

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2007-2.2.2.1 - Preparatory phase for 'Computer and Data Treat-
ment' research infrastructures in the 2006 ESFRI Roadmap

PRACE

Partnership for Advanced Computing in Europe

Grant Agreement Number: RI-211528

D8.3.2

Final technical report and architecture proposal

Final

Version: 1.0

Author(s): Ramnath Sai Sagar (BSC), Jesus Labarta (BSC), Aad van der Steen (NCF), Iris
Christadler (LRZ), Herbert Huber (LRZ)

Date: 25.06.2010

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 i 25.06.2010

Project and Deliverable Information Sheet

Project Ref. №: RI-211528

Project Title: Final technical report and architecture proposal

Project Web Site: http://www.prace-project.eu

Deliverable ID: : <D8.3.2>

Deliverable Nature: Report

Contractual Date of Delivery:

30 / 06 / 2010

Deliverable Level:

PU *

Actual Date of Delivery:

30 / 06 / 2010

PRACE Project

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other
participants (including the Commission Services), RE – Restricted to a group specified by the
consortium (including the Commission Services). CO – Confidential, only for members of the
consortium (including the Commission Services).

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 ii 25.06.2010

Document Control Sheet

Title: : Final technical report and architecture proposal

ID: D8.3.2

Version: 1.0 Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2003

Document

File(s): D8.3.2_addn_v0.3.doc

Written by: Ramnath Sai Sagar (BSC), Jesus Labarta
(BSC), Aad van der Steen (NCF), Iris
Christadler (LRZ), Herbert Huber (LRZ)

Contributors: Eric Boyer (CINES), James Perry (EPCC),
Paul Graham (EPCC), Mark Parsons
(EPCC), Alan D Simpson (EPCC), Willi
Homberg (FZJ), Wolfgang Gürich(FZJ),
Thomas Lippert (FZJ), Radoslaw
Januszewski (PSNC), Jonathan Follows
(STFC), Igor Kozin (STFC), Dave Cable
(STFC), Hans Hacker (LRZ), Volker
Weinberg (LRZ), Johann Dobler (LRZ),
Christoph Biardzki (LRZ), Reinhold Bader
(LRZ), Momme Allalen (LRZ), Jose Gra-
cia (HLRS), Vladimir Marjanovic (BSC),
Guillaume Colin De Verdière (CEA), Cal-
vin Christophe (CEA), Hervé Lozach
(CEA), Jean-Marie Normand (CEA), Sadaf
Alam (CSCS), Adrian Tineo (CSCS), Tim
Stitt (CSCS), Neil Stringfellow(CSCS),
Giovanni Erbacci (CINECA), Giovanni
Foiani (CINECA), Carlo Cavazzoni
(CINECA), Filippo Spiga (CINECA),
Kimmo Koski (CSC), Jussi Heikonen
(CSC), Olli-Pekka Lehto (CSC), Lennart
Johnsson (KTH), Lilit Axner (KTH)

Reviewed by: Thomas Eickermann (FZJ),
Miroslaw Kupzyk (PSNC)

Authorship

Approved by: Technical Board

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 iii 25.06.2010

Document Keywords and Abstract

Keywords: PRACE, HPC, Research Infrastructure

Abstract: This document describes the activities in Work Package 8 Task 8.3
(WP8.3) updating and analysing results reported in D8.3.1 for the dif-
ferent WP8 prototypes. The document also suggests potential architec-
tures for future machines, the level of performance we should expect
and areas where research efforts should be dedicated.

Copyright notices

© 2010 PRACE Consortium Partners. All rights reserved. This document is a project docu-
ment of the PRACE project. All contents are reserved by default and may not be disclosed to
third parties without the written consent of the PRACE partners, except as mandated by the
European Commission contract RI-211528 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are ac-
knowledged as own by the respective holders.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 iv 25.06.2010

Table of Contents
Project and Deliverable Information Sheet ... i
Document Control Sheet... ii
Document Keywords and Abstract... iii
Table of Contents ... iv
List of Figures ... vi
List of Tables... ix
References and Applicable Documents ... x
Executive Summary .. 1
1 Introduction .. 2

1.1 Scope and Structure of the Report .. 3
2 WP8 prototypes and Research Activities.. 4

2.1 Prototypes .. 4
2.1.1 eQPACE... 4
2.1.2 BAdW-LRZ/GENCI-CINES Phase1 (CINES Part) .. 5
2.1.3 BAdW-LRZ/GENCI-CINES Phase2 (LRZ Part) .. 6
2.1.4 Intel Many Integrated Core (MIC) architecture .. 7
2.1.5 ClearSpeed-Petapath ... 8
2.1.6 Hybrid Technology Demonstrator ... 9
2.1.7 Maxwell FPGA .. 10
2.1.8 XC4-IO... 11
2.1.9 SNIC-KTH.. 12
2.1.10 RapidMind ... 13

2.2 Research activities ... 14
2.2.1 PGAS language compiler... 14
2.2.2 Research on Power Efficiency ... 16
2.2.3 Parallel GPU... 17
2.2.4 Performance Predictions ... 18

3 WP8 evaluation results... 21
3.1 Performance experiments on prototype hardware... 21

3.1.1 Reference performance .. 21
3.1.2 Numerical issues .. 25
3.1.3 Accelerated Programming Languages and Compilers .. 28
3.1.4 FPGA experiments... 37
3.1.5 LRZ + CINES (Phase 1) .. 41
3.1.6 LRZ + CINES (Phase 2) .. 44
3.1.7 Intel MIC Architecture... 48
3.1.8 Petapath experiments... 50

3.2 Hybrid Programming Models .. 53
3.2.1 MPI+OpenMP ... 53
3.2.2 MPI+CUDA... 55
3.2.3 MPI + CellSs ... 58

3.3 Intra-Node Bandwidth.. 58
3.3.1 Triads (RINF1) benchmark results (BAdW-LRZ) .. 58
3.3.2 Random Access Results.. 59
3.3.3 Host to accelerator bandwidth (NCF) ... 60

3.4 Inter Node Communication Network .. 61
3.4.1 eQPACE... 61
3.4.2 BAdW-LRZ... 64

3.5 PGAS Languages... 69
3.5.1 Chapel experiments.. 69
3.5.2 Co-Array Fortran experiments .. 70
3.5.3 UPC Experiments .. 74

3.6 Novel I/O: XC4-IO experiments .. 77
3.6.1 Lustre Architecture .. 77
3.6.2 Throughput tests .. 78
3.6.3 File striping tests ... 79
3.6.4 Tests on the Metadata device technology .. 80
3.6.5 Metadata server load tests ... 81

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 v 25.06.2010

3.6.6 Parallel I/O libraries test... 81
3.6.7 Preliminary tests on pNFS... 83
3.6.8 Conclusion ... 83

3.7 Energy efficiency ... 85
3.7.1 The SNIC-KTH system ... 85
3.7.2 PSNC results.. 91
3.7.3 STFC results .. 100
3.7.4 BAdW-LRZ results ... 102

3.8 Performance predictions... 102
3.8.1 Impact of basic system components ... 102
3.8.2 Non ideal node level parallelisation .. 104
3.8.3 Prediction for ICE ... 106
3.8.4 Prediction for BG/P... 107
3.8.5 General analysis .. 110

3.9 Summary of conclusions ... 112
3.9.1 Node/core performance: Accelerators vs. general purpose CPUs 112
3.9.2 Memory bandwidth .. 114
3.9.3 Network bandwidth .. 114
3.9.4 Hybrid.. 115
3.9.5 I/O.. 116
3.9.6 Energy Efficiency... 117

4 Recommendations for next generation Petascale machines.. 118
4.1 Foreseeable architectures ... 118

4.1.1 General architecture.. 118
4.1.2 Some straw man examples ... 120

4.2 Relevant issues... 121
4.2.1 Power and Energy efficiency ... 121
4.2.2 Programming models and compilers ... 122
4.2.3 Accelerators... 122
4.2.4 Network Interconnects ... 123
4.2.5 Memory bandwidth and latency... 124
4.2.6 Memory per node and core .. 124
4.2.7 Performance tools.. 125
4.2.8 Load balance ... 125
4.2.9 Runtime Systems .. 126
4.2.10 Resilience... 126
4.2.11 Arithmetic .. 127
4.2.12 Benchmarks.. 127
4.2.13 Libraries .. 127
4.2.14 Applications ... 127

5 Conclusions and Final remarks... 129
6 Annex ... 130

6.1 Benchmarks ... 130
6.1.1 EuroBen – Synthetic Benchmarking Suite ... 130
6.1.2 High Performance LINPACK .. 130
6.1.3 Intel MPI Benchmark (IMB) .. 131
6.1.4 Triads (RINF1) Benchmark ... 131
6.1.5 Random Access Benchmark ... 132
6.1.6 APEX Benchmark .. 132
6.1.7 STREAM Benchmark ... 132
6.1.8 IOR Benchmark ... 133
6.1.9 CPU Burn-in.. 133
6.1.10 CacheBench ... 133
6.1.11 IOzone.. 134

6.2 Applications ... 134
6.2.1 GADGET.. 134
6.2.2 NAMD.. 135
6.2.3 RAxML ... 135
6.2.4 DL-POLY ... 135

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 vi 25.06.2010

List of Figures

Figure 1: QPACE Architecture ... 4
Figure 2: Prototype configuration and integration layout ... 6
Figure 3: ClearSpeed CSX 710 card ... 6
Figure 4: Hybrid system prototype installed at BAdW-LRZ .. 7
Figure 5: Scheme of Intel MIC architecture prototype.. 8
Figure 6: x86-based core and associated system blocks.. 8
Figure 7: Block diagram of vector processing unit (VPU).. 8
Figure 8: Clearspeed-Petapath prototype .. 8
Figure 9: Overview of HMPP components ... 9
Figure 10: I/O & File System Prototype architectural scheme.. 11
Figure 11: Prototype's motherboard .. 12
Figure 12: 10-blade chassis ... 12
Figure 13: Chassis features.. 12
Figure 14: Rack of prototype... 13
Figure 15: Data-stream processing in RapidMind... 13
Figure 16: Connection diagram... 17
Figure 17: Gant diagram and efficiency model ... 20
Figure 18: Model including microscopic load balance and serialization .. 20
Figure 19: Processor family share in the November 2009 Top500 list ... 21
Figure 20: Reference performance of dense matrix-matrix multiplication ... 22
Figure 21: Reference performance of sparse matrix-vector multiplication... 23
Figure 22: Reference performance of 1-D complex-to-complex FFT .. 23
Figure 23: Reference performance of the random number generator ... 24
Figure 24: Reference performance of dense matrix-matrix and sparse matrix-vector multiplication... 25
Figure 25: Reference performance of FFT and random number generation ... 25
Figure 26: Precision of the CGS Arnoldi Projection of a 10240 square Hilbert matrix........................ 27
Figure 27: Precision of the sparse CGSr process on sparse Andrews matrix.. 28
Figure 28: Comparison of the CUDA kernels on nVIDIA c1060 GPUs .. 28
Figure 29: Comparison of the MKL kernels on Nehalem-EP ... 28
Figure 30: mod2am on a single core Nehalem vs. nVIDIA C1060 .. 30
Figure 31: mod2as on a single core Nehalem vs. nVIDIA C1060 .. 30
Figure 32 : Example illustrating the richness of expression offered by HMPP’s set of directives 31
Figure 33: Nehalem-EP single socket mod2am performance versus nVIDIA C1060 using HMPP.... 31
Figure 34: Nehalem-EP single socket mod2as performance versus nVIDIA C1060 using HMPP 31
Figure 35: Performance of mod2am using CellSs on Maricel .. 32
Figure 36: Performance of mod2as using CellSs on Maricel .. 33
Figure 37: Performance of mod2am using GPUSs on nVIDIA Tesla .. 33
Figure 38: Performance of mod2am on Nehalem EP using SMPSs ... 34
Figure 39: Performance of mod2as on Nehalem using SMPSs... 34
Figure 40: Performance of mod2am using ClearSpeedSs on the ClearSpeed-Petapath prototype 35
Figure 41: RapidMind results for mod2am (GPU).. 36
Figure 42: RapidMind results for mod2am (CELL).. 36
Figure 43: RapidMind results for mod2am (x86).. 36
Figure 44: RapidMind results for mod2as... 36
Figure 45: RapidMind results for mod2f... 36
Figure 46: Performance of mod2f for different problem sizes.. 39
Figure 47: CPU/CSX710 (K = 1152) .. 42
Figure 48: CPU / CX710 across matrix sizes.. 42
Figure 49: HPL / 32 node + CSXL with varying hostassist ... 43
Figure 50: HPL / 32 node + CSXL with varying memory size... 43
Figure 51: Runtimes and Speedups for synthetic DNA dataset with 50 sequences 44
Figure 52: Runtimes and Speedups for synthetic DNA dataset with 250 sequences 45
Figure 53: Network topology of 9728-core SGI Altix4700 system HLRB II at BAdW-LRZ.............. 46

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 vii 25.06.2010

Figure 54: Scalability of TifaMMy on Many Intel Core Architecture and a recent x86 system........... 50
Figure 55: Absolute performance of TifaMMy on Many Intel Core Architecture and a recent x86
system.. 50
Figure 56: Performance of mod2am on 1 MTAP.. 51
Figure 57: Performance of mod2as on 1MTAP .. 52
Figure 58: Performance for mod2f on 1MTAP... 52
Figure 59: Performance for mod2h on 1 MTAP ... 53
Figure 60: Hybrid MPI+OpenMP results for mod2am ... 54
Figure 61: Hybrid MPI+OpenMP results for mod2as... 54
Figure 62: Speedup of the Linear Algebra subtask of a Car-Parrinello simulation............................... 54
Figure 63: BQCD scaling results on Cray XT5 system .. 55
Figure 64: BQCD scaling results on IBM BlueGene/P... 55
Figure 65: Results of CUDA+MPI mod2am with a reference mxm routine... 55
Figure 66: Results of CUDA+MPI mod2am with a CUBLAS mxm routine.. 56
Figure 67: Results of CUDA+MPI mod2as .. 56
Figure 68: Runtime of CPU vs. GPU HMMER .. 57
Figure 69: Performance of mod2am with MPI+CellSs on Maricel... 58
Figure 70: Single task performance of the vector triad measured on different processor architectures 59
Figure 71: Measured host-card bandwidth 1 MTAP... 60
Figure 72: QPACE network processor .. 62
Figure 73: Open MPI Modular Component Architecture ... 63
Figure 74: MPI bisection bandwidths (left figure) and MPI send receive latencies (right figure)........ 65
Figure 75: MPI Allreduce timings for SGI Altix4700, ICE and UltraViolet .. 65
Figure 76: Measured Altix ICE MPI bisection bandwidths .. 66
Figure 77: Measured Altix ICE MPI bisection latencies... 66
Figure 78: Measured MPI Allreduce timings.. 67
Figure 79: Measured MPI Alltoall timings ... 68
Figure 80: Measured MPI send/receive link bandwidths with and without traffic aware routing 69
Figure 81: Cray XT5 (left) and Cray X2 (right) processing nodes ... 71
Figure 82: Lustre throughput performances .. 78
Figure 83: Bandwidth (in MB/s) for Read and Write operations with different striping count 79
Figure 84: Performance (I/O ops/s) with different stripe count with a large number of files 80
Figure 85: Comparison between SSDs and magnetic Hard Disks (I/O ops/s) 80
Figure 86: Comparison between SSDs and magnetic Hard Disks (% cpu utilization of the MDS)...... 81
Figure 87: IOR results (MB/s) using individual communication .. 81
Figure 88: IOR results (MB/s) using collective communication... 82
Figure 89: RAMSES Test (MB/s) reads.. 82
Figure 90: RAMSES Test (MB/s) writes .. 83
Figure 91: Performance ratio of Elpida/Samsung, Supermicro 4-socket blade..................................... 86
Figure 92: Performance/W ratio for Elpida/Samsung Supermicro 4-socket blade 86
Figure 93: Stream Copy .. 87
Figure 94: Near linear relation between tasks and updates for StarRandomAccess 88
Figure 95: Relation between tasks and updates for MPIRandomAccess .. 88
Figure 96: Comparison of the performance of the dense matrix-matrix multiplication kernel for two
different implementations: Fortran, C with ACML and C with MKL ... 89
Figure 97: Performance of the dense matrix-matrix multiplication with GotoBLAS2 libraries 89
Figure 98: Performance of the sparse matrix-vector multiplication.. 90
Figure 99: of the random number generator kernel... 90
Figure 100: Performance of the fast Fourier transform kernel .. 90
Figure 101: Summary of Power consumption of tested servers .. 92
Figure 102: NAMD execution times ... 92
Figure 103: Power consumption - NAMD appoa1 benchmark... 93
Figure 104: Gromacs run time on SiCortex .. 94
Figure 105: Power consumption of SiCortex and Xeon E5345 .. 95
Figure 106: Performance reported by the dgemm application .. 96
Figure 107: Performance for the 1k x 1k matrix multiplication (dgemm) .. 97

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 viii 25.06.2010

Figure 108: Performance for the 6k x 6k matrix multiplication.. 97
Figure 109: The CPU load while running the four instances of the dgemm test................................... 98
Figure 110: Power consumption reported by the cards while running a single dgemm application..... 98
Figure 111: Computational performance... 98
Figure 112: Server power consumption .. 99
Figure 113: Performance/power ratio of the test server .. 99
Figure 114: Impact of node performance and Interconnect bandwidth (in MB/s) for 64 processes ... 103
Figure 115: Impact of node performance and Interconnect bandwidth (in MB/s) for 128 processes . 103
Figure 116: Impact of node performance and Interconnect bandwidth (in MB/s) for 256 processes . 104
Figure 117: Profile of computation regions in GADGET for 128 processors in MareNostrum 105
Figure 118: Impact of bandwidth and acceleration factor applied to major computation bursts rep-
resenting 93.67 % of the original computation time ... 105
Figure 119: Impact of bandwidth and acceleration factor applied to major computation bursts rep-
resenting 97.49 % of the original computation time ... 105
Figure 120: Impact of bandwidth and acceleration factor applied to major computation bursts rep-
resenting 99.11 % of the original computation time ... 105
Figure 121: MPI calls for real run (top) and prediction (bottom) for 128 processes on ICE 106
Figure 122: MPI calls for real run (top) and prediction (bottom) for 128 processes on ICE 107
Figure 123: MPI calls for real run (top) and prediction (bottom) for 128 processes on Jugene.......... 108
Figure 124: Histogram of duration of major computation bursts in the real run (on top) and prediction
(bottom)... 109
Figure 125: Zoom of duration of computation phases (top) and MPI calls (bottom) in exchange region
... 110
Figure 126: Instantaneous parallelism profile for 64, 128 and 266 processor runs on ICE 111
Figure 127: Instantaneous efficiency in the communication phase of the 256 processor trace from ICE,
assuming ideal interconnect .. 111
Figure 128: Serialized computations pattern... 112
Figure 129: Performance relative to reference platform of mod2am .. 112
Figure 130: Performance relative to reference platform of mod2as.. 112
Figure 131: Performance relative to reference platform of mod2f.. 113
Figure 132: current structure and performance of top machines in Top500 list 118
Figure 133: Possible evolution of supercomputer dimensioning .. 119
Figure 134: Kernel-based performance modeling ... 125

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 ix 25.06.2010

List of Tables
Table 1: Hardware used in the RapidMind experiments. .. 35
Table 2: mod2am performance results .. 37
Table 3: mod2am performance results .. 38
Table 4: mod2f performance results.. 39
Table 5: mod2h performance results ... 40
Table 6: Measured execution time of 256-core GADGET runs.. 46
Table 7: Memory bandwidth and spatial degradation factors of different processor platforms............ 59
Table 8: Measured random access memory latencies of different processor architectures................... 60
Table 9: MPI send/receive benchmark results... 64
Table 10: Measured barrier latencies .. 67
Table 11: Influence of different MPI versions and network pruning on execution time of GADGET. 68
Table 12: Test system configurations and roadmap .. 72
Table 13: STREAM benchmark results for the CAF compiler ... 73
Table 14: CAF STREAM results (GB/s) on X2.. 74
Table 15: Impact of alternate image mapping configurations on a CAF code execution 74
Table 16: Two equivalent alternatives to distribute the iterations for array arr between threads
according to data locality .. 75
Table 17: Summary of experiences with CAF and UPC compilers available as part of the CCE
framework on the Cray XT5 platform (options added since the previous release are highlighted) 77
Table 18: Power consumption of powered off servers .. 92
Table 19: Xeon 5130 server - internal power consumption .. 93
Table 20: NAMD, STMV benchmark, 500 steps.. 101
Table 21: LINPACK power efficiency on different architectures .. 101
Table 22: Prediction and error with respect to actual iteration time on the ICE prototype................. 106
Table 23: Prediction and error with respect to actual iteration time on the Jugene prototype 108
Table 24: Global performance model for GADGET... 110
Table 25: Point-to-point performance ... 114
Table 26: MPI performance of collective calls ... 115
Table 27: STREAM Benchmark Kernels.. 132

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 x 25.06.2010

References and Applicable Documents

[1] http://www.prace-project.eu
[2] D8.3.1 Technical Component Assessment and Development Report
[3] D8.1.4 Signing of AHTP contract
[4] D8.2.2 Architectural specifications from user requirements
[5] D2.7.2 Final report on selection of prototypes
[6] D2.7.2-Addendum Report on selection of 2nd prototypes
[7] D5.4 Report on the Application Benchmarking Results of Prototype Systems
[8] D6.6 Report on Petascale Software Libraries and Programming Models
[9] CAPS Entreprise http://www.caps-entreprise.com/index.php
[10] HARWEST Compiling Environment (HCE): http://www.ylichron.it/index.php
[11] Paraver: http://www.bsc.es/plantillaA.php?cat_id=485
[12] Dimemas: http://www.bsc.es/plantillaA.php?cat_id=475
[13] EuroBen : http://www.euroben.nl/
[14] CUDA Zone: http://www.nvidia.com/object/cuda_home.html
[15] Efficient Sparse Matrix-Vector Multiplication on CUDA” by Nathan Bell and Michael

Garland http://www.nvidia.com/object/nvidia_research_pub_001.html
[16] RapidMind developer site, https://developer.rapidmind.com/sample-code/matrix-

multiplication-samples/rm-sgemm-gpu-5938.zip
[17] http://hmmer.janelia.org/
[18] http://mpihmmer.org/
[19] NAMD Input set: http://www.ks.uiuc.edu/Research/namd/utilities/apoa1.tar.gz
[20] James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid,

Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kale, and Klaus
Schulten. Scalable molecular dynamics with NAMD. Journal of Computational Chemis-
try, 26:1781-1802, 2005. http://www.ks.uiuc.edu/Research/namd/

[21] HPL – High-Performance LINPACK, http://www.netlib.org/benchmark/hpl/
[22] “Evaluation of ClearSpeed Accelerators for HPC”, I. N. Kozin, STFC technical report

DL-TR-2009-1, http://www.cse.scitech.ac.uk/disco/publications/DLTR-2009-001.pdf
[23] Gilles Kempf, Aad J. van der Steen, Christian Caremoli, Wei-Ying Thang: Simulation

of Scientific Programs on Parallel Architectures, HPCN Conference, Brussels, 1996.
[24] http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
[25] http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess
[26] https://ftg.lbl.gov/ApeX/ApeX.shtml
[27] http://www.cs.virginia.edu/stream/
[28] http://users.bigpond.net.au/CPUburn/
[29] www.cs.utk.edu/~mucci/DOD/cachebench.ps
[30] http://www.iozone.org/docs/IOzone_msword_98.pdf
[31] V. Springel, "The cosmological simulation code GADGET-2", Mon. Not. R. Astron.

Soc. 364, 1105-1134 (2005).
[32] http://www.mpa-garching.mpg.de/gadget/
[33] JAMES C. PHILLIPS et al., “Scalable Molecular Dynamics with NAMD”, 2005 Wiley

Periodicals, Inc. J Comput Chem 26: 1781–1802, 2005
[34] Alexandros Stamatakis, Michael Ott, and Thomas Ludwig:``RAxML-OMP: An Effi-

cient Program for Phylogenetic Inference on SMPs''. In Proceedings of 8th International
Conference on Parallel Computing Technologies (PaCT2005), Volume 3606 of Lecture
Notes in Computer Science, 288-302, Springer Verlag, September 2005.

[35] http://www.cse.scitech.ac.uk/ccg/software/DL_POLY/
[36] GROMACS : http://www.gromacs.org/

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xi 25.06.2010

[37] M. Allalen, M. Brehm and H. Stüben, Performance of quantum chromodynamics
(QCD) simulations on the SGI Altix 4700, COMPUTATIONAL METHODS IN SCI-
ENCE AND TECHNOLOGY 14(2), 69-75 (2008).

[38] http://arxiv.org/pdf/0911.2174
[39] Green 500 List: http://www.green500.org/lists/2009/11/top/list.php
[40] Matrix Market: http://math.nist.gov/MatrixMarket/
[41] I. Christadler, V. Weinberg, RapidMind: Portability across Architectures and its Limita-

tions, to appear in: Facing the Multicore Challenge (Conference Proceedings), Heidel-
berg, 2010. http://arxiv.org/abs/1001.1902

[42] D.Brinkers. 2010. Multigrid Algorithms on QPACE. Diploma Thesis, University of
Erlangen-Nuremberg.

[43] TifaMMy (TifaMMy isn't the fastest Matrix Multiplication, yet),
http://tifammy.sourceforge.net,version 2.2.0.

[44] Heinecke, A., Bader M.: Parallel matrix multiplication based on space-filling curves on
shared memory multicore platforms, Proceedings of the 2008 ACM Research Comput-
ing Frontiers Conference and collocated workshops: MAW'08 and WRFT'08, p. 385-
392, 2008.

[45] Heinecke, A., Bader M.: Towards many-core implementation of LU decomposition us-
ing Peano Curves, Proceedings of the 2009 ACM Research Computing Frontiers Con-
ference and co-located workshops: Proceedings of the combined workshops on UnCon-
ventional high performance computing workshop plus memory access workshop, p. 21-
30, 2009.

[46] OpenMP 3.0: The OpenMP API specification for parallel programming,
http://openmp.org/, 2009.

[47] Michael Abrash: A First Look at the Larrabee New Instructions (LRBni), Dr Dobbs
Journal, April 1, 2009.

[48] http://blogs.intel.com/technology/2010/05/an_update_on_our_graphics-rela.php

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xii 25.06.2010

List of Acronyms and Abbreviations

ACF Advanced Computing Facility
ACML AMD Core Math Library
ADP Average Dissipated Power
AMD Advanced Micro Devices
APGAS Asynchronous PGAS (language)
API Application Programming Interface
APML Advanced Platform Management Link (AMD)
ASIC Application-Specific Integrated Circuit
ATI Array Technologies Incorporated (AMD)
BAdW Bayerischen Akademie der Wissenschaften (Germany)
BCO Benchmark Code Owner
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
BTL Byte Transfer Layer
CAF Co-Array Fortran
CAL Compute Abstraction Layer
CCE Cray Compiler Environment
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CGS Classical Gram-Schmidt
CGSr Classical Gram-Schmidt with re-orthogonalisation
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented in

PRACE by GENCI, France)
CLE Cray Linux Environment
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by ETHZ,

Switzerland)
CSR Compressed Sparse Row (for a sparse matrix)
CSXL ClearSpeed math Library
CT Current Transformer
CUDA Compute Unified Device Architecture (NVIDIA)
DARPA Defense Advanced Research Projects Agency
DDN DataDirect Networks
DDR Double Data Rate
DGEMM Double precision General Matrix Multiply
DIMM Dual Inline Memory Module
DMA Direct Memory Access

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xiii 25.06.2010

DNA DeoxyriboNucleic Acid
DP Double Precision, usually 64-bit floating point numbers
DRAM Dynamic Random Access Memory
EC European Community
EESI European Exascale Software Initiative
EoI Expression of Interest
EP Efficient Performance, e.g., Nehalem-EP (Intel)
EPCC Edinburg Parallel Computing Centre (represented in PRACE by EPSRC,

United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United Kingdom)
eQPACE extended QPACE, name of the FZJ WP8 prototype
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich (Switzerland)
EX Expandable, e.g., Nehalem-EX (Intel)
FC Fiber Channel
FFT Fast Fourier Transform
FHPCA FPGA HPC Alliance
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FZJ Forschungszentrum Jülich (Germany)
GASNet Global Address Space Networking
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GDDR Graphic Double Data Rate memory
GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/J Giga (=109) Floating point operations (usually in 64-bit, i.e. DP) per Joule
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second,

also GF/s
GHz Giga (= 109) Hertz, frequency = 109 periods or clock cycles per second
GigE Gigabit Ethernet, also GbE
GLSL OpenGL Shading Language
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GRU Global Register Unit (SGI, Altix UV)
GS Gram-Schmidt
GUI Graphical User Interface
GUPS Giga (= 109) Updates Per Second
GWU George Washington University, Washington, D.C. (USA)
HBA Host Bus Adapter
HCA Host Channel Adapter
HCE Harwest Compiling Environment (Ylichron)

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xiv 25.06.2010

HDD Hard Disk Drive
HE High Efficiency
HLL High Level Language
HMM Hidden Markov Model
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HP Hewlett-Packard
HPC High Performance Computing; Computing at a high performance level at any

given time; often used synonym with Supercomputing
HPCC HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/
HPCS High Productivity Computing System (a DARPA programme)
HPL High Performance LINPACK
HT HyperTransport channel (AMD)
HWA HardWare Accelerator
IB InfiniBand
IBA IB Architecture
IBM Formerly known as International Business Machines
ICE (SGI)
IDRIS Institut du Développement et des Ressources en Informatique Scientifique (re-

presented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International ExasSale Project
IL Intermediate Language
IMB Intel MPI Benchmark
I/O Input/Output
IOR Interleaved Or Random
IPC Instruction Per Cycle
IPMI Intelligent Platform Management Interface
IWC Inbound Write Controller
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC, Sweden)
LB Load Balance
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LLNL Lawrence Livermore National Laboratory, Livermore, California (USA)
LOV Logical Object Volume
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LS Local Store memory (in a Cell processor)
LU Logical Unit
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MDT MetaData Target

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xv 25.06.2010

MFC Memory Flow Controller
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per second,

also MF/s
MGS Modified Gram-Schmidt, also, ManaGement Server (Lustre file system)
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIC Many Integrated Core (Intel)
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC proces-

sor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
ML Maximum Likelihood
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MPI Message Passing Interface
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
MRAM Magnetoresistive RAM
MTAP Multi-Threaded Array Processor (ClearSpead-Petapath)
MTBF Mean Time Between Failure
MUPS Mega (= 106) Updates Per Second
mxm DP matrix-by-matrix multiplication mod2am of the EuroBen kernels
NAND Logical operation NOT AND, also NAND flash memory, a type of memory

technology
NAS Network-Attached Storage
NCF Netherlands Computing Facilities (Netherlands)
NDA Non-Disclosure Agreement
NoC Network-on-a-Chip
NFS Network File System
NIC Network Interface Controller
NUMA Non-Uniform Memory Access or Architecture
OFED OpenFabric Enterprise Distribution
OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing
OS Operating System
OSS Object Storage Server
OST Object Storage Target
PBS Portable Batch System
PCIe Peripheral Component Interconnect express, also PCI-Express
PCI-X Peripheral Component Interconnect eXtended
PCRAM Phase-change memory, also PCM or PRAM
PGAS Partitioned Global Address Space
PGI Portland Group, Inc.
pNFS Parallel Network File System
POSIX Portable OS Interface for Unix

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xvi 25.06.2010

PPE PowerPC Processor Element (in a Cell processor)
PPL Parallel Programming Laboratory
PPU Power Processor Unit (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
PSU Power Supply Unit
QCD Quantum Chromodynamics
QCDOC Quantum Chromodynamics On a Chip
QDR Quad Data Rate
QPACE QCD Parallel Computing on the Cell
QR QR method or algorithm: a procedure in linear algebra to compute the eigen-

values and eigenvectors of a matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RIDS Reference Input Data Sets
RISC Reduce Instruction Set Computer
RNG Random Number Generator
RM RapidMind language
RMS Record Management Services (Open VMS)
RPM Revolution per Minute
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)
SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SDSC San Diego Supercomputing Center
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM SHare MEMory access library (Cray)
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor, also Subnet Manager
SMC SGI Management Center
SMT Simultaneous MultiThreading
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SPE Synergistic Processing Element (core of Cell processor)
SPH Smoothed Particle Hydrodynamics
spmxv DP sparse-matrix-by-vector multiplication mod2as of the EuroBen kernels
SPU Synergistic Processor Unit (in each SPE)
SSD Solid State Disk or Drive
SSE Streaming SIMD Extensions (Intel)

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 xvii 25.06.2010

STFC Science and Technology Facilities Council (represented in PRACE by EPSRC,
United Kingdom)

STRATOS PRACE advisory group for STRAtegic TechnOlogieS
STT Spin-Torque-Transfer
TARA Traffic Aware Routing Algorithm
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCB Theoretical and Computational biophysics Group
TDP Thermal Design Power
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per second,

also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the

Supercomputing Research Infrastructure would host the Tier-0 systems; na-
tional or topical HPC centres would constitute Tier-1

TSMC Taiwan Semiconductor Manufacturing Company, Limited
TUM Technical University Munich
UFM Unified Fabric Manager (Voltaire)
UPC Unified Parallel C
UV Ultra Violet (SGI)
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description Language
VPU Vector Processing Unit
WP PRACE Work Package
WP5 PRACE Work Package 5 – Deployment of prototype systems
WP6 PRACE Work Package 6 – Software enabling for Petaflop/s systems
WP8 PRACE Work Package 8 – Future Petaflop/s computer technologies beyond

2010

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 1 25.06.2010

Executive Summary

The PRACE project [1] started a process in its Work Package 8 (WP8) aiming at the evalua-
tion of components and technologies that can be useful or will be required for future High
Performance Computing (HPC) systems. This process will be continued in the permanent
pan-European Research Infrastructure. It includes technology surveys and prototype evalua-
tion.

During the first year of the PRACE project, WP8 identified the most promising systems and
components that should be evaluated in depth and worked on. Based on the results of this sur-
vey, PRACE partners proposed a number of prototypes for detailed evaluation which have
been evaluated by external experts to obtain a wide coverage of technologies and to exploit
the specific expertise of the partners. Finally twelve WP8 prototypes were selected by
PRACE and have been approved by the European Commission (EC) and their HPC technol-
ogy experts. These prototypes include:

• Programming models/languages such as Chapel, CUDA, RapidMind, HMPP,
OpenCL, StarSs(CellSs), UPC and CAF;

• Computing nodes based on NVIDIA as well as AMD GPUs, Cell, ClearSpeed-
Petapath, FPGAs, Intel Nights Ferry co-processor and Intel Nehalem and AMD Barce-
lona and Istanbul processors;

• Systems to assess memory bandwidth, interconnect, power consumption and I/O per-
formance as well as hybrid and power-efficient solutions.

In deliverable D8.3.1 [2] the installation status of the prototypes (hardware and software) and
evaluation work performed until mid of September 2009 is described in detail. This deliver-
able summarises all evaluation results obtained by WP8 during the PRACE PP project and
tries to rate the applicability of these different technologies for future European Tier-0 HPC
systems.

Two components that have been mainly addressed and evaluated are the programming models
and accelerator based nodes. Although some of the prototypes used specific kernels or appli-
cations (GADGET, NAMD etc.) in the evaluation, an effort was made to use common
benchmark kernels to make the results comparable. WP8 selected 4 kernels from the EuroBen
benchmark suite, a dense matrix/matrix multiplication (mod2am), a sparse matrix/vector mul-
tiplication (mod2as), a 1-D radix-4 fast Fourier transformation (mod2f) and a random number
generator (mod2h) to be ported to different programming languages and processing architec-
tures. These kernels are sufficiently simple to be ported to different programming languages
and still do provide significant information concerning ease of use as well as performance.

The experience does show that the performance achievable with the accelerator-based ap-
proach is promising but very dependent on the actual coupling between the characteristics of
the algorithm and the device. One of the major bottlenecks, the memory bandwidth between
the host processor and accelerator has to be addressed in future implementations eventually
leading to tightly coupled heterogeneous processing cores in a node. Also the programmabil-
ity of these devices is still in general far from ideal especially if aiming at very high perform-
ance and non trivial codes. At the network level, interconnects with dynamic rerouting capa-
bility based on the network load are needed. Also new programming models helping the user
to more easily develop and scale parallel applications as well as tools for performance analy-
sis and prediction will be of critical importance in order to be able to efficiently use future
European multi-Petascale systems. Equally important will be the development of new scien-
tific libraries which are able to address different optimization criteria such as performance or
energy efficiency and support new programming models. Concerning system architecture,

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 2 25.06.2010

both homogeneous and accelerated clusters with ten thousands compute nodes as well as mas-
sively parallel systems with several hundred thousand low power compute nodes seem to be
the dominating architectures for the next five years.

1 Introduction

To stay at the forefront of High Performance Computing, PRACE Work Packages WP7 and
WP8 have collaboratively started a process to work with technology leaders to prepare for the
next generations of multi-Petaflop/s systems. This includes novel components and software
technologies to exploit next generation architectures. Close contacts have been established
with all major HPC system vendors as well as more than 26 technology providers which are
active in areas such as communications network, mass storage and file systems, memory,
processing units, programming languages and compilers, system software and tools. The ul-
timate goal is to engage European industry to develop products for the strategic HPC market
and to catch-up and eventually excel in selected fields.

This is not a one-time activity but a continuous process which will be an integral part of the
permanent pan-European Research Infrastructure. A major milestone towards the establish-
ment of PRACE as a competent technology partner was the creation of STRATOS (see deliv-
erable D8.1.4 [3]), the PRACE advisory group for Strategic Technologies. STRATOS,
founded by twelve PRACE partners and the open Interest Group of European and Interna-
tional users, providers and technology drivers “PROSPECT e.V.”, is open to and encourages
participation by all PRACE partners but also by other organizations or individuals with an
interest to contribute to the evolution of European HPC. With the accession of the French
consortium Ter@tec, made up of IT companies, research institutes and industrial users,
STRATOS has become a unique European HPC Coordination, Research and Development
Consortium consisting of European supercomputing centres and (through PROSPECT e.V.
and Ter@tec) over 60 European and world-wide technology providers.

During the first year of the PRACE project, WP8 identified the most promising systems and
components that should be evaluated in depth and worked on. With the documentation of
these findings in deliverable D8.2.2 [4], a second major milestone of WP8 was reached at the
end of 2008. Finally twelve WP8 prototypes were selected by PRACE (see D2.7.2 [5] and its
addendum [6]) and have been approved by the European Commission (EC) and their HPC
technology experts. These prototypes include:

• Programming models/languages such as Chapel, CUDA, RapidMind, HMPP,
OpenCL, StarSs(CellSs), UPC and CAF;

• Computing nodes based on NVIDIA as well as AMD GPUs, Cell, ClearSpeed-
Petapath, FPGAs, Intel Nights Ferry co-processor and Intel Nehalem-EP and AMD
Barcelona and Istanbul processors;

• Systems to assess memory bandwidth, interconnect, power consumption and I/O per-
formance as well as hybrid and power-efficient solutions.

Their evaluation has led to new insights which will be reported in detail in this document. Due
to late delivery of some prototypes the work on these technologies could not be completed in
2009. This deliverable summarizes all work performed by WP8 during the PRACE Prepara-
tory Phase project and it’s extension period. The following chapters and subsections of this
document contain completely new or updated information:

• Chapters 2.1.3, 2.1.4, 2.1.10, 2.2.1

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 3 25.06.2010

• Chapter 3.1.6 LRZ + CINES (Phase 2)
• Chapter 3.1.7 Intel MIC Architecture
• Chapter 3.3.1 Triads (RINF1) benchmark results (BAdW-LRZ)
• Chapter 3.3.2 Random Access Results
• Chapter 3.4 Inter Node Communication Network
• Chapter 3.5 PGAS Languages
• Chapter 3.7.1 The SNIC-KTH system
• Chapter 3.7.2 PSNC results
• Chapter 3.7.3 STFC results
• Chapter 3.9.3 Network bandwidth

1.1 Scope and Structure of the Report

This deliverable summarises all evaluation results obtained by WP8 so far and tries to rate the
applicability of these different technologies for future European Tier-0 HPC systems. The
document also aims at suggesting directions of potential research interest in order to develop
European technology towards the Exaflop/s era.

In Chapter 2 each prototype together with its key evaluation objectives are briefly described.

Chapter 3 describes the experiments that have been performed on the different WP8 proto-
types. The advanced nature of the WP8 prototypes makes a strongly structured approach for
the assessment, as it was taken by WP5/7 impossible. The assessment reports are arranged
under several sub-chapters such as “GPGPU Programming Languages and Accelerated Com-
pilers”, “Hybrid Programming Models”, “Intra-node Bandwidth”, “Inter-node Communica-
tion Network”, “PGAS Languages”, “Novel I/O” and “Energy Efficiency” as far as their
evaluation objective matches with these categories. Since the influence of the communication
network and processor performance on application scaling often cannot be tested on real
hardware because future Tier-0 systems are expected to contain new hard- and software com-
ponents which are not available at the time important system design decisions will have to be
made, performance prediction tools might become a key system design technology for the
PRACE Legal Entity in future. Section 3.8 describes the experiment to identify issues that
may be relevant when scaling or porting applications to future architectures. Finally, a short
summary of the evaluation results together with concluding remarks are given in Section 3.9.

In Chapter 4 recommendations for future multi-Petascale architectures are given based on the
prototype assessment and the PRACE technology surveys.

Chapter 5 gives final conclusions and remarks.

Chapter 6, an annex, gives a brief description of the benchmarks and applications used for the
prototype evaluations and for the research activities listed in Section 2.2.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 4 25.06.2010

2 WP8 prototypes and Research Activities

2.1 Prototypes

All WP8 prototypes are addressing the area of the emerging technologies for Petascale sys-
tems. Their aim is to investigate a specific and vertical set of hardware and software issues. In
this section the prototypes acquired for evaluation within Work Package 8 are succinctly de-
scribed. In addition, the lead partners and the key evaluation objectives for each prototype are
listed. Section 2.2 describes common research activities of WP8 parties on WP7 and WP8
prototype hardware.

2.1.1 eQPACE
Key Objective: Evaluation and extension of special-purpose cluster architecture

QPACE regarding applications beyond QCD.

Lead Partner: FZJ.

QPACE (Quantum Chromodynamics Parallel Computing on the Cell) is a massively parallel
and scalable computer architecture optimized for lattice Quantum Chromodynamics (LQCD)
which is developed among several academic institutions (SFB TR 55) and the IBM develop-
ment lab in Böblingen, Germany.

Figure 1: QPACE Architecture

The building block of QPACE is a node card comprising an IBM PowerXCell 8i processor
and a custom FPGA-based network processor. The 3D-torus network supports SPE-centric
nearest-neighbour communication between the SPE cores of adjacent nodes and data transfer
between its Local Stores.

32 node cards are mounted on a single backplane. One dimension of the 3D-torus network is
completely routed within the backplane where the nodes are arranged as one partition of 1 × 4
× 8 nodes or as multiple smaller partitions. For larger partitions, cables interconnect several
backplanes. Eight backplanes reside in one rack, hosting a total of 256 node cards correspond-
ing to an aggregate peak performance of 26 TFlop/s (DP).

The 3D-torus network interconnects the node cards with nearest-neighbour communication
links driven by a lean custom protocol optimized for low latencies. For the physical layer of

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 5 25.06.2010

the links 10 Gigabit Ethernet PHYs1 are used providing a bandwidth of 1 GB/s per link and
direction.

On each node card, the network processor is also connected to a Gbit-Ethernet transceiver.
The Ethernet ports of all node cards connect to standard Ethernet switches housed within the
QPACE rack. Depending on the I/O requirements, the Ethernet bandwidth between a QPACE
rack and a front-end system can be adjusted by changing the bandwidth of the uplinks of the
switches.

The backplanes in the rack, which holds 32 node cards, are connected to a liquid-cooled cold-
plate which acts as a heat conductor thus making QPACE a highly energy efficient ecosystem.
An upper limit for the power consumption is about 125 W per node card. To remove the gen-
erated heat a cost-efficient liquid cooling system has been developed, which enables high
packaging densities. The maximum power consumption of one QPACE rack is about 32 kW.

An IBM e1350 cluster serves as front-end system. It comprises login and master nodes as well
as six nodes intended to provide a parallel Lustre file system with two meta data and four ob-
ject storage servers. The disk storage amounts to five enclosures, each with 14 × 72 GB disks.

Goals of eQPACE are:

• Extend the features of QPACE to make the system suitable for a range of applications
beyond QCD;

• Leverage the feature that an FPGA is used to implement the torus interconnects and
use different versions of FPGA bitstreams;

• Extend the software stack, e.g., by development of a subset of MPI functions for the
torus API.

2.1.2 BAdW-LRZ/GENCI-CINES Phase1 (CINES Part)
Key Objective: Evaluation of a hybrid thin node system based (Bi Nehalem-EP and

ClearSpeed e710).

Lead Partner: GENCI – CINES.

The prototype installed at CINES focuses on assessing the ClearSpeed accelerator, one char-
acteristic of which is energy efficiency. The evaluation process has to take advantage of both
node processors and accelerator, by determining the optimal repartition of computing load has
to be found.

The platform is integrated in the Tier-1 HPC platform JADE (128 TFlop/s LINPACK), shar-
ing Lustre parallel file system, PBSPro Batch scheduler.

The targeted SGI-ICE / ClearSpeed-Petapath platform (Figure 2) configuration is:
SGI hosting platform:
32 Blades XE
64 Processors Intel Nehalem‐EP
256 Cores
4 GB per core
Infiniband QDR
Estimated peak performance is 2.53 TFlop/s

ClearSpeed‐Petapath accelerators:
32 x e710 card

1 PHY is a chip where the lowest PHYsical layer of a network is implemented

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 6 25.06.2010

One per ICE blade
4 GFlop/s / Watt
Software development toolkit

Estimated peak performance is 3 TFlop/s. The total accumulated peak performance is 5.53
TFlop/s.

Figure 2: Prototype configuration and integration layout

Figure 3: ClearSpeed CSX 710 card

2.1.3 BAdW-LRZ/GENCI-CINES Phase2 (LRZ Part)
Key Objective: Evaluation of a hybrid system architecture containing thin nodes, fat

nodes and compute accelerators with a shared file system.

Lead Partner: Leibniz Supercomputing Centre (BAdW-LRZ).

The joint prototype proposal from BAdW-LRZ (referred to as LRZ) and GENCI-CINES (re-
ferred to as CINES) shown in Figure 4 focuses on the last generation systems from SGI which
are able to scale up to peak performances of multi-PFlop/s. It is composed of ccNUMA (Ul-
traViolet, UV) and MPP (Altix ICE 8200LX) systems and accelerated with ClearSpeed-
Petapath Advance e710 and nVIDIA Tesla 1060 accelerators2.

While the focus of the CINES prototype lies in the evaluation of using ClearSpeed-Petapath
boards to accelerate real applications and enhance their energy efficiency dramatically, the
main objective of the LRZ part is to assess the advantages of hybrid systems for the LRZ
workload. The evaluation focus of this approach divides up into the following axes of assess-
ment:

• Hybrid system consisting of Intel Nehalem-EP-based thin nodes and Nehalem-EX-
based fat nodes with ClearSpeed-Petapath and nVIDIA compute accelerators;

• Performance/Power efficiency and ease of use for different scientific areas;

• Support for new programming languages like CAF, UPC and RapidMind.

2 Originally it was planned to evaluate the suitability of Intel Larrabee GPGPUs for accelerating HPC applica-
tions. Since Intel changed its product plans [48], LRZ started to assess GPGPU programming with nVIDIA
hardware. During the PRACE extension phase, Intel provided LRZ with a prototype software development vehi-
cle for the new Intel Many Integrated Cores (MIC) architecture.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 7 25.06.2010

Figure 4: Hybrid system prototype installed at BAdW-LRZ

2.1.4 Intel Many Integrated Core (MIC) architecture
Key Objective: Evaluation of the ease of use of the Intel “Many Integrated Core” (MIC)

architecture for HPC applications.

Lead Partner: Leibniz Supercomputing Centre (BAdW-LRZ).

Figure 5 shows a scheme of the Intel MIC architecture prototype. It uses 32 in-order x86-
based processor cores that are augmented by a 512 bit wide vector processing unit (VPU) (see
Figure 6). All cores are interconnected by a bi-directional on-chip ring network. This ring
network also provides a path for the L2 caches to access memory. The L2 cache is shared
between all cores. The instruction decoder of the Intel MIC architecture supports the standard
Pentium x86 instruction set as well as new instructions for explicit cache control and vector
type operations.

Each core has access to its 256 KByte local subset of a coherent L2 cache. The L1 cache sizes
are 32 KByte for instructions and 32 KByte for data. Furthermore each scalar unit supports 4
threads of execution, with separate register sets per thread. Hence thread switching can be
extensively used to cover cases such as pipeline stalls and cache misses.

Figure 7 shows a block diagram of the 16-wide vector processing unit. A set of new VPU
instructions allow a variety of instructions on both integer and floating point data types such
as:

• Standard arithmetic operation including fused multiply-add;

• Standard logical operations;

• Gather and scatter operations.

The VPU instructions allow up to three source operands, one of which can directly come from
the L1 cache. 8-bit and 16-bit integer and floating point numbers can be directly converted to
32-bit integer and floating point numbers without loss of performance. The VPU supports
swizzling of register data in a variety of ways and replication of data from memory across the
VPU lanes.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 8 25.06.2010

Figure 5: Scheme of Intel MIC architecture proto-
type.

Figure 6: x86-based core and associated system
blocks

Figure 7: Block diagram of vector processing unit (VPU).

The focus on the assessment of this Intel MIC architecture is to evaluate the ease of use of this
parallel SMP cache coherent prototype processor platform for HPC.

2.1.5 ClearSpeed-Petapath
Key Objective: Evaluation of the Petapath Feynman e740 and e780 prototype products

based on ClearSpeed technology within cluster configuration.

Lead Partner: NCF.

The configuration is given in the Figure 8. The light
blue boxes labelled “Feynman e740/e780” contain
4 or 8 ClearSpeed CSX700 processors for a total of
112. The dark blue HP DL170 host nodes each
connect to two Feynman boxes by PCI Express
Gen. 2 16× (8 GB/s).

The HP host nodes are connected by 4× DDR In-
finiband (IB) in order to employ them, and the at-
tached accelerator boxes, in parallel via MPI.

Internally a Feynman e780 connects to its 8 proces-
sors through a PLX 8648 PCIe switch. The band-
width to each individual processor is 1 GB/s. The
e740 boxes contain only 4 CSX700 processors but
the bandwidth to/from the individual processors is
doubled to 2 GB/s. This should help for bandwidth-
hungry applications. The peak performances are
768 GFlop/s and 384 GFlop/s in 8-Byte precision
(DP) for a Feynman e780 and e740, respectively.
The energy efficiency is very high: ≈ 4 Figure 8: Clearspeed-Petapath prototype

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 9 25.06.2010

GFlop/s/Watt.

The HP DL170h G6 host nodes contain 2 Intel X5550 Nehalem-EP processors at 2.67 GHz
and 24 GB of DDR3 memory/node. Furthermore, each host node contains dual disks of 250
and 500 GB, for system and user data, respectively. Access to the system is provided through
the HP DL160 G6 head node. The system is divided in a development part (1 DL170 + 2
Feynman e740s) and an application assessment part (7 DL170s + 2 Feynman e740s + 12
Feynman e780s).

2.1.6 Hybrid Technology Demonstrator
Key Objective: Evaluating GPGPU and HMPP.

Lead Partner: GENCI-CEA.

The Hybrid technology Demonstrator is a platform to study the impact of GPU computing in
terms of programming languages. Based on nVIDIA TESLA servers, this machine can run
different programming environments such as CUDA, RapidMind, OpenCL, Ct and HMPP.

On this prototype, we have focused on the HMPP environment provided by [9] to study the
impact of a directive-based programming model in terms of ease of development as well as
effective performances.

The prototype is a cluster of 5 nodes. The first node is a login node featuring four Intel Neha-
lem-EP processors. The last four nodes are BULL R422 servers featuring 2 Intel Harpertown
CPU with 16 GB of RAM each. The BULL servers are connected through a PCI-Express 16×
to two nVIDIA TESLA servers. Interconnects between the nodes are Infiniband DDR.

A TESLA server has 2 PCI-Express 16× links with 2 C1060 graphic boards on each. A C1060
features 30 multiprocessors at 1.3 GHz and has 4 GB of memory. One multiprocessor has 8
single precision (SP) units and 1 double precision (DP) unit. Therefore, a C1060 can have 240
SP (30 DP) units running in parallel. The peak performance of a C1060 is 78 GFlop/s DP and
624 GFlop/s SP.

The main component to be assessed is HMPP since we consider the TESLA as a product
which has already been extensively studied. New languages such as OpenCL or Ct were not
available at the beginning of this project.

We run the HMPP Workbench software, release 2.1.0sp1 as of the writing of this report. We
started our evaluation with release 1.5.3. Since HMPP is a source code generator (a pre-
processor) we use the usual Intel compiler (version 11.1) for the host program and the CUDA
2.3 environment for the TESLA part of the software.

HMPP relies on directives which are in the form of special comments in the source code for
FORTRAN or pragmas for C. HMPP has the ability to generate code for different types of
targets. Here we will focus only on the CUDA one as it is the native environment for a
nVIDIA TESLA platform. A future study of different targets (for example CAL/IL) needs to
be done.

Figure 9: Overview of HMPP components

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 10 25.06.2010

Our work will consist in adding directives to the proposed codes, evaluate the difficulty of
this task and then modify the codes to get the best performances with the HMPP/CUDA
driver.

For comparison sake, we have concentrated our efforts on two of the EuroBen benchmarks.
We have selected mod2am and mod2as because they are very frequent kernels in scientific
codes. Mod2am implements a matrix multiplication which can be easily compared with some
vendor libraries (here the CUBLAS one). Mod2as implements a reduction which is well
known for being hard to parallelize. Therefore it appeared to us that these two kernels would
be good challenges for the HMPP software.

2.1.7 Maxwell FPGA
Key Objective: Evaluate the performance and usability of HARWEST Compiling Envi-

ronment.

Lead Partner: EPSRC-EPCC.

Objective
Our objective is to evaluate the performance and usability of state-of-the-art FPGA program-
ming tools. We plan to port the 4 EuroBen kernels to the FPGA hardware in Maxwell using a
C-to-gates compiler, the Harwest Compilation Environment from Ylichron [10].

We will evaluate the performance of the ported kernels, compared to the original kernels run-
ning in software. Where possible we will also compare their performance to that of a hand-
coded VHDL (Very-High Speed Integrated Circuit Hardware Description Language) imple-
mentation of similar algorithms. Finally, we will evaluate the usability of the compiler (how
much effort it takes to port a C program to it, how much specialist hardware knowledge is
required to get an adequate result, etc.).

Architecture
In 2007, the FPGA High Performance Computing Alliance (FHPCA) completed work on the
Maxwell – a pre-production technology demonstrator system built using 32 accelerator cards
from Alpha Data Ltd and 32 from Nallatech Ltd using Virtex-4 FPGAs supplied by Xilinx
Corp. These accelerator cards are hosted in a 32 node IBM HS21-based BladeCenter system.
Each node therefore consists of a single-core 2.8 GHz Xeon processor with two accelerator
cards connected on a PCI-X bus. The main novelty in the design of the system is its use of the
RocketIO connections on the FPGAs to create a nearest neighbour two-dimensional mesh
interconnect between the FPGAs. This can allow a complete numerical algorithm to be exe-
cuted in parallel with no need for the FPGAs to communicate over the (relatively) slow PCI-
X bus.

Major components to be assessed
FPGA acceleration of high performance codes has generated a lot of interest in recent years
due to the potential gains in speed and reductions in power consumption. However, the tradi-
tional method of programming FPGAs using hardware description languages requires much
specialist knowledge and understanding, and is therefore not typically usable by scientists,
being challenging even for experienced software engineers.

Various tools exist which attempt to simplify the process. Many of them are C-to-gates com-
pilers, which take some subset of the C programming language (so as to be as familiar as pos-
sible to scientists and programmers) and attempt to compile it into a hardware representation.
In this project we aim to assess one such tool, the Harwest Compilation Environment (HCE)
from Ylichron, to determine:

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 11 25.06.2010

• How usable it is by programmers without specialist hardware knowledge;

• How the performance of the code it produces compares to software (and, where possi-
ble, traditional hand-coded FPGA designs).

2.1.8 XC4-IO
Key Objective: Evaluate the performance of I/O and Lustre file system and advantages

of using SSD technology for metadata.

Lead Partner: CINECA.

The prototype mainly investigates innovative aspects of I/O in two directions:

• Advantages given by accessing meta data using SSD technology;

• Comparison and performance benchmarks using Lustre file system in its native con-
figuration or in combination with NFS and pNFS over RDMA technologies.

The architecture of the prototype is composed by three main parts, as represented in Figure
10: A Storage Area Network, a cluster of I/O servers equipped with 8 blades (each blade
equipped with double link FC HBA 4 Gb/s), and an HPC Blade System cluster (HP Wood-
crest dual core Xeon Linux Cluster - XC4).

Figure 10: I/O & File System Prototype architectural scheme

The SAN is composed of two different types of devices: one for metadata storing (DDN
S2A9900 with SSD storage technology) and the other one in charge for the actual data infra-
structure, used by the applications (DDN storage S2A8500). These devices are double linked
with a cluster of I/O servers using Fiber Channel connections, ensuring a theoretical band-
width up to 64 Gb/s from I/O cluster to the storage infrastructure; each Fiber Channel (FC)
provides a bandwidth of 4 Gb/s.

One of the most important aspects of this prototype is metadata management analysis. Meta
data are stored in Intel X25-E Extreme SATA Solid-State Drives (SSD) and the access to this
storage structure is controlled by DDN S2A9900. The whole infrastructure is composed by 30
disks for a global storage amount of 1.5 TB only for metadata. The S2A9900 manages a co-
herent flow of data throughout the SAN from users to storage, transferring data at speeds of
up to 3 GB/s. Each drive controlled by S2A9900 is an Intel X25-E Extreme SATA SSD with
64 GB of capacity. These drives are designed using the latest-generation native SATA inter-
face with an advanced architecture employing 10 parallel NAND flash channels equipped
with single-level cell NAND flash memory.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 12 25.06.2010

Data used by applications are actually stored in a DDN S2A8500 device. In the prototype
architecture, DDN S2A8500 is presented in coupled configuration, organized in 12 tiers for a
whole amount of 27 TB of data. The DDN S2A8500 is equipped with eight 2 Gb/s Fiber
Channel ports, for a overall bandwidth of 16 Gb/s viewed from the cluster of I/O servers.

In order to manage requests from clients applications, the I/O subsystem is completed using a
cluster equipped with 8 blades (I/O server), each blade is an HP ProLiant BL460c G6 server
blade (Intel Xeon Processor X5570 2.93 GHz, 16 GB RAM).

To perform computational activities the prototype uses an HP BladeSystem cluster (XC4): HP
Woodcrest dual core Xeon Linux Cluster (HP XC6000) equipped with 1024 cores at 3.0 GHz,
2 TB RAM, Infiniband.

2.1.9 SNIC-KTH
Key Objective: Study of energy efficiency achievable using un-accelerated nodes based

entirely on commodity parts and commodity interconnects for cost effi-
ciency and minimal impact on programming model.

Lead Partner: SNIC-KTH.

Figure 11: Prototype's motherboard

Figure 12: 10-blade chassis

1620W PSU +
cooling fans

40Gb InfiniBand switch
18 external ports1/10Gb Ethernet switch

1Gb Ethernet
switch

PSU Dummy
when PSU
not used

1620W PSU +
cooling fans

CMM (Chassis
Management Module)

1620W PSU +
cooling fans

40Gb InfiniBand switch
18 external ports1/10Gb Ethernet switch

1Gb Ethernet
switch

PSU Dummy
when PSU
not used

1620W PSU +
cooling fans

CMM (Chassis
Management Module)

Figure 13: Chassis features

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 13 25.06.2010

The prototype consists of new blades and a new chassis designed
by Supermicro for the prototype. The blades have 4 CPU sockets
each with 4 DIMM slots, support for PCI Express-Gen2 and
AMD’s APML (Advanced Platform Management Link). Each
blade has four 6-core, 2.1 GHz, 6 MB cache, 55 W ADP High
Efficiency (HE) CPUs and two 4 GB DIMMs/socket. Each 7U
chassis is equipped with 10 blades achieving a density of 5.7
sockets/U, a 36-port QDR IB switch with 18 external ports, a
1/10 GigE switch and three 1620 W power supplies with a peak
efficiency in excess of 93 %. The Istanbul CPU supports three
HT-3 channels at 9.6 GB/s each.

The prototype consists of 3 racks with 180 blades interconnected
with a full bisection QDR IB network. The peak capacity of each
rack with the HE CPUs is 12.1 TFlop/s at a 30 kW rating, or 18.8
TFlop/s/m2.

Of particular interest in regards to energy efficiency is AMD’s
various power management features, such as Dual Dynamic
Power management allowing separate management of cores and
memory controller, the CoolCore technology for turning off un-
used parts, PowerNow enabling control of core frequency and
voltage levels, and Smart Fetch for managing cores and caches
from a power perspective, and the APML tools.

2.1.10 RapidMind
Key Objective: Evaluation of RapidMind programming model.

Lead Partner: LRZ.

The “RapidMind Multi-Core Development Platform" [16] promises easy and portable access
not only to multi-core chips from Intel and AMD but also to hardware accelerators like GPUs
and Cell. The basic concept of the RapidMind (RM) language is called “data-stream process-
ing”; a technology that describes a powerful way to express data parallelism (see Figure 15).
RM adds special types and functions to C++; the programmer defines operations (functions)
on streams (special arrays). Data dependencies and data workflows can be easily described
and will automatically include all information necessary for an efficient parallelization. The
compiler and the runtime environment have maximum information to decide how to auto-
parallelize the code.

Figure 15: Data-stream processing in RapidMind

Figure 14: Rack of proto-
type

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 14 25.06.2010

RM has been tested on nVIDIA Tesla boxes (RM “cuda” backend), nVIDIA Quadro FX cards
(RM “glsl” backend), an IBM QS22-blades cluster (PowerXCell8i processors, RM “cell”
backend) and several Nehalem-EPs (RM “x86” backend). A comparative analysis of hard-
ware accelerators for HPC was one objective of this prototype. However, the results imply
that the maturity of the available backends differs greatly and it is not advisable to draw con-
clusions on the suitability of different hardware accelerator for scientific codes from the per-
formance results obtained with RM.

The second objective was to enable a comparative analysis of new languages for HPC. This
could be well achieved; detailed findings are reported in Deliverable D6.6 [8]. We have
ported all three mathematical kernels (mod2am, mod2as, mod2f) to RM, assessed productiv-
ity metrics like number of lines of code and development time and measured performance on
various backends. Results show that RM is relatively easy to pick up and needs only few code
lines to express the algorithm. Detailed findings of the experiences with the RM prototype
have been reported in [41].

RapidMind Inc. has been acquired by Intel in autumn 2009 and will dissolve in Intel’s new
language Ct (C for throughput computing). Ct is currently only available for invited beta test-
ers; a public beta should be available mid 2010. PRACE is in close contact with the Intel Ct3
team.

The fact, that the RapidMind Multicore Development Platform is no longer available shows
how fast developing the field of accelerators and accelerator languages is. When the EoIs for
WP8 prototypes were due in mid 2008, many different accelerator architectures were avail-
able (Cell, ClearSpeed, GPUs, and already then rumours on Larrabee); two years later the
market has been cleared out and seems to be dominated by nVIDIA. A phase of diversity is
now followed by a period of standardization, with OpenCL being one of the precursors for
transparent support of multiple architectures. Finding a standardized way to make the vast
computational power of accelerators available to the HPC user community will facilitate the
work for scientists, programmers and software companies at the same time.

In conclusion, the language concepts used in RapidMind and transferred to Ct are powerful
ideas for expressing data-parallelism on many-core devices. Progress of data stream process-
ing languages should be monitored closely. A performance and productivity assessment of Ct
should be done once a first release will be available.

2.2 Research activities

2.2.1 PGAS language compiler
Key Objective: Evaluate the ease of use of PGAS programming model.

Lead Partner: ETHZ-CSCS.

Cray Compiler Environment (CCE) on the Cray parallel computing platforms offers inte-
grated compilation capability for two Programmable Global Address Space (PGAS) lan-
guages, Co-Array Fortran (CAF) and Unified Parallel C (UPC). The PGAS model is ex-
pected to provide ease of programming as well as high performance for global-shared and
distributed address space platforms. The CSCS team evaluated the CCE PGAS prototype
compiler for functional correctness, conformance with language standards and usability using
a subset of CAF and UPC benchmarks and applications. A performance release for these
compilers is expected to be available on the next-generation Cray networks. According to
Cray, this integrated compiler approach could result in significant performance improvements

3 Publicly available information on Intel Ct can be found at http://software.intel.com/en-us/data-parallel/

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 15 25.06.2010

over existing library and interpreter based approaches since the compiler and runtime infra-
structure would have more information, freedom and opportunities to optimize data access
and control patterns locally as well as remotely.

PGAS Language Compiler is installed on Cray XT systems at CSCS, Switzerland. The study
aims at evaluating components of the software development and execution environments that
are essential for developing and executing synthetic benchmarks and compact application
kernels written using UPC and CAF language extensions. Although performance evaluation
is not the focus of the current effort, the CSCS team investigates and highlights potential bot-
tlenecks in the code translation and transformation processes that may not be simply ad-
dressed by a high performance communication interface, which is expected to be available on
future Cray interconnects. In order to compare and contrast performance implications of dif-
ferent underlying hardware and system software, CSCS team evaluated CCE PGAS compiler
on a vector system called X2. Unlike the Cray XT5 platform, which has a contemporary x86
processing node, Cray X2 system has proprietary vector processors with a uniform memory
hierarchy within the node. Access to the X2 nodes are provided by the Edinburgh Parallel
Computing Center (EPCC).

The PGAS programming model offers programming flexibility of a globally-shared memory
programming model while introduces a concept of data locality that is similar to a distributed-
memory model. In other words, globally shared data structures and functions (collectives)
that access them, as well as data structures representing the locality and distribution of data
across multiple processing elements are two important parts of the programming paradigm.
Part of the global shared data structure is available locally and a compiler or interpreter could
make use of this locality of reference to provide high performance. As a result, a user or code
developer typically does not need to manually optimize and fine-tune the application to re-
duce accesses to remote data structures, while the UPC and CAF constructs, such as
upc_forall loops, will aid in the automatic optimization. Unlike message-passing models,
these remote accesses are performed without explicit messaging i.e. using one-sided commu-
nication primitives.

Co-Array Fortran (CAF), which is also a part of the FORTRAN 2008 standard pro-
posal, extends the Fortran language syntax with a construct called co-arrays, which are essen-
tially data structures that are shared between different images of a program. Accesses to these
co-arrays then result in remote memory accesses that are similar to remote memory put and
get operations. In addition to a simple syntax extension to parallel programming, on some
networks, these operations could be performed far more efficiently than exchanging data us-
ing the MPI message passing operations. Moreover, as the CAF compilers offer interopera-
bility with the MPI programs, an existing parallel MPI code need not to be re-written com-
pletely for exploiting benefits of the CAF approach on systems optimized for PGAS lan-
guages. For example, below is a representation of arrays using the CAF syntax illustrating a
regular array (a)—a private copy for each CAF image—while a CAF array (a_caf) is distrib-
uted among the given number of images:
 DOUBLE PRECISION a(ndim)

 DOUBLE PRECISION a_caf(ndim)[*]

Similarly, UPC is an extension to the C language offering benefits of the PGAS model
to programs written primarily in C. In UPC, program instances are called threads and data is
divided up in shared and private spaces. There are language qualifiers to describe whether
data is shared and how arrays could be distributed among available threads. The number of
threads can be specified at both compile and runtime. Although the UPC language specifica-
tions do not address the issue of interoperability with other programming paradigms, for ex-
ample MPI, some compiler instances have addressed this issue. For example, a simple array

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 16 25.06.2010

(a) has a private copy for each thread, while array (a_upc) is spread across the number of
available threads.
 double a[ndim];

 shared double a_upc[ndim];

Unlike globally shared programming model instances such as OpenMP, the PGAS model and
its instances allow code developers to articulate locality of shared data types and offer mecha-
nisms to control data mapping and distribution. Likewise, these restrictions permit the under-
lying compiler and runtime systems to distribute and schedule remote memory accesses in an
optimal manner without maintaining a global, uniform access view of memory on a distrib-
uted memory system.

2.2.2 Research on Power Efficiency
Key Objective: Evaluate the power consumption of the internal components like CPU,

HDD, RAM, etc.

Lead Partners: PSNC, EPSRC-STFC.

PSNC
The research activity mainly investigates power efficiency of different server implementations
to identify:

• Power efficiency of different hardware solutions;
• Power consumption profile of HPC servers.

The measurement was performed using the following equipment:

• A high resolution power meter Lutron DW-6090;
• Digital-multimeters Picotest;
• Multi-channel data logger Yokogawa XL-100;
• Additional equipment such as current shunt resistors.

This equipment connected in the configuration presented in Figure 16 allowed for detailed
measurement of power on both the AC and DC side of power supply not only at given point
of time but also for creating a profile of power consumption while running tests stressing dif-
ferent components of servers.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 17 25.06.2010

Figure 16: Connection diagram

The work focused mainly on the most popular x86 servers but also included other architec-
tures such as Itanium 2 based server and SiCortex MIPS server.

STFC

GPU Prototype Cluster

The GPU cluster comprises eight Supermicro 825TQ-R700 LPB servers and eight nVIDIA
Tesla S1070 servers thus providing 1:1 host to accelerator ratio. The Tesla servers feature four
C1060 cards clocked at 1.3 GHz and 4 GB of RAM each. Further details are as follows

• Motherboard: SuperMicro X8Dai;

• Processors: 2× Intel Xeon E5540 @ 2.53 GHz (max TDP 80 W), SMT disabled;

• Memory: 6× 4GB DDR3 DIMMs;

• Network: Infiniband Voltaire HCA410-4EX, on-board dual gigabit Ethernet, IPMI;

• SATAII hard drive;

• Dual-power PSU;

• OS and software: Scientific Linux 5.3, gcc 4.1, icc 11.0, pgcc 9.0, CUDA 2.2.

2.2.3 Parallel GPU
Key Objective: Evaluate GPGPU computing in a cluster system.

Lead Partner: CSC.

The research activity by CSC investigates the performance of GPGPUs in cluster environ-
ments:

• Porting of WP8 EuroBen kernel subset (mod2am, mod2as, mod2f) to OpenCL and
CUDA parallelized with MPI;

• Performance analysis of a real world GPGPU application (GPU-HMMER).

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 18 25.06.2010

The initial testing of GPU-HMMER was performed on the single prototype node at CSC
called “naru” which has 2 NVIDIA GTX 280 GPUs, which was already set up for use in other
projects. Initial testing involved, comparing the performance of GPU-HMMER to the regular,
multithreaded version of HMMER running on a HP DL785 server with 8 AMD Opteron QC
8360 CPUs (total of 32 cores).

The CUDA+MPI and OpenCL development was initially performed on a CSC in-house
GPGPU cluster called “Flux”, which has 13 nodes each with an nVIDIA Tesla C1060. Final
benchmark runs were performed on the GENCI-CEA Hybrid technology demonstrator, de-
scribed in Subsection 2.1.6.

The functionality and performance of the languages was assessed. In addition to basic evalua-
tion, the goal is to answer some more specific questions:

• How simple is it to parallelize an existing CUDA program, and will a trivial
parallelization of the code provide performance gains?

• How much work is it to port an existing CUDA program to OpenCL? This is an
important question as many HPC sites are evaluating the risk in investing heavily in
CUDA now (and potentially having to port the codes to OpenCL in the future);

• Can a GPGPU and an InfiniBand card coexist in the same system? Both devices can
lock system memory for direct memory access which may cause unexpected
interactions and should be studied.

2.2.4 Performance Predictions
Key Objective: Analysing and modelling the application and understanding its behav-

iour.

Key Partners: BSC.

During the years, BSC has been developing performance analysis tools and modelling tech-
niques to measure and understand the behaviour of parallel programs. Three major compo-
nents of this environment are: MPItrace, instrumentation package to instrument MPI applica-
tions and generate traces that have been ported during the PRACE project to some of the pro-
totypes (in particular BG/P and ICE); Paraver [11], a trace visualization and manipulation
tool; and Dimemas [12], a trace replay and interconnect simulator tool.

In Section 3.8, we present how these tools are used in prediction studies to describe the im-
pact of different components of a hypothetical future machine on the performance of one of
the benchmark applications used in WP5. The actual example we use is the GADGET
benchmark. Starting from traces obtained on MareNostrum (BSC), we will predict the per-
formance for one of the WP5 prototypes and one of the WP-8 prototypes. We will study the
potential impact of using accelerators and will show a general analysis pointing to areas
where some restructuring of the application would have potential impact on its scalability.

In the following paragraphs we briefly summarize two major components that will be used for
such evaluation: the Dimemas simulator and a simple analysis model identifying the most
relevant performance factors determining the parallelization efficiency of one application.

Tools
Paraver is a trace based visualization tool with additional capabilities to manipulate traces.
The general methodology in our study is as follows. We first obtain a trace for the benchmark
run using the MPItrace package. This is done both on MareNostrum and the ICE and BG/P
prototypes. As the traces are typically large (a few GB in this case) we use Paraver to filter
them, generating a trace with a subset of the original information (typically only the one cor-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 19 25.06.2010

responding to a sufficiently large computation burst) but representing the whole run. Visualis-
ing this trace it is possible to identify the periodic structure of the application and then cut a
chop of the original trace, keeping all the detailed raw data for exactly one iteration of the
program. This trace can be analysed in detail looking at a huge number of views and metrics,
as well as converted to the Dimemas format for further predictive studies.

Dimemas is a simulator that based on the description of the computation and communication
demands can rebuild the time behaviour the application would have shown on a hypothetical
target machine. The computation is described in terms of its duration on the machine where
the trace was obtained. The communication is described in terms of MPI call, partners and
message sizes. The target architecture is modelled with parameters that describe the processor
and interconnect. The target processor performance is compared to that of the tracing machine
(CPUratio). Latency and bandwidth are the two major components of the communication
model, but we also consider factors such as the number of network adapters in a node (which
can of course be an SMP) or the contention in the network. These non linear effects as well as
dependencies (production consumption order) or the end to end synchronization semantics of
the communication (buffered/rendezvous, short/long message protocols, etc.) are taken into
account by the simulator to estimate the execution time on the target machine. Dimemas also
generates a Paraver trace of how the behaviour should be under such a machine model. An
extremely useful practice is to compare with Paraver, the real and predicted traces. Even if
sometimes differences show up, this helps identify issues that sometimes are due to the sim-
plification of the model and sometimes due to problems in the implementation of the commu-
nication subsystem in the real machine.

Additionally, we have utilities that can cluster the different computation regions in the pro-
gram according to their similarity. We have used this to identify the regions that one would
first port to an accelerator and this drives Dimemas to apply to these regions a high accelera-
tion factor while the rest of the code is simulated with the reference node performance.

Analysis
We have proposed a very general model to describe the scalability of an application in terms
of general factors or concepts understandable without requiring understanding or looking at
details of the application. The efficiency model is multiplicative with factors quantified with a
value from 0 to 1. A high value of the factor means that it is not limiting the efficiency (or
scalability) of the application. A low value implies that this factor is responsible for a big deg-
radation in the performance of the application.

The very first model considers four factors: load balance, communication efficiency, raw core
efficiency and computational complexity. The total efficiency of a single run could be de-
scribed as the product of the first three factors

IPCCommEffLB ××=η

where Load balance (LB) and communication efficiency (CommEff) are computed from the
Gant diagram in Figure 17. The blue area represents the total computation time of each proc-
ess (one row per process, ranked from highest to lowest computational load), and the red plus
yellow area represent the time in MPI by each process. The red area is the time all processes
are in MPI out of the total elapsed time T.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 20 25.06.2010

Figure 17: Gant diagram and efficiency model

The IPC (Instruction per cycle) factor would represent the raw core efficiency during the use-
ful computation (blue in Figure 17) and should be normalized to the peak value of the proces-
sor. If we are interested only in the parallel efficiency, only the first two terms should be used.
If we are interested in using the model to explain the scalability between different runs an
additional term should be added to the product representing the computational complexity (in
terms of total number of useful instructions) of the algorithm.

The model is nevertheless based on the aggregated time in each state (useful computation and
MPI) and is not able to differentiate whether the possible degradation within the CommEff
term is actually due to transfer delays or to synchronization. It is in this point where a Dime-
mas based simulation can help differentiate these two factors.

IPCTransfermicroLBLB ×××=η

The way to separate both components is presented in Figure 18. The idea is that a Dimemas
simulation with an ideal interconnect (zero overhead in MPI calls and infinite bandwidth)
would still have to preserve the synchronizations required by the application and might delay
some processes (yellow in Figure 18) but still compute the ideal time (Tideal) which is a lower
limit for the application execution time. The rest up to the original application time is as-
signed to the actual data transfer component of MPI calls (Transfer term in the formula). The
other term may actually represent serialisation (i.e. pipeline) or situations where individual
intervals between synchronizing communication phases (typically collectives) are actually
imbalanced but the process that arrives late is different every phase and when aggregating the
total computation time ends up being similar across processes. Among the two indistinguish-
able causes this is the most frequent one in real applications and thus we call this term the
micro load balance factor.

 Figure 18: Model including microscopic load balance and serialization

idealT
T

T
Transfer ideal=

ideal

i

T
TmicroLB)max(

=

)max(*
1

i

P

i
i

effP

eff
LB

∑
==)max(ieffCommEff =

T
Teff i

i =iT
T

IPC

instr#

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 21 25.06.2010

3 WP8 evaluation results

This chapter describes the evaluation results obtained on the twelve future technology proto-
types that were selected by PRACE and have been approved by the European Commission.
The advanced nature of the WP8 prototypes makes a strongly structured approach for the as-
sessment, as it was taken by WP5/7 impossible. However two components that are addressed
by many of the prototypes are the evaluation of programming models and accelerator based
nodes. Subsection 3.1.1 describes the rationale to use a subset of the EuroBen benchmark ker-
nels to obtain comparable performance results. Porting of the selected EuroBen kernels to 12
different languages and/or programming models, namely MPI+OpenMP, UPC, CAF, Chapel,
X10, CellSs, CUDA, CUDA+MPI, OpenCL, RapidMind, Cn and CAPS/HMPP, was a joint
effort of WP8 and WP6. Network interconnect is another component evaluated in several pro-
totypes. The IMB benchmarks are used in some of them although specific implementations
are developed for some cases. A general overview about the benchmarks and applications
used by WP8 is given in the Annex Chapter 6.

In the following, the assessment reports are arranged under several sections such as “GPGPU
Programming Languages and Accelerated Compilers”, “Hybrid Programming Models”, “In-
tra-node Bandwidth”, “Inter-node Communication Network”, “PGAS Languages”, “Novel
I/O” and “Energy Efficiency” as far as their evaluation objective matches with these catego-
ries. Exceptions from this rule are Section 3.8 which describes the experiment to identify is-
sues that may be relevant when scaling or porting applications to future architectures and Sec-
tion 3.9 which summarizes the evaluation results and gives some concluding remarks.

3.1 Performance experiments on prototype hardware

3.1.1 Reference performance
Figure 19 shows the processor family share of the November 2009 Top500 list. 79 % of the
most powerful systems in the world are based on Intel EM64T processor technology. In order
to be able to compare EuroBen results on WP8 prototype hardware and language platforms on
equal footing, the performance values obtained on a standard dual-socket Intel Nehalem-EP
2.53 GHz processor platform (E5540) was used as reference performance baseline. This proc-
essor has theoretical peak performance of 10.12 GFlop/s per core.

Figure 19: Processor family share in the November 2009 Top500 list

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 22 25.06.2010

Since Green-IT and the use of GPGPUs as compute accelerators were the most notable facts
during both supercomputing conferences in the year 2009, this chapter will also compare the
measured performance values of different accelerators in terms of performance per Watt with
the Nehalem-EP reference platform.

In the text below the rationale for the choice of the kernels from EuroBen [13] together with
the performance found for each of them is given.

Nehalem-EP single core performance results
Dense matrix-matrix multiplication (mod2am): This kernel was chosen because of the very
favourable ratio between floating-point operations and memory accesses. One may expect that
it reaches near peak performance on any processor, standard or of accelerator type. Along
with the C + MKL code, also a standard Fortran implementation was run because Fortran is
also heavily used in HPC program development.

10 100 1000 10000
Matrix order

0

2000

4000

6000

8000

10000

M
flo

p/
s

mod2am: Dense matrix−matrix multiplication

C + MKL
Fortran

Figure 20: Reference performance of dense matrix-matrix multiplication

The kernel can attain more than 9 GFlop/s for matrix orders ≥ 2000.

Sparse matrix-vector multiplication (mod2as): Sparse matrix-vector multiplication is an es-
sential ingredient of all iterative sparse linear solvers and as such of a large fraction of scien-
tific modelling applications. The ratio of floating-point operations and memory accesses is
very poor. In addition the vector elements are accessed indirectly which makes it impossible
to cache them. On may expect this kernel to perform poorly on all processors, although
probably better on general CPUs than on most accelerator processing elements.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 23 25.06.2010

100 1000 10000
Matrix order

0

500

1000

1500

M
flo

p/
s

mod2as: Sparse matrix−vector multiplication

C+MKL
Fortran

Figure 21: Reference performance of sparse matrix-vector multiplication

As can be seen the performance for both the C + MKL version and the Fortran version is only
a small percentage of the theoretical peak performance. For the smallest and largest matrix
orders the Fortran implementation is somewhat faster than the library-based implementation.

1-D complex-to-complex FFT (mod2f): FFTs are a part of many different types of applica-
tions, ranging from particle codes to weather simulations. The ratio of floating-point opera-
tions to memory accesses it reasonable, but the memory access patterns are intricate and
therefore one may not expect a large fraction of the peak performance. For accelerator proc-
essing elements a similar behaviour may be expected.

10
2

10
3

10
4

10
5

10
6

FFT order

0

1000

2000

3000

M
flo

p/
s

mod2f: Fast Fourier Transform

C + MKL
Fortran

Figure 22: Reference performance of 1-D complex-to-complex FFT

Shift-register random number generator (mod2h): This kernel was chosen because of its fre-
quent occurrence in Monte Carlo-type simulations. In contrast to the other kernels only a few

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 24 25.06.2010

floating-point operations are involved. The majority of operations are of integer and logic
type. The speed is therefore expressed in MOp/s instead of MFlop/s.

10
5

10
6

10
7

Sequence length

3600

3650

3700

3750

3800

M
eg

a−
op

s/
s

mod2h: Random Number generation

C only

Figure 23: Reference performance of the random number generator

The MKL library does not include random number generators so only the performance of the
C code is shown in Figure 23.

Dual socket Nehalem-EP performance results
Figure 24 and Figure 25 shows the reference performance of EuroBen kernel measured on a
dual socket 2.53 GHz Intel Nehalem-EP node when running 1, 2, 4 and 8 thread or MPI pro-
gram instances. In the following the dual-socket Nehalem-EP EuroBen kernel reference per-
formance baselines are defined as the highest single node performance obtainable e.g.:

• 8 thread MKL results for mod2am;

• 4 thread MKL results for mod2as;

• 1 thread MKL results for mod2f;

• 8 instances results for mod2h.

The performance of mod2am on 8 cores is indeed about 8 times that of a single core. This
comes as no surprise as the kernel is entirely computation-limited. The performance of
mod2as is fairly close to 3 times higher than the single-core ones. This is because the compu-
tational intensity of this kernel is mostly memory bound. Note the steep rise in performance
from matrix order 1000 to 2000. This is due to a better fit in both caches and functional units.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 25 25.06.2010

Figure 24: Reference performance of dense matrix-matrix and sparse matrix-vector multiplication

Figure 25: Reference performance of FFT and random number generation

For the FFT-kernel, mod2f, no readily equivalent full-node performance can be given as it
cannot be run on multiple cores without serious performance implications (see FFT results in
Figure 25). Hence the single core Nehalem-EP MKL performance will be used as reference.
In case of mod2h no MPI nor thread or OpenMP parallel version does exist. Therefore the
accumulated performance of 8 concurrent serial mod2h instances will be used as reference
performance.

The total power consumption of one dual socket Nehalem-EP system running 8 threads of
mod2am is 303 W. Hence the power efficiency of a 2.53 GHz dual socket Nehalem-EP node
is 251 MFlop/s per Watt.

3.1.2 Numerical issues
Introduction
In this subsection, we study the numerical behaviour of heterogeneous systems such as CPU
with GPU for some orthogonalisation processes. We focus on the influence of the different
floating arithmetic handling methods of these accelerators with Gram-Schmidt orthogonalisa-
tion using single (SP) and double precision (DP). To do so, we first have a look at the result-
ing orthogonality of the computed basis for dense matrices, then for sparse matrices.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 26 25.06.2010

Orthogonalisation Process
Several variants of the orthogonalisation process exist: Householder reflections, Givens rota-
tions and the Gram-Schmidt process are the most common ones. The Gram-Schmidt process
is available in different versions: classical (CGS), modified (MGS) and classical with re-
orthogonalisation (CGSr) for instance. The classical version is the simplest and most easily
parallelisable: it is faster than the others, as it can take advantage of BLAS 2 operations in-
stead of BLAS 1 in the modified algorithm. But the main drawback of CGS is the possibly
high loss of orthogonality within the computed basis due to round-off errors. The MGS algo-
rithm tries to correct this, and in fact manages to provide a more accurate version of the
Gram-Schmidt process. Both are mathematically equivalent, but the MGS exhibits less paral-
lelism. The CGSr process provides an even more accurate version, by re-orthogonalising each
computed vector. In practice it is not necessary to re-orthogonalise at each iteration, and so
the cost of this algorithm using selective re-orthogonalisation is close to CGS while being
more accurate.

Tested hardware
The hardware IEEE floating-point norm is handled slightly differently on GPGPUs than on
fully IEEE-754 architectures like most CPUs. Here are some examples of these differences
for SP only, taken from the programming manual:

• Addition and multiplication are often combined into a single multiply-add instruction
(FMAD), which truncates the intermediate result of the multiplication;

• Division is implemented via the reciprocal in a non-standard-compliant way:

• Square root is implemented via the reciprocal square root in a non- standard-compliant
way;

• For addition and multiplication, only round-to-nearest-even and round-towards-zero
are supported via static rounding modes; directed rounding towards +/- infinity is not
supported.

There are more details about IEEE support of nVIDIA GPUs in the programming manual.
The GPU hardware used for the experiments in this paper is an nVIDIA Tesla S1070 scien-
tific GPU embedding four C1060 GPU cards. Each of these cards holds 4 GB of 512 bits
GDDR3 memory @ 800 MHz, providing a maximum memory bandwidth of 102 GB/s per
card.

Implementation
For each different version of the Gram-Schmidt process, the same basic BLAS operations are
applied. Consequently, we may use optimized BLAS operations to take advantage of the dif-
ferent hardware in an optimized and portable manner.

The implementation of the dense orthogonalisation process on classical CPUs follows the
standard algorithm and uses ATLAS subroutines.

Concerning the sparse case, we follow the implementation provided in the sparse matrix vec-
tor multiply utility from nVIDIA, mixing this product with ATLAS routines to comply with
the described CGS algorithms.

GPU Implementation for the dense case is also close to the original algorithms and uses
mainly CUBLAS, except that we have to take into account the memory operations between
host and device memory: allocation and transfers.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 27 25.06.2010

For sparse matrices, we use the optimized sparse matrix vector multiply from nVIDIA, which
can handle different matrix formats. Provided this optimized matrix-vector product, we use
CUBLAS routines to exploit the GPU power in a portable way.

Experimentation methodology
The precision of the GS process for one subspace size is calculated using the greatest absolute
dot product of every dot product of the orthogonal basis:

max | (vi, vj) |, with i ≠ j and vi, vj ∈ V basis.

Precisely, this would be the “worst” orthogonality between two vectors of the basis. A value
of 0 corresponds to no errors, and a value of 1 indicates a completely wrong result. Also, the
accumulator of the dot products uses the same precision as the rest of the calculations: if the
precision is SP, then the accumulator is SP too. Same applies for DP. This way we do not add
another parameter to the calculations.

Dense matrices

Figure 26 shows the behaviour of each system on Hilbert matrix taken from Matrix Market
[40], during the dense CGS Arnoldi projection. CGS is known to be very sensitive to machine
precision, which is usually IEEE-754 compliant.

Figure 26: Precision of the CGS Arnoldi Projection of a 10240 square Hilbert matrix

 For the dense case, the GPU’s different IEEE handling introduces a loss of one digit com-
pared with the CPU result for the orthogonality of the computed basis in SP and DP.

Sparse matrices

The orthogonalisation process is used in the QR method as well as in the Arnoldi projection,
and so we chose to take as test matrices two matrices from the University of Florida sparse
matrix collection, whose original problem is the computation of the eigenvalues. Figure 27
shows how the GPU behaves compared with a CPU on the Andrews sparse matrices using
CGSr.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 28 25.06.2010

Figure 27: Precision of the sparse CGSr process on sparse Andrews matrix

For the sparse matrices, the GPU results are less regular, providing either a better or worse
orthogonal basis, which is in fact close to the one of the CPU case. This is due to a different
execution order of the floating-point operations as well as very small numbers in the V basis
that tend to be truncated during computations on the GPU.

3.1.3 Accelerated Programming Languages and Compilers
Novel programming models such as HMPP, OpenCL, RapidMind or StarSs are able to gener-
ate code for general purpose CPUs as well as GPGPUs. WP8 used the two EuroBen kernels
mod2am and mod2as to compare the performance of the code generated from these different
languages for nVIDIA C1060 GPGPUs.

The following subsections describe the performance results WP8 was able to obtain for the
two EuroBen kernels using these novel programming languages. Remarks concerning their
ease of use and their maturity are also given when appropriate.

nVIDIA CUDA

Figure 28: Comparison of the CUDA kernels on
nVIDIA c1060 GPUs

Figure 29: Comparison of the MKL kernels on
Nehalem-EP

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 29 25.06.2010

The three EuroBen kernels mod2am, mod2as and mod2f have been ported to CUDA [14][15]
and, for the sake of comparison, to the Intel Math Kernel Library (MKL). The experiences
gathered during the ports and the results have been reported in detail in D8.3.1 [2] and D6.6
[8]. Performance measurement has been done on the WP8 prototype Hybrid Technology
Demonstrator. Porting to CUDA was not trivial, especially in the case of mod2f: the cuFFT
library supported only SP at that time, and a full hand-coded port was necessary to achieve
reasonable performance (~ 3000 lines of code compared to 75 lines for the version with the
cuFFT call).

nVIDIA recently released version 2.3 of CUDA. Among various changes, the cuFFT-library
does now support DP. Figure 28 shows a comparison between all kernels ported to CUDA,
including the hand-coded CUDA port and the cuFFT DP version. This performance is com-
pared against the best performing MKL ports of the three kernels (Figure 29). Note that MKL
does not support multi-threading for FFT, we have additionally benchmarked the mod2f
C+MPI version. The DP peak performance of 8 Nehalem-EP cores (running at 2.53 GHz) and
one C1060 GPUs is comparable (80 GFlop/s vs. 78 GFlop/s).

As described in D8.3.1, the hand coded port of the one-dimensional Radix-4 FFT offered
many challenges; deep knowledge of the hard- and software was required to achieve signifi-
cant performance. The results of the new version using cuFFT indicate the true potential of
the nVIDIA Tesla cards. However, this leads to the question how an average experienced
programmer can exploit the potential of GPUs if his code does not allow using library calls.

PGI Fortran and C Accelerator Compiler
CUDA certainly played a very important role in the success of nVIDIA GPUs in HPC. It pro-
vided a relatively easy way to program the hardware without the need of going to a very low
level thus remaining portable across different GPU models. However despite this success
there is certainly a demand for higher level abstraction and portability not only across
nVIDIA GPUs but across GPUs supplied by other vendors. Such a possibility is offered by
HMPP (CAPS entreprise) and more recently by PGI accelerator compilers (Portland Group
Inc). There are many similarities between the two approaches: both support C and Fortran,
both work through #pragma constructs similar to OpenMP, both currently support only
nVIDIA hardware (both generate CUDA internally although HMPP generator for OpenCL is
also available now). In fact, it is conceivable that eventually they will provide a basis for a
common standard. However at this stage it is premature to forecast anything since it is not
clear how efficient and successful these approaches are going to be. There used to be some
semantic differences in their approach though they are converging towards the same models
(yet not the same syntax). For example, HMPP required an accelerated kernel to be defined in
a function called codelet whereas in the PGI model the accelerator pragma simply precedes
for/do loops. The last version of HMPP (release 2.2.0) offers regions too whereas PGI added
more pragmas to provide more accurate descriptions of data transfers. Nevertheless, the un-
derlying hardware dictates many similarities, for example, in the respect to the data manage-
ment (e.g., data copying to and from the GPU) and both approaches rapidly evolve in the
same direction as users require new features.

PGI accelerator programming model was first introduced in early 2009 as a beta program and
then formally released in version 9.0 of PGI compiler suite. Its advantages are:

• Minimal changes to the language;
• Possibility of incremental program migration;
• PGI unified binary model so that a single binary can be executed on the hardware with

or without GPU;
• Performance feedback and standard x86 tool chain.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 30 25.06.2010

PGI accelerator directives can be as easy as adding a single line:

#pragma acc region for parallel
for(i = 0 ; i < m; i++){
 for(k = 0; k < n; k++) {
 for(j = 0; j < l; j++){
 c[i][k] = c[i][k] + a[i][j]*b[j][k];
 }
 }
}

The accelerator programming model can be mixed with MPI and OpenMP. In this scenario,
runtime functions need to be used which allow discovery and allocation of accelerator de-
vices. Not all data structures are currently supported and the compiler may require some help
in figuring out data dependencies (e.g., loop not parallelizable due to data dependency).

We used the PGI accelerator model with the EuroBen benchmarks and successfully compiled
and ran mod2am (matrix-matrix multiplication) and mod2as (sparse matrix-vector multiplica-
tion). The results are summarized in the two figures below. The speedup of the PGI GPU ac-
celerated version over the PGI Nehalem version on mod2am was up to 6 whereas no accelera-
tion was observed on mod2as. The best percentage of theoretical peak on mod2am was 17 %
(single core) on Nehalem and 11 % on C1060.

Figure 30: mod2am on a single core Nehalem vs.
nVIDIA C1060

Figure 31: mod2as on a single core Nehalem vs.
nVIDIA C1060

HMPP Workbench for Fortran and C

The CAPS HMPP workbench was first released in 2007, opening the way for a new approach
to GPGPU programming. Rather than being a general purpose compiler, HMPP takes anno-
tated programs (in the form of comments for Fortran or #pragma in C) and produces another
source code according to the desired target. HMPP was the first tool to introduce fallback
mechanisms to the CPU version should the GPU code fail. The initial approach taken by
HMPP designers was to focus on pure functions instead of sections of codes (as PGI did first):
it was the concept of codelets (closely related to CUDA kernels). This provides a flexible
mechanism for the programmer to describe the data layout and memory movements to and

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 31 25.06.2010

from the GPU. HMPP also provides ways to specialize the produced code for the underlying
architecture.

Here is an example of HMPP usage in C code. One should keep in mind that, in real code,
situations are much more complex than in benchmarks. Therefore, programmers need to have
access to rich tools to express their algorithms.
// simple codelet declaration

#pragma hmpp Hmxm codelet, args[a;b].io=in,
args[c].io=out, args[a].size={m,l},
args[b].size={l,n}, args[c].size={m,n}, TAR-
GET=CUDA

void mxm(int m, int l, int n, const double
a[m][l], const double b[l][n],
double c[m][n])

{ int i, j, k;

 for (i = 0; i < m; i++) {

 for (j = 0; j < n; j++) {

 c[i][j] = 0.0;}}

 for (i = 0; i < m; i++) {

 for (k = 0; k < n; k++) {

 for (j = 0; j < l; j++) {

 c[i][k] = c[i][k] + a[i][j] *
b[j][k];}}}

// usage of the codelet

#pragma hmpp Hmxm advancedload, args[a;b],
args[a].size={m,l}, args[b].size={l,n}

for (i = 0; i < nrep; i++) {

#pragma hmpp Hmxm callsite,
args[a;b].advancedload=true

#pragma hmpp Hmxm callsite

 mxm(m, l, n, (double (*)[m]) a,
(double (*)[n]) b, (double (*)[n]) c);

}

#pragma hmpp Hmxm delegatedstore, args[c]

Figure 32 : Example illustrating the richness of expression offered by HMPP’s set of directives

The two following figures illustrate the main results obtained so far using HMPP on the CEA
nVIDIA Tesla prototype: while it was quite easy to produce an efficient version of mod2am,
disappointing performances were measured for mod2as. This is not surprising and agrees with
the results found with the PGI compiler since GPUs are designed for matrix operations (hence
leading to good performances for mod2am). The reduction operation contained in mod2as on
the other hand is a very difficult algorithm to parallelize efficiently on GPGPUs.

MOD2AM

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

100 1000 10000
problem size

CPU (NHM MKL 4
threads)
HMPP 1 C1060 DP

M
FL

O
P

Figure 33: Nehalem-EP single socket mod2am
performance versus nVIDIA C1060 using HMPP

MOD2AS

-500
0

500
1000
1500
2000
2500
3000
3500
4000
4500

100 1000 10000
problem size

M
FL

O
P

CPU (NHM MKL 4
threads)
HMPP 1 C1060 DP

Figure 34: Nehalem-EP single socket mod2as

performance versus nVIDIA C1060 using HMPP

StarSs
StarSs is a programming model developed at BSC for Cell, SMPs and GPUs. The main ad-
vantage of StarSs is that it allows easy portability of application across multiple platforms,
with minimum changes in the code. Only the runtime for each of the languages under the
StarSs programming model differs. The changes required in the code are mainly related to the

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 32 25.06.2010

architecture of the target machine. Below we present the results of the EuroBen kernels for
different languages under the StarSs programming model.

CellSs

The CellSs was installed on Maricel at BSC. Both mod2am and mod2as kernels of EuroBen
were ported to Maricel using CellSs. Figure 35 shows the performance results for mod2am. It
is implemented by using the partition matrix multiplication. It can be noticed from this figure
that there are some variations in the performance as the problem size increases. This is be-
cause each partition block has size of 64×64 and its multiplied using the SPU blas library
dgemm_64×64. As a result, the application has maximum performance when the problem size
is a multiple of the block size i.e. 128×128, 192×192 etc. The lack of peak improvement, es-
pecially after the problem size is just over 192×192, 512×512 and so on, is because of the
usage of more number of blocks to accommodate the few cells (matrix elements) that exceed
the multiple of 64×64. These excess blocks will have zeroes appended to fill up the remaining
cells that don’t have any valid data, and the computation is carried out on those cells as well
resulting in uniform time taken to execute the problem size. With the time being almost simi-
lar, and the problem size varying, we get dips in the graph when the problem size is not a mul-
tiple of the block size. This is explained by the equation:

Performance (MFlop/s) = (2 × M × L × N) / X
where, M × L is the dimension of matrix A and L × N is the dimension of matrix B, and X is
the time taken to do the multiplication.

Figure 35: Performance of mod2am using CellSs on Maricel

Figure 36 shows the performance of mod2as using CellSs on Maricel. Like any accelerator,
the performance of mod2as is very poor. Detailed analysis of the trace using Paraver [11]
shows that the DMA transfer between the PPU and SPU takes lot of time. A better option in
these types of application would be to run them on PPU instead of SPU.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 33 25.06.2010

Figure 36: Performance of mod2as using CellSs on Maricel

GPUSs

The mod2am kernel of EuroBen kernel was ported to the nVIDIA Tesla using GPUSs. The
porting took minimal effort from CellSs to GPUSs, and the only difference was that due to
larger memory, multiplications were done in blocks of larger size. Figure 37 shows the per-
formance of running on 1-4 GPUs with block size of 512×512 and 1024×1024. It is obvious
that the behaviour of the graph follows the same pattern as that of the CellSs version of
mod2am. However, the decrease in the performance of matrix multiplication of 12096 × 512
matrix with 512 × 12096 matrix is not just for the reason mentioned above. The CUBLAS
library gives better performance with multiplication of square blocks (especially with the
power of 2), but it does not give a good performance for rectangular blocks, even worse, when
the size of the blocks are too small.

Figure 37: Performance of mod2am using GPUSs on nVIDIA Tesla

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 34 25.06.2010

SMPSs

A SMPSs version of mod2am and mod2as were implemented on Nehalem and the perform-
ance is shown in Figure 38 and Figure 39 respectively. Here, SIZE refers to the number of
input elements for each task.

Figure 38: Performance of mod2am on Nehalem EP using SMPSs

Figure 39: Performance of mod2as on Nehalem using SMPSs

ClearSpeedSs

The ClearSpeedSs version of the StarSs model has been developed and installed on the
ClearSpeed-Petapath prototype. The porting from the GPUSs to the ClearSpeedSs version of
mod2am took a couple of days. The reason was the different association (row/column wise) of
the data being expected by the available kernels (CUBLAS Csdgem). Still the two versions
do look very similar. Had we had a compute kernel accepting the same format, only a change

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 35 25.06.2010

of the actual kernel invocation would have been needed. Figure 40 shows the achieved per-
formance for different problem sizes on 1 to 8 accelerator boards.

Figure 40: Performance of mod2am using ClearSpeedSs on the ClearSpeed-Petapath prototype

RapidMind
We have ported three EuroBen kernels (mod2am, mod2as and mod2f) to RapidMind (RM)
and done various performance measurements. Table 1 gives an overview of the peak perform-
ance of all hardware.

For mod2am three different imple-
mentations of the dense matrix-
matrix multiplication have been
evaluated. First, a “simple” straight-
forward version was implemented
(which consisted of only 20 lines of
RM code). Second, a “gpu-
optimized” version which was based
on code available at the RM devel-
oper site was adapted. The “gpu-
optimized” version used the RM
datatype Value4f (4-tuples of floats)
to store the matrices and operated on
4x4 sub-matrices which perfectly
fitted the GPU’s SIMD units. Third, a
“cell-optimized” version was used. This version was again based on code available from RM,
and worked on a block partitioning of 64x64 blocks. All matrices are in a “block swizzled”
format to ensure contiguous memory access. Furthermore, computations and memory trans-
fers are overlapped using double buffering. This elaborated version consists of more than 200
lines of RM code. A detailed discussion of the results is given in [41].

Hardware SP Peak
Performance

DP Peak
Performance

Nehalem-EP
(2.53 GHz, 1 core)

20.24 GFlop/s 10.12 GFlop/s

Nehalem-EP
(2.53 GHz, 8 cores)

161.92 GFlop/s 80.96 GFlop/s

1 C1060 GPU 933 GFlop/s 78 GFlop/s

1 PowerXCell8i
(8 SPUs)

204.8 GFlop/s 102.4 GFlop/s

2 PowerXCell8i
(16 SPUs)

409.6 GFlop/s 204.8 GFlop/s

Table 1: Hardware used in the RapidMind experiments.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 36 25.06.2010

Figure 41: RapidMind results for mod2am (GPU) Figure 42: RapidMind results for mod2am (CELL)

Figure 41, Figure 42 and Figure 43 show the
results for all three mod2am versions on vari-
ous backends. Results range from very bad
(e.g., for the simple version on the RM “x86”
and “cell” backend) to quite good perform-
ance (e.g., reaching 88% of a highly opti-
mized Cell SDK sgemm code, which itself
almost runs at peak performance).

The sparse matrix-vector multiplication
(mod2as) is not well suited for accelerators
(see Subsection 3.1.1). Figure 44 gives an
overview of the results for mod2as on two

backends and compares them with other languages. Figure 45 shows results for mod2f on
various backends. Aside from the exceptional good performance of the cell-optimized
mod2am version on the (single-precision only) RM “cell” backend, RM is at least a factor of
2.5 slower than the hardware specific implementations.

Figure 44: RapidMind results for mod2as

Figure 45: RapidMind results for mod2f

While pure code portability (taking existing code and running it on a different backend) is
usually given (except some minor bugs found in the RM “cell” backend), performance is not
at all portable across backends and performance prediction is very hard. Part of the perform-
ance behaviour for the different mod2am versions can be explained in retrospective (and after
further discussion with RM staff members). E.g., Value4f was absolutely necessary to obtain
decent performance on the “glsl” and “cell” backend, and blocking was not done by RM
automatically but had to be taken care of by the programmer. It is important to note that these
deficiencies are a sign of the missing maturity of the RM backends and the complexity that
comes with supporting so many different backends which are often immature themselves

Figure 43: RapidMind results for mod2am (x86)

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 37 25.06.2010

(e.g., remember the huge penalty of misaligned date accesses for older CUDA hardware). The
development of High-level languages (HLL) would benefit greatly if OpenCL could become a
standardized and high-performance abstraction layer for accelerators. The data stream pro-
gramming model of RM enables much more aggressive auto-parallelization than any sequen-
tial languages can offer.

OpenCL
The OpenCL framework promises to create a unified language for executing codes on hetero-
geneous platforms consisting of CPUs, GPUs and other processors. It is generally expected to
become the de facto language of accelerated computing and there has been a great amount of
interest in it. Several vendors have been developing their OpenCL implementations at a rapid
pace and the first limited beta versions were available already in Summer 2009, just 6 months
after the ratification of the standard.

At CSC, testing was performed on beta versions of both AMD/ATI and nVIDIA OpenCL
implementations. As the beta versions are under NDA, no details can be disclosed publically.
Since the initial runs, both vendors have released new versions of their OpenCL implementa-
tions which should improve performance and fix a number of critical bugs. However, due to
time constraints these could not be tested.

3.1.4 FPGA experiments
The timings from the original codes in this subsection were obtained on a Intel Xeon Paxville,
running the code as compiled by gcc with full optimisation. For completeness also the refer-
ence performance values obtained on a dual socket Nehalem-EP system using the Intel com-
piler with full optimization as well as the Intel Math Kernel Library (MKL) (see Subsection
3.1.1) are listed in the table below.

mod2am

Algorithm
version

Speed
(MFlop/s)

Implementation
Effort (day)

Lines of
Code

Device
Utiliza-

tion

Clock
Speed
(MHz)

Original (SP) 587 0.5 38 N/A N/A

Reference platform
MKL (1 thread,

1024×1024) (DP)

9387 ~ 0.25 277 N/A 2530

Reference platform
MKL (8 threads,
1024×1024) (DP)

693000 ~ 0.25 277 N/A 2530

HCE (on-board) 2859 10 543 93 % 67

HCE (off-board) 2463 10 543 93 % 67

VHDL (on-board) 1846 16 1252 39 % 115

VHDL (off-board) 1081 16 1252 39 % 115
Table 2: mod2am performance results

The VHDL version timings are taken from multiplying two 1024×1024 matrices together, as
it is easier to work with powers of 2 in hardware implementations (a version able to work with
non-power of 2 sizes would be more complex but probably just as fast). It performs 16 float-
ing-point operations per clock cycle and runs approximately 3 times faster than the software

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 38 25.06.2010

version (on-board), dropping to about twice as fast when the time taken to transfer data across
the PCI bus is taken into account (off-board).

The Harwest port uses a similar strategy of caching subsections of the matrices in block RAM
and using a pipelined tree of floating-point operations; however the Harwest port pipelines 63
floating-point operations rather than the 16 in the VHDL version and achieves better perform-
ance. The code is very much altered from the original C version, and contains unrolled loops,
pipelined functions and HCE-specific code and directives.

 mod2as

Algorithm Ver-
sion

Speed
(MFlop/s)

Implementation
Effort (day)

Lines of
Code

Device
Utilization

Clock
Speed
(MHz)

Original (SP) 489 0.5 23 N/A N/A

Reference plat-
form MKL (1

thread,
1024×1024)

(DP)

1254 ~ 1.0 300 N/A 2530

Reference plat-
form MKL (4

threads,
1024×1024)

(DP)

3845 ~ 1.0 300 N/A 2530

HCE (on-board) 34.6 4 132 55 % 67

HCE (off-board) 4.9 4 132 55 % 67

VHDL (on-
board)

622 10 2490 43 % 110

VHDL (off-
board)

6.2 10 2490 43 % 110

Original (DP) 489 0.5 23 N/A N/A
Table 3: mod2am performance results

The sparse matrix by vector multiplication kernel (spmxv) is in some ways similar to the ma-
trix by matrix multiplication (mxm). However, while the mxm performs a large number of
operations on each item of input data and can therefore make good use of cache memory, the
spmxv operation uses each element of the matrix only once. This means that it is memory
bound and an FPGA is unlikely to have much advantage over a conventional processor. A
modest speed up over the gcc-generated code on the host CPU was achieved with the VHDL
version, probably due to the advantage gained by fetching from multiple external memory
banks simultaneously. Additionally, the time taken to transfer the input data over the PCI bus
to the FPGA device is a major bottleneck. When this is taken into account the performance of
the VHDL version is impaired by a factor of 100.

The HCE version of the kernel uses a similar structure to the VHDL version but scope for
optimisation is more limited as many of HCE’s parallelisation directives only work effec-
tively on relatively large data blocks of predetermined size, which does not apply well to this
kernel. Although it was possible to speed up the original port twelvefold by pipelining 8 mul-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 39 25.06.2010

tiply and add operations, the HCE version is still much slower than the host or VHDL. It is
likely that this could be improved further given more time.

mod2f

Algorithm
Version

Max Speed
(MFlop/s)

Implementation
Effort (day)

Lines of
Code

Device
Utilization

Clock
Speed
(MHz)

Original (DP) 481 N/A 420 N/A N/A

Original (SP) 465 0.5 420 N/A N/A

Reference plat-
form MKL (1
thread) (DP)

2778 ~0.5 398 N/A 2530

VHDL (on-
board)

2284 11 2119 50 % 115

VHDL (off-
board)

1177 11 2119 50 % 115

Table 4: mod2f performance results

When running on data in its internal memory, the FPGA reaches speeds approximately 6
times faster than the original gcc-generated code running on the host CPU. But comparing the
FPGA-based results to the reference platform performance one clearly can see that the latest
generation of general purpose processors do provide FFT performance values which are quite
comparable to the values obtained on FPGAs. The original kernel is a radix-4 FFT. The
VHDL version is a simple radix-2 implementation but gives identical results. When its pipe-
line is filled, it can complete 2 FFT butterflies (each one comprising 10 individual floating-
point additions, subtractions and multiplications) per clock cycle. At 115 MHz this gives a
sustained speed of almost 2.3 GFlop/s.

Table 4 above shows the maximum performance achieved by each implementation. As the
FFT performance is more sensitive to the size of the data set than that of the other kernels,
performance for each data set size is given in Figure 46:

FFT Results

0

500

1000

1500

2000

2500

8 9 10 11 12 13 14 15 16 17 18 19 20

n

M
Fl

op
s/

s Host (double)
Host (single)
VHDL (on-board)
VHDL (off-board)

Figure 46: Performance of mod2f for different problem sizes

The performance of the VHDL version varies much more than that of the host; with faster
computation, factors such as memory bandwidth, PCI bus bandwidth and start-up overhead
become more significant. Looking at the on-board performance, the VHDL version is fairly

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 40 25.06.2010

slow for a 256 point transform – this data size is small enough that start-up overheads for the
algorithm and for each pass become noticeable. As the size increases, performance improves
and reaches its peak for the 32768 point transform, which the FPGA can perform around 6
times faster than the gcc-code run on the host CPU. This is the largest transform which can be
performed entirely within the FPGA’s internal block RAM and does not require any transfers
to or from DRAM during the algorithm. For larger sizes, performance tails off as the rate at
which data can be read from or written to the DRAM banks becomes more and more signifi-
cant. The FPGA is still faster than the host by a factor of 3-4, probably because reading and
writing 4 separate external memory banks simultaneously gives it an advantage. When the
time taken to transfer data to and from the FPGA is taken into account (off-board row in the
table), much of the VHDL version’s speed advantage is lost. Unfortunately there was insuffi-
cient time to complete a Harwest port of this kernel.

mod2h

Algorithm
version

Speed (millions of
values per second)

Implementation
Effort (day)

Lines of
Code

Device
Utiliza-

tion

Clock
Speed
(MHz)

Original (SP) 14.4 1 37 N/A N/A

Reference
platform sin-
gle core (DP)

3700 ~ 0.25 37 N/A 2530

HCE (on-
board, int)

217.6 6 171 26 % 80

HCE (off-
board, int)

4.0 6 171 26 % 80

VHDL (on-
board)

900.0 6 690 54 % 150

VHDL (off-
board)

8.1 6 690 54 % 150

Table 5: mod2h performance results

The VHDL version of the algorithm is capable of generating 900 million single precision val-
ues per second (6 per clock cycle with the design clocked at 150 MHz). This algorithm, con-
sisting primarily of bit shifts and exclusive or operations, was particularly amenable to FPGA
acceleration. The main transform of the random number generator can be expressed elegantly
in VHDL and it was also possible to eliminate the final floating-point scaling from the VHDL
implementation as it was just a bit shift, replacing it with a custom integer-to-float conversion
which completes in one clock cycle instead. However, when the time taken to transfer the
results back to the host is taken into account, the VHDL version’s performance is dramatically
reduced by a factor of more than 100, making it slower than the software kernel. The band-
width over the PCI bus appears to be limited to approximately 32 MB/s.

Porting to Harwest was slightly complicated as the original kernel makes extensive use of 64-
bit integer operations, which Harwest does not support. The algorithm had to be rewritten and
tested using multiple 32-bit operations to achieve the same result. Because Harwest does not
support DP floating-point, this port passes back the unconverted 64-bit integer results so that
the host can perform the final conversion to floating-point in full precision. By employing
similar optimization strategies to those used in the VHDL version (using HCE-specific direc-
tives to turn the main transform into a combinatorial operation, and running 3 separate in-
stances of it in parallel), numbers can be generated at a rate of 217 million per second, much

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 41 25.06.2010

faster than the host, though slower than the hand-coded VHDL. However this is subject to the
same PCI bus bandwidth problem, so when the time taken to transfer the results back to the
host is included, the speed again falls to 4 million values per second.

Notes on Power Consumption
Low power consumption is a major advantage of FPGAs so it is worth considering the
PRACE kernel implementations in this context. Unfortunately the Maxwell system does not
provide a facility for measuring the actual power consumed by the accelerator boards, so only
a very rough estimate of power usage based on data available online is possible.

Virtex-4 devices are much more power efficient than those of previous FPGA generations.
Information released by Xilinx suggests that a large Virtex-4 FPGA (in this case an LX de-
vice, but the FX family used on the AlphaData boards in Maxwell is likely to be similar) run-
ning a demanding bitstream with most of the slices occupied at 200 MHz is likely to consume
around 2-3 W. Given that our implementations of the EuroBen kernels all run at 150 MHz or
less and mostly occupy a lower percentage of the logic slices, it seems reasonable to assume
that they also will not consume more than 3 W. Assuming 3 W power consumption, the
Flop/s-per-Watt value for the EuroBen kernels reaches almost 1000 MFlop/s-per-Watt (for the
matrix multiply kernel which is the fastest). This compares very favourably to conventional
CPUs, which may achieve an order of magnitude less.

3.1.5 LRZ + CINES (Phase 1)
This section describes the LINPACK HPL porting on the LRZ-CINES phase 1 prototype
AMBRE.

This work has been done with the helpful collaboration of ClearSpeed-Petapath, using a simi-
lar approach to a work done on TSUBAME (at the Tokyo Institute of Technology), taking
advantage of both accelerator and processors of LINPACK HPL run on the whole configura-
tion. The approach of energy efficiency remains the main focus of this evaluation.

The LINPACK HPL application measures the performance of a cluster when solving linear
equations, which heavily uses DGEMM and DTRSM. The CSXL BLAS library can be used
to distribute the DGEMM computation between the host processor cores and the ClearSpeed
processors.

DGEMM Load Balancing Between Processors
The LINPACK application is linked with the CSXL BLAS library. The CSXL library will
intercept all of the BLAS function calls, such as DGEMM and DTRSM, and then distribute
the compute between the CSX710 processor and the CPU cores as appropriate.

CSXL provides an environment variable (CS_BLAS_HOST_ASSIST_PERCENTAGE) for
the user to help the library distribute the compute between the CPU and CSX710. If this vari-
able is set to zero, all of the computation will be sent to the CSX710; when the variable is set
to 100, all of the compute is sent to the CPU cores.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 42 25.06.2010

DGEMM performance on Ambre (K=1152)

50

60

70

80

90

100

110

120

130

140

0 10 20 30 40 50 60 70 80 90 100

Host assist (%)

G
Fl

op
s

M=N=5760

M=N=11520

M=N=17280

Figure 47: CPU/CSX710 (K = 1152)

DGEMM performance (K=1152)

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

DGEMM Dimensions (M=N)

G
Fl

op
s

Host assist: (42%) [OMP_NUM_THREADS=6]
Host assist (100%) [OMP_NUM_THREADS=6]
Host assist (100%) [OMP_NUM_THREADS=8]
Host Assist (0%)
Host Assist (42%) [CS_BLAS_HOST_M_THRESHOLD=1152]

Figure 48: CPU / CX710 across matrix sizes

Figure 47 shows the DGEMM compute performance over the full range of host assist per-
centage for a number of DGEMM dimensions. With a zero host assist percentage, the
CSX710 provides between 70 and 80 GFlop/s. With a 100 % host assist, the CPU provides
between 50 and 60 GFlop/s, where each CPU core is contributing between 8 and 10 GFlop/s.
When the hosts assist percentage is between 40 % and 50 %, both the CPU and CSX710
combine to provide 120 and 130 GFlop/s; which is not equal to the combined peak of the two
processors, but definitely an improved performance over the processors in isolation.

According to the CSXL user guide, to offload the DGEMM computation to the CSX710, the
matrix dimensions must be a multiple of defined values. M and N must be a multiple of 192
and K must be a multiple of 288. For dimensions that are not a multiple of these values, the
DGEMM is split into parts where the largest part is performed on the CSX710 and the
DGEMM “edges” are performed on the host. For the purposes of the current LINPACK
benchmarking, the dimensions have been chosen so those are a multiple of the defined values.

A host assist percentage of 42 % was chosen from the results presented in Figure 47 since this
is where the best peak performance is obtained. Figure 48 compares the DGEMM perform-
ances of the host BLAS with OMP_NUM_THREADS=8, OMP_NUM_THREADS=6, with
the CSX710 and the combined CPU and CSX710 across difference matrix dimensions.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 43 25.06.2010

The CPU performance is fairly consistent across the different matrix dimensions, and the
eight core performance is approximately 33 % better than that of six cores.

HPL on the 32 Node Cluster
Figure 49 shows the performances while tuning the CSXL BLAS library host assist parame-
ter. From this plot it can be seen that a host assist of 44 % provides the best performance.
This means 44 % of the DGEMM compute is performed by six of the eight cores using the
Intel MKL Blas library and 56 % of the DGEMM compute is performed on the one CSX710
accelerator processor. Only six of the eight cores are used by the MKL library (configured by
the OMP_NUM_THREADS environment variable) because one core is required to manage
the CSX710 processor and MKL operated more efficiently with an even number of cores.

Figure 50 shows the performance of the AMBRE cluster with and without the ClearSpeed-
Petapath accelerator cards. This is run using the CSXL BLAS library with the host assist per-
centage set to 42 % and 100 %, where at 100 % all of the DGEMM compute is passed to the
Intel MKL BLAS library. There is a small overhead in the CSXL forwarding the DGEMM to
MKL but is negligible in this context.

Over the 32 nodes of the AMBRE cluster the CSX accelerators add 1.4 TFlop/s to the LIN-
PACK score for the given HPL parameters when N=361,152. This is 43.75 GFlop/s added
per CSX710 card. The final LINPACK score is 3.5 TFlop/s.

3,500

3,550

3,600

3,650

3,700

3,750

3,800

39 40 41 42 43 44 45 46 47

CSXL Hostassist (%)
 (N:361152 NB:1152 P:4 Q:8 OMP_THREAD_NUM:6)

H
PL

 G
flo

ps

Figure 49: HPL / 32 node + CSXL with varying
hostassist

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000

HPL Paramater N
(NB:1152)

HP
L

G
flo

ps

P:8 Q:4 Hostassist=42% (OMP_THREAD_NUM=6)
P:4 Q:8 Hostassist=42% (OMP_THREAD_NUM=6)
P:4 Q:8 Hostassist=100% (OMP_THREAD_NUM=8)
P:4 Q:8 Hostassist=100% (OMP_THREAD_NUM=6)

Figure 50: HPL / 32 node + CSXL with varying
memory size

Summary
The prototype AMBRE, using the 32 nodes each with one CSX710 accelerator card, achieves
a LINPACK score of 3.5 TFlop/s. The same cluster without using the ClearSpeed- Petapath
cards achieves 2.24 TFlop/s. For these LINPACK parameters 43.75 GFlop/s is added per
CSX710 card to the host core compute.

Host Only LINPACK Accelerated LINPACK

Score From the peak Score From the peak

2.24 TFlop/s 86 % 3.50 TFlop/s 63 %

The LINPACK parameters, using the ClearSpeed-Petapath accelerator cards, have been tuned
using the N, P, Q and host assist. These parameters affect the LINPACK score the most and

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 44 25.06.2010

the 3.5 TFlop/s score is very close to optimum LINPACK score that is expected using the
AMBRE hardware, reaching 86 % from peak performance without using CSX710. The NB
parameter has been set to 1152 throughout this report, where this is a known optimal value for
LINPACK using the ClearSpeed-Petapath accelerators, leading to 63 % of peak performance
of both Nehalem-EP processors and CSX710 accelerators.

To add additional GFlop/s to the current score the easiest and most effective approach would
be to add further accelerators to the hardware. Adding a second CSX710 processor to each of
the cluster nodes would add additional computational power and could add a further 40
GFlop/s per node or 1.2 TFlop/s to the existing LINPACK score.

3.1.6 LRZ + CINES (Phase 2)
This subsection compares the application performance of RAxML on the SGI ICE prototype
with the corresponding RAxML performance on three other system architectures
(BlueGene/L at San Diego Supercomputing Center (SDSC), Infiniband Opteron cluster at
Technical University Munich (TUM) and SGI Altix4700 at LRZ). The second paragraph de-
scribes the influence of the topology aware scheduling (optimal placements of the user threads
concerning intra-node and inter-node communication topology) on the performance of the real
world application Gadget.

Application tests

RAxML

Figure 51: Runtimes and Speedups for synthetic DNA dataset with 50 sequences

From the energy point of view, the CXS710 represents 10 % of a node with two Nehalem-
EP 2.53 GHz, while their contribution in LINPACK brings a speedup of 56 %.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 45 25.06.2010

Figure 52: Runtimes and Speedups for synthetic DNA dataset with 250 sequences

The experiment with the smaller 50 sequences and 500,000 basepairs datasets (Figure 51)
shows runtimes on the ICE system that are approximately 75 % lower than on the BlueGene/L
and more than 50 % lower than on the SGI Altix4700 and the Opteron Cluster. Since RAxML
is memory-bandwidth bound, these results were expected given the high aggregated memory
bandwidth of the Intel Nehalem-EP processor. The scalability looks similar for all 4 systems,
though the ICE prototype performs slightly worse than the other 3 systems.

Due to the runtime and/or memory limitations, the experiments with the 250 sequences and
500,000 basepairs dataset could not be conducted with a small number of workers. Therefore
a few numbers are missing in Figure 52. The scalability evaluations for this dataset are rela-
tive to the run with the least amount of workers that was possible. Though the numbers are
not easily comparable, the ICE system seems to outperform the BlueGene/L for small core
counts.

Topology aware scheduling
Future Exaflop/s systems will very likely consist of up to 100 million processor cores (and
even more logical cores (SMT)) in several 105 compute nodes. In order to keep the cost of the
network interconnect within 20 % of the total hardware investment budget, the topology of
the interconnect of these systems will most likely be realized as 3D-network torus or n-
dimensional hypercube, as dragonfly network, as pruned fat tree or some other type of hierar-
chical network interconnect with position dependent communication latencies of the commu-
nication partners and even position dependent per processor core network bandwidth.

As showcase to pin down the influence of the optimal placements of the user threads on the
network topology, LRZ had used the German 9728-core SGI Altix4700 system HLRB II and
the PRACE core application GADGET [31] [32]. Please note that these kind of evaluations
cannot be accomplished on small prototype systems since the influence of topology-aware
scheduling on application performance really becomes relevant (measurable) on large systems
with hierarchical network interconnect like the actual HLRB II.

Figure 53 shows the network topology of the 9728-core SGI Altix4700 system HLRB II at
LRZ. The system consists of 19 partitions each containing 128 or 256 Intel Montecito blades
which are connected through a NUMAlink4 (NL4) 2D-torus network. Within each partition
the NL4 network is organized as a fully non-blocking fat tree topology. Hence the measured
bisection bandwidth values per blade pair vary from 1.6 GB/s for intra-partition communica-
tion to 0.2 GB/s for the total system.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 46 25.06.2010

Figure 53: Network topology of 9728-core SGI Altix4700 system HLRB II at BAdW-LRZ

Table 6 lists the measured execution times for 256-core GADGET runs on the German
Altix4700 supercomputer HLRB II using different task placement strategies, under the fol-
lowing placement conditions:

• Optimal placement of the MPI tasks using the topology-awareness feature of the
scheduling software Altair PBSPro (256 MPI tasks on one 512-core partition and op-
timal placement of the MPI tasks concerning the number of NL4 router hops within
the partition);

• Distribution of 8 32-core MPI chunks on 8 different 512-core partitions.

In average the run times of GADGET using the topology-aware scheduling feature of PBSPro
are reduced by 10 %. The observable deviations in application performances will presumably
even increase for large-scale applications due to other effects such as congestion of network
links due to suboptimal network routing algorithms or I/O traffic. Hence, for future multi-
Petascale systems topology-aware scheduling algorithms will be a very important tool to op-
timise application performance as well as to ensure that measured application performance
values are reproducible.

Run 1 2 3 Average

Optimal placement (256 MPI threads on one
512-core partition) 28.95 s 28.89 s 28.92 s 28.92 s

Suboptimal placement (Placement of 8 32-
core chunks on 8 512-core partition) 32.54 s 31.82 s 32.38 s 32.25 s

Table 6: Measured execution time of 256-core GADGET runs4

4 Gadget test case1: 32,768,000 particles and 256 MPI tasks

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 47 25.06.2010

SGI Management Center
The SGI Management Center (SMC) is the core component in a group of applications, which
are targeted to provide an integrated solution for management of heterogeneous cluster envi-
ronments.

The SMC acts as the central component and provides visualization of the cluster environment,
monitoring the state of the nodes and tools to install (“provision”) new or maintain currently
installed software. Currently only Altix XE, CloudRack X2 and Octane III systems are di-
rectly supported, integrated support for the SGI UltraViolet systems is planned for Q2 2010.

According to current plans, the SMC will provide a GUI driven interface to the Tempo cluster
management software, which is currently CLI-only management tool for SGI ICE systems.
However, due to the early stage of development, no further details are known and integration
and support may change.

As SMC is supposed to be used in heterogeneous environments, support of non-SGI platforms
is provided by a couple of commonly used management tools like ROAMER, IPMI, DRAC
or ILO. Due to the limitations within these tools, only part of the SMC functionality may be
available on other platforms.

Another interesting SMC feature is the Application portal. The Application portal is an inte-
grated, web-based user interface to create, submit jobs and monitor them during runtime. It
currently has integrated support for FLUENT, Abaqus and ANSYS and an integrated inter-
face for Altair’s PBSPro. An interface to add custom applications is planned for the near fu-
ture. This feature could not be tested in detail, as neither the software packages nor PBSPro
where installed and licensed in the test environment.

The main SMC window is built out of frames, which can be freely arranged around the central
frame. The central or system frame provides three tabs named Configuration, Instrumentation
and Provisioning to perform the corresponding tasks (configure nodes, monitor the system
and manage new and installed software). Additional frames, for e.g., list the available host (~
groups), event logs or management of software images can be added to the central frame and
different customized layouts, thereby providing different views of the system that can be
saved as so called “dashboards”.

The host frame displays via predefined icons a quick overview over the state of single hosts or
a complete host group. Hosts, which exceed a user definable warning threshold, thus can be
easily identified. Via this tab it is also possible to open system console windows to a single
host or a group of hosts.

The default installation provides a subset of predefined metrics under the instrumentation tab,
which can be easily extended by selecting additional metrics from the predefined list. Each of
these options can be used for single hosts, a selectable subgroup of host or a complete host
group.

SMC also includes a monitoring and event system to track system values and display this in-
formation via the SMC GUI. These monitors run periodically on the cluster and provide met-
rics which are then displayed via the SMC. The standard system can be extended by the cus-
tom monitors, which may be user-defined scripts or programs to measure specific events and
return the data to be displayed by the SMC.

The provisioning tab enables the administrator to manage multiple different payloads and
kernels. A payload is a compressed file system, which is used during the installation, and con-
tains installed software and system packages. Different payloads and kernels can be combined
into different images, which allow possible harmful upgrades to be easily undone. The provi-
sioning of nodes, which is done in parallel via multicast, provides life upgrade of systems if

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 48 25.06.2010

only minor changes are done as well as complete system upgrades. It further allows schedul-
ing an immediate upgrade including a reboot or allows setting a flag to perform the upgrade
during the next reboot.

In the current version of SMC, two major drawbacks where found. For one, it is possible to
reset or power down nodes with one click and without any further confirmation. This might
be fatal, if by accident a node group instead of a single node is selected. The other major dis-
advantage is the lack of history information in the instrumentation tabs. In the current imple-
mentation, monitoring of a host starts when the node is selected and ends, when the node is
deselected or another node is chosen. This approach severely limits the usefulness of the SMC
for monitoring and analysis of recent problems.

In summary it can be said, that the SGI Cluster Management provides an intuitive GUI based
interface for the management of clusters and combines different tools, which either have been
provided in different packages or could only be used via a command line tool. Due to the pre-
production state of the software, not all functions could be tested and it is expected that some
options will be changed and improved in future releases.

3.1.7 Intel MIC Architecture

Gadget
In cooperation with Intel, LRZ has started to evaluate the ease-of-use and potential perform-
ance gains of the Intel MIC architecture for a compute-intensive, widely used astrophysics
code - GADGET-2 for cosmological N-body/SPH simulations. GADGET is also included in
the PRACE benchmark suite.

First, the most time consuming routines have been identified using some common benchmark
data sets and state-of-the-art analyzing tools. A closer look at the code and especially the rou-
tine force_treeevaluate_shortrange() showed that the “tree-structure” employed
in Gadget needs some adaptation to allow an easy vectorization of the code. The CUDA-
enabled Gadget version from Carsten Frigaard5 provides a modified implementation of this
function -tailored to massively parallel devices- which was used as a basis for the porting to
the Intel MIC architecture. The porting and optimization of this routine to the Intel MIC archi-
tecture was straightforward and took only a couple of days. Scaling tests of this routine
showed that the performance on the Intel MIC architecture is faster than the CUDA version
on a recent GPU.

Orlando Rivera (LRZ) is now working on the integration of this kernel into the Gadget appli-
cation. This requires a porting of Gadget and its libraries to different operating systems and an
incorporation of the data transfer via the PCIe bus. The porting of Gadget and the numerical
libraries has been done; the optimization of the data transfer is work-in-progress.

TifaMMy

General description of the code

The TifaMMy [43] library uses a block-recursive approach based on space filling curves to
avoid cache misses in cases of executing level three BLAS and LAPACK algorithms
[44][45].

The parallelization of the approach is implemented by using the OpenMP 3.0 [46] task con-
cept which allows parallelizing nearly all kinds of code by defining the number of available
processors, the tasks which can be executed in parallel and possibly requires barriers. Code

5 G2X: GADGET2 optimization Using the CUDA Architecture (http://frigaard.homelinux.org/g2x/)

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 49 25.06.2010

examples showing how this has successfully been applied to TifaMMy's recursive algorithms
can be found in [45].

For porting the algorithms to the Intel MIC architecture based prototype processor software
development platform, it has to be taken into account that such a processor could be plugged
onto a PCIe board. Hence, in this set-up it can be regarded as a system in a system with its
own and separate memory and address space. This means that all data required for processing
must be explicitly exchanged through the PCIe bus.

Transferring the data structures to the separate memory address space on the Intel MIC archi-
tecture processor based environment requires special care regarding any pointers involved,
such as converting into symbolic addresses and relocating afterwards.

As described in Subsection 2.1.4, the underlying version of the Intel MIC architecture pro-
vides in-order CPU cores. Thus, the recursive data structure should be created with the sys-
tem's “normal” processor. However, as our data structures are implemented in C++, there is
no easy access to the underlying matrix elements. Due to the technical reasons, it is only pos-
sible to copy flat data specified by the starting address and a certain number of bytes to the
PCIe board’s memory. The task is to assemble a flat memory structure from different com-
posed C++ classes. Hence, we are able to derive several descriptive patterns from our class
structures with a specified size and one data stream that contains all matrix elements. After
copying these flat models via PCIe, we used new constructors in our application to rebuild the
data structure on the accelerator board without doing the recursive construction. When the
computations on the board are finished, we only need to copy the data stream back to the
computer's main memory and replace the elements in the matrices on the host.

By using this mechanism, the same code can be used on standard CPUs and on the Intel MIC
architecture as is. However, to be able to fully exploit latter’s performance potential, it is
highly recommended to use the vector/SIMD capabilities via e.g., intrinsics which come with
the Intel compilers as part of the software development vehicle. As these had already been
used intensively in previous versions of TifaMMy being written for SSE3 based architectures,
we simply had to convert these vector-intrinsics into the new 512-bit format, applying the
corresponding vector intrinsic. The utilized version of Intel MIC architecture offers a variety
of new vector instructions, which are described in detail in [47].

In addition, some routines had to be added to implement the data exchange mechanism de-
scribed above. Due to OpenMP 3.0 support on the Intel MIC architecture software develop-
ment vehicle, it is not necessary to re-implement the core algorithms of our linear algebra
modules. Generally speaking, this can be regarded a key advantage of the Intel MIC architec-
ture compared to other parallel accelerator architectures such as e.g., CELL, GPU, DSP or
FPGA based solutions. A vast number of existing parallel codes have been implemented
through common shared memory libraries like Pthreads, OpenMP, or Threading Building
Blocks, the porting effort to the Intel MIC architecture is straightforward and very low com-
pared to rewriting the code for e.g., CUDA or OpenCL. The main programming effort has to
be put into the data exchange (however, this is necessary for any accelerator card based archi-
tecture) and into applying vector intrinsics. As any code being optimized for recent x86 CPUs
should use SSE intrinsic for the sake of performance and efficiency, porting these vector in-
structions to the Intel MIC architecture’s vector instructions is rather easy and straightfor-
ward.

Hence, as a conclusion we think porting an x86 based optimized parallel code to the Intel
MIC architecture does not impose too much of a burden to the programmer. Especially the
general purpose programmability and flexibility of the MIC architecture based processors
make it very suitable for complex highly parallel workloads.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 50 25.06.2010

Performance Results

This section provides a short performance analysis of TifaMMy on the Intel MIC architecture.
Two aspects are very important: scalability and absolute performance in comparison to a tra-
ditional multi-core processor based system (using “large” cores). Here, a very recent x86-
based processor high performance system is compared to the Intel MIC architecture. Figure
54 shows the archived speed-ups (and scalability), while Figure 55 shows the absolute per-
formance of TifaMMy on the Intel MIC architecture software development vehicle. More
details cannot be provided here due to NDA restrictions.

As one can see in Figure 54 the scalability of the Intel MIC architecture is slightly beneath the
tested x86 system but the Intel MIC architecture scales well up to a (much) larger number of
cores. In addition, it should be considered that the graph shows the scalability for best abso-
lute performance on Intel MIC architecture. For TifaMMy this means that 3 hardware threads
per core are used in order to exploit the full computational power of the Intel MIC architec-
ture in-order cores. If one chooses 1 thread per core, one would get a super linear speed-up
(scalability above ideal scaling) due to the shared L2-cache, but not the best absolute per-
formance. Hence, because matrix multiplications require a lot of data movement the scalabil-
ity marginally decreases for more than one thread per core due to the increased amount of
moved data.

In terms of absolute performance the Intel MIC architecture is able to affirm the positive im-
pressions from the scalability analysis. By evaluating Figure 55 one can see that TifaMMy’s
performance on the Intel MIC architecture with 3 threads per core is above the one-core-
performance of the tested x86 system. Furthermore the Intel MIC architecture performance is
higher than the one for the x86 system for this specific highly data/thread-parallel workload
and highly optimized TifaMMY implementation.

Figure 54: Scalability of TifaMMy on Many Intel

Core Architecture and a recent x86 system.

Figure 55: Absolute performance of TifaMMy on
Many Intel Core Architecture and a recent x86

system.

3.1.8 Petapath experiments
This section describes the tests performed on the Petapath/ClearSpeed accelerated prototype
of NCF. The Petapath system was proposed for the evaluation of some large codes on the
Petapath Feynman e740 and e780 prototype hardware. Two of these codes were expected to
run well on a Petapath system: a many-body astronomy code and a medical imaging code,

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 51 25.06.2010

respectively and two for which we expected the porting to be difficult: a very large sparse
linear solver framework and a geophysical code. In addition we ran, as required, the standard
EuroBen kernels that were to be performed on all prototype platforms.

We first discuss the findings with the kernels in order to compare them with the reference
performance on the Nehalem-EP platform as discussed in Subsection 3.1.1.

On the Petapath system, we ran the dense matrix-matrix multiplication kernel mod2am on a
single processor, called a Multi-Threaded Array Processor (MTAP) of a CSX700 card as that
can be regarded as the fundamental computational unit for the Petapath system. Each card
harbours two MTAPs and it is easy to engage as many of them as are available in a Petapath
device which would be 16 in a Petapath Feynman e780. Multi-card results have already been
reported in an earlier deliverable D8.3.1 [2] with a maximum performance of 520 GFlop/s on
16 MTAPs (a full e780). In Figure 56, we show the performance graph for 1 MTAP (theoreti-
cal peak performance 48 GFlop/s) over the full range of problem sizes required for this ker-
nel:

Figure 56: Performance of mod2am on 1 MTAP

As can be seen the speed starts to exceed that of a single Nehalem-EP core for matrix orders >
5000 and the performance curve does not level off for orders as large as 10240. So, one might
expect that a significant fraction of the peak speed can be realized for large matrix orders. For
small matrix orders one should not use the accelerator as the transport from data to the accel-
erator and back takes the majority of the run time.

Note that no optimization for the host-assist percentage is done (see Subsection 3.1.6) as this
is tied in with a specific matrix order. In real applications where matrices usually will be of a
fixed size such optimization could be done and boost the performance significantly.

The processors in the Petapath system are of the streaming type and therefore may be ex-
pected to perform poorly on sparse matrix-vector multiplication as implemented in kernels
mod2as. This assumption was indeed confirmed as is evident from Figure 57.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 52 25.06.2010

Figure 57: Performance of mod2as on 1MTAP

The performance is poor for two reasons: first there is no support for reduction operations in
the CSX700 processor, a property it has in common with GPU accelerators. Second, the
memory access is extremely unfavourable with respect to the memory structure of the proces-
sor and hence is severely memory bound. The same is true for general CPUs but in these
processors the memory structure is much less sensitive to bad memory access patterns. When
one compares this result with that of the reference performance of mod2as in Subsection
3.1.1, it is clear that one should avoid using the Petapath hardware for this type of algorithms
unless the algorithm itself would be totally restructured.

The FFT kernel mod2f has been run using ClearSpeed's CSDFT library. The 1-D FFT order
that can be performed ranges from 256 to 8192, so the range is smaller than the problem set
provided for the kernel. Nevertheless, the performance for the orders that are available is quite
good as is shown in Figure 58.

Figure 58: Performance for mod2f on 1MTAP

The performance is better than the reference outcomes everywhere, especially for the smaller
orders where it can be faster by a factor of 3-5. For N=8192, the speed degrades to 3.4
GFlop/s, still about 30 % faster than the reference performance.

For the Random Number generation kernel, mod2h again a library routine from the library
CSRNG could be used. For this kernel the results compare well with the single core reference
performance reported in Subsection 3.1.1 as is evident from Figure 59.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 53 25.06.2010

Figure 59: Performance for mod2h on 1 MTAP

One MTAP and one Nehalem-EP processor core deliver more or less the same performance
for sequence lengths up to 3,000,000. The reference platform shows roughly a 10 % perform-
ance advantage in comparison to 1 MTAP over the whole range of sequences.

As for the applications to be ported, this is still in progress. Due to problems in delivering the
hardware both by HP and ClearSpeed, the Petapath system was only installed by mid October
2009. There are preliminary results for the medical imaging application. First experiments
have shown that for a reduced-size model the time to solution could be brought from 2.8 to
0.4 sec per convolution (the main computational kernel). It is expected that for the full-sized
problem the speed up can be increased by another factor of 4, leading to a speedup of a factor
25 to 30.

3.2 Hybrid Programming Models

3.2.1 MPI+OpenMP
Hybrid programming using a mixture of MPI and OpenMP has been studied by WP6 using
the EuroBen kernels. Results indicate that the defined reference input data sets (RIDS) are not
large enough to show the real potential of hybrid programming. The main focus of the RIDS
was to compare single-node CPU performance with performance achieved on today’s accel-
erator hardware, which puts strong limitations on the data set size. In everyday HPC codes a
data parallelization is often necessary to tackle the scientific problem, but these data sets are
not represented in the RIDS. Figure 60 gives an overview of the achieved performance for
mod2am on Nehalem-EP. The mixed MPI+OpenMP code essentially combines an MPI paral-
lelization with calls to the multi-threaded MKL. The pure MKL code was benchmarked on
one node with 8 cores. Figure 61 gives performance figures for mod2as. The comparison of
both figures reveals that the overhead of the additional MPI parallelization is more noticeable
in the compute-bound mod2am. For the memory-bound mod2as a more distributed placement
(4×2) is able to outperform the pure MKL version (1×8) since it results in higher bandwidth
per thread.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 54 25.06.2010

Figure 60: Hybrid MPI+OpenMP results for

mod2am

Figure 61: Hybrid MPI+OpenMP results for

mod2as

Apart from the results of these small test cases, with current multi-core architectures, the hy-
brid model has begun to attract attention and seems effective to improve performance of
heavy parallel applications. To give an example, Figure 62 shows the scalability of a Linear
Algebra subtask of a Car-Parrinello simulation of 256 water molecules (performed with
Quantum-Espresso simulation code) on the cluster BCX (CINECA Linux cluster with AMD
x86_64 Opteron Dual Core 2.6 GHz). The matrix size is 1024×1024, while the pure MPI ver-
sion saturates at 128 cores the hybrid version scales up to 512 cores.

LA: Speed‐up, relative to 64 cores Pure MPI

0

1

2

3

4

5

64 128 256 512 1024

cores

Pure MPI
MPI+OpenMP, 4 threads
MPI+OpenMP, 2 threads

Figure 62: Speedup of the Linear Algebra subtask of a Car-Parrinello simulation

A second example from a study at BAdW-LRZ illustrates the scaling potential of the
MPI+OpenMP programming approach on modern multi-core system architectures: Figure 63
and Figure 64 show the strong scaling behaviour of the Berlin Quantum ChromoDynamics
program (BQCD) [37] using either a pure MPI or a hybrid MPI+OpenMP parallelization ap-
proach. All results are based on 483×96 lattice sizes. Up to 4096 cores, the pure MPI version
of the code is faster on both systems. For larger core counts combining OpenMP with MPI
results in a substantially better performance. Hence the hybrid programming approach seems
to be well suited for future multi-Petascale systems based on multi- or many-core shared
memory compute nodes. This example especially shows that the performance advantage of
hybrid programming is often revealed only on very high core counts, higher than those of
current WP8 prototypes.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 55 25.06.2010

Figure 63: BQCD scaling results on Cray XT5
system

Figure 64: BQCD scaling results on IBM
BlueGene/P

3.2.2 MPI+CUDA
While single-node performance of GPGPUs has been studied rather extensively, the perform-
ance of parallel GPGPU programs has been given relatively little attention so far. However,
the parallel performance considerations are quickly becoming more important as GPUs are
being introduced to large clusters. CUDA is the prevalent GPGPU programming model and
MPI by far the most popular parallelization scheme in HPC today. Thus, it is likely that many
HPC GPGPU programs in the near future will use CUDA combined with MPI parallelization
and it is very important to investigate its capabilities.

Mod2am:
The mod2am was parallelized and run using different amounts of MPI tasks on the GENCI-
CEA GPU cluster. The MPI processes are striped evenly over the GPUs (assigned GPU =
process_number modulo GPU_count). The following graphs illustrate the results. N is the
node count and P is the process count per node. For example 2N×2P means “two nodes with
two processes each”. The reference input data set sizes, described in D6.6, were used. In
Figure 65, an explicitly coded matrix-multiply routine is used and in Figure 66, the CUBLAS
DGEMM routine is called for the serial matrix multiplication within an MPI task.

Figure 65: Results of CUDA+MPI mod2am with a reference mxm routine

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 56 25.06.2010

Figure 66: Results of CUDA+MPI mod2am with a CUBLAS mxm routine

It can be observed that for small matrix sizes using a single MPI process and the hand-coded
reference matrix-multiplication routine provides the best results. For larger matrices, the best
performance is achieved when using CUBLAS and a full set of 4 processes, thus oversub-
scribing the GPUs with 2 tasks each.

Mod2as:
Figure 67 illustrates the results of the sparse matrix EuroBen kernel (mod2as).

Figure 67: Results of CUDA+MPI mod2as

It can be observed that using a full system with 4 processes and 4 nodes is surprisingly slow.
For reasonably sized matrices, using two nodes with two processes seems to yield the best
performance.

The parallelization for the tests was done naively by moving all data between GPU and CPU
memory every time an MPI communication was performed. This could be done more effi-
ciently transferring only the subset of data needed or using memory pinning. However, using
the latter, causes the program to hang, most likely because the DMA access from the GPU is
conflicting with InfiniBand RDMA communication. nVIDIA is reportedly working with Mel-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 57 25.06.2010

lanox to enable direct communication between GPU memories on remote nodes. This will
potentially improve the performance and simplify programming of MPI-parallel CUDA code
significantly.

GPU HMMER:
GPU-HMMER is one of the first production-quality GPGPU programs available. GPU-
HMMER is a CUDA port of the HMMER open sequence analysis application, used widely in
bioinformatics. The original implementation is available from [17] and the GPU-optimized
version from [18].

The reference CPU runs were performed on hippu.csc.fi, a HP ProLiant DL785 G5 with 8
Opteron 8360 SE CPUs and an optimized and threaded version of the HMMER code. While
there were 32 cores available, the test was run only up to 25 threads as after this, adding new
threads degraded the performance.

Figure 68 illustrates the performance difference of CPU vs. GPU implementations of the
HMMER code.

Figure 68: Runtime of CPU vs. GPU HMMER

It can be clearly observed that even when using a single GPU consistently outperforms the
CPU implementation running on a powerful SMP system. The problem scales to two GPUs
and is faster, by a factor of 1.9-3.2, than the best CPU results, depending on the problem size.
The runs were performed without issues. For larger problem sizes, the memory on a single
GPU would not be sufficient but using dual GPUs, the maximum problem size can be dou-
bled. Most of the relevant production runs are currently in the domain of 100-2000 HMMs. It
can be concluded that GPU-HMMER is a very promising application.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 58 25.06.2010

3.2.3 MPI + CellSs
Figure 69 shows the performance of
mod2am with MPI+CellSs on Maricel.
The kernel was run on 8 nodes, with one
task per node.

A detailed analysis of the traces does show
that the current version does not overlap
computation and communication. A 30 %
improvement could be obtained without
modifying the source code if this overlap
was implemented on the run time.

3.3 Intra-Node Bandwidth

3.3.1 Triads (RINF1) benchmark results (BAdW-LRZ)
Bandwidth and spatial degradation6 numbers were measured for execution of the vector triad
(A=B+C×D) with OpenMP as well as MPI, based on vector lengths between 100 and 16 mil-
lion, and strides up to 32. Table 7 indicates the results obtained for various platforms:

Platform Altix ICE Intel
Nehalem-EP

Altix4700
Intel

Montecito

IBM
POWER6

Ultraviolet
Intel

Nehalem-EX

Sockets per node 2 2 8 or 16 2

Cores per node 8 4 8 (of 32) 16

Peak performance

Single OpenMP thread
(GFlop/s)

2.99 2.31 - 2.59

Scaling efficiency to full
node (%)

48 46 - 44

Single MPI task
(GFlop/s)

3.26 2.49 2.31 2.91

MPI scaling efficiency to
full node (%)

100 100 96 100

Memory Bandwidth

Single OpenMP thread
(GB/s)

9.40 4.81 - 5.97

Scaling efficiency to full
node (%)

32 26 - 38

Single MPI task (GB/s) 9.83 4.90 4.74 5.98

6 The loss of spatial locality due to striding leads to a corresponding loss of compute performance, since only
parts of a loaded cache line are used. Within the triads benchmark, this effect is described by the degradation
factor, which is defined as the ratio of contiguous to strided performance on an array of the same size. High
values denote a correspondingly high loss of performance.

Figure 69: Performance of mod2am with MPI+CellSs

on Maricel

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 59 25.06.2010

MPI scaling efficiency to
full node (%)

30 27 56 38

Spatial degradation factor

Serial execution from
memory

11.5 21.5 20.3 11.8

Table 7: Memory bandwidth and spatial degradation factors of different processor platforms

Note that a dual socket blade was used in the Altix4700 case. For the Altix4700 single socket
blade scaling efficiencies for memory bandwidth are by a factor of 2 higher; on the POWER6
node only up to 8 threads or tasks were run and scalability was calculated with respect to that
number. Generally, scaled performance is obtained by forming the product of base perform-
ance, node size and efficiency.

To also obtain an impression of the cache hierarchies’ influence, the following picture gives
the impression of the single task performance for various architectures:

Figure 70: Single task performance of the vector triad measured on different processor architectures

3.3.2 Random Access Results
On the SGI systems, Intel compilers and SGI MPT were used to run the program gups_opt.
On the IBM system, the parallel environment based on IBM’s compiler and MPI were used;
on this platform, the “inline” keyword should be removed from the update_table() sub-
routine since apparently it is unsupported by the compiler. In all cases, 64-bit compilation and
the –DLONG64 macro were used. The size of the problem was chosen such that 2 GB per
MPI task were used. The benchmark results are collected in Table 8. Performance numbers
are in units of MUPS (Mega-Updates per second).

Tasks Size
parameter

Nehalem-EP
(SGI ICE) in

MUPS

Montecito
(Altix4700) in

MUPS

IBM
POWER6
in MUPS

Nehalem-EX
(Ultraviolet /

Standard
Server) in

MUPS

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 60 25.06.2010

1 28 24.1 6.4 2.1 22.9 / 23.1
2 29 42.1 10.2 4.1 33.8 / 36.3
4 30 61.3 18.1 7.7 45.0 / 61.6
8 31 93.3 32.7 14.4 65.9 / 91.1
16 32 165 - - 118 / 132
32 33 251 - - 202 / 191
64 34 416 - - 318 / -
128 35 - - - 407 / -
256 36 - - - 540 / -

Efficiency at 8 Tasks 48 % 63 % 85 % 36% / 49%
Table 8: Measured random access memory latencies of different processor architectures

The Nehalem-EX measurements on the Ultraviolet system were performed with various set-
tings (using the Global Register Unit (GRU7) for communication between blades, or via
shared memory only, and using SGI MPT), but the results only showed minor variations; the
results in the table are the overall best ones, using the GRU. According to SGI, a shared
memory implementation of the benchmark has achieved up to 800 MUPS on the Ultraviolet.
On the Intel standard server, Intel MPI 3.2 was used to perform the measurements, which ex-
cept for complete machine filling (32 cores) gave better results than the Ultraviolet system,
partially comparable to Nehalem-EP on a per-core basis.

3.3.3 Host to accelerator bandwidth (NCF)
One of the most serious bottlenecks limiting the applicability of accelerator technologies to-
day is the host to accelerator bandwidth available in present PCIe Gen 2.0 or PCIe Gen 1.1
based device implementations. It is therefore very important to test the effective bandwidth
from the host node to the accelerator and vice versa. The measurements were performed at
NCF using the ClearSpeed/Petapath prototype using one Multi-Threaded Array Processor
(MTAP) of a CSX700 card. In hindsight the message lengths used were somewhat small to do
full justice to the data transfer library CSPX. Ongoing experiments indicate that the non-
optimised results shown here can much be improved on. The non-optimised, 1 MTAP results
are shown below:

Figure 71: Measured host-card bandwidth 1 MTAP

7 The Global Register Unit (GRU) that extends cache-coherency from the blade to the entire
NUMAflex environment and provides other memory related functionality.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 61 25.06.2010

The peak bandwidth quoted to a CSX700 card is 2 GB/s per direction (i.e. PCIe x8 Gen. 1.1).
About 35 % of this bandwidth can be attained for on- and off-card traffic. For small messages
the transfer speed is lower because of the influence of the latency that occurs because of the
software initialisation: 667 µs for host-card traffic and 640 µs for card-host traffic. For the
Feynman e740 and e780 that feature a PCIe Gen.2.0 ×16 connection of 8 GB/s per direction,
the measured bandwidth shown in Figure 71. The 8 GB per second per direction (full duplex)
are shared by the 4 (resp. 8) e710 cards, each one bounded by the 2 GB per second per direc-
tion full duplex PCIe ×8 Gen 1.1.

3.4 Inter Node Communication Network

3.4.1 eQPACE
One challenge of porting application code to QPACE is related to the PowerXCell 8i architec-
ture, which is quite different from commonly used x86 and PowerPC processors. The diffi-
cult part is the implementation of the application on the SPE. The programmer has to take
care of data management, i.e., allocation of Local Store (LS) space and explicit DMA get and
put operations to load data from or store data to main memory.

Optimizing QCD application code on QPACE requires [38]:

• With essentially all lattice QCD kernels being memory bandwidth limited, it is manda-
tory to reduce the number of memory accesses to an absolute minimum and to opti-
mize re-use of data in the on-board LS;

• When parallelizing the application communication has to be organized in such a way
that the network latencies of O(104) clock cycles are hidden;

• Efficient use of the SPEs floating-point pipeline, i.e., SIMDisation of the code.

To measure the performance of the torus network a ping-pong test was used to estimate the
latency. One packet of 128 Bytes was sent from the LS of node A to the LS of an adjacent
node B and back to A. The latency was estimated as the round-trip time divided by 2, which
was found to be 3 µs.

To measure the bandwidth, node A sends a message to B and vice versa; multiple messages
can be sent concurrently. The bandwidth depends on the message size and the number of con-
current communications. With a sufficient number of packets on the fly, it is possible to get
close to the theoretical maximum bandwidth of 900 MB/s.

The simulation of the motion of a string (solving a one-dimensional wave equation) was the
first (tutorial) application that was ported from a Cell cluster version to the QPACE SPE-
centric programming model.

Another non-QCD application, which was implemented on QPACE, was the multigrid algo-
rithm [42]. In this implementation the SPE-centric programming model had been chosen. The
problem to solve was the Poisson problem on a regular three dimensional grid. For a better
mapping of the grid to the computing node the torus network was extended to a bigger virtual
torus network with the SPEs of one Cell processor forming a small Cartesian network them-
selves.

The discretization of the Laplace operator was done with a simple seven point stencil. This
leads to a communication scheme, which involves only neighbour to neighbour communica-
tion on fine grids. So this fits very well to the torus network. But on coarser grids with less
grid points than computing nodes, messages have to be routed through the nodes, which are
not computing ones. This was implemented in software. That increases the network latencies
significantly. One could decrease this impact by using hardware routing. On QPACE this

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 62 25.06.2010

could be done by another FPGA image. Some considerations of this implementation are pre-
sented later in this document.

A simple stencil code, like the one used in this implementation, is memory bandwidth
bounded on the Cell processor, when choosing big enough domains. But the performance of
this implementation shouldn’t be bounded by memory bandwidth, because the properties of
the network should be investigated. So the domain size was limited to fitting into the local
stores of the SPEs. That leads to a domain of 16×16×16 per SPE. With this size the perform-
ance is bounded by the network throughput. It was discovered that the most limiting factor is
the number of messages one can send in a specific time span independent of the message size
(750 messages per ms). This is the high penalty on the coarse grids, where only 2×2×2 mes-
sages are used.

The examination of the timings in the FPGA showed that most of the latency time is caused
by the interface of the FPGA to the Cell processor. This time is the five sixth of the whole
latency. The bandwidth of this link also limits the overall performance of the network. When
a node just has to forward a message, the message has to cross this interface twice. To avoid
this, the forwarding could be done on the FPGA. That would also take load from the Cell
processor.

To be able to perform this forwarding the address must be added to the message header. A
relative addressing according to the torus structure is reasonable. A node sends the message to
a neighbouring node, which is closer to the destination and corrects the relative address.
When a node receives a message with relative address zero, it transfers the message to its cell
processor. Additional buffers between the links are needed to make possible the serialization
of the messages of the different links and the Cell processor possible. These considerations
were not implemented, because there was no more space left on the FPGA.

The prerequisite for the High Performance LINPACK (HPL) [21] benchmark is an efficient
MPI implementation for message passing between compute nodes. This also requires a low-
level communication interface to access the QPACE torus network. Due to the design of the
HPL for the Cell processor (QS22 patch), which uses the 8 SPEs as accelerators, it was de-
cided to use a PPE-centric communication model where the PPE is responsible for sending
and receiving messages.

Figure 72: QPACE network processor

HPL has communication requirements that differ from QCD, like efficient transfer of large
messages and collective operations, which demand extensions to the network processor de-
sign as well as to the software stack. For that reason, the FPGA based network processor was

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 63 25.06.2010

modified in order to support direct data transfers between main memory and torus network.
This modification (inserting a DMA engine in place of the Inbound Write Controller IWC) is
the basis for a low-level torus communication API that (only) supports main memory to main
memory data transfers over the torus network. The alternative approach of using the Memory
Flow Controller (MFC) of an SPE instead of modifying the FPGA image has not (yet) been
implemented.

Figure 73: Open MPI Modular Component Architecture

A new Open MPI Byte Transfer Level (BTL) component, called tnw, was developed for MPI
message transfers over the torus network which uses the low-level torus API. Some issues
caused by the implementation of the network processor had to be taken into consideration
when using the DMA engine regarding alignment of send and receive buffers and the message
size which has to be a multiple of 128 Bytes. For the latter case a workaround was imple-
mented by using the pipeline protocol which allows for splitting a message transfer in two
parts and sending the first part via copy in/out while the remaining part meets the size con-
straint.

Another limitation is that the network processor needs the physical address of the send/receive
buffer which must be contiguous and locked in main memory. Here, the workaround is a
separate contiguous region of physical memory which is reserved by the kernel and access to
this area is provided by an additional kernel module. Then, memory buffers that are to be used
for MPI communication operations must be allocated by a specific memory allocator.

Using the tnw component it is possible to send messages via MPI between neighbouring
nodes over the torus network. If a process cannot be reached over the torus the slower Gigabit
Ethernet is used which does not require any modifications. In order to support torus commu-
nication between all processes, software or the network processor could implement a routing
mechanism. Here, the latter approach seems to be more efficient due to less memory copy
operations. However, a limitation might be the remaining resources available in the FPGA
based network processor. So far, routing facilities for QPACE have not been investigated.

Besides the send/recv operations in the tnw BTL component also MPI collectives used in
HPL were optimized. A new Open MPI COLL (Collective) component, called tnw_tuned,
was developed. This component implements the collectives MPI_Allgatherv(),
MPI_Scatterv(), MPI_Bcast() and MPI_Allreduce(). These operations were adapted with the
focus on torus communication and improved the performance of HPC significantly.

The HPL result for two racks of the QPACE cluster on 512 nodes: 43.01 TFlop/s (55.71
TFlop/s peak) and 723 MFlop/s/W. This is currently the best performance per Watt ratio in
the Green500 list [39].

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 64 25.06.2010

Measuring the performance of the PPE-centric communication over the torus network (com-
municate messages from main memory to main memory) the ping-pong benchmark produced
the following results:

• Latency of 4.7 µs for 128 Bytes message;

• Bandwidth of 845 MB/s for 64 KB message.

The development of the Open MPI subset for QPACE is still going on and it can be expected
that the performance values for HPL can be augmented. To what extent experiences gained so
far can be used with other applications is currently investigated by the implementation of a
multigrid method on QPACE.

Summary

• A 4-rack QPACE system was installed but the system is still under development. Es-
pecially the network processor requires special attention. Due to the limited facilities
for debugging errors in the FPGA, several low-level test cases have to be designed to
reveal or reproduce an error which makes it difficult to figure out the source of a mal-
function.

• Low-level benchmarks and tutorial applications were run.

• Different versions of FPGA loads have been used.

• A subset of MPI functions was implemented for the torus network.

• An efficient QPACE version of the High Performance LINPACK benchmark was de-
veloped (basis for Top500/Green500 ranking).

3.4.2 BAdW-LRZ

Intel MPI benchmark results
Point-to-point measurements had been used to obtain (bi-directional) link bandwidth and la-
tencies (for a single task pair between two nodes), as well as the bisection bandwidth and la-
tency (aggregate over all nodes). The MPI_Sendrecv() call is typically the best-optimised call.
This call is therefore used for the measurements reported in Table 9. The bandwidth measured
in Table 9 is for Send and Receive together. The MPI implementation used for all three sys-
tems is the message-passing toolkit (MPT) from SGI.

Platform Altix ICE Altix4700 UltraViolet

Number of nodes used

(divide by two for node pairs)

32 16 16

Link Bandwidth (GB/s) 3.66 1.90 7.20

Bisection bandwidth (GB/s) 57.9 13.4 34.3

Efficiency (%) 98.7 88.1 78.8

Link Latency (µs) 1.7 2.6 1.60

Bisection Latency (µs) 1.7 2.7 3.0
Table 9: MPI send/receive benchmark results

Here interconnect efficiency is considered relative to the number of node pairs used. The
aggregate bisection bandwidth achieved on the UltraViolet system is at present only approxi-
mately a third of the hardware bandwidth; the values measured with the GRU (displayed here)

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 65 25.06.2010

are between 5 and 20 % better than without it. Note that the UltraViolet system was run in a
routerless configuration with a node paired torus topology; larger systems must be equipped
with routers.

The measured bisection bandwidth and latency curves for the various platforms are displayed
in Figure 74. The per-node-pair bandwidth is plotted with an indication how many node pairs
were active provided for each curve.

Figure 74: MPI bisection bandwidths (left figure) and MPI send receive latencies (right figure)

For collective communication, the execution time for the MPI_Allreduce() function as a func-
tion of message buffer size is illustrated for the various platforms in Figure 75 remapping il-
lustrates the performance losses to be expected if the message pattern invokes blocking or
non-optimal routes in the interconnect (see Subection 3.1.6). Note that on all platforms, 256
MPI tasks were started for the reduction. The UV values, due to a still present hardware or
MPI implementation problem, are here measured using shared memory, without the GRU
offload; for small message size still an improvement of a factor of 3 is seen compared with the
other systems, although further tuning of the MPI implementation still appears to be pending,
as can be seen from the message size 128 Byte outlier.

Figure 75: MPI Allreduce timings for SGI Altix4700, ICE and UltraViolet

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 66 25.06.2010

Alternative MPI implementations and interconnect pruning on ICE
In order to investigate implementation-dependent effects as well as the effect of providing
only partial bandwidth in the interconnect hardware, the following measurements were per-
formed:

• Bisection and collective performance using Intel MPI 3.2, comparing with SGI’s MPT
(version 1.24);

• Bisection and collective performance with half of the IB-uplink switch ports shown in
Figure 4 disabled (only 8×3 instead of 16×3 active IB uplinks to the central Infiniband
switch as shown in Figure 4).

Figure 76 illustrates the bisection bandwidth using different MPI implementations with a
pruned (blocking factor 2) and unpruned fat tree network topology (using 256 MPI tasks
with a 128×2 mapping):

Figure 76: Measured Altix ICE MPI bisection bandwidths

Generally, bisection bandwidth halves as expected; Intel MPI seems to have a slight perform-
ance edge over SGI MPT here. Note that for SGI, a setting of the environment variables
MPI_DSM_DISTRIBUTE=1 and MPI_BUFFER_MAX=32768 was used. The latencies are
more instructive for short message lengths, again showing slight advantages in favour of In-
tel’s implementation, but no increase in latency for the pruned case (see Figure 77):

Figure 77: Measured Altix ICE MPI bisection latencies

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 67 25.06.2010

The following collective MPI calls were investigated: MPI_Allreduce(), MPI_Alltoall() and
MPI_Barrier(); the second of these is probably the most resource-intensive call in the MPI
API. The following SGI MPT settings were used to pin MPI tasks as well to minimize re-
transmissions of messages: MPI_DSM_DISTRIBUTE=1, MPI_BUFFER_MAX=2000,
MPI_BUFS_PER_HOST=256. For Intel MPI, only the setting I_MPI_PIN=yes was used. 256
tasks were executed on 32 nodes. For the Barrier call, the following table displays the meas-
ured latencies:

Implementation / mode Barrier Latency (µs)

SGI MPT / full 23

SGI MPT / pruned 23

Intel MPI / full 14

Intel MPI / pruned 14
Table 10: Measured barrier latencies

The run-to-run error for the above numbers is approximately 1 µs; no difference is observed
between pruned and full switch configuration. Note that the UV barrier latency measured for
256 MPI tasks, using SGI MPT, is 4.9 µs.

Figure 78 illustrates the effects for the case of the MPI_Allreduce() call:

Figure 78: Measured MPI Allreduce timings

Generally, the pruning leads to no significant reduction of performance for this collective call
(see Figure 78); the observed differences are within the statistical fluctuations observed from
run to run without changing the hardware configuration. Much more interesting is the differ-
ence of a factor of two between the implementations by SGI vs. Intel, respectively. According
to Intel, a lot of optimization work has gone into optimizing collective calls, in its most recent
implementation, giving it a performance edge against SGI’s implementation in this particular
case.

For the Alltoall call shown in Figure 79, the Intel MPI again shows consistently better tim-
ings. The differences between pruned and fully connected network are more marked, but gen-
erally still less than between implementations for moderate message sizes. For large message
sizes (1 MB and beyond) the effect of pruning appears to become more dominating.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 68 25.06.2010

Figure 79: Measured MPI Alltoall timings

For network latency bound applications like GADGET leaf-side8 network pruning could be a
very cost-effective measure to separate MPI traffic from I/O within the IB fabric. Table 11
shows the MPI version used has much more effect on the measured GADGET run times than
leaf-side network pruning. A test case of 32,768,000 particles was considered.

MPI-
Tasks

MPT Time
(s)

OpenMPI 1.3.2
Time (s)

MPI Intel_PRUNED
Time (s)

MPI Intel_FULL_Interconnect
Time (s)

64 40.81 - 42.05 41.82

128 24.47 57.34 25.08 24.09

256 13.45 29.56 17.57 16.67
Table 11: Influence of different MPI versions and network pruning on execution time of GADGET

UFM deployment at LRZ
The Infiniband Architecture (IBA) standard defines a “Subnet Manager” (SM) entity that is
responsible for configuring and managing the switches and routing tables. Many existing SM
algorithms today are assigning routes statically without any knowledge of the actual traffic
characteristics while real-life traffic is spread un-equally, leading to traffic bottlenecks and
congestion. Effective bandwidth may be reduced to 50-60 %, or even down to 10 % per
stream, and cause the latency to increase significantly.

In close collaboration with Voltaire and SGI, LRZ has started evaluating Voltaire’s Unified
Fabric Manager™ (UFM™) which promises to provide important features for large Infini-
band networks such as performance and congestion monitoring, performance optimization,
device management and troubleshooting. So far the evaluation focus was put on a UFM fea-
ture called Traffic Aware Routing Algorithm (TARA). TARA is an intelligent routing algo-
rithm that optimizes the routing within the IB fabric and therefore should be able to provide
better communication performance.

8 The term leaf-side pruning is used for fat tree topologies in which the connection of the first level switches
(compute nodes are connected to first level switches) to the second level switch hierarchy is realized with a
reduced number of network links (pruned fabrics).

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 69 25.06.2010

To demonstrate the performance improvement achieved with UFM, multiple Intel MPI
benchmarking jobs were run on the SGI ICE system comprised of 48 nodes. The scenarios
run include multiple jobs comprised of 8 or 12 nodes, using various task placements across
the leaf switches of the fabric. Scenarios were run with and without TARA to be activated.

Figure 80: Measured MPI send/receive link bandwidths with and without traffic aware routing

Figure 80 shows, the measured MPI send/receive link bandwidths with and without traffic
aware routing for various task placements across the leaf switches of the fabric. By means of
traffic aware routing even for this small system the average performance improvement was
100 %. Hence the use of intelligent network routing algorithms will be of major importance
for future Petascale systems to reduce network costs and at the same time ensure high applica-
tion performance due to better utilisation of the network fabric.

3.5 PGAS Languages

3.5.1 Chapel experiments
Chapel is a new PGAS-like parallel programming language developed by Cray and the Uni-
versity of Washington within the HPCS project (a DARPA programme). Chapel has been
designed to increase programmer productivity by abstracting the underlying hardware in order
to lighten the burden of explicit data communication and synchronization for the programmer.
Unlike CaF and UPC, Chapel does offer semantic language support not only for data parallel-
ism, but also for task parallelism and is therefore sometimes classified as asynchronous PGAS
(APGAS) language. The Chapel compiler and run-time environment are still under heavy
development and must be considered work in progress with prototype character.

One of the key concepts of the language is a locale, meaning a hardware execution environ-
ment with uniform access to memory as for instance a compute node of one or more individ-
ual multi-core processors. Chapel is meant to exploit parallelism on a single locale through
multiple concurrent execution threads much like OpenMP, however without requiring fine-
grained control as in the case of OpenMP. Chapel also allows parallel concurrent execution
across a number of locales, for instance a cluster of compute nodes. Data distribution and
work sharing across different nodes are semantically linked to the language concepts of do-
mains, essentially a set of indices of an array, and its associated distribution which determine
how the elements of a domain are distributed across different locales.

In Chapel, data parallel execution on a single locale or across multiple locales is invoked by
using the forall loop over all elements of a domain. The associated distribution then is respon-
sible for remote data access and synchronization if necessary in order to execute the loop
body in parallel.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 70 25.06.2010

The standard library of Chapel offers a range of distributions for blocked, cyclic, and block-
cyclic data distribution, as well as special distribution for sparse domains, as for instance
sparse matrices. However, in the previously studied version V0.9 of Chapel the actual imple-
mentation of these standard modules did often not exploit parallelism but silently was exe-
cuted sequentially on a single locale.

During the lifetime of the PRACE project, the Chapel team has released a number of different
versions of the compiler, starting from V0.9 to V1.1 in April 2010. The initial evaluation of
Chapel reported in D6.6 was conducted with version V0.9. The subsequently published ver-
sions V1.0 and in particular V1.02 addressed some of the issues and shortcomings relevant for
the PRACE implementation of the EuroBen kernels. The latest version V1.1 has not been
investigated in detail yet as it was published only a couple of week before submission of this
document.

In general scalar performance of V1.02 has increased significantly to the point that matrix
vector multiplication execution time is in the same order of magnitude as similarly non-
optimized C code, if the Chapel compiler is instructed to produce non-distributed, serial code.
While most distributions in V0.9 were limited to executing parallel forall loops sequentially
on a single locale, all relevant distributions in V1.02 support local-locale, multi-threaded par-
allel loop execution, and most support parallel execution on multiple locales.

According to the documentation of the Chapel release V1.1, all relevant distributions are fully
multi-threaded and multi-locale, i.e. support parallel execution within a single locale as well
as across multiple locales. In this sense, Chapel distributions are feature-complete. The exam-
ples packaged with the Chapel distribution - as for instance FFT, STREAM and, HPL -
mostly show clearly improved performance and scalability. However, first tests indicate that
performance and scalability of the EuroBen kernels are still lacking und unsatisfactorily. A
preliminary analysis seems to indicate, that the biggest issue is the fact that remote memory
accesses, for instance to elements of a matrix stored on a remote locale, are not aggregated,
but rather done element-by-element. Due to the large latency this results in poor performance
and does not allow scaling with the number of locales.

The Chapel developers have confirmed through private communication, that aggregation of
remote memory access will be implemented soon as an optimization by the compiler. They
have also given some hints, how the situation might be alleviated today through low-level
Chapel programming and exploiting non-public interfaces. Those hand-coded optimizations
have, however, not been implemented or studied before the submission of this document and
will be reported in the future as part of PRACE-1IP.

Chapel continues to be an interesting concept for future parallel programming models, but
much more work needs to be done on the compiler and runtime environment in order to be a
real alternative for production environments. In particular, the technology preview V1.02 and
later version reveals some very interesting features like support for GPGPUs through dedi-
cated distributions, as well as the new language concept of realm which is meant to abstract
different hardware platforms and will eventually allow to run Chapel on hybrid systems con-
sisting, for instance, of PC clusters and vector machines, or similar.

3.5.2 Co-Array Fortran experiments
The usability evaluation of Co-Array Fortran (CAF) compiler is performed on a Cray XT5
system, which is the latest Cray XT series platform. Recently, the CSCS XT5 system has
been upgraded to a hex-core AMD processor called Istanbul from a quad-core Shanghai proc-
essor. The resulting system now has a peak performance of 212 TFlop/s, upgraded from 141
TFlop/s. The XT5 system is composed of 3,688 hex-core Opteron processors with a 2.4 GHz
clock frequency and now has 1.3 GB memory per core, down from 2 GB per core in the quad-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 71 25.06.2010

core configuration. The XT5 system offers a number of enhanced features as compared to its
predecessor XT systems including a new generation of high-bandwidth custom interconnect
chip called SeaStar2.2, a dual-socket quad-core Opteron processing nodes and computing
node Linux environment called CLE (Cray Linux Environment). The X2 processing node is a
4-way SMP node sharing a global address space (the CPU is a 1.4 GHz vector processors with
8 vector pipes). Processing nodes of the two target systems are shown in Figure 81. The
memory bandwidth of the X2 system is considerably higher. On the XT5 system, the aggre-
gate memory bandwidth is 25.6 GB/s while on the X2 system there are four 28.5 GB/s chan-
nels with two levels of cache. The XT5 processor has three cache levels and access to mem-
ory is not uniform unlike the X2 node. The network interface is also different on the two sys-
tems. The Cray XT5 system has a Cray proprietary SeaStar2.2 network interface card and the
nodes are connected in a three-dimensional mesh topology. The X2 system on the other hand
has Cray proprietary YARC router chip connecting nodes in a fat tree topology.

Figure 81: Cray XT5 (left) and Cray X2 (right) processing nodes

The programming environments also have distinct features, for example, the Cray XT5 sys-
tem runs Cray Linux Environment (CLE), while the X2 system has a different variant of
Linux. Although the Cray Compiler Environment (CCE) is used on both platforms, on the
XT5 system version 7.2.x was available while on the X2 system version 6.0.0.x of C and For-
tran compilers were available. Traditionally, third-party compilers such as GNU, PGI and
PathScale have been supported on the XT series platforms.

The main objective of the CSCS task was to evaluate the usability of the compiler for code
development and execution for representative benchmarks. However in future , the CSCS
team plans to evaluate the usability of the compiler for production-level code development,
execution, debugging, performance evaluation and portability across multiple platforms.

In order to evaluate the CCE compiler framework for the target PGAS languages, the CSCS
team focused on the components of the CCE framework that a user typically interacts with
during code development and execution. This includes the front-end compiler interface for a
large-scale production-level Cray XT5 system, the error reporting mechanisms, back-end
code generation on a cross-compiled system and execution in a batch environment. The CSCS
team also tested the completeness of the CAF and UPC compilers by running some confor-
mance test cases. Note that the CCE CAF compiler is expected to comply with the proposed
FORTRAN 2008 standard and the UPC compiler should conform with the UPC version 1.2
specifications.

Currently the GASNet library serves as the communication interface for both CAF and UPC
compilers on the Cray XT5 platform with SeaStar2.2 network chips. GASNet enables remote
memory access (put and get) operations on shared and distributed memory platforms for
PGAS languages. It is implemented using the Cray Portals communication library on the XT5
platform. On the future Cray network chips, a high performance communication library is

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 72 25.06.2010

expected to replace GASNet, which currently supports the functional implementation of the
target PGAS compilers.

Fully functional compilers for the CAF and UPC languages are available on the CSCS Cray
XT5 system as the part of the CCE framework. The results included in the document are col-
lected using the latest Cray compiler version, 7.1.2, which are compared and contrasted with
the results presented in an earlier report using version 7.1.1 on the Shanghai based processing
nodes. After loading the Cray Programming Environment using a simple module load com-
mand, the CAF and UPC compilers can easily be invoked using a flag (-h upc or –h
caf) along with the regular compiler command line options. At runtime, the number of im-
ages and threads can then be specified in the same manner as a user specifies the number of
MPI tasks on command line. Table 12 shows the current and previous XT5 test systems con-
figurations and future plans. Cray X2 details have been provided earlier.

 Previous (last re-
port)

Current Future

Processing Node Dual-socket quad-
core Shanghai
processors

Dual-socket
hex-core Istan-
bul processors

Possibly a an up-
grade to the next
generation proces-
sor

Memory per core 2 GB 1.3 GB Expected to remain
either same or
could be lower

Network chip SeaStar2.2 SeaStar2.2 Possibly GEMINI

Compilation environ-
ment

CCE 7.1.1 CCE 7.1.2 Future CCE re-
leases

Communication li-
brary

GASNet GASNet DMAPP

Table 12: Test system configurations and roadmap

In the earlier report D8.3.1 [2], results of a memory bandwidth benchmark called STREAM
that is available as a part of the CAF benchmark suite were presented. It reports bandwidth
(MB/s) data for access patterns namely COPY, SCALE, ADD and TRIAD for a single image.
In the CAF evaluation mode, the benchmark reports results by splitting the procedure, and
accessing the elements remotely from another image. The code builds with some modifica-
tions to the makefile and by renaming the CAF files with extension .caf to .ftn. Moreover,
some sync operations or API calls that are supported by the Rice CAF compiler but are not
part of the CAF standard were modified to build the benchmarks. Additionally, the Rice CAF
compiler permits declaration of co-arrays in common blocks while the Cray compiler does
not. The NAS parallel benchmarks required several modifications to the source files to ad-
dress the common block declaration restrictions and to use the syn_all API calls in place of
sync_notify and sync_wait calls.

To investigate the performance characteristics of the compiler-generated code and impact of
remote communication operations, we select the CAF version of the STREAM benchmark to
understand if and how remote memory accesses are scheduled, overlapped and synchronized
by the compiler and the runtime systems. The STREAM benchmark gives the data throughput
for a set of 4 basic operations on large coarrays (larger than cache size), on the same image
and across different images. Table 13 offers some results collected for these operations
against 4 different access patterns: local array (as a baseline measure of the operation cost),
local coarray (as a baseline measure of the PGAS construct), remote coarray in the same node,

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 73 25.06.2010

and remote coarray in a different node. For each case, three pieces of information are dis-
played: (i) the language construct, (ii) the optimization applied by the compiler, and (iii) the
operation throughput in MB/s. All tests were performed on the Cray XT5 available at CSCS.

In every case, the copy operation is pattern-matched, and replaced by an optimized library
call, offering good performance overall. We could take the performance degradation that oc-
curs when accessing another image (around 60 % for a coarray in the same node and nearly
70 % if it is in a different node) as the baseline cost of a remote versus a local access.

More interesting though is the disabling of vectorization for any construct that contains a
coarray, even if it is only referenced locally (i.e. no brackets in the expression). This causes
unnecessary performance degradation (~30 %) for the local access with respect to the vector-
ized version. In the absence of vectorization, the compiler opts for loop unrolling for all op-
erations that do not match a predefined pattern. Even so, the performance of scale, add or triad
operation is about 1000 times slower when accessing a different image, which goes well be-
yond the baseline degradation exhibited by the library calls used for the copy operation.

 Copy Scale Add Triad

c(1:n)=a(1:n) b(1:n) =
scalar*c(1:n)

c(1:n) = a(1:n)
+ b(1:n)

a(1:n) = b(1:n)
+ scalar*c(1:n)

Pattern-matched Vectorized and
unrolled ×4

Vectorized and
unrolled ×4

Vectorized and
unrolled ×4

Local array

(a, b, and c are
regular Fortran
arrays)

8524.85 MB/s 8450.93 MB/s 8792.65 MB/s 8716.84 MB/s

c(1:n)=a(1:n)

b(1:n) = sca-
lar*c(1:n)

b(1:n) =
scalar*c(1:n)

c(1:n) = a(1:n)
+ b(1:n)

a(1:n) = b(1:n)
+ scalar*c(1:n)

Pattern-matched Unrolled ×8 Unrolled ×8 Unrolled ×8

Local coarray
(a, b, and c are
coarrays)

8390.11 MB/s 5766.99 MB/s 6225.04 MB/s 6191.07 MB/s

c(1:n)=a(1:n)[2] b(1:n) =
scalar*c(1:n)[2]

c(1:n) =
a(1:n)[2] +
b(1:n)[2]

a(1:n) =
b(1:n)[2] + sca-
lar*c(1:n)[2]

Pattern-matched Unrolled ×8 Unrolled ×8 Unrolled ×8

Remote coar-
ray, same node

3372.67 MB/s 1.42 MB/s 1.50 MB/s 1.50 MB/s

c(1:n)=a(1:n)[2] b(1:n) =
scalar*c(1:n)[2]

c(1:n) =
a(1:n)[2] +
b(1:n)[2]

a(1:n) =
b(1:n)[2] + sca-
lar*c(1:n)[2]

Pattern-matched Unrolled ×8 Unrolled ×8 Unrolled ×8

Remote coar-
ray, different
node

2673.65 MB/s 5.10 MB/s 4.03 MB/s 4.03 MB/s
Table 13: STREAM benchmark results for the CAF compiler

Since the compiler’s inability to retain the microprocessor-level optimization, such as SSE
vector, is a serious limitation, we ran a similar set of experiments on the Cray X2 vector plat-
form to find if these limitations exist on a vector system. Potentially, benefits of PGAS com-
munication optimization could be offset by un-optimized code generated for the microproces-
sor. The X2 CAF compiler however retains the vector instruction optimization as shown be-
low and the runtime data presented in Table 14 also confirms our findings.
On X2 system

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 74 25.06.2010

791. 1 Vr------< DO j = 1,n
792. 1 Vr b(j) = scalar*c(j)[2]
793. 1 Vr------> end DO

 Single image Two images

Copy 81.25 37.57

Scale 85.63 37.48

Add 57.54 34.95

Triad 60.37 34.95
Table 14: CAF STREAM results (GB/s) on X2

We therefore conclude that there is a limitation in the CCE x86 CAF compiler or some com-
piler dependency checks that fail on an x86 system preventing the compiler from vectorizing
or retaining microprocessor-level optimization. If unresolved, this issue is likely to severely
limit performance on a GEMINI based system where an x86 commodity multi-core processor
will constitute a processing node. This report includes an additional set of results for a matrix
multiplication implementation using the CAF constructs. One dimension of the 2D matrix is
declared as a co-array dimension:

double precision :: a(blockSize,blockSize)[p, *]

double precision :: b(blockSize,blockSize)[p, *]

double precision :: c(blockSize,blockSize)[p, *]

The usability evaluation of the Co-Array Fortran (CAF) compiler is performed on a Cray XT5
system, which is the latest Cray XT series platform. Recently, the CSCS XT5 system has been
upgraded to a hex-core AMD processor called Istanbul from a quad-core Shanghai processor.
The resulting system now has a peak performance of 212 TFlop/s, improved from 141
TFlop/s. The matrix is then striped using the block sizes and stripe sizes and the number of
blocks and subsequently the iterations are distributed across CAF images. Runtime perform-
ance of the code is evaluated using 4 images (block size 2×2) and by distributing images
across XT5 sockets and nodes to understand the impact of shared memory and remote com-
munication operations. Results are presented in Table 15, which show that currently the CAF
code generation mechanisms are unable to exploit local memory references (local to sockets
and nodes). Considering the current version to be a functional compiler, these results demon-
strate the ability of the compiler to work with different OS mapping and scheduling schemes
that could be potentially quite useful once a performance version of the compiler is available.

Striping 1 2 4 8 16

Same node & socket
(in s)

2.25 2.55 3.13 3.601 3.72

Different nodes (in s) 1.99 2.27 2.71 3.32 3.77

Different sockets &
nodes (in s)

1.805 1.854 1.84 2.07 2.37

Table 15: Impact of alternate image mapping configurations on a CAF code execution

3.5.3 UPC Experiments
The usability evaluation of the UPC compiler is performed on a Cray XT5 system. Integrated
UPC compiler is part of the Cray Compiler Environment (CCE). Earlier results were reported
for version 7.1.x and the current version is 7.2.x. As indicated earlier, the main objective of

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 75 25.06.2010

the CSCS task is to evaluate the usability of the compiler for code development and execution
for representative benchmarks.

A small number of modifications were also required to the makefiles and source code in order
to build the UPC benchmarks using the Cray UPC compiler. Initially, there were some issues
with the UPC collective operations, which were addressed by the latest release of the CCE
framework, 7.1.x. All UPC API conformance benchmarks that are part of the George Wash-
ington University test suite were built and tested successfully on the XT5 system. At the
same time however, code modifications are needed for function calls such as
upc_local_alloc, which is not supported by the Cray compiler and forall
(upc_for_all) calls.

For UPC, we considered a synthetic micro-benchmark to analyze the compiler's ability to ap-
ply optimisations automatically. For that we tested some variants of the upc_forall construct
over statically defined shared arrays. A upc_forall loop is an iteration statement where the
iteration space is subdivided between the threads running the program. For this purpose, be-
sides the typical initialization, condition, and update terms of a C for loop, there is a fourth
term, known as the affinity expression, which defines which thread should execute which it-
eration. The affinity expression can be chosen so that each thread operates on the maximum
amount of local shared data and the minimum amount of remote shared data, to deliver per-
formance. This expression can be either an integer, which defines the loop indices to execute
for each thread through a simple module operation, or it can be a shared pointer, in which case
the iteration is performed by the thread whose pointed data is local. These two alternatives are
shown for a simple array in Table 16.

upc_forall iteration statement using an
integer as affinity expression

upc_forall iteration statement using a
shared pointer as affinity expression

shared int arr[N];

[...]

upc_forall(i=0; i<N ;i++; i)

 arr[i] = get_value(i);

shared int arr[N];

[...]

upc_forall(i=0; i<N ;i++; &arr[i])

 arr[i] = get_value(i);

Table 16: Two equivalent alternatives to distribute the iterations for array arr between threads according
to data locality

After analysing the generated code, we realize that, just as happened with the Fortran com-
piler, the loop cannot be vectorized even when accessing only local data. This causes the non
optimised version to perform ~ 60 times slower than a vectorized version operating on a pri-
vate array of the same size. In addition, the loop unrolling can be only performed for
upc_forall loops with an integer affinity expression. In the case of a shared pointer affinity
expression, the compiler is confused by the runtime function call to translate the pointer,
which disables loop optimizations altogether, resulting in the unrolled version running twice
as fast as the non optimized version. Even when using different blocking factors, including
the default round-robin shared array distribution, the compiler is still unable to recognize the
contiguous chunk in a thread's shared space, to apply some sort of optimization.

Since we observed different optimization patterns on the X2 platform as compared to the XT
platform for the CAF code, we experimented using the canonical UPC matrix-multiply exam-
ple on the X2 platforms with the UPC compiler. The compiler listings for the UPC code are
shown below and correspond to our findings for the CCE CAF compiler. On the X2 platform,
the compiler retains the vectorization (v) and unrolling (r) optimization while on the XT5 sys-
tem only the loops were interchanged (i). Note that the serial version of the matrix-multiply
code is vectorized by the Cray C compiler on the XT5 platform.
On X2

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 76 25.06.2010

1------< upc_forall (i=0; i<N; i++; &c[i][0]) {
1 V----< for (j=0; j<M; j++) {
1 V c[i][j]=0;
1 V r--< for (l=0; l<P; l++)
1 V r--> c[i][j]+=a[i][l]*b[l][j];
1 V----> }

1------> }

On XT5

1------< upc_forall (i=0; i<N; i++; &c[i][0]) {
1 i----< for (j=0; j<M; j++) {
1 i c[i][j]=0;
1 i 3--< for (l=0; l<P; l++)
1 i 3--> c[i][j]+=a[i][l]*b[l][j];

1 i----> }
1------> }

To sum up, on the XT5 platform, the C compiler suffers the same limitations for UPC that
were observed for the Fortran compiler with co-arrays (including failure to adequately sched-
ule network operations), plus new limitations related to unrecognized UPC runtime calls that
disable loop level optimization completely.

Table 17 summarizes the key findings for both PGAS compilers available as part of the CCE
7.2.x. Overall, CAF and UPC benchmarks results presented in this document confirm the
Cray functional compiler’s usability for codes that have been developed using standard CAF
and UPC constructs. One of the bugs reported in the earlier report has been fixed. Using their
experiences with multiple generations of the CCE PGAS compilers, the CSCS team concludes
that the CCE infrastructure available currently for production-level code development would
require a level of maturity for code development and performance tools and a performance
model. For instance, debugging tools would be critical for development and testing and per-
formance tools would benefit tuning and optimization efforts. Currently, the debugging and
performance tools (CrayPAT) do not generate any PGAS programming model specific infor-
mation to enable code developers to debug code or to tune for performance. We observe that
CrayPAT tools on the X2 platform generate timings for PGAS specific API calls such as syn-
chronization and barrier operations while on the XT5 system only flat, function-level profiles
are generated. On the final note, the results reported here represent the best performance for
three sets of runs. Significant performance variations are noted, in some cases a factor of 3 or
more, between best and the worst case performance. This issue needs to further investigate
either within the compiler and runtime infrastructure or using the performance tools that can
capture and distinguish overhead for remote memory access patterns.

 CAF UPC

Availability Yes Yes

Compilation Successful Successful

Execution in batch mode Successful Successful

Mapping and scheduling options availabil-
ity at compile and runtime

Supported Supported

Source code modification to existing code API calls, constructs
and filename exten-
sions

Some API calls

Makefile modifications Minimal Minimal

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 77 25.06.2010

Error messages (compiler) Helpful Helpful

Error messages (runtime) Unhelpful Unhelpful

Debugging and Performance Tools Available Available

Effectiveness of Tools for PGAS applica-
tion

Minimal Minimal

Table 17: Summary of experiences with CAF and UPC compilers available as part of the CCE framework
on the Cray XT5 platform (options added since the previous release are highlighted)

According to the CCE roadmap, the future releases of the compiler with a communication
infrastructure that is optimized for the Cray platforms for the PGAS languages would offer
significant performance and scalability improvements. The CSCS team plans to rerun the tests
on future hardware prototypes and compilers to confirm these performance goals and expecta-
tions. Our goal for this study is not to define a single metric for productivity and then attempt
to measure it but to evaluate the usability of the PGAS development and execution environ-
ments and tools (debugging and performance) that enable code developers to port existing
applications, to gradually introduce PGAS constructs in their existing parallel applications
and to develop code from scratch where applicable. The focus of this study was primarily
PGAS benchmarks, where codes have been developed from scratch primarily using either
CAF or UPC. In future, the CSCS teams plans to evaluate productivity of the toolset for hy-
brid applications, i.e. applications that intermix MPI constructs with CAF and UPC constructs
or productivity for using PGAS constructs incrementally in applications that have been paral-
lelized using other programming paradigms, for instance, MPI message-passing applications.

3.6 Novel I/O: XC4-IO experiments

In this section, the main tests on XC4-IO prototype, related to SSD and metadata tests with
Lustre file system are presented.

3.6.1 Lustre Architecture
Lustre is an object-based parallel file system which uses an ext3 modified version to store
data. Its network is managed by the LNET component and is composed by five main ele-
ments:

 Clients

 Metadata Server (MDS) / Management Server (MGS)

 Object Storage Servers (OSSs)

 Object Storage Targets (OSTs)

 Metadata Target (MDT)

The MGS stores configuration information for all Lustre file systems in a cluster. It provides
configuration information to other Lustre components: each Lustre target contacts the MGS to
provide information, and Lustre clients contact the MGS to retrieve information. The MDS is
a server that makes metadata available to Lustre clients via MDTs. Each MDS manages the
names and directories in the file system, and provides the network request handling for one or
more local MDTs. MDT, one per file system, is responsible to store data on an MDS. MGS
and MDS could be configured on one single node or on different nodes; it depends on the
system needs: if multiple file systems have to be configured, MGS and MDS have to be in-
stalled on separates machines, otherwise they can be configured on the same node.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 78 25.06.2010

OSSes provide file I/O service, and network request handling for one or more local OSTs,
which store data on one or more of them. Each of these refers to one OSS and each OSS can
communicate with more OSTs. Lustre lets spreading a single file over many OSTs, a Logical
Object Volume (LOV) is responsible of file striping management across many OSTs. It can
be done defining a specific stripe count, size and offset. Stripe count defines the number of
OST on which a single file is spread, stripe size is the block size in which the file is divided
and stored on different OSTs and stripe offset defines the starting OST on which data are
saved.

To perform I/O tests, the XC4 prototype has been configured to work with Lustre version
1.8.1. The configuration adopted, compatibly with the Lustre architecture, is the following:

• MDS and MGS have been installed on the same machine, one of the HP ProLiant
BL460c G6 blades. This assumption does not represent a problem because in the
experiments multiple file systems are not used.

• MDT is represented by DDN S2A9900 which provides 1.5 TB for metadata storage.

• We configured 4 OSSes, using 4 HP ProLiant BL460c blades.

• OSTs are represented by DDN S2A8500, we create 24 Logical Units (LUs) if 1 TB
each on this device.

• Lustre clients were installed on 32 nodes of the HP Woodcrest cluster.

The Lustre network works on Infiniband over RDMA: Infiniband OFED provided by Lustre
was installed on the servers; instead client machines were configured to work with Open Fab-
rics OFED version 1.4.1.

3.6.2 Throughput tests
In order to evaluate the Lustre file system, throughput tests were first performed, to evaluate
file system limits and drawbacks. OSTs were configured to work with striping on 24 LUs
with striping size of 1 MB and starting OST randomly, selected between the available ones.
The benchmark tool selected for this test is IOZone which can perform sequential and random
reads and write, using 1 GB file for each client and a record size of 64 MB. This test excludes
OSSes cache and executes one thread on each client. The throughput performance as a func-
tion of the number of clients is presented in Figure 82.

Figure 82: Lustre throughput performances

As evident in Figure 82, in these tests, Lustre easily reaches, with a small number of clients,
the theoretical bandwidth limit of the prototype architecture (2.0 GB/s).

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 79 25.06.2010

3.6.3 File striping tests
This second set of tests is focused to measure the suitability and the performance of Lustre for
different environments, i.e. HPC, where large I/O operations are usually performed, or con-
texts where small I/O operations are more typical (i.e. access to Home directories).

Large I/O operations
For these test, the OSTs striping count has been identified as one of the most important pa-
rameters which strongly influence the file system performances. In order to assess the chang-
ing of Lustre behaviour, two similar tests were performed, using the IOZone benchmark tool,
first with 1 LU striping and then with 24 LU striping. In these tests, each client writes and
reads files with a size of 20 GB. The results are reported in Figure 83.

Figure 83: Bandwidth (in MB/s) for Read and Write operations with different striping count

This test shows that with 24 LU striping configuration the Read operations immediately reach
high performances, instead a small striping configuration (1 LU) needs more clients to satu-
rate all the available bandwidth. In case of Write operations the test presents similar perform-
ances with 1 and 24 LUs. This different behaviour is expected as each write operation implies
two different activities on metadata: read and then metadata update. So, when the files are
partitioned on 24 LUs, this continuous reading and update activity for the different portions of
the file is heavy, neglecting the benefit of striping. Moreover we must consider that SSD disks
are less performing in write operations respect to the read ones. The write operations are
slower so do not allow to take advantage of the increased bandwidth available with the 24 LU,
presenting a trend closer to the case with 1 LU. In case of 1 LU, a single metadata is present
for the file (all is on the same disk) and consequently metadata management and upgrade is
less expensive.

Small I/O operations
The tests just described have been performed again to evaluate the Lustre behaviour when
stressed by multiple small I/O operations. In this case performance was measured in terms of
metadata server I/O operations per second, instead of sustained bandwidth. In order to make
these tests, we used some scripts which create, read and delete a large number of empty files
on each client: in a first step scripts create and delete 10,000 files per node and then, in a sec-
ond step, read 30,000 files per node from a client specific folder. Results are reported in
Figure 84.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 80 25.06.2010

Figure 84: Performance (I/O ops/s) with different stripe count with a large number of files

Results show that 1 LU configuration performs strongly better when the file system has to
manage a large number of parallel I/O operations.

CINECA and BADW-LRZ cooperated actively during the evaluation of the I/O prototype. In
particular both sites agreed on the way to assemble the tests and to perform the measurements,
mainly for the activity related to the small IO operations and the tests related to metadata de-
vice technology, described in the next paragraph. This cooperation was very important in or-
der to share the methodology both for preparing the tests and then evaluate the results.

3.6.4 Tests on the Metadata device technology
The latest tests stressed the metadata server which had to manage a large number of files, stor-
ing and retrieving information for the requested I/O operations. Focusing on metadata server,
our intent was to assess performance using metadata target devices with different technolo-
gies. We assessed SSD technology compared with traditional magnetic hard disks, in terms of
I/O operations per second performed. In order to produce these values we repeated the previ-
ous tests based on small I/O operations, considering both the SSD and the magnetic disk tech-
nologies. The results are reported in Figure 85.

Figure 85: Comparison between SSDs and magnetic Hard Disks (I/O ops/s)

The values obtained, show that SSDs performs slightly better with read operations when the
number of clients and I/O operations increase, while the technologies produce very similar

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 81 25.06.2010

performance for create operations. The slight difference observed, both in reads and creates, is
due to the presence of target device controllers. In fact, their caches balance the gap between
SSD and magnetic disks performances which are much larger in single device measurements.

3.6.5 Metadata server load tests
Additional measurements were made to better investigate the reason why the read perform-
ance decays when the number of clients and simultaneous file requests increase. In this case
the CPU utilisation of the MDS was measured. The results are presented in Figure 86.

Figure 86: Comparison between SSDs and magnetic Hard Disks (% cpu utilization of the MDS)

The results show that MDS load increases rapidly while the number of clients grows. The
saturation is reached with 32 clients. This is the main reason of the decay observed in the tests
related to the devices technology.

3.6.6 Parallel I/O libraries test
In collaboration with IDRIS some other tests have been made to evaluate the performance of
the prototype using parallel I/O libraries, such as MPI-IO, PnetCDF and HDF5, over Lustre.
Tests have been performed using two benchmark tools: IOR and RAMSES.

IOR Tests
The first tests have been performed using the IOR benchmark tool with 2 MB transfer size
and 256 GB aggregate file size, testing all the previously cited libraries using both individual
and collective primitives. Results are presented in Figure 87 and Figure 88. A value ‘0’ means
that the test crashes.

Figure 87: IOR results (MB/s) using individual communication

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 82 25.06.2010

Figure 88: IOR results (MB/s) using collective communication

In terms of performance, the One-file-per-process approach and MPI-IO are comparable;
HDF5 is a little behind, whereas PnetCDF crashed on most of the tests due to known limita-
tions of the library. The choice of coordination of the call (collective vs. individual), for all
parallel libraries, is a parameter that strongly influences the system performance; results show
that individual mode performs better than collective. Another noticeable behaviour of the sys-
tem is that writes performs about 35 % better than reads.

RAMSES Tests
The RAMSES tests have been done using up to 26 nodes on XC4, so different tests have been
produced using 16, 32, 64 and 104 MPI tasks respectively. For these tests, a dataset producing
an amount of 75 GB per output (25 GB for AMR file and 50 GB for Hydro file). Note that the
AMR file, even if it is smaller in size, is much more complex in its structure than the Hydro
file, stressing the management of metadata. Few hints (romio_cb_write, romio_ds_write) have
been tested, in attempt to improve performances. Hints usage allows 5 configurations for test:

• No hints;

• romio_cb_write = disbled, romio_ds_write = disabled (1);

• romio_cb_write = disbled, romio_ds_write = enabled (2);

• romio_cb_write = enabled, romio_ds_write = disabled (3);

• romio_cb_write = enabled, romio_ds_write = enabled (4).

Results for AMR and Hydro files are reported in Figure 89 and Figure 90.

Figure 89: RAMSES Test (MB/s) reads

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 83 25.06.2010

Without any hints, the reading throughput obtained with the One-file-per-process approach
outperforms the one of MPI-IO or HDF5 by a factor of 5. When using the proper hints, we got
a real improvement for MPI-IO, whereas HDF5 reaches 50 % of improvement. Nevertheless,
even with proper hints usage, the One-file-per-process approach outperforms MPI-IO by
nearly 40 %.

Figure 90: RAMSES Test (MB/s) writes

When writing, this time, HDF5 and the One-file-per-process approach gave similar perform-
ance, whereas MPI-IO is 13 % better. If we use hints, then MPI-IO and HDF5 outperform the
One-file-per-process approach by respectively 26 % and 18 %.

In conclusion, the performance obtained with the One-file-per-process approach is of the
same order to the one obtained with MPI-IO. For parallel I/O libraries based on MPI-IO, the
usage of proper hints could lead to a great improvement in terms of performance as well as
the mode of coordination of calls (collective vs. non-collective) which should be chosen with
care.

3.6.7 Preliminary tests on pNFS
Since pNFS technology is still under development, the developers do not yet provide modules
that can be compiled on production kernels. In order to test pNFS exporting Lustre or other
file systems, we had to install an “ad hoc” kernel especially patched for pNFS.

This approach generated hardware and software problems during the installation. We tried to
face these issues testing different UNIX distributions or using different development branches
or implementations from pNFS Git source tree.

We tested latest pNFS release (vers 2.6.32-rc5) on latest Red Hat (EL 5.4), Fedora (Core 12)
and Ubuntu Server (9.10 Amd 64). Red Hat presents a bug in some scripts that generates init
RAM disk file causing boot problems. So we moved to Fedora, which implements the latest
version of those scripts, but it is not supported by HP Proliant servers. So we finally moved to
Ubuntu. This later distribution allowed us to install and boot pNFS kernels and we are now
investigating on how to configure the system to make pNFS protocol working, as we still ob-
serve some system configuration problems.

3.6.8 Conclusion
This test suite demonstrate that Lustre can satisfy the requirements of HPC environments, it
easily reaches the theoretical limit of our architecture so, probably, increasing the number of
OSSs and OSTs and using links more with a larger bandwidth, the performances should scale
up further and reach higher values.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 84 25.06.2010

Lustre performance is strongly influenced by Lustre stripe count and by the type of I/O opera-
tions performed. For few large I/O operations 24 LU striping configuration is winning, Lustre
can immediately saturate the available bandwidth instead 1 LU configuration needs more cli-
ents to reach those values.

When performing lots of small I/O operations the MDS is the bottleneck; it's overloaded as
shown by its CPU usage (%). In this environment 1 LU configuration is the best choice be-
cause MDS has to contact only one OST for each file, on the other hand, striping each file on
24 LU, MDS wastes resources in contacting each OST, informing them that they will be re-
sponsible to store portions of specific files, even if they are small.

The most noticeable drawback of Lustre 1.8.1 is the single active MDS configuration; this can
be noticed simulating a HOME behaviour, which stresses the MDS with a lot of requests. We
tried to configure MDS on SSD disks first and HD after, but both configurations present a
performance worsening when the number of simultaneous operations increases. This is due to
the MDS CPU saturation which is overloaded when it must manage a huge number of simul-
taneous requests. Also clients’ performance is affected by the MDS bottleneck, their CPU
utilisation decreases when the number of files managed by MDS increases, due to its over-
loading, so they have to wait to be able to perform I/O operations (IO_wait status). Hence, a
lack of Lustre architecture is the possibility to scale MDS only vertically, increasing its CPU
power or memory, but not horizontally, preventing from parallelize its work. This feature will
be available only in Lustre 2.0 version which is still under development.

The last test was aimed to proof if SSD technology can help to reduce the bottleneck of MDS
when it is overloaded by multiple I/O requests. We observed that SSDs performs slightly bet-
ter than traditional hard disks. The hard disks are penalised by the waste of time due to rota-
tional heads, mainly when they must satisfy a large number of simultaneous requests. In any
case both technologies cannot avoid MDS bottleneck effects, due to Lustre architecture.

This first phase of tests on the Lustre file system allows us to reach some conclusions:

• SSDs give slightly higher performance than traditional hard disks;

• Lustre is a suitable file system for high performance computing because it reaches
high performance saturating the available bandwidth and showing good scalability;

• Lustre 1.8.1 has a main bottleneck: the single MDS. In this version only Active /
Passive configuration is allowed. The possibility of using multiple parallel metadata
servers should make Lustre more suitable also for environments characterised by small
I/O operations;

• Lustre striping configuration strongly influences the performance of the system.
Acting on striping count, Lustre can result more suitable for a certain context rather
than another one. For example, in HPC environments, where large I/O operations are
required, it is convenient to exploit all the available bandwidth, striping files on all the
available OSTs; instead, in an environment, where a lot of small I/O operations are
required, is useful to store a file completely on a single OST avoiding the MDS to
contact a large number of OST to manage every single small file.

This first activity on testing pNFS exporting Lustre or other file systems is progressing slowly
with some problems. The main reason for that are difficulties to integrate pNFS on Linux
production kernels. At this point, we can observe that although pNFS seems promising for the
HPC environment, it is still immature and not acceptable for HPC production contexts.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 85 25.06.2010

3.7 Energy efficiency

3.7.1 The SNIC-KTH system
The support for the SNIC prototype placed at KTH was decided by the PRACE Management
Board (MB) in May 2009 with the objective of studying energy efficiency of systems based
entirely of commodity components for cost effectiveness, and without acceleration for preser-
vation of parallel programming models. A target was set to reach a performance level of about
350 GFlop/s/W for HPL, thus comparable to the BG/P but with more than twice the memory
per core; 1.33 GB/core for the prototype expandable to 5.33 GB/core. A high-density solution
comparable to the BG/P was also sought.

To achieve this goal and to support QDR Infiniband effectively support for PCI Express Gen2
was deemed necessary which required a new server design to accommodate a new chipset
from AMD. As described previously, nodes in the form of a 4-socket blade were selected in
collaboration with AMD and Supermicro. It was also decided to undertake a new blade chas-
sis design with a built-in 36-port QDR switch. A density of 5.7 sockets/U was achieved result-
ing in a peak capability of 15 TFlop/s per rack with 2.6 GHz Istanbul CPUs, which compares
favourably with the 13.9 GFlop/s per rack for the BG/P. For energy efficiency a 2.1 GHz CPU
was however selected for the prototype yielding a peak capacity of 12 TFlop/s per rack.

Two chassis were delivered already in June 2009, about 6 weeks after the PRACE MBs deci-
sion. This was clearly too short time for a new board and chassis design to be carried out. The
two chassis had 4-socket blades but not the new chipset supporting PCI Express Gen2, and
QDR IB. Furthermore, the new chassis that were designed for the PRACE prototype also had
more efficient power supplies than the old chassis. By the middle of July, less than two
months after receipt of order, Supermicro did have the new board design for in-house testing.
The tests were successful. By early August production were to start, but typhoon Morakot hit
Asia hard and caused a delay of about a month. When production boards became available in
late September and tests were carried on those in the process of building the prototype yield
problems were encountered that were traced to the motherboard manufacturer having deviated
from the specification. The decision was taken by Supermicro to have all motherboards re-
done, which caused an additional delay of close to a month. All of the parts of the prototype
were delivered November 3rd, but in the interest of avoiding logistical delay the system was
not preassembled and tested by the vendor. Assembly, test and installation all took place in
the computer room of PDC, KTHs HPC centre.

The two chassis delivered in June ended up primarily being used for evaluation of some de-
sign decisions for the full prototype with the new chipset, motherboard and chassis. In par-
ticular different memory configurations and memories from different memory vendors were
tested for performance and energy efficiency. Preliminary “theoretical” evaluations based on
chip data indicated a potentially significant difference in DIMM power consumption depend-
ing on what memory chips were used in constructing the DIMMs. DIMMs from Elpida,
Hynix and Samsung were acquired, as they seemed most promising from an energy efficiency
point of view based on HPL and Stream. The DIMMs were evaluated both in the two chassis
delivered in June, and on preproduction boards at Supermicro that had the proper chipset and
the new board design as well as new chassis. The differences in power consumption was
much less than predicted by the power calculator and more in line with the “common” expec-
tation that differences are minor. However, in the phase-I systems, delivered in June, a differ-
ence of over 6 % in HPL MFlop/s/W was experienced between Elpida and Samsung memo-
ries, a difference that however diminished with the number of repeated runs made.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 86 25.06.2010

P e r fo rm a n c e r a t io E lp i d a /S a m s u n g , S u p e r m ic r o 4 -s o c k e t " o l d " b l a d e

1 .0 1 0

1 .0 2 0

1 .0 3 0

1 .0 4 0

1 .0 5 0

1 .0 6 0

1 .0 7 0

1 .0 8 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5 6 9 7 3 7 7 8 1 8 5 8 9 9 3 9 7

R u n

R
at

io

Figure 91: Performance ratio of Elpida/Samsung, Supermicro 4-socket blade

The power consumption was also measured and the graph below shows how the GFlop/s/W
compares for Elpida and Samsung 2 GB DIMMs with 16 DIMMs/blade for the Phase-I sys-
tem. Measurements were made with only 2 blades in a chassis, so the chassis “overhead” is
disproportionate and masks the difference to a significant degree. However, since the objec-
tive was to decide on which type of DIMMs to use we only sought to get a relative values not
absolute values.

H P L P e rf o r m a n c e /W r a t io E lp id a /S a m s u n g
S u p e rm i c r o 4 -s o c k e t " o ld " b la d e

1 .0 0 0

1 .0 1 0

1 .0 2 0

1 .0 3 0

1 .0 4 0

1 .0 5 0

1 .0 6 0

1 5 9 1 3 1 7 2 1 2 5 2 9 3 3 3 7 4 1 4 5 4 9 5 3 5 7 6 1 6 5 6 9 7 3 7 7 8 1 8 5 8 9 9 3 9 7

R u n

R
at

io

Figure 92: Performance/W ratio for Elpida/Samsung Supermicro 4-socket blade

Test of different DIMMs were subsequently carried out in the preproduction of new boards
and chassis at Supermicro. In those tests, 4 GB Hynix DIMMs with half the DIMM slots
populated yielded the best performance and were chosen for the Phase-II delivery. Based on
those tests a Stream-Copy performance of 42 GB/s per node was expected for the Phase-II
system, and a HPL performance of about 335 GFlop/s/kW expected.

For Stream we have so far measured a peak bandwidth of 42.6 GB/s for 24 threads per node,
i.e. one thread per core. This performance was achieved with a power consumption of 362
W/blade, or 90.5 W/socket. No attempt at optimisations neither in regards to compiler options
or in regards to power management features has been done yet. The preliminary measure-
ments are graphed below. Threads were allocated to sockets in a round-robin fashion.

For HPL we have so far observed a peak performance of 344 GFlop/s/kW at 79 % of peak
node performance. This performance is a little better than predicted from the preproduction
system at Supermicro. We expect the peak HPL performance to improve somewhat as we get
opportunity to carry out code and power management optimizations. For comparison, the
BG/P systems on the most recent Top500 list falls in the 364 – 379 GFlop/s/kW range.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 87 25.06.2010

Stream Copy

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Threads

M
B

/s

Array Size 83,750 ,000 (1.9169 G B)
Array Size 167,500,000 (3.8338 G B)
Array Size 335,000,000 (7.6675 G B)
Array Size 670,000,000 (15.3351 GB)
Array Size 1 ,005,000,000 (23.026 GB)

Figure 93: Stream Copy

Random Memory Access Results:
HPCC contains three different random access benchmarks:

• SingleRandomAccess - run on one (randomly selected) MPI process;

• StarRandomAccess - SingleRandomAccess run on every MPI process;

• MPIRandomAccess - using MPI for updates (and run on every MPI process).

For SingleRandomAccess the hitherto observed average results is 0.016002 GUP/s (from a
population of 4 with minimum 0.0150959 and maximum 0.0184563).

The results of StarRandomAccess and MPIRandomAccess on single system runs can be
viewed in Figure 94 and Figure 95. Figure 94 indicates a near linear relation between tasks
and updates for StarRandomAccess. However, the relationship could be more step-like than
the plots indicates, considering the platforms memory sub-system grouping (into different
caches and sockets). The chosen task-stride (4) could hide the fact.

MPIRandomAccess does not scale well. This can be considered unsurprising as the addition
of tasks (cores) will only in a very limited sense increase the MPI message capacity. (Espe-
cially as the MPI used in the tests were not optimized for shared-memory performance.) As an
example of results from an internode run is, 240 processes over 10 nodes (sharing the same
ingress switch in the fat tree) gives 0.011374999 GUP/s or only an average of 0.0000474
GUP/s per task.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 88 25.06.2010

Figure 94: Near linear relation between tasks and updates for StarRandomAccess

Figure 95: Relation between tasks and updates for MPIRandomAccess

EuroBen on SNIC-KTH System:

The four EuroBen kernels mod2am, mod2as, nod2ah and mod2f have been ported to C to-
gether with the Intel Math Kernel Library (MKL) as well as C together with AMD Core Math
Library (ACML). One of these four kernels, mod2am, has also been ported to C using the
dgemm function of the Gotoblas2 library. The experiments were performed on the prototype
and the results have been compared.

Figure 96 shows the performance differences between Fortran, C+ACML and C+MKL im-
plementations of the mod2am kernel. All three implementations have the same behavioral
pattern and show poor performance.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 89 25.06.2010

Figure 96: Comparison of the performance of the dense matrix-matrix multiplication kernel for three

different implementations: Fortran, C with ACML and C with MKL

To reach the better performance the code has been changed. The core dense matrix-matrix
multiplication has been replaced with the DGEMM function from the GotoBLAS2 library.
Instead of two dimensional arrays one dimensional initialization has been implemented. The
4×4 block was the building-stone for this DGEMM implementation. The code has been com-
piled using the PGI compiler version 10.3. Figure 97 shows the performance of mod2am with
DGEMM. We clearly see a performance improvement which increases with the increase of
the matrix size. About 7.8 GFlop/s, or 93 % of theoretical peak performance, was reached
with this implementation.

Figure 97: Performance of the dense matrix-matrix multiplication with GotoBLAS2 libraries

Figure 98 shows rather disappointing performance of mod2as kernel. This is not surprising
and agrees with the results shown for other platforms such as Nehalem-EP. Similar to
mod2am kernel we expect to see much better performance for sparse matrix multiplication
using GotoBlas2 libraries.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 90 25.06.2010

Figure 98: Performance of the sparse matrix-vector multiplication

Figure 99 and Figure 100 show the performance of random number generator mod2h and fast
Fourier transform mod2f kernels, respectively. Again, both kernels have been tested in For-
tran, C+ACML and C+MKL versions. Both kernels produce poor performance. However, for
the mod2h kernel the performance of Fortran version is about 8 times better than of the
C+MKL and C+ACML versions. The two implementations of the mod2f kernel show com-
pletely opposite behavioral pattern.

Figure 99: of the random number generator kernel

Figure 100: Performance of the fast Fourier transform kernel

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 91 25.06.2010

Summary:
For the current SNIC-KTH prototype architecture the use of GotoBLAS2 libraries gives the
expected maximum performance. It is highly recommended to change the manual implemen-
tations of the EuroBen code using functions from the libraries already implemented.

3.7.2 PSNC results
In order to get the exact measurements of the power consumption for each component of vari-
ous servers in a setup as described in Subsection 2.2.2 we should isolate each part and meas-
ure all power supply connectors of each chip. Unfortunately, due to construction of the ma-
chine it was not possible to do it this way. We have chosen to measure the current of individ-
ual power lines from the server power supply to observe how the power consumption profile
changes for each power line depending on installed expansion cards and tasks executed.

In all cases, the tests were performed using NAMD (appoa1 test) [19] and GROMACS [36]
applications. As the assessment of the performance of the tested machine is not the main goal
of the work, the results are used only as a reference for those gathered by other partners. Apart
from application tests, we have used some software for generation of artificial load (e.g.,
Cpuburn, iozone, dd, memtester) to ensure maximum load and power consumption.

The power draw was tested in four states of the machine: with power supply plugged in but
machine is in power off mode, machine in idle mode with OS running, running benchmark
application and finally maximum load possible generated using various software. The equip-
ment used to measure the power consumption of the tested systems encompasses several
parts:

• Power meter Lutron DW6090;

• Data logger Yokogawa XL120;

• Multimeter PICOTEST M3500A.

We present the result for 1U Xeon based machine, Xeon Blade and SiCortex 1456 systems.

1U Xeon based machine

Setup

In this section, we will present the results gathered for machines equipped different Intel Xeon
processors. The tested systems were: dual core Xeon 5130, 3.0 GHz (Actina SOLAR 212
X2), quad core 5345, 2.33 GHz (Actina SOLAR 410 S2), and quad core Xeon 5520, 2.27
GHz server. All systems were equipped with InfiniBand cards and two 10 kRPM sata HDD.
The systems were tested with 4, 8 and 16 GB of DDR2 and DDR3 memory. Additionally we
have attached to the tested systems dedicated expansion cards with accelerators ClearSpeed
e620 and nVIDIA Tesla.

Results
Power Off

All tested machines consumed surprisingly large amounts of power just being plugged in.
Table 18 presents the power consumption of powered off machines.

System Power [W]

Xeon 5130 (2×2 cores) 16

Xeon 5345 (2×4cores) 44

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 92 25.06.2010

Itanium 2 (1 core, 2CPU) 17

Xeon + Tesla cards 40

Xeon 5520 (2×4 cores) 10
Table 18: Power consumption of powered off servers

The energy consumption of powered off servers varies between 4 % and 10 % of a fully
loaded machine. As a conclusion, we can say that (cluster) power management system should
be able to physically cut off the power supply in order to maximize power savings on unused
nodes.
Power On and Full Load

Figure 101 presents overall power consumption of tested machines. This does not include the
SiCortex machine because the hardware configuration makes the comparison impossible. All
other machines are dual CPU servers in 1U or blade enclosure. Among the x86 families, one
can observe that the power consumption of entire server is decreasing with each new genera-
tion of the servers and the computational power offered by each new generation of the proces-
sors is increasing. The computation power is gained by increasing the number of cores rather
than the efficiency of a single core and this trend will continue in the next few years.

Figure 101: Summary of Power consumption of tested servers

Figure 102 shows the results of the NAMD benchmark for all machines with running on dif-
ferent numbers of cores. The ClearSpeed system was omitted because the NAMD application
was not able to use the accelerator features. Not all tests are performed for 4 and 8 cores be-
cause some machines were single or dual core machines and we were assessing the single
physical servers.

Figure 102: NAMD execution times

It can be observed that basically the performance of single core does not change significantly;
even the outdated Itanium 2 CPU performs quite well. It can be observed that the performance
advantage is gained mostly by increasing the number of cores. The very bad result of the
Xeon server equipped with the Tesla cards where NAMD application works slower with ac-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 93 25.06.2010

celeration enabled is caused by inclusion the CUDA code during the compilation. When we
look at the energy required by the systems to complete the benchmark (Figure 103), we can
observe that the effective energy required for completing the benchmark decreases with each
new generation of Intel processors.

Figure 103: Power consumption - NAMD appoa1 benchmark

Apart from general power assessment we were also able to identify the power consumption of
individual parts of the servers. The power consumption profile of the fully loaded Xeon 5130
can be found in Table 19.

Component 4 DIMMS 8 DIMMS

CPU 40.99 % 34.18 %

Memory 19.93 % 33.23 %

Fan 7.36 % 6.14 %

Hard Disk
Drive

2.45 % 2.05 %

Ethernet 2.06 % 1.72 %

Infiniband 2.45 % 2.05 %

Controller 3.68 % 3.07 %

PSU 21.07 % 17.57 %
Table 19: Xeon 5130 server - internal power consumption

It can be observed that the most power demanding elements are the CPU, memory and the
Power Supply Unit (PSU). For the 55xx system, the overall power consumption was much
lower, mostly due to the more energy efficient CPU and DDR3 memory, though the ratio was
very much similar.

Xeon Blade

Setup

The tested system was HP ProLiant BL2x220c G5 equipped with two Intel Xeon 5410 CPUs
with 16 GB of memory and clocked at 2.33 GHz.

Results

Due to the construction of the blade server and blade center chassis it is very difficult to use
external measurement tools. However, the monitoring system provided with the chassis is

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 94 25.06.2010

able to track the power consumption of components building up the chassis and every single
blade. While the measurements of the whole chassis were consistent with the measurements
from our power meters, the readings for power consumption of each blade could not be
trusted. According to the management system, the power consumption between idle and fully
loaded blade was less than 20 W which is in conflict with the values obtained from 1U system
equipped with similar CPUs. As a result we have decided to simply measure the power con-
sumption of the entire chassis and divide it by the number of blades. Even this rough ap-
proximation proved that the blade solution is more energy-efficient enclosure than the 1U
server (see Figure 102 and Figure 103).

SiCortex 1458 systems

Setup

The tested server was a mid-range system SC 1458 equipped with 243 6-core processors and
2 TB of memory. The processors are 60 MHz MIPS compatible CPUs with a power draw of 2
W per CPU. The processors were installed in 243 nodes with two memory sockets per node.
The communication between nodes was implemented using dedicated high performance Si-
Cortex network in Kautz topology. The machine was running a MIPS version of Linux kernel
with GNU and PATHSCALE compilers and MPI libraries for communication.

Methods
As the SiCortex machine was accessed remotely, it was impossible to perform exact meas-
urements. The access to the server was not exclusive so it was hard to use all processors. The
maximum partition size was 1024 CPUs, a little more than 2/3 of the entire machine. Because
of the financial problems of the SiCortex Company, the tests were not completed and only
GROMACS was compiled and executed successfully. The power consumption is an estima-
tion based on the data provided by SiCortex scaled down by actual number of processors util-
ized.

Results

In the Figure 104, we present the results of the GROMACS application on the SiCortex 1458
machine.

Figure 104: Gromacs run time on SiCortex

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 95 25.06.2010

Figure 105: Power consumption of SiCortex and Xeon E5345

It can be observed that the application scales well and almost linear speedup can be achieved.

To assess the power efficiency of the machine we have compared the results with a x86 setup
featuring similar performance. We have chosen 4 dual core Intel servers to act as a reference
setup because of similar run times of the GROMACS benchmark. The Figure 105 shows the
energy required by both systems to finish the benchmark.

It can be observed that the SiCortex machine, despite being advertised as power efficient,
requires more energy to complete the work. Perhaps using different compiler or tweaking the
placement of the processes on nodes could affect the result but due to the short availability of
the machine no further tests were performed.

Conclusion
Results of the various tests indicate that in the area of clusters build of commodity compo-
nents the power/performance ratio of the machines is increasing with each new generation of
the systems. The power efficiency of the servers is increased by re-designing the most impor-
tant parts of the machine – the processors and the memory. The energy losses introduced by
the PSU are minimized by implementing a blade architecture which proved to be superior in
terms of energy efficiency over the standard rack-mountable enclosure; however the most
recent implementation of the 1U server x86 architecture (Intel Nehalem) matches the effi-
ciency of the blade solution.

The accelerators included in this test (ClearSpeed and nVIDIA Tesla) have great potential for
improving the power efficiency because of great theoretical power/performance ratio. The
tests however, proved that using these solutions may cause opposite effect – non-benchmark
applications rarely showed any significant speedup while the power consumption increased.
This affects the nVIDIA solution in a great degree because the GPU-based accelerators are
very power-demanding even in idle state.

In order to have a better picture of the problem it is needed to perform similar research on
AMD based servers and take into account custom-build machines based on non-x86 architec-
tures – e.g. POWER7. Another step is to take into account the whole environment of a HPC
machine including the interconnect components, storage, backup, power supply and cooling.

Clearspeed e710

Setup:

The hardware used in this test was comprised of a Fujitsu server in the following configura-
tion:

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 96 25.06.2010

• Enclosure size: 2U;

• Power Supply; 2×750 W redundant PSU;

• CPU: 2× Quad core Intel Xeon E5520 at 2.27 GHz;

• Memory: 16GB of DDR3 memory in 4×4 GB modules;

• Storage: 6 hard drives (2×15 k RPM and 4×5.4 k RPM);

• Accelerators: 4×ClearSpeed e710 cards;

• OS: CentOS 5.4 64-bit operating system with kernel 2.6.18-164.15.1.e15.

The server in not a typical server used for building clusters - 2U enclosure and redundant
power oversized PSU are making it less efficient in terms of energy. However, due to the
need of having several 8×PCIe slots, it was necessary to use a more expandable server.

Method:

Currently, the only test executed is a double precision matrix-matrix multiplication, similar to
the mod2am euroben. The multiplication was performed using a dgemm function from the
BLAS library provided by ClearSpeed. The version of the drivers and libraries were 3.1. The
test application was compiled using the Intel compiler icc, version 11.1 and, since the ClearS-
peed-provided library does not implement all BLAS functions, the Intel MKL v. 10.2.5.035
was also used.

The testing procedure was as follows: several different instances of matrices were used of
sizes varying from 1000×1000 to 6000×6000 elements). Since the ClearSpeed BLAS library
has an interesting feature that allows sharing the load between the installed accelerator cards
and the CPUs, we executed the test program several times, gradually increasing the load of
the system CPUs. All the tests started using purely the accelerators (the
CS_BLAS_HOST_ASSIST_PERCENTAGE environment variable set to 0) and ended using
only the CPUs (the CS_BLAS_HOST_ASSIST_PERCENTAGE environment variable set to
100). Because we have the access to four ClearSpeed e710 cards, all the tests were repeated
with one, two, three and four-card configurations. In Figure 106 we present the performance
of the cards in these four experiments.

Results:

The results of the test are shown in Figure 106.

0

20

40

60

80

100

120

140

(1
0
0
0
x
1
0
0
0
)
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

(2
0
0
0
x
2
0
0
0
)
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

(3
0
0
0
x
3
0
0
0
)
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

(4
0
0
0
x
4
0
0
0
)
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

(5
0
0
0
x
5
0
0
0
)
0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

(6
0
0
0
x
6
0
0
0
)
0
 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

7
5

1
0
0

G
fl
o
p
s

%cpu support 1 card 2 cards 3 cards 4 cards

Figure 106: Performance reported by the dgemm application

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 97 25.06.2010

A significant factor influencing the performance is the size of the matrix. The performance
increases along with the growing size of the problem. However, if we start from the
5000×5000 matrix, we do not observe any further performance gains. This was proved by
tests with even bigger instances, which are not shown here. In Figure 107 and Figure 108 we
present the subsections of Figure 106 showing the performance of the matrix multiplication
for the best and the worst case. For the problem instances smaller than 1000×1000 elements,
the performance of the e710 cards is significantly lower than running the same calculations on
the CPU.

Figure 107: Performance for the 1k x 1k matrix multiplication (dgemm)

Figure 108: Performance for the 6k x 6k matrix multiplication

It can be observed, however, that the performance of the four-card configuration does not
differ significantly from the one-card configuration, especially in the case of larger problems.
The reason for this may be a weak support for spanning the calculations across multiple cards.
The readings from the power_mon function confirm that the implementation of the BLAS
library provided by the ClearSpeed does not support the multi-card matrix multiplications, as
only one of the cards reports an increased power consumption and, therefore, only one card is
used for the computations. It was, however, possible to run several instances of the test appli-
cation to load all the cards. The performance measured for a single card without the support of
the server's CPU is 75 GFlop/s, which is lower than the theoretical peak performance of 96
GFlop/s. It is worth noticing, however, that even a single card is faster, in case of the large
matrix multiplication, than a pair of quad-core Xeon 5520 processors. This fact, connected
with the reported power consumption on the level of 17W makes the ClearSpeed really power
efficient.

For the instances larger than 4000×4000 elements, the maximum performance is achieved
with the CPU support set to 45 %, which roughly corresponds to the performance ratio be-
tween the CPU and the e710.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 98 25.06.2010

During the computations with the CPU support set to 0 %, which theoretically means that the
CPU is not used at all, the CPUs are still used (Figure 109), but on average the load is about
7% (this percentage is calculated for all 8 cores in the system) and it may be caused by, for
example, the memory transfers.

Figure 109: The CPU load while running the four instances of the dgemm test

The power consumption of the server was measured using both the internal measurement of
the e710 cards and the external power meter measuring the power draw of the whole machine.
By comparing the values, we were able to assess the accuracy of the internal power meters.

Figure 110: Power consumption reported by the cards while running a single dgemm application

Figure 111: Computational performance

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 99 25.06.2010

Figure 112: Server power consumption

The power_mon tool provided together with the cards reports (see Figure 110) a little lower
power consumption than the relative power consumption increase measured with the power
meter (Figure 112). The difference, however, is not very significant (about 1-3 W per card)
and can be explained by the additional power loss caused by the power supply of the server,
since the external meter was measuring the AC draw and the internal meters were measuring
the DC power consumption. In most cases a single card consumes between 15.5 and 16 W
while performing computations and between 9.5 and 10.5 W when idle. One of the cards con-
sumed about 1.5 W more than the rest, but it is still in the power range specified by the manu-
facturer.

Conclusion
The cards offer an exceptionally good power efficiency comparing with both GPU and CPU
(at least comparing to Intel Xeon servers) while running tasks. By adding less than 20W to the
maximum power consumption, which is less than 10% of the power consumed by the fully
loaded most efficient Nehalem-EP blade servers, we can gain more than 100% computing
power (Figure 111). As we can observe in Figure 113, by installing the e710 cards, it is possi-
ble to achieve more than fivefold improvement of the GFlops/Watt ratio, comparing to the
CPU-only configuration. An important thing is the possibility of adding several cards to a
single machine without any serious power and cooling problems, as the power requirements
of the four cards are comparable to the power requirements of a single four core processor.
One of the big problems that affect the energy efficiency of GPU processors in context of
HPC computing is the high energy consumption in idle state. Building an efficient computing
environment is a major challenge because in order to be more efficient than “traditional” clus-
ter, one has to maintain a very high load on the cards which is not always possible. In contrast
to GPU solutions, one does not have to have the ClearSpeed cards utilized 100% of time be-
cause of the low idle power consumption.

Figure 113: Performance/power ratio of the test server

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 100 25.06.2010

3.7.3 STFC results
A series of experiments was conducted to look at the overall power consumed by servers in an
HPC environment and more specifically the power requirements of nVIDIA Tesla enabled
solutions. Towards this end, an energy profile logger SP Max 512 was employed for power
measurements. It allowed not only measuring power at any given time but also observing the
whole power profile during the execution of an application. The device requires connection to
the mains to read voltage whereas current is measured using induction clamps. While three
phase power measurements are also possible we limited our experiments to tests on a few
servers only and therefore operated in single phase mode. The logger was placed inside of the
server rack together with a laptop through which it was controlled remotely. The readings
were taken in the smallest increments of 1 second at which rate the device is capable of stor-
ing up to 5 hours of data. The device offers true RMS measurements with the accuracy of +/–
0.25 % of the range plus CT (Current Transformer) error. A 10 A CT input lead was used
which therefore determined the accuracy.

Results

Idle Power

The idle power measured for single Nehalem-EP server was 230 W. It was found to be some-
what lower than the figures we measured on our Intel Harpertown (Xeon E5472) and Wood-
crest (Xeon 5160) servers which feature a different configuration and in particular a higher
processor clock frequency. These were 240 W and 270 W respectively. The idle regime of our
server operation does not have any power saving features enabled because we assumed that in
an HPC setting the servers are supposed to be heavy loaded most of the time and be more
responsive therefore disabling energy saving features makes sense. The idle power of the host
server together with an nVIDIA Tesla server attached to it was measured at about 380 W.
However once the Tesla cards were activated the power went up to 570 W and stayed there.
In other words, even if the Tesla cards are not used they are still dissipating up to 340 W in
addition to whatever is being dissipated by the host. These results agree very well with the
power measurements reported in the previous subsection by PSNC.

Loaded Power

The popular molecular dynamics code NAMD [20] was employed as a test application which
can use both CPU and GPU. The code is well tested and scales very well. The current release
at the time (version 2.7b1, 2009-03-23) was used in our benchmarking. Two tests were run:
APOA1, the standard NAMD benchmark (model of a lipoprotein particle found in the blood-
stream) and STMV (satellite tobacco mosaic virus). The former is the most commonly used
benchmark because it is rather representative of a typical simulation. The test comprises 92 k
atoms including lipid, protein and water. APOA1 benchmark is a moderately sized simulation
suitable for long timescale studies. STMV test case is a larger benchmark comprising 1M at-
oms.

In agreement with PSNC results, it was initially found that unaltered inputs give no accelera-
tion when using GPUs. A consultation with NAMD developers revealed that by default the
energy of the system is computed every step and since it is done on CPU in double precision
this mode operation is very inefficient. In fact, algorithms used in molecular dynamics simula-
tions aim at retaining the energy exactly (symplectic integration) or approximately. In practi-
cal applications, the energy is seldom needed and used mostly for control purposes. Therefore
the input files were modified by adding parameter “outputEnergies” and setting it to 100, i.e.
the energies are computed only each 100th step. With this in place, the speedup obtained on
four Tesla GPUs versus four Nehalem-EP cores was 6.4 on APOA1 and 7.0 on STMV.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 101 25.06.2010

For power measurements, it was clearly necessary to fully load servers. In other words, we
had to use 8 processes on a single Nehalem-EP server, 16 processes on two Nehalem-EP
servers and only 4 processes on a Nehalem-EP server equipped with a Tesla server therefore
making in the latter case four Nehalem-EP cores idle. Table 20 summarises of our results.
Presented are the elapsed times in seconds, average power in Watts, total energy in kilo Joules
and the ratios of these numbers for the two server scenario versus one server plus Tesla
server. We observe that the speedup is almost a factor of two but the Tesla configuration takes
more power. Therefore the overall energy saving is lower than the speedup. In real deploy-
ment, the economical advantage of using GPU accelerators is going to be a fine play between
the cost of the hardware and the power requirements. For instance, blades typically take less
power but they are also more expensive. On the other hand it is entirely possible to have a low
power host which drives two Tesla servers. It is clear though that the often quoted GPU ver-
sus single CPU core speedup factors do not tell the whole story.

NAMD, STMV
benchmark, 500

steps

1 Nehalem
server

2 Nehalem
servers

1 Nehalem
server + 1
Tesla server

ratio

Elapsed Time /sec 1161 599 338 1.8
Avg Power /W 313 581 740 0.8
Total Energy /kJ 365 353 254 1.4

Table 20: NAMD, STMV benchmark, 500 steps

We were also successful in running the popular LINPACK benchmark [21]. The CUDA port
was kindly provided by nVIDIA. The average power of a Nehalem-EP server running LIN-
PACK was about the same as that of running NAMD whereas the power of Nehalem-EP
server plus Tesla server increased to 810 W on average peaking as high as 1 kW. The differ-
ence with NAMD was that LINPACK is not only able to place heavy load on all Tesla serv-
ers, it also makes use of all the host cores through threaded parallelism offered by Intel MKL
which explains the much higher power values than for NAMD. Also, unlike NAMD, LIN-
PACK requires double precision but the theoretical peak performance of C1060 in DP is eight
times lower than in SP.

Linpack
Nehalem server Nehalem server +

Tesla server
Intel server +
ClearSpeed server

GFlop/J 0.24 0.27 0.2 *
* ‐ an estimate based on not fully loaded server

Table 21: LINPACK power efficiency on different architectures

Using suitably selected parameters, we were able to achieve 68 % efficiency on a single core
and a single GPU (59.5 GFlop/s). The efficiency of LINPACK on the whole cluster (8 nodes,
3144 GFlop/s peak in DP) dropped to 52.5 % but the performance was still quite impressive
achieving 1650 GFlop/s. In contrast, Intel processors are known to have very high LINPACK
efficiency with the latest HPCC entries achieving as high as 96 %. Translating the efficiency
into GFlop per Joule, we obtain 0.24 GFlop/J for our Nehalem processors and 0.27 GFlop/J
for Nehalem plus Tesla. Although the Tesla delivers more GFlop/J, the difference is clearly
rather small. The power efficiency numbers are summarized in Table 21. It is instructive to
compare power consumption and LINPACK efficiency with that we measured on our
ClearSpeed setup [22]. It comprised four Intel Woodcrest servers as hosts and two ClearSpeed
CATS600 servers (i.e., 2:1 host to accelerator ratio). Firstly, the idle power of CATS600 was
470 W i.e. not as high as S1070 but also rather high. Loaded power was measured at 590 W
which is also lower than S1070 but then the ClearSpeed e620 cards were meant to be low
power. The efficiency running LINPACK was also around 50 % resulting in computation per

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 102 25.06.2010

unit of work ~ 0.2 GFlop/J i.e., quite comparable to the numbers for Nehalem-EP and Tesla. It
must be noted that the latest CATS700 are more power efficient; however the Tesla servers
are much more affordable.

Conclusion
First of all, it is indeed possible to see a real benefit of using GPUs. nVIDIA Tesla S1070
provides an affordable hardware ready to be used in HPC clusters. Secondly, it is also very
clear that the application speedup achieved on a GPU has to be really significant in order to be
efficient in the production environment because the power dissipated by the host needs to be
factored in. Finally it is important to be aware that the power consumed by the Tesla servers is
significant even when they are idle. Therefore either the accelerator servers need to be busy
all the time or there must be a mechanism to reduce the idle power to a much lower level. It
must be noted however that, following our finding we were informed by nVIDIA engineers
that the idle power issue will be rectified in the forthcoming driver.

3.7.4 BAdW-LRZ results
Intel’s new processor micro-architecture codenamed Nehalem provides new power manage-
ment features for all platform components: the processor, chipset, and memory. This allows
operating systems to put processor power and memory into the lowest available states needed
to support current workload without reducing application performance. Also individual cores
of a node can be idled independent of the others.

Measurements on our SGI Altix ICE 8200LX systems show that this new power management
feature reduces the power consumption of idle dual socket blades by 45 % when compared to
fully loaded blades running the LINPACK benchmark. Running LINPACK on all 48 blades
of the ICE system we could reach 91 % of the peak system performance. The memory-filling
ratio was 2.58 out of 3 GB/s per core and hence 86 %. Measuring the power consumption for
the LINPACK run showed a power efficiency of 230 MFlop/s per Watt for this system.

Since at the time of writing, Nehalem-EX processors were not officially released by Intel we
were not allowed to report detailed performance and power efficiency results for this proces-
sor line.

3.8 Performance predictions

In this section, we apply the analysis tools and techniques described in Subsection 2.2.4 to
one of the benchmark applications used in WP5 to compare prototypes. The objective is to
identify issues that may be relevant when scaling applications or porting them to future archi-
tectures. Although only one application is analysed in detail, the experiences match to those
of many other partial studies done during the last year in WP8. The selected application is
GADGET and we use the data set “inputA”.

3.8.1 Impact of basic system components
A bunch of parametric simulations with Dimemas were performed in order to explore the im-
pact of four major components in the total performance:

• Processor/node performance;

• Network Latency;

• Network Bandwidth;

• Contention.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 103 25.06.2010

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
1

4
16

64
0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU
ratio

Speedup

Figure 114: Impact of node performance and Interconnect bandwidth (in MB/s) for 64 processes

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

1

8

64
0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU
ratio

Speedup

Figure 115: Impact of node performance and Interconnect bandwidth (in MB/s) for 128 processes

Figure 114 shows the speedup achievable when changing the node performance (CPUratio
representing acceleration of all sequential computations between MPI calls) and bandwidth.
The node performance factor represents the speed that every sequential computation phase
between MPI calls is assumed to have relative to a PPC970. Such node speedup may be
achieved on a hypothetical machine by using a faster core, assigning the computations to ac-
celerators or parallelising with OpenMP on standard multicores. The application speedup re-
ported in the figure is computed taking as reference the PPC770 node performance and a net-
work of 256 MB/s. The figure is computed assuming that there is no contention obtained by
performing additional Dimemas simulations. It can be roughly estimated by assuming that the
effect of contention is a reduction of the effective bandwidth.

Overall, the curve shows how the network performance should improve when accelerating the
node performance. For example, just improving the network bandwidth by 4× would result in
a mince speedup of 1.25. Accelerating the node performance by 16× (using a faster processor,
a multicore using OpenMP within the node or an accelerator and assuming every single piece
of computation is accelerated by the same ratio) would result in just a 6.5× speedup if keeping
the same network, 9.9× if doubling the network bandwidth or 13.5× if increasing the network
bandwidth by 4× times.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 104 25.06.2010

The hypothesis that all computation bursts between MPI call achieve the same acceleration is
also very coarse. In a real system, most probably only relatively large sequential computation
phases would be ported to an accelerator or parallelized with OpenMP as complexity and/or
parallelisation overheads may discourage a programmer from parallelising some of the very
short bursts. The result would be less global speedup than reported in the figures. An analysis
of this effect will be shown in Subsection 3.8.2.

Figure 115 and Figure 116 show the same results for 128 and 256 processors. An interesting
result is that the execution with less processes benefits more from a given increase in node
performance and communication bandwidth. This is somewhat natural as we assume that the
node parallelisation is ideal. Subsection 3.8.2 shows the behaviour when not such an ideal
parallelisation at the node level is made.

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

1

8

64
0

20

40

60

80

100

120

140

Bandwidth (MB/s)

CPU
ratio

Speedup

Figure 116: Impact of node performance and Interconnect bandwidth (in MB/s) for 256 processes

3.8.2 Non ideal node level parallelisation
The previous figures were computed assuming that every single computation burst between
MPI calls is accelerated by the specified CPUratio factor. The typical optimisation process of
an existing MPI application will nevertheless focus on the more computationally expensive
regions as identified by a profile. Either using accelerators or introducing OpenMP, a partial
optimisation will be done, leaving the less time consuming regions unmodified. It is also pos-
sible that some speedup may be obtained on those regions by using a somewhat faster proces-
sor (i.e. better memory bandwidth).

In this section we study the actual impact on total application performance assuming that a
global 75 % improvement in performance (1.75 speedup) can be achieved on all computation
bursts and then some of the most intensive computation regions are sped up by an additional
factor between 1 and 128. We apply the study to the trace of 128 processes. The results should
then be compared to those in Figure 117.

By applying clustering techniques to the trace of 128 processes we are able to identify the 13
more relevant computation regions. Figure 118 shows the percentage of the total computation
time that each of these regions represents. A typical optimisation practice would start porting
to an accelerator or parallel node level programming model the most expensive regions of
code. Three plots of the predicted global speedup are presented in Figure 118 to Figure 120
assuming that we optimize the first 6, 9 and 13 computation regions respectively. In turn, they
correspond to accelerating a total of 93.67 %, 97.49 % and 99.11 % of the computation time.
In all the figures the CPUratio dimension represents by how much we assume the optimized

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 105 25.06.2010

parts are accelerated. The Bandwidth dimension represents in MB/s the assumed bandwidth in
the network.

Profile

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13
code region

%
 o

f c
om

pu
ta

tio
n

tim
e

Figure 117: Profile of computation regions in

GADGET for 128 processors in MareNostrum

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

1
4

16
64

0

5

10

15

20

Bandwdith (MB/s)

CPU
ratio

Speedup

Figure 118: Impact of bandwidth and acceleration
factor applied to major computation bursts rep-

resenting 93.67 % of the original computation time

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

1

8

64

0

5

10

15

20

Bandwdith (MB/s)

CPU
ratio

Speedup

Figure 119: Impact of bandwidth and acceleration
factor applied to major computation bursts rep-

resenting 97.49 % of the original computation time

6412
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

1

8

64

0

5

10

15

20

Bandwdith (MB/s)

CPU
ratio

Speedup

Figure 120: Impact of bandwidth and acceleration
factor applied to major computation bursts rep-

resenting 99.11 % of the original computation time

As can be seen in Figure 120 the speedups are much less than in Figure 116 even if Figure
120 assumes that 99.11 % of the code is accelerated. The results in Figure 119 and Figure 120
correspond to cases with smaller percentages of the original code accelerated and show that
very limited total speedups are achieved even if very good accelerations are achieved on the
optimized regions.

In this model, the impact of network bandwidth is also important. As we said, Figure 120
shows data when 99.11 % of the computation time is accelerated, but because communication
does represent a non negligible part of the total elapsed time and unless it is also accelerated,
the total performance stays very low. For example, if only 512 MB/s links are used, there is
not big difference in accelerating the computation parts by 4 or by 128. For bandwidths of 2

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 106 25.06.2010

GB/s, going from 4× acceleration to 128× in the selected sequential parts would only result in
a 2× global speedup.

These results show that hybrid parallelization where MPI is combined with node level pro-
gramming models with synchronous (fork-join or data parallel) structure does have important
scalability limitations deriving from Amdahl’s law. If very fat nodes (or powerful accelera-
tors) are used, it will be necessary to parallelize a very large fraction of the computations be-
tween MPI calls. This actually implies that a continued optimisation effort may be needed as
more and more performing multicore nodes are adopted. Such perspective highlights the im-
portance of exploring alternative approaches relying on asynchrony and overlap between
communication and computation.

3.8.3 Prediction for ICE
We thus apply the above numbers to the traces of 64, 128 and 256 to make a prediction for the
ICE at those sizes. We can compare the Dimemas predicted duration for each iteration with its
corresponding actual run on the ICE system.

Time (s) Processor
Measured Predicted

Error
(%)

64 40.41 38.71 4 %
128 21.65 19.06 12 %
256 12.15 10.73 12 %

Table 22: Prediction and error with respect to actual iteration time on the ICE prototype

The Dimemas prediction underestimates the real iteration duration. We can further analyse the
errors in the case of 64 processors using Figure 121. We present a timeline of the MPI calls in
the real run and a view of the Dimemas prediction for one iteration. There is one row per
process and light blue means computing while different colours correspond to different MPI
calls.

Figure 121: MPI calls for real run (top) and prediction (bottom) for 128 processes on ICE

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 107 25.06.2010

Both figures are in the same time scale. The total difference in total elapsed time between the
reality and the prediction is highlighted by the yellow line and corresponds to 4 % as indi-
cated in Table 22. The major substantial difference is in the duration of two Alltoalls that ac-
cording to Dimemas should be significantly faster than what they are in reality. The red ar-
rows point out the regions with differences. The blue arrows show that the approximation of
the simulation for the point to point exchange phases (Sendrecvs in brown, Isends and Irecvs
not visible because of the scale and Waitalls in green) is sufficiently accurate.

The green arrow points to another region where there is some deviation in the sequential per-
formance from the average compute ratio of 1.75. It is clear that different regions of sequen-
tial computation will perform with different efficiencies on cores with different architecture
and memory bandwidth. The factor of 1.75 is an average acceleration applied to all computa-
tion regions in our experiment. More detailed accelerator factors for each region could be
used to achieve better prediction.

The views for 128 processes are given in Figure 122. In this case the total error in the predic-
tion is larger (12 %) and the same effect of duration of the Alltoalls appears (red arrows). In
this case, the real ICE trace does show a potentially additional problem in the Alltoalls (red
circle). Some of the invocations to the first Alltoall get delayed while others have already ex-
ited the collective call. This is related to progress issues in the internals of the MPI implemen-
tation.

Figure 122: MPI calls for real run (top) and prediction (bottom) for 128 processes on ICE

3.8.4 Prediction for BG/P
A similar study has been done to predict the behaviour on the Blue Gene/P prototype of WP5.

Time (s) Processor
Measured Predicted

Error
(%)

64 250.41 258.60 3 %
128 131.78 123.13 7 %

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 108 25.06.2010

256 79.10 63.82 9 %
Table 23: Prediction and error with respect to actual iteration time on the Jugene prototype

The results show that the error for 256 processors is relatively large, motivating a detailed
analysis. Figure 123 compares the real run and the prediction for one iteration. Three issues
deserve special comments.

First, the Sendrecs and in this case also the Alltoalls are decently matched by the prediction.
The major conclusion out of this comparison relate to our previous analysis of the ICE plat-
form. We tend to consider that the linear model for the Alltoall used in the Dimemas simula-
tions is a fair approximation of what the actual duration of the Alltoall should be, and the
BG/P prediction seems to agree with that. Our interpretation is that there are issues in the ICE
implementation of the Alltoall that should be looked at, and that the achievable speedups in
that machine could be slightly improved.

Figure 123: MPI calls for real run (top) and prediction (bottom) for 128 processes on Jugene

Second, the predicted duration of the computation phases is slightly different in the simulation
than in the reality. In fact, Figure 124 shows the histogram of the duration of the major com-
putation phases. We see that some areas are underestimated and others overestimated with
error in the order of 10-15 %. This shows how more precise characterisation of the change in
scalar performance when moving from one processor to another would be needed to be devel-
oped to improve the accuracy of performance analysis tools.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 109 25.06.2010

Figure 124: Histogram of duration of major computation bursts in the real run (on top) and prediction

(bottom)

Third and most striking, the red region which corresponds to exchanges implemented by Is-
ends and Irecvs followed by a Waitall (in green) are much larger in the reality than the predic-
tion. A detailed view of that region is presented in Figure 125. The view on top shows the
dark blue regions that correspond to significant computation that takes place intermixed be-
tween the Isends and Irecvs. These bursts of computation were not seen neither on the Ma-
reNostrum nor the ICE traces. They do not show up either on the BG/P run with 64 processes,
but for 128 processors they have an average duration of 345 ms and 174 ms for the 256 proc-
essor run. Unfortunately, their number grows more than linearly with the number of proces-
sors. There are 1500 in the 128 processors run and 7700 in the 256 run. This region may be
the cause for the limited scalability reported for this test case in Deliverable D5.4 [7]. Further
detailed analysis of the source code and potential interactions with the BG/P MPI implemen-
tation should be done.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 110 25.06.2010

Figure 125: Zoom of duration of computation phases (top) and MPI calls (bottom) in exchange region

3.8.5 General analysis
We applied the model described in Subsection 2.2.4 to the different GADGET runs in Ma-
reNostrum, ICE and Jugene (BG/P). Results are given in Table 24. We highlighted in green
factors where the performance loss is below 10 % (values higher than 0.9) and in red factors
where the degradation is higher than 25 %.

Platform Processors Input Iteration
time (s) Efficiency LB microLB Transfer

MN 64 A 78.71 0.66 0.90 0.94 0.78
MN 128 A 44.22 0.58 0.97 0.92 0.65
MN 256 A 22.78 0.56 0.95 0.77 0.76

BGP 64 A 250.41 0.87 0.90 0.99 0.97
BGP 128 A 131.78 0.86 0.96 0.98 0.91
BGP 256 A 79.1 0.75 0.95 0.89 0.90
ICE 64 A 40.407 0.88 0.91 0.97 0.83
ICE 128 A 21.65 0.93 0.98 0.90 0.73
ICE 256 A 12.154 0.89 0.94 0.95 0.68

Table 24: Global performance model for GADGET

The column efficiency reports the global parallelisation efficiency (fraction of active proces-
sors over the whole iteration). The numbers show that the parallel efficiency is relatively low
in MareNostrum and significantly better in the BG/P and ICE, but very seldom above 0.9.

The major responsible for the difference is that the ratio between communication performance
and computation performance which is lower on MareNostrum. This is identified by the
Transfer factor in Table 24, which shows much more degradation of the performance (about
25 % performance loss due to data transfers on MareNostrum versus around 10 % perform-
ance loss in the others).

The global load balance is fair, actually better with 128 and 256 processors than for 64. This
factor is very dependent on the data set and processor count. For the problem sizes of both test
cases used as PRACE benchmarks and the processor counts we have analysed the load bal-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 111 25.06.2010

ance is good. We should measure it at much larger processor counts as those used by WP5 for
the GADGET performance values on BG/P reported in Deliverable D5.4 [7]. It is our experi-
ence that for other real runs in production at MareNostrum, the load balance factor was very
low (< 0.25). The implication for the selection of future machines is the need for mechanisms
to handle load balance in flexible ways, being able to enter into play for datasets of processor
counts that require them and not disturbing cases where not required.

The micro load balance/serialization factor gets worse on MareNostrum and BG/P as the
number of processes increases. Figure 126 represents the percentage of processors doing use-
ful computation as a function of time for 64, 128 and 256 processors on ICE. The time axes
are scaled so that for each processor count each figure represents the total iteration time. The
traces are actually Dimemas predictions assuming no communication latency and instantane-
ous data transfers. This means that the drops in instantaneous efficiency observed are due to
intrinsic application characteristics.

Figure 126: Instantaneous parallelism profile for 64, 128 and 266 processor runs on ICE

The drops observed during the first ¾ of the iteration are due to actual load imbalance. The
loss of performance towards the end of the trace is due to serialisations in the communication
phase towards the end of the iteration. A zoom of the behaviour in this phase for the 256
processor run is shown in Figure 127 along with the MPI calls. The serialization in the Sen-
drec phases (brown in the MPI Call timeline) may be intrinsic to the algorithm or may result
from a specific schedule of the communications. The actual pattern of computations that get
involved in this serialization process is shown in Figure 128 .

Figure 127: Instantaneous efficiency in the communication phase of the 256 processor trace from ICE,

assuming ideal interconnect

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 112 25.06.2010

Figure 128: Serialized computations pattern

The code developers/BCOs could easily provide information to identify the actual case and
decide whether rescheduling communications could be applied. If so, we envisage that impor-
tant scalability improvements could be achieved.

3.9 Summary of conclusions

3.9.1 Node/core performance: Accelerators vs. general purpose CPUs

In Subsection 3.1.1, the reference performance for a selected set of computational kernels is
reported in order to compare it on an equal footing with those of the accelerators present in
the WP8 prototypes.

We can thus see the benefits of the accelerators with respect to standard CPUs.

Mod2am
The first such kernel is mod2am, a dense matrix-matrix multiplication with a very high com-
putational intensity (defined as the ratio of arithmetic operations vs. memory accesses). The
computational intensity is O(n) where n is the order of the matrix. As all systems considered,
general purpose and accelerator alike, are memory-bound this kernel should perform close to
the maximum attainable speed for all platforms. Especially for the accelerators with their
many cores, this would be an opportunity to excel. The relative performance of the accelera-
tors is given, normalised to the 8-core (1-node) performance of a Nehalem-EP 2-socket node
which is 76 GFlop/s.

In the graphs, only the maximal attained performance is shown for the majority of accelerator
platforms. The “CS” in the bar graph labels stands for one ClearSpeed CSX700 card and HA
stands for Host Assist, i.e., the ClearSpeed card and the host node share the work for the per-
centage indicated, a unique feature of the ClearSpeed platform. As can be seen from Figure

0 0.5 1 1.5
Relative performance of mod2am

Ref. platform

nVIDIA+CUDA

Cell (CellSs)

CS (0% HA)

CS(42% HA)

CS+StarSs

FPGA (Harwest)

Figure 129: Performance relative to reference plat-
form of mod2am

0 0.2 0.4 0.6 0.8 1
Relative performance of mod2as

Ref. platform

nVIDIA+CUDA

Cell(CellSs)

CS(1 MTAP)

FPGA(VHDL)

Figure 130: Performance relative to reference
platform of mod2as

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 113 25.06.2010

129, the benefit of using an accelerator instead of an 8-core reference node is quite limited,
only the tuned ClearSpeed accelerator with a 42 % host assist percentage is about 50 % faster
than the reference platform.

Mod2as
The second kernel is mod2as, a sparse matrix-vector multiplication. It can be seen from
Figure 130 that the situation of mod2as kernel is worse. No accelerator is able to attain a de-
cent fraction of the performance of the reference platform (1392 MFlop/s). There are several
reasons: First the computational f =2/3, which is quite low and the intrinsic speed of the ac-
celerators in no way can compensate for the transfer of data from the host to the accelerator
and back. Second, none of the accelerators provide decent support for reduction operations,
which are an essential part of this kernel. So, offloading of this type of computations to the
(present-day) accelerators must be avoided at all costs.

Mod2f
The third chosen kernel is mod2f, which does radix-4 complex-to-complex Fast Fourier
Transform (FFT).

0 0.5 1 1.5 2
Relative performance of mod2f

Ref. platfrom

nVIDIA+CUDA

Cell (CellSs)

ClearSpeed

FPGA (VHDL)

Figure 131: Performance relative to reference platform of mod2f

Comparisons from Figure 131 show that relative to the speed on the reference platform, both
for one core and for an 8-core node, modest performance gain of about 3 GFlop/s can be ex-
pected from the nVIDIA and ClearSpeed accelerators.

Mod2h

As for the last kernel, mod2h (random number generator), none of the accelerators, except the
ClearSpeed card were able to implement it. For the ClearSpeed card, a library routine with a
Mersenne Twister algorithm was used, one that was equivalent to the one in the original
source code. It was found that the ClearSpeed library version was in some cases about 1.5
times faster than the reference implementation (at 3700 MoP/s). Hence using a random num-
ber generator on this accelerator can in some cases be worthwhile.

Summary
In summary, one can conclude that the present accelerators only incidentally will show per-
formance benefits as compared to an 8-core, 2-socket Nehalem-EP node at 2.53 GHz. This
does not mean that the accelerators are to be disregarded as potential boosters of performance
for several reasons: First, the comparison is made relative to an 8-core node, where possible,
against a single accelerator processor (which admittedly in turn may contain up to 240 cores).

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 114 25.06.2010

However, a Petapath Feynman e780 accelerator unit contains 8 ClearSpeed cards and can be
addressed as a single accelerator. In such a situation a speed of about 520 GFlop/s has been
demonstrated for kernel mod2am. A clearly larger speed than can be obtained by the reference
node. Second, there are many algorithms that cannot be run on all the cores of a reference
node transparently. So, in that case the performance per core is a more appropriate measure
and in this situation one can expect the accelerators to have an advantage. Lastly, the per-
formances of the accelerators are highly dominated by the host-accelerator bandwidth. Pres-
ently none of the accelerators are directly connected to the processor fabric, i.e., HyperTrans-
port for AMD processors and Quickpath for Intel processors. If that would be the case, the
bandwidth would be much more favourable and the node memory would be directly accessi-
ble by the accelerators which would reduce the transfer overhead dramatically. One may ex-
pect this to occur in the near future, say 1 to 2 years. One may add that the functionality of
accelerators will be enhanced, for instance by adding support for reduction operations, thus
widening the field of applications for which they can be employed. Therefore, accelerators
will continue to play a significant role in the compute nodes of future machines.

3.9.2 Memory bandwidth
The memory bandwidth within a node and, where appropriate, the host-accelerator transfer
speed from a node are one of the decisive factors for the performance of a node or node-
accelerator combination. Where the internal node bandwidth can be measured in the 20 GB/s
realm and a sub-µs latency, for instance, latencies for host-accelerator data transfers are in the
hundreds of µs (see, e.g., the host-accelerator bandwidth experiment on the Petapath system)
while the effective bandwidth will be significantly lower than the nominal bandwidth pro-
vided by PCIe Gen.2, i.e., 8 GB/s except for very large block data transfers. Although no
other such experiments were done there is little reason to assume that the situation for other
accelerators will be much better, also due to software overhead. As stated above, this large
disparity could be improved by a direct connection to the native interconnect fabric of the
processors in the node.

3.9.3 Network bandwidth
The reported studies of network bandwidth for point-to-point communication are summarized
in Table 25.

Prototype Env. Lat.
(μs)

BW
(MB/s)

Links Network Reported

QPACE MPI 4.7 845 4 Proprietary 3.4.1

Altix XE MPI 1.7 2500 1 IB QDR [2]

ICE MPI 1.9 1800 1 4×DDR IB 3.4.2

UV MPI 1.6 7200 1 NL5 3.4.2
Table 25: Point-to-point performance

Table 26 compares the performance of MPI collectives measured for 256 MPI tasks on differ-
ent systems. The Alltoall and Allreduce latencies measured using two different MPI imple-
mentations on the same Altix ICE system diverge substantially. Hence very low latency net-
works and highly optimized MPI versions are of major importance for future Tier-0 systems.

Call “Latency”

(μs)

System Reported

Alltoall 108 Altix ICE 3.4.2

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 115 25.06.2010

Call “Latency”

(μs)

System Reported

MPT 1.24

Alltoall 136 Altix ICE

Intel MPI 3.2

3.4.2

AllReduce 24.8 Altix ICE

MPT 1.24

3.4.2

AllReduce 16.0 Altix ICE

Intel MPI 3.2

3.4.2

Allreduce 31.8 Altix4700

MPT 1.24

3.4.2

Allreduce 18.6 Ultra Violet

MPT 2.0

3.4.2

Table 26: MPI performance of collective calls

3.9.4 Hybrid
The hybrid programming prototype allowed us to learn important facts, should PRACE
choose to provide a hybrid system including GPUs at some time.

On this prototype, we focused our efforts on using HMPP, a solution based on source code
annotation. HMPP is a very appealing tool since it will offer a solution to our users’ commu-
nity to migrate their old code to GPU usage in a hardware independent manner (though some
platform specific optimizations are possible). The evaluation of the tool has been done on a
small set of kernels to make our points clearer.

The initial lessons learned from this prototype could be summarized in four points:

• The modification of an existing code to HMPP is lightweight to get a first non
optimized running version. Yet, more modifications are needed if the code architecture
and programming has not been done taking into account such as vectorisation as well
as clean module isolation. Furthermore, some constructions (such as reductions) are
very difficult to parallelize and won’t achieve decent performance on a graphic card.
Those code sections are best left running on the CPU. This is an important point since
it will have a big impact on code design. Code programmers will have to decide
whether they want to download the data from the GPU to the CPU, thus paying the
data transfer in order to compute the reduction efficiently, or leave the data on the
GPU, hence accepting lower performances, yet avoiding data movements that can be
expensive;

• Producing an optimized version on a hybrid machine of any code requires having an
in-depth knowledge of the hardware. This is NOT specific to HMPP and can be
noticed in the CUDA porting, too;

• Astute directives for code generation (such as loop reordering, loop fusion, etc.) are a
great help to boost performances. We need to see more of them in the future to avoid
obscure program construction. HMPP does implement some of them;

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 116 25.06.2010

• With a bit of effort, performances offered by HMPP programs can be equal or better
than those offered by the vendor’s library. This is an exciting result, since it shows that
most programmers could get to this level of success while investing only a limited
amount of efforts to port their code to a GPU. On the other hand, it will encourage the
community of GPU experts to explicit some programming patterns that are very likely
to appear in everybody’s programs.

Yet, more investigations are needed to fully grasp the advantage of using HMPP. We will, in
the coming months, compare the usage of the same HMPP coding on different platforms
(nVIDIA CUDA and ATI graphic cards).

3.9.5 I/O
Robust, scalable and performant I/O subsystems are a key component for Petascale systems,
and for the time being it seems there is not a proven solution that can sustain the expected I/O
throughput of a Petascale class machine. The XC4-IO prototype mainly investigated innova-
tive aspects of I/O: accessing metadata using SSD technology and performance of the Lustre
file system in its native configuration or in combination with pNFS over RDMA technologies.

The experiences achieved during the assessment phase of the prototype were important. After
the setup of the prototype, the first benchmark tests had the goal to check the communication
between the metadata node and the SSD disks and evaluate their performance in read and
write operations. Also the influence of SSD technology on Lustre metadata performance was
evaluated. From the experiments done, it appears that this technology although partially im-
mature, is promising and suited to speed up the metadata performance of parallel file systems
required by HPC environments.

Lustre performance is strongly influenced by Lustre stripe count and by the type of I/O opera-
tions performed, so some work and tuning activity is still required to get better performance in
this area.

When performing many small I/O operations, the Meta Data Server (MDS) is the bottleneck.
So in this environment, a one LU configuration is the best choice for performance because
MDS has to contact only one Object Storage Target (OST) for each file.

The most noticeable drawback of Lustre 1.8.1 is the single active MDS configuration, hence a
handicap of the Lustre architecture is the possibility to scale MDS only vertically, increasing
its CPU power or memory, but not horizontally, preventing from parallelize its work. This
feature will be available only in Lustre 2.0 version which is still in the testing phase (alpha
version).

SSD technology can help to reduce the bottleneck of MDS when it is overloaded by multiple
I/O requests and SSDs perform slightly better than traditional hard disks. However, the most
severe bottleneck concerning Lustre metadata performance is the lack of a distributed meta-
data service inherent in today’s Lustre software architecture. In any other aspect the actual
version of Lustre is suitable for HPC: it reaches high I/O performance, saturating the available
I/O bandwidth and shows good scalability. However concerning its applicability for future
multi-Petascale systems, the metadata performance of Lustre has to be largely improved.

This first experiment of testing pNFS exporting Lustre or other file systems is still immature
and it is problematic to integrate pNFS with Linux production kernels. Although pNFS seems
promising for the HPC environment, it is still immature and not acceptable for HPC produc-
tion contexts yet.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 117 25.06.2010

3.9.6 Energy Efficiency
To what extend the power and cooling efficiency of current supercomputing architectures
could be enhanced by using highly energy efficient processing elements as well as through
direct liquid cooling of components is impressively demonstrated by the PRACE eQPACE
prototype, ranked number 1 on the November 09 Green500 list. On the other hand, the SNIC-
KTH prototype illustrates that even with commodity hardware highly energy efficient HPC
systems can be realized simply through cherry picking of power efficient hardware compo-
nents such as processor, memory and power supplies. Here blade-based solutions often pro-
vide better energy efficiency values compared to standard servers. Another important result of
WP8 concerning power efficiency is the fact that despite the efficiency of the compute servers
is increasing with each new system generation, even for present state of the art server tech-
nology the power consumption of powered off servers is in the order of several tens of Watt.
Hence future power management software should be able to really physically cut off the
power supplies. Finally it is important to be aware that the power consumed by many of to-
day’s accelerators is significant even when they are idling. Hence mechanisms to reduce the
idle power of these devices to a large extend are a major prerequisite to enhance the energy
efficiency of accelerated systems.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 118 25.06.2010

4 Recommendations for next generation Petascale machines

4.1 Foreseeable architectures

4.1.1 General architecture
Figure 132 shows the basic structure and dimensions of current systems in the top 500 list in
terms of their peak performance and how they achieve it.

Based on June 2009 list

LANL Roadrunner

ORNL Jaguar

FZJ JUGENE

NASA Pleiades

LLNL BG/L

NICS/UT Kraken

ANL BG/P

TACC Ranger

LLNL Dawn BG/P

FZJ JUROPA

Based on June 2009 list

LANL Roadrunner

ORNL Jaguar

FZJ JUGENE

NASA Pleiades

LLNL BG/L

NICS/UT Kraken

ANL BG/P

TACC Ranger

LLNL Dawn BG/P

FZJ JUROPA

Figure 132: current structure and performance of top machines in Top500 list

The figure is logarithmic in character and shows the scale of each level of constituents with
respect to the total system size, and how each type of constituent contributes to the system
total performance. The symbols E, P, T, and G indicate the ExaFlop/s, PFlop/s, TFlop/s, and
GFlop/s levels, respectively. For the given system or cluster, built out of the following nested
bricks: cores, chips (or sockets) and nodes, the floating-point computing powers of the differ-
ent components are represented with bars as follows with respect to the right to left scale of
values previously described:

• Orange bar for computing power of 1 core;
• Orange + red bar for computing power of 1 chip;
• Orange + red + blue bar for the computing power of 1 node;
• Orange + red + blue + green bar for the computing power of the whole system.

For instance, in the JUGENE system, a core is capable of 1.8 GFlop/s peak performance and
therefore just passing the “G”-line. The four cores on a chip contribute a factor of 4× to the

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 119 25.06.2010

performance with 2 chips in a node; doubling the performance per node to 14 GFlop/s. The
clustering of all the nodes together leads to the final PFlop/s peak performance.

The figure does not show the two approaches followed regarding the operation frequencies.
While one tries to minimize the individual per core power, with operation frequencies below 1
GHz, the other uses higher performance cores, with frequencies in 2-3 GHz range. They result
in per core performance of 3-4 GFlop/s for the first group and 10-12 GFlop/s for the second.
The latter type is presently the major contributor to the total peak performance, as noticed
from Figure 132.

The next major contributor is the number of nodes, ranging from 6 to100 thousand. The size
of the nodes, which can be decomposed in terms of sockets and cores per socket, is still quite
limited, contributing a small fraction to the total parallelism and performance.

Foreseeable architectures for the near future will certainly evolve in the direction of increas-
ing the degree of parallelism at the node level. A possible evolution is depicted in Figure 133.
It includes an already announced system targeting 20 PFlop/s, the Sequoia system.

Current (11/2008)

All in Top500 (11/2008)

Sequoia (announced)

Possible exaflop ?

• 20PF/s, 1.6 PB Memory
• 96 racks, 98,304 nodes
• 1.6 M cores (1 GB/core)
• 50 PB Lustre file system
• 6.0 MW power

• 20PF/s, 1.6 PB Memory
• 96 racks, 98,304 nodes
• 1.6 M cores (1 GB/core)
• 50 PB Lustre file system
• 6.0 MW power

Current (11/2008)

All in Top500 (11/2008)

Sequoia (announced)

Possible exaflop ?

• 20PF/s, 1.6 PB Memory
• 96 racks, 98,304 nodes
• 1.6 M cores (1 GB/core)
• 50 PB Lustre file system
• 6.0 MW power

• 20PF/s, 1.6 PB Memory
• 96 racks, 98,304 nodes
• 1.6 M cores (1 GB/core)
• 50 PB Lustre file system
• 6.0 MW power

Figure 133: Possible evolution of supercomputer dimensioning

Two alternatives can be followed in terms of the node structure: homogeneous and heteroge-
neous node, which can further be classified as heterogeneous performance and heterogeneous
functionality. Today, we have systems (as those evaluated in WP8 prototypes) that expose the
functional heterogeneity, but it is foreseeable that future systems may have cores with identi-
cal functional capabilities but different performances. Furthermore, heterogeneity may occur
on chip, off chip or both.

The combinations are thus enormous and the best choice will depend at any specific point in
time on economic and technological cross points. In general, one can expect that specific off
chip devices may be first in achieving a given performance or performance/power ratio,
though general purpose multicores may catch up few years later. This has enormous implica-
tions on software. The cost of application development, porting, tuning and maintenance will
grow exponentially if we intend to efficiently use the available machines. It is of paramount

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 120 25.06.2010

importance to develop programming models and practices that screen us off from the hard-
ware details and thus help us in this respect.

4.1.2 Some straw man examples
In the 10-20 PFlop/s range, up until around 2014, we still will be able to rely on a more or less
“classical” design. The already mentioned Sequoia system, the Blue Waters system and the
projected 10 PFlop/s system to be built in Japan have one thing in common, that the nodes are
still homogeneous (based on the IBM POWER7 and SPARC64 8+ processors, respectively).
However, the interconnect networks will be somewhat different. The POWER7 based systems
will be on the pruned fat tree type, while the Japanese system will feature a 6D-torus topology
to handle the relative fragility that occurs in the classical 3D-torus networks and that would be
too unreliable for systems of this size.

As already stated earlier, apart from the approach to use processors in the 3 GHz range and
higher to satisfy the performance requirements, the alternative is to turn to very many low-
power processors as exemplified at the moment by IBM's Blue Gene series of machines. Such
systems may or may not consist of many-core implementations. Presently, already experi-
ments are underway with systems consisting of embedded processors (Wehner, Olliker, Shalf,
Int. Journ. HPC Appl., May 2008) in which, a system built from 2×107 8-core Tensilica
Xtensa processors will be used. This so-called “Green Flash” system envisioned would re-
quire 4 MW of power at a projected peak performance of 200 PFlop/s. It should be noted that
a performance of 10 GFlop/s per processor can still be expected but only at 200 mW power
usage per processor, while the processor frequency would be in the MHz range. It should also
be noted that classical silicon technology can still be employed. We will comment on the con-
sequences with respect to reliability and manageability of such massively parallel systems
later on.

Further out in the future, say from 2015 we cannot rely anymore on technology as we know it
today. It is not possible to just multiply the number of cores/nodes by, say, 10 to get at the
desired performance level. For one, the power requirements would be unacceptable as would
be the management problems for the given amount of processing elements. This means that
the speed per core will have to increase, either by incorporating accelerating processing ele-
ments or by new device technology and probably both. Furthermore, also the memory tech-
nology must change in speed, bandwidth, and power consumption. Technologies, like mag-
netic RAM, memristor or graphene-based RAM may be of sufficient maturity by then
(2015—2016) to constitute the system memory. As it is foreseeable that around 2015 the
usual lithography techniques to create processor chips will fail, further improvements in this
area will heavily depend on progress in nanotechnology in order to yield devices that can de-
liver the required performance per computational core. Assuming that 1 TFlop/s per processor
can be realised and with 16 processors per node we need 6400 nodes to arrive at a 100
PFlop/s system. This assumption is based on, for instance, 64 cores/processor at a peak per-
formance of 16 GFlop/s per core or a combination of less cores per processor but with the
assistance of computational accelerators, accompanying either the cores or on the processor
level. Such a system seems a viable target, in particular when one assumes that per socket an
accelerator device is deployed.

It is expected (hoped) that by 2019—2020 we will arrive in the ExaFlop/s range. This will
need further technological breakthroughs on the processor, memory and interconnect fronts.
For processors the employment of SQUIDs (Superconducting Quantum Interference Devices)
as the basic logical switching devices could be a possibility. Switching times are close to the
THz regime and the power uptake is extremely low, enabling systems that still would have
acceptable energy consumption. A serious drawback, at least for the present, is that these de-
vices only work at the temperature of liquid helium. Apart from SQUIDs, prospects for gra-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 121 25.06.2010

phene- and carbon nanotube-based technology is well imaginable. The time horizon is too far
of, however, to predict what the hardware implementation actually will be. Very roughly,
when would assume 10 TFlop/s sockets by the technology in that time frame the macro-
structure of an Exaflop/s system could be similar to that of a 100 PFlop/s system: 16 sock-
ets/node and about 6400 nodes would get us there. This is by no means certain of course as
we have to keep in mind that also the memory and interconnect must be able to keep pace
with the faster processors. This will require additional innovations in these fields.

Below we will briefly discuss some of the relevant issues in somewhat more detail for the
nearer future.

4.2 Relevant issues

In this section we discuss issues that will have to be addressed for future supercomputers.
Even if we have mentioned different potential architectures, these issues are broadly applica-
ble and in most cases will affect several or all of them. The answers to these issues are cer-
tainly not yet known but may have implications resulting in modifications of the basic archi-
tectures described above. For each of the issues we will describe some directions that might
deserve important research efforts and the possible architectural implications.

4.2.1 Power and Energy efficiency
With the present silicon-based hardware, developers would certainly need to improve the abil-
ity to control the activity and level of performance of the components in a chip. By 2015 it
would be impossible to power up all the logic in the chip at the same time as its power budget
will be far above what will be possible to cool.

Although some automatic hardware mechanisms will be put in place, it is foreseeable that a
fair amount of knobs will be provided for the software to drive the power saving capabilities.
The most desirable situation is one where the run time will automatically control such knobs,
although power control APIs may be a good initial approach to let the application explicitly
perform such function. Research is needed in these directions. Now already some processors
are aware of the activity of their functional units and are, in principle, able to react on that
activity level. In the Nehalem-EP, the clock cycle can be stepwise increased to run certain
tasks faster with the constraint that it stays within a pre-assigned power envelope. What will
be needed is the reverse: lowering the clock cycle when a certain resource is predicted to be
used less intensively.

Already today the power usage of the memory part of a system can be as much as 30 % due to
the fact that for the moment all memory technology used is volatile. This means that whether
the memory is actually used or not, it consumes energy. Hence a large reduction in power
consumption can be expected with the introduction of new non-volatile memory types such as
Spin Torque Transfer Magnetic RAM (STT MRAM), memristors, or graphene-based mem-
ory, large power usage reductions can be expected in future system architecture. Of these SST
MRAM is the technology that is the closest to the market. It is believed by the two main com-
panies associated with this technology, HYNIX and Samsung, that it can be implemented with
a feature size < 65 nm, fairly fitting with other present-day technology. Products are expected
to hit the market by 2011. Both other technologies are further out, but with great potential
with respect to switching power and speed. They are repeatedly demonstrated but the fabrica-
tion methods differ from those for silicon-based technology current today and various
nanotechnology hurdles have still to be overcome.

With respect to the I/O-part of the systems a similar development takes place. Already now,
Solid State Disks (SSDs) based on non-volatile flash NAND- or NOR-technology are offered

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 122 25.06.2010

by various vendors for data caching and metadata serving (see the XC4-IO prototype earlier
in this report). As yet this technology is too expensive to use for the full I/O subsystem but
this may change rapidly, especially when power costs are taken into account. Furthermore, the
first Phase-Change RAM (FCRAM) will be introduced to the market in 2010. This technol-
ogy is faster, more power efficient and more reliable than the present-day flash-based prod-
ucts though it is too slow to employ it for main memory. It is expected that it will replace pre-
sent SSD products in the next few years, first for meta-data serving and soon thereafter for the
full I/O subsystem. This will have a major impact on the total power budget for large-scale
systems from about 2014 on.

It is often not realised that also the interconnect networks and the associated switches and
Host Bus Adapters (HBA) consume a significant fraction of the power in a system. This situa-
tion may change in about five years when photonic networks will be introduced. Already
complete Network-on-a-Chip (NoC) implementations in silicon have been demonstrated (Pet-
rarca, Lee, Bergman, Carloni, IEEE Micro, July/August 2009) with the potential of seamless
photonic connection between the chip and system level without any intermediate electronic
conversion. The use of a purely photonic network would reduce the power consumption of the
interconnect network by several orders of magnitude.

A further line of research is to develop power control capabilities at the job scheduler level.
Interest has been shown in some of the current job scheduler providers but we believe that it is
at a very rudimentary state and in particular much tighter coordination between the low level
run time scheduling and the job scheduler would be needed to address the problem holisti-
cally.

4.2.2 Programming models and compilers
The theoretical peak performance of multi-Petascale systems is of little benefit unless applica-
tions can make use of it to a large extent. This fact has been recently recognised in the USA
and Europe and is reflected in the activities of STRATOS, IESP and EESI. However it is a
matter of fact the vast majority of application codes is written under the assumption of homo-
geneous cores. Re-writing these codes from scratch is not feasible since the development time
for many large-scale applications is in the range of decades/ten years and more. So in order to
keep application codes maintainable in the presumably hybrid multi-Petascale era, program-
ming models are needed which are able to handle the heterogeneity of compute cores while
keeping the impact on the programmer side as low as possible. To prepare legacy codes for
hybrid computing needs easy tools which keep the portability of the code. Examples for such
tools are the PGI compiler or CAPS HMPP. New codes could be written using new languages
that allow transparent use of different accelerators (e.g., OpenCL, StarSs, RapidMind). How-
ever, the survey on new languages carried on in cooperation of WP6 and WP8 found that
most of these languages and tools are still too immature to be used in an HPC environment.

For FPGA-based products the situation is even worse today. While an OpenFPGA initiative
was created back in 2005 which today consist of 200 members spanning 40 countries world-
wide, no usable OpenFPGA API is available to the HPC community so far.

Also PGAS languages such as CAF, UPC, X10 and Chapel do still exhibit many signs of im-
maturity. Except for UPC, these languages are currently no real alternatives for program de-
velopment. Nevertheless, the developments in this field are very rapid and PRACE activities
may be instrumental to enhance the maturity of these novel languages.

4.2.3 Accelerators
The evaluations show that for numerical calculations based on DP arithmetic present accelera-
tors only casually show performance benefits as compared to an 8-core, dual-socket Nehalem-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 123 25.06.2010

EP node. Applications using only SP floating-point arithmetic can experience a substantial
speedup. But also for this case any performance boost is very much dependent on the actual
match of the characteristics of the algorithm and the device. The programmability is still not
ideal, especially when aiming at very high performance and non-trivial codes. This does not
mean that the accelerators are to be disregarded by PRACE as potential performance boosters
for several reasons:

- New accelerator versions from Intel, nVIDIA and AMD will provide a much higher
double precision performance- compliant with IEEE-754 2008 standard and to some
extend also provide ECC memory (e.g., Intel Knights Corner and nVIDIA Fermi) as
well as enhanced functionalities for scientific usage;

- Many of the techniques to be developed for accelerated systems will be useful in op-
timizing the performance of future many-core processors;

- We can expect that processor vendors and/or board manufacturers will eliminate one
of the major bottlenecks in the use of accelerators today - the bandwidth limits be-
tween host processor and memory, and accelerator - leading to future systems that will
have tightly coupled heterogeneous cores;

- Due to the high LINPACK performance of future accelerator based approaches, it is
very likely that the processing cores used in future supercomputer systems will be het-
erogeneous e.g., high performance many-core processors and accelerators or heteroge-
neous many-core processors will constitute the processing elements in these systems.
At the time of writing an accelerated system is holding position two of the June 2010
Top 500 list. Also HPC vendors such as Bull, CRAY, HP, IBM and SGI already pro-
vide accelerators support in their latest system architectures.

However, finding the right balance in node architecture and programming models requires
significant further research and development efforts. The programming models should be able
to handle the heterogeneity that these two types of resources constitute and intelligently de-
cide where to run the different tasks based on their bandwidth and computation needs.

Finally it is important to be aware that the power consumed by today accelerators is signifi-
cant even when they are idle. Therefore mechanisms to reduce the idle power of these devices
to a large extend are of major importance for future accelerated systems.

4.2.4 Network Interconnects
Infiniband will presumably remain the most dominant HPC interconnect technology in the
upcoming years. In order to keep the cost of the network interconnect within 20 % of the total
hardware investment budget the topology of the interconnect topology of future systems will
most likely be realized as 3D network torus or n-dimensional hypercube, as dragonfly net-
work, as pruned fat tree or some other type of hierarchical network interconnect with position
dependent communication latencies of the communication partners and even position depend-
ent per processor core network bandwidth.

Today the impact of the network interconnects bandwidth and latency on application per-
formance are often not thoroughly understood by many users and code developers. Hence
sometimes the interconnect is blamed for problems that are in fact on the application side (for
example load imbalance) or caused by network contention due to a highly suboptimal place-
ment of MPI tasks on the network topology. There are nevertheless two general observations
to make. The first observation is a need for ever growing network bandwidth per core, or at
least per node. Secondly, the available network bandwidth per core will most probably de-
crease in future. In order to enable applications to efficiently use a large fraction of future
Petascale systems the HPC community has to put large efforts in the development of numeri-
cal algorithms avoiding “bursty” or “wrong order” communication patterns and thus allowing

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 124 25.06.2010

an orders of magnitude increased scalability without requiring an increase in available per
core network bandwidth. Also the application of topology-aware batch scheduling and intelli-
gent network routing mechanisms will be of key importance in future systems.

4.2.5 Memory bandwidth and latency
Presently, memory latency is in the range of hundreds to a thousand clock cycles and although
memory bandwidth has been increased by the transition from DDR2 to DDR3 memory, la-
tency actually has become worse. Until radically new memory types, like memristor or gra-
phene-based memory will become available, hopefully in 2015/2016, this situation will not
improve. Memory bandwidth however, will increase as soon as 3-D memory packaging be-
comes available. Intel, TSMC, and Samsung are working on this concept. This would at least
solve the shrinking perimeter problem for processor chips that cannot have enough memory
ports on their perimeter to accommodate sufficient bandwidth with ongoing technology
shrinks. For large regular data block transfers where also operand pre-fetching can be applied,
3-D stacking is a solution and for the newer expected memory types even mandatory, but the
latency problem still remains. While on another scale, it is similar to that the problems en-
countered in distributed-memory parallel applications or in executing applications on a com-
putational grid. The upshot is that applications should be implemented in a hierarchical way
where parts that are the most latency sensitive are performed close together, e.g., on cores
within one processor, while parts that are less latency sensitive can be executed on one or a
few neighbouring nodes, etc. This will require re-writing of many applications, partly or en-
tirely.

Chip architectures and programming models will have to tightly evolve together in order to let
applications tolerate the huge latencies to come. Determining the right amount of on chip
memory structure (cache, local store, capacity and architectural support block moving en-
gines, prefetchers, etc.) as well as the appropriate ways to optimally handle it by intelligent
runtimes is a key area of research for the near future.

4.2.6 Memory per node and core
Memory constitutes an important component in the procurement as well as for the operation
(power consumption) cost of current and future supercomputers. However, in many cases this
resource cannot be used very efficiently. For instance, BSC reports that less than 40 % of the
system memory is used on average. Still, some applications do require a lot of memory but
many others do not. Current practice is that the user specifies his memory requirements in a
batch oriented way which fixes the amount of memory claimed for the whole runtime of the
application. Also the time to solution is often the decisive factor in choosing the amount of
nodes while the memory that automatically comes with it is a mere by-product of that deci-
sion.

A possible solution to decouple the computational requirements of the application from its
memory requirements could be a complete virtualization of the memory on the total system.
Companies like ScaleMP and 3Leaf already have products to realize memory virtualisation on
the system level, albeit their products are mainly targeted to create large virtual shared mem-
ory nodes. Admittedly there is an overhead associated with these solutions but, ScaleMP has
already demonstrated that using an assisting ASIC this overhead can be made quite small.
Furthermore such approaches could also be used to accommodate applications with extremely
high memory requirements on standard dual socket server hardware or to provide a very cost-
effective solution for shared-memory parallel programming models and PGAS languages.

In summary, unless at least a certain level of memory virtualisation takes place, many future
HPC systems will need to be equipped with more memory per node than a large fraction of
the application codes require. But so far, these virtualisation techniques are not heavily used

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 125 25.06.2010

by the HPC community due to limitations concerning performance and supported hardware
extensions. A PRACE activity may be instrumental to better address the needs of the Euro-
pean HPC community in this field.

4.2.7 Performance tools
Performance predictions and performance modelling tools will be mandatory on the software
side to effectively use the multi-PetaFlop/s systems we are targeting. Subection 2.2.4 and Sec-
tion 3.8 already show the benefit of such tools. When both systems and applications increase
in size a rational basis for new development or re-implementation (see paragraph above) can
be provided by such tools. Also they can point to inconsistencies in the perceived system per-
formance.

Performance prediction and modelling could be greatly eased when applications were decom-
posed into their main (computational) kernels in a machine independent way. When at the
same time the performance of these kernels would be known for a wide range of actual plat-
forms one could construct the performance of the application by factoring in the contribution
of each kernel. A model how such a kernel-based analysis tool might work is shown in Figure
134.

Figure 134: Kernel-based performance modeling

It would also allow us to pose “what if” questions regarding the performance for systems not
(yet) available. Little work has been done in this field [23], but no tools exist at the moment to
do such a kernel analysis of applications. Obviously, a set of kernels, for computation, com-
munication and I/O must be identified as a basis for this analysis tool.

4.2.8 Load balance
Load balancing is often a major bottleneck when doing strong scaling of applications as the
point arises where the number of processors approaches the underlying granularity and het-
erogeneity of the physical model being simulated by the application.

As described in Subsection 2.2.4 two types of load imbalance show up in applications. Global
load imbalance happens when some processes have consistently more work than others. This
is probably the type of imbalance that mostly concerns current developers and for which ap-
proaches based on libraries to recompute partitions are used and will still be relevant in the
future. Microscopic load imbalance, where different processors are more loaded/delayed that
the others in successive synchronized phases of computation are the ones that will be more
important in the future. Introducing asynchrony in the programming model is one way to ad-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 126 25.06.2010

dress this issue. The reason why current hybrid approaches such as MPI+OpenMP have failed
to properly address this issue is that they do lack this asynchrony.

A frequent situation is the lack of awareness of the actual level of imbalance in an application.
The impact of input data set, processor count, variability in cache performance for different
domains, network performance, operating system noise etc. can have significant and different
effects on each individual run of one application. Run time techniques are thus needed to dy-
namically adapt to the instantaneous imbalances and being applicable at relatively fine levels
of granularity (sub millisecond, as opposed to the typical repartitioning schemes that are ap-
plied at granularities coarser than seconds).

4.2.9 Runtime Systems
The runtime system is the part of the software infrastructure where actual and more accurate
information is available about system resource availability and performance; thus this compo-
nent has the potential to make better-informed decisions on behalf of the application.

With ever more complex architectures and variability in the behaviour of systems, static ap-
proaches where the programmer or compiler statically schedule operations will result in poor
efficiencies. The static approaches are quite common practices in current parallelisation ap-
proaches and run times. It will be necessary in the future to increase the amount of intelli-
gence introduced in the runtime with the objective of maximising performance and minimis-
ing power consumption.

An important issue to address will be the identification and exploitation of parallelism. In this
area, intelligence has to be devoted to optimise the use of heterogeneous platforms both in
performance and functionality. For example, experiments in Subsection 3.1.5 show the im-
portance of combining the effort of both host and accelerator cores. The approach used is rela-
tively static but sufficient to identify the need and potential benefits that an automatic and
dynamic approach would have.

Example techniques that are foreseen to be of relevance in the future are run time dependence
analysis or just in time compilation. More mechanisms to expose and exploit asynchrony in
the execution of computations as well as their overlap with communication have to be devel-
oped.

Another area where runtime will play a key role is the handling of the memory hierarchies in
a system. We envisage that techniques (such as renaming, caching, coherence and consistency
management, etc.) that have been used in the past at the architectural level to address both
fine grain parallelism and the memory subsystem will in the future be migrated to the run time
level. By applying those general ideas and techniques at a coarser granularity level than what
current hardware does, very innovative perspectives will rise.

In general, we understand that intelligent run times are the direction to follow in order to ad-
dress many of the architectural and application issues identified in the following sections.

4.2.10 Resilience
Resilience is expected to become a huge problem at the multi-Peta and Exascale level. Pres-
ently most vendors place the burden on the user side, expecting them to write user level
checkpoints within their applications. However, these user checkpointing mechanisms will
have to be largely improved in many cases in order to be able to scale to Millions of cores and
efficiently handle such large application footprints. Regardless, this repair approach may be
only sufficient until the 2015-2016 time frames.

After 2016, an approach based on fault avoidance schemes will be required since at that time
the mean time between failures (MTBF) will be in the same range as the time which is re-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 127 25.06.2010

quired to write an application checkpoint to a non-volatile storage medium. Hence the appli-
cations, the run time environment and the corresponding hardware will have to be able to go
on without disruption even if individual components do fail. For this, it is needed that all
processors at least have a chip-kill facility that enables them to retire gracefully on failure.

In general end-to-end data integrity mechanisms are urgently needed for all data transfer sub-
systems of future Petascale systems to avoid data loss or data corruption. We can expect that
this feature will be generally available until the 2012 time frame.

4.2.11 Arithmetic
All standard processors adhere to the IEEE 754-2008 standard for floating-point arithmetic.
However, this is not (yet) the case for some present-day accelerators. For large-scale compu-
tations this arithmetic model is absolutely necessary in order to yield reliable results of suffi-
cient precision. It may even be necessary to augment the present standard to include 16-byte
floating-point data types to maintain an acceptable accuracy in results that in lower precision
would deteriorate because of round-off errors.

4.2.12 Benchmarks
As already argued above, a consistent set of computational, communication, and I/O-kernels
is needed to be able to model and predict the performance behaviour of applications with re-
spect to core, node, and system performance and scalability. However, this is a mere basis.
Also a set of sample applications is required that is representative for their respective applica-
tion areas. In PRACE already such a benchmark set has been selected but it will be necessary
to continuously scrutinise this set (as well as the kernels) to guarantee that they continue to
reflect the computational practice at each point in time and that they are able to employ the
target systems in an effective way. With regard to the kernels, these must be updated to reflect
new algorithmic approaches that better fit the future systems than the classical ones do.

4.2.13 Libraries
With the advent of the very large systems ahead the (numerical) libraries as they exist today
will not suffice. Firstly, language bindings for present-day libraries are only available for C,
sometimes C++, and for Fortran. Accelerators may or may not have their own libraries that
are a small subset of what is offered for standard processors. Furthermore, all libraries are
built to satisfy one optimisation criterion: speed. For future systems energy efficiency might
be another, equally important criterion. In this case one would have to choose between alter-
natives that guarantee the choice of an algorithm with a minimum power envelope even tak-
ing into account that for different algorithms, different hardware components of a system
might be involved. In this situation it can hardly be asked from the average user to take all
these considerations into account. The user must therefore ideally be oblivious of the details
underlying his/her library request. The consequence is that an enormous effort is needed to
restructure and augment the libraries as we know them today. In addition, the platform-
specific libraries as now offered for accelerators should be completely subsumed into the new
standard library interfaces.

4.2.14 Applications
Presently, some fields that are in principle amenable to parallel processing are very much un-
der-represented. A majority of these fields are characterised by unstructured parallelism like
those associated with large graph analysis problems. Neither the standard processors of today,
nor the existing accelerators are fit for processing these kinds of problems. Yet, they represent
very important problem classes, like routing problems, automated machine learning algo-
rithms, and pattern recognition in large unstructured data volumes. For such problems mas-

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 128 25.06.2010

sively multi-threaded systems with a (virtual) shared memory are required, somewhat like the
now discontinued Cray XMT system. In this respect the massive core alternative to multi-
PetaFlop systems may play a positive role.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 129 25.06.2010

5 Conclusions and Final remarks

With the observations made in the previous chapters we are in the position to make some rec-
ommendations regarding the course to be taken in acquiring and evaluating the machines to
come.

• We believe that both courses taken for the development of multi-PFlop/s systems are vi-
able:

o 104—105 nodes built from of relatively high-frequency processors or

o Massive node systems (≥ 106 nodes) with very low power requirements are valid, at
least until 2015.

After that year technology changes will dictate the direction(s) to go.

• For reasons stated above we cannot disregard the inclusion of accelerators into systems
that we deem of interest for the HPC community. Furthermore, we have to continuously
assess the technology developments in general.

• Tools for performance analysis and prediction are of critical importance to enable the effi-
cient use of the target systems. Development of such tools should be actively pursued. In
this regard also the development of a rational and complete set of kernel benchmarks and
example applications is of high importance.

• Even if we are able to build Exascale hardware in the future, unless we address the soft-
ware issue, those systems will not be usable. Programming model is the key component to
cut the Gordian Knot of Exascale architectures. At the node level, models to ease the use
of accelerators, and improve the exploitation of parallelism and locality are of huge rele-
vance. Important contributions are being made in this area by European developers. At the
cluster level the evolution of MPI and the new PGAS languages have to be monitored.
The hierarchical integration of cluster and node level models (hybrid models) is another
important direction. It is crucial to further develop and evaluate these alternatives and con-
tribute to their maturation.

• Libraries as presently available are not up to the demands that the future systems will
pose. Therefore active participation in developing libraries that accommodate the new
programming models as well as a larger variety of optimisation criteria, like energy effi-
ciency.

• With respect to system resiliency both memory and processor chips need chip kill capabil-
ity and provisions for dynamic re-assignment of tasks/threads while interconnect networks
must have full dynamic re-routing capabilities.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 130 25.06.2010

6 Annex

6.1 Benchmarks

This section describes the most commonly used benchmarks across the different WP8 proto-
types (both hardware and software). The focus of this section is on general overview of the
benchmarks.

6.1.1 EuroBen – Synthetic Benchmarking Suite
The EuroBen [13] benchmark provides benchmark programs for scientific and technical com-
puting to assess the performance of computers for these fields. All programs are originally
written in Fortran 90/95.

Since many SDKs that are available for the PRACE prototypes can only deal with C, the
PRACE members agreed on starting all code-porting from an initial C port.

Four of the EuroBen benchmarks were chosen for PRACE:

Mod2am
A dense matrix/matrix multiplication C = A×B;

Mod2as
A sparse CSR (compressed sparse row) matrix/vector multiplication c = A×b. The values of
the matrix A are generated randomly. However, with the same seed the same matrix can be
reproduced;

Mod2f
A 1-D radix-4 Fast Fourier Transform;

Mod2h
A random number generator;

The requirement was to adapt the C baseline-code to the prototypes as good as possible (e.g.,
use libraries) to get the best result.

6.1.2 High Performance LINPACK
The standard parallel LINPACK benchmark is used to obtain an estimate of the peak per-
formance of the system; this benchmark also gives an impression of the quality of the ven-
dor’s BLAS implementation. For a given problem size N, αN2 bytes of memory storage are
required; ideally, α should not be much larger than 8 if eight-byte floating-point words are
used. If this storage is distributed across P tasks, the amount of memory per task required will
be

P
NM

2α
=

.

For execution on a large parallel system, a compromise may need to be made between the
long runtime needed versus the high fraction of peak performance achieved for large prob-
lems. The performance L(P, N) is determined by

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 131 25.06.2010

measuredT

NN
NPL

23 2
3
2

),(
+

=

where, Tmeasured is the execution time for problem size N and task count P. Note that the im-
plementation is required to preserve the operation count specified above, i.e. use of a Wino-
grad Strassen or related algorithm for performing matrix multiplications is prohibited. Other-
wise, vendor-specific implementations with respect to coding, communication mechanism and
(possibly multi-threaded) BLAS library implementation are encouraged. The reference im-
plementation HPL [21] has recently been updated; the new 2.0 release contains improvements
of the scalability of the initialization phase to systems with many hundred thousand cores of
memory, bug fixes for systems with large memory and improvements in the verification algo-
rithm. The reference implementation uses MPI and standard C. It contains a BLAS implemen-
tation, but a vendor specific C BLAS library may replace the integrated BLAS calls.

6.1.3 Intel MPI Benchmark (IMB)
This set of benchmarks allows to evaluate interconnect properties with respect to sustained
bandwidths and latencies for point-to-point operations as well as its global properties with
respect to collective operations.

The IMB [24] package consists of 3 parts:

• IMB-MPI1;

• two MPI-2 functionality parts;

• IMB-EXT (one-sided communications benchmarks);

• IMB-IO (I/O benchmarks).

For each part, a separate executable can be built. If the MPI-2 extensions are not available, it
is possible to install and use just IMB-MPI1. Only standard MPI-1 functions are used, no
dummy library is needed. The IMB code itself is written in standard C, so should be portable
to any multi-purpose platform by using the suitable modifying compiler calls and options in
one of the include files provided for Make.

6.1.4 Triads (RINF1) Benchmark
This benchmark tests the floating-point and integer performance of various one-dimensional
loop kernels; depending on the access pattern various aspects of the processor architecture and
the memory hierarchy are tested. This benchmark is derived from the RINF1 Genesis bench-
mark originally developed in the HPC Department at the University of Southampton, Eng-
land. It can be regarded as a generalization of the well-known STREAM benchmark.

The basic loop kernels are typically of the format

The arrays a, b, c and d may vary in type and kind, and “op” represents a binary arith-
metic operation (normally multiplication). This kernel structure would be characterized as
requiring 2 or 3 loads, 1 store and two integer or floating-point operations. The kernels are
executed for various values of the vector length n, yielding the performance dependence on
temporal locality, and for varying strides, which allows evaluating the performance degrada-
tion resulting from loss of spatial locality. To ensure that timer resolution does not impact the
reliability of measurements, a number of iterations of the kernel is performed, such that a

do i=1, n, is

 a(i) = b(i) op c(i) [+ d(i)]

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 132 25.06.2010

given measurement interval is approximately achieved. The loop structures optionally can be
compiled with OpenMP directives, allowing an assessment of multi-threaded performance.
Furthermore, an option is provided to run the benchmark on multiple compute nodes concur-
rently via MPI; in this case an identical setup is replicated across all MPI tasks. To ensure that
a given system delivers the performance homogeneously, MPI barriers are executed before
and after each loop kernel, prior to taking the timestamps for start and end of the kernel; per-
formance variation across MPI tasks is recorded as a statistic. To enable a quantitative com-
parison of different systems, various performance averages are calculated from the profiles.

6.1.5 Random Access Benchmark
In scientific simulations, there are an increasing proportion of cycles with non-contiguous
memory access patterns. Compared to contiguous access the achievable performance is then
limited by memory latency rather than by bandwidth, especially if only one or few elements
per loaded cache line are used. The Random Access [25] or GUPS benchmark, which is also
part of the HPCC benchmark suite, measures the memory Giga-updates per second achieved
for randomly distributed memory access patterns. It can be run in serial as well as parallel
(MPI) mode; the aggregate – depending on the properties of the system interconnect – may
not scale linearly with the number of MPI tasks or nodes used.

6.1.6 APEX Benchmark
The starting point of the Application Performance Characterization project [26] (Apex) is the
assumption that each application or algorithm can be characterized by several major perform-
ance factors that are specific to the application and independent of the computer architecture.
A synthetic benchmark then combines these factors together to simulate the application's be-
haviour. Thus, the performance of the benchmark should be closely related to that of the cor-
responding application. Such a benchmark can be used as a realistic indicator of achievable
application performance and enables the users to directly evaluate a new platform based on
their own interests. At the same time, synthetic benchmarks are substantially easier to use
than real applications. Real applications are often too complex to be run by simulators, thus
prohibiting their use in the development of new architectures.

6.1.7 STREAM Benchmark
The STREAM benchmark is a simple synthetic benchmark program that measures sustainable
memory bandwidth (in MB/s) and the corresponding computation rate for simple vector ker-
nels. It measures "real world" bandwidth sustainable from ordinary user programs, not the
theoretical "peak bandwidth" provided by most vendors. The STREAM [27] benchmark is
applicable to a wide range of computers, from PC's and Mac's to vector supercomputers and
massively parallel processors. The STREAM benchmark is specifically designed to work with
datasets much larger than the available cache on any given system, so that the results are (pre-
sumably) more indicative of the performance of very large, vector style applications.
STREAM benchmark can be run on both uniprocessor and multiprocessors. The STREAM
benchmark has four kernels as described in the table below:

Name Kernel

COPY a(i) = b(i)

SCALE a(i) = q*b(i)

SUM a(i) = b(i) + c(i)

TRIAD a(i) = b(i) + q*c(i)
Table 27: STREAM Benchmark Kernels

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 133 25.06.2010

6.1.8 IOR Benchmark
IOR benchmark tool, a tool developed by LLNL, which tests system performance by focusing
on parallel/sequential read/write operations that are typical in scientific applications. It uses
IOR (Interleaved or Random), a script used for testing performance of parallel file systems
using various interfaces and access patterns. IOR uses MPI, as parallel programming model,
for processes synchronization, all nodes involved in IOR commands must use ntpd (Network
Time Protocol daemon) , as IOR timing depends on it. With IOR, clients can first write data,
and then read data written by another client, avoiding the problem of having to clear a client's
cache.

IOR tool exposes plenty of optional parameters that allow performing different kind of test,
modifying the most significant parameters of the application. This shows the advantages and
drawbacks of using a particular hardware and software architecture stressed by an application
that works in a specific way.

By modifying the invocation parameters in the command, it is possible to simulate a client
that starts an application with particular requirements and uses specific data structures. It is
possible to experiment one file per processor or shared and parallel file access patterns for
common set of testing parameters.

The most useful and interesting tests could be made by varying the following parameters:

• a S api -- API for I/O [POSIX|MPIIO|HDF5|NCMPI];
• b N block Size -- contiguous bytes to write per task;
• c collective -- collective I/O;
• F filePerProc – file-per-process;
• N N numTasks -- number of tasks that should participate in the test;
• s N segmentCount -- number of segments;
• t N transferSize -- size of transfer in bytes.

6.1.9 CPU Burn-in
CPU Burn-in [28] is a stability testing tool for overclockers. The program heats up any x86
CPU to the maximum possible operating temperature that is achievable by using ordinary
software. This allows the user to adjust the CPU speed up to the practical maximum while still
being sure that stability is achieved even under the most stressful conditions. The program
continuously monitors for erroneous calculations and errors, ensuring the CPU does not gen-
erate errors during calculations performed under overclocking conditions.

CPU Burn-in constantly cycles FPU intensive functions for a user specified period. The re-
sultant calculations are constantly checked for data integrity. If the program detects erroneous
data the user is immediately informed. Applications such as SETI@home and Distributed.Net
perform no such data checking. The user must rely on those programs to crash or the system
to hang before a problem can be noticed.

6.1.10 CacheBench
CacheBench [29] is a benchmark designed to evaluate the performance of the memory hierar-
chy of computer systems. Its specific focus is to parameterize the performance (raw band-
width in MB/s) of possibly multiple levels of cache present on and off the processor.

The goal of this benchmark is to establish peak computation rate given optimal cache reuse to
verify the effectiveness of high levels of compiler optimization on tuned and untuned codes.
CacheBench incorporates nine different tests, each performing repeated access to data items

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 134 25.06.2010

of varying vector lengths for a number of iterations. Computing the product of iterations and
vector length gives total bytes of data accessed. These nine tests are:

• Cache Read;
• Cache Write;
• Cache Read/Modify/Write;
• Hand tuned Cache Read;
• Hand tuned Cache Write;
• Hand tuned Cache Read/Modify/Write;
• Memset() from the C library;
• Memcopy() from the C library.

6.1.11 IOzone
IOzone [30] is a file system benchmark tool. The benchmark generates and measures a variety
of file operations. IOzone has been ported to many machines and runs under many operating
systems.

IOzone is useful for performing a broad file system analysis of a vendor’s computer platform.
The benchmark tests file I/O performance for the following operations: Read, write, re-read,
re-write, read backwards, read strided, fread, fwrite, random read, pread, mmap, aio_read,
aio_write.

6.2 Applications

This section describes the applications used by few of the WP8 prototypes. This section gives
the general overview of the applications. Further descriptions are given under each of the pro-
totype sections.

6.2.1 GADGET
GADGET is a freely available code for cosmological N-body/SPH simulations on massively
parallel computers with distributed memory written by Volker Springel [31] [32], Max-Plank-
Institute for Astrophysics, Garching, Germany. GADGET uses an explicit communication
model that is implemented with the standardized MPI communication interface. The code can
be run on essentially all supercomputer systems presently in use, including clusters of work-
stations or individual PCs.

GADGET computes gravitational forces with a hierarchical tree algorithm (optionally in
combination with a particle-mesh scheme for long-range gravitational forces) and represents
fluids by means of smoothed particle hydrodynamics (SPH). The code can be used for studies
of isolated systems, or for simulations that include the cosmological expansion of space, both
with or without periodic boundary conditions. In all these types of simulations, GADGET
follows the evolution of a self-gravitating collisionless N-body system, and allows gas dy-
namics to be optionally included. Both the force computation and the time stepping of
GADGET are fully adaptive, with a dynamic range that is, in principle, unlimited.

GADGET can therefore be used to address a wide array of astrophysics interesting problems,
ranging from colliding and merging galaxies, to the formation of large-scale structure in the
Universe. With the inclusion of additional physical processes such as radiative cooling and
heating, GADGET can also be used to study the dynamics of the gaseous intergalactic me-
dium or to address star formation and its regulation by feedback processes.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 135 25.06.2010

6.2.2 NAMD
NAMD [33] (NAnoscale Molecular Dynamics) is a molecular dynamics program designed for
high performance simulation for parallel computers. It is written using the Charm++ parallel
programming model, noted for its parallel efficiency, and often used to simulate large systems
(millions of atoms). It has been developed by the joint collaboration of the Theoretical and
Computational Biophysics Group (TCB) and the Parallel Programming Laboratory (PPL) at
the University of Illinois at Urbana-Champaign.

NAMD uses spatial decomposition coupled with a multithreaded, message-driven design,
which is shown to scale efficiently to multiple processors. Also, NAMD incorporates the Dis-
tributed Parallel Multipole Tree Algorithm for full electrostatic force evaluation in O(N) time.
NAMD can be connected via a communication system to a molecular graphics program in
order to provide an interactive modelling tool for viewing and modifying a running simula-
tion.

6.2.3 RAxML
RAxML-VI-HPC (randomized accelerated maximum likelihood for high performance com-
puting) is a sequential and parallel program for inference of large phylogenies with maximum
likelihood (ML).

Phylogenetic trees are used to represent the evolutionary history of a set of organisms. The
reconstruction of such trees is usually based on an alignment of DNA or protein sequences
from these organisms. Due to the rapid growth of sequence data over the last years there is an
increasing demand to compute large trees that often comprise more than 1000 organisms and
sequence data from several genes (so-called multi-gene alignments). Since alignments con-
tinuously grow in the number of organisms and in sequence length the application of high-
performance computing techniques is essential to keep pace with the forthcoming data flood.

RAxML [34] is currently among the fastest programs for phylogenetic inference under the
Maximum Likelihood (ML) criterion that has repeatedly been shown to be one of the most
accurate models for phylogeny reconstruction. Efficient parallelization for OpenMP,
PThreads, and MPI exist that already proved to scale well up to 2000 processors on a wide
variety of architectures including GPUs, the Cell BE, SGI Altix4700, and IBM BlueGene/L.

The performance of RAxML’s computational kernels has steadily been optimized over the
last years. Though the main development focus has been on x86-based architectures, most
optimizations are very generic and thus other architectures also benefit from it. For example,
the computation intensive loops have been simplified and partially rewritten in order to facili-
tate compiler-based loop vectorization. The MPI version of RAxML uses a master/worker
concept and as such makes frequent use of collective communication calls. Wherever possi-
ble, the most specific MPI call has been used, so that the application requires no knowledge
about the communication infrastructure (network topology, bandwidth, latency, etc.) but
leaves all decisions to the MPI runtime environment.

6.2.4 DL-POLY
DL_POLY [35] is a general purpose serial and parallel molecular dynamics simulation pack-
age developed at Daresbury Laboratory by W. Smith, T.R. Forester and I.T. Todorov. The
Molecular Simulation Group (now part of the Computational Chemistry Group, MSG) devel-
oped the original package at Daresbury Laboratory under the auspices of the Engineering and
Physical Sciences Research Council (EPSRC) for the EPSRC's Collaborative Computational
Project for the Computer Simulation of Condensed Phases (CCP5). The Natural Environment
Research Council through the eMinerals project also supported later developments. The pack-
age is the property of the Central Laboratory of the Research Councils.

D8.3.2 Final technical report and architecture proposal

PRACE - RI-211528 136 25.06.2010

Two versions of DL_POLY are available, DL_POLY2, which has been parallelized using the
Replicated Data strategy and is useful for simulations of up to 30,000 atoms on 100 proces-
sors and DL_POLY3, which uses Domain Decomposition to achieve parallelism and is suit-
able for simulations of order 1 million atoms on 8-1024 processors.

