin  

ln -s python3 python 

7.4.2.2.3 Python Modules 

Install the following python modules : 

pip3 install -U pip six numpy wheel setuptools mock 'future>=0.17.1' 

pip3 install -U keras_applications --no-deps 

pip3 install -U keras_preprocessing --no-deps 

7.4.2.2.4 Bazel 

Bazel is an open-source build and test tool that is used to build tensorflow. Bazel 0.26.1 is 

needed in order to build TensorFlow 2.x. You can find which is the latest Bazel release 

supported by TensorFlow in the TensorFlow code (check next section). Download Bazel 0.26.1 

release from github : 

https://github.com/bazelbuild/bazel/releases/download/0.26.1/bazel-0.26.1-dist.zip 

Unzip in a directory: 

mkdir bazel-0.26.1 

cd bazel-0.26.1 

unzip ../bazel-0.26.1-dist.zip 

Build with: 

env EXTRA_BAZEL_ARGS="--host_javabase=@local_jdk//:jdk" bash ./compile.sh 

After build is complete, copy the bazel binary in the the $TENSORFLOWROOT/bin directory: 

cp output/bazel ${TENSORFLOWROOT}/bin/ 

7.4.2.2.5 Download Tensorflow 

Clone tensorflow git repository: 

git clone https://github.com/tensorflow/tensorflow.git 

Change directory into tensorflow, and check out the version you want to install. For this 

document we will use version 2.0.0, so 

cd tensorflow 

git checkout r2.0 

In configure.py, search for the parameter "_TF_MAX_BAZEL_VERSION". This is the latest 

version of Bazel that is supported by this tensorflow version. For tensorflow 2.0.0, 

_TF_MAX_BAZEL_VERSION is 0.26.1 . 
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7.4.2.2.6 Build Tensorflow 

Run the configure script: 

./configure 

You will need to specify a list of comma-separated CUDA compute capabilities of your GPU 

cards. Check the tables in 

https://developer.nvidia.com/cuda-gpus#compute 

You will also need to specify the NCCL version installed on your system. More info about 

NCCL: 

https://developer.nvidia.com/nccl 

You may also specify any optimization flags useful to your installation, for example for haswell 

CPUs: 

-O3 -mavx2 -mfma -march=haswell -mtune=haswell 

After the configure script is finished, make the following changes manually: 

In tensorflow/tensoflow.bzl: 

After: 

    ctx.actions.run( 

        executable = ctx.executable._swig, 

        arguments = args, 

add: 

        use_default_shell_env=True, 

In .tf_configure.bazelrc add the following line, adapted for your GCC version and path: 

build --action_env GCC_HOST_COMPILER_PREFIX="/path/to/gcc/bin" 

Set up C_INCLUDE_PATH : 

export 

C_INCLUDE_PATH=${TENSORFLOWROOT}/include:${COMPILER_GNUROOT}/include/c++/6.

5.0/x86_64-linux-gnu:${COMPILER_GNUROOT}/lib/gcc/x86_64-linux-

gnu/6.5.0/include-fixed:${COMPILER_GNUROOT}/lib/gcc/x86_64-linux-

gnu/6.5.0/include:${COMPILER_GNUROOT}/include/c++/6.5.0:${COMPILER_GNUROOT}

/include:/usr/include 

Build the tensorflow pip package with: 

 

bazel build  --config=opt //tensorflow/tools/pip_package:build_pip_package 

and then 

./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg 
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7.4.2.2.7 Install tensorflow 

Use pip to install the produced *whl package: 

pip3 install tensorflow-2.0.1-cp37-cp37m-linux_x86_64.whl 

7.4.2.2.8 Sample environment module for tensorflow 2.0.0 

#%Module 

# GRNET user environment 

# 

# Author                : ntell@grnet.gr 

# Created               : Tue 15 Oct 2019 03:25:20 PM EEST 

# 

module-whatis "Enable usage for TENSORFLOW version 2.0.0 built with GNU Compilers 6.5.0" 

proc ModulesHelp { } { 

puts stderr "TensorFlow is an open source software library for numerical computation using 

data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges 

represent the multidimensional data arrays (tensors) communicated between them. The flexible 

architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, 

server, or mobile device with a single API. TensorFlow was originally developed by researchers 

and engineers working on the Google Brain Team within Google's Machine Intelligence research 

organization for the purposes of conducting machine learning and deep neural networks 

research, but the system is general enough to be applicable in a wide variety of other domains 

as well." 

} 

prereq gnu/6.5.0 

prereq java/1.8.0 

prereq cuda/10.1.168 

setenv TENSORFLOWROOT /apps/applications/tensorflow/2.0.0/gpu 

prepend-path PATH $env(TENSORFLOWROOT)/bin 

prepend-path LD_LIBRARY_PATH $env(TENSORFLOWROOT)/lib 

prepend-path C_INCLUDE_PATH /usr/include 

prepend-path C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include 

prepend-path C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include/c++/6.5.0 

prepend-path C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/lib/gcc/x86_64-linux-gnu/6.5.0/include 

prepend-path C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/lib/gcc/x86_64-linux-gnu/6.5.0/include-

fixed 

prepend-path C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include/c++/6.5.0/x86_64-linux-gnu 

prepend-path C_INCLUDE_PATH $env(TENSORFLOWROOT)/include 
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7.4.3 Tensorboard 

7.4.3.1 Tensorboard installation 

Tensorboard is an interface designed for Tensorflow to visualize the learning process of a 

model. Whether you choose to install tensorflow from source code or using pip, tensorboard 

is installed at the same time.  

You can check that the package is properly installed by running :  

 
pip list | grep tensorboard 

 

7.4.3.2 Tensorboard verification 

To check that tensorboard has been properly installed run :  

tensorboard --logdir=... 

where logdir is the directory where tensorBoard will look to find tensorFlow event files 

coming from experiments.  

Running this command will launch :  

TensorBoard 2.5.0 at http://localhost:6006/   

Please not that launching tensorboard such a way is not secure. Please refer to the secure web 

architecture describes in 5.2.3.1 to run tensorboard in a secure way in an HPC environment.  

7.4.4 Keras  

7.4.4.1 Keras and tf.keras 

The official documentation is available at [90] 

Keras is a python deep learning API that is widely used by researchers as it makes easier to 

perform deep learning tasks.  

Keras needs a backend to build the network topology and to run the optimizers.  

Originally, Keras default backend was Theano. It has moved progressively to a fully 

integrated Tensorflow default backend.  

The migration was carried out in several phases :  

 2 independant libraries before TensorFlow v1.10.0  

 since TensorFlow v1.10.0, a tf.keras submodule was introduced  

 since TensorFlow v2.0, tf.keras is fully synchronized if you install Keras on your 

system, TensorFlow will also be installed.  

The original keras package can be installed via pip :  

https://prace-wiki.fz-juelich.de/bin/edit/PRACE6IP/WP6/T6P2/TensorBoard?topicparent=PRACE6IP/WP6/T6P2.TensorboardVerification;nowysiwyg=0
http://localhost:6006/
https://prace-wiki.fz-juelich.de/bin/edit/PRACE6IP/WP6/T6P2/TensorFlow?topicparent=PRACE6IP/WP6/T6P2.Keras;nowysiwyg=0
https://prace-wiki.fz-juelich.de/bin/edit/PRACE6IP/WP6/T6P2/TensorFlow?topicparent=PRACE6IP/WP6/T6P2.Keras;nowysiwyg=0
https://prace-wiki.fz-juelich.de/bin/edit/PRACE6IP/WP6/T6P2/TensorFlow?topicparent=PRACE6IP/WP6/T6P2.Keras;nowysiwyg=0
https://prace-wiki.fz-juelich.de/bin/edit/PRACE6IP/WP6/T6P2/TensorFlow?topicparent=PRACE6IP/WP6/T6P2.Keras;nowysiwyg=0
http://localhost:6006/
http://localhost:6006/
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pip install keras 

Although, the keras package is still maintained with bug fixes, it is recommended to use the 

submodule tf.keras. The source code has to be changed in the following way :  

from keras import ... 

 

to : 

 

from tensorflow.keras import ... 

 

7.4.4.2 Keras verification 

To check that keras has been properly installed (old Tensorflow releases), run the following 

python code :  

python -c 'import keras; print(keras.__version__)' 

The output should be similar to :  

2.2.4 

For recent Tensorflow release , run the following python code :  

python -c 'import tensorflow.keras; print(tensorflow.keras.__version__)' 

The output should be similar to :  

2.4.0 

 

 

7.4.5 PyTorch 

7.4.5.1 Install PyTorch precompiled binaries with pip 

According to PyTorch installation instructions, Linux distributions that use glibc >= v2.17 are 

supported, which include 

 CentOS, minimum version 7.3-1611 

 Debian, minimum version 8.0 

 Ubuntu, minimum version 13.04  

and others. 

7.4.5.1.1 Prerequisites 

 Python 3.6 or greater 

 Anaconda or pip (we use pip in this document) 

 CUDA, if you have a CUDA-capable system and want to use CUDA  
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7.4.5.1.2 Installation of PyTorch 1.4 module 

If you wish to use CUDA v.10.1, run 

pip install torch torchvision 

If you wish to use CUDA v.9.2, run 

pip install torch==1.4.0+cu92 torchvision==0.5.0+cu92 \ 

                  -f https://download.pytorch.org/whl/torch_stable.html 

And finally if you would like to install PyTorch without using CUDA, run 

pip install torch==1.4.0+cpu torchvision==0.5.0+cpu \ 

                  -f https://download.pytorch.org/whl/torch_stable.html 

7.4.5.2 Build and Install PyTorch 1.4 from Source 

The following instructions have been tested on CentOS 6 and CentOS 7, but they are generic 

enough to work on other distributions as well. 

7.4.5.2.1 Prerequisites 

 Python 3.5 (we used v. 3.7.6, build instructions included below) 

 GCC supporting c++14 (we used successfully GCC 6.5.0 and GCC 8.3.0. Do not use 

GCC 9.x because it is not supported by CUDA) 

 CUDA (we used v. 10.1.168) 

 An MPI implementation (if you want to also install Horovod)  

We also used 

 Make 4.2 

 Cmake 3.7.2 

 Git 2.7.2  

Python and PyTorch have to be installed in the same isolated tree. From now on we assume 

the root of this tree is ${PYTORCHROOT}. 

We also assume that ${COMPILER_GNUROOT} points to the installation directory of GCC. 

For example, if which gcc returns /x/y/z/bin/gcc then COMPILER_GNUROOT should 

be /x/y/z 

7.4.5.2.2 Python 

In case your OpenSSL is old (EL6) you need to install a recent OpenSSL (we used openssl-

1.1.1d) before compiling Python: 

tar zxf openssl-1.1.1d.tar.gz 

cd openssl-1.1.1d 

./Configure --prefix=${PYTORCHROOT} linux-x86_64; make; make install 

Download Python's gzipped source tarball from https://www.python.org/downloads/source/ . 

Untar, configure and build: 
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tar zxf Python-3.7.6.tgz 

cd Python-3.7.6 

./configure --prefix=${PYTORCHROOT} --enable-shared --disable-ipv6 --with-

openssl=${PYTORCHROOTT} 

make 

make install 

Create an environment script (or environment modules script) that sets path, library path, 

pkg_info paths etc. with contents (sample is from environment-modules) 

prereq gnu/8 

prereq cuda/10.1.168 

setenv PYTORCHROOT /path/topytorch/1.4.0 

prepend-path PATH             $env(PYTORCHROOT)/bin 

prepend-path LD_LIBRARY_PATH  $env(PYTORCHROOT)/lib 

prepend-path LD_LIBRARY_PATH  $env(PYTORCHROOT)/lib64 

prepend-path LD_LIBRARY_PATH  $env(PYTORCHROOT)/lib/engines-1.1 

prepend-path LD_LIBRARY_PATH  $env(PYTORCHROOT)/lib/python3.7/lib-dynload 

prepend-path PYTHONPATH       $env(PYTORCHROOT)/lib/python3.7/site-packages 

prepend-path PKG_CONFIG_PATH  $env(PYTORCHROOT)/lib/pkgconfig 

prepend-path PKG_CONFIG_PATH  $env(PYTORCHROOT)/lib64/pkgconfig 

 

Update pip, install the absolutely required python packages. 

pip3 install --upgrade pip 

pip3 install mkl mkl-include numpy setuptools cffi pyyaml 

Official PyTorch documentation recommends to also install typing and cmake 

 DO NOT INSTALL typing if python is > 3.5. 

 Do not install cmake if you have a relatively fresh system cmake installation. 

7.4.5.2.3 OpenCV (Optional) 

Many ML workloads include image manipulation. Install OpenCV (and dependencies : 

LibTIFF, libjpeg-turbo, jasper) in the same installation tree. 

7.4.5.2.3.1 LibTIFF 

Download tiff from http://www.simplesystems.org/libtiff/ . We have used version 4.0.9: 

./configure --prefix=${PYTORCHROOT} 

make; make install 
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7.4.5.2.3.2 libjpeg-turbo 

Download libjpeg-turbo from https://libjpeg-turbo.org/ 

We used version 1.4.1. 

./configure --prefix=${PYTORCHROOT} --enable-shared 

make; make install 

7.4.5.2.3.3 JasPer 

Download JasPer from https://www.ece.uvic.ca/~frodo/jasper/ 

We used version 1.900.1 

./configure  --prefix=${PYTORCHROOT}  --enable-shared  --without-x --

disable-opengl 

7.4.5.2.3.4 OpenCV 

You need a recent cmake to compile OpenCV. 

Download OpenCV from https://opencv.org. 

Uncompress OpenCV source code and cd in the uncompressed source directory. Then: 

mkdir build; cd build; 

cmake \ 

        -DCMAKE_INSTALL_PREFIX=${PYTORCHROOT} \ 

        -DPYTHON3_EXECUTABLE=`which python3` \ 

        -DPYTHON_DEFAULT_EXECUTABLE=`which python3` \ 

        -DCMAKE_VERBOSE_MAKEFILE=true \ 

        -DWITH_CUDA=off \ 

        -DBUILD_opencv_python2=OFF \ 

        -DBUILD_opencv_python3=ON \ 

        -DTIFF_INCLUDE_DIR=${PYTORCHROOT}/include \ 

        -DTIFF_LIBRARY_RELEASE=${PYTORCHROOT}/lib/libtiff.so \ 

        -DWITH_PTHREADS_PF=off \ 

        -DWITH_OPENMP=on \ 

        -DJPEG_INCLUDE_DIR=${PYTORCHROOT}/include \ 

        -DJPEG_LIBRARY_RELEASE=${PYTORCHROOT}/lib/libjpeg.so \ 

        -DJASPER_INCLUDE_DIR=${PYTORCHROOT}/include \ 

        -DJASPER_LIBRARY_RELEASE=${PYTORCHROOT}/lib/libjasper.so \ 

        .. 

make; make install 
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7.4.5.2.4 Download PyTorch 

Download PyTorch with 

git clone --recursive https://github.com/pytorch/pytorch 

cd pytorch 

git submodule sync 

git submodule update --init --recursive 

Check out the release you would like to build. For example for 1.4.0 : 

git checkout v1.4.0 

7.4.5.2.5 Build and install PyTorch 

To build and install PyTorch run: 

export CMAKE_PREFIX_PATH=${PYTORCHROOT} 

export USE_CUDA=1 

export USE_OPENCV=on 

export TORCH_CUDA_ARCH_LIST="3.5"  # for K40, V100 is 7.0 

export USE_GLOG=off 

export LIB_MPFR=${COMPILER_GNUROOT}/lib/libmpfr.so 

export LIBGMP=${COMPILER_GNUROOT}/lib/libgmp.so 

export CMAKE_VERBOSE_MAKEFILE=on 

export BUILD_NAMEDTENSOR=on 

export USE_TBB=on 

export MKL_INCLUDE_DIR=${PYTORCHROOT}/include 

 

python3 setup.py install # build and install 

7.4.5.2.6 Sample environment module for PyTorch 1.4.0 

#%Module 

# GRNET user environment 

# 

# Author                : ntell@grnet.gr 

# Created               : Thu 23 Jan 2020 11:58:50 AM EET 

# 

module-whatis "Enable usage for Pytorch 1.4.0 with GNU Compilers 8 and CUDA 

10.1" 

proc ModulesHelp { } { 

puts stderr "" 
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} 

prereq gnu/8 

prereq intelmpi/2018 

prereq cuda/10.1.168 

setenv PYTORCHROOT /apps/applications/pytorch/1.4.0 

prepend-path PATH              $env(PYTORCHROOT)/bin 

prepend-path LD_LIBRARY_PATH   $env(PYTORCHROOT)/lib 

prepend-path LD_LIBRARY_PATH   $env(PYTORCHROOT)/lib64 

prepend-path LD_LIBRARY_PATH   $env(PYTORCHROOT)/lib/engines-1.1 

prepend-path LD_LIBRARY_PATH   $env(PYTORCHROOT)/lib/python3.7/lib-dynload 

prepend-path PYTHONPATH        $env(PYTORCHROOT)/lib/python3.7/site-

packages 

prepend-path PKG_CONFIG_PATH   $env(PYTORCHROOT)/lib/pkgconfig 

prepend-path PKG_CONFIG_PATH   $env(PYTORCHROOT)/lib64/pkgconfig 

7.4.6 Horovod 

7.4.6.1 Install Horovod with pip 

Horovod can be built and installed using pip. We recommend to have a separate Horovod 

module installed in each TensorFlow or PyTorch installation tree. 

Horovod requires an MPI implementation, so before installing/building Horovod please load 

the MPI module of your choice (we used Intel MPI 2018). 

7.4.6.1.1 TensorFlow 

After loading the TensorFlow environment module, run 

HOROVOD_WITH_MPI=1 HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL 

HOROVOD_WITH_TENSORFLOW=1 HOROVOD_WITHOUT_PYTORCH=1 pip install --no-cache-

dir horovod 

If the build script fails to find your CUDA installation, add also 

HOROVOD_CUDA_HOME=/path/to/your/cuda 

Note: In our installation we also had to add an "-mfma" compiler flag, to get around this: "error: 

inlining failed in call to always_inline ‘__m256d _mm256_fmadd_pd(__m256d, __m256d, 

__m256d)’: target specific option mismatch" 

HOROVOD_BUILD_ARCH_FLAGS="-mfma" 

7.4.6.2 PyTorch 

The procedure is similar with TensorFlow, but now we use 

HOROVOD_WITHOUT_TENSORFLOW=1 and HOROVOD_WITH_PYTORCH=1. 

So after loading the PyTorch environment module, run 
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HOROVOD_WITH_MPI=1 HOROVOD_GPU_ALLREDUCE=NCCL HOROVOD_GPU_BROADCAST=NCCL 

HOROVOD_WITHOUT_TENSORFLOW=1 HOROVOD_WITH_PYTORCH=1 pip install --no-cache-

dir horovod 

If the build script fails to find your CUDA installation, add also 

HOROVOD_CUDA_HOME=/path/to/your/cuda 

We also had to add the '-mfma' flag (you may not need it depending on your CPU/compiler). 

7.4.7 ScikitLearn 

7.4.7.1 Install ScikitLearn binaries with pip 

Scikitlearn is a set of python modules for machine learning and data mining.  

The official documentation is available at [91] 

Scikitlearn is shipped with Anaconda, see 7.4.1.1. Alternatively, it can be installed with 

miniconda or pip.  

The following instructions describe the use of conda and conda environment:  

Install conda from Miniconda.  

Then run :  

conda create -n aiwork python=3.8 

 

conda activate aiwork 

 

conda install scikit-learn 

 

7.4.7.2 ScikitLearn verification 

To check that scikitlearn has been properly installed, run the following Python code: 

python -c "import sklearn; sklearn.show_versions 

The output should be similar to :  

System: 

python: 3.8.10 | packaged by conda-forge | (default, May 10 2021, 22:58:09) 

[Clang 11.1.0 ] 

executable: /Users/XXX/anaconda3/envs/aiwork/bin/python 

machine: 

Python dependencies:  
  

pip: 21.1.2 

setuptools: 49.6.0.post20210108 

sklearn: 0.24.2 

numpy: 1.21.0 

scipy: 1.6.3 

Cython: None 

pandas: None 

matplotlib: None 
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joblib: 1.0.1 

threadpoolctl: 2.1.0 

Built with OpenMP: True  

 

7.4.8 Jupyter Notebook 

7.4.8.1 Install Jupyter Notebook binaries with pip 

The official documentation is available at [92] 

The Jupyter Notebook is a web-based application that is used for interactive computing. It 

allows to create documents that contain different contents such as code, text, mathematical 

equations and graphics.  

Jupyter Notebook is shipped with Anaconda see 7.4.1.1. Alternatively, it can be installed with 

miniconda or pip.  

The following instructions describe the use of conda and conda environment:  

Install conda from Miniconda, see [93] 

Then run :  

conda create -n jnwork python=3.8 

 

conda activate jnwork 

 

conda install notebook 

or pip install notebook 

 

7.4.8.2 Jupyter Notebook verification 

To check that notebook has been properly installed, run :  

jupyter notebook 

Running this command will launch a notebook server, for example :  

Jupyter Notebook 6.3.0 is running at: 

http://localhost:8888/?token=5a0e01f7bfb9b20201ad2f5a5a9279f34861cd9dedf74c

08 

Please not that launching Jupyter Notebook such a way is not secure. Please refer to the 

secure web architecture describes at 5.2.3.1 to run jupyter notebook in a secure way,  in an 

HPC environment.  

7.4.9 Open-CE 

7.4.9.1 Open-ce 1.1.3 building 

The following instructions have been tested on  



D6.4 Final report on new prototypal services 

PRACE-6IP- INFRAEDI-823767 76 20.12.2021 

 Power9 ppc64le with Red Hat 8.1 and cuda 11.0  

 Intel x86_64 with CentOS 7 and cuda 10.2  

but they are generic enough to work on other distributions as well.  

7.4.9.2 Open-ce prerequisites 

 conda >= 3.8.3 (it can either be installed through Anaconda or Miniconda)  

 conda-build == 3.20.5 (it can be installed with the command: conda install conda-

build *)  

 python >= 3.6  

 docker >= 1.13 (optional, only required to create docker images)  

 Cuda 10.2 or 11.0 (only required for building NVIDIA GPU version)  

o CUDA_HOME environment variable to be set to the location of the CUDA 

installation  

o TensorRT must be downloaded from [94] and saved in a directory called 

local_files adjacent to the open-ce repository. The tar.gz file must match 

version 7.0.0.11 or 7.2.* for cuda 10.2 or cuda 11.0 respectively. 

7.4.9.3 Building a collection of packages 

The following commands will use the opence-env.yaml Open-CE environment file to build all 

the Open-CE packages for Python 3.6 (the default), including CUDA builds and cpu-only 

builds (also the default). The commands should be run from within the same directory that 

contains local_files.  

# Clone Open-CE from GitHub  

git clone https://github.com/open-ce/open-ce.git --branch open-ce-v1.1.3  

# Build packages  

./open-ce/open-ce/open-ce build env open-ce/envs/opence-env.yaml 

A complete list of the open-ce command options can be get using the –h option or found in 

the git repository [16] and allow to specify different settings such as:  

 --output_folder OUTPUT_FOLDER: path where built conda packages will be saved 

(default: condabuild)  

 --python_versions PYTHON_VERSIONS: Comma delimited list of python versions 

to build for, such as 3.7,3.8 (default: 3.6)  

 --build_types BUILD_TYPES: Comma delimited list of build types, such as cpu or 

cuda (default: cpu,cuda)  

 -mpi_types MPI_TYPES: Comma delimited list of mpi types, such as openmpi or 

system (default: openmpi)  

 --cuda_versions CUDA_VERSIONS: CUDA version to build for, such as 10.2 or 11.0 

(default: 10.2)  

For example, the following command will build all the Open-CE packages for Python 3.8, 

including only cuda 11 builds, included openmpi and it will save the packages in 

$HOME/channel:  

./open-ce/open-ce/open-ce build env --python_versions 3.8 --build_type=cuda 

--cuda_versions 11.0 --mpi_type=openmpi --output_folder $HOME/channel open-

ce/envs/opence-env.yaml 
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7.4.9.4 Building a single package 

The open-ce build env can be used also to build a single package such as tensorflow or 

pytorch (or any other in the open-ce/envs subdirectory), with dependencies automatically 

handled. For example, a build for pytorch may look like this:  

 ./open-ce/open-ce/open-ce build env --python_versions 3.8 --

build_type=cuda --cuda_versions 10.2 --mpi_type=openmpi --output_folder 

$HOME/channel open-ce/envs/pytorch-env.yaml 

 

7.4.9.5 Installing packages 

After performing a build, a local conda channel will be created. By default, this will be within 

a folder called condabuild but it can be changed using the --output_folder option. Packages 

can be installed within a conda environment from this local channel. For example:  

conda install -c $HOME/channel pytorch 

The open-ce build env script generate also a conda environment file which can be used to 

generate a conda environment with the built packages installed in it. For example:  

conda env create ?f $HOME/chanel/opence-conda-env-py3.8-cuda-openmpi-

10.2.yaml 

 

7.4.9.6 Environment set up 

The straightway to setup the environment is to use conda activate. Nevertheless, a module file 

can be set up:  

#%Module  

 

# module: open-ce-1.1.3  

# author: Marco Rorro  

# creation date: 20210315 16:06:18 

 

module-whatis "The Open-CE conda environment, includes (for example) 

Tensorflow, Pytorch, XGBoost, and other related packages and dependencies." 

 

prereq anaconda prereq cuda/11.0 

 

set OPEN_CE_ENV "$rootdir_name/opence-conda-env-py3.8-cuda-openmpi-

11.0/opence"  

set PYTHONPATH "$OPEN_CE_ENV/lib/python3.8/site-packages"  

prepend-path PATH "$OPEN_CE_ENV/bin"  

prepend-path LD_LIBRARY_PATH 

"$OPEN_CE_ENV/lib:$OPEN_CE_ENV/lib64:$PYTHONPATH/nvidia/dali:$PYTHONPATH/te

nsorflow"  

prepend-path PYTHONPATH "$PYTHONPATH"  

setenv TF_INCLUDE_DIR "$PYTHONPATH/tensorflow/include"  

setenv TF_LIBRARY_DIR "$PYTHONPATH/tensorflow" 
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7.5 User manuals 

7.5.1 Tensorflow 

7.5.1.1 Introduction 

TensorFlow is an open source software library for numerical computation using data flow 

graphs. The graph nodes represent mathematical operations, while the graph edges represent 

the multidimensional data arrays (tensors) that flow between them. This flexible architecture 

enables you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile 

device without rewriting code. TensorFlow also includes TensorBoard, a data visualization 

toolkit. 

TensorFlow was originally developed by researchers and engineers working on the Google 

Brain team within Google’s Machine Intelligence Research organization for the purposes of 

conducting machine learning and deep neural networks research. The system is general enough 

to be applicable in a wide variety of other domains, as well. 

More information about TensorFlow can be found on the TensorFlow webpage. 

7.5.1.2 TensorFlow Module 

Usually on a supercomputer system multiple versions of TensorFlow are available. Each of 

these versions requires different environment settings, for example different values of the 

$PATH and $LD_LIBRARY_PATH environment variables. The Environment Modules 

package is used to dynamically modify the user's environment according to the TensorFlow (or 

other software) version that has to be used. 

7.5.1.3 Use with Horovod 

Horovod is included in the PRACE TensorFlow modules. So it is possible to use Horovod after 

loading the TensorFlow module, following the instructions in the TensorFlow documentation. 

7.5.1.4 Module Usage 

To list all available modules on a system, use: 

module avail 

To list all available versions of TensorFlow, use: 

module avail tensorflow 

Example: 

# module avail tensorflow 

--------------------------- /apps/modulefiles/applications ---------------------- 

tensorflow/1.10.1gpu  tensorflow/1.5        tensorflow/1.8gpu     tensorflow/2.0.0 

tensorflow/1.12.0gpu  tensorflow/1.5gpu     tensorflow/1.9        tensorflow/2.1.0 

tensorflow/1.14.0     tensorflow/1.8        tensorflow/1.9gpu     tensorflow/2.2.0 
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To check module dependencies and the environment changes that will happen if a module is 

loaded, use 'module show' . Example 

# module show tensorflow/2.1.0 

------------------------------------------------------------------- 

/apps/modulefiles/applications/tensorflow/2.1.0: 

 

module-whatis    Enable usage for TENSORFLOW version 2.1.0 built with GNU Compilers 

6 

prereq   gnu/6 

prereq   java/1.8.0 

prereq   cuda/10.1.168 

prereq   intel/18 

prereq   intelmpi/2018 

setenv           TENSORFLOWROOT /apps/applications/tensorflow/2.1.0/gpu 

prepend-path     PATH /apps/applications/tensorflow/2.1.0/gpu/bin 

prepend-path     LD_LIBRARY_PATH /apps/applications/tensorflow/2.1.0/gpu/lib 

prepend-path     LD_LIBRARY_PATH /apps/applications/tensorflow/2.1.0/gpu/lib64 

prepend-path     LD_LIBRARY_PATH 

/apps/applications/tensorflow/2.1.0/gpu/lib64/engines-1.1 

prepend-path     LD_LIBRARY_PATH 

/apps/applications/tensorflow/2.1.0/gpu/lib/python3.7/lib-dynload 

prepend-path     C_INCLUDE_PATH /usr/include 

prepend-path     C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include 

prepend-path     C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include/c++/6.5.0 

prepend-path     C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/lib/gcc/x86_64-linux-

gnu/6.5.0/include 

prepend-path     C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/lib/gcc/x86_64-linux-

gnu/6.5.0/include-fixed 

prepend-path     C_INCLUDE_PATH /apps/compilers/gnu/6.5.0/include/c++/6.5.0/x86_64-

linux-gnu 

prepend-path     C_INCLUDE_PATH /apps/applications/tensorflow/2.1.0/gpu/include 

prepend-path     PKG_CONFIG_PATH 

/apps/applications/tensorflow/2.1.0/gpu/lib64/pkgconfig 

------------------------------------------------------------------- 

To load a TensorFlow module, run 'module load', with the version you wish to load and its 

dependencies. For example, if we would like to load version 2.1.0 : 

module load gnu/6 java/1.8.0 cuda/10.1.168 intel/18 intelmpi/2018 tensorflow/2.1.0 

To check loaded modules use 'module list' : 

# module list                                                                        

Currently Loaded Modulefiles: 
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  1) gnu/6              2) java/1.8.0         3) cuda/10.1.168      4) intel/18           

5) intelmpi/2018      6) tensorflow/2.1.0 

To clean your environment from all loaded modules use 'module purge' : 

# module purge 

# module list  

No Modulefiles Currently Loaded. 

7.5.1.5 Job Submission 

To run a job, a job script has to submitted to the system's Workload Manager, usually SLURM. 

An example of a SLURM batch script is provided below. However most details, like partition, 

account, tasks per node, will be different on each PRACE system. Please consult the system's 

documentation and support for the correct values. 

#!/bin/bash -l 

 

#----------------------------------------------------------------- 

# GPU job on 4 nodes , 

# with 2 gpus per node and 20 threads per MPI task. 

#----------------------------------------------------------------- 

 

#SBATCH --job-name=gpujob # Job name 

#SBATCH --output=gpujob.%j.out # Stdout (%j expands to jobId) 

#SBATCH --error=gpujob.%j.err # Stderr (%j expands to jobId) 

#SBATCH --ntasks=4 # Total number of tasks 

#SBATCH --gres=gpu:2 # GPUs per node 

#SBATCH --nodes=4 # Total number of nodes requested 

#SBATCH --ntasks-per-node=1 # Tasks per node 

#SBATCH --cpus-per-task=20 # Threads per task 

#SBATCH --mem=56000 # Memory per job in MB 

#SBATCH -t 01:30:00 # Run time (hh:mm:ss) 

#SBATCH --partition=gpu # Run on the GPU nodes queue 

#SBATCH -A testproj # Accounting project 

 

# Load any necessary modules 

 

module load gnu/6 

module load java/1.8.0 

module load cuda/10.1.168 

module load intel/18 
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module load intelmpi/2018 

module load tensorflow/2.1.0 

 

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK 

 

# Launch the executable 

srun EXE ARGS 

7.5.2 Pytorch 

7.5.2.1 Introduction 

PyTorch is a Python-based, open source machine learning framework, that is targeted at two 

sets of audiences: 

 A replacement for NumPy to use the power of GPUs.  

 A deep learning research platform that provides maximum flexibility and speed. 

PyTorch has been primarily developed by Facebook's AI Research lab (FAIR). 

More information about PyTorch can be found on the PyTorch webpage. 

7.5.2.2 PyTorch Module 

Usually on a supercomputer system multiple versions of PyTorch are available. Each of these 

versions requires different environment settings, for example different values of the $PATH 

and $LD_LIBRARY_PATH environment variables. The Environment Modules package is 

used to dynamically modify the user's environment according to the PyTorch (or other software) 

version that has to be used. 

7.5.2.3 Use with Horovod 

Horovod is included in the PRACE PyTorch modules. So it is possible to use Horovod after 

loading the PyTorch module, following the instructions in the PyTorch documentation. 

7.5.2.4 Module Usage 

To list all available modules on a system, use: 

module avail 

To list all available versions of PyTorch, use: 

module avail pytorch 

Example: 

# module avail pytorch 

 

-------------------- /apps/modulefiles/applications ---------------------- 

pytorch/1.1.0 pytorch/1.2.0 pytorch/1.3.1 pytorch/1.4.0 pytorch/1.5.0 
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To check module dependencies and the environment changes that will happen if a module is 

loaded, use 'module show' . Example 

# module show pytorch/1.5.0 

------------------------------------------------------------------- 

/apps/modulefiles/applications/pytorch/1.5.0: 

 

module-whatis    Enable usage for Pytorch 1.5.0 with GNU Compilers 8 and CUDA 10.1 

prereq   gnu/8 

prereq   intel/18 

prereq   intelmpi/2018 

prereq   cuda/10.1.168 

setenv           PYTORCHROOT /apps/applications/pytorch/1.5.0 

prepend-path     PATH /apps/applications/pytorch/1.5.0/bin 

prepend-path     LD_LIBRARY_PATH /apps/applications/pytorch/1.5.0/lib 

prepend-path     LD_LIBRARY_PATH /apps/applications/pytorch/1.5.0/lib64 

prepend-path     LD_LIBRARY_PATH /apps/applications/pytorch/1.5.0/lib/engines-1.1 

prepend-path     LD_LIBRARY_PATH 

/apps/applications/pytorch/1.5.0/lib/python3.7/lib-dynload 

prepend-path     PYTHONPATH /apps/applications/pytorch/1.5.0/lib/python3.7/site-

packages 

prepend-path     PYTHONPATH /apps/applications/pytorch/1.5.0/lib 

prepend-path     PYTHONPATH /apps/applications/pytorch/1.5.0/lib64 

prepend-path     PKG_CONFIG_PATH /apps/applications/pytorch/1.5.0/lib/pkgconfig 

prepend-path     PKG_CONFIG_PATH /apps/applications/pytorch/1.5.0/lib64/pkgconfig 

prepend-path     C_INCLUDE_PATH /apps/applications/pytorch/1.5.0/include 

prepend-path     INCLUDE /apps/applications/pytorch/1.5.0/include 

-------------------------------------------------------------------  

To load a PyTorch module, run 'module load', with the version you wish to load and its 

dependencies. For example, if we would like to load version 1.5.0 : 

module load gnu/8 intel/18 intelmpi/2018 cuda/10.1.168 pytorch/1.5.0 

To check loaded modules use 'module list' : 

# module list 

Currently Loaded Modulefiles: 

  1) gnu/8           2) intel/18        3) intelmpi/2018   4) cuda/10.1.168   

5) pytorch/1.5.0 

To clean your environment from all loaded modules use 'module purge' : 

# module purge 

# module list  
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No Modulefiles Currently Loaded. 

7.5.2.5 Job Submission 

To run a job, a job script has to submitted to the system's Workload Manager, usually SLURM. 

An example of a SLURM batch script is provided below. However most details, like partition, 

account, tasks per node, will be different on each PRACE system. Please consult the system's 

documentation and support for the correct values. 

#!/bin/bash -l 

 

#----------------------------------------------------------------- 

# GPU job on 4 nodes , 

# with 2 gpus per node and 20 threads per MPI task. 

#----------------------------------------------------------------- 

 

#SBATCH --job-name=gpujob # Job name 

#SBATCH --output=gpujob.%j.out # Stdout (%j expands to jobId) 

#SBATCH --error=gpujob.%j.err # Stderr (%j expands to jobId) 

#SBATCH --ntasks=4 # Total number of tasks 

#SBATCH --gres=gpu:2 # GPUs per node 

#SBATCH --nodes=4 # Total number of nodes requested 

#SBATCH --ntasks-per-node=1 # Tasks per node 

#SBATCH --cpus-per-task=20 # Threads per task 

#SBATCH --mem=56000 # Memory per job in MB 

#SBATCH -t 01:30:00 # Run time (hh:mm:ss) 

#SBATCH --partition=gpu # Run on the GPU nodes queue 

#SBATCH -A testproj # Accounting project 

 

# Load any necessary modules 

 

module load gnu/8 

module load intel/18 

module load intelmpi/2018 

module load cuda/10.1.168 

module load pytorch/1.5.0 

 

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK 

 

# Launch the executable 

srun EXE ARGS 
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7.5.3 Spark 

Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs 

in Java, Scala, Python and R, and an optimized engine that supports general execution graphs. 

It also supports a rich set of higher-level tools including Spark SQL and structured data 

processing, MLlib for Machine Learning, GraphX for graph processing, and Spark Streaming.  

Figure 19 below, presents a visual representation of the components involved on how Spark 

runs on clusters. Spark applications run as independent sets of processes on a cluster, 

coordinated by the SparkContext object in the main program (called the driver program). The 

SparkContext can connect to several types of cluster managers (Spark’s own standalone 

cluster manager, Mesos or YARN), which allocate resources across applications. Once 

connected, Spark acquires executors on nodes in the cluster, which are processes that run 

computations and store data for the application. Next, it sends your application code (defined 

by JAR or Python files passed to SparkContext) to the executors. Finally, SparkContext sends 

tasks to the executors to run [94]. 

 

Figure 19 : The Spark architecture 

This document describes all the steps necessary to create a multinode Spark standalone cluster 

(version 2.4) within a SLURM job. It has been tested on Cirrus [98], a Tier-2 machine hosted 

by EPCC. As with a lot of HPC services, Cirrus uses a Slurm scheduler to manage access to 

resources and schedule jobs. Writing a submission script is typically the most convenient way 

to submit your job to the scheduler.  

7.5.3.1 Spark installation 

Once in the download page, choose the Spark release and package type. For this document, 

we worked with Apache Spark 2.4.7 Pre-built for Apache Hadoop 2.6. Download Spark 2.4.7 

and extract in your $HOME.  

wget https://www.mirrorservice.org/sites/ftp.apache.org/spark/spark-

2.4.7/spark-2.4.7-bin-hadoop2.6.tgz  

tar xvf spark-2.4.7-bin-hadoop2.6  
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You can start a standalone master server by executing:  

./sbin/start-master.sh  

Once started, the master will print out a spark://HOST:PORT URL for itself, which you 

can use to connect workers to it, or pass as the “master” argument to SparkContext. Similarly, 

you can start one or more workers and connect them to the master via:  

./sbin/start-slave.sh <master-spark-URL>  

For more information and arguments regarding starting a Cluster Manually check the Spark 

Standalone Mode site [95]. We have created the following bash scripts to be called from our 

slurm jobs later on.  

Create a directory named bash_scripts in your $HOME and store the following bash files, 

which will be starting the master and worker nodes.  

start_master.sh  

#!/bin/bash 

module load anaconda/python3 

source activate cirrus-py36 

export SPARK_HOME=${HOME}/spark-2.4.7-bin-hadoop2.6 cd $SPARK_HOME/ 

sbin/start-master.sh 

echo "Started spark Master $HOSTNAME"  

 

start_worker.sh  

#!/bin/bash 

hostmaster=$1 

hostdriver=$2 

export SPARK_HOME=${HOME}/spark-2.4.7-bin-hadoop2.6                           

export HOSTNAME=`hostname`  

module load anaconda/python3                                                   

source activate cirrus-py36  

echo "I am at " $HOSTNAME "and the master is " $hostmaster  

if [ $HOSTNAME != $hostmaster ] && [ $HOSTNAME != $hostdriver ]  

then  

  echo "Started a WORKER on `hostname`"  

  echo $HOSTNAME >> worker.log  

cd $SPARK_HOME/ 

sbin/start-slave.sh $hostmaster:7077  

else 

  echo "Master" $hostmaster "or driver node" $hostdriver" - I dont start a 

WORKER on " $HOSTNAME  
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fi  

7.5.3.2 Create a conda environment 

Anaconda is a free and open-source distribution of the Python and R programming languages 

for scientific computing, that aims to simplify package management and deployment. The 

following steps can be skipped, however, note that if you decide to follow our instructions, 

our scripts are activating and working within the following conda environment.  

To create a python 3 environment in Cirrus, do:  

module load anaconda/python3 

conda create -n cirrus-py36 python=3.6 anaconda  

To activate an active environment, use:  

source activate cirrus-py3  

To deactivate an active environment, use:  

source deactivate  

7.5.3.3 Start the Spark Cluster 

To start the Spark cluster, submit a job submission script (in this case called: 

sparkcluster_driver.slurm ) to the scheduler  

sbatch sparkcluster_driver.slurm  

Wait until the job is running before proceeding to run your Spark applications. You should 

modify the sparkcluster_driver.slurm according to your machine and need. For example, 

change the amount of time, number of nodes, account and/or the java path of your machine 

(unless you are using Cirrus). The current script on Cirrus configures a Spark cluster of 324 

cores (9 nodes X 36 cores per node).  

sparkcluster_driver.slurm  

#!/bin/bash 

#SBATCH --job-name=SPARKCLUSTER                                             

#SBATCH --time=24:00:00 

#SBATCH --exclusive 

#SBATCH --nodes=9 

#SBATCH --tasks-per-node=36                                                   

#SBATCH --cpus-per-task=1                                                    

#SBATCH --account=XXXX 

#SBATCH --partition=standard                                                     

#SBATCH --qos=standard  

module load spack 

export JAVA_HOME=/lustre/sw/spack/opt/spack/linux-centos7-x86_64/gcc-

6.2.0/jdk-8u92-linux-x64-24xtmiygsdlaayomilfa5mnrasmxqlhj             

module load anaconda/python3 

source activate cirrus-py36 

export SPARK_HOME=$HOME/spark-2.4.7-bin-hadoop2.6 

export SPARK_MASTER_HOST=$HOSTNAME 
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export SPARK_MASTER_PORT=7077 

export SPARK_MASTER_WEBUI_PORT=8080 

export PATH=$SPARK_HOME/sbin:$SPARK_HOME/bin:$PATH  

cd $HOME/bash_scripts rm -f master.log 

rm -f driver.log 

rm -f worker.log                                                          

rm -f nodes_list.log 

echo "HOSTNAME is" $HOSTNAME 

scontrol show hostnames $SLURM_JOB_NODELIST > nodes_list.log 

mastername=$(head -n 1 nodes_list.log) 

echo "master is " $mastername 

echo $mastername > master.log 

fileItemString=$(cat nodes_list.log |tr "\n" " ")      

nodes=($fileItemString) 

echo ${nodes[*]} 

for each in "${nodes[@]}" 

do  

  echo "Nodo: $each" done  

# start resource manager only once ./start_master.sh 

echo "Started the master" $mastername sleep 20s  

drivername="NONE" 

# start workers in all the nodes except the one where the master and driver 

were started for i in "${nodes[@]}" 

do  

  echo $i  

  ssh $i "cd $HOME/bash_scripts; ./start_worker.sh $mastername $drivername" 

& done  

#$SPARK_HOME/sbin/start-history-server.sh  

sleep 24h  

7.5.3.4 Launching Spark Applications 

Spark comes with several sample programs. Scala, Java, Python and R examples are in the 

examples/src/main directory. To run one of the Java or Scala sample programs, use bin/run-

example <class> [params] in the top-level Spark directory.  

./bin/run-example SparkPi 10  

For more details on submitting Spark applications check Launching Applications with spark-

submit [96]. Attached a slurm job which will submit an application at the Spark Cluster 

created above. Replace the last line for the Spark application you want to launch.  

#lauch_sparkapp.slurm  

#!/bin/bash 

#SBATCH --job-name=Round1 #SBATCH --time=00:05:00                           

#SBATCH --exclusive 

#SBATCH --nodes=1 

#SBATCH --tasks-per-node=36 #SBATCH --cpus-per-task=1                
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#SBATCH --account=XXXX #SBATCH --partition=standard                          

#SBATCH --qos=standard  

module load spack 

export JAVA_HOME=/lustre/sw/spack/opt/spack/linux-centos7-x86_64/gcc-

6.2.0/jdk-8u92-linux-x64-24xtmiygsdlaayomilfa5mnrasmxqlhj                      

module load anaconda/python3 

source activate cirrus-py36  

export SPARK_HOME=$HOME/spark-2.4.7-bin-hadoop2.6                           

export SPARK_MASTER_HOST=$HOSTNAME 

export SPARK_MASTER_PORT=7077 

export SPARK_MASTER_WEBUI_PORT=8080                                         

export PATH=$SPARK_HOME/sbin:$SPARK_HOME/bin:$PATH  

hostmaster=$(cat "bash_scripts/master.log") 

echo "Master Node" $hostmaster 

export SPARK_HOME=${HOME}/spark-2.4.7-bin-hadoop2.6  

NUM=$(wc -l $HOME/bash_scripts/worker.log)                          

NUMWORKERS=$(echo $NUM| cut -d' ' -f1)                                   

NUMCORES=$( expr 36 '*' "$NUMWORKERS")  

echo "Number of cores for this query is" $NUMCORES  

### Launch your Spark Applications 

$SPARK_HOME/bin/run-example SparkPi 10  

This work used the Cirrus UK National Tier-2 HPC Service [97] at EPCC funded by the 

University of Edinburgh and EPSRC (EP/P020267/1)  

 

 

 


