

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2007-2.2.2.1 - Preparatory phase for 'Computer and Data
Treatment' research infrastructures in the 2006 ESFRI Roadmap

PRACE

Partnership for Advanced Computing in Europe

Grant Agreement Number: RI-211528

D6.6

Report on petascale software libraries and programming models

FINAL

Version: 1.0
Author(s): Giovanni Erbacci (CINECA)
 Carlo Cavazzoni (CINECA)
 Filippo Spiga (CINECA)
 Iris Christadler (LRZ)
Date: 26/10/2009

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 i

Project and Deliverable Information Sheet

Project Ref. №: RI-211528
Project Title: Partnership for Advanced Computing in Europe
Project Web Site: http://www.prace-project.eu/
Deliverable ID: D6.6
Deliverable Nature: Report

Contractual Date of Delivery:
31 / 10 / 2009

Deliverable Level:
PU

Actual Date of Delivery:
30 / 10 / 2009

PRACE Project

EC Project Officer: Maria Ramalho-Natario

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Title: Report on petascale software libraries and programming models
ID: D6.6
Version: 1.0 Status: Final
Available at: http://www.prace-project.eu/
Software Tool: Microsoft Word 2003

Document

File(s): D6.6.doc
Written by: Giovanni Erbacci (CINECA),

Carlo Cavazzoni (CINECA),
Filippo Spiga (CINECA),
Iris Christadler (LRZ)

Contributors: Reinhold Bader (LRZ), Mark Bull (EPCC),
Guillaume Colin de Verdiere (GENCI),
Maciej Cytowski (PSNC), Montse Farreras
(BSC), Maciej Filocha (PSNC), Georgios
Goumas (GRNET), Jose Gracia (HLRS),
Hans Hacker (BAdW-LRZ), Pierre-
Francois Lavalleee (IDRIS), Olli-Pekka
Letho (CSC), Walter Lioen (SARA), James
Perry (EPSRC), Sami Saarinen (CSC),
Ramnath Sai Sagar (BSC), Tim Stitt
(CSCS), Aad Van der Steen (NCF), Volker
Weinberg (BADW-LRZ)

Reviewed by: Thomas Eickermann (FZJ),
Stefan Wesner (HLRS)

Authorship

Approved by: Technical Board

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 i

Document Status Sheet

Version Date Status Comments
0.1 26/March/2009 Draft Initial Draft
0.2 27/July/2009 Draft Chapters 3-5 improved
0.3 15/September/2009 Draft Chapter 6 and 8

improved
0.4 5/October/2009 Draft Included Chapter 7 and

Appendixes
0.5 12/October/2009 Final Draft For PRACE QA
1.0 26/October/2009 Final version For EC

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 ii

Document Keywords and Abstract

Keywords: PRACE, HPC, Research Infrastructure, Petascale, Software libraries,

Parallel Programming models and languages.

Abstract: This deliverable identifies and analyses the programming models and
the software libraries required by petascaling applications in the
PRACE implementation phase.

The work starts from an analysis of the applications mainly identified
in D6.1 and D6.2.2, covering a broad range of scientific areas, and
representative of the European HPC usage, to assess the state of the art
with particular attention to programming languages, programming
models and scientific libraries.

Starting from this basis an accurate survey and analysis of the new
upcoming programming models and languages suitable for petascale
applications is presented, trying to identify gaps and opportunities
provided in terms of performance and efficiency and benefit for
parallelism.

Furthermore, three numerical kernels, typical of the most important
computational applications, have been selected, and coded, using
twelve of the different programming languages and paradigms under
investigation. This coding experience and the consequent porting and
assessment on the prototypes selected by WP8, greatly contributed to
better complete the analysis objective of this Deliverable.

Copyright notices

© 2009 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-211528 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 iii

Table of Contents
Project and Deliverable Information Sheet ... i
Document Control Sheet.. i
Document Status Sheet .. i
Document Keywords and Abstract.. ii
Table of Contents ...iii
List of Figures ...viii
List of Tables... ix
References and Applicable Documents ... x
List of Acronyms and Abbreviations...xii
Executive Summary .. 1
1 Introduction ... 2

1.1 Objectives ... 2
1.2 Methodology... 3
1.3 Structure of the Report ... 3

2 Analysis of current HPC applications ... 4
2.1 Current programming models in PRACE application list .. 4
2.2 Current libraries in PRACE application list... 7

3 MPI, OpenMP, mixed MPI-OpenMP: current standards and their evolution. 9
3.1 MPI ... 9

3.1.1 Current standard (MPI 2.2).. 9
3.1.2 Overview of support in current implementations ... 9
3.1.3 Future: MPI 3.0.. 9

3.2 OpenMP ... 10
3.2.1 Current standard (OpenMP 3.0) .. 10
3.2.2 Overview of support in current implementations ... 11
3.2.3 Future ... 11

3.3 Mixed mode (MPI+OpenMP)... 11
3.3.1 Current status ... 12
3.3.2 Overview of support in current implementations ... 12
3.3.3 Future ... 12

3.4 Final remarks... 13
4 Partitioned Global Address Space (PGAS) Programming Languages................................... 14

The PGAS Programming Model .. 14
4.1 Unified Parallel C (UPC) .. 15

4.1.1 The Execution and Memory Model... 15
4.1.2 Current Implementations.. 16

4.2 Coarray Fortran (in the context of the Fortran 2008 Draft Standard) .. 17
4.2.1 The Execution and Memory Model... 17
4.2.2 Current Implementations.. 18

4.3 Titanium... 19
4.3.1 The Execution and Memory model ... 19
4.3.2 Current Implementation ... 20

5 Next Generation Programming Languages and Models.. 21
5.1 Chapel... 21

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 iv

5.1.1 The Chapel Programming Model ... 21
5.1.2 Chapel Developments... 22

5.2 X10.. 22
5.2.1 The X10 Programming Model.. 23
5.2.2 X10 Developments .. 23

5.3 Fortress... 23
5.3.1 The Fortress Programming Model ... 24
5.3.2 Fortress Developments ... 25

5.4 Transactional Memory.. 25
5.4.1 Basic concepts .. 25
5.4.2 Current implementations .. 26

6 Languages, Paradigms and Environments for Hardware Accelerators 28
Assessment of the libraries... 29

6.1 Cell programming ... 30
6.2 CUDA (by NVIDIA) .. 31

6.2.1 Programming Model .. 31
6.2.2 Memory Model ... 32
6.2.3 Current support and libraries availability ... 33

6.3 OpenCL .. 34
6.3.1 OpenCL Architecture.. 34
6.3.2 Execution Model... 35
6.3.3 Memory Model ... 36
6.3.4 The OpenCL framework and runtime ... 37
6.3.5 Portability and know limitations .. 37

6.4 CAPS HMPP.. 37
6.4.1 Programming interface .. 37
6.4.2 Description of the runtime.. 38
6.4.3 Current implementation.. 39

6.5 RapidMind ... 39
6.5.1 Architecture and programming model.. 40
6.5.2 Portability and known limitations .. 41
6.5.3 Future Developments.. 41

6.6 CellSs (StarSs programming models family) .. 42
6.7 Cn for ClearSpeed accelerators.. 43

7 Assessment of the languages and porting activity .. 45
7.1 The concept of productivity in the HPC context... 45
7.2 Measuring Productivity .. 46
7.3 Porting Results... 48

7.3.1 Number of Source Lines ... 51
7.3.2 Development Time .. 56
7.3.3 Performance Comparison... 60

Comparing MKL versus MPI+OpenMP.. 63
New and old PGAS languages ... 64
GPGPU languages.. 64
Languages for accelerators... 65

7.3.4 Considerations about the reporting template ... 65
7.3.5 Lessons learned .. 66

8 Assessment of libraries for petascale systems ... 71
8.1 Basic Libraries ... 71

8.1.1 Linear Algebra ... 71

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 v

8.1.2 Fast Fourier Trasform.. 72
8.2 I/O Libraries .. 73

8.2.1 POSIX I/O... 73
8.2.2 MPI-I/O .. 74
8.2.3 HDF5.. 75
8.2.4 NetCDF-4 ... 76
8.2.5 Parallel NetCDF .. 76
8.2.6 Preliminary results testing I/O parallel libraries ... 77
8.2.7 Conclusion on parallel I/O libraries .. 79

8.3 High Level Libraries ... 79
8.3.1 ScaLAPACK ... 80
8.3.2 PETSc ... 81
8.3.3 Vendor libraries ... 81
8.3.4 NAG.. 81

8.4 Communication libraries .. 82
8.5 Special Purpose Libraries ... 82
8.6 Conclusion of the assessment.. 83

9 Conclusions and final remarks... 84
10 Annex A: Reference Input Data Sets (RIDS).. 87

10.1 mod2am .. 87
10.2 mod2as.. 88
10.3 mod2f .. 89
10.4 mod2h ... 90

11 Annex B: Hardware Overview... 91
11.1 System "clearspeed-petapath" (WP8-NCF).. 91
11.2 System “itanium” (LRZ)... 91
11.3 System "huygens" (WP7-NCF-SARA)... 91
11.4 System "louhi" (WP7-CSC) .. 91
11.5 System "cell-cluster" (PSNC) ... 91
11.6 System “maxwell” (WP8-EPCC) ... 92
11.7 System "nehalem" (“ice” WP8-LRZ, “inti” WP7-CEA, “baku” HLRS).................................... 92
11.8 System “uchu” (WP8-CEA).. 92

12 Annex C: Software Engineering Metrics .. 93
12.1 SLOC: Source Lines of Code.. 93
12.2 NCSS: Non-Commented Source Code Statements ... 93
12.3 Time to solution & others ... 93

13 Annex D: Template of the Porting Diary .. 94
14 Annex E: Reported Results for all Languages.. 96

14.1 Coarray Fortran (CAF) .. 96
Basic Information... 96
Developer Diary ... 96
Porting Results on Cray XT (CSC) .. 96
Porting Results on SGI Altix (LRZ) .. 97
Performance Measurements ... 98

14.2 CAPS HMPP.. 99
Basic Information... 99
Developer Diary ... 99
Porting Results ... 99
Performance Measurements ... 100

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 vi

14.3 Cell-Superscalar (CellSs) .. 101
Basic Information... 101
Developer Diary ... 101
Porting Results ... 103
Performance Measurements ... 105

14.4 Chapel... 107
Basic Information... 108
Developer Diary ... 108
Porting Results ... 108
Performance Measurements ... 110

14.5 ClearSpeed Cn ... 111
Basic Information... 111
Developer Diary ... 111
Porting Results ... 112
Performance Measurements ... 114

14.6 CUDA ... 115
Basic Information... 115
Developer Diary ... 115
Porting Results ... 116
Performance Measurements ... 118

14.7 CUDA+MPI ... 120
Basic Information... 120
Developer Diary ... 120
Porting Results ... 121
Performance Measurements ... 122

14.8 FPGA (VHDL and/or Harwest C).. 123
Basic Information... 123
Developer Diary ... 123
Porting Results ... 123
Performance Measurements ... 125

14.9 MPI+OpenMP ... 126
Basic Information... 126
Developer Diary ... 126
Porting Results ... 128
Performance Measurements ... 131

14.10 OpenCL.. 132
Basic Information... 132
Developer Diary ... 132
Porting Results ... 132
Performance Measurements ... 133

14.11 RapidMind... 134
Basic Information... 134
Developer Diary ... 134
Porting Results ... 135
Performance Measurements ... 137

14.12 Unified Parallel C (UPC) .. 138
Basic Information... 138
Developer Diary ... 138
Porting Results on System louhi (Cray XT)... 139
Porting Results on System itanium (SGI Altix) ... 140
Porting Results on System Huygens (Power5) .. 140

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 vii

Performance Measurements ... 142
14.13 X10.. 144

Basic Information... 144
Developer Diary ... 144
Porting Results ... 145
Performance Measurements ... 147

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 viii

List of Figures
Figure 1: Message Passing, Shared Memory and PGAS models .. 14
Figure 2: Differences between CPUs and GPUs... 31
Figure 3: CUDA two-level hierarchy of thread organization.. 32
Figure 4: CUDA memory device model ... 33
Figure 5: OpenCL Architecture Model ... 35
Figure 6: OpenCL Work-Groups and Work-Items organization... 36
Figure 7: OpenCL Memory Model.. 36
Figure 8: HMPP code generation flow.. 39
Figure 9: RapidMind runtime.. 40
Figure 10: CellSs runtime behaviour... 43
Figure 11: An example of porting diagram (perfomance vs. time-of-development) 48
Figure 12: Overview of the number of source lines for all kernels as reported by the developers 52
Figure 13: Number of source lines for mod2am as reported by the developers.................................... 52
Figure 14: Number of source lines for mod2as as reported by the developers 53
Figure 15: Number of source lines for mod2f as reported by the developers 53
Figure 16: Development Time vs. Number of Source Lines for mod2am kernel 54
Figure 17: Development Time vs. Number of Source Lines for mod2as kernel................................... 55
Figure 18: Development Time vs. Number of Source Lines for mod2f kernel..................................... 55
Figure 19: Comparing Development Time of first and last version of mod2am kernel........................ 56
Figure 20: Comparing Development Time of first and last version of mod2as kernel 57
Figure 21: Comparing Development Time of first and last version of mod2f kernel 57
Figure 22: Development Time vs. max Performance for mod2am kernel .. 59
Figure 23: Maximum performance for mod2am in % of peak performance... 61
Figure 24: Maximum Performance for mod2as in % of peak performance. ... 62
Figure 25: Maximum Performance for mod2f in % of peak performance. ... 62
Figure 26: Performance comparison of MKL with and without MPI (MKL vs. MPI+OpenMP) 63
Figure 27: Performance comparison between PGAS languages ... 64
Figure 28: Performance comparison between GPGPU languages .. 64
Figure 29: Performance comparison of languages for different accelerators (in absolute values)........ 65
Figure 30: Performance comparison for different accelerators (in % of peak performance) 65
Figure 31: CAF mod2am performances (tests performed on louhi) ... 98
Figure 32: CAF mod2f performances (tests performed on louhi) ... 98
Figure 33: CAPS HMPP mod2am performances (tests performed on uchu)...................................... 100
Figure 34: CAPS HMPP mod2as performances (test performed on uchu) ... 100
Figure 35: CellSs mod2am performances (tests performed on maricell).. 105
Figure 36: CellSs mod2as performances (tests performed on maricell) ... 105
Figure 37: CellSs mod2f performances (tests performed on cell-cluster)... 106
Figure 38: Chapel mod2am performances (test performed on nehalem/baku) 110
Figure 39: Chapel mod2as performances (tests performed on nehalem/baku) 110
Figure 40: CUDA mod2am performances (tests performed on uchu) .. 118
Figure 41: CUDA mod2as performances (tests performed on uchu) .. 118
Figure 42: CUDA mod2f performances (tests performed on uchu) .. 119
Figure 43: CUDA+MPI mod2am performances (tests performed on uchu) 122
Figure 44: CUDA+MPI mod2as performances (test performed on uchu) .. 122
Figure 45: MPI+OpenMP mod2am performances (tests performed on inti) 131
Figure 46: MPI+OpenMP mod2as performances (tests performed on inti) .. 131
Figure 47: OpenCL mod2am performances (tests performed on uchu) .. 133
Figure 48: RapidMind mod2am performances (tests performed on uchu).. 137
Figure 49: RapidMind mod2as performances (test performed on uchu)... 137
Figure 50: UPC mod2am performances (tests performed on itanium and huygens)........................... 142
Figure 51: UPC mod2as performances (tests performed on itanium and huygens) 142
Figure 52: UPC mod2f performances (tests performed on itanium and louhi) 143
Figure 53: X10 mod2am performances (tests performed on huygens).. 147
Figure 54: X10 mod2as performances (tests performed on huygens) ... 147

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 ix

List of Tables
Table 1: Classification of PRACE Applications ... 6
Table 2: Library categories.. 7
Table 3: Classification of most common libraries in PRACE codes... 8
Table 4: Advantages/Disadvantages exhibited by MPI and OpenMP models 13
Table 5: Availability of programming languages for x86 multi-core and hardware accelerators 29
Table 6: Vendor implementations of mathematical libraries for hardware accelerators....................... 29
Table 7: Mapping of Scientific applications on basic numerical kernels.. 46
Table 8: Porting status for all kernels.. 49
Table 9: Maximum performance achieved by the kernels .. 50
Table 10: Mapping of hardware systems and kernels ... 50
Table 11: Reported number of source lines for all kernels.. 51
Table 12: Development time for all kernels as reported ... 56
Table 13: Performance comparison of languages in percentage of peak performance 60
Table 14: Hardware details (peak performance per core or accelerator)... 61
Table 15: Pros and Cons of POSIX I/O... 74
Table 16: Pros and Cons of MPI I/O... 75
Table 17: Pros and Cons of HDF5 library... 76
Table 18: Pros and Cons of parallel NetCDF library .. 77
Table 19: Parallel IO benchmark using IOR ... 78
Table 20: Parallel IO benchmarking using RAMSES... 79
Table 21: The 4 chosen EUROBEN synthetic kernels.. 87
Table 22: RIDS for mod2am... 88
Table 23: RIDS for mod2as... 89
Table 24: RIDS for mod2f... 89
Table 25: RIDS for mod2h.. 90

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 x

References and Applicable Documents
[1] PRACE Deliverable D 6.1, Identification and categorization of applications and initial

benchmark suite (June 2008)
[2] PRACE Deliverable D 6.2.2, Final report of Application requirements (September

2008)
[3] Asanovic et. al., The Landscape of Parallel Computing Research: A View from

Berkeley, Technical Report No. UCB/EECS-2006-183 (2006)
[4] Top 500 Supercomputer Sites, http://www.top500.org
[5] The Message Passing Interface standard, http://www.mcs.anl.gov/research/projects/mpi/
[6] MPI 2.2, https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MpiTwoTwoWikiPage
[7] MPI 3.0, http://meetings.mpi-forum.org/MPI_3.0_main_page.php
[8] D. Bonachea, GASNet Specification, U.C. Berkeley Tech Report CSD-02-1207 (2002)
[9] D. Bonachea and J. Jeong, GASNet: A Portable High-Performance Communication

Layer for Global Address-Space Languages, CS258 Parallel Computer Architecture
Project (2002)

[10] W. Carlson et. al., UPC: Distributed Shared Memory Programming, Book of Wiley
Inter-Science (2005)

[11] IBM UPC Compiler, http://www.alphaworks.ibm.com/tech/upccompiler
[12] GCC UPC, http://www.intrepid.com/upc.html
[13] Berkeley UPC, http://upc.lbl.gov
[14] Michigan Tech MuPC, http://www.upc.mtu.edu
[15] R. W. Numrich, F--, A parallel extension to Cray Fortran, Scientific Programming 6

(1997)
[16] R. W. Numrich and J. Reid, Co-Array Fortran for Parallel Programming, ACM

SIGPLAN Fortran Forum 17 (1998)
[17] G95, http://www.g95.org
[18] J. Mellor-Crumney et. al., A critique of Co-Array Features in Fortran 2008

(http://www.j3-Fortran.org/doc/meeting/183/08-126.pdf)
[19] K. Yelick et. al., Titanium: A High-Performance Java Dialect, In ACM (1998)
[20] P. N. Hilfinger, Titanium Language Reference Manual, technical report of University of

California at Berkeley (2001)
[21] HPJava, http://www.hpjava.org
[22] Titanium, http://titanium.cs.berkeley.edu
[23] Chapel Language Specification v0.78, http://chapel.cray.com/spec-0.750.pdf (2008)
[24] B.L. Chamberlain et. al., Parallel Programmability and the Chapel Language,

International Journal of High Performance Computing Applications 21 (2007)
[25] J. Dongarra et. al., DARPA's HPCS Program: History, Models, Tools, Languages,

Advances in Computers (2008)
[26] P. Charles et. al., X10: an object-oriented approach to non-uniform cluster computing,

OOPSLA '05: Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications (2005)

[27] X10 language, http://x10-lang.org
[28] Fortress project, http://research.sun.com/projects/plrg/
[29] Fortress project, http://projectfortress.sun.com/Projects/Community/
[30] Intel STM compiler, http://software.intel.com/en-us/articles/intel-c-stm-compiler-

prototype-edition-20/
[31] TL2, http://stamp.stanford.edu/
[32] RSTM, http://www.cs.rochester.edu/research/synchronization/rstm/
[33] OpenTM Transactional API, http://opentm.stanford.edu/

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 xi

[34] M. Wagner, Grafikprozessoren als Hardwarebeschleuniger, Master Thesis @ TU-
Dresden (2008)

[35] CELL, http://www.ibm.com/developerworks/power/cell
[36] NVIDIA CUDA, http://www.NVIDIA.com/object/cuda_home.htm
[37] T. Halfhill, Parallel Processing with CUDA, Microprocessor Journal (2008)
[38] Portland Group, http://www.pgroup.com/resources/accel.htm
[39] Khronos Group, http://www.khronos.org/opencl
[40] OpenCL 1.0 Specification, http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf

(updated May 16, 2009).
[41] R. Dolbeau et. al., HMPP: A Hybrid Multi-core Parallel Programming Environment, In

the proceedings of the Workshop on General Purpose Processing on Graphics
Processing Units (2007).

[42] CAPS enterprise, http://www.caps-entreprise.com
[43] RapidMind, http://www.rapidmind.com
[44] Sh project, http://libsh.org
[45] M. McCool et. al., Performance Evaluation of GPUs Using the RapidMind

Development Platform, SC06
[46] P. Bellens et. al., CellSs: a Programming Model for the Cell BE Architecture,

ACM/IEEE Conference on Supercomputing (2006)
[47] J. P. Perez, CellSs: making it easier to program the cell broadband engine processor,

IBM Journal of Research and Development 51 (2007)
[48] ClearSpeed, http://www.clearspeed.com
[49] ClearSpeed CSX700,

http://www.clearspeed.com/products/documents/CSX700_Product_Brief.pdf
[50] S. Squires et. al., Software Productivity Research in High Performance Computing, in

“CTWatch Quaterly – High Productivity Computing Systems and the Path Towards
Usable Petascale Computing Part A: User Productivity Challenges”

[51] IDRIS babel and vargas hardware, http://www.idris.fr/eng/Resources/index-babel.html
and http://www.idris.fr/eng/Resources/index-vargas.html

[52] DEISA benchmark, http://www.deisa.eu/science/benchmarking
[53] IOR benchmark, http://sourceforge.net/projects/ior-sio/
[54] PRACE Deliverable D 6.3.1, Report on available Performance Analysis and

Benchmark Tools, Representative Benchmark.
[55] K. Kennedy et. al., Defining and Measuring the Productivity of Programming

Languages, International Journal of High Performance Computing Applications 18
(2004)

[56] CLOC, http://cloc.sourceforge.net
[57] S. H. Kan, Metrics and Models in Software Quality Engineering, Addison-Wesley

Professional (2005)
[58] S. P. VanderWiel, Complexity and Performance in Parallel Programming Languages,

International Workshop on High-Level Programming Models and Supportive
Environments (1997)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 xii

List of Acronyms and Abbreviations
ACML AMD Core Math Library
ALF Accelerated Library Framework
AHTP Advanced HPC Technology Platform. To be created in this project as

permanent groups to identify and work on future technologies for
multi-Petaflop/s systems

AMPI Adaptive MPI
ANSI American National Standards Institute
APGAS Asynchronous Partitioned Global Address Space
API Application Programming Interface
BLACS Basic Linear Algebra Communication Subprograms
BLAS Basic Linear Algebra Subprograms
BSCW Basic Support for Cooperative Work, a collaborative workspace

software package
CAF Coarray Fortran
CFD Computational Fluid Dynamics
CUDA Compute Unified Device Architecture
DARPA Defense Advanced Research Projects Agency, an agency of the U.S.

Department of Defence responsible for the development of new
technology for use by the military.

DEISA Distributed European Infrastructure for Supercomputing
Applications, a EU project by leading national HPC centres

DMA Direct Memory Access
DP Double Precision
ECC Error Correcting Code
EIB Element Interconnect Bus
ESSL Engineering and Scientific Subroutine Library
Flop Floating-point operation (1 Mflop/s = 106 Flop/s)
FFT Fast Fourier Transform
FPGA Field-Programmable Gate Array
General Partner All PRACE partners, excluding the Principal Partners
GPFS General Parallel File System (IBM)
GPGPU General-Purpose Graphic Processing Unit
GPU Graphics Processing Unit
HCE Harwest Compiling Environment
HLL High Level Library
HPC High Performance Computing
HPCS High Productivity Computing Systems, a DARPA project
HTM Hardware Transactional Memory
HWA Hardware Accelerator

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 xiii

IEEE Institute of Electrical and Electronics Engineers
IEEE754 IEEE Standard for Floating-Point Arithmetic
ISC International Supercomputing Conference; European equivalent to

the US based Supercomputing conference. Held annually in Germany
LAPACK Linear Algebra PACKage
LEF LINPACK equivalent flops. This is a measure of how many “cycles”

are used for an application, scientific area or other usage
measurement where it is spread across different systems. It is
essentially utilisation percentage multiplied by the Rmax of a system
and allows summation across systems

LCQD Lattice Quantum Chromo-Dynamics
MASSV Mathematics Acceleration Subsystem for Vectors
MD Molecular Dynamics
MIMD Multiple Instruction Multiple Data
MKL Math Kernel Library
MoU Memorandum of Understanding
MPI Message Passing Interface
MPMD Multiple Program Multiple Data
MTAP Multi-Threaded Array Processors; computing element on ClearSpeed

accelerator cards
NDA Non-Disclosure Agreement
NetCDF Network Common Data Form
OpenMP Open Multi-Processing. An API for shared-memory parallel

programming
PDE Partial Differential Equation
PPE Power Processing Element
PRACE Partnership for Advanced Computing in Europe; project acronym
PP Principal Partner. The five PRACE partners that have expressed

interest in hosting a future Petaflop/s system
PVM Parallel Virtual Machine
QCD Quantum Chromo-Dynamics
RIDS Reference Input Data Set
SDK Software Development Kit
SIMD Single Instruction Multiple Data
SP Single Precision
SPE Synergistic Processing Element
SPMD Single Process Multiple Data or Single Program Multiple Data
SSE Streaming SIMD Extensions
SSE2 Streaming SIMD Extensions 2
STM Software Transactional Memory
TCC Transactional Coherence and Consistency

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 xiv

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this
context the Supercomputing Research Infrastructure would host the
tier-0 systems; national or topical HPC centres would constitute tier-1

TM Transactional Memory
UPC Unified Parallel C
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuits
VMX Vector Multimedia eXtension
WP Work Package
WP5 PRACE Work Package 5, Deployment of prototype systems
WP6 PRACE Work Package 6, Software enabling for Petaflop/s systems
WP7 PRACE Work Package 7, Petaflop/s Systems for 2009/2010
WP8 PRACE Work Package 8, Future Petaflop/s computer technologies

beyond 2010

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 1

Executive Summary
The objective of WP6 Task 6 “Software libraries and programming models“ is to understand
and evaluate soundness, suitability and efficiency of new programming models, languages
and libraries for petascaling applications in the PRACE implementation phase.

The work starts with an analysis of the applications mainly selected in D6.1 and D6.2.2, to
better identify the state of the art in the field of programming languages, parallelization
schema, programming models and software libraries, adopted by applications on present
architectures. From this basis, an accurate survey and analysis of the new upcoming
programming models and languages suitable for petascale applications is presented, trying to
identify gaps and opportunities provided in terms of performance and efficiency and benefits
for parallelism. The survey analyses the current standards for parallel programming and their
evolution, the PGAS languages (UPC, CAF, Titanium), the next generation programming
languages and models (mainly the languages introduced as a consequence of the DARPA
HPCS project: Chapel, X10, Fortress) and then the languages, paradigms and environments
for hardware accelerators (Cell programming, CUDA, OpenCL, CAPS HMPP, RapidMind,
CellSs and Cn). The assessment of libraries for the petascale systems is presented, ranging
from the basic libraries (for basic numerical computations) to I/O libraries, to communication
libraries, to special purpose libraries (in charge for tasks not directly related to numerical
kernels). Furthermore, to allow a comparative evaluation of new programming paradigms and
languages and their soundness for petascaling, a specific experimental activity has been
carried out: Three main numerical kernels, have been selected, and ported to twelve of the
main programming languages and paradigms under investigation. This work, although
qualitative, allowed to assess (for the first time, in a so ample manner) the maturity, the
effectiveness, the soundness, and the programming effort of the different new languages and
paradigms analyzed. The main findings of the present work are briefly summarised below:

MPI is still the de facto standard for HPC, but fundamental limitations are critical for hyper
scalability. A more promising approach, to effectively scale up the applications, seems the
hybrid programming model, based on coupling message-passing and multi-threading.

Different players are proposing new parallel languages, but none of them appears to be able to
reach a production level maturity in the short term, and have a strong impact on the
computational community. The DARPA languages still provide very poor performance and
the work on them should be better focalised and unified, to be appealing for the HPC
community. The PGAS languages could be more promising mainly if a standardisation
process will be effective soon.

Hardware accelerators appear to have a big potentiality. Specific languages and programming
environments have been defined and experimented in different applicative contexts. At
present time it is difficult to identify common directions and guidelines for languages to
efficiently exploit accelerators. The general impression is that all these languages are still
”hardware driven” and not stable in their evolution. It is highly desirable that some standard
will emerge soon in this context; the language on which most people pins their hopes is
probably OpenCL. Another important issue in the direction of portability, productivity and
performance seems to be represented by tools like RapidMind and the CAPS HMPP, but it is
still too early to see what will be the real impact of this kind of tools. Probably a good
direction to enhance the programming models for accelerators could be the availability of
compilers with specific APIs to allow a semi-automatic code generation.

In summary, the Deliverable presents an analysis of the maturity, suitability, applicability of
novel programming models, languages and libraries for Petascaling. The information is
valuable also for other WPs, such as WP5, WP7 and WP8.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 2

1 Introduction

The Partnership for Advanced Computing in Europe (PRACE) has the overall objective to
prepare for the creation of a persistent pan-European HPC service. PRACE is divided into a
number of inter-linked work packages, and WP6 focuses on the software for petascale
systems.

The primary goal of PRACE WP6 “Software enabling for Petaflop/s systems” is to identify
and understand the software libraries, programming paradigms and languages, tools,
benchmarks and skills required by users to ensure that their applications can use a petaflop/s
system productively and efficiently. WP6 is the largest of the technical PRACE work
packages and involves all of the PRACE partners.

Task 6.6 is responsible for identifying the software libraries and programming models to
implement petascaling applications. This is based on the analysis performed in D6.1 ([1]) and
D6.2.2 ([2]) on a list of applications, covering a broad range of scientific areas and
representative of the workload of today’s European HPC systems. The outcome of these two
deliverables is used to identify parallelization schemes, software libraries and programming
models of these applications on present architectures. Key aspects of this work are the
analysis of the current software libraries, their evolution to cope with petascale systems, new
programming models and new tools to let current applications scale on petascale machines.

To better evaluate new programming paradigms and languages and their soundness for
petascaling, three numerical kernels, typical of the most important computational applications,
will be coded, using the main programming languages and paradigms investigated. This
coding experience and the consequent porting and assessment on the prototypes selected by
WP8, will greatly contribute to better complete the analysis, and evaluate the maturity, the
effectiveness, the soundness, but also the programming effort of the different new languages
and paradigms analysed. Furthermore, this experience will be useful to better evaluate if
applications may find a smooth path toward petascaling, taking advantage of the evolution of
the current paradigms, or if a significant re-coding and use of new libraries and new
paradigms, or even new language extensions, or new frameworks to exploit the functionality
of new accelerators, may represent a more promising approach.

1.1 Objectives

The objective of this work is to analyze in detail the role of new programming languages,
programming models, frameworks for accelerators, as well as software libraries, in order to
enhance applications to greatly benefit of petascaling systems.

In particular, the main objectives of the deliverable are:

• Identifying the programming models and the software libraries used today in PRACE
applications;

• Analyze the evolution of the present programming models and new programming
models and languages, and discuss their impact for petascale systems;

• Evaluate the potential of new languages and frameworks on prototype systems (based
on hardware accelerators) to speed up applications, presenting some experiments on
relevant numerical kernels;

• Evaluate the importance of the software libraries and the potential for optimizations on
petascale systems.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 3

1.2 Methodology

First the applications and software libraries already identified and analyzed in previous
deliverables are reviewed to extract information about the programming models and software
libraries currently used in PRACE applications. Then, the evolution of the main programming
models, new languages and frameworks is analyzed to evaluate their pros and cons for
applications in the context of petascale systems.

The evaluation of each programming model and language was assigned to the personal of the
PRACE project with most experience or with a direct interest on that particular model, but
more contributions from other partners are also taken into account. At the end of this phase,
three numerical kernels have been selected and implemented using the main programming
languages and models investigated, allowing a direct evaluation of these languages on the
WP8 prototypes.

Finally software libraries have been analyzed. We have selected the main libraries used in
PRACE applications and grouped by category and tagged. After this initial classification,
each group has been analyzed by itself, underlying the strengths and weaknesses in a
petascale context.

1.3 Structure of the Report

In Chapter 2 the applications identified by PRACE as representatives of the system load in
PRACE centres are classified on the base of their parallel programming paradigms.
Moreover, the most common software libraries used by the computational applications are
classified on the basis of the characteristics relevant for petascale systems.

Chapter 3 analyses the current standards for parallel programming and their evolution (MPI,
OpenMP, hybrid programming).

Chapter 4 presents the main features of the PGAS programming model, focusing on the
specific implementation in the languages UPC, CAF and Titanium. The next generation
programming languages and models, mainly the languages introduced as a consequence of the
DARPA HPCS project (Chapel, X10, Fortress) are analysed in Chapter 5.

Chapter 6 introduces the languages, paradigms and environments for hardware accelerators:
Cell programming, CUDA, OpenCL, CAPS HMPP, RapidMind, CellSs and Cn.

Chapter 7 focuses on a comparative analysis of the main programming languages and
environments introduced in the previous chapters. This activity is accomplished by gathering
information during the porting of three numerical kernels to selected languages and
benchmarking them on WP8 prototypes.

Finally, Chapter 8 presents an analysis of the scientific libraries and their evolution for the
petascale systems, ranging from the basic libraries to I/O libraries, from communication
libraries to special purpose libraries.

Some conclusions and final remarks are drawn in Chapter 9. Five specific annexes complete
the work.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 4

2 Analysis of current HPC applications

The evolution of programming languages, models and software libraries for petascale
applications has been addressed starting with the analysis of the programming models and
libraries adopted by the current state of the art HPC applications. Deliverable D6.1 and its
successor Deliverable D6.2.2 have identified and analysed a list of major applications used by
the European scientific community involved in key areas of computational sciences.

In this chapter data previously collected and presented in D6.1 and D6.2.2 about codes is
further analyzed to extract information about the programming models and software libraries
currently used in PRACE sites and PRACE applications. In particular, applications are
classified based on their parallelization paradigm and other characteristics of interest to
understand how to scale the applications in petascale systems.

Furthermore, from these deliverables, a list of the scientific libraries used in the main PRACE
applications analysed, has been obtained. These libraries are reviewed and classified, to
evaluate the real impact of these libraries when used in applications scaling to petascale
systems.

 There are a huge number of parallel programming languages and models available in
literature, many of them have never reached practical relevance for HPC or have the potential
to achieve it. Therefore, the analysis covered in this chapter will be also useful to better
identify the subset of programming languages and models whose evaluation should be
regularly evaluated in light of future petascale systems.

2.1 Current programming models in PRACE application list

In deliverable D6.1 and then in D6.2.2 PRACE partners have compiled a list of applications
covering all basic numerical algorithms and representatives of the system load in present HPC
systems at PRACE partner sites. The applications in the list are used by all WP6 tasks to
analyze application requirements for petascale system, to build a benchmark suite, to evaluate
optimization strategies and in general to understand the challenges related to making
applications suitable for a petascale system.

The selected applications address almost all fields of computational sciences, covering ten
scientific areas and adopting the main algorithmic “dwarves”.

The scientific areas are:

• Astronomy and cosmology
• Computational chemistry
• Computational engineering
• Computational fluid dynamics
• Condensed matter physics
• Earth and climate science
• Life science
• Particle physics
• Plasma physics
• Other

The dwarves are those algorithm types which constitute classes where membership in a class
is defined by similarity in computation and data movement and was first described from
Lawrence Berkeley National Laboratory [3]. A dwarf represents a category of kernels that

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 5

share both computational and data structures. The dwarves adopted by the selected
applications are:

• Dense linear algebra – data is stored in dense matrices or vectors and access is often
via unit-level strides. Typical algorithm would be Cholesky decomposition for
symmetric systems or Gaussian elimination for non-symmetric systems.

• Sparse linear algebra – data is stored in compressed format as it largely consists of
zeros and is therefore accessed via an index-based load. Typical algorithm would be
Conjugate Gradient or any of the Krylov methods.

• Spectral methods – data is in frequency domain and requires a transform to convert to
spatial/temporal domain. They are typified by, but not restricted to, FFT.

• Particle methods – data consists of discrete particle bodies that interact with each
other and/or the “environment”.

• Structured grids – Represented by a regular grid. Points on the grid are conceptually
updated together via equations linking them to other grids. There is high spatial
locality. Updates may be in place or between 2 versions of the grid.

• Unstructured grid – data is stored in terms of the locality and connectivity to other
data. Points on grid are conceptually updated together, but updates require multiple
levels of redirection.

• Map-reduce methods – embarrassingly parallel problems, such as Monte Carlo
methods, where calculations are independent of each other.

Identifying the dwarves used in each application is important when analysing the
programming model and the parallel paradigm used by the application itself. In facts, the
analysis done for an application can be easily extended to a set of different applications
characterized by the same dwarves in terms of algorithmic kernels.

In the following we focus on the analysis of the programming model of the applications
introduced, with particular attention to the parallelisation paradigm and the analysis of the
software libraries adopted by these applications. Table 1 reports the PRACE applications
initially selected in D6.2.2 plus some others that were selected later for the PRACE
Application Benchmark Suite and for which we already had information. We underline that
the final list of applications from the benchmark list has been updated over the time and,
actually, some of the applications reported in Table 1 have been discarded while some new
applications have been added.

For each application included in Table 1, the main programming model used and the different
paradigms introduced are reported. Moreover, for each application it is indicated if the
application itself has been benefiting from accelerators or not.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 6

Application Paradigm MPI OpenMP Other Accelerator

NAMD Message
driven yes charm++ CUDA

CPMD Message
Passing yes yes CUDA

(experimental)

VASP Message
Passing yes

QCD Message
Passing yes

GADGET Message
Passing yes Experimental

(CUDA)

Code_Saturne Message
Passing yes

TORB Message
Passing yes

NEMO Message
Passing yes yes autotasking

ECHAM5 Message
Passing yes yes

CP2K Message
Passing yes CUDA

GROMACS Message
Passing yes CUDA

NS3D Message
Passing yes autotasking

QuantumESPRESSO Message
Passing yes yes

AVBP Message
Passing yes

HELIUM Message
Passing yes

GPAW Message
Passing yes

ALYA Message
Passing yes yes Cell

BSIT Message
Passing yes yes Cell

SIESTA Message
Passing yes

PEPC Message
Passing yes

Table 1: Classification of PRACE Applications

It can be seen from Table 1 that all the PRACE applications, except one, have been developed
using the message-passing parallelization paradigm and the MPI communication library. Only
NAMD is written using a message-driven paradigm. Some applications mix the message-
passing paradigm with a multi-thread paradigm for the parallelization inside shared memory
node. Multi-threading is implemented using OpenMP and in two cases the autotasking

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 7

implementation is adopted. On the current versions of PRACE codes the support for
accelerators is not so common. For CPMD there is an experimental porting on Cell, but this is
not jet included in a stable version. For GROMACS exists a special plug-in to use
accelerators. NAMD includes the support for GPU in the stable version with a rich set of
functionality. For CP2K there is some ongoing activity to exploit accelerators, but so far no
production version is available.

From this analysis it turns out that the applications in the list, which represent the load of
European Tier-1 systems, are quite similar from the point of view of the parallelization
paradigm adopted. This does not necessarily mean that they will arouse similar
problems/challenges to enable them for petascale system. This will depend mostly on the
communication schema implemented by each application. There could be applications that
may already scale well on petascale systems others that will require significant reengineering,
or even to change the parallelization paradigm, in fact it is well understood that in many cases
applications implemented using the message-passing paradigm fail to scale to high numbers
of processors, due to communications overheads and task synchronization. In the next
chapters possible alternative parallelization paradigms, useful to remove these bottlenecks, are
analyzed in details. Moreover, large room for performance improvement could come from
speeding applications with hardware accelerators.

2.2 Current libraries in PRACE application list

Most HPC applications rely on the use of external software libraries that implement standard
operations in an efficient and robust way. This is true also for PRACE codes, in fact almost all
codes require an external library and in most cases the library is a key component for the code
performance, communication, data distribution and scalability. Then it is of fundamental
importance to understand how these libraries will behave on petascale systems in order to
enable the application itself.

Table 3 summarizes the most common software library either used in PRACE applications list
or widely used at PRACE sites. With this table we try to identify the main characteristics of
the libraries, relevant to port applications to petascale systems. To improve the analysis, the
libraries are tagged and categorized. The set of library categories identified here will then be
analyzed in detail in the next chapters. Table 2 contains the list of tags associated to each
library category. Since many libraries do not fit in a single category, one or more tags are
assigned to each library, which means that the library can fit in all the categories associated to
the tags.

Category Tag
numeric basic library B
numeric high level HL

communication C
I/O IO

special purpose SP
architecture specific AS

Low level LL
non numeric NN

Table 2: Library categories

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 8

Apart from the category, the libraries have been further analyzed to check if they adopt a
parallel approach or not. In case a parallel version exists, a further analysis investigates if a
multi-threaded version has been implemented and if the library has been ported to hardware
accelerators or if a replacement version exists for accelerators. The result of this analysis is
reported in Table 3 below.

Library Classification Version Is Parallel? Native Multi-
threading

Source
available

libm LL - Y
szlib LL - Y

FFTW2 B 2.1.5 Y Y Y
FFTW3 B 3.2.2 Y Y
BLAS B - PBLAS Y Y
ESSL AS, B + HL 4.4 PESSL Y

ACML AS, B 4.3.0 Y
MKL AS, B + HL 10.2 Y Y
NAG B + HL - Y Y

LAPACK HL 3.2.1 ScaLAPACK Y
ScaLAPACK HL 1.8.0 Y Y

ATLAS B 3.9.16 Y Y
GOTO B - Y Y
METIS HL 4.0.1 parMETIS Y

GSL HL 1.13 Y
WSMP HL 9.9.10 Y Y

NUMPY HL 1.3.0 Y
PETSc HL 3.0.0 Y Y

ARPACK HL - PARPACK Y
SPRNG HL 4.0 Y Y
BLACS C 1.1 Y Y

CHARM++ C 6.1.2 Y Y
MPI1 C 2.1 Y Y

CGNS IO 2.5 Y Y
HDF5 IO 1.8.3 or 1.6.9 Parallel HDF5 Y

NetCDF IO 4.0.1 pNETCDF Y
LibXML NN, SP - Y
Tk/Tix NN, SP - Y
TCL NN, SP - Y

Table 3: Classification of most common libraries in PRACE codes

As appears from the Table above, a consistent portion of the scientific libraries analysed offer
a parallel version and some others have implemented native multi-threading, but further
testing activity should be addressed to check the suitability of the parallel versions to scale up
for petascale applications.

1 We refer to the MPI standard specification

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 9

3 MPI, OpenMP, mixed MPI-OpenMP: current standards and their
evolution.

This chapter covers the current de-facto standards of parallel programming for applications
able to run over the largest HPC systems in Europe. For each section, a short description of
their main features is given. Also, where possible, we give a look to their proximal future
evolution.

3.1 MPI

Message Passing Interface (MPI, [5]) is the current de-facto standard for programming
distributed memory architectures, and is used in the vast majority of current HPC
applications. Deliverable D6.1 surveyed 69 of the most heavily used applications running on
PRACE centre machines. Of these, 67 were designed for distributed memory systems, and all
of them were programmed using MPI. MPI consists of a subroutine library with interfaces in
Fortran, C and C++.

3.1.1 Current standard (MPI 2.2)

The first version of the MPI standard (version 1.0) was published in 1994. A significant set of
extensions to the library (version 2.0) followed in 1997, published as a separate document.
Version 2.2, published in September 2009, essentially combines versions 1.0 and 2.0, with
corrections, into a single document. Version 2.2 contains also minor updates and corrections
to Version 2.1. These minor changes may include a few additional routines, and the addition
of functionality to existing routines. The status of the discussions about Version 2.2 is public,
and can be viewed at [6]. The full history of document versions is rather convoluted: a good
summary is given in the introduction to Version 2.2.

3.1.2 Overview of support in current implementations

The majority of MPI implementations support MPI 2.x, with the exception of the dynamic
process creation routines (Chapter 10 of Version 2.2), which may not be supported on HPC
systems with very minimal operating systems running on the compute nodes.

3.1.3 Future: MPI 3.0

The MPI Forum is now focussing its efforts on the new version of the standard. MPI Version
3.0 will contain significant extensions to Version 2.x. This is at an early stage in the
standardisation process, but some of the major areas being considered are as follows:

1. definition of an ABI (Application Binary Interface) to support linkage compatibility
between different MPI implementations on a platform;

2. enhancements to collective operations, including
a. persistent collective operations to allow optimisation where the same collective

operations are repeated many times;
b. new collective operations, including MPI_Reduce_scatter_block;
c. sparse collectives, where the participating tasks form a subset of the tasks in a

communicator;
d. non-blocking versions of collective operations;

3. fault tolerance;
4. improved Fortran bindings;

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 10

5. extensions to generalised requests;
6. improved support for tools (especially debuggers);
7. improved support for hybrid programming, including the possibility of treating threads

as MPI processes.

Again, the status of the discussions about Version 3.0 is public, and can be viewed by
following the links from [7].

 Of the topics under discussion, it seems likely that items 2c, 2d and 7 above are the
most likely to have immediate applicability for mainstream HPC applications.

3.2 OpenMP

OpenMP is the current de-facto standard for programming shared memory architectures. The
OpenMP API consists of compiler directives, runtime library routines and environment
variables. Since no large-scale HPC systems have pure shared memory architecture, pure
OpenMP programs cannot be run at large scale on the current generation of supercomputers.
However, with the advent of SMP clusters, and more recently, of multi-core processors,
OpenMP is of increasing interest in mixed-mode (or hybrid) MPI+OpenMP implementations
of applications: see Section 3.3.

3.2.1 Current standard (OpenMP 3.0)

The current version of OpenMP is Version 3.0, released in 2008. The major changes from
Version 2.5 are as follows:

• The addition of support for task parallelism via the task and taskwait constructs. A
task construct identifies a block of computation that can be executed by any thread in
the current team at some point in the future. Tasks can be arbitrarily nested: i.e. one
task may contain child tasks, grandchild tasks, etc. When a barrier is encountered, all
generated tasks must complete before the threads exit the barrier. The taskwait
directive is used to ensure that all immediate child tasks of the current task have
completed. OpenMP tasks are a very convenient mechanism for exploiting parallelism
in loops with an unknown iteration count (e.g. while loops), and recursive parallelism.

• Better support for nested parallelism including per-thread internal control variables
(allowing, for example “omp_set_num_threads()” to be called inside parallel
regions), and new runtime library routines to determine depth of nesting, IDs of
parent/grandparent etc. threads, and team sizes of parent/grandparent etc. teams.

• Additional support for loop parallelism, including the ability for OpenMP loop
directives to parallelise perfect loop nests, a new schedule kind (auto) which allows
the runtime to choose the best schedule for the loop, and library routines to get and set
the schedule kind at runtime.

• Portable control of thread behaviour, including environment variables to set thread
stack sizes, and to hint to the runtime how to treat threads which are waiting idle at
locks or barriers. There are also library routines and environment variables that control
the maximum depth of nesting and the total number of running threads.

For a full list of changes between OpenMP Versions 2.5 and 3.0, see Appendix F in the
OpenMP Version 3.0 API specification.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 11

3.2.2 Overview of support in current implementations

Almost all current implementations of OpenMP support at least Version 2.5. The majority of
compilers also now support OpenMP 3.0 including:

• Intel 11.0: Linux (x86), Windows (x86) and MacOS (x86)
• Sun Studio Express 11/08: Linux (x86) and Solaris (SPARC + x86)
• PGI 8.0: Linux (x86) and Windows (x86)
• IBM XLC 10.1: Linux (POWER) and AIX (POWER)
• GCC 4.4

3.2.3 Future

Work on future versions (3.1 and 4.0) of the OpenMP API standard is now in progress.
Version 3.1 is likely to contain fairly minor changes to the standard, mostly consisting of
fixing errors and inconsistencies in Version 3.0, and a small number of new features, possibly
including user-defined reduction operators and support for additional atomic operations. For
Version 4.0, some of the issues been considered include:

• development of an error model;
• interoperability between OpenMP implementations, and with other threading models;
• mechanisms to specify thread to core mappings;
• support for accelerator devices;
• enhancements to OpenMP tasking, including task reductions and dependencies

between tasks.

There are a number of commercial and research efforts underway to allow OpenMP programs
to execute on heterogeneous multi-core systems (such as the Cell BE), and accelerators such
as GPGPUs. If these come to fruition, OpenMP may prove an attractive way of portably
programming such devices, in contrast to the increasing number of low-level and device
specific programming models currently available. Extensions to OpenMP may be required to
realise this efficiently.

3.3 Mixed mode (MPI+OpenMP)

With current ubiquity of multi-core architectures, mixed mode MPI+OpenMP is increasing in
importance as a programming model. Many MPI programs do not scale to very large numbers
of MPI tasks. This can be for a variety of reasons, including:

• the existence of replicated data between MPI tasks, causing the application to run out
of memory;

• the overhead of communicating and storing data associated with halo elements (or
other fake boundary conditions) when the domain size per task becomes small

• load imbalance;
• the overhead of calling MPI to communicate between MPI tasks on the same shared

memory node;
• MPI implementations that do not take advantage of the shared memory within nodes to

implement efficient collective operations.

In some circumstances, using OpenMP to exploit parallelism with a shared memory node (or
within a multi-core processor) can alleviate some of these difficulties and enable the

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 12

application to scale better at high core counts. This may, however, come at some expense in
terms of the complexity and maintainability of the code.

Currently only a relatively small number of applications use the mixed mode programming
model: in the survey of applications reported in Deliverable D6.1, only 10 of the 69
applications used this model.

3.3.1 Current status

There is no separate standard that defines the behaviour of mixed mode programs. The
OpenMP standard says nothing about its interaction with MPI; no does it attempts to define
thread safety (which is a surprising difficult concept to specify!). As far as OpenMP is
concerned, MPI is treated like any other library.

MPI, on the other hand, acknowledges the existence of threads: see Section 12.4 of the MPI
2.1 standard. It defines four levels of thread support:

• MPI_THREAD_SINGLE: only one thread will execute.
• MPI_THREAD_FUNNELED: the process may be multi-threaded, but the application

must ensure that only the main (or master) thread makes MPI.
• MPI_THREAD_SERIALIZED: the process may be multi-threaded, and multiple

threads may make MPI calls, but only one at a time: MPI calls are not made
concurrently from two distinct threads (all MPI calls are “serialized”).

• MPI_THREAD_MULTIPLE: multiple threads may call MPI, with no restrictions.

A given implementation supports one of the above levels: this can be queried using
MPI_INIT_THREAD or MPI_QUERY_THREAD.

3.3.2 Overview of support in current implementations

Most current MPI implementations support at least MPI_THREAD_FUNNELED, and most
current mixed mode applications do not assume a higher level of support.

Some MPI implementations (e.g. MPICH2 for Linux, and IBM MPI libraries for POWER5,
POWER6 and BlueGene/P) provide support for MPI_THREAD_MULTIPLE. However,
some of these currently suffer from bugs, or from very poor performance characteristics. It is
therefore not realistic at the time of writing this document to implement an application that
requires MPI_THREAD_MULTIPLE and expect good performance and portability across
different systems.

3.3.3 Future

It is anticipated that the level (and quality) of thread support in MPI implementations will
increase as multi-core architecture dominates the HPC market. The MPI Forum is considering
extensions to MPI which would elevate the status of threads in MPI to be similar to processes.
Discussions about this are at an early stage.

One extension to OpenMP which has been proposed is the concept of subteams. A common
pattern in mixed mode programming is for one thread to perform MPI communication while
the remaining threads share out some computation. Currently, in OpenMP, the work-sharing
directives (e.g. DO/for, sections, single) apply to all the threads in the team, and so cannot be
used to implement this pattern. The addition of subteams would address this shortcoming.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 13

3.4 Final remarks

MPI and OpenMP are arguably the de facto community standards for distributed-memory
programming and shared-memory programming respectively. MPI and OpenMP put together
distributed-memory (provided by MPI) and shared-memory programming model (provided by
OpenMP). While these technologies have served the parallel programming community
admirably over the last couple of decades, recent advances in massively parallel multi-core
architectures have revealed their fundamental limitations in the productive design of high
performance codes.

Table 4 lists some of the main advantages and disadvantages experienced by users of the MPI
and OpenMP models.

 MPI OpenMP

A
dv

an
ta

ge
s

• Portable
• Near optimal performance on

most architectures
• Strong foundation for higher level

technologies
• Broad support among community

and vendors

• Supports finer-grained
parallelism

• Can be mixed with other
programming models
relatively easily

• Supports incremental
parallelisation

• Broad support among
community and vendors

D
is

ad
va

nt
ag

es

• Only supports parallelism at the
‘cooperating executable’ level

• Requires too much information
about “how” data is too be
transferred rather than simply
“what” is to transferred

• Memory management overhead
• Obfuscates algorithms with many

low-level details

• Shared-memory bugs can be
difficult to locate

• No precise control over
locality and processor affinity

Table 4: Advantages/Disadvantages exhibited by MPI and OpenMP models

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 14

4 Partitioned Global Address Space (PGAS) Programming
Languages

As the High-Performance Computing (HPC) community begins to usher in the era of
petascale computing, it is becoming ever more apparent that traditional programming models
are failing to provide a satisfactory environment for the development of highly scalable codes.
With petascale computing architectures exhibiting increasingly complex layers of parallelism
and communication in the drive for performance, some inadequacies of existing programming
models, such as those represented by MPI and OpenMP, are being exposed. In addition to
performance, the community is also demanding productivity gains during the software
development process, a trait traditional programming languages and models fail to address
satisfactorily. For these reasons, it is inevitable that new parallel programming paradigms are
being proposed to address these performance/productivity challenges.

The PGAS programming model is gaining much momentum as a novel approach to
improving programmability and productivity of large-scale computing architectures. In this
chapter we review the current state-of-the-art in PGAS language design and implementation
with a particular focus on the PGAS languages UPC, Coarray Fortran and Titanium.
Furthermore, we consider the next-generation Asynchronous PGAS (APGAS) programming
model with specific focus on the Chapel and X10 programming languages in the next chapter.

The PGAS Programming Model

A new parallel programming paradigm that is gaining widespread interest within the HPC
community is the Partitioned Global Address Space (PGAS) model. In this approach the best
features of MPI and OpenMP are combined to provide an explicitly parallel, shared-memory
like programming model whereby the programmer is exposed to the dual concepts of a global
address space and a locally partitioned address space.

In this approach distributed memory semantics is integrated into the language definition,
leveraging the languages’ type system as well as the compilers’ capacity to optimize data
transfer concurrently with serial code. In the PGAS programming model the global address
concept allows a thread or process to directly read or write data allocated by another thread or
process. Figure 1 depicts the process and memory models underlying the message-passing,
shared-memory and PGAS programming paradigms.

Figure 1: Message Passing, Shared Memory and PGAS models

Furthermore, memory is logically partitioned as local or remote depending on its locality to a
given process or thread. This allows the programmer (and compiler) to expose the inherent
NUMA-ness of current multi-core architectures or (in the case of a distributed memory
system) of the various possible distances between local and remote compute nodes, which is
unavailable in traditional shared memory programming models such as OpenMP, and for
which explicit programming is required in MPI.

The PGAS programming model provides two major characteristics, namely data partitioning
and the distinction between local and remote data that is used to minimize the communication
overhead and get better performance. Performance of a PGAS-based algorithm depends on

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 15

the access patterns to the global address space. A number of processes can work
independently in a Single Program Multiple Data (SPMD) model. Processes communicate
through the global memory and can access sharable data while a private object may be
accessed only by its own thread.

PGAS languages are designed such that implementations must generate one-sided
communications, in which one process reads or writes to the addresses associated with a
remote data entity. One possible middleware, which might be used by PGAS
implementations, is GASNet [8][9] that provides a language-independent, low-level
networking layer that offers network-independent, high-performance communication
primitives.

Summarizing, the main features inherent in the PGAS programming model are:

• Executes typically in a SPMD fashion.
• Supports both shared and distributed memory architectures.
• Raises the level of abstraction compared to MPI.
• Typically exploits faster one-sided communication compared with MPI two-sided

communications.
• Global address space supports construction of complex sharable data structures.
• High level constructs (e.g., distributed multidimensional arrays) simplify

programming.
• Compilers can optimize parallel constructs.
• Portability.

In general the PGAS programming model has been implemented in traditional base languages
(such as Fortran, C and Java) via language extensions. Examples of these approaches include
Coarray Fortran (CAF), Unified Parallel C (UPC) and Titanium respectively. In the following
sections each of these complementary implementations will be reviewed.

4.1 Unified Parallel C (UPC)

UPC[10] is a member of the PGAS language family but is also an explicit parallel extension
of ANSI C. The development of UPC has been based on ideas introduced in other earlier
languages that proposed parallel extensions to standard ISO C99: Split-C, AC, and Parallel C
Pre-processor (PCP). UPC is an attempt to use the most suitable features of these languages
and preserve the base concept and the main philosophy of the C language (e.g., a concise and
efficient syntax). Any legal C program is also a legal UPC program.

4.1.1 The Execution and Memory Model

The execution model of UPC is comprised of a number of threads working independently in
an SPMD fashion. The number of threads available to the program can be accessed via the
THREADS variable. Each thread is identified by the variable MYTHREAD.

The number of threads can be specified at compile time by the user as a compiler option
(Static Threads mode) or the compiled code may be run with varying numbers of threads
(Dynamic Threads mode). In the first compilation mode, the compiler is able to generate more
efficient code, but model size is fixed; it is necessary to recompile whenever the number of
threads or the model size changes. The second compilation mode prevents the use of certain
parallel constructs but allows to adjust the number of THREADS at each program run without
the burden of recompiling the code. This is done via an environment variable or an additional
variable to the execution command.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 16

The memory associated with a thread is further divided into private and shared address
spaces. Normal C variables and objects are allocated in the private memory space for each
thread. Shared variables are allocated only once. Their particular location in memory is
determined by how they are declared. Shared variables may not be declared automatic, i.e.,
may not occur in a function definition, unless they are declared static.

Shared arrays in UPC are distributed in a cyclic fashion across the threads, usually by a round
robin strategy. For example, if arrays are thought of as intrinsically one-dimensional, the
default distribution of an array is to place the 0-th element on thread 0, the 1-st element on
thread 1, up to the (N-1)-th element on thread N-1, then the N-th element is placed on thread 0
and the process begins again.

It is possible to use a fixed block size as an additional specifier when declaring a shared
global array in static mode. This leads to block-wise round robin allocation, where more than
one element is cycled across the available threads, thus potentially improving the data
locality. Unfortunately the block size currently cannot be dynamic i.e., it needs to be known at
compile time. This imposes (unnecessary) constraints for the dynamic execution mode and
can be circumvented only by the use of a helper data structure and the non-collective
upc_alloc(), as shown in the kernel benchmarks.

Since different kind of variables can be involved during computation, UPC allows expressing
different levels of memory consistency, namely strict or relaxed, which may be set by region
of code by #pragma directives, or per variable by use of declaration qualifiers. Under relaxed
mode, accesses may be reordered for speed, so care must be taken to prevent race conditions
between threads, or parts of data being overwritten by simultaneous write accesses.
Conversely, strict mode ensures that all accesses are absolutely ordered, and that each write is
finished before the next may begin. Although relaxed mode accesses may be reordered, they
may not move past a strict access. UPC provides locks that can be applied to sections of code
to prevent simultaneous execution by more than one thread, and barriers provide explicit
global synchronisation points. Additionally, the statement upc_fence exists as a null strict
access, ensuring all accesses are complete. It should be noted that relaxed is the default
behavior.

Since UPC is a dialect of C it supports pointers. There are four distinct possibilities for a
pointer in UPC since they can be declared as either shared or private, and they can point to
either shared or private memory. Because UPC pointers have to keep track of more than
simply the memory location they point to, their representation has considerable impact on the
performance of the code.

In parallel programming the “owner computes” rule is very common. In general this fine grain
parallelism is implemented by looping over all the data items and only those items owned by
a thread or process are operated on by that thread or process. UPC adds a special type of loop
to accomplish this task: upc_forall. Finally, UPC contains its own language primitives to
provide dynamic allocation of shared variables, data movement between local and remote
memories (upc_memget & upc_memput), collective movements between threads, scatters
and gathers, computational collectives like reductions, thread-data affinity and advanced
memory consistency.

4.1.2 Current Implementations

UPC v1.0 was published in 2001; last standard is v1.2 published in May 2005. UPC has
become popular because it has achieved a higher degree of uptake and has been adopted by
several influential manufacturers, e.g., CRAY.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 17

 Currently there are both free and commercial UPC compilers available, for a broad
spectrum of architectures. In detail

• HP UPC (commercial): released April 2007, it supports all HP/Compaq branded
platforms, including Linux, Tru64 and HPUX platforms.

• Cray UPC (commercial): built-in to the Cray C compiler on the Cray X1, X1E and
future Cray vector-family platforms. Currently also available for Cray XT
architectures under the Cray Compiler Environment.

• IBM UPC Alpha Edition (commercial) [11]: UPC compiler for IBM BlueGene and
PowerPC SMP's running AIX or Linux. It requires IBM XL C compiler to run.

• GCC UPC (free) [12]: developed by Intrepid; it supports a lot of architectures (from
x86 to Cray) and it uses the Berkeley runtime.

• Berkeley UPC (free) [13]: fully portable source-to-source compiler implementation. It
supports a wide range of compilers and systems and uses GASNet as communication
middleware.

• Michigan Tech MuPC (free) [14]: MPI-based reference implementation for Linux and
Tru64.

4.2 Coarray Fortran (in the context of the Fortran 2008 Draft Standard)

Coarray Fortran, formerly known as F--, is an extension of Fortran 95/2003 for parallel
processing created by Robert Numrich and John Reid. The coarray concept was designed as
the minimal change needed to convert Fortran into a powerful and efficient parallel language.

First published in [12] and implemented in the Cray compiler targeted for parallel vector
systems, a complete and full description of coarray syntax was published in 1998. The ISO
Fortran Committee decided in May 2005 to include coarrays in the next revision of the
Fortran standard ([16]).

4.2.1 The Execution and Memory Model

The coarray approach to parallelism falls into the SPMD category. An execution instance of
the program is replicated – typically based on user-provided settings in the run time library –
and the generated images then execute asynchronously and independently. The number of
images is fixed and each image has its own index, retrievable at run-time.

Each image works on its local and sharable data and a sharable “object” has the same name on
each image. An image moves remote data to local data through, and only through, explicit
coarray syntax. Declaring an object with a codimension (using additional square brackets, or
the CODIMENSION attribute) allow the contents of the object on one image to be accessed
by any other image, while traditional Fortran objects are only locally accessible within each
image. The semantics of information transfer across images is that of one-sided
communication, enabling an optimized implementation to efficiently exploit the interconnect
hardware, and allowing the programmer to overlap computation and communication where
appropriate.

Coarray Fortran in the context of Fortran 2008 is presently the only object-oriented HPC
language with integrated parallelism, although some restrictions apply to using object-
oriented features in the context of parallelism. This is because efficiency of execution and
relative ease of implementation were placed at a higher priority than providing the highest
level of abstraction (as for example the Chapel language does). Allocatable coarrays are
required to be allocated in a symmetric manner, thereby requiring no transfer of descriptor

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 18

information for coarray operations. Allocation as well as de-allocation of such entities
therefore implies synchronization across all images. A coarray entity of derived type with a
pointer or allocatable component will in contrast typically allocate image-dependent sizes for
the dynamic component; the downside is that an additional latency overhead is incurred for
transferring the content across images, and that the programmer must take greater care in
handling the details of such transfers correctly.

A number of new intrinsics is defined which enable the programmer to control execution on a
per-image basis, and to manage image indices as well as coindices. For efficiency as well as
to limit the number of additional intrinsics, synchronization control is performed using
statements like sync images, sync all, critical, etc. It is the responsibility of the programmer to
insert synchronization statements in a manner that prevents race conditions or deadlocks,
while maintaining good scalability. Between synchronization points, the Fortran processor
can perform code optimization as if the implementation were serial.

4.2.2 Current Implementations

Coarray syntax has been a supported feature of Cray Fortran since release 3.1 (via the “–Z”
compiler option on Cray T3E and Cray X1). In this particular case, during compile time the
user has the possibility to specify the number of images.

Coarray Fortran is also being implemented for Cray XT platforms under the Cray Compiler
Environment. The current release, however, suffers from serious compiler bugs as well as
stability and performance issues. For example, it is possible to generate executables, which
crashe compute nodes in a way such theyneed to be rebooted. Also, in numerous situations the
compiler optimizer imposes pattern matching, which may generate incorrect code, and
switching it off may produce very slow one-sided communication patterns with slowdowns in
the order of 10-100X.

The Los Alamos Computer Science Institute (LACSI) at Rice University is working on an
open-source, portable, re-targetable, high-quality CoArray Fortran compiler suitable for use
with production codes. Their compiler uses the Open64/SL Fortran 90 source-to-source
infrastructure to translate Coarray Fortran into Fortran 90 plus calls to ARMCI or GASNet,
two multi-platform libraries for one-sided communication. It is available for (i.e. has been
tested on) SGI Origin 2000 and Altix 3000, Compaq Alphaserver SC (Quadrics switch),
Linux Itanium 2 with Myrinet 2000 or Quadrics II switches, and Linux Pentium with
Ethernet. However, this provides only partial support for coarrays since the type system is not
even fully integrated on the Fortran 90 level.

Andy Vaught’s G95 compiler ([17]) partially supports coarrays on the Fortran 95 level, and is
presently the most complete implementation from the functionality point of view; however
concurrent optimization of data transfer is not done, and data transfer itself is still very
inefficient, so the implementation can presently only be used for very weakly coupled
algorithms. To use the coarray facilities with more than 5 images requires purchase of a
license (at very moderate cost).

There is also a translator from CAF to OpenMP. This only provides a subset of the language,
but most programs require very little adjustment to bring them into line with this subset. The
subset has been chosen to make it possible to implement coarrays as ordinary arrays of higher
rank, ideal in a shared memory environment. Once the code has been translated, an OpenMP
capable compiler is needed, but these are widely available for a range of platforms from small
workstations through commodity clusters to supercomputers.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 19

4.3 Titanium

Titanium [19] is a SPMD Partitioned Global Address Space (PGAS) programming model, in
affinity with UPC and CAF, which uses Java as its base language. Titanium is being
developed at Lawrence Berkeley National Labs (LBNL) as an explicitly parallel dialect of
Java for high-performance scientific computing.

Titanium adds the following extensions to the Java base language to support a PGAS
programming model. The acceptance of Titanium in the HPC community seems low: Java is
not a traditional HPC language and currently very few Java codes are being used at European
HPC sides. For the sake of completeness, Titanium has been included and described in more
detail in the language part of this document. However, it has been excluded from the
comparison of the languages performed through porting the three Euroben kernels.

4.3.1 The Execution and Memory model

The standard Java language is ill-suited for use on distributed-memory machines because it
adopts a dynamic task-parallel model and assumes a flat memory hierarchy. Titanium refers
to the different instances of a program as processes and each one has its own local and global
addressable memory. In Titanium the default declaration, unlike in CAF and UPC, is for data
to be global (shared). The local qualifier overrides this.

Titanium supports the construction of distributed array data structures in the Partitioned
Global Address Space, in which each process creates its share of the total array. Since
distributed data structures are explicitly built from local pieces rather than declared as
distributed types, Titanium is sometimes referred to as a “Local-View" language. To create
shared data structures each process builds its own local array piece and then the individual
pieces are exchanged (for objects, pointers are just exchanged). The exchange operation is a
primitive all-to-all communicator in Titanium.

 Titanium provides the built-in methods to query the environment for the number of processes
and the index within that set of the executing processes. Because many scientific applications
are written in a bulk-synchronous style, Titanium also provides a global barrier-
synchronization construct as well as a set of collective communication operations to perform
broadcasts, reductions, and scans ([20]).

Because Java has no real support for multi-dimensional array, Titanium adds a powerful
abstraction, which provides the same kinds of sub-array operations available in Fortran 90.
Titanium arrays are indexed by integer tuples known as points and built on sets of points
called domains. Points and domains are first-class entities in Titanium so they can be stored in
data structures, specified as literals and passed as values to methods and manipulated using
their own set of operations. The true power of Titanium arrays stems from array operators.
Array operators can be used to create alternative views of an array's data without an implied
copy of the data. Titanium's domain calculus operators support sub-arrays both syntactically
and from a performance standpoint. The tedious business of index calculations and array
offsets has been migrated from the application code to the compiler and runtime system. In
particular Titanium provides a rich set of array operations (like Translations, Restrictions and
Slices) and a wide range of domain operators (like Intersections, Unions and Differences).

Like UPC, Titanium differentiates between global and local references. A local pointer must
refer to an object within the same process partition, while a global pointer may refer to an
object in either a remote or local partition. Pointers in Titanium are global by default, but may
be designated local using the local type qualifier. Well-tuned Titanium applications perform

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 20

most of their critical path computation on data that is either local or has been pre-fetched into
local memory. This avoids fine-grained communication costs that can limit scaling on
distributed-memory systems with high interconnect latencies.

4.3.2 Current Implementation

Titanium adds new features to Java but it is not a true extension of Java language. Since the
Titanium compiler is implemented as a source-to-source translator to C then any library
offering a C-compatible interface is potentially callable from Titanium (this also includes
many libraries written in other languages such as C++ or Fortran). Since Titanium has no
JVM, there is no need for a complicated calling convention (such as the Java JNI interface) to
preserve memory safety. To perform cross-language integration, programmers simply declare
methods using the native keyword and then supply implementations written in C.

The LBNL Titanium compiler translates Titanium code into C code, which is then compiled
with a vendor-provided C compiler and linked with the Titanium runtime system. For shared-
memory systems, the pthreads library is used to manage to thread management, while the
GASNet communication system is required for distributed-memory systems. Unlike HPJava
[21], C is chosen as the compilation target instead of Java byte-code in order to maximize
portability, since several high-end supercomputers such as the Cray X1 and the IBM Blue
Gene lack Java compilers and possibly OS support required for a fully operational JVM.

The latest release of the Titanium compiler can be obtained here [22].

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 21

5 Next Generation Programming Languages and Models

One of the main goals of the U.S. DARPA HPCS project [25] is to raise HPC user
productivity. As part of this project three novel parallel programming languages were
investigated for development, with the aim of improving programmer productivity on next-
generation computing architectures. The three languages are:

1. Chapel
2. X10
3. Fortress

These languages implement an Asynchronous Partitioned Global Address Space (APGAS)
programming model; a term originally coined within the X10 language project. The APGAS
model extends the PGAS programming model by providing a richer execution framework
than the SPMD style generally used by the traditional PGAS languages. While CAF, UPC and
Titanium follow the traditional SPMD mode; Chapel, X10 and Fortress choose a more
flexible model and allow more general forms of control flow among concurrent tasks or
activities.

The last section coves a new non-conventional parallel programming model called
Transactional Memory, explicitly oriented for multi-threading systems. It puts the focus on
the concept of transaction that ensures correctness, consistency and easy programmability.

5.1 Chapel

Chapel [24] is a new parallel language being developed by Cray Inc. as part of Cray’s entry in
DARPA’s HPCS program. The main goals of Chapel are to:

• Improve programmer productivity.
• Improve the programmability of parallel computers.
• Match or improve upon the performance of current programming models.
• Provide better portability than current programming models.
• Improve robustness of parallel codes.

5.1.1 The Chapel Programming Model

Chapel supports a multi-threaded execution model via high-level abstractions for data
parallelism, task parallelism, concurrency, and nested parallelism.
Chapel is a global-view parallel language that supports a block-imperative programming style
and it is designed around a multi-threaded execution model in which parallelism is not
described using a processor- or task-based model, but in terms of independent computations
implemented using threads. Rather than giving the programmer access to threads via low-
level fork/join mechanisms and naming, Chapel provides higher-level abstractions for
parallelism using anonymous threads that are implemented by the compiler and runtime
system ([23]).

At its core, the Chapel programming model is governed by the concept of locales. We use the
term locale to refer to the unit of a parallel architecture that is capable of performing
computation and has uniform access to the machine’s memory. For example, each node and
its associated local memory would be considered a locale. Locale properties include:

• threads within a locale have uniform access to local memory;

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 22

• memory within other locales is accessible, but at a price;
• locales are defined for a given architecture by a Chapel compiler e.g., a multi-core

processor or SMP node could be a locale.

Chapel supports a locale type and provides every program with a built-in array of locales to
represent the portion of the machine on which the program is executing.

By exploiting locales, Chapel programmers can reason about the complex computing
hierarchy of an architecture and select and initiate tasks on a given locale within their code
(using the Chapel on construct). These operations extend those that are typically provided in
traditional PGAS programming models, which is referred to as asynchronous PGAS
programming.

Along with initiating tasks on different locales (as well as initiating within the current local
using the begin statement), Chapel programmers can distribute data arrays across locales
using built-in, as well as, custom-designed domain types. Chapel has three main classes of
domains: arithmetic, indefinite and opaque. Each one has its own characteristics. Also the
data distributions can follow traditional approaches (e.g. block cyclic, recursive bisection or
graph partitioning) or a user can implement its own strategy. Data-parallel operations can
subsequently be invoked both within and across locales on these types to achieve maximum
parallel performance where possible.

To synchronise access to shared resources when reading and writing to memory, Chapel
provides sync types for implementing critical sections and reducing dangerous race
conditions. Chapel also supports atomic sections to indicate that a group of statements should
be executed as though they occurred atomically from the point of view of any other thread.
Atomic sections have been of recent interest to the software transactional memory community
due to their intuitiveness and ability to replace explicit lock management in user code. By
specifying intent rather than mechanism, atomic sections result in a higher-level abstraction
for users than locks.

5.1.2 Chapel Developments

In addition to providing an APGAS parallel programming model the base language of Chapel
was selected to contain the best features from most modern mainstream programming
languages e.g. OOP classes and inheritance, iterators and generic/template programming.

It is hoped these collections of modern programming features and powerful parallelism
constructs, along with an abstract view of the computing architecture using locales, will
provide a rich environment for productively developing high-performance codes on next-
generation computing architectures.

A Cray prototype of a Chapel compiler was released on April 16th, 2009. It can be
downloaded and used under the terms of the BSD license. A production Chapel compiler is
envisaged around the 2011 and 2012 timeframe.

5.2 X10

The X10 language is developed by IBM at the T.J. Watson Research Centre as part of the
PERCS project within the DARPA HPCS initiative. As referred in the article [26], X10 is
designed to balance four major goals:

• Safety: the programming model is intended to be safe in the interests of productivity.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 23

• Analyzability: X10 programs are intended to be analyzable by other programs (like
compiler or analysis tools).

• Scalability: a program is scalable if the addition of computational resources leads to an
increase in performance.

• Flexibility: scalable applications will need to exploit multiple form of parallelism.

5.2.1 The X10 Programming Model

X10 is an "extended subset" of the Java programming language, strongly resembling it in
most aspects, but featuring additional support for arrays and concurrency. Like Chapel, X10
has strong support for global-view domains and distributed arrays. X10 is based on a threaded
model for spawning tasks.

In a similar way to Chapel’s locales abstraction, X10 introduces the concept of a place. Places
encapsulate an affinity between activities and data. All data that is writeable is assumed to be
partitioned across places, thereby resulting in a Partitioned Global Address Space (PGAS).
Activities may hold a reference to remote objects i.e., objects located at places different from
the current activity’s place. If an activity attempts to operate on a remote object, then it does
so by logically creating a new activity at the remote place to perform the operation
(Asynchronous PGAS model). X10 programmers can also explicitly initiate activities on
remote places using the async and future expressions.

X10 has global address spaces. A scalar object in X10 is allocated completely at a single
place. In contrast, the elements of an array may be distributed across multiple places. X10
supports Globally Asynchronous Locally Synchronous (GALS) semantics for reads/writes to
mutable locations. Say that a mutable variable is local for an activity if it is located in the
same place as the activity; otherwise it is remote. Within a place, activities operate on
memory in a sequentially consistent fashion, that is, the implementation ensures that each
activity reads and writes a location in one indivisible step, without interference with any other
activity. Shared access to memory resources can be synchronised using the atomic expression.
Atomic blocks are conceptually executed in a single step while other activities are suspended.

X10 has true multi-dimensional arrays (like Fortran) that can be distributed among activities.
A multi-dimensional array is associated with a set of index points called its region. X10 also
provides distributions that map points in a region to a place (distributions can be blocked,
cyclic or a combination of both). Data parallel operations can be applied to distributed points
and parallel iterators can be defined.

5.2.2 X10 Developments

The current version of the X10 compiler and Common PGAS Runtime is v1.7.6 [27]. The
tools can be downloaded for many different platforms.

5.3 Fortress

The overall goal of the Fortress Project [28] (by Sun Microsystems) is to create a modern
programming language whereby nearly all the language semantics are defined at the library
level, and not at the compiler level. This organisation aids the rapid growth of the language as
new language ideas unfold.

Library-level definitions include data structures and types, through to operators and their
precedence that can be easily swapped or replaced. An interesting feature of Fortress is that
most language objects are implicitly parallel by default (e.g. the for loop). Fortress also

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 24

supports mathematical notation (through Unicode) for symbols and operators along with a
hierarchical representation of target architecture’s structure. Units of measurement are
included in the type system e.g. meters, seconds, miles etc. Transactions and locality
specification are also highly featured.

5.3.1 The Fortress Programming Model

Fortress differs from both Chapel and X10 languages in several respects. Fortress syntax
emulates mathematical notation as closely as possible. It has a novel type system to better
integrate functional and object-oriented programming, it allows for specification of data
distribution through the use of "distribution" data structures, it supports static checking of
physical units and dimensions, it supports embedding of domain-specific language syntax in
programs, and it includes a component system to facilitate the process of compiling, linking,
and deploying programs.

The basic building blocks of Fortress code are objects and traits. Objects define fields and
methods, whereas traits declare sets of methods. Traits can declare abstract (i.e. header only)
or concrete (i.e. header and definition) methods.

Fortress uses a threaded model for implementing concurrency and parallelism. In general
threads can be explicitly or implicitly spawned. Each thread can be on one of five states
depending on its status. Fortress has many constructs that lead to implicit thread creation:

• Tuple expressions.
• “do” blocks.
• Method invocations, function calls.
• For loops, comprehensions, sums, generated expressions, big operators.
• Extremum expressions.

Implicit threading in Fortress is executed in fork-join style; all threads created together, and
all must complete before the expression completes. If any threads end abruptly, the group as a
whole will also end abruptly. Furthermore, the programmer cannot interact with implicit
threads in any way as the compiler generates them. The Fortress compiler may also interleave
the threads any way it likes. Explicit threads are created using the spawn and also do
expressions. In this mode the programmer can interact with the thread explicitly; spawn
returns an instance of thread that can be controlled with: wait, ready, stop.

It is important to point out that threads evaluate expressions by taking steps. In fact the
execution of a fortress program consists of evaluating the body expression of the run function
and the initial-value expressions of all top-level variables and singleton object fields in
parallel. Communication with the outside world is accomplished through input and output
actions.

Fortress also maps a tree-like abstraction of the architecture hierarchy as a region (similar in
concept to Chapel’s locales). All threads, objects, array elements have an associated region.
Leaves of the tree mapping are typically low-level processing elements (e.g. core in CPU).
The root of the tree maps out a more high-level and abstract distribution (e.g. resources spread
across entire cluster). Data distribution operations can be performed across regions whereby
vectors, arrays and matrices are distributed across the machine. Fortress will usually
determine the optimal distribution of elements; it is possible that each element of a data
structure could be on a different region.

Fortress provides at least two mechanisms for coordinating access to shared variables in
parallel operations: atomic operations and reductions. Atomic operations use Fortress’s

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 25

transactional memory system to ensure that one or more operations occur atomically, but with
minimal locking and contention. Atomic operations prevent data races, but do not by
themselves ensure determinism or serial semantics. Reductions are constructs that perform
associative operations in parallel and preserve serial semantics.

Asynchronicity is also provided in Fortress whereby programmers can explicitly spawn
tasks/threads on a specific region.

5.3.2 Fortress Developments

Fortress did not make it through to Phase III of the HPCS initiative. In January 2007 the
Fortress project was made available to the open source community and on 1 April 2008, the
first version of the Fortress specification with a compliant implementation (Fortress 1.0) was
released. Currently there is only a functional Fortress Interpreter available for download for
many platforms ([29]).

5.4 Transactional Memory

Transactional Memory (TM) is a novel programming model for multi-core architectures that
allows for concurrency control over multiple threads. Its main goals are to increase code
productivity by providing a simple programming model to the programmer, and achieve
higher performance through the concept called optimistic parallelism.

5.4.1 Basic concepts

A memory transaction is a sequence of memory operations that either executes completely or
has no effect. According to the programming model supporting the concept of transactions,
the programmer is able to include parts of his code within a transaction, indicating in this way
that within this section there exist accesses to memory locations that may be performed by
other threads as well. The TM system records the transactions of threads, and if two or more
threads perform conflicting memory accesses (e.g. one thread reads variable a, a second
thread writes variable a) then it decides how to handle this conflict. The common case is to
allow one of the threads to commit its transaction and restart the transaction of the other
conflicting thread.

The above simple description includes two important concepts. The first one is programming
simplicity. The programmer does not needs to care about the detailed memory access pattern
of each of the created thread. The programmer just needs to discover and pinpoint possible
crosscutting memory-access paths made by different threads and include each of these paths
within a transaction. The alternative approach would be to apply locking, either coarse-
grained or fine-grained. Coarse-grained locking essentially locks large parts or all of the data
structure accessed. It is easy to implement but leaves limited chances of high performance
since threads in this case are practically serialized. On the other hand, fine-grained locking
locks data elements, which can be too complicated and error-prone, without ensuring high
performance, since frequent locks are quite expensive in modern multi-core processors. The
locking performance cost needed to ensure semantic correctness of programs reveals the
second benefit of TM. In fact in several multi-threaded programs, the possibility of two
threads accessing the same memory location is rather small. In this case guarding this memory
location with a lock does not seem a good idea. In the concept of TM the two threads will be
allowed to access the memory locations without synchronization, and only if they perform
conflicting accesses will the system pay the overhead of resolving the conflict and restarting

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 26

one of the threads. This optimistic parallelism is expected to provide higher performance in
programs with irregular memory accesses to dynamic data structures.

Transactions are atomic, i.e. their effect (computations, memory accesses, etc) is visible to the
system as a whole if the transaction commits, while no change to the system occurs if the
transaction aborts. Moreover, a transaction runs in isolation that means that any stores within
the transaction are not visible until the transaction commits. In order to implement TM, the
system needs to book keep memory references done by a transaction, and compare these
references with those of other outstanding transactions when they try to commit. Thus, the
key mechanisms of a TM system are data versioning and conflict detection. These
mechanisms can be implemented in software, hardware or in hybrid fission. The data
versioning mechanism needs to keep different versions of data at the execution of various
transactions. If a data store is written immediately to the target memory location, the approach
is called eager versioning, while if the system handles copies of the data stored; the approach
is called lazy versioning. As far as conflict detection is concerned, there exist two approaches
as well. The system may either choose to check for conflicts during the execution of a
transaction, as reads and writes occur (pessimistic conflict detection) or before the transaction
attempts to commit (optimistic conflict detection). All techniques have advantages and
disadvantages, and their efficiency depends on the memory access patterns of each individual
application.

5.4.2 Current implementations

At the moment, most TM systems have been implemented in software. Software
Transactional Memory (STM) systems extend programming languages or software libraries to
incorporate the assets of TM and require no hardware modifications. However, it is a common
view that although these systems constitute an important starting point for TM systems, they
will need hardware support to alleviate very frequent STM operations from the significant
runtime overheads.

Intel’s STM Compiler Prototype Edition 3 implements the support for STM ([30]) that allows
the programmer to use STM language extensions in an “OpenMP like” way. Sun has
presented Transactional Locking 2 ([31]), which integrates STM implementation with
reasonable performance, providing a programming environment similar to that attained using
global locks, but with an improvement in performance. TinySTM is the European effort for
STM based on fine-grained locking at byte level. The Rochester STM (RSTM, [32]) is a C++
library for multi-threaded, non-blocking transaction-based code. The OpenTM Transactional
API ([33]) is a high-level API that extends OpenMP with memory transactions.

In Hardware Transactional Memory (HTM) the hardware manages data versions and tracks
conflicts transparently as the software performs regular read and write operations. In order to
implement HTM, one needs to modify the cache hierarchy and coherence protocols. Although
HTM is expected to provide better performance, it is not problem-free. At first, the
modifications that need to be done in hardware are neither straightforward, nor cost-effective.
In addition, hardware implementations are not able to provide infinite resources, thus long
transactions with many memory-access operations will not be supported entirely in hardware.

Rock is a multi-threading, multi-core, SPARC-family microprocessor currently in
development at Sun Microsystems. Sun has confirmed that Rock will be the first processor to
implement HTM. Stanford’s Transactional Coherence and Consistency (TCC) has two
prototypes: ATLAS and PLUTO. ATLAS is the first implementation of the TCC architecture.
It uses PowerPC 405 processors with a modified data-cache that implements version
management and conflict detection for transactional execution. The current design is mapped

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 27

on a single BEE-2 board, which allows for up to 8 processors. PLUTO is a TCC prototype
based on the M32R embedded architecture. M32R is designed by Renesas Technology, which
is a fully synthesizable core coded by Verilog-HDL and can be programmed to FPGA
directly. It provides an efficient platform for supporting architecture development. PLUTO
uses 2 M32R processors each with a modified data cache that implements version
management and conflict detection for transactional execution. The two symmetric CPU cores
are connected via an internal on chip bus. The bus arbiter supports TCC protocol such as
commit, PhaseID controller. The new architecture has Exception/Interrupt for handling TCC
overflow and violation. Finally, Log-TM is a hardware TM system designed and proposed by
the University of Wisconsin based on the concept of per-thread logs that decouples version
management from L1 cache tags and arrays. With LogTM, a transactional thread saves the old
value of a block in a per-thread log and writes the new value in place using eager version
management.

Overall, Transactional Memory seems a very promising novel parallel programming model
incorporating concepts that well adapt to the architecture and behaviour of modern multi-core
architectures. It is expected to provide meaningful performance improvements in applications
that suffer from excessive synchronization, especially in the cases where this synchronization
is substantially used to preserve the semantics of the original algorithm but the actual cases
that two threads conflict for some resource are extremely rare. This is the case, for example,
of the concurrent access to irregular data structures (e.g. databases, lists, trees, priority
queues) where standard programming paradigms either lock the whole structure essentially
serializing the access (coarse-grain locking), or lock small parts of it (fine-grain locking)
suffering from the killing overheads of synchronization. TM is still under research and
experimental assessment that has indeed verified its high productivity and performance
benefits (speedup and scalability) for several classes of applications. However, at the moment,
only STM systems and simulations of real HTM systems have been used. The general
conclusion of the TM community is that only with hardware support has this programming
paradigm chances to provide its performance benefits. It remains to be seen whether the
silicon industry is eager to adopt and support this model, by providing the essential extensions
to the current micro-architectures.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 28

6 Languages, Paradigms and Environments for Hardware
Accelerators

Green-IT is a recent trend in HPC. To ensure that the demand for higher peak-performance
can be satisfied without a huge increase in the power envelope, special-purpose hardware has
to be used. Computational hardware accelerators ensure that no extra energy or die area is
wasted for unnecessary transistors or sub-optimal processor layouts. Their layout especially
fits to certain (scientific) algorithms.

The necessity for hardware accelerators is obvious. But even if they have been available for
several years, their biggest drawback, the programmability of these devices, has prevented a
widely use.More and more success stories of early adopters of these technologies are
spreading at conferences and in the HPC community, but very often, the reported codes are
only test implementations of simplified mathematical kernels. Only very few scientific
domains are actually using hardware accelerators for production runs, mostly those that have
been used to adopting their codes to new platforms at the assembly code level. However,
more and more accelerated systems are available throughout Europe and several more will be
installed in the following years.

To make the power of accelerators available for the majority of HPC customers in Europe,
programmability of special-purpose hardware accelerators needs to increase dramatically. A
few attempts to accomplish this are coming from the hardware vendors themselves; some of
them are targeting OpenMP compilers or at least OpenMP-like compiler directives to harness
the massive parallelism of their devices (e.g., IBM for Cell). Other attempts are coming from
software and traditional compiler companies that have developed language add-ons to
simplify writing portable codes, e.g. RapidMind, CAPS HMPP or the new PGI compiler with
GPU support. Another attempt comes from the Khronos Group, a standardisation organization
that released the OpenCL standard in late 2008. OpenCL was meant to be a common interface
to all different kinds of accelerators but has so far only been adopted by the typical GPU
vendors AMD/ATI and NVIDIA. A standardized interface like OpenCL is one of the
necessary steps to a wide adoption of hardware accelerators. Intel’s announcement of the
“Larrabee” GPU that consists of standard CPU cores instead of the highly tailored GPU cores
of previous devices, received much attention from the HPC community. It is hoped that the
regular Intel software tool chain can be used to program these devices for higher
programmability, flexibility and performance, which is extremely necessary in environments
where many legacy codes, consisting of hundreds of thousands of lines of code, are being
used. In HPC software has usually outlived the hardware.

The available accelerator hardware within the PRACE prototypes are:

• Cell processors (especially the PowerXCell 8i double precision version that is being
used in Roadrunner - the world’s first Teraflop/s system);

• ClearSpeed e710 accelerator boards and ClearSpeed CATS units;
• NVIDIA GPUs and their high-performance GPGPU Tesla boards;
• FPGAs (Virtex-4 from Xilinx);
• Intel Larrabee GPUs.

Additional to the hardware, the access to the CAPS HMPP compiler and RapidMind licenses
have been available through WP8 prototypes. Please see “Annex B: Hardware Overview” for
more details on the systems used for development and benchmarking. Intermediate results on

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 29

the prototypes are available in the (PRACE-restricted) Deliverable D8.3.1 and final prototype
evaluation reports will be included in the public Deliverable D8.3.2.

One of the goals of Task 6.6 is to find useful ways to offer the extreme computing power of
hardware accelerators to a broader community. It is therefore necessary to compare not only
the different hardware itself but also the ease-of-use from a programmer perspective. The
remainder of this Chapter will give an overview of all available accelerator languages and
paradigms. We will firstly review what programming languages (Table 5) and libraries are
available for certain accelerators followed by detailed introductions to the languages.

 NVIDIA
GPUs

AMD/ATI
GPUs

IBM
Cell

ClearSpeed
CSX 700

X86
Multi-
core

RapidMind

CAPS HMPP pthreads,
SSE

CUDA
Brook

OpenCL targeted 2010
Cn

PGI Compiler through
OpenCL

IBM Cell SDK
StarSs

Table 5: Availability of programming languages for x86 multi-core and hardware accelerators

Assessment of the libraries

A short overview of available libraries for accelerators can be found in Table 6 below.

 NVIDIA
GPUs AMD/ATI IBM Cell

SDK ClearSpeed

BLAS CUBLAS ACML libblas CSXL (only
Level 3)

LAPACK - ACML liblapack CSXL
(subset only)

FFT CUFFT ACML libfft/libfft3d
CSFFT (1D,

2D, real,
complex)

RNG - ACML libmc_rand RNG library
Table 6: Vendor implementations of mathematical libraries for hardware accelerators

Libraries can be used to measure acceleration of basic mathematical functions. However, as
long as the transfer of data to the accelerator is the main bottleneck, the use of these libraries
is restricted to very few codes that are able to automatically reuse the data on the accelerator.
Using accelerators only by calling mathematical library functions does not deliver a
significant performance impact for most real world applications.

Further studies ([34]) indicate that performance comparisons of two different libraries (in this
case ACML for an AMD/ATI FireStream GPU vs. CUBLAS for NVIDIA card) yield only
insight in the maturity of the libraries and does not give reliable figures on neither the
underlying hardware nor on the programming model used for the specific accelerator.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 30

6.1 Cell programming

The CELL processor consists of one PPE (Power PC Processor Element) and 8 SPEs
(Synergistic Processor Elements). The PPE runs the OS and controls the SPEs. The SPEs are
optimized for running compute-intensive applications and access data on the PPE or other
SPEs via the EIB (Element Interconnect Bus) using DMA transfers.

Beyond assembly language level, the most powerful approach is building applications with
IBM’s Cell Software Development Kit (SDK). Since this is a non-portable dual-source
approach and the creation of the threads that run on the SPEs and all DMA data transfers must
be explicitly initiated, code overhead and developing efforts are quite huge. The most
important library in the SDK is the SPE runtime management library (libspe), which provides
functions for the management of the SPEs by the PPE. Both the IBM XL C/C++ & Fortran
Compiler for Multi-core Acceleration and GCC support the SDK. Using the SDK at least 2
different source files have to be written: the SPE source file which consists of the code that
will run on the SPEs and the PPE source file which consists at least of routines to create a
context and a thread for each SPE.

For SIMD programming of 128 bits wide vectors the following libraries are provided:
• SIMD programming on the PPE:

o VMX (AltiVec) library that provides functions for general-purpose vector
processing and vector mathematics;

o SIMD Math library that provides advanced mathematical functions on top of
the AltiVec library, operating on vectors;

o MASSV library that provides advanced mathematical functions, operating on
arrays.

• SIMD programming on the SPE:
o SPE intrinsic that provide the SPE’s basic math and logical operations;
o SIMD Math library that provides advanced mathematical functions, operating

on vectors;
o MASSV library that provides advanced mathematical functions, operating on

arrays.

To simplify the development process the Accelerated Library Framework (ALF) was
introduced with IBM SDK 3.0 ([35]). This processing environment handles many of the low-
level details of SPE management. ALF supports the MPMD programming model and
provides an abstract structured framework for offloading computationally intensive work to
accelerators. This toolset was designed to manage applications on many different kinds of
host-accelerator based systems. The ALF runtime library handles the task management and
DMA transfers, while the programmer only has to focus on the implementation of the
computational kernel and the data partitioning.

The recent version of the IBM XL C/C++ compiler can compile and link both SPE and PPE
code segments with a single compiler invocation without the need of having 2 different source
files. OpenMP pragmas mark regions of the PPE code which should be run in parallel on the
SPEs. This writing easily portable programs with low development efforts.

The IBM SDK offers PPE implementations for all standard BLAS routines, but only the
following BLAS routines have been optimized to use the SPEs:

• Level 1: S/DSCAL, S/DCOPY, IS/DAMAX, S/DAXPY, S/DDOT, DASUM,
DNRM2, DROT

• Level 2: S/DGEMV, S/DTRMV, S/DTRSV, DGBMV, S/DGER, DSYMV, DTBMV,
DSYR

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 31

• Level 3: S/DGEMM, S/DSYRK, S/DTRSM, S/DTRMM, S/DSYMM, S/DSYR2K

Concerning LAPACK, PPE implementation for all C/S/D/Z LAPACK routines exists, but
only the following routines have been optimized to use the SPEs: DGETRF, DGETRS,
DGETRI, DGEQRF, DGELQF, DPOTRF, DPOTRS, DBDSQR, DSTEQR, DGESVD,
DGESDD. 1D+2D+3D single precision and 2D-3D double precision FFT are available for the
PPE and only one set of SPE APIs for 1D single precision FFT is provided.

6.2 CUDA (by NVIDIA)

CUDA [36][37], the Compute Unified Device Architecture, is a parallel computing
architecture developed by NVIDIA that enables scientific programming for NVIDIA GPUs. It
includes the CUDA Instruction Set Architecture (ISA) and the parallel compute engine in the
GPU.

6.2.1 Programming Model

The programming model of CUDA differs significantly from standard single- and multi-
thread CPU model. To a CUDA programmer, the computing system consists of a host that is a
traditional Central Processing Unit (CPU) and one or more devices that are massively parallel
processors equipped with a large number of arithmetic execution units. The CUDA language
is strictly related to the architecture of the modern NVIDIA GPU’s, which consists of many
Multiprocessors, each containing 8 streaming processors. The CUDA devices accelerate the
execution of these applications by harvesting a large amount of data parallelism. Figure 2
clearly shows the differences between CPUs and GPUs.

Figure 2: Differences between CPUs and GPUs

The programming model behind CUDA is focused on the idea of kernel. A kernel is a
function callable from the host and executed on the CUDA device - simultaneously by many
threads in parallel. The host calls kernels use data resident on the NVIDIA card. The device
code is written using ANSI C extended with keywords for labelling data-parallel functions,
called kernels, and their associated data structures. The NVIDIA compiler, NVCC, internally
divides the device code from the host code; the device code is compiled by a normal C++
compiler (like GCC on Linux, Microsoft compiler on Windows), the host code is first
transformed to PTX code (an intermediate language) and then to GPU’s assembler; at the end
of the compiling process, the two parts are linked together to only one executable which
contains both CPU and GPU code. In situations where there is no device available or the
kernel is more appropriately executed on a CPU, one can also choose to execute kernels on a
CPU.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 32

The best way of obtaining good performance with such architecture is to have a programming
model based on SIMD (Single Instruction Multiple Data), because the many streaming
processors (up to 240 with the current models) can execute the same code on different data.
When a kernel is invoked, or launched, it means that it is executed as a grid of parallel
lightweight threads. The creation of threads on the GPU is hardware accelerated, so the
overhead is negligible. So the best way of obtaining the maximum performance is to load the
chip with hundreds and (even better) thousands of small threads that can be executed in
parallel on the Streaming Processors. Typically a small thread corresponds to the code inside
“for” loops in regular C code that can be vastly executed in parallel on a GPU instead of
sequentially.

A kernel launch requires the explicit specification of an execution configuration to define the
number of concurrent threads. Creating enough threads to fully utilize the hardware often
requires a large amount of data parallelism. Each of the threads that execute a kernel is given
a unique threadID that is accessible within the kernel through the built-in variable. Threads
are logically organized in blocks and blocks are organized inside a grid. This two-level
hierarchy is illustrated in Figure 3. This provides a natural way to invoke computation across
the elements in a domain such as a vector, matrix, or field. Threads within a block can
cooperate among themselves by sharing data through some shared memory (discussed in the
next paragraph) and synchronizing their execution to coordinate memory accesses.

Figure 3: CUDA two-level hierarchy of thread organization

6.2.2 Memory Model

In CUDA, host and devices have separate memory spaces. This reflects the fact that devices
are typically hardware cards that come with their own Dynamic Random Access Memory
(DRAM).

In order to execute a kernel on a device, the programmer needs to allocate memory on the
device and transfer the required data from the host memory to the allocated device memory.
Similarly, after device execution, the programmer needs to transfer the result data back to the
host and free up the device memory allocated that is no longer needed. The CUDA runtime
system provides APIs to perform these activities for use by the programmer.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 33

Figure 4 shows an overview of the CUDA device memory model. Each thread has a private
local memory. Each thread block has a shared memory visible to all threads of the block and
with the same lifetime as the block. Finally, all threads have access to the same global device
memory. There are also two additional read-only memory spaces accessible by all threads: the
constant and texture memory spaces. The global, constant, and texture memory spaces are
optimized for different memory usages. The global, constant, and texture memory spaces are
persistent across kernel launches by the same application.

Figure 4: CUDA memory device model

It is really important to point out that different kinds of memory reflect different capability in
term of access and latency. For example the shared memory can be as fast as a register when
there are no bank conflicts or when reading from the same address or global memory is
potentially more than 100x slower than shared memory and it is accessible from either the
host or device.

6.2.3 Current support and libraries availability

CUDA is currently implemented as an extension to C and it supports a range of computational
interfaces including OpenCL and DirectX Compute. Third party wrappers are also available
for python, Fortran, Java, .NET and MATLAB. The CUDA toolkit is available for Linux,
Windows and OSX.

CUDA makes available the extreme parallelism on current graphic cards but puts most
design-decisions on the programmer. Memory transfers between host processor and GPU
have to be orchestrated by the programmer as well as the slicing of the data to threads, thread
blocks and grids of thread blocks. Furthermore it is necessary to optimize memory access to
gain acceptable performance, which puts another burden on the programmer. Translating
some C code to CUDA may not be difficult, depending on the type of algorithm, but low level
knowledge of the hardware is required to optimize the code and squeeze every bit of

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 34

performance out of the GPU. Another consideration that has to be made on the current
NVIDIA GPU’s is that double precision performance is quite low compared to single
precision floating point performance, this is due to the fact that every Multiprocessor has 8
single precision units, and 1 double precision unit. This performance gap can be seen on the
Tesla product line technical specifications.

CUDA is not only used in HPC, it is mainly used for graphics programming and has a broad
developer community, with many code snippets, examples and tutorials on the web. A few
very promising code porting examples have been undertaken by HPC communities. The latest
CUDA Toolkit, number 2.3 released July 2009, includes a new and improved profiler and
debugger for the GPU, as well as complete BLAS (CUBLAS) and FFT libraries (CUFFT).
CUBLAS and CUFFT support real and complex computation both in single and double
precision.

It is not easy to understand or predict the future evolution. NVIDIA collaborates with a lot of
partners, starting from PGI to independent companies like CAPS HMPP (see next Section
6.4), around the world to improve its toolkit and to spread the utilization of its proprietary
architecture for HPC purposes. Recently Portland Group has released a new version (9.0) of
its compilers and development tools. The update includes support for the PGI Accelerator
programming model on x64-based Linux systems utilizing NVIDIA GPUs. The PGI
Accelerator Fortran and C compilers are designed to automatically analyze a program's
structure and data as well as to split portions of the application between a multi-core x64 CPU
and a GPU. OpenMP-like compiler directives inside the code control the portions split
between each device. More details can be found on the official website ([38]).

6.3 OpenCL

OpenCL (Open Computing Language, [39]) is a framework for writing programs that execute
across platforms consisting of CPUs, GPUs, DSPs and CELL processors. OpenCL is being
created by the Khronos Group with the participation of many industry-leading companies
following the idea to create royalty-free standard for cross-platform heterogeneous parallel
programming.

All the relevant information reported have been extracted from OpenCL technical
specification. Version 1.0 has been released by the Khronos Group [40] on December 8, 2008.

6.3.1 OpenCL Architecture

The OpenCL architecture model is represented in Figure 5. The model consists of a host
connected to one or more OpenCL devices. An OpenCL device is composed by one or more
compute units (CUs) which are further divided into one or more processing elements (PEs).
Computations on a device occur within the processing elements. Although OpenCL has been
designed as a standard for many different accelerators, the dominance of GPU vendors is
evident.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 35

Figure 5: OpenCL Architecture Model

The OpenCL application submits commands from the host to execute computations on the
processing elements within a device. The processing elements within a compute unit execute
a single stream of instructions as SIMD units (execute in lockstep with a single stream of
instructions) or as SPMD units (each PE maintains its own program counter).

6.3.2 Execution Model

Execution of an OpenCL program occurs in two parts: kernels that execute on one or more
OpenCL devices and a host program that executes on the host. OpenCL allows calling not
only OpenCL kernels but also hardware specific kernels (called native kernels), e.g. written in
CUDA, and hardware specific enhancements for certain architectures which undermines the
portability. The host program defines the context for the kernels and manages their execution
through queues. The core of the OpenCL execution model is defined by how the kernels
execute.

When a kernel is submitted for execution by the host, an index space is defined. An instance
of the kernel executes for each point in this index space. This kernel instance is called a work-
item and is identified by its point in the index space, which provides a global ID for the work-
item. Each work-item executes the same code but the specific execution pathway through the
code and the data operated upon can vary per work-item. Work-items are organized into
work-groups. The work-groups provide a more coarse-grained decomposition of the index
space. The result is a model that has a strong similarity with the CUDA ones (Figure 6).

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 36

Figure 6: OpenCL Work-Groups and Work-Items organization

A wide range of programming models can be mapped onto this execution model. OpenCL
explicitly support two of those models: the data parallel programming model and the task
parallel programming model.

6.3.3 Memory Model

OpenCL standard defines four distinct memory regions:

• Global Memory: this memory region permits read/write access to all work-items in all
work-groups.

• Constant Memory: a region of global memory that remains constant during the
execution of a kernel.

• Local Memory: a memory region local to a work-group.
• Private Memory: a region of memory private to a work-item.

The memory regions and how they relate to the platform model are described in Figure 7.

Figure 7: OpenCL Memory Model

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 37

The host and OpenCL device memory are, for the most part, independent of each other. This
interaction occurs by explicitly copying data (in a blocking or non-blocking way) or by
mapping and un-mapping regions of a memory object (always using OpenCL API).

OpenCL uses a relaxed consistency memory model (like OpenMP); i.e. the state of memory
visible to a work-item is not guaranteed to be consistent across the collection of work-items at
all times. Memory consistency is enforced at a synchronization point.

6.3.4 The OpenCL framework and runtime

The OpenCL framework allows applications to use a host and one or more OpenCL devices
as a single heterogeneous parallel computer system. The framework contains the following
components:

1. OpenCL Platform layer: The platform layer allows the host program to discover
OpenCL devices and their capabilities and to create contexts.

2. OpenCL Runtime: The runtime allows the host program to manipulate contexts once
they have been created.

3. OpenCL Compiler: The OpenCL compiler creates program executables that contain
OpenCL kernels.

The OpenCL C programming language implemented by the compiler supports a subset of the
ISO C99 language with extensions for parallelism. A few constructs and data types are
directly taken from OpenGL and some reserved data types that will be advantageous for
scientific computing like quads, complex or imaginary data have not made it into 1.0.

6.3.5 Portability and know limitations

The standardization of OpenCL has been initiated by Apple and was done together with teams
from AMD, Intel, IBM, NVIDIA and software companies like RapidMind and others. Both
NVIDIA and AMD have showcased demonstrations of OpenCL on their GPUs in December
2008 at SIGGRAPH Asia. While AMD is planning to replace their hardware-specific GPU
programming language Ctm (Close to Metal) with OpenCL, NVIDIA seems to stick to
CUDA and implement OpenCL as another language to use CUDA. A first compiler is
expected from AMD in 2009. Other companies, like Petapath, are planning to join the
Khronos Working Group on OpenCL. Therefore, it seems that the PGI-Compiler might use
OpenCL in the future to deliver code that is able to run on all available GPU/OpenCL devices.

6.4 CAPS HMPP

The Hybrid Multi-core Parallel Programming workbench (HMPP, [41]) provides developers
with a set of tools dedicated to build parallel hybrid applications that run on many-core
systems. These architectures combine general-purpose cores with hardware accelerators
(HWAs) such as GPUs (NVIDIA and ATI) or SIMD computing units (SSE2).

The HMPP workbench is a programming environment from CAPS [42] that includes a C and
Fortran meta-compiler, hardware-specific code generators and a runtime that use the hardware
vendor development tools and drivers.

6.4.1 Programming interface

Based on a set of OpenMP-like directives that preserve legacy codes, HMPP directives ensure
that the application keeps portable and that hardware specific computations are separated

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 38

from the main functionality. For instance, targeted to CUDA, HMPP expresses which parts in
the application source should be executed on a NVIDIA card.

The types of HMPP directives are the following:

• Codelet: define a function as hardware-assisted.
• Execution: specify the codelet remote execution in the program.
• Data transfers: data can be uploaded before the execution of the codelet and data

download points can be inserted after the execution.

In detail, a codelet directive declares a computation to be remotely executed on a hardware
accelerator. The favoured type of hardware accelerator can optionally be indicated, otherwise
HMPP will take the first available compatible accelerator. For an efficient use of the
accelerator, the computation can be specialized to the type of the parameters, their size, value
etc. HMPP does not parallelize a sequential code by itself. Furthermore, if the hardware
accelerator is not available for any reason, the legacy code still can be executed and the
application behaviour is unchanged. Codelet execution can be synchronous or asynchronous.

HMPP can be seen as programming glue between target specific programming environments
and general-purpose programming. This is especially useful in combination with different
implementations for one codelet, e.g. an accelerated version used only for large vector sizes.

6.4.2 Description of the runtime

The HMPP runtime is the dynamic library in charge of the correct execution of the remote
procedure calls to the HWA. Bound to the application, this library allocates and initializes the
HWA in order to allow the execution of the codelets. It relays communications between the
host and the HWA and manages the asynchronous execution of the codelets.

A HMPP application can be compiled with an off-the-shelf compiler and run without any
specific runtime to produce a conventional native binary. The HMPP annotated application
source is parsed by the HMPP pre-processor to extract the codelet and to translate the HMPP
directives into calls to the HMPP runtime. More over, thanks to its dynamic linking
mechanism, a HMPP application is able to make use of either a new accelerator or an
improved codelet without having to recompile the application source. In this way, a single
binary could run on various hardware platforms. HMPP can therefore be used complementary
to OpenMP and MPI and is a good solution to accelerate parts of legacy codes. Compilation is
done within one line, the HMPP compilers then internally does two main passes, one for the
host application and one for the hardware-accelerator code, called codelet production.

During the codelet generation, the developer has the possibility to inspect the source code of
the codelet and it is able to modify the specific code related to the accelerator before
continuing with the next step of compilation and the final linking. HMPP is also able to select
at runtime most efficient implementation according to an explicit expression (data size,
restrictions, ...) inside the code, an environment variable or a dynamic mapping file.

HMPP generates the real target code, CUDA for example. This permits the expert
programmer to have a look at the target code and optimize it manually; so HMPP can be used
to create a mainframe of the target code and proceed for manual coding skipping the trivial
and time consuming phases of coding (for example in CUDA kernel definitions, copy of
memory from and to the host, and so on). Figure 8 shows synthetically how the compile
process for CPU+GPU code is composed and how all steps interact with each other.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 39

Figure 8: HMPP code generation flow

6.4.3 Current implementation.

The HMPP compiler can currently be used to accelerate code on AMD/ATI, NVIDIA GPUs
and x86 Multi-core CPUs (using also SSE instructions). HMPP 2.x allows users to pipeline
computations in multi-GPU systems and makes better use of asynchronous hardware features
to increase performance of GPU accelerated applications. HMPP 2.x fully supports AMD
FireStream hardware (supporting BROOK+ 1.0) with a CAL/IL code generator. The addition
of an OpenCL code generator is another major milestone; this will give HMPP developers
another powerful standard programming option.

The HMPP codelet generators do not handle the full C language but only a subset of C99
standard. Some restriction aims at ensuring a large portability of the code on most HWAs. As
for C, the codelet generators do not support the full FORTRAN language. Refer to the HMPP
Workbench User Guide to an exhaustive overview of limitations.

At the moment HMPP requires a valid license in order to compile and produce codelets.
CAPS HPMM is compatible with GNU GCC and the INTEL icc/ifort compilers.

6.5 RapidMind

RapidMind [43] started in 2004 based on the academic research related to the “Sh” project
[44] of the University of Waterloo. The project originated from the idea of doing “general-
purpose computing on graphics processing units”, now referred to as “GPGPU”. It started at a
time, when the first “programmable” GPUs became available and the only way to program
these devices was through the use of shading languages. RapidMind has then subsequently
added the Cell processor backend and the x86 backend with the rise of multi-processor CPUs
for the consumer market. Today, the "RapidMind Multi-Core Development Platform" is the
only commercially available product that allows automatic code generation for multi-core
chips from Intel and AMD and for hardware accelerators like GPUs and Cell.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 40

6.5.1 Architecture and programming model

The RapidMind Multi-Core Developer Platform adds special types and functions to C++, to
allow data stream programming. Data stream programming looks somewhat similar to
FORTRAN array operations, for those who are familiar with this construct. However,
RapidMind arrays and vectors are much more powerful since the “array operation” is freely
programmable. For suitable problems, this allows to write very short and clean programs.

The RapidMind programming model is very distinct from other well known programming and
parallelization models. Adapting to this concept needs a real transition, like going from pure
C programming to object-oriented C++. Its basic concept, called “data-stream processing”, is
quite powerful to express parallelism in the language and therefore yield (theoretically) good
performancel gains on highly multi-threaded devices. The programmer can easily describe the
data dependencies and data workflows and inherently adds all information necessary to do an
efficient parallelization. The compiler and the runtime environment then have maximum
information to decide how to auto-parallelise the code efficiently and create optimized binary
code for the specific hardware detected. RapidMind features a just-in-time compiler and an
optimized load balancer. Any information on the existence of threads is perfectly hidden from
the user. Figure 9 shows how the runtime Treats the code.

Figure 9: RapidMind runtime

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 41

RapidMind pursues the strategy of extracting data-parallelism instead of task parallelism that
is the scalable parallelization model for many-core chips. The concept allows automatically
parallelization on different hierarchies, e.g. on the SIMD-unit-level and the multi-core level at
the same time. It seems that this model could be pushed forward to even replace MPI on the
cluster level, although this idea is neither implemented nor on the roadmap.

RapidMind does not offer a math library for BLAS or FFT operation. There has been some
investigation in this direction and although there is no actual product, many example codes
are available from RapidMind upon request. A publication from 2006 reports on the
performance of an SGEMM implementation, a 2D-FFT and a Monte-Carlo algorithm ([45]).
The performance achieved in that paper was comparable to the best available GPU
implementations at that time. However, since then, RapidMind seems to have not been able to
keep pace with the rise of CUDA.

6.5.2 Portability and known limitations

RapidMind is purely based on C++ data types and templates. There is no Fortran interface
available. C++/Fortran mixed programming is the only way to use RapidMind for Fortran
legacy codes, a very error-prone programming model. Theoretically the RapidMind
programming model would very well suit the Fortran array operations, but the necessary port
will only be done if RapidMind sees a real business case or if someone is willing to pay for it.

In July 2009, RapidMind released v4.0 which is the first version that supports NVIDIA Tesla
boxes through the new CUDA backend. Up to now, RapidMind supported GPUs through an
OpenGL Shading Language backend, which allowed running on practically every
programmable GPU, except Tesla. Tesla has been designed for the HPC market, and although
it contains regular GPUs it does neither support graphical output nor shading languages.
Starting from version 4.0 RapidMind now supports double-precision accuracy on the GPU,
however the current release is not able to reach the performance of the CUBLAS
implementation. The next release version 4.1, expected for late Q4’09, will put an emphasis
on “CUDA performance”.

The latest release is also the first that supports double precision for the PowerXCell8i
processor. Although it should theoretically be possible to run any RapidMind code on all
supported back-ends, some limitations apply when programming for Cell. There are more
portability issues if the code has been tweaked to deliver high performance on the GPU. Our
investigation showed that the performance of RapidMind on Cell is generally poor.

The performance of the x86 backend is not so bad, taking into account that firstly, the Intel
compiler and Intel MKL are really the leading compiler and math library for Intel platforms.
Secondly, the x86 backend is a comparably new backend and has only been introduced in
Q4’08. The gap between MKL and RapidMind of a factor of 2 on Nehalem EP for our
example codes will hopefully shorten in the future. RapidMind Inc. has recently been bought
by Intel and is now working on a merge of RapidMind technology with the quite similar
approach of Ct. Ct stands for “C for throughput computing” and is Intel’s new language
designed for the use of many-core processors.

6.5.3 Future Developments

The fact that RapidMind is now part of Intel has lead to many speculations: Some people are
concerned, that the RapidMind Development Platform might no longer support non-Intel
products, others suspect, that -in the long run- it might not be supported at all. RapidMind Inc.
announced that they plan to support RapidMind and stick with the roadmap for the next

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 42

releases. However, it seems that including RapidMind technology in Ct might lead to a very
powerful new programming language supported by one of the leading chip vendors, which
might be able to attract a wider audience and has the potential to become the language for the
multi-core era.

Hopefully this product will support other platforms. When looking at the number of NVIDIA
GPUs that has been sold, it seems to be mandatory to keep supporting at least CUDA-enabled
cards. RapidMind is part of the consortium that released OpenCL and is planning to support
OpenCL in one of its later releases.

6.6 CellSs (StarSs programming models family)

StarSs is a parallel programming model for multi-core processors aiming at high portability of
application to any target hardware. Ideally it can be extended to other multi-core processors or
symmetric multiprocessors since it separates the underlying processor’s characteristics from
the programmer.

The current implementation of StarSs for Cell processor is called CellSs [46][47]. CellSs
makes use of simple annotations (pragmas), which represents a tasks’ current state, to a
sequential code written in C language. Execution of the tasks on the SPE is identified by these
annotations without any collateral effects. A source-to-source compiler generates code for
both PPE and SPE. The system then executes the tasks concurrently on SPEs and resolves
dependency.

There are three types of pragmas:

• Initialization and finalization pragmas: these pragmas indicate the start (#pragma css
start) and the end (#pragma css finish) of application execution. They are optional
and are annotated by CellSs, if not present in the user code, at the beginning and end
of the application.

• Task pragmas: these pragmas are inserted before a function in an application. They are
executed on an SPE (Synergistic Processing Element). It specifies the input, output or
inout with size of arrays or matrices, if any.

• Synchronization pragmas: the synchronization pragma css wait enables access to the
data that are generated by a task. As in OpenMP, there is a barrier directive (#pragma
css barrier), which forces the master thread to wait for the completion of all generated
tasks until now. However, this kind of synchronization is too course grain and in many
case can be counter productive. To achieve a finer grained control over data
readiness, wait on directive is also available.

The CellSs compiler generates two files: a main program, which is to be run on a PPE and a
task code, which is to be run on an SPE. For each of the task code, an adapter function for the
annotated functions inside the task code is generated. At the beginning of the main code, the
CellSs inserts the following application calls to CellSs runtime: calls to initializing and
finalizing functions; calls for registering the annotated functions; and calls to a CellSs runtime
library primitive (css_addTask) wherever a call to one of the annotated functions is found.
The task main code calls these adapters, which is a part of CellSs runtime. These files are then
compiled using GCC or IBM XL C compiler to generate a single binary.

The main program of the application (the main thread) runs on PPE. The CellSs runtime
generates threads in SPE, which is defined by the environment variable (which is eight by
default). The task program is initiated in these threads. Whenever the main program calls

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 43

css_addTask, the runtime adds a node representing the task in the task graph. If a data
dependency exists between this and previously called task, then an edge between these tasks
is added. The master thread also performs parameter renaming (and similar higher order
optimization), thereby removing write-after-read and write-after-write hazards, greatly
increasing the parallelism of the task dependency graphs. An additional thread called helper
thread runs on PPE. The helper thread is responsible for scheduling and further managing the
task dependency graph. A helper thread selects an idle SPE and assigns a task that has no
dependency, to be run in it. The helper thread also specifies the location of the parameters
needed for a specific task. The data is transferred between the main memory and the local
memory of SPE with the help of CellSs SPE library. Figure 10 summarizes the runtime
behaviour.

Once the task completes execution, the task program notifies the helper thread, which then
updates the task-dependency graph according to the current situation and schedules new tasks
for execution in idle SPEs. In order to avoid inter-task circular dependency while executing
program in parallel and to reduce execution time of a bundle of tasks, double buffering is
implemented. At the end of the execution of all of the tasks, the DMA out of the output data
of the last task in the group is programmed, and the task program waits for all of the DMA
outs to finish.

Figure 10: CellSs runtime behaviour

An effective tracing mechanism is implemented on CellSs and the traces are analyzed using
Paraver, which provides detailed views of the entire application, as well as individual
modules. Traces obtained aid in analysis of the CellSs runtime behaviour.

6.7 Cn for ClearSpeed accelerators

Although ClearSpeed [48] has joined the Khronos Group, which is in charge of standardizing
OpenCL and there are plans to create an OpenCL interface for their accelerator boards, Cn is
currently the only way to program for the Clearspeed platform.
The Cn language is based on ANSI C with extensions to support data-parallel processing. The
main addition to standard C is the definition of mono (scalar) and poly (parallel) data types.
Variables, function pointers and entire data structures can be marked as poly; it means that
they are then processed in parallel on the array of 96 processing elements (PEs) in the
CSX600 on the Clearspeed cards.

The ClearSpeed hardware accelerators are the only accelerators that have been designed for
numerical simulations and HPC. They fully support 64-bit double precision and IEEE754

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 44

accuracy as well as full reliability through ECC protected memories. Their engagement in
HPC is reflected in the graphical debugger and the visual profiler toolset, the most mature
profiler that currently exist for hardware accelerators. The last hardware accelerator available
is the CXS700 card ([49]).

Clearspeed provides its customers with an optimized subset of Level3 BLAS (DGEMM,
ZGEMM, ZGEMM3M, DTRSM) and LAPACK routines as well as library calls for FFTs
(CSFFT, 1D, 2D, real and complex.) and a Random Number Generation library to support
applications such as Monte Carlo simulations. The supported LAPACK routines are:
DGEQRF, DGESV, DGETRF, DGETRS, DORGQR, DORMQR, DPOSV, DPOTRF, and
DPOTRS.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 45

7 Assessment of the languages and porting activity

The overall aim of this evaluation is to find highly productive combinations of hard- and
software for algorithms used in HPC. In order to accomplish this, an exhaustive comparison
of different languages and different accelerators is needed. During the course of the PRACE
project, the assessment of languages for hardware accelerators became a joint effort of WP6
and the “Future Petaflop/s computer technologies beyond 2010” working package 8 (WP8).
WP8 issued a call on prototypes for emerging technologies and after a review and voting
process, several prototypes targeting hardware accelerators or languages for hardware
accelerators have been accepted, procured and installed. While the focus of WP8 lies on the
hardware itself and only touches programmability and productivity issues, people involved in
the WP8 prototypes teamed up with WP6 members to allow the assessment of several new
emerging languages and the hardware acquired within WP8 at the same time. Detailed
information on the different WP8 prototypes will become publicly available in D8.3.2 while
the comparison of all languages is described in the remainder of this document.

7.1 The concept of productivity in the HPC context

The combination of performance and programmability is commonly referred to as
“productivity” and has been studied during the DARPA High Productivity Computing
Systems (HPCS) program. Reviewing the past shows that, although a bunch of high-level
languages designed for usability and programmability exists; C and Fortran are mainly used to
program high-end machines. C++ and Java are playing -if at all- only a minor role in HPC,
although they are used by the majority of programmers worldwide and one might believe that
a wide user community is a warrantor for good examples, good teachers, good design
patterns, cookbooks, best practices, debugging tools etc. However, the dominance of C and
Fortran in HPC reflects one important issue: What, in the end, one of the most important
criteria in HPC, is the performance of the code. One of the assumptions for most of the
“productivity research” carried out within the DARPA HPCS program was that performance
is the main goal of every HPC programmer, and indeed 100% of the interviewees mentioned
performance when asked about the top issues facing HPC programmers. Other important
issues were correctness (90%), fault tolerance (70%), economical costs (20%), and portability
(10%) ([50]).

To assess the productivity of a language, a good starting point is to look at software
engineering metrics that are being used to determine the degree of difficulty a certain
programming model puts on the programmer. In a second step we will use a model to show
the trade-off that exists between performance and programmability and we will propose how
to assess both during the porting work. Within Task 6.6 twelve languages and environments
have been chosen for a detailed evaluation. These are: MPI+OpenMP, UPC, CAF, Chapel,
X10, CellSs, CUDA, CUDA+MPI, OpenCL, RapidMind, Cn, CAPS HMPP. Out of these,
seven candidates can be used to program for hardware accelerators, namely: CellSs, CUDA,
CUDA+MPI, OpenCL, RapidMind, Cn, CAPS HMPP. Again, WP6 worked closely with
WP8 to port 3 synthetic benchmarks from the EUROBEN benchmark suite to the target
languages. These benchmarks were a dense matrix-matrix multiplication (mod2am), a sparse
matrix-vector multiplication (mod2as) and a one-dimensional Fast Fourier Transformation
(mod2f). These kernels were selected because are representative of the main computational
applications analyzed in Chapter 2, as we can see in Table 7.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 46

Scientific Area Dense linear algebra
(mod2am)

Spectral methods
(mod2f)

Sparse linear algebra
(mod2as)

Computational
Chemistry

VASP
CPMD
GPAW
Siesta
CP2K

SIESTA
VASP
CPMD
NAMD
CP2K

SIESTA
GPAW
CPMD

HELIUM

Computational
Fluid Dynamics N3D

ALYA
N3D

Code_Saturne

Condensed Matter
Physics

QuantumESPRESSO
VASP
CPMD
CP2K

SIESTA
VASP
CPMD

QuantumESPRESSO
CP2K

SIESTA
CPMD

Earth and Climate
Science BSIT BSIT

Life Science NAMD
Particle Physics QCD
Plasma Physics TORB

Table 7: Mapping of Scientific applications on basic numerical kernels

This “porting activity” gave us the possibility to try to collect assess productivity information
and performance information at the same time.

More information on the used input data sets is available in “Annex A: Reference Input Data
Sets (RIDS)” on page 87. “Annex B: Hardware Overview” starting at page 91 describes the
hardware that has been used for development and benchmarking. Detailed information on all
languages as reported by the programmers is included in “Annex E: Reported Results for all
Languages” while an analysis of these results and a full comparison of all languages is given
in Section 7.3 “Porting Results“.

7.2 Measuring Productivity

To assess the advantages and disadvantages of the new languages and to compare the
languages with each other, it is important to take into consideration the findings of the
DARPA HPCS program. The papers published from this program suggest various different
definitions of and/or approaches to the term “productivity”. A common finding is that for the
area of HPC, the most important issues that define productivity are “the time and effort
required to write, debug and tune the code, and the performance of the code that results.”
([55]).

Following the assumptions given in that paper results on the following definition

T(P) = I(P) + rE(P)
where:

• T(P) is the total time to solution for a given problem P;
• I(P) is the implementation time;
• E(P) is the average execution time;
• r is a weighting factor that reflects the relative importance of minimizing

execution time versus implementation time.

We compare the implementation and execution time of P0 with those of PL, the equivalent
program in a new programming language. The relative power ρL of the language, measuring

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 47

its ease of use, is the ratio of implementation times, while the efficiency εL, measuring
performance of the language, is the ratio of execution times:

• ρL= I(P0) / I(PL)
• εL= E(P0) / E(PL)

Generally, ρL>1 and εL<1 for high-level languages, reflecting the trade-off between
abstraction and performance.

The “time-to-solution” should be the main focus. The way we will measure performance
against time-of-development will allow higher-level languages to show off their potential for
novices or for an easy access of accelerators and will give us at the same time an insight on
the maximum performance one can achieve when using a certain language. The concept of the
“time-to-solution” as introduced here, is only applicable to real applications. However,
looking at the amount of languages that is now being promoted for HPC, it was not reasonable
to start porting whole applications to the new languages without a solid understanding of the
language characteristics and maturity. It was therefore decided to use small synthetic kernels
for a first comparative analysis of the languages. The next step for a potential follow-on
project should then be a in-depth analysis of a few (less than five) languages for real
applications.

In order to assess the performance of a language versus the time of development, we firstly
need a mechanism to determine the proper architecture(s) for a given Algorithm A.

Assumption I: For every algorithm A, which is -more or less- a direct result of a
given problem P, exist one or more optimal architectures Arch1 to ArchN.

The problem of mapping an algorithm to the architecture is not easy but can be solved, e.g.
with performance modelling techniques for both the available hardware and the algorithm. It
is obvious that the principle design decisions are common throughout all accelerators, e.g.
most of them consist of many different simple cores. So, based on the categorization of the
seven dwarves, there is only a subset of dwarves that is suited for accelerators. Stressing the
differences in the accelerator hardware architectures, one should name this subset and
subsequently test each of the algorithms for their suitability for a special accelerator. A few
test implementations and an overview of available codes and their performance should guide
the programmer to the exact mapping. In the relatively short time frame that was available for
this project, this difficult topic could barely be touched. It was postulated that accelerators
perform well for algorithms with a high computational complexity.

Following this, the three EUROBEN kernels have been chosen to include one, that is very
well suited for accelerators (mod2am), one that is merely suited (mod2f) and one that is ill-
suited (mod2as) for current accelerators which all suffer from the bottleneck of transporting
data between host and accelerator.

Assumption II: For a given algorithm A, a given architecture Arch and a given
language L, it is possible to gather data to plot performance (in percentage of the
peak performance) versus time-to-development. In doing this for all languages L1 to
LM that are available on a certain architecture Arch, a complete plot will show the
effects of the different programming languages per architecture and will –in the
end- enable a researcher to choose the optimal architecture and language for his
problem and the available time for coding or porting.

The most important key values will be:

• t0 : time needed for the first properly version of the code;
• p0 : the initial performance at time t0;

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 48

• pmax : the maximum performance after optimization;
• ∆perf/∆time : the higher the slope, the better the productivity gains.

Rough data for these diagrams should be gathered during the porting of the applications. A
single diagram might look similar to that:

Figure 11: An example of porting diagram (perfomance vs. time-of-development)

All programmers involved in porting the EUROBEN kernels to a new language were asked to
report the time necessary for each programming step and the performance improvements of it
in so-called “developer diaries”. Please refer to “Annex D: Template of the Porting Diary” for
a look at the template which has been used to gather this information. It was clear that the
individual samples will not be enough to get statistically significant results but these diagrams
should give an indication of what happens and what can be achieved with these languages.

7.3 Porting Results

The three EUROBEN kernels mod2am (dense matrix-matrix multiply), mod2as (sparse
matrix-vector multiply) and mod2f (1D FFT) should be ported to 14 new languages. This
gives a total of 42 attempts to port kernels. They have additionally been coded using the Intel
Math Kernel Library (MKL) to obtain baseline performance figures.

Out of the 42 attempts:

• 30 have been partly successful or successful

• 3 were unsuccessful due to compiler bugs or due to unsupported language constructs
(CAF/OpenCL mod2as, Chapel mod2f)

• 9 were running out of time
(FPGA-VHDL/FPGA-HCE mod2as, CAPS/CUDA+MPI/FPGA-VHDL/FPGA-
HCE/OpenCL/RapidMind/X10 mod2f)

For 31 of the ported kernels, the Task 6.6 Reporting Templates (see “Annex D: Template of
the Porting Diary”) have been handed in, all including more or less detailed developer diaries
to judge the productivity of the language.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 49

Porting Status mod2am mod2as mod2f
CAF successful not started (compiler bugs) successful

CAPS HMPP successful successful running out of time
CellSs successful successful partly
Chapel partly partly sdk example used

Cn successful successful successful
CUDA successful successful successful

CUDA+MPI partly partly running out of time
FPGA-VHDL partly running out of time running out of time
FPGA-HCE partly running out of time running out of time

MPI+OpenMP successful successful partly
OpenCL successful buggy running out of time

RapidMind successful successful running out of time
UPC successful successful successful
X10 successful successful running out of time

Table 8: Porting status for all kernels

For three of the latest languages, namely OpenCL, Chapel and X10, the performance of the
compiler is still very poor. For these three languages the compilers are only proof-of-concepts
and should not be used in performance studies at this premature state.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 50

max perf in % of peak perf System Measurement
based on mod2am mod2as mod2f

CAF louhi 4 cores 72 n.a. 7
CAPS HMPP uchu 1 C1060 79 0.09 n.a.
CellSs maricell 1 PowerXCell8i 79 0.04 2
Chapel louhi 1 core 0.31 0.08 n.a.
Cn clearspeed 1 CSX700 78 0.03 6
CUDA uchu 1 C1060 81 0.87 4
CUDA+MPI uchu 1 C1060 70 0.34 n.a.
FPGA-VHDL (raw) maxwell 1 FPGA 1625 Mflops n.a. n.a.
FPGA-HCE (raw) maxwell 1 FPGA 14 Mflops n.a. n.a.
MKL nehalem 8 cores 94 3.31 30
MPI+OpenMP nehalem 4x4 (16 cores) 64 2.99 n.a.
OpenCL uchu 1 C1060 2 n.a. n.a.
RapidMind uchu 1 C1060 20 0.29 n.a.
UPC itanium 4 cores 89 2.87 5
X10 huygens 1 core 0.02 0.01 n.a.

Table 9: Maximum performance achieved by the kernels

Since the nature of the languages is very different, there is not one system that could be used
for performance comparison of all languages. For most accelerator languages, the WP8
prototype uchu from GENCI-CEA has been used, which contains 2 Tesla boxes with 2 GPUs
each. For other languages we tried to find systems that allow at least one-to-one comparisons
and made use of the PRACE WP5/7 and WP8 prototypes. An overview of the systems that
have been used for performance measuring is given in “Annex B: Hardware Overview”. The
following table shows the mapping between languages and hardware.

Systems mod2am mod2as mod2f
CAF louhi / itanium n.a. louhi / itanium
CAPS HMPP uchu uchu n.a.
CellSs cell-cluster cell-cluster cell-cluster
Chapel nehalem nehalem n.a.
Cn clearspeed clearspeed clearspeed
CUDA uchu uchu uchu
CUDA+MPI uchu uchu n.a.
FPGA-VHDL maxwell n.a. n.a.
FPGA-HCE maxwell n.a. n.a.
MKL nehalem nehalem nehalem
MPI+OpenMP nehalem nehalem nehalem
OpenCL uchu n.a. n.a.
RapidMind uchu uchu n.a.
UPC louhi / itanium louhi / itanium itanium
X10 huygens huygens n.a.

Table 10: Mapping of hardware systems and kernels

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 51

7.3.1 Number of Source Lines

#Source Lines reported mod2am mod2as mod2f
CAF 350 n.a. 1080
CAPS HMPP 976 979 n.a.
CellSs 305 529 273
Chapel 10 15 n.a.
Cn 1158 1129 615
CUDA 150 350 3000
CUDA+MPI 265 75 n.a.
FPGA-VHDL 1252 n.a. n.a.
FPGA-HCE 75 n.a. n.a.
MPI+OpenMP 154 41 279
OpenCL 290 n.a. n.a.
RapidMind 30 27 n.a.
UPC 550 390 1230
X10 160 294 n.a.

Table 11: Reported number of source lines for all kernels

The reason for measuring the number of source lines of codes was to assess the ease of use of
the languages. As described in “Annex C: Software Engineering Metrics”, the prevailing view
is that the number of source lines gives a rough estimate of the time necessary to program the
code, of the readability and of the maintainability of the code. There is a negative correlation
between the number of source lines and the number of coding errors.

However, since the nature of the languages is different and the ports have been done by
different people in different ways (e.g., some codes made use of BLAS library calls) it has
been difficult to measure the number of source lines in such a way that allows a fair
comparison of the data. All source codes are available on the PRACE WP6 subversion server,
but even counting the number of lines for all versions using tools like CLOC ([56]) proved
difficult because some people have been using pre-processor macros to distinguish different
versions of the code. Running the pre-processor before counting the number of lines is not
reasonable since the number of lines will then contain code coming from highly optimized
libraries which should not be measured.

The T6.6 Reporting Template asked explicitly for the number of lines from the programmer. .
It was decided to use these figures for the comparison although the given figures show big
deviations, which are probably due to the fact that some people reported only the number of
lines they had to add to the original reference implementation, while other reported the
number of source lines of the most important file, and some people reported the number of
lines of the whole directory. For a follow-on project, it is very necessary to specify a unified
way to measure the number of source lines. With all these disclaimers please find below an
overview of the results.

With all these disclaimers please find below an overview of the results.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 52

Figure 12: Overview of the number of source lines for all kernels as reported by the developers

Figure 13: Number of source lines for mod2am as reported by the developers

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 53

Figure 14: Number of source lines for mod2as as reported by the developers

Figure 15: Number of source lines for mod2f as reported by the developers

The overview Figure 12 shows a disturbed image. Having a look at the three figures for each
kernel (Figure 13, Figure 14 and Figure 15) reveals some conclusions, even if one has to be
cautious about the reported data: numbers in light blue represent very small figures, it seems
that the programmers have counted only the number of additional lines of code. Data in
middle blue represents singularities of some implementations: the two CAPS HMPP kernels

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 54

mod2am and mod2as contain several version in one source file, divided by pre-processor
macros. So the actual number of lines of code that is necessary to program in CAPS HMPP is
much smaller than the given figure. The CUDA port of mod2f took only 75 lines of code for
single precision because one could make use of the 1D-FFT implementation available from
CUFFT. Since there was no double precision version of this function, it has to be ported from
scratch (using information from a paper available on CUDA Zone). The fast double precision
version took 3000 lines of CUDA. All the figures in dark blue seem to be reasonable and
comparable.

The trend however, is nevertheless true: the new languages that are designed to be very
distinct (e.g., Chapel, RapidMind, CellSs) are the ones that need very few lines, while the
ClearSpeed language Cn or VHDL for FPGAs needs many lines of code. It is interesting to
see, that CUDA is -at least for the first two kernels- in the range of X10, UPC and CAF.

Another interesting overview is to look at the development time versus the number of source
lines (Figure 16, Figure 17 and Figure 18). It is being expected that writing many lines takes
much time, so a positive correlation for both should be found. This is partly true, with
exceptions for RapidMind and CAPS. RapidMind is an exception since the total development
time as reported by the programmer includes a lot of time for testing. The first working
version of the code took only around one day. The figures for CAPS HMPP are also
misleading since the number of source lines includes many different versions of the kernel
and is therefore far too high.

 It is interesting to see that both the Chapel and the MPI+OpenMP version have been
fast and very short. The OpenCL and CUDA+MPI version have been developed very fast but
it is important to know, that they have been ported after a full MPI and CUDA version have
been available. They both could build on these versions and adopt them with only slight
modifications. The Harwest Compiling Environment (HCE) seems to be a clean solution to
program for FPGAs while the VHDL port has been the longest both in terms of development
time and number of source lines

Figure 16: Development Time vs. Number of Source Lines for mod2am kernel

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 55

Figure 17: Development Time vs. Number of Source Lines for mod2as kernel

Figure 18: Development Time vs. Number of Source Lines for mod2f kernel

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 56

7.3.2 Development Time

Development Time [days] mod2am mod2as mod2f
CAF 3 n.a. 7
CAPS HMPP 5 0.5 n.a.
CellSs 3 19 35
Chapel 0.5 0.5 n.a.
Cn n.a. n.a. n.a.
CUDA 10 4 5
CUDA+MPI 1.5 0.5 n.a.
FPGA-VHDL 18 n.a. n.a.
FPGA-HCE 1,5 n.a. n.a.
MPI+OpenMP 1 0.75 2.25
OpenCL 1 n.a. n.a.
RapidMind 18.5 12 n.a.
UPC 7 7 21
X10 5.25 2.25 n.a.

Table 12: Development time for all kernels as reported

Figure 19, Figure 20 and Figure 21 report the development time (in days) for each kernel.

Figure 19: Comparing Development Time of first and last version of mod2am kernel

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 57

Figure 20: Comparing Development Time of first and last version of mod2as kernel

Figure 21: Comparing Development Time of first and last version of mod2f kernel

When looking at the development time spent for the three kernels, the picture is not very
clear. This is due to several effects that need a thorough discussion: Firstly, all programmers
involved have measured the development time in many different ways. Secondly, some
programmers had been language novices when starting the first kernel, while others were
already experts. Thirdly, some programmers have not been familiar with some of the
mathematical kernels; this is especially true for the 1D-FFT. And last but not least, the pre-

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 58

maturity of some compilers lead to prolonged development times as well as poor
performance.

In detail, the figures for RapidMind are influenced by the fact that the programmer did report
also on time spent mostly in doing performance measurements. The first working version of
the code took 1 day for mod2am and 3 days for mod2as. In the case of CAPS and CUDA the
responsible programmers were novices when starting with mod2am and already quite
experienced for the mod2as port afterwards. The learning curve -from 5 to 0.5 days- for
CAPS is quite impressive. The relatively high figures for CAF and UPC are only estimates of
the programmer, since his development time was mostly spent in compiler bug tracing. The
extremely low figure for CUDA+MPI is due to the fact that the existing CUDA and MPI-C-
versions of the codes could be re-used by a programmer who has very deep MPI knowledge.
The same programmer did his OpenCL ports using the existing CUDA implementation.

Taking all these remarks into account, the picture becomes clearer and partly satisfies the
expectations and hypotheses the group had before starting the project:

• Chapel, MPI+OpenMP, CAPS HMPP and RapidMind are straightforward
implementations;

• CAF, UPC and X10 are relatively easy to pick up;
• CUDA needs a bit longer, but for experienced programmers the additional overhead is

not too big;
• OpenCL and CUDA+MPI ports are easy if a CUDA version exists;
• A steep learning curve could be seen for CAPS HMPP, CUDA, X10 and RapidMind,

which have been the kernels where programmers claimed to be novices.

It is advisable to define the tracking of spent developer time in more detail for a follow on
project. It could be of benefit to choose several sub-topics for this, like “reading the
documentation”, “coding the first working version”, “doing performance measurements”,
“testing the implementation”, “optimization work”, “porting work”, “code debugging”,
“compiler debugging”.

Plotting the development time over the achieved performance for the first kernel, the dense
matrix-matrix multiplication, in Figure 22 shows for which language the combination of
development time and achievable performance is optimal. An in detail performance
comparison is given in the following subsection, but we can already see that for the current
available hardware the combination of using MKL on the Nehalem architecture is the most
efficient. CAPS HMPP performs very well on the Tesla boards.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 59

Figure 22: Development Time vs. max Performance for mod2am kernel

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 60

7.3.3 Performance Comparison

An overview of the achieved performance for all languages is given in Table 13.

% of peak performance mod2am mod2as mod2f
CAF 71.61 n.a. 8.95
CAPS HMPP 78.99 0.09 n.a.
CellSs 79.40 0.04 1.99
Chapel 0.31 0.08 n.a.
Cn 78.13 0.03 6.25
CUDA 80.76 0.87 4.49
CUDA+MPI 70.13 0.34 n.a.
FPGA-VHDL (absolute perf.) 1625 Mflops n.a. n.a.
FPGA-HCE (absolute perf.) 14 Mflops n.a. n.a.
MKL 93.65 3.31 29.97
MPI+OpenMP 63.57 2.99 n.a.
OpenCL 1.83 n.a. n.a.
RapidMind 19.85 0.29 n.a.
UPC 88.51 2.87 4.58
X10 0.02 0.01 n.a.

Table 13: Performance comparison of languages in percentage of peak performance

It should be noted that:

• OpenCL and Harwest-C do only support single precision (SP). All other figures given
in this section are double precision (DP).

• The performance of the FPGA language VHDL and Harwest-C is absolute
performance in Mflops since it is not reasonable to give a double-precision peak
performance for an FPGA.

• The maximum performance is the maximum Mflops-rate that could be achieved using
the Reference Input Data Set (RIDS) for the kernel, independent from the actual input
values. The Mflops-rates were computed using the time necessary for the whole kernel
routine - including data transfers from host to accelerator, whenever an accelerator
was used.

• It is difficult to compare performance measurements from different architectures.
Therefore the percentage of peak performance has been used whenever performance
on different hardware is compared. For accelerators the percentage of peak
performance has been computed based on one accelerator card. For x86 CPUs it has
been computed by dividing the achieved maximum performance per core by the
theoretical peak performance of the core. Table 14 gives an overview of the peak
performance per core or per accelerator for all systems used.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 61

Name System Processor Clock rate *
Flop/clock cycle

Peak
Perf./core

or accelerator
maricell QS22-blade cluster PowerXCell8i 102.4 Gflops
clearspee

d
Clearspeed CATS

units CSX700 96.0 Gflops

huygens IBM Power6 cluster Power6 4.7 GHz*4 Flop/cc 18.8 Gflops

itanium SGI Altix Itanium
Montecito 1.6 GHz*4 Flop/cc 6.4 Gflops

louhi Cray XT5 Barcelona 2.3 GHz*4 Flop/cc 9.2 Gflops

nehalem Intel-based systems Nehalem EP 2.53 GHz*4
Flop/cc 10.12 Gflops

uchu NVIDIA Tesla S1070 C1060 GPU 78.0 Gflops
Table 14: Hardware details (peak performance per core or accelerator)

The following figures show graphs with the maximum performance in percentage of peak
performance for each kernel. The colouring of the bars, distinguishes figures on different
hardware. All orange figures are results obtained on Intel Nehalem EP, all dark blue ones are
measured on NVIDIA C1060 GPUs. The light blue figures have been measured on different
hardware for which usually only one figure is available.

Figure 23: Maximum performance for mod2am in % of peak performance

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 62

Figure 24: Maximum Performance for mod2as in % of peak performance.

Figure 25: Maximum Performance for mod2f in % of peak performance.

The figures for the FPGA languages could not be included since there is no reasonable
definition of a theoretical peak performance for FPGAs. The overall performance of this three
years old hardware has not been able to compete with new x86 or accelerator hardware.

The figures for the three latest languages, namely OpenCL, Chapel and X10 have been given
for the sake of completeness but show that the compilers are still immature. They indicate that

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 63

it might take several more years before highly optimized compilers will be available for these
languages but should not be used to prematurely reject these languages. More detailed
performance figures for each implementation are given in the Annex “Porting results”.

The following in-detail considerations will go from the “traditional” to the more
“experimental” languages and programming models.

Comparing MKL versus MPI+OpenMP

Figure 26: Performance comparison of MKL with and without MPI (MKL vs. MPI+OpenMP)

Comparing the MPI+OpenMP implementation with the reference baseline MKL
implementation on 8 Nehalem cores reveals the overhead for using MPI. It is clear that using
MPI on one processor makes not much sense, but MPI is necessary when using bigger input
data. The MPI+OpenMP implementation has been done in many different ways, but the best
performance has been obtained for using MPI between processors and the multi-threaded
MKL routines within the cores of one processor. Compared with the pure MKL
implementation, the degradation in performance of the MPI+OpenMP implementation is 32%
for mod2am and 10% for mod2as. At the time of writing the MKL FFT version was not yet
multi-threaded, so all performance figures are measured on only one core.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 64

New and old PGAS languages

Figure 27: Performance comparison between PGAS languages

A very detailed comparison between UPC and CAF is also subject of work performed in
WP8. First results have been published in D8.3.1 and final conclusions will be publicly
available in D8.3.2.

GPGPU languages

Figure 28: Performance comparison between GPGPU languages

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 65

Languages for accelerators

Figure 29: Performance comparison of languages for different accelerators (in absolute values)

Figure 30: Performance comparison for different accelerators (in % of peak performance)

7.3.4 Considerations about the reporting template

To refine the T6.6 reporting template the following improvements should be made:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 66

• Clearly define the way to measure the number of source lines of code
e.g., measure only uncommented source lines for the whole directory without the use
of pre-processor macros.

• Define in more detail the way to measure performance and ask for more figures
e.g., the pure performance of the kernel on the accelerator and additionally the
performance including offloading and copying back of data from host to accelerator.

• Add performance measurements which could be used as baseline
e.g, the performance of using the CUDA libraries for Tesla cards, the MKL version for
Intel systems and whatever is the best optimized vendor library for systems from
AMD, IBM, etc.

7.3.5 Lessons learned

This subsection includes the lessons learned from the current project and provides conclusions
for the further assessment of new languages for a potential follow-on project. It also provides
advice for users who are thinking of either starting a new project with one of the new
languages, porting existing legacy codes or for those who are in need to make use of
accelerators. This subsection is a subjective assessment of the results obtained during the
porting of the kernels. It can only be a snapshot of the current state of the art. The assessment
starts with a comparison of the PGAS languages; summarizes the results of special accelerator
languages and finally discusses the investigation of the many different GPGPU languages.
One general drawback of using all these new languages for HPC is the insufficient landscape
of debugging and porting tools.

In brief, the performance of the DARPA HPCS program languages Chapel and X10 are
insufficient. This is not a big surprise, since both languages are still very immature and the
compiler releases are more or less proof of concepts that sometimes do not contain all features
of the languages. Furthermore, it has been shown in the past that it is extremely hard for new
languages to attract a big enough user community when they have just been designed for
HPC. To build highly efficient compilers needs much time, which means for the DARPA
HPCS languages that it will be at least several years before these languages can be used for
production codes. Porting of the kernels to Chapel has proved that it is possible to design a
language that allows a very steep learning curve and a very distinct programming style, which
should guarantee nearly error-free codes. The further developments of the new languages
should be further assessed using the available ports to benchmark new compiler releases and
finish or rewrite those codes which have now been done in a sub-optimal way to circumvent
compiler deficiencies.

The performance of the PGAS extensions UPC and CAF to the traditional languages C and
Fortran was competitive to current programming languages. The programmer faced some
compiler problems and got quite different performance when employing different compilers
available on different platforms. The achieved maximum performance is in most cases
slightly below the MKL implementation. Even if both languages are often mentioned
together, their parallelization model is quite different. While CAF data, which is associated
with a different image, has to be addressed in a different way than local data, this is not true
for UPC threads. UPC allows addressing data uniformly with the ability to hide data transfers
from the user and therefore enables a concise and clean programming style. However, as
reported in detail in D8.3.1, to get good performance from UPC it is necessary to stick to a
programming model where the data transfers are once again managed by the programmer.
This might be partly due to some deficiencies in the compiler but it is doubtful if all these
issues can finally be solved in a better compiler. Totally hiding the data transfers from the
user needs a high awareness on the side of the user in terms of what the compiler is doing

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 67

underneath. Current UPC programs optimized for good performance will then look pretty
much like CAF programs, emphasizing a distributed memory programming style. The main
improvement achieved by an UPC/CAF code over an MPI code will be the greatly facilitated
usage of one-sided communication patterns, which simplifies programming, leads to less
error-prone codes and may provide improved performance if the processor is able to optimize
the communication structure concurrently with the serial code. However, since a few vendors
claim an intention to support the PGAS programming model in the interconnects designs of
future systems, evaluation of the classical PGAS languages should continue, using the
available kernels to benchmark new compiler releases. Since UPC and CAF are languages
that are able to run on many different architectures, these benchmarks could also be useful to
decide if one compiler is more mature than the others. A recommendation can be issued to
further investigate these languages for real production codes. Note that the PGAS languages
have been designed in a manner that they can -in principle- coexist with both currently used
parallelization models, OpenMP and MPI.

The review on the results will now go from the accelerator languages for more exotic
hardware to the languages for commonly available GPU accelerators. We will first look on
the outcomes of the WP8 prototype from EPSRC-EPCC, which compares the use of the high-
level language Harwest-C to a VHDL port on a special FPGA supercomputer. Astonishingly,
the performance results are disappointing. The assessed HLL compiler Harwest-C seems to be
quite good in terms of ease-of-use, but the performance figures are way behind the VHDL
port. Even with the relatively complicated VHDL port only a small fraction of the
performance of using MKL on Nehalem EP could be achieved. Improvements in the code
and the compiler are anticipated for the last deliverable of WP8 D8.3.2. It has been clear
before, that FPGAs are not the hardware of choice for double precision codes. The strength of
FPGAs lies in fixed precision or bit-manipulating codes which deviate from the normally
available 32 or 64bit operator set. Therefore codes that should be ported to FPGAs have to be
chosen very carefully and the decision should be made together with experts in embedded
computing.

Porting code to Cn, the language for the Clearspeed accelerator cards, has been easier as
expected. This is partly due to the chosen benchmark set because for all kernels, except
mod2as, example codes or libraries have been available and could be re-used. The ports have
been done by a staff member of Petapath, a company that is specialized on Clearspeed
products. These are the only ports which have been written by a third party and no developer
diaries are available for them. The number of source lines has been reported for the Cn ports
and is quite high compared to other codes, even if one considers that the codes make use of
library calls. Within WP8 it is planned to port 4 real applications to the WP8 prototype, a
report on this activity is expected to be included in D8.3.2. Only then to the usability of this
rather different language and accelerator hardware will become clear.

For the Cell platform, no benchmarks using the actual IBM SDK are available. This might be
an indication that native Cell programming is very difficult. We have received reporting
templates for the use of CellSs. The reported figures give a distorted image. The achieved
performance is good, even compared with other accelerators, but the ports have been really
time-consuming. Due to the Power PC unit (PPU) of the Cell, getting the codes to run on the
accelerator is only a matter of hours or days; but running purely on the PPU will not
accelerate the code at all, using the SPUs is mandatory to achieve good performance. As long
as the future of the platform is not secured, it is difficult to advise scientists to port their codes
to the Cell platform. Without further substantial improvements in the hardware the new GPU
generation will very soon outrun the performance of the PowerXCell 8i. The Superscalar
concept used for the Cell ports is currently enhanced to run on GPUs. This approach could be
revisited in a follow-on project.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 68

GPUs are currently the prevalent accelerator although the have not been used very often for
production runs. Several languages exist to make use of GPUs. The language on which most
people pinned their hopes is probably OpenCL. Testing the performance of the first available
OpenCL compilers has revealed that it is currently insufficient. The language specification is
not even a year old, so it might not be a surprise that the performance is very poor. More
severe is the fact that the design of the language seems to be insufficient as well. The HPC
community hoped that OpenCL could be the language that allows running code on different
accelerators which would solve the problem of code maintainability and portability across
accelerator devices, but it turned out that to program OpenCL many choices depend on the
underlying hardware which prevents a seamless use of other devices. The language is very
similar to CUDA and makes some implicit assumptions which are only true for graphic cards.
So it seems that the language will stay a GPU language for another couple of years. An HPC
compiler expert claimed that it is only feasible to use OpenCL as an intermediate language;
higher level languages should be used on top of it and ensure at least portability across GPUs.
At the current time it is not advisable to use OpenCL for scientific projects. During a follow-
on project the three OpenCL ports should be finished to assure that new compiler releases can
be benchmarked on all supported platforms.

Performance-wise the next language is RapidMind. Older publications have claimed equal
performance of RapidMind code with the fastest available implementation on the GPU, but
the dense matrix-matrix multiplication achieves only a quarter of the performance of the
CUDA port. These figures are even worse if applied to the Cell platform, which for one of the
codes did not produce correct results. RapidMind’s latest version has been the first to support
double precision and a CUDA backend (GPU computing was done before using shading
languages). The next release will optimize the performance of the generated CUDA code;
results of this might be available in time for D8.3.2. Additionally performance measurements
of the missing kernel mod2f should be available for the December deliverable, too. Very
recently RapidMind has been acquired by Intel to merge the language with Intel’s own, quite
similar, language Ct - which stands for “C for throughput computing”. It remains to be seen if
RapidMind will stay an own product or if it will dissolve in Ct. Until this has been clarified, it
is not advisable for scientific projects to port their codes to RapidMind.

The investigation of CAPS HMPP showed that there is a painless way of enabling
accelerators for a broad community. It has to be mentioned that CAPS HMPP only generates
full code for CUDA and SSE. The Cell backend takes only care about data transfers and the
kernel routine has to be written by hand inside the so-called codelets. Since the NVIDIA cards
are currently the predominant accelerator cards, this does not seem to be an issue. CAPS
HMPP is by far the most easiest way to port existing code to GPUs. It is the only tool that also
allows to port Fortran codes. Ideally, two additional code lines are sufficient to make use of
the accelerator. As described in more detail in the WP8 deliverables, for optimal performance
a few more lines are necessary, but then the achievable performance is able to compete with
CUBLAS. Since the additional lines are inserted as pragma directives, the code stays fully
x86 compatible and a performance comparison between the GPU and the host processor can
easily be done. This simplifies partly also debugging and provides a powerful tool for rapid
prototyping. As soon as a CAPS HMPP port shows a potential for a kernel routine to be
accelerated by a GPU it is easy to use CUDA itself to obtain the best performance. It is clear
that for a relatively small company as CAPS, users might be concerned that the product will
stay in the market. However, since the code stays x86 compliant, one could make use of the
tool as long as it is around, and does not face the danger of ending up with a code which is not
able to run at all. CAPS HMPP can be recommended for all projects that want to use or need
to make use of GPUs. The remaining mod2f port should be finished either in WP8 or in a
follow-on project.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 69

The second language that can currently be recommended for those interested in accelerators is
CUDA. Even if there is a small danger that its vendor NVIDIA at some point might get out of
business or loose interest in CUDA, the language is quite similar to OpenCL. CUDA code
could be easily ported to OpenCL if necessary. It is clear that using CUDA for scientific
codes is somewhat comparable to using assembler code for the most important kernel
routines; with each new hardware or software release small changes in the code are usually
necessary. Codes that have delivered good performance on older hardware might suffer on
newer hardware and vice versa. The code will definitely grow in size and become harder to
maintain. That means that everyone should be clearly aware, whether the code will benefit
from the use of accelerators or if there are easier modifications; e.g., optimizing for SSE
instructions. Items that should be considered beforehand are:

• “How many lines is the main kernel routine?”
• “How good can it be encapsulated form the rest of the code?”
• “Is the code memory- or CPU-bound?”
• “Is it possible to leave the data on the accelerator or could this data be at least partly

“re-used?”
• “How good can the kernel routine run on the relatively special (reduced) GPU cores?”

One of the main arguments for CUDA is definitely its big user community which goes way
beyond the HPC or scientific computing community. This user community can be seen as a
guarantor for good programming techniques and skilled programmers. The number of sold
cuda-enabled GPUs makes them available at a very attractive price. The CUDA SDK is freely
available. For a follow-on project CUDA should be one of the languages chosen to evaluate
its potential for real scientific codes. Additionally, more and more CUDA-enabled ISV codes
are becoming available which should also be investigated. The speedup for those clearly
depends on the used input data set. An assessment of this dependency would be very valuable
for the community.

The port to CUDA+MPI has proved that using this programming model is easy as soon as one
can build on an existing MPI parallelisation and on an available CUDA port of the kernel
routine. The performance results vary, for mod2am a nearly perfect scaling is revealed, while
mod2as, which is in generally not a good algorithm to be used on accelerators, does not show
any scaling at all.

For those who do not want to go the extra mile and make use of accelerators, the good
performance of the MKL and MPI+OpenMP ports show that with the new Nehalem
processor, the performance gap between CPUs and GPUs has been shrinking. Only when the
recently announced new NVIDIA Fermi chips will be available (expected for Q1’10), the gap
will again increase and the GPUs will outperform the x86 cores double precision performance
at least by a factor of 8. For the next years MPI and OpenMP together with all the available
debugging and analysing tools will definitely be the best supported HPC programming and
parallelisation models.

Two programming models seem to be missing in this assessment; Firstly, this is Intel Ct. We
hope that Ct will be available for investigation in a follow-on project since the concept of the
language looks quite promising, the Intel compilers have a good reputation and the language
is not targeted solely at the HPC market. It might have the potential to become a commonly
used language for many-core processors. Secondly, an evaluation of the PGI compiler with
automatic code generation for GPUs is lacking. Both have not been available by the time the
assessment of the languages has been started. This shows the rapid development and progress
in the field. The performance of the PGI compiler will be assessed by WP8 and results should
be available for D8.3.2. Intel Ct will only go into beta-testing shortly before the end of the

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 70

year. Both should be included in a follow-on project. The work on the diaries can be further
extended to be used for the porting of whole applications to assure that more and more
accurate data can be gathered.

It is currently under investigation how PRACE could assess the results produced by projects
outside of PRACE. It is necessary that developer diaries for real applications become
available for the complete assessment of the productivity and potential of the new languages.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 71

8 Assessment of libraries for petascale systems

Most of the HPC codes around the world rely on external standard libraries to perform
standard tasks, and this is true also for most of PRACE codes. Libraries are used by
developers to avoid re-inventing the wheel implementing a standard algorithm and to boost
the performance of their applications. In fact libraries for HPC most often are highly
optimized and implemented in an efficient way. In particular most libraries are so important
for performance that vendors offer hardware specific versions (like BLAS and LAPACK) that
allow to reach higher fraction of peak performance. As a consequence it is a general
optimization practice among HPC developers to write codes specifically designed to use HPC
libraries as much as possible. For these reasons libraries are supposed to play an important
role in applications development and petascaling. In this chapter we will try to asses the
impact they have on petascale systems evaluated, the architectural soundness and the potential
for optimizations.

As it is evident from Table 3 PRACE codes use libraries for very different standard tasks, but
not all libraries have the same importance in making the application scale in petascale
systems, moreover different libraries display different problems and challenges with respect
their usage on these systems; then to better analyze them and to find common path and
strategies with respect to the porting and optimization of applications, we have grouped the
libraries in different categories based on their main characteristics.

Due to the number of different characteristics a library may have, it is not possible to place all
libraries in categories with stiff wall, most libraries in fact have characteristics in common
with many others even if they cover very different fields of application, this is made evident
by the tagging used in Table 2 where each tag represent a specific characteristic. In our
analysis we have considered five categories: basic, I/O, high level, communication and special
purpose to be relevant for application porting and scalability on petascale systems. For each of
these categories relevant features are discussed in what follow.

8.1 Basic Libraries

In this section we analyze those libraries that are used to compute basic and standard tasks
like Linear Algebra computations and Fast Fourier Transform (FFT). The term “basic” here
does not mean necessarily simple, in fact there are some standard tasks, like matrix inversion,
requiring complex algorithms that may lead to subtle numeric effects, especially when scaling
out the problem on a petascale system.

Apart from communication libraries, which are analyzed in detail in previous chapters, it is
possible to further subdivide basic libraries used in PRACE codes in three categories: Linear
Algebra, Fast Fourier Transforms and Low Level, that display the same problems and
challenges.

8.1.1 Linear Algebra

From the analysis of the PRACE codes it emerges that most of them use linear algebra
libraries in floating point intensive sections of the code. This is in common with the large
majority of scientific and technical applications running on HPC centres. It is a remarkable
fact that for linear algebra libraries a de facto standard exists and it is represented by the
BLAS (Basic Linear Algebra Subroutine) and LAPACK (Linear Algebra PACKage)
collection of subroutines, whose source code is available for free from netlib.org. BLAS
contains subroutines implementing basic linear algebra algorithms like dot product (level 1
BLAS), matrix vector product (level 2 BLAS) and matrix-matrix product (level 3 BLAS),

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 72

LAPACK instead contains higher level drivers to implement more complex algorithms like
linear system solutions and eigenvalue problems. LAPACK can be used in substitutions of
two older libraries LINPACK and EISPACK and requires BLAS when linked to the
executable. It is difficult to discuss BLAS without discussing also LAPACK, so even if
LAPACK can well be considered high level it will be discussed mainly in this section
together with BLAS. Today many vendors offer highly optimized libraries with API
compatible with BLAS and LAPACK, so that portability and performance of applications
using them is guaranteed. Some examples of these vendor libraries are: ACML (AMD), MKL
(Intel), ESSL (IBM), SciLib (CRAY). All of them contain subroutines tuned for one specific
class of processors and their performance can reach a high fraction of the peak performance.

Vendor versions of BLAS and LAPACK offer serial, vector and multi-threaded
implementations whereas for a message-passing implementation a different set of libraries
exists even if they do not contain a counterpart for all the serial driver, these other libraries are
called ScaLAPACK, PBLAS and BLACS and will be discussed among the high level
libraries below. BLAS are so important for single node performance for so many applications
that a lot of work is done by vendors to produce an optimized version for their hardware.
LAPACK performance, like for applications, relys mainly on BLAS performance, then from
the point of view of future petascale systems it is extremely important to have at least an
optimized version of BLAS Luckily a lot of work has been done to produce also vendor
independent highly optimized versions of BLAS, among these, the so called GOTO (name of
its developer) BLAS and ATLAS (Automatically Tuned Linear Algebra Subroutines), and so
they are quite relevant for HPC and in particular for petascale machines. In fact, their source
code is available, and they allow reaching performance close to those produced by the
vendors, and in some particular range of matrix size they can even display better
performances. Therefore it is possible that an application should be linked to these libraries
instead of the vendor version to reach a higher performance. Then they should be taken in
consideration for petascale systems too. From an application point of view highly tuned
BLAS offer the opportunity to make it efficient (on the single node) easily on most
architectures, this is particularly true if the application makes intense use of level 3 BLAS.

8.1.2 Fast Fourier Trasform

Fast Fourier Transform (FFT), together with linear algebra, is another widely used numerical
algorithm in HPC codes. Unlike for linear algebra, for FFT libraries there isn’t an established
standard for the application interface. Nevertheless for most hardware platforms a specific
vendor version exist. So that one of the biggest difficulties in porting code that use an FFT
library on a new platform is to change the source code to cope with the specific API. Among
PRACE applications the most common vendor FFT libraries are those contained in MKL,
ACML, ESSL, SciLib vendor numerical libraries.

A part the vendor FFT libraries, like for linear algebra, some open source FFT library exists,
in particular most PRACE applications requiring FFT are interfaced with the FFTW library
which, on the other hands, is a sort of emerging standard, in the sense that some vendor
libraries are starting to offer the FFTW API together with its own API. On the other hand, the
lack of a standard is visible in the FFTW itself, since when the developers switched the major
release from version 2 to version 3 they changed the API, so that now there are two version of
FFTW being used by HPC applications. In fact there is a good reason why version 2 of FFTW
is still alive, it has a parallel driver based on MPI.

Regarding petascaling applications the availability of a highly optimized FFT library is
critical to exploit the power of machine cores, and open source libraries like FFTW could
have severe problems of performance on non-common hardware platform (like vector

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 73

machine). In this case the availability of a vendor or hardware specific FFT library is
mandatory to match the performance requirement of petascaling applications.

This fact makes FFT more critical than linear algebra, where a good level of performance,
even not optimal, can be obtained with some of the open source versions of the BLAS library.
The situation is even worse for parallel FFT driver, where the lack of a standard and the lack
of parallel FFT vendor libraries have forced many applications to develop their own parallel
driver. This aspect is really critical for petascaling since the scalability problem of FFT has to
be coped on the application level. Another possible difficulty connected with the FFT libraries
comes from the fact that different libraries do not contain a complete set of subroutines to
cover all possible cases of data types (single and double precision, real and complex) and
dimensions (1D, 2D and 3D).

8.2 I/O Libraries

Within the next years, platforms will be built with unprecedented parallelism that may, in
some case include over a million computational cores. This increased level of concurrency
will pose enormous challenges for future I/O systems that must support efficient and scalable
data movement between disks and distributed memories.

To tackle all of these problems (scalability, high bandwidth and usability), computer science
teams have developed software dealing with parallel I/O that can be used by application
scientists. Roughly speaking, parallel I/O is the stack of software that links the application and
the I/O hardware. It is divided into multiple layers with distinct roles:

• Parallel file system maintains logical space and provides efficient access to data (e.g.
PVFS, PanFS, GPFS, Lustre)

• I/O Forwarding found on largest system (BG/P for example) to assist with I/O
scalability

• Middleware layer deals with organizing access by many processes (e.g. MPI-I/O)
• High level I/O library that maps application abstractions to a structured portable file

format (e.g. HDF5, Parallel NetCDF, NetCDF-4)

In this section, we will focus our investigation on the last two points, which are the only
layers that are directly accessible to a user level and compare it to the most commonly used
approach, the one-file-per-processor approach with POSIX I/O.

8.2.1 POSIX I/O

POSIX is the IEEE Portable Operating System Interface for Computing Environments. It
defines a standard way for an application program to obtain basic services from the operating
system. POSIX was created when a single computer owned its own file system, which is no
longer true with shared parallel file system on modern platforms. Consequently, POSIX I/O
hasn't the ability to describe collective I/O access. Moreover, it can be very expensive for a
file system to guarantee POSIX semantics for heavily shared files. Nevertheless, it is the most
commonly used approach even on massively parallel systems and is considered (often
wrongly) to be the most efficient. The worst approach but still implemented in some
applications consist of assigning one process to handle all I/O operations. The process,
typically rank zero, is responsible for collecting the data from all the other processes and
writing it incrementally to the file (or for distributing the data to other processes after it has
read the data from the file). This approach not only limits the data size to be read or written
(due to the memory size limitation of the responsible process), but also serializes all the I/O

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 74

operations and therefore impacts significantly the I/O performance and the scalability. Of
course, this approach has to be banned on massively parallel Petaflop/s architectures.

Even on new machines with thousands or tens of thousands of cores, the majority of users still
continue to use the traditional POSIX unformatted I/O, where each process of a parallel
application writes to its own separate file to store the result of its local computation (often
called “the one-file-per-processor” approach). This leads to several drawbacks. First
disadvantage, as the number of files is fixed, a restart must use the same number of processes.
More problematic, this approach does not scale well and leads to a real data management
nightmare when ten or hundred of thousands of files are generated on a petascale machine.
Regardless the performance aspect, managing and maintaining such a huge number of files is
a challenge in itself. Moreover, if the application has complex data structures, the simple
interface may cause significant inconvenience for application users to reassemble the data
files for data analysis or visualization purpose.

 On large-scale parallel system, it is clear that a solution using a single (or a few)
shared file is more appropriate. Table 15 summarizes pros and cons of the POSIX I/O
approach.

Pros Cons
• simple approach already

implemented in many applications;
• easy to implement (POSIX I/O);
• efficient on a limited number of

processes;

• does not scale well, not designed
for large-scale parallel machines;

• a nightmare to manage and
maintain the generated files;

• data analysis and visualization on
generated files may be a very hard
task;

Table 15: Pros and Cons of POSIX I/O

8.2.2 MPI-I/O

MPI-I/O is part of the MPI-2 standard (1997) and is an I/O interface specification for use in
MPI applications. The data model is the same as the POSIX-IO (stream of bytes in a file). The
implementation is nowadays widely available on most of HPC platforms. The range of
features that is usable is very rich and complete:

• independent and collective I/O;
• non-contiguous I/O with MPI data-types and file views;
• blocking and non-blocking I/O;
• Fortran, C and C++ bindings;
• a system to encode files in a portable format (external32).

MPI-I/O provides a rich interface allowing any user to describe non-contiguous accesses in
memory, in file or both and collective I/O. It relies heavily on the concept of MPI derived
data-types. As a consequence, this flexibility allows implementations to perform many
transformations that could result in better I/O performance (e.g. data sieving, two-phase I/O).
MPI-I/O is considered as a low level I/O library and is actually used as a solid basis for more
high-level libraries like PnetCDF or HDF5. As such, it should give the best parallel I/O
performance. Table 16 summarize pros and cons of the MPI I/O approach.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 75

Pros Cons
• rich interface giving access to a lot of

functionalities;
• easy to use and well known approach

(same as MPI);
• available on almost all HPC

platforms;
• allow implementation to optimize I/O

performance depending on the
platform and on the I/O hardware
characteristics;

• parallel I/O (read/write) on one file;
• portable (e.g. the interface);
• scalable on large scale parallel

machine (depending on the
implementation);

• often used as the basis for most high
level parallel I/O libraries;

• well documented;

• a too low level approach;
• it is not a portable, self-describing

file format;
• portability incompatible with

performance optimization;

Table 16: Pros and Cons of MPI I/O

8.2.3 HDF5

HDF5 (Hierarchical Data Format) is the name of a set of file formats and libraries designed to
store and organize large amounts of numerical data. Originally developed at the NCSA, it is
currently supported by the non-profit HDF Group, whose mission is to ensure continued
development of HDF5 technologies, and the continued accessibility of data currently stored in
HDF. It provides

• a versatile data model with a hierarchical data organization in a single file (typed,
multidimensional array storage, attribute on dataset, data);

• a portable file format;
• a library with a high-level API (e.g. C, C++, Fortran, …);
• a parallel I/O mode with contiguous or non-contiguous I/O (in memory and file);
• a set of tools for managing, viewing and analyzing the data in the collection.

HDF5 is build on top of MPI-IO. Collective or independent calls are available. The user is
responsible for creating a mapping of the in-memory data structure into a representation in
HDF5 dataset. Table 17 summarizes pros and cons of the HDF5 library.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 76

Pros Cons

• portable self-describing file format
(tree-like structure) recognized as one
of the standards for scientific
applications;

• high-level parallel I/O interface, with
collective call associated with one file;

• build on top of MPI-IO (can benefit
from MPI-IO optimization,
availability);

• well documented and maintained;
• big community of users and a lot of

functionalities;

• Some overheads compared to MPI-
I/O;

• More complex to implement than
MPI-I/O;

• High learning curve;
• Variable performance and

scalability;

Table 17: Pros and Cons of HDF5 library

8.2.4 NetCDF-4

NetCDF developed by the Unidata Program of the University Corporation for Atmospheric
Research (UCAR) is a popular package for storing data files in scientific computations,
widely used in earth sciences. NetCDF consists of both an API and a portable file format. The
API provides a consistent interface for accessing NetCDF files across multiple platforms,
while the NetCDF file format guarantees data portability. However, this API was originally
designed for use in serial code, therefore the semantics of the interface is not designed to
allow high performance parallel data storage and access.

NetCDF-4 is jointly collaboration effort done by the groups who develop and maintain
NetCDF and HDF5 software to create a software that uses enhancements to the HDF5 data
model and format to implement a richer NetCDF data model. The result is intended to
combine some of the desirable characteristics of NetCDF and HDF5, while taking advantage
of their separate strengths. The NetCDF-4 library provides compatibility with existing.

NetCDF programs and data, additional data modelling abstractions, and features for use in
high performance computing, such as parallel I/O.

The latest release at the time of writing is 4.0.1 (March 2009), which provides a full
compatibility with NetCDF program and data and adds an upgraded Fortran90 API and
performance enhancement. A complete overview of NetCDF-4 and a lot of complementary
information and material can be found on the official website. Concerning the parallel I/O
feature of NetCDF-4, it relies on the parallel I/O feature of HDF5, thus HDF5 is required and
must be installed with the option “-enable-parallel” prior to NetCDF-4 installation. Due to
lack of time, neither performance tests nor implementations with NetCDF-4 have been
performed, but as the parallel I/O is based on HDF5, we should obtain similar behaviour as
for HDF5.

8.2.5 Parallel NetCDF

Parallel NetCDF (PnetCDF) has been jointly developed by Argonne National Lab and
Northwestern University to fill this lack. The interface builds on the original NetCDF
interface and defines semantics for parallel access to NetCDF datasets (same file format). It
maintains the look and feel of the serial NetCDF API (same syntax and semantics with
prefixing function with “ncmpi_” and “nfmpi”). Build on top of MPI-I/O, it allows for further
performance gains through the use of collective I/O optimizations and new flexible data

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 77

access functions for non-contiguous memory regions using MPI derived data types. Table 18
summarizes pros and cons of the Parallel NetCDF library.

Pros Cons
• portable self-describing file format

recognized as one of the standards for
scientific applications, compatible
with serial NetCDF library;

• high-level parallel I/O interface, with
collective calls associated with one
file;

• build on top of MPI-I/O (can benefit
from MPI-I/O optimization,
availability);

• has proven to be efficient on some
real parallel applications;

• not well documented nor supported;
• not so easy to use;
• variable performance and scalability;
• severe size and data type limitations;
• no F90/F95 interface;
• lack of flexibility of the file format;
• concurrency with NetCDF-4;

Table 18: Pros and Cons of parallel NetCDF library

8.2.6 Preliminary results testing I/O parallel libraries

Description of the testbed
In order to assess quality, robustness, efficiency and performance of various parallel I/O
libraries (MPI-I/O, PnetCDF, HDF5) on petascale architecture, we have developed a small
testbed. Our goal with this testbed is to compare each library with the traditional approach, the
POSIX one-file-per-process strategy. Concretely, it is divided in two parts:

• One low level benchmark, the IOR code. IOR is part of the PRACE synthetic
benchmark and as such has already been described in [53] and [54]. For our tests, we
have chosen to have a constant aggregate file size, whatever the number of active
process, with the following parameters:

o xfersize = 2 MB
o aggregate filesize = 256 GB
o mode individual for MPI-I/O, HDF5 and PnetCDF (surprisingly the collective

mode seems to give very bad performance)
Ideally, with these parameters, when the peak performance is reached, the elapsed
time (or the throughput) of the test should remain constant.

o One real user application, the code RAMSES. The RAMSES package is intended to
be a versatile platform to develop applications using Adaptive Mesh Refinement for
computational astrophysics. It is one of the two astrophysical codes of the DEISA
Benchmark Suite [52].

In term of I/O, RAMSES generates huge volumes of data for each output. As the application
is highly scalable, the number of processes that can be used is very high and therefore data
volume is also very large. I/O is therefore a capital part of the application and choosing the
right paradigm is critical for performance. Outputs generate two main files, AMR and Hydro.
Each file is divided in two sections. For AMR, the first one contains parameters, local
variables, information on the mesh structure and various information on the state of the
application (progress of the computation, used memory,...).The second one and the largest by
far contains information on the mesh structure (indices, linked lists, gravity centers,
neighbours lists, index of the father cell, indices of the son cells, domain decomposition). For
Hydro, the first section (small in size) contains several global variables whereas the second
part contains hydrodynamics physical values for each cell (density, velocities, pressure, ...).

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 78

Initially, the original implementation relies on a one-file-per-process strategy. For the purpose
of our study, we have implemented new versions of parallel I/O, using MPI-I/O, HDF5 and
PnetCDF. For our tests, we used the Sedov_3d 1024 dataset which produces an amount of 96
GB per output.

Hardware description of targeted platforms
The targeted execution platforms are Babel and Vargas, the two most powerful production
machines at IDRIS. Babel is an IBM BlueGene/P with 40960 cores (10 racks, 139 TFlop/s
peak performance, 20 TB of memory, 16 IO nodes per rack). Vargas is an IBM POWER6
with 3584 cores (68 TFlop/s peak performance, 18 TB of memory). For a detailed hardware
description of the two machines see [51]. One particularity of this configuration is that these
two machines share a common parallel file system (GPFS) of 800 TB. The file system is built
on LUNs (logical disk) which are distributed among 8 racks (DDN 9550). The global
throughput of the disks is 16 GB/s. The disks and the two machines are interconnected by 16
I/O nodes (IBM Power6) with a theoretical throughput of 22.4 GB/s.

IOR results and commentaries
All the results presented in the following sections and summarized in the Table 19 correspond
to the global throughput of the application in MB/s. “KO” means that the application crashed
or did not finish (frozen).

One-file-per-process MPI-I/O HDF5 PnetCDF Active process Write read write read write read write read
1024 1284 1453 943 1658 238 1151 202 1145
2048 1578 3332 2123 3205 449 2270 360 2178
4096 1079 6757 3466 6418 533 4085 521 3441
8192 648 8127 4066 7719 835 4253 380 3014
16384 269 8222 820 7082 377 4326 KO KO
32768 58 7306 79 3551 60 4738 KO KO

Table 19: Parallel IO benchmark using IOR

PnetCDF is the less mature and robust of the three parallel libraries. During our tests, it
crashed or froze very often. HDF5 seems to be much more robust but performance is still
poor, just a little better than PnetCDF. Finally, MPI-I/O is the only parallel I/O library that
appears to be robust and efficient at the same time. On BlueGene/P, it proves to be scalable up
to 8192 cores and it always outperforms (up to a factor of 6) the one-file-per-process approach
for the writing process (performance is of the same order for the reading process). On
POWER6, the results are much more disappointing for MPI-IO. Even if it remains the best of
the three parallel libraries either in term of robustness or performance, it is no longer
competitive compared to the one-file-per-process approach in term of pure performance. As
the parallel file system is shared between the two machines, it can’t be blamed for this
divergent behaviour. Therefore, the problem is clearly due to the implementation that is not as
good on Power6 as on the BlueGene/P, and this shows that a bad implementation can ruin
performance even with an efficient parallel file system.

RAMSES results and commentaries
All the results presented in the following sections and summarized in the Table 20.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 79

One-file-per-process MPI-I/O HDF5 PnetCDF Active process Write read write read write read write read

2048 416 3045 798 706 755 590 KO KO
4096 237 5589 975 625 863 624 KO KO
8192 142 4613 KO KO KO KO KO KO

Table 20: Parallel IO benchmarking using RAMSES

On a real application, the limitations of PnetCDF are reached very easily, even with this
medium size test case. Hence we were unable to run properly even on only 2048 cores. For
HDF5, the performance that we get is more or less the same as the one of MPI-I/O, no
overhead. For the writing process, they outperform the one-file-per-process approach by a
factor varying from 1.8 to 4.1. That is not anymore the case for the reading process where the
one-file-per-process approach is 5 time faster. Problems arising on 8192 process for MPI-I/O
and HDF5 have to be investigated further as they did not appear with the low level test IOR.

8.2.7 Conclusion on parallel I/O libraries

It is a bit disappointing to see that there is not a unique solution to do parallel I/O that is
mature, robust, portable, efficient and scalable. PnetCDF suffers from too many problems
(internal limitation, lack of robustness and performance) to be recommended. HDF5 appears
to be more reliable, but in average on our tests, performance is still unsatisfactory.

Finally, MPI-I/O seems to represent the best compromise in terms of robustness and relative
performance. Nevertheless, there are still too many important issues that have to be solved
before considering MPI-I/O as the recommended parallel I/O library for petascale machines:

• Variable performances, even on the same machine – For example on BlueGene, poor
performance when reading or important variation between collective and individual
mode.

• The best scalability, but still limited between 8k and 16k active process on BlueGene
for example.

• Maturity and robustness is good, but have still to be improved in order to be really
considered as reliable.

• Variable implementation quality, strongly impacting the overall performance (see
comparison between P6 and BlueGene/P results).

Of course, this assessment is partial and has to be enhanced and completed by running this
testbed at least on some targeted PRACE WP8 prototypes. Nevertheless, it is clear that using
parallel I/O libraries on a petascale machine is out of reach in its actual state of development
of the various parallel I/O libraries available today, and that alternatives have to be found.
Solutions like hierarchical I/O at application level or generalizing I/O forwarding at hardware
level are worth the interest.

8.3 High Level Libraries

With the term High Level Libraries (HLL) we refer to libraries that allow to use more
advanced and sophisticated numerical algorithms than the basic one, or to libraries that simply
require or contain some other libraries. We have classified BLAS and FFT as the main
functionality provided by basic libraries. LAPACK is an example of HLL since it both
requires a basic library (BLAS) and implements more complex numerical algorithms with

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 80

respect to the BLAS basic library. Nevertheless, in our analysis LAPACK is an exception, in
fact LAPACK is so strictly related to BLAS that it is more convenient to discuss it together
with BLAS.

An important difference between basic libraries and HLL as classified in this survey is that
HLL are for the majority parallel or a parallel version exists. This is quite significant because
if for single core performance PRACE codes rely mostly on basic libraries, for scalability and
petascaling they rely mostly on HLL. So we can certainly target HLL as a key component to
investigate and optimize in petascale systems.

Analyzing the list of HLL it is possible to distinguish between "vertical" libraries used in a
single application domain (e.g. METIS) and "transversal" libraries used in more application
domains (like ScaLAPACK). As a consequence, in a petascale system, a problem with the
performance or the scalability of "transversal" HLL will impact many different applications.
Then in a petascale system a particular care should be taken to deployment of these libraries.

Like for basic libraries also for HLL there exist some vendor version like ESSP, PESSL from
IBM, MKL from Intel, ACML from AMD and SciLib from CRAY, all these contain both
basic and HLL libraries, a fact that should make application porting more simple. In reality
HLL are not so standard yet as the basic libraries, then, quite often, coping with HLL
complicates the porting activity rather than making it easier. Even worse, in some cases
vendor specific HLL (e.g. ESSL, PESSL) contains different APIs than other vendors’ (MKL,
ACML) for the same functionality. Differences at this level create problems during the
porting activities form an architecture or vendor (POWER or BlueGene) to another (standard
x86 cluster). Possible problems with HLL arise also when the programmer decides to use the
parallel extension. Most high level libraries don't provide the underlying communication level
(usually MPI) and during the linking step programmers could encounter incompatibilities or
unexpected behaviours.

Nevertheless, in general, for application performance and scalability it is correct to try to use
HLL in the applications. With respect to petascaling, if some problems arose with a given
HLL there are for sure more chances that the problem will be solved, since most probably
both the community interested in the given library and the machine vendors are interested to
make it working and exploiting the power of the machine.

It is out of the scope of this survey to make a detailed analysis of all HLL libraries, but there
are few of them that, for their large importance for performance applications deserve a deeper
description and analysis.

8.3.1 ScaLAPACK

ScaLAPACK (Scalable LAPACK) is a high level linear algebra library explicitly written for
MIMD parallel computation. It implements block-oriented LAPACK linear algebra routines,
adding a special set of communication routines to copy blocks of data between processors as
required. Similar to LAPACK, a single subroutine call typically carries out the necessary
computations. ScaLAPACK is designed for heterogeneous computing and is portable on any
computer that supports MPI or PVM.

ScaLAPACK is widely used in PRACE applications. However when the number of
processors becomes high, it is not easy to define the right number of processors to use. Tuning
the dimensions of the sub-matrices and the number of distributed blocks involved is a key
factor to reach scalability. ScaLAPACK does not contain tool that allows the programmer to
be unaware of these parameters and could be really expensive to try different combinations in
order to find an optimal set of parameters.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 81

Future development of ScaLAPACK could concern improvement for numeric (accuracy of
the algorithms and solvers), performance, functionalities (new algorithms or missing features)
and engineering aspects (C/C++/Fortran95 bindings). The community around the
development of ScaLAPACK is huge and there are a lot of industrial partners like Intel,
CRAY, HP, SGI, NAG and others.

8.3.2 PETSc

PETSc, the Portable, Extensible Toolkit for Scientific computation, provides sets of tools for
the parallel (as well as serial), numerical solution of PDEs that require solving large-scale,
sparse nonlinear systems of equations.

PETSc includes nonlinear and linear equation solvers that employ a variety of Newton
techniques and Krylov subspace methods. PETSc provides several parallel sparse matrix
formats, including compressed row, block compressed row, and block diagonal storage. It
also supports 2D and 3D mesh generation, refinement, partitioning, and distribution. Users
can incorporate customized solvers and data structures when using the package.

PETSc also provides an interface to several external software packages including
BlockSolve95, ESSL, Matlab, ParMeTis, PVODE, and SPAI. PETSc is fully usable from
Fortran (with some limitations due to the Fortran syntax), C and C++.

8.3.3 Vendor libraries

With the term “vendor libraries” we refer to libraries that are provided by specific hardware
vendors for its specific hardware. The most famous are MKL (Intel but also AMD), ESSL
(IBM) and LibSci (CRAY). These libraries implement both shared and distributed version of
a high number of algorithms, methods and numerical solvers. For example, all vendor
libraries have FFT, BLAS and also LAPACK inside.

It is easy to see that vendor specific libraries generally are better than open-source ones. This
is especially true for multi-threading routines because it benefits from deep knowledge about
the hardware. However, due to the complexity and the “close-source” format, it is not simple
to use these libraries. In the case of MKL, for example, the underlying communication layer
should be provided as an external and that could create problems of compatibility or
unexpected behaviour during runtime if the user will use an unsupported release.

Most of the vendor libraries are available for different platforms but all of them require a
license to be used.

8.3.4 NAG

NAG is a non-profit software company, started in the 1970, that provides mathematical,
statistical and data analysis components for high performance computations. The NAG
libraries cover a lot of kernels starting from the dense and sparse linear algebra to
optimization, operation research, mesh generation and statistical analysis. Most of these
functionalities support parallel or shared-memory environments. The library provides
interfaces for Fortran, C, C++, Java, Python and also MATLAB.

NAG libraries are not vendor specific, in fact it is possible to get the libraries for different
platforms. However, as most of vendor libraries, it is not free and it requires a license to be
used.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 82

8.4 Communication libraries

As shown in Table 1, in the majority of PRACE codes uses MPI as the main layer to allow
communication between processes involved in a parallel computation. MPI was widely
already discussed in more than one previous section. Only one code, NAMD, uses a different
communication library called CHARM++.

CHARM++ is a parallel object-oriented programming language based on C++ developed at
the University of Illinois. It is used to write “explicitly parallel“ programs and it supports
multiple inheritance, late bindings, and polymorphism. CHARM++ is designed around the
ideas to be efficiently portable, to reduce and to optimize the latency of communication, to
manage transparently dynamic load balance strategies and finally to produce reusable
modules. The programming model of CHARM++ is very easy. The computation is split into
medium-grained processes (called chares). Chares may be easily organized into indexed
collections called chare arrays and each chare is mapped to a physical processor (or core) by
the runtime (this step is transparent to the programmer). Chares communicate by exchanging
information using messages. For this reason, CHARM++ is classified as a message-driven
language. Messages from a chare to another are collected in a pool and are automatically
managed by the runtime.

Features such as application-independent object migration are very difficult to provide in
MPI. Adaptive MPI (AMPI) is an implementation of the Message Passing Interface standard
on top of the Charm++ runtime system and provides the capabilities of Charm++ in a more
traditional MPI programming model. AMPI encapsulates each MPI process within a user-
level thread implemented as a Charm++ object. In this way migrating threads and load
balancing capabilities provided by the Charm++ framework in a transparent way.

Coming back to the subject of message-passing parallel programming paradigm,
communication between processes can be achieved using the BLACS (Basic Linear Algebra
Communication Subprograms) open-source library. BLACS exists in order to make linear
algebra applications both easier to program and more portable. Key ideas behind the provided
functionality are: a standard interface for different message-passing layers; data distributed on
a process grid with scoped operations; contexts to identify grids and their characteristics; one-
dimensional array-based matrix manipulation and communication; ID-less communication to
solve the problem of tag generation in message-passing environments.

The project behind this library was started by Jack Dongarra more than 10 years ago.
Although this library is very old and not frequently revised (last patch was release for in
2000), this library is a fundamental piece of other high level library like ScaLAPACK (that is
totally based on BLACS communicators) but it can be also used by itself. Some architecture-
dependent libraries such as MKL, Parallel ESSL and CRAY SciLib implement their own
version of BLACS routines that are fully compatible with the standard open source BLACS
interface (or with small differences derived from intrinsic characteristics of the considered
library). Actually the presence of the BLACS inside a high level library is probably due to the
fact that the mentioned libraries implement also their own ScaLAPACK.

8.5 Special Purpose Libraries

HPC codes do not use only numerical libraries. To perform some tasks like data formatting,
operations automatization or build and manage user interfaces, special purpose libraries are
used. In our case, the mostly used are libXML, TCL and Tk/Tix. libXML is a toolkit written
in C that allows the user to build and parse XML documents. TCL and Tk/Tix are strongly

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 83

oriented to the construction of user interfaces. TCL is a scripting language natively written in
C. Tk is a platform independent GUI framework for TCL. Both are interpreted.

All these special purposes libraries are not directly connected to the performance and the
scalability of a HPC code. We will expect to find these libraries on the next generation of
petascale systems but their development is not connected to the evolution of parallel
architectures because are mainly used outside this world. However the possibility of compile
and use these libraries on the future petascale supercomputer will be guarantee. Hardware and
software manufacturers have to not forget to support something that is different of a
numerical library but it is crucial to exploit all the features of a consolidated HPC code.

8.6 Conclusion of the assessment

Regarding external libraries used by PRACE applications, the analysis we have performed in
this work has shown that different classes of library are relevant for different aspects of
applications performance and HPC systems component. Basic (numerical) libraries are of
fundamental importance for single core performance in single thread codes and single node
performance for multi threads codes. As discussed in Chapter 7 basic libraries are becoming
more and more relevant to deal with hardware accelerators, hiding from the programmer the
entire burden related to the coding low-level instructions. It is not a surprise that I/O libraries
are instead relevant for applications, and in the perspective of a petascale system, they could
become a critical application component, since in many cases petascaling the numerical
algorithm and the application I/O are different, where not competing, tasks. This is
particularly true for parallel I/O libraries. Finally high level libraries turn out to be quite
relevant for applications scalability, for better or for worse; in fact applications can certainly
benefit from the scalability property of a library but at the same time petascaling of an
application can be limited if there is a limit in the library. There are libraries used vertically
inside an application domain, and other that are used transversely to application domains, and
the latter are obviously more critical in a petascale system since they may impact a broader
user community.

We observed that many chip makers are investing a lot to provide high performance libraries
allowing applications to exploit a high fraction of the peak machine performance, this
especially true for single chip performance. This is a positive thing for HPC applications and
developers and the hope is that an equal effort will be applied in providing new highly
scalable libraries for next generation systems.

In conclusion most PRACE applications rely on external libraries for performance and
scalability. Therefore, a petascale system should provide the libraries or at least it should be
possible to install them, otherwise it would be almost impossible for applications to exploit all
the power, or exploit it at all.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 84

9 Conclusions and final remarks

The work presented in this Deliverable aims at identifying and analysing the programming
models and the software libraries required by petascaling applications in the PRACE
implementation phase. Starting from an overview of the state of the art in the field of
programming languages, models and software libraries adopted by applications running on
nowadays HPC architectures, the activity reported in the Deliverable analyses the evolution of
current standards for parallel programming, the next generation programming languages and
models, the languages, paradigms and environments for the hardware accelerators. Then the
evolution of scientific libraries for the petascale systems is investigated. Furthermore, a
specific experimental activity has been addressed implementing three numerical kernels,
using twelve of the main programming languages and paradigms under investigation and
testing them on some of the prototypes implemented in WP8. To our knowledge, this effort
on comparing so many languages on different architectures had never been done before, and
represents a useful test bed to evaluate and assess new languages and paradigms for
petascaling, trying to use a common methodology, as reported in chapter 7.

The analysis undertaken in this report evidences that a large number of developments are
ongoing in the field of programming languages and paradigms for future HPC systems.
Different players are proposing many different implementations, but none of them appears
strongly consolidated and seems to have a production level maturity. If we consider that
historically, especially in the world of HPC, the languages elected for the development of
scientific applications are very few (mainly Fortran and C) it seems unreasonable that many
other languages will be taken heavily in consideration from application developers in the next
future and have a big impact on the computational community.

Probably, among all the languages promoted by the U.S. DARPA HPCS Project, we can note
that there are three distinct efforts and, this approach cannot effectively consolidate on the
HPC Community and will not reach the main objective of raising HPC user productivity.

The performance of the DARPA languages is still very poor (as the tests on Chapel and X10
demonstrate). This is not surprising, since both languages are still very young and the
compilers released so far are more or less proof of concept, which sometime do not even
implement all the features of the language.

It appears reasonable, in order to avoid wasting resources, but mainly to try to reach an
effective impact for the petascale community, to redirect and focalise in a single action the
work addressed by the three major players in charge for these languages. This aspect is
important in order to guide the implementation effort at the benefit of the HPC community
and improving programmer productivity on next-generation computing systems. We are
convinced that a dispersive action can lead to the dead of the language itself.

In order for a new language to hit the ground, we should not underestimate the importance of
reaching a critical mass of users, which is already a self-issue in the world of HPC. In other
words, if a language remains a proof of concept, used only by a small community of computer
scientists, rather than a plethora of application developers (mainly computational scientists
from physics, chemistry and engineering disciplines), highly probably the language itself will
soon come at a dead-end.

Moreover, it is of paramount importance to simplify the structure of these new languages in
order to be appealing for an evolving scientific community. The lessons learned in the past
about the ADA language should help now to avoid to repeat the previous unhappy experience.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 85

A different perspective could involve the PGAS languages (mainly UPC and CAF). In facts,
these implementations are more consolidated and promising, also because the syntax
constructs and the rules are closer to the ones of classical HPC languages.

Even if they will never become a real alternative to the current programming models (based
on MPI over C and Fortran), it seems reasonable to speculate that their main characteristics
will be well accepted by the scientists involved in developing computational codes. The
availability of stable and efficient compilers (hopefully available in the next future) and
perhaps HPC systems with interconnections directly supporting the PGAS programming
model, will greatly contribute in this direction. Moreover, it will be of paramount importance,
in order to consolidate the adoption of languages for the scientific HPC community, the strong
and complete adoption of the CAF and UPC syntax and semantics as part of the next
ANSI/ISO standards for Fortran and C. In this way it will be possible for the related PGAS
programming model to gain much momentum as a novel approach to improving
programmability and productivity of large-scale computing architectures.

MPI and OpenMP are arguably the de facto community standards for distributed-memory
programming and shared-memory programming respectively. MPI and OpenMP put together
distributed-memory (provided by MPI) and shared-memory programming model (provided by
OpenMP). While these technologies have served the parallel programming community
admirably over the last couple of decades, recent advances in massively parallel multi/many-
core architectures have revealed their fundamental limitations in the productive design of high
performance codes.

The adoption of the classical programming models based on the traditional message-passing
paradigm, seems not scaling efficiently for all petascale applications. With current ubiquity of
multi-core architectures, a more promising and efficient approach seems the hybrid
programming model based on coupling message-passing and multi-threading. Actually a big
effort is in place with the enhancement of MPI plus OpenMP or MPI plus standard threads.
The availability of petascale architectures, based on multi/many core processors will greatly
benefit from the hybrid programming model in order to effectively scale up the applications.

 Hardware accelerators have today a strong vitality and they produce great interest for
enhancing performances in HPC architectures. They seem another topic to consider in the
direction of petascaling. To efficiently exploit these hardware accelerators, from the more
exotic to the nearly commonly available, specific languages or programming environments
have been defined and experimented in different applicative contexts, as documented in
Chapter 7.

At the current time it is difficult to identify common directions and guidelines in this field, as
the technological evolution imposed by the hardware is so rapid and the experimentation on
languages and tools has not reached a stable maturity. GPUs are currently the prevalent
accelerators, although they have not been used very often for production runs. A bunch of
languages exist to program GPUs. A general impression is that all these languages are still
”hardware driven” and far from being consolidated. For example, it is clear that using CUDA
for scientific codes is somewhat comparable to use assembler code to improve the most
important kernel routines.

It is very desirable that some standard will emerge soon in this context. A fixed standard
should allow to run codes on different accelerators, solving the problem of code
maintainability when the hardware technology evolves. The language on which most people
pinned their hopes is probably OpenCL. However the actual compilers, released so far, are
still very immature and the performances still very poor.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 86

Another important issue in the direction of portability and performance should be represented
by tools like RapidMind and the CAPS HMPP environment, but it is still too early to see what
will be their evolution and their impact on the applications development. CAPS HMPP only
generates code for few kind of accelerators and RapidMind has been recently bought by Intel
to merge the language with the Intel’s development toolkit. Probably a good opportunity to
improve the programming models for accelerators, could be represented by the availability of
compilers adopting specific APIs to allow a semi-automatic code generation for accelerators.
Some preliminary work in this direction has been addressed by the PGI compiler which allow
the automatic code generation for GPUs.

During the assessment of the libraries clearly appears that different categories of libraries are
relevant for different classes of applications in relation to specific performance aspects in
order to raise the global performance. Adopting optimized numerical libraries (especially in
the case of hardware accelerators) and highly scalable I/O libraries is usually the first
mandatory step for an efficient porting of applications to new Petaflop/s systems. Relevant
examples in this sense are the PRACE codes selected for the PRACE Benchmark Suite. Most
of those codes use basic, high-level and I/O libraries in different combinations, that have a
high relevance to achieve target performances.

Moreover, many of the actual numerical libraries implement algorithms showing limitations
when moving from teraflop/s to petaflop/s partition sizes. As a consequence, for some of
these libraries it will become necessary to implement new numerical algorithms ensuring real
high scalability and good numerical stability.

In summary, the Deliverable presents an analysis of the maturity, suitability, applicability of
novel programming models, languages and scientific libraries for petascaling. The
information is useful also for other WPs (such as WP5, WP7 and WP8) to better address the
evolution of applications, but also the architecture and the programming environment for the
first and the future generations of Petaflop/s systems.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 87

10 Annex A: Reference Input Data Sets (RIDS)

The working group of people involved in the evaluation of new programming languages and
models agreed on four kernel benchmarks that should be used for a comparative analysis of
more than 10 languages:

Table 21: The 4 chosen EUROBEN synthetic kernels.

All kernels have been taken from the EUROBEN synthetic benchmark suite, which has
already been used within the PRACE work packages WP5, WP6 and WP7. Since the effort
available for porting these kernels to the new languages was quite small, it was agreed that the
kernels should be ported in the proposed order, which means that mod2am and mod2as ports
are available for (almost) all languages, while a mod2f port exists only for 8 languages, and
mod2h has only been ported to ClearSpeed’s Cn language, where a special random number
generator comes with the SDK.

During the porting phase of the kernels it became evident that for two kernels, namely
mod2am and mod2as, the problem size can have a major impact on the observed
performance. For the other two kernels, there is hardly any performance sensitivity to the
input size for different reasons: Firstly, due to the choice of the FFT type (self-sorting radix-4)
the problem sizes are restricted to sizes of 2 to the power of n. Secondly, for mod2h it turns
out (as expected) that the performance is virtually independent of the problem size.

To be able to compare the performance measurements for all languages, the group decided to
use reference input data sets (RIDS) for each kernel. Aad van der Steen, the author of the
EUROBEN benchmark suite and an active member of PRACE WP6 and WP8, proposed the
input sizes below which have been used in the remainder of this document for performance
measurements.

10.1 mod2am

It has turned out that some problem sizes do either well or not so well on accelerator
platforms. As the goal was to capture the “good” as well as the “bad” behaviour of the
systems both type of sizes must be represented. Multiples of 96 have been chosen to show the
potential of the Clearspeed accelerator cards, while multiples of 512 have been chosen to
make optimal use of NVIDIA Tesla GPUs.

Kernel Abbreviation Algorithm
mod2am am Dense matrix-matrix multiplication
mod2as as Sparse matrix-vector multiplication
mod2f f 1D-FFT
mod2h h Random Number Generator

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 88

The following table has been used as RIDS for mod2am:
No M L N Repetition

1 10 10 10 100

2 20 20 20 25

3 50 50 50 10

4 100 100 100 5

5 192 192 192 3

6 200 200 200 2

7 500 500 500 1

8 512 512 512 1

9 576 576 576 1

10 1000 1000 1000 1

11 1024 1024 1024 1

12 2000 2000 2000 1

13 2048 2048 2048 1

14 5000 5000 5000 1

15 10240 10240 10240 1

16 12096 576 12096 1

17 12096 1152 12096 1

Table 22: RIDS for mod2am

10.2 mod2as

The sparse matrix-vector multiplication is less dependent on the problem size. This is due to
the fact that mod2as is an example for an algorithm with low computational complexity which
is not very well suited for the use of accelerators (at least as long as memory has to be
transported through the PCI bus).

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 89

The RIDS for mod2as is:
No. Rows Columns Non-zeros

1 100 100 350

2 200 200 1500

3 256 256 3276

4 400 400 7000

5 500 500 12500

6 512 512 10485

7 960 960 41500

8 1000 1000 50000

9 1024 1024 57670

10 2000 2000 300000

11 4096 4096 587200

12 4992 4992 996800

13 5000 5000 1000000

14 9984 9984 4485600

15 10000 10000 5000000

16 10240 10240 6000000

Table 23: RIDS for mod2as

10.3 mod2f

The RIDS for mod2f is:
No. Transform Length Repetition

1 256 250

2 512 125

3 1024 65

4 2048 35

5 4096 20

6 8192 15

7 16384 10

8 32768 5

9 65536 5

10 131072 3

11 262144 3

12 524288 2

13 1048576 2

Table 24: RIDS for mod2f

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 90

10.4 mod2h

The RIDS for mod2h is:
No. Input size

1 100000

2 200000

3 500000

4 1000000

5 2000000

6 5000000

7 10000000

Table 25: RIDS for mod2h

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 91

11 Annex B: Hardware Overview

This annex contains a synthetic description for each PRACE prototype or system used during
the porting activity.

11.1 System "clearspeed-petapath" (WP8-NCF)
• Basic Hardware:

o Intel X5500-based host server
o Accelerators connected via PCIe Gen.2 16x (8 GB/s)

• Hardware Acclerators:
o Feynman e740 (4 ClearSpeed CSX700 cards)
o Feynman e780 (8 ClearSpeed CSX700 cards)
o CSX700 card:

 two 96 multi-threaded Array Processors (MTAP), 250 MHz
• Operating System:

o Scientific Linux

11.2 System “itanium” (LRZ)
SGI Altix 3700

• Basic Hardware:
o 9728 cores, 512 cores per node
o Intel Itanium2 Montecito dual core, 1.6 GHz.
o 4 GByte memory per core

• Operating System:
o SLES 10

11.3 System "huygens" (WP7-NCF-SARA)
IBM Power6 cluster

• Basic Hardware:
o 104 nodes, 32 cores per node
o 128 or 256 GByte memory per node
o IBM p575 Power6@4.7 GHz

• Operating System:
o SLES 10 SP2

11.4 System "louhi" (WP7-CSC)
Cray XT

• Basic Hardware:
o AMD Barcelona, 2.3 GHz quad-cores
o 2 quad-cores per node in a shared memory
o 1 GByte memory per core.

• Operating System:
o CNL, CLE 2.2 UP00

11.5 System "cell-cluster" (PSNC)
• Basic Hardware:

o Cell Cluster
o IBM QS22 blades (contains 2 PowerXCell8i)

• Hardware Accelerator:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 92

o PowerXCell8i
• Operating System:

o Fedora 9

11.6 System “maxwell” (WP8-EPCC)
• Basic Hardware:

o 32 IBM Blade Cluster
• Hardware Accelerator:

o 64 Virtex-4 FPGAs

11.7 System "nehalem" (“ice” WP8-LRZ, “inti” WP7-CEA, “baku” HLRS)
 “Nehalem/ice”:
• Basic Hardware

o SGI ICE system
o 384 cores
o Intel Nehalem EP, dual-socket, quad-core, 2.53 GHz

• Operating System:
o SLES 10.2

 “Nehalem/inti”:
• Basic Hardware

o Bull cluster
o Intel Nehalem EP, dual-socket, quad-core, 2.53 GHz, with hyperthreading

• Operating System:
o CentOs

“Nehalem/baku”:
• Basic Hardware

o Intel Nehalem EP, dual-socket, quad-core, 2.53 GHz
• Operating System:

o Scientific Linux

11.8 System “uchu” (WP8-CEA)
• Basic Hardware:

o 4 Bull R422 servers
 Intel Hapertown CPU with 16GB of RAM
 connected through PCI-Express 16x to two TESLA servers

• Hardware Accelerator:
o 2 NVIDIA Tesla, 1.3 GHz
o 1 Tesla server has 2 C1060 graphic boards

• Operating System:
o CentOS release 5.3 (Final)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 93

12 Annex C: Software Engineering Metrics

In the field of software engineering a few well-established and easy measureable quantitative
metrics to assess the complexity of a certain implementation are used ([57]). The most
popular being:

• Physical source lines of code (SLOC)
• Logical source lines of code measured in (NCSS)
• Time-to-solution & others

It is further important to note that some of the metrics listed above are not necessarily tied to a
kind of programming language but more to a kind of programming style, e.g. “readability”
benefits a lot from good and enough comments and can be accomplished in every language.

12.1 SLOC: Source Lines of Code

The physical measurement of source lines of code (SLOC) originates from the assembler
language times, when one line of code consisted of exactly one statement. SLOC is very easy
to measure but greatly depend on programming style. Since it is an old metric it has been
heavily used in many software-engineering studies. Findings have been, for example that
SLOC has an inverse relationship with the defect rate. Furthermore, It has been found that the
number of lines programmed in one day stays nearly constant for one particular programmer
on one project.

12.2 NCSS: Non-Commented Source Code Statements

A somehow “better” measure for modern high-level languages is the number of non-
commented source code statements, sometimes also known as the logical source lines of code.
It includes all executable source code statements, without regard to the placement of carriage
returns or other stylistic elements. Pre-processor directives and comments will be neglected
and sometimes even variable declarations are excluded. NCSS can be measured by counting
all semicolons in a C-program. “Non-commented source code statements can also be thought
of as a measurement of the quantity of source code required to accomplish a given task. Given
two versions of a program, the one with a lower NCSS value suggests a cleaner solution.”
([58]).

12.3 Time to solution & others

Studies suggest that many other qualitative productivity metrics (e.g. readability, portability,
correctness and -perhaps more surprisingly- total effort and therefore time-to-solution) are
related to NCSS. One should keep in mind that NCSS has also several shortcomings,
especially when it is used for comparison of programmers with different levels of skills.

Other necessary prerequisites for good programmability are programming tools, which play
an important role in software development, profiling and optimization for HPC. For most
emerging platforms, programming tools tend to be immature considering that most accelerator
hardware has initially not been developed for numerical simulations.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 94

13 Annex D: Template of the Porting Diary

Reporting Template for the Evaluation of new Programming Languages

Part I - Basic Information

Developer
Name Institution

Email PRACE Partner

Telephone Contributors … if applicable …

Code
Euroben Kernel (mod2am, mod2as, mod2f, mod2h)

Other

Programming Language
(MPI+OpenMP, UPC, CAF, Chapel, X10, CellSs, CUDA, CUDA+MPI, OpenCL,
RapidMind, Cn, CAPS, or other)
Language
Compiler Version

Hardware Information
Prototype Name
Basic Hardware
Hardware Accelerator
Operating System
Drivers

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 95

Part II - Developer Diary
Questions? Please contact iris.christadler@lrz.de

Development

Time
(mins, hours or

days)

Achieved
Performance
(Mflops, MLUs,

sec)

Number
of Cores

(if
applicable)

Dataset
used

(if
applicable)

Comments

(What did you do during this
porting step? Why? Problems

faced, etc.)

Part III – Porting results

Overall implementation result
(Successful/not successful/partly successful)

Consistency of the numerical results
(Are the results the same as for the scalar “C” version of the
kernel?)

General comments … free format …

Problems encountered … free format …

Maturity of the standard/compiler … free format …

Number of lines of source code … free format …

Suitability of the compiler/ paradigm to implement the
kernel

… free format …

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 96

14 Annex E: Reported Results for all Languages

The following information has been provided by the programmers who did the actual porting
work. The information has been extracted from each Task 6.6 Reporting Templates and has
been adapted or unified whenever it seemed appropriate.

14.1 Coarray Fortran (CAF)

Basic Information

Author: Sami Saarinen (CSC)

Euroben Kernel: mod2am, mod2f (mod2as was not started since too many compiler

problems encountered during the mod2am port)

Hardware: louhi, itanium

Compiler Version: cce 7.1.2 on louhi; g95 on itanium

Developer Diary

mod2am
Development time: 3 days on Cray XT to convert the UPC version to CAF using DGEMM; 1
hour to port the existing CAF version to the SGI Altix system. Achieved Performance:

• Cray XT5: 200 Gflops on up to 64 cores

• SGI Altix: 1 Gflops on 1 core

mod2as
After experiencing severe problems with the CAF compiler on Cray XT during the porting of
mod2am (leading to re-producible compute node crashes), the mod2as port was not even
started. It should be easy to port this kernel, since now a working UPC version and the
compiler environment at LRZ is available.

mod2f
Development time: 7 days on Cray XT to convert the main parts from the UPC version to
CAF.

Achieved Performance:

• Cray XT: 5 Gflops on up to 16 cores

Porting Results on Cray XT (CSC)

Overall implementation result: Partly successful

Consistency of the results:
Yes and no. No because GASNet problems (must have GASNET_DISABLE_MUNMAP=1),
but still goes haywire above 16 cores for FFT (mod2f).

General comments:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 97

Cray XT cce CAF is NOT ready for production. Lack of process groups in CAF makes coding
sometimes harder than in UPC or MPI.

Problems encountered:
- cce CAF compiler has bad optimization problems and code generation errors:
- for example coarray(0:npes-1)[*] does not work, but coarray(1:npes)[*] works okay! does

incorrect pattern matching, but if disabled (-Onoopt), the execution may crash, but
certainly slows down execution dramatically

- when using two-dimensional codimension, the runtime code seems to crash compute
nodes arbitrarily may not be related to two-dimensionality, but source code bug, but still :
crash !! (in mod2am)

Maturity of the standard/compiler:
immature

Number of lines of source code:
- mod2am: 310 Fortran; 40 C-code (timing utility) , all including empty and comment lines
- mod2f : 450 Fortran (main program + transpose code); 630 C-code (major FFT-kernel)

Suitability of the compiler/ paradigm to implement the kernel:
- mod2am: poor due to lack of process groups in CAF
- mod2am: restricted to certain number of processors (sqrt(NPES) ** 2)
- mod2f : good suitability – can be run with the same NPES than with UPC

Porting Results on SGI Altix (LRZ)

Overall implementation result: Successful

Consistency of the numerical results:
 Yes

General comments:
- g95 is very strictly conformant CAF compiler
- requires codimension-keyword in coarray declaration

Problems encountered:
- lacks high performance communication i.e. parallel job runs like a snail
- critical – end critical –construct not recognized for unknown reason

Maturity of the standard/compiler:
- good, except missing proper parallel implementation

Number of lines of source code:
See above

Suitability of the compiler/ paradigm to implement the kernel:
- poor due to lack of process groups in CAF
- restricted to certain number of processors (sqrt(NPES) ** 2)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 98

Performance Measurements

mod2am

Figure 31: CAF mod2am performances (tests performed on louhi)

mod2f

Figure 32: CAF mod2f performances (tests performed on louhi)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 99

14.2 CAPS HMPP

CAPS HMPP v2.0.0 has been used in this deliverable. Results for a newer release should be
ready for D8.3.2.

Basic Information

Author: Guillaume Colin de Verdière (GENCI-CEA)
Euroben Kernel: mod2am, mod2as, mod2f not started
Hardware: uchu
Compiler Version: CAPS HMPP v 2.0.0

Developer Diary

Porting Results

Overall implementation result: Successful

Consistency of the numerical results:
Correct

General comments:
In both cases the initial port was straightforward. Yet the achieved performances were far
from the peak performance. It required some tweaking to get decent performances. This
shows that a given code, developed for a CPU, will always need to be visited again to get
efficient use of a GPU: its internal structure has to be changed according to the hardware
capabilities. In this case the compiler is not faulty. Rather, the compiler can be of great help to
solve such issues. HMPP does fall into the category of helpful, yet young, tools for GPU
computing.

Problems encountered:
- mod2as: the reduction was not supported by this release of HMPP. It had to be hand

programmed which was somewhat tricky.
- mod2am: unrolling and jamming were not functioning properly with older versions of the

compiler. The version 2.0.0 fixed the problem and permitted to reach the
CUBLAS level of performance.

Maturity of the standard/compiler:
The HMPP compiler is still young in that it has the ability to support more classical constructs
such as reductions. The next versions should be really promising in terms of performance and
ease of development;

Number of lines of source code:
- mod2as: 976 including lengthy comments and various versions of the HMPP port.
- mod2am: 979 including lengthy comments and various versions of the HMPP port.

Suitability of the compiler/ paradigm to implement the kernel:
Very good. The HMPP compiler is a great tool to port codes to a GPU. We will see more
features with next releases. One should remember that some problems are not suited for GPU
usage. In those cases HMPP will still be useful since the CPU can be used as well.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 100

Performance Measurements

mod2am

Figure 33: CAPS HMPP mod2am performances (tests performed on uchu)

mod2as

Figure 34: CAPS HMPP mod2as performances (test performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 101

14.3 Cell-Superscalar (CellSs)

Basic Information

Author: Ramnath Sai Sagar (BSC), Maciej Cytowski (PSNC)
Euroben Kernel: mod2am, mod2as, mod 2f
Hardware: cell-cluster, maricel
Compiler Version: CellSs V2.2

Developer Diary

mod2am
Development

Time
Achieved

Performance
Number of

Cores
Dataset

used Comments

3d 35Gflops/s 8 SPUs 960x960
20 times

1)Code with input matrices converted to
block
2) Multiplication of the blocked matrices
3) Storing the resultant matrices from
block to the original format
4) Works for input matrices multiples of
64 x 64

4d 41 Gflops/s 8 SPUs 1000x1000
20 times

Works for any input matrix size

5d 60 Gflops/s 8 SPUs 1000x1000
20 times

Few optimization especially with respect
to the memory allocation

6d 86Gflops/s 8 SPUs 1000x1000
20 times

Removed the conversion to block and
conversion from block matrix tasks.
Instead , the inputs were stored in the
blocks right at the beginning.

mod2as
Development

Time
Achieved

Performance
Number of

Cores
Dataset

used Comments

1 day 0.7Mflops/s 8 SPUs
rows:2000
cols:2000

nelmts:300000

(ver 1) Gather of the input vector was
done in PPU. The multiplication of a
row of a matrix with the input vector
was done in a SPU

6 days 12Mflops/s 8 SPUs
rows:2000
cols:2000

nelmts:300000

(ver2)
• Gather task to build the input

vector for group of rows.
• Was done creating a dma list,

with each dma transfer of 16
bytes, and then shuffling to the
output vector

10 days 2Mflops/s 8 SPUs
rows:2000
cols:2000

nelmts300000

(ver 3) Instead of doing gather and
multiplication task for row by row,
instead of group of rows. However it
had poor performance as the tasks
were very small

15 days 30Mflops/s 8 SPUs
rows:2000
cols:2000

nelmts:300000

(ver 4)Reverted back to ver2.
Implemented double buffering due to
the poor bandwidth. Improved the
performance to some extent.

20 days 40Mflops/s 8 SPUs
rows:2000
cols:2000

nelmts:300000

(ver 5) Parsed through the input dma
list and created a local table for same
vector values, there by avoiding
duplicate dma transfers. Improved
the performance to some extent

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 102

mod2f
Development

Time
Achieved

Performance
Number
of Cores

Dataset
used Comments

1h 33.49 1PPU 1048576
(10 times)

Original version of the code running on the Power
Processing Unit of the Cell chip – no optimization
applied yet. Very poor performance!
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver1/

8h 154.3 16 SPUs 1048576
(10 times)

First try: porting of the implemented algorithm step
by step.
Here, the first step was implemented: parallel
computations of sin and cos table. Additionally the
data layout has been changed (now a table of
complex double precision numbers is created - good
for performance)
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver2/

16h 195.9 16SPUs 1048576
(10 times)

Parallel implementation of the first two radix-4
iterations. Performance gain is rather poor, also for
smaller problems. I need to redesign the porting
process.
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver3/

32h 130 16SPUs 1048576
(10 times)

Starting from the beginning. Completely new FFT
implementation with CSS. No SIMDization here.
Many barriers for debug.
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver4/

32h 322 16SPUs 1048576
(10 times)

Code was partially SIMDized. Bit reversal is now
performed on-fly (DMA put calls to bit reversed
memory addresses) from SPUs (in parallel).
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver5/

16h 369.8 16SPUs 1048576
(10 times)

Full SIMDized code. It should push the performance
when after some further tuning. Code need to be
further optimized. The computational part is not the
most expensive one. Looking for reasons..
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver6/

32h 677.8 16SPUs 1048576
(10 times)

I’ve found a reason of poor performance – very
inefficient way of reversing bits in 32bit numbers.
Changed to fast bit reversing method. The
performance of my FFT starts to look good..
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver7/

32h 867.8 16SPUs 1048576
(10 times)

Looking for some more optimizations. Code inlining
and loop unrolling was added to this version. Both
of these optimizations were performed by hand.
The performance should be better. Looking for
reasons...
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver8/

112h 2656 16SPUs 1048576
(10 times)

Some of the FFT symmetry rules was used. Some
CSs parallel tuning was performed. SIMDMath
library trigonometric functions were inlined. Many
other changes. Assumption: the CSs version will be
used for M>15 due to task granularity problems for
smaller sizes.
https://trac.csc.fi/pracewp6/svn/synthbench/euroben-
ports/cellss/PSNC_ICM/mod2f/ver9/

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 103

Porting Results

mod2am
Overall implementation result: Successful
Highly successful, able to reach up to 86% of the peak performance. Was easy to port with the
knowledge of C. Efforts had to be taken with respect to the memory allocation.

Consistency of the numerical results:
The results are the same as for the original “C” version of the kernel.

General comments:
A very good programming model. The code overall was easy to port especially due to the
knowledge of C. Initial version did not give impressive performance. However, simple
restructuring of the input data right at the beginning increased the performance to 86Gfopls/s.
Profiling the code with Paraver tool gave an insight on the application execution, which
eventually helped in improving the overall performance of the kernel.

Problems encountered:
None, except for the optimization of the code.

Maturity of the standard/compiler:
CSs v2.2 works well on any Cell platform. The language is well documented. Additionally
Paraver tool could be used for parallel traces analysis.

Number of lines of source code:
Total:305 lines; Kernel: 35 lines

Suitability of the compiler/ paradigm to implement the kernel:
The paradigm is well suited for performing parallel computations on blocks of data (i.e.
running many similar tasks on different blocks of data). Since the matrix multiplication is
done is as blocks of sub matrices, it suits the best.

mod2as
Overall implementation result: Partly successful
Performance improvement was not impressive.

Consistency of the numerical results:
The results are the same as for the original “C” version of the kernel.

General comments:
A very good programming model. The code overall was easy to port especially due to the
knowledge of C. Initial version did not give impressive performance. . However great deal of
knowledge is required about the architecture, especially the memory related issues to improve
the performance. Special notice had to be made due to the limited size of local SPE memory
and no memory protection.

Problems encountered:
Poor performance and poor bandwidth.

Maturity of the standard/compiler:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 104

CSs v2.2 works well on any Cell platform. The language is well documented. Additionally
Paraver tool could be used for parallel traces analysis.

Number of lines of source code:
Total: 529 lines; Kernel: 153 lines

Suitability of the compiler/ paradigm to implement the kernel:
The paradigm is well suited for performing parallel computations on blocks of data (i.e.
running many similar tasks on different blocks of data). Sparse matrix multiplication is
however not an perfect match over here as the number of multiplications in each of the task
differs. Further, as the input vector is scattered across the main memory, the PPE SPE
throughput was very low. An experiment of restructuring of the input vector in consecutive
memory location improved the performance. However it was not considered for porting for
the “fair” policy of porting.

mod2f
Overall implementation result: Partly successful
We failed to optimize the original kernel due to low performance problems, in return we
proposed a modified version of the FFT specially designed for the CSs programming
language

Consistency of the numerical results:
The results are the same as for the original “C” version of the kernel.

General comments:
CellSs is a nice programming paradigm from a Cell/Multi-core programmer’s point of view.
Except from the language itself we were able to use Performance Analysis Tool called
Paraver which is available for CSs. It could be used to analyze the parallel traces of the CSs
application. During the porting process we have learned a lot of important issues regarding
CSs and Cell/Multi-core programming itself:

• avoid synchronization, parallelize as much as you can with the use of similar block
data structures

• use low level Cell programming techniques (SIMD, DMA transfers)
• choose a good granularity of the CSs task

The final version works with CSs for problems larger than 2^M, where M>15. The initial
performance on PPU was very poor: 33,5 MFlops (2^20 problem). The final performance is
2656 MFlops (2^20 problem).

Problems encountered:
Very poor performance of the PPU version of the code. We failed to obtain good parallel
performance with original kernel due to difficult memory access pattern and problems with
granularity of the CSs task.

Maturity of the standard/compiler:
CSs v2.2 works well on any Cell platform. The language is well documented. Additionally
Paraver tool could be used for parallel traces analysis.

Number of lines of source code
273 lines of code

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 105

Suitability of the compiler/ paradigm to implement the kernel:
The paradigm is well suited for performing parallel computations on blocks of data (i.e.
running many similar tasks on different blocks of data). FFT is not a perfect match here since
the number of operations performed on one block of data is limited to some very basic
twiddle computations. The granularity of the task seems to be a big problem here, since we
are additionally limited by the very small Local Store of each SPU (256KB). To achieve good
performance some additional Cell programming techniques like SIMD computations or DMA
transfers have to be used. Some of them are partially addressed by the CSs language itself.

Performance Measurements

mod2am

Figure 35: CellSs mod2am performances (tests performed on maricell)

mod2as

Figure 36: CellSs mod2as performances (tests performed on maricell)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 106

mod2f

Figure 37: CellSs mod2f performances (tests performed on cell-cluster)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 107

14.4 Chapel

As I have stated earlier, there is a big issue with performance using the current release of
Chapel, i.e. version 0.9 from early this year. Let me get a bit technical in order to make the
problem clear. Chapel introduces two basic concepts: domains and distributions. Domains are
basically index set; arrays are defined over these domains. Domains can be arithmetic and
structured, i.e. 1/2/3D arrays, but they also may be sparse. Distributions are basically a
mapping between domain indices and the location, i.e. node, where array elements
corresponding to those indices are stored. In other words, they control how the array is
distributed across the cluster. Distributions are provided as part of the standard module library
or user defined (which is non-trivial and not documented yet). At declaration time, domains
may be associated with a previously declared distribution. Otherwise they use the default
distribution, which keeps everything on the master node.

In Chapel loops over arrays (actually domains), as eg the parallel forall loop
 forall (i,j) in aDomain do
 calculate something
are done by calling a method of the distribution associated with a Domain. This method is
basically an iterator over all indices and is supposed to yield in parallel/concurrently across
the machine (and also support multi-threading on a multi-core node). Similar iterators are
used for reductions, etc.

The problem now is, that most standard module distribution's iterators are not mature in the
current release. Often they fall back to their serial version. In consequence, the array operation
is done on a single node, sometimes even on a single core. This is true for the two
distributions I am currently using for the benchmarks making them not scale at all.

Another issue is the fact, that the current Chapel compiler is a prototype only and not
supposed to be as performant as a C compiler would. Even with single-core, sequential
implementation, I get only a fraction (5%) of the peak performance (I just checked the
reference C implementation and am surprised to find, that it is not much better with 7% peak).
Using proper Chapel parallel constructs is at least an order of magnitude lower. Together this
is most annoying and makes the resultant performance measurements very bad. Usually I am
happy if I get near 100MFlops on a single node. In addition, the sparse matrix mult doesn't
scale at all currently. The dense matrix-matrix mult scales on a single node across its cores,
but not across multiple nodes. In view of this, I don't think it makes sense to report
performance numbers in the deliverable. Chapel currently is simply neither expected to
perform well nor does it.

On the other hand programming Chapel compared to programming MPI is very productive in
terms of time effort. You basically write your program as a serial version. The magic is
choosing the proper distributions that is done in the declaration part, not in the algorithmic. In
order to increase performance for critical sections, Chapel offers means to optimize data
locality and affinity on a case-by-case basis.

The beauty of Chapel approach, is that in most cases you can separate algorithmic
considerations from parallelization issues. The body of your for loop will always be nearly the
same. I would _suggest_ not to publish performance measurements, at least not for multi-node
runs, in D6.6, but instead explain the issues along the lines I did in this mail. That said, I have
no problem to run the new data sets.

What I wrote is true for the current release v0.9. The situation is a bit better if you use the
Chapel version from svn which is updated several times a days. However, this is a pure
development repository and breaks frequently.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 108

Basic Information

Author: Jose Gracia (HLRS)
Euroben Kernel: mod2am, mod2as (mod 2f taken from SDK examples)
Hardware: nehalem/baku
Compiler Version: V0.9, standard library module DistCSR.chpl from svn rev 15857

Developer Diary

mod2am
Development

Time
Achieved

Performance
Number of

nodes x cores
Dataset

used Comments

60m 1 x 1 1000x1000x1000 v0; sequential emulating C

30m 230 1 x 1 v1: parallel “forall” loops, inner
reduction

30m 1025 1 x 8 v2: array distribution -> multi-
core, in principle also multi-node

60m 850 1 x 8 v3: blocked matrix multiply ->
data locality

mod2as
Development

Time
Achieved

Performance
Number
of cores

Dataset
used Comments

60m 567 1 2000x2000
@300000

v1: dense matrix, sequential

- 42 1 same as above, normalized to nelmts

60m 2.3 1 V2: sparse subdomains, loop over dense
domain

30m 25 1 V3: sparse subdomain, loop over sparse
domain

120m 37 1 V4: arrays distributed, workaround iterator,
inner reduction; still serial execution

30m 40 1 V5: proper iterator from Chapel svn, still serial

mod2f
mod2f was taken from the SDK examples

Porting Results

mod2am

Overall implementation result: Partly successful

Consistency of the numerical results:
yes

General comments:
Implementation of data parallel problems in Chapel is in principle very simple. Parallelism is
achieved through 1) parallel “forall” loops, which allow all cores in a node to work
concurrently; 2) “domain distribution” which implement work and data distribution across
nodes. However, as of Chapel version 0.9 runtime /standard modules does not really execute
the program in parallel and/or distributed across several machines.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 109

Problems encountered:
Sometimes documentation is poor, in particular the language specification. Code examples
included in the distribution and presentations/paper on the web are more useful.

Maturity of the standard/compiler:
Specification: ok. Compiler & runtime are still prototypes.

Number of lines of source code:
The actual algorithm is less than 10 lines of code.

Suitability of the compiler/ paradigm to implement the kernel:
Well suited.

mod2as

Overall implementation result: Partly sucessfull

Consistency of the numerical results:
yes

General comments:
Implementation of data parallel problems in Chapel is in principle very simple. Parallelism is
achieved through 1) parallel “forall” loops, which allow all cores in a node to work
concurrently; 2) “domain distribution” which implement work and data distribution across
nodes. However, as of Chapel version 0.9 runtime /standard modules does not really execute
the program in parallel and/or distributed across several machines. In principle, however,
Chapel provides a standard module for compressed storage row format distributions and
should eventually perform well.

Problems encountered:
Syntax for distributed sparse domains was not clear. The Chapel developers at Cray were very
helpful in clarifying those issues.

Maturity of the standard/compiler:
Specification is ok. Compiler & runtime are still prototypes.

Number of lines of source code:
The actual code is less than 15 lines.

Suitability of the compiler/ paradigm to implement the kernel:
Well suited, in particular since there is language support for sparse arrays and a standard
module for compressed storage row specifically.

mod2f

(mod2f was simply taken from the SDK examples)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 110

Performance Measurements

mod2am

Figure 38: Chapel mod2am performances (test performed on nehalem/baku)

mod2as

Figure 39: Chapel mod2as performances (tests performed on nehalem/baku)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 111

14.5 ClearSpeed Cn

The only code for which no library routine is available is mod2as. However, this is so
straightforward that there was no call for more than one version: one has to get the data onto
the card, distribute rows over the available processors and get the result vector out. The details
of aligning the data, transferring data from mono to poly memory, etc. are complicated but
known to the PetaPath crew. So, no new insights are coming from that part.

Basic Information

Author: Phil Power (PetaPath), reports handed in from Aad van der Steen (NCF)
Euroben Kernel: mod2am, mod2as, mod2f, mod2h
Hardware: clearspeed-petapath
Compiler Version: Cn 3.11

Remark on the hardware: Since the clearspeed-petapath hardware at NCF-SARA was not
ready, the test configuration of PetaPath in Bristol was used.
This was sufficient to run the kernels.

Developer Diary

For mod2am, mod2f and partly for mod2h, demonstrations codes from PetaPath could be used
and needed only adaptation. An estimate about how long the whole code development would
have taken is therefore not possible.

mod2am
An adjusted demonstration code was used to generate the results (CSXL library)). So, no
problems were encountered.

Achieved Performance: <= 600 Gflop/s in 64-bit precision with 1-8 CSX 700 cards

mod2as
There are no intrinsic problems except the low computational intensity of the problem.

Achieved Performance: 30 Mflops on one card

mod2f
1-D as well as 2-D FFTs were done as a result of modifying existing PetaPath demonstration
codes (CSDFT library). However, only on the restricted data lengths that the FFT library
allows were run.

Achieved Performance: 6—10 Gflop/s on 1 (2 MTAPs)

mod2h
Instead of only rand64, 4 random number generators from the PetaPath CSRNG library were
run: drand48, drnd64, MT2203, and MT19937.

Achieved Performance: 2.72•108 random numbers/s on 1—4 cards, 1—2 MTAPs

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 112

Porting Results

mod2am
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
The CSXL library was used to obtain the results. The results for this kernel were more or less
as expected. The architecture is very suitable for this kind of code as all SIMD-type
processors are.

Problems encountered:
None.

Maturity of the standard/compiler:
The Cn compiler is around for quite some time. Version 3.11 is very mature and poses no
problems.

Number of lines of source code:
1158. Note there are lots of comments lines and of the general purpose timing routine of 180
line only 2 are actually used.

Suitability of the compiler/ paradigm to implement the kernel
See above.

mod2as
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
The results for mod2as are quite poor as could be expected: All existing SIMD-type
accelerators perform badly on reduction operations which a primary constituent of the code.
Futhermore, the low computational intensity (ratio of arithmetic vs. memory operations)
generally a low performance can be expected. The situation is aggravated by having to
transport the data to the accelerator card. It results in a performance that is about 8 times
slower than that of a Nehalem core.

Problems encountered:
None

Maturity of the standard/compiler:
Compiler is very mature. No problems in generating the executable from Cn.

Number of lines of source code:
Card codes: 707.
Host codes: 422 (including the host-card communication part).

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 113

Suitability of the compiler/ paradigm to implement the kernel:
No problem to implement the code, but presently the hardware cannot support reduction
operations well.

mod2f
Overall implementation result:
mod2f was correctly ported without problems.

Consistency of the numerical results:
Yes

General comments:
The results were as expected: a speed of 6 to 10 Gflops for the double precision complex
forward FFT on 1 CSX 700 card. This is 5 to 9 times faster than what can be achieved on a
single Nehalem processor in C code. This is, however, only for the limited range of transform
lengths presently available in the FFT library.

Problems encountered:
None

Maturity of the standard/compiler:
Both compiler and library are very mature and stable.

Number of lines of source code:
Card code: 291; Host code: 324.
However, both parts contain much that is not relevant for the problem posed in mod2f
because it is an adaptation of a demonstration code that also performs series of 1-D FFTs and
2-D FFTs.

Suitability of the compiler/ paradigm to implement the kernel:
Quite suitable. However, the range of transform lengths in the library is too limited and
should be extended.

mod2h
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
The performance per e710 (= 1 CSX700) card for uniform random variates is about 2.5 to 3
times faster than a single Nehalem processor. This is due to the low logical operation count
vs. the data movement. The PCIe bus turns out to be very well occupied. For Gaussian or
Log-Gaussian, or exponentially distributed variates the relative performance can be better as
the amount of computation/variate is substantially higher and all can be done on the card.

Problems encountered:
None

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 114

Maturity of the standard/compiler:
Very mature and stable.

Number of lines of source code:
Host code: 246; Card code: 408. However, in the host code is the timing code of 192 lines
included of which only 2 apply for the main program and in the card code also the code for 3
additional generators is included together with that for rand64.

Suitability of the compiler/ paradigm to implement the kernel:
The kernel can be very well expressed in Cn for this platform. However, the computational
intensity for uniform random variates is low. So, the benefit from the parallelism even
through the optimised library calls is moderate.

Performance Measurements

No performance data available.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 115

14.6 CUDA

Basic Information

Author: Hans Hacker (LRZ)
Euroben Kernel: mod2am, mod2as, mod2f
Hardware: uchu
Compiler Version: CUDA compilation tools, release 2.2, V0.2.1221

Developer Diary

mod2am
Performance achieved: 63 Gflops (DP) on one Tesla.

The developer diary is missing, since the porting activity was started very early within WP8
and the WP6T6 ReportingTemplate was not ready by that time.

mod2as
Performance achieved: 676 Mflops (DP) on one Tesla.

The developer diary is missing, since the porting activity was started very early within WP8
and the WP6T6 Reporting Template was not ready by that time.

mod2f
Develop.

Time
Achieved

Performance
Dataset

used Comments

45m ~2GFlops (SP)
~1.7GFlops (DP) 2^24 Baseline Nehalem. Rewrite: added option double

precision/single precision
2h30m ~18GFlops 2^24 Implemented CUFFT (single precision)
25m ~150MFlops (DP) 2^24 Initial simple CUDA port (double precision)

3h ~190MFlops (DP) 2^24 Rewrite of init-vector from 3 loops to parallel (unrolled)
version

25m - - Checking with CUDA-profiler – in order to find
bottlenecks

3h45m ~450MFlops (DP) 2^24 Rearrangement of data-structures

4h ~430MFlops (DP) 2^24 replaced double precision operations (*1.0 / *-1.0) with
bitflip → rewind :(

5h ~1GFlops 2^24 Maximize loop unrolling in Radix4 Kernels

30m - - Checking with CUDA-profiler – in order to find
bottlenecks

1h ~1.3 GFlops 2^24 Added support for memory pinning

3h ~1.6 GFlops 2^24
Changed data structures from __const__ to __shared__
(misunderstanding the CUDA documentation - should not
count ! :-))

4h ~2 GFlops 2^24 Rewrite from two input vectors (2x double) to the CUDA
datatype double2

30m - - Checking with CUDA-profiler – in order to find
bottlenecks

25m ~3.2 GFlops 2^24 Correction of wrong loop-unrolling in one CUDA-kernel

6h ~4.2 GFlops 2^24 Remove shared memory access by substitution (now all
values in registers)

4h ~5.8 GFlops 2^24 Using texture cache for data-input reduces access to global
memory by ~45%

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 116

Porting Results

mod2am
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
The obvious way to implement this benchmark is to apply the
CUBLASDgemm/CUBLASSgemm library calls. As with every accelerator-card one has to
move the data to the main-memory of the card. CUDA offers various ways to copy the data.
For this application I chose two methods that can be used via a make-switch (documented in
the README). Method one is to allocate the host data-structures in the ordinary way with
malloc and the same data-structures on the GPU and then copy the data. This works fine
however the MMU is involved in every page-request. Method two allocates the host data-
structures via a special CUDA call (cudaMallocHost) which marks the allocated pages as non-
swappable and allows data-transfer to take place without the interference of the MMU. This
method is significantly faster.

Problems encountered:
Since the mod2am-benchmark uses a typical C-'row-major' data arrangement, I used the
transpose option for the input matrices. Unfortunately there is no transpose option for the
output so I had to write a kernel which transposes the matrix. There is an example code for a
matrix transposition in the SDK which I modified for this case. This transposition is done out-
of-place by blocking the matrix, transposing the block and storing it back to the main memory
of the card.

Maturity of the standard/compiler:
NVIDIA is still adding new features and which needed a few changes to existing code.

Number of lines of source code:
~150 additional lines of code for single/double precision

Suitability of the compiler/ paradigm to implement the kernel:
This kernel is the so called sweetspot for the NVIDIA Accelerator. It single precision it
outperforms the MKL/Nehalem version with eight cores. In double precision the Nehelm is
only ~ factor 1.2 times faster than one Tesla C1060 card. The double precision MKL version
on a 8 core AMD Shanghai is ~ factor 0.08 slower than the CUDA version on Tesla C1060.

mod2as
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
NVIDIA offers no library for sparse matrix operations. However by searching for a solution
on their CUDA Zone, I found the publication “Efficient Sparse Matrix-Vector Multiplication
on CUDA” by Nathan Bell and Michael Garland. The paper plus the source-code can be

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 117

downloaded there. I took their CSR-kernel and wrote a C-function to fit the needs of mod2as.
There was no need to change the data structures. The kernel makes very efficient use of the
shared memory within the SM (Streaming Multiprocessor). Because of the warp concept (a
warp consists of 32 threads which are all synchronous) they can also do a very efficient
reduction. They further put the x-vector into the texture-cache. Because the x-data is reused
multiple times this is also very efficient.

Problems encountered:
The main problem with this benchmark is, that the data-transfer as well as the calculation is
both O(n). Therefore the PCIe bus limits the overall performance. However if the results of
the calculation can stay on the accelerator for multiple iterations the NVIDIA cards are very
fast.

Maturity of the standard/compiler:
NVIDIA is still adding new features and which needed a few changes to existing code.

Number of lines of source code:
~350 additional lines of code for single/double precision

Suitability of the compiler/ paradigm to implement the kernel:
This kernel itself would be very well suited for the NVIDIA accelerator. The calculation
within the Tesla Card is up to ~ 3x faster than the MKL version on a Nehalem with 8 cores.
However the PCIe bus is the main bottleneck and results in a factor of less than 1/5 of the
Nehalem.

mod2f
Overall implementation result: Successful

Consistency of the numerical results:
Yes

General comments:
The single precision port was straightforward by the use of CUFFT. The double precision port
was more challenging. The latest version of CUFFT (v2.3) now supports double precision and
should therfore be as straightforward now as the single precision version. (This could not be
tested so far since neither the CEA system nor the LRZ system have installed the latest
driver/SDK version).

Problems encountered:
The compiler gives no warning if double precision code is compiled without support for
double precision. The values on the GPU are casted into single precision. This results in
corrupt data when copied back to the CPU.

Maturity of the standard/compiler:
NVIDIA is still adding new features and this results in a few changes to existing code.

Number of lines of source code:
~75 for SP
~3000 for DP

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 118

Suitability of the compiler/ paradigm to implement the kernel:
This kernel is well suited for porting to CUDA. It outperforms the MKL version by ~ factor 3
in single precision and ~ factor 2 for double precision.

Performance Measurements

mod2am

Figure 40: CUDA mod2am performances (tests performed on uchu)

mod2as

Figure 41: CUDA mod2as performances (tests performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 119

mod2f

Figure 42: CUDA mod2f performances (tests performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 120

14.7 CUDA+MPI

Basic Information

Author: Olli-Pekka Lehto (CSC)
Euroben Kernel: mod2am, mod2as, mod2f
Hardware: uchu
Compiler Version: CUDA 2.2 nvcc; gcc 4.1.2; OpenMPI 1.3.2

Developer Diary

mod2am
Development

Time
Achieved

Performance
Number of

Cores
Dataset

used Comments

1d

44 GFlop/s
<5 GFlop/s
78 GFlop/s

134 GFlop/s
130 GFlop/s

1N 1P
1N 4P
2N 2P
4N 1P
4N 4P

mod2am
(10240)

Initial port of mod2am
The “1N 4P” run did not complete in
reasonable time

30m

41 GFlop/s
67 GFlop/s

128 GFlop/s
135 GFlop/s
219 GFlop/s

1N 1P
1N 4P
2N 2P
4N 1P
4N 4P

mod2am
(10240)

Added striping over several GPUs

1h

55 GFlop/s
83 GFlop/s

148 GFlop/s
169 GFlop/s
259 GFlop/s

1N 1P
1N 4P
2N 2P
4N 1P
4N 4P

mod2am
(10240)

Added CUBLAS support

30m 56 GFlop/s
53 GFlop/s

1N 1P
1N 4P

mod2am
(10240)

Added memory pinning support
Did not for internode communication
over InfiniBand

3h mod2am

Attempted to implement CUBLAS-
accelerated PDGEMM
Unsuccesful due to PBLAS compile
difficulties

mod2as
Development

Time Achieved Performance Number of Cores Dataset
used Comments

3h

364 MFlop/s
266 MFlop/s
535 MFlop/s
288 MFlop/s

1N 1P
1N 4P
4N 2P
4N 4P

mod2as
(10240)

Initial port of mod2as

15m

364 MFlop/s
481 MFlop/s

1028 MFlop/s
1062 MFlop/s

1N 1P
1N 4P
4N 2P
4N 4P

mod2as
(10240)

Added striping over several GPUs

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 121

mod2f
Development

Time
Achieved

Performance
Number of

Cores
Dataset

used Comments

1d mod2f
(10240)

Attempted to port based on Fortran+MPI
kernel. Unsuccesful due to difficulties in
transpose. Gave up as a C+MPI version was
to be released.

1d mod2f Attempted to port based on C+MPI kernel
Ran out of time

Porting Results

Overall implementation result: Partly successful

Consistency of the numerical results:
Yes

General comments:
- Reasonably straightforward to port existing code
- It’s easy and effective to assign MPI ranks to multiple GPUs when available
- The striping may also tie ranks unevenly to GPUs on some platforms due to differences in
rank placement rules. One must ensure that ranks are assigned in sequentially to nodes.

Problems encountered:
- The performance of a simple port is not sufficient
- Memory pinning when running parallel over InfiniBand with reasonably large dataset
caused a hang
- Porting mod2f proved unexpectedly difficult

Maturity of the standard/compiler:
The compiler is mature.

Number of lines of source code:
mod2am

• Normal: 240 lines
• CUBLAS: 140 lines

o Striped: +10 lines
o Mempin: +15 lines

mod2as

• Normal: 50 lines
 Striped: +10 lines
 Mempin: +15 lines

Suitability of the compiler/ paradigm to implement the kernel:
Reasonably suitable: There is likely much further optimization that can be done, especially
with minimizing the amount of host-GPU memory transfers

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 122

Performance Measurements

mod2am

Figure 43: CUDA+MPI mod2am performances (tests performed on uchu)

mod2as

Figure 44: CUDA+MPI mod2as performances (test performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 123

14.8 FPGA (VHDL and/or Harwest C)

Basic Information

Author: James Perry (EPCC)
Euroben Kernel: mod2am, mod2as
Hardware: maxwell
Compiler Version: HCE 1.4 for Harwest C; Xilinx ISE9.1i for VHDL

Developer Diary

mod2am
Development

Time
Achieved

Performance
Number
of Cores

Dataset
used Comments

5d 6.45 Mflops Initial porting to VHDL. Correct but very poor
performance due to memory access pattern.

3d 2,240 Mflops

Switched from external DRAM to internal block
RAM. Performed multiple floating point operations
in parallel. Faster, but limited to relatively small
matrices (256x256 max).

8d 1,846 Mflops

Hybrid VHDL version (storing matrices in DRAM
but caching sections in block RAM). Good
performance and handles matrices up to 1024
square.

2d 1,625 Mflops Ported VHDL version to 64-bit double precision
2.5d 14.0 Mflops Ported kernel to Harwest C

mod2as
Development

Time
Achieved

Performance
Number
of Cores

Dataset
used Comments

5d 450 Initial VHDL port – 64-bit double precision.

1d 900

32-bit single precision VHDL version, for fairer
performance comparisons with Harwest
implementation, which is constrained to single
precision.

3d 1.71 Harwest port, returning 32-bit floats.

0.25d 2.76
Harwest port, returning 64-bit integers (which
could then be converted to double precision) to
host.

Porting Results

mod2am
Overall implementation result: Partly successful

Consistency of the numerical results:
Results are very close to original, occasional small differences due to different order of
operations.

General comments:
The kernel was successfully ported to both VHDL and Harwest C. Performance of the final
VHDL version is good, significantly faster than running on the host even when the time taken
to transfer data over the PCI bus is taken into account. Performance of the Harwest C version

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 124

is poor (approximately 40 times slower than the original code). The reason for this is not yet
known, but an integer version of the kernel performs 5 times faster, suggesting that the
floating-point arithmetic is partly responsible for the slowness.

Problems encountered:
Fitting the VHDL version onto the resources of the FPGA, especially the 64-bit port, was very
challenging. Allowing different sizes of matrix (especially non-power-of-2 sizes) would
complicate the code, so the final version is a fixed size 1024x1024 matrix multiplier (unlike
the original which can handle any size). Handling variable sizes would probably not adversely
affect performance.

Maturity of the standard/compiler:
The HCE compiler is still very much under development. It is lacking some features (such as
double precision floating point) and a few bugs were encountered during the porting. Xilinx
ISE is a mature, proven, and very widely used development tool.

Number of lines of source code:
VHDL: 1252
Harwest C: 75

Suitability of the compiler/ paradigm to implement the kernel:
The kernel is not particularly well suited to implementation using HCE as HCE does not
support double precision arithmetic (and its single precision arithmetic seems to be slow). It is
also difficult to access large arrays such as the matrices in HCE – this necessitates copying a
section at a time to smaller arrays. The floating point and memory bandwidth requirements
also mean that the VHDL version does not achieve as big a speed-up over the host as some
algorithms can (however, at approximately 2-3x faster, it is still a worthwhile speed-up).

mod2as
Overall implementation result: Partly successful

Consistency of the numerical results:
Results from 64-bit versions are identical to those from original kernel. Results from 32-bit
versions are as close as 32-bit precision can get to the original results.

General comments:
Both the Harwest C and VHDL ports worked. However, the Harwest C version is too slow to
be of much use, more than 5 times slower than the original C code running on a 2.8GHz
Xeon. The VHDL version is very fast but when the time taken to transfer the output back
across the PCI bus to the host machine is taken into account, it is also slower than the original
code. Therefore the VHDL version would only be an improvement if the random numbers
generated were being consumed by another process on the FPGA itself.

Problems encountered:
Harwest C does not support double precision, so the HCE port was limited to 32-bit floating
point. It also does not support 64-bit integer arithmetic, making the core of the algorithm
(which uses 64-bit integers extensively) rather cumbersome.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 125

Maturity of the standard/compiler:
The HCE compiler is still very much under development. It is lacking some features (such as
double precision floating point) and a few bugs were encountered during the porting. Xilinx
ISE is a mature, proven, and very widely used development tool.

Number of lines of source code:
VHDL: 633
Harwest C: 88

Suitability of the compiler/ paradigm to implement the kernel:
This kernel is very well suited to VHDL implementation as it consists primarily of bit shifts
and exclusive-or which are very efficient and easy to implement in hardware. Additionally,
the final floating point scaling can be replaced by a simple bit shift in hardware. The kernel
was not so well suited to HCE; HCE’s lack of 64-bit integer support meant that the algorithm
had to be rewritten to use multiple 32-bit operations instead, and lack of double precision
limits the precision of the results.

Performance Measurements

Missing.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 126

14.9 MPI+OpenMP

Basic Information

Author: Filippo Spiga (CINECA)
Euroben Kernel: mod2am, mod2as, mod2f
Hardware: nehalem
Compiler Version: Intel(R) 64, Version 10; OPENMPI 1.3.2

Developer Diary

mod2am
(D1= 1000x1000; D2=5000x5000; D3=10000x10000)

Version Development
Time

Achieved
Performance

Number
of Cores

Dataset
used Comments

v0 10m
D1 = 9.7956e+02
D2 = 6.3040e+02
D3 = 6.3318e+02

1 D1, D2,
D3

Starting C kernel (little changes in
auxiliary files), some little change

v0.1 5m
D1 = 4.6969e+03
D2 = 3.2568e+03
D3 = 3.2691e+03

1 D1, D2,
D3

Starting kernel with the main loop
explicit unrolled (4 times)

v0.2 5m
D1 = 3.5492e+03
D2 = 1.8759e+03
D3 = 1.8998e+03

4 D1, D2,
D3

Added OpenMP pragma on OUTER
loop (i-loop)

v0.3 5m - 4 -

Added OpenMP pragma on MIDDLE
loop, exchanged k-loop with j-loop.
This allows SSE vectorization but a
evident degradation of performance.

v0.4 5m
D1 = 8.3959e+02
D2 = 1.1216e+03
D3 = 4.3651e+02

4 D1, D2,
D3

Added OpenMP pragma on INNER
loop (k-loop)

v0.5 10m - - -

Added OpenMP pragmas on both i-
loop and k-loop (j-loop and j-loop
areexchanged respect to the starting
kernel). To use NESTED parallelism
set OMP_NESTED=true. Not suppoted
by PGI 8.0-6 but fully supported by
INTEL 10.1

v0.6 15m
D1 = 1.6539e+04
D2 = 2.9540e+04
D3 = 1.2534e+03

4 D1, D2,
D3

OpenMP parallelization is performed
by CBLAS2 library. CBLAS is
complied with of multi-threading
support ACML (libacml_mp.a, v4.2.0).

v1.0 1h15m ~
1h30m

D1 = 5.4409e+03
D2 = 3.4059e+03
D3 = 3.3349e+04

4 MPI +
4 OMP

(16)

D1, D2,
D3

Added trivial MPI parallelization: 1D
block layout and MPI_Send/MPI_recv.
The local matrix-matrix multiplication
is parallelized with OpenMP in 4
different ways. Starting from this
version, test were performed using the
best strategy derived from v0.x steps
(__OPENMP_OUTER).

v1.1 20m
D1 = 1.7366e+04
D2 = 9.6143e+03
D3 = 1.3441e+03

4 MPI +
4 OMP

(16)

D1, D2,
D3

Changed MPI strategy, 1D block layout
but using MPI_Bcast.

v1.2 20m D1 = 1.5272e+04
D2 = 1.1201e+04

4 MPI +
4 OMP

D1, D2,
D3

Changed MPI strategy: 1D block layout
but using MPI_sendrecv.

2 http://www.netlib.org/blas

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 127

D3 = 4.3621e+03 (16)

v1.3 40m
D1 = 1.3558e+04
D2 = 1.1086e+04
D3 = 4.3565e+03

4 MPI +
4 OMP

(16)

D1, D2,
D3

Changed MPI strategy: 1D block layout
but using non-blocking
MPI_Isend/MPI_Irecv.

v2.0 2h
D1 = 3.7313e+03
D2 = 7.1081e+03
D3 = 4.1849e+03

4 MPI +
4 OMP

(16)

D1, D2,
D3

This implementation is based on
Cannon algorithm: 2D block (better
data distribution and better scaling)
using MPI_sendrecv and MPI_Cart*
features. Multi-threading parallelization
in local block matrix-matrix
multiplication is provided by OpenMP
explicitly.

v2.0.1 10m
D1 = 4.6977e+03
D2 = 8.4428e+04
D3 = 6.6948e+04

4 MPI +
4 OMP

(16)

D1, D2,
D3

Same MPI strategy on v2.0 but multi-
threading parallelization in local block
matrix-matrix multiplication is
provided by CBLAS.

v2.1 45m ~ 1h
D1 = 2.3222e+04
D2 = 7.2023e+03
D3 = 4.2226e+03

4 MPI +
4 OMP

(16)

D1, D2,
D3

Changed MPI strategy: 2D block using
non-blocking MPI_Isend/MPI_Irecv to
exchange local sub-matrices. Multi-
threading is explicit with OpenMP.

v2.1.1 10m
D1 = 7.2162e+03
D2 = 9.7354e+04
D3 = 7.2300e+04

4 MPI +
4 OMP

(16)

D1, D2,
D3

Changed MPI strategy: 2D block using
non-blocking MPI_Isend/MPI_Irecv to
exchange local sub-matrices. Multi-
threading is provided by CBLAS.

v2.1.2 10m
D1 = 6.5840e+03
D2 = 9.5389e+04
D3 = 6.9531e+04

4 MPI +
4 OMP

(16)

D1, D2,
D3

Changed MPI strategy: 2D block using
non-blocking MPI_Isend/MPI_Irecv
but Irecv are preposted to allocate in
advance MPI buffers. Multi-threading
is provided by CBLAS.

mod2as
(D1= 30000 (3,33%); D2= 30000 (13,33%); D3= 40000 (4,24%))

Version Development
Time

Achieved
Performance

Number
of Cores

Dataset
used Comments

v0 5m
D1 = 5.74603e+02
D2 = 5.94735e+02
D3 = 5.86538e+02

1 D1-D5 Original C kernel (little changes in
auxiliary files).

v0.1 10m
D1 = 7.15820e+02
D2 = 1.11661e+03
D3 = 1.09239e+03

4 D1-D5 Basic parallelization using OpenMP.

v0.2 20m
D1 = 9.51777e+02
D2 = 1.17221e+03
D3 = 1.14962e+03

4 D1-D5

Rewriting of the main loop inside
“spvx.c” in order to gain
performance. This optimizations
works with PGCC compiler, not with
ICC. ICC is not able to perform
vectorization on the internal loop due
to “dereference too complex” error.

v0.3.0 10m
D1 = 1.20627e+03
D2 = 1.42029e+03
D3 = 1.27266e+03

4 D1-D5

Full 0-index CSR, only OpenMP
parallelization. Refer to MKL library
user guide to understand the
differences between this CSR mode
and the 1-index.

v0.3.1 10m
D1 = 1.07085e+03
D2 = 1.42131e+03
D3 = 1.40787e+03

4 D1-D5

Full 1-index CSR, only OpenMP
parallelization. Refer to MKL library
user guide to understand the
differences between this CSR mode
and the 0-index.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 128

v0.4 30m - 1 -

Matrix-vector multiplication is
provided by Sparse BLAS library
(NIST interface3). Unfortunately this
library is not multi-threaded!!!

v0.5 1h45m ~ 2h
D1 = 7.90826e+02
D2 = 1.40758e+03
D3 = 1.42811e+03

4 D1-D5

OpenMP parallelization is provided
by Sparse BLAS provided by INTEL
MKL library 10.2 using 1-index CSR
format. MKL has Sparse BLAS 1-2-3
routines and all the routines support
multi-threading.

v1.0 45m ~ 1h
D1 = 1.27287e+03
D2 = 1.38739e+03
D3 = 1.37499e+03

4 MPI +
4 OMP

(16)
D1-D5

Trivial block-striped partitioning
among all processors: sparse matrix
is distributed but the dense vector is
replicated on all processors.

v1.1 15m
D1 = 9.61996e+02
D2 = 1.41377e+03
D3 = 1.40486e+03

4 MPI +
4 OMP

(16)
D1-D5

Same MPI strategy of v1.1 but this
version uses INTEL MKL library
10.2 for local computation.

mod2f

Version Development
Time

Achieved
Performance

Number
of Cores

Dataset
used Comments

v0 10m - 1 - Original C kernel (little changes in
auxiliary files).

v0.1 40m - 4 -
Multi-thread FFT provided by FFTW
library. Around 20 minutes were spent to
compile the FFTW library.

v0.2 40m 4 -
Multi-thread FFT provided by FFTW3
library. Around 20 minutes were spent to
compile the FFTW3 library.

v0.3 30m - 4 -
Multi-thread FFT provided by MKL
library. It seems that MKL 1D FFT routine
is not multi-threaded…

v1.0 - - 1 - the same as “base/C-MPI” but it’s a 2D
transformation… useless

v1.1 30m - 1 - 1D distributed FFT using FFTW. No multi-
threaded version provided by the library

v1.2 2d - 1 -

1D distributed FFT using MKL Cluster
FFT. I waited to days to fix some problems
thanks to the help of INTEL forum support.
I have some strange results from timing. I
need more time to investigate about it.

Porting Results

mod2am
Overall implementation result: Successful

Consistency of the numerical results:
Expected consistency through different versions starting from base C kernel.

General comments:
Distributed parallelization with MPI is totally explicit. Some parallel libraries, like PBLAS,
are specifically oriented for FORTRAN language. The porting activities from BCX to INTI
had required only some changes into the makefiles. I have made some changes on all

3 http://math.nist.gov/spblas

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 129

makefiles in order to be as “modular” as possible and easy to modify and update. On both
clusters MKL is present. The performances on these clusters are better than BCX. After the
WP6.6 deadline, could be interesting to benchmark this architecture to understand how multi-
threading with hyper-threading is good. It’s interesting to explore the affinity characteristics
and to evaluate TBL and cache miss impacts.

Problems encountered:
No major problems were encountered. Small and trivial bugs aroused during the development
activity were fixed in less than 2 hours.

Maturity of the standard/compiler:
The INTEL compiler is well tested and known.

Number of lines of source code:
mxm.c: 154 lines. In total 339 lines for the whole directory.

Suitability of the compiler/ paradigm to implement the kernel:
Good.

mod2as
Overall implementation result: Successful

Consistency of the numerical results:
Expected consistency through different versions starting from base C kernel.

General comments:
MKL has its own internal sparse BLAS implementation and it provides both C and
FORTRAN interfaces.

Problems encountered:
Using sparse BLAS routines inside MKL libraries require to read on MKL user guide about
format convention. It seems trivial but it’s not so simple for a developer who never used MKL
library

Maturity of the standard/compiler:
Intel compiler is the best solution if you want to use MKL

Number of lines of source code:
getmatvec.c: 41 lines. In total 238 lines for the whole directory.

Suitability of the compiler/ paradigm to implement the kernel:
Good

mod2f
Overall implementation result: Partially
Deeply check of the last version that use MKL Cluster FFT routine is need but we are out-of-
time. At this point, I am not able to produce valid performance results of the latest version that
use multi-threading MKL library. To complete all the work and the porting activity I need
additional time.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 130

Consistency of the numerical results:
I have some problems with the check routine. I would like to change it but at the moment I
write a dummy routine.

General comments:
It is really useful to have a high level library that contains both multi-thread and distributed
version. However putting functionalities inside a close library could produce problems of
compatibility. The usage of MKL Cluster FFT is not easy because MKL has its own
interfaces and methods. The implementation of an algorithm based on FFT using MKL
Cluster FFT could require reading a lot of documentation.

Problems encountered
During the porting activities I encountered a problem related to DftiCreateDescriptorDM().
Open MPI considers MPI_COMM_WORLD to be a pointer it turns out to be 64-bit long. To
avoid this problem INTEL support suggested to use MPI_Comm_c2f. The second problem
was related to linking. Due to a bug or an unconventional way of MPICC wrapper to compose
the start/end-group link statements, link step failed. I made a trick to allow the compilation
using the Makefile.

Maturity of the standard/compiler:
MKL libraries support distributed computation using MPI. Officially MKL requires Open
MPI 1.1 or 1.2. However using Open MPI 1.3 I didn’t encounter any problems. Seems that
MKL 1D FFT functions are not multi-threading. I think this is a strong limitation. INTEL
support says that it depends on the version of MKL you are using and the size of the problem
if FFT runs in multi-threaded mode or not (see http://software.intel.com/en-us/articles/mkl-
threaded-1d-ffts/)

Number of lines of source code:
In total 279 lines for the whole directory.

Suitability of the compiler/ paradigm to implement the kernel:
Good

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 131

Performance Measurements

mod2am

Figure 45: MPI+OpenMP mod2am performances (tests performed on inti)

mod2as

Figure 46: MPI+OpenMP mod2as performances (tests performed on inti)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 132

14.10 OpenCL

The available implementations of OpenCL are still in beta-state with the target being the
correctness of the implementation and not yet on optimization. Thus, the assessment should
focus on productivity and portability to OpenCL instead of performance.

OpenCL development was done with NVIDIA’s OpenCL 1.0 conformance candidate release
on the Flux cluster. There were several issues with this: Initially it was discovered that the
release does not support DP arrays, but interprets them as SP. The benchmarks were modified
to use SP floating point. The lack of a software emulation mode, debugging/profiling tools
and cryptic error messages made development challenging. The conformance candidate
release also requires the older CUDA version 2.2 and a specific driver version. Thus, a
dedicated node was assigned to OpenCL development while others were upgraded to CUDA
2.3. Some other minor bugs were encountered which were related to code generation. The
OpenCL code was also tested on the GENCI-CEA cluster, but did not work immediately due
to the earlier OpenCL beta version that lacked many of the utility library routines used. ATI’s
OpenCL-implementation (Stream 2.0 beta) was also tested. However, it did not produce the
correct results during the initial test.

Basic Information

Author: Olli-Pekka Lehto (CSC)
Euroben Kernel: mod2am, mod2as (buggy), mod2f (running out of time)
Hardware: uchu for mod2am and mod2as; uchu for mod2am in single precision.
Compiler Version: CUDA 2.2 nvcc, OpenCL 1.0 conformance release

Developer Diary

mod2am
Development time: 1 day to do the initial port of mod2am from CUDA to OpenCL and
another hour to port mod2am for use with ATI CPU OpenCL beta, which was unsuccessful
due to an unknown bug inside the kernel code

Achieved Performance: 1400 Mflops.

mod2as
Development time: 1 day spent attempting to port mod2as. This was unsuccessful due to an
unknown bug inside the kernel code.

mod2f
Port was not started (running out of time).

Porting Results

Overall implementation result: Partly successful

Consistency of the numerical results:
Yes

General comments:
- Reasonably straightforward to port code from CUDA (largely mechanical changes)
- Code samples included with the compiler were useful

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 133

Problems encountered:
 Current pre-release version of OpenCL requires a specific NVIDIA driver version which

in turn only supports CUDA 2.2
 Support libraries for NVIDIA and ATI versions of OpenCL were different. To create

truly portable OpenCL code, one must avoid using them or use ifdefs.
 Double precision was not supported
 Lack of a software emulation mode and a debugger makes debugging very tedious
 Some syntax errors occur occasionally in low-level code generation
 Error handling seems incomplete and error messages can be difficult to decipher
 Occasionally runs lock the device or cause the complete system to hang requiring a

reboot
 Lack of proper documentation
 ATI beta version failed to run the OpenCL kernel and no immediate reason was found.

Maturity of the standard/compiler:
The compilers are still very immature.

Number of lines of source code:
250 lines. ATI port added ~40 lines

Suitability of the compiler/ paradigm to implement the kernel:
While the paradigm itself should be quite suitable to implement the kernel, the current
implementations are still far too immature for a production environment.

Performance Measurements

mod2am
Important note: Running out of memory for data sets bigger than 5000.

Figure 47: OpenCL mod2am performances (tests performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 134

14.11 RapidMind

The performance measurements for this deliverable were made with RapidMind v4.0. This is
the first version that supports the ‘cuda’ backend and therefore the first version that is able to
run on NVIDIA Tesla. The target for this v4.0 was CUDA enablement, not CUDA
performance. This will be the target for v4.1, which hopefully will be available to include
results in D8.3.2.

The double-precision support for GPU and Cell is a new feature. Although the double
precision performance was not convincing at all, it has been used to receive comparable
results to other languages, especially CAPS HMPP. The single-precision variant of the
kernels is faster but still cannot reach the performance of the CUDA libraries.

Basic Information

Author: Volker Weinberg (LRZ)
Euroben Kernel: mod2am, mod2as, mod2f (running out of time)
Hardware: uchu
Compiler Version: RapidMind 4.0

Developer Diary

mod2am
Note: This version incorporates MKL, GPU and CELL implementations together.

Development
Time

Achieved
Performance

Number
of Cores

Dataset
used Comments

1d GPU (240
cores)

Tests with RapidMind’s SGEMM code
available on the RapidMind developer site,
https://developer.rapidmind.com/sample-
code/matrix-multiplication-samples/rm-
sgemm-gpu-5938.zip,

1d 1 CPU Comparison with host-only version

2d

• incl. data transfer:
max. 127 Gflops,

• . data transfer:
max. 174 Gflops

(matrix size=8192)

GPU Various test runs

1d MKL with 16 cores:
max. 146 Gflops

1-32
CPUs Implementation + comparison with MKL

Version

0.5d 1-32
CPUs Double precision MKL on host + test runs

0.5d GPU Double precision RapidMind on GPU -->
no double prec. supported

0.5d GPU Test matrix sizes > 8192 --> current impl.
limited to sizes < =8192 on GPUs

0.5d Rewrite EUROBEN source in C++

2d GPU+CP
U Rewrite RapidMind code in mod2am

format + various tests

5d no perf. increase GPU Various optimization attempts (blocking,
normalized access)

1d Integration of simplified sgemm routine in
main file

1.5d Adaption of Makefile, #ifdefs

2d max. 100 MFlops
(matrix size=256) 16 SPU Various test runs on juicenext@JSC

(CELL based)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 135

mod2as
Development

Time Achieved Performance Number of
Cores

Dataset
used Comments

3d

GPU

(240 cores)

 Rewrite the RapidMind Program of
mod2am.cpp to handle sparse matrices
in CSR (compressed sparse row)
format, integration in mod2as code

3d

 Rewrite getmatvec.cpp to deliever

correct CSR matrices, finally used Hans
Hacker’s version of getmatvec.cpp

2d <=50 MFlops for
10000x10000 matrix GPU Various Test runs on GPU with

RapidMind’s glsl backend

1d
MKL: max. 1.1 Gflops for
32 threads (10000x10000
matrix)

1-32CPU
 Implementation + comparison with

MKL version

1d

max. 1.4 Gflops
(10000x10000 matrix),
outperforms MKL for fills
> 30%

32 CPUs

 Various Test runs on CPU with
RapidMind’s x86 backend

2d < 1 Mflops 16 SPU Various test runs on juicenext@JSC
(CELL based)

mod2f

Porting Results

mod2am
Overall implementation result: Successfull
Considering n x m matrices with n,m <=8192 and n,m mod 4=0.

Consistency of the numerical results:
consistent

General comments:
Since using 1-tuple RapidMind values to store the matrices does not make optimum use of the
GPU registers, the matrices are stored using RapidMind's 4-tuple floating point values
Value4f. The current implementation thus limits matrix sizes to multiples of 4.

Problems encountered:

 Double precision not supported for RapidMind’s glsl/cell backend,
 the glsl backend restricts 2 dimensional matrices to sizes <= 8192 x 8192,
 running the same (GPU optimized) code on the CELL-based system juicenext@JSC (2 x

PowerXCell 8i processors @ 3.2 GHz) gives very poor performance and only works for
matrix sizes <= 256 x 256,

 RapidMind’s SUSE port (specially built by RapidMind for the LRZ) gives a
segmentation fault after the entire glsl program is run via vglrun.

Maturity of the standard/compiler:
No bugs in the x86/glsl RapidMind backend were found.

Number of lines of source code:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 136

Initialization: 8 lines.
RapidMind Program: 17 lines.
Program call: 5 lines.

Suitability of the compiler/ paradigm to implement the kernel:
Best suited if matrices can be completely streamed from/to the host memory to/from the
accelerator memory before/after computation.

mod2as
Overall implementation result:
Successfull for x86 backend.
Partly successfull for glsl backend .

Consistency of the numerical results:
Partly consistent.

General comments:

Problems encountered:

 Double precision not supported for RapidMind’s glsl/cell backend,
 While the code of the x86 backend gives correct results for all fills of a 10000x10000

input matrix, the glsl backend delievers wrong results for fills > 50% without any error or
warning message. (The code has been sent to RapidMind on Aug. 7th and is currently
still under inspection.)

 Running the same same code on the CELL-based system juicenext@JSC (2 x
PowerXCell 8i processors @ 3.2 GHz) gives very poor performance < 1 Mflops

 RapidMind’s SUSE port (rpm specially built by RapidMind for the LRZ) gives a
segmentation fault after the entire glsl program is run via vglrun .

Maturity of the standard/compiler:
No bugs in the x86 backend found, glsl backend partly gives wrong results (see above)

Number of lines of source code:
Initialization: 10 lines.
RapidMind Program: 11 lines.
Program call: 6 lines.

Suitability of the compiler/ paradigm to implement the kernel:
Best suited if matrices can be completely streamed from/to the host memory to/from the
accelerator memory before/after computation.

mod2f
(still work in progress. Final reports should be available for D8.3.2)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 137

Performance Measurements

mod2am

Figure 48: RapidMind mod2am performances (tests performed on uchu)

mod2as

Figure 49: RapidMind mod2as performances (test performed on uchu)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 138

14.12 Unified Parallel C (UPC)

One of the key things seemed to be the used of shared [blocksize] for static threads
compilations (which I did NOT use) and use of upc_alloc() to imimate shared [blocksize]
effect in dynamic threads mode (the mode I used). So the default round-robin allocation
(consecutive elements to a different PE) was usually doomed. Also, if one loops over shared-
arrays, this may lead implicitly into very small upc_memget()'s being issues. Instead, big
blocks, size of shared [blocksize] ought to be communicated in an ideal world. Anyroad, I
hope my experiences will spark some discussion inside PRACE. I do NOT think PGAS is
dead! It should actually be very alive!

From D8.3.1: “The number of threads can be specified at both compile and runtime, although
some restrictions apply in array declaration when the runtime option is chosen.” -> This is in
fact a major drawback when compared with MPI coding

From D8.3.1: The main objective of CSC was to find the means how to obtain high
performance from these two PGAS languages (UPC and CAF) on the Cray XT platform. In
UPC, this meant small restructuring of globally shared array allocations. In CAF, this was less
of an issue, since the languages syntax offers nearly perfrect means of expressing the data
locality.

Basic Information

Author: Sami Saarinen (CSC), Montse Farreras (BSC)
Euroben Kernel: mod2am, mod2as, mod2f
Hardware: louhi, itanium, huygens
Compiler Version: cce 7.1.2 (initially 7.0.4 and then 7.1.1) on louhi

Berkeley UPC 2.8.0 on itanium
IBM XL UPC DEV Version (00.00.8000.9999) on Huygens

Developer Diary

mod2am
Development Time: 1 week on Cray XT5 to port the code, 1h to recompile and fix the

version on the SGI Altix. 1 additional hour to porting on Huygens
starting from the CRAY version.

Achieved Performance:

• Cray XT5: 470 Gflops on 256 cores

• SGI Altix: 1600 Gflops on 1000 cores

• IBM Power5: 12,481 Gflops on 64 cores

Notes:

• Pure C-code was translated

• BLAS3-library DGEMM call plugged in

• Many crashes and unexplained failures using the Cray compiler

• A couple of problems in the xlupc compiler where identified. Only workarounds to
these problems were introduced in the code.

mod2as

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 139

Development Time: 1 week on Cray XT5 to port the code, 1h to recompile and fix the
version on the SGI Altix. 1 additional hour to porting on Huygens
starting from the CRAY version.

Achieved Performance:

• Cray XT5: 36 Gflops on 256 cores

• SGI Altix: 20 Gflops on 256 cores

• IBM Power5: 6,178 Gflops on 64 cores

Notes:

• Pure C-code translated

• Results with 4 different fills: 1, 3.5, 5 & 10 %

• This was the first UPC I was working ever. After initial hick-ups and poor
performance I discovered how to tackle UPC performance.

• A couple of problems in the xlupc compiler where identified. Only workarounds to
these problems were introduced in the code.

mod2f
Development Time: 3 weeks on Cray XT5 to port the code, 1h to recompile and fix the

version on the SGI Altix.

Achieved Performance:

• Cray XT5: 30 Gflops on 512 cores

• SGI Altix: 50 Gflops on 512 cores

• IBM Power5: -

Notes:
- MPI/Fortran version was translated since MPI/C was not yet available

- Hardest part to get 1D FFT into 2D FFT and to get the transpose working

- Later it was discovered that transpose was in fact working already almost immediately,
but because of GASNET + Portals + compiler problems, the results showed up
incorrect

Porting Results on System louhi (Cray XT)

Overall implementation result: Successful

Consistency of the numerical results:
Correct, but only if GASNET_DISABLE_MUNMAP=1

General comments:
Cray is getting there. Considerable improvements when going from 7.0.4 to 7.1.2 (via 7.1.1)

Problems encountered:
- Allowed private data in shared data structure
- GASNet & Portals still let down
- upc_free() is NOT collective which is strictly according to the standard, but leads into

silly problems when deallocating collectively allocated arrays (i.e. allocated via

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 140

upc_all_alloc()) as only one UPC-thread can issue upc_free() – the next ones would
generate heap corruption messages

Maturity of the standard/compiler:
“What can I say after all these problems?”

Number of lines of source code
mod2am: 550
mod2as: 390
mod2f 1230

Suitability of the compiler/ paradigm to implement the kernel:
Very good

Porting Results on System itanium (SGI Altix)

Overall implementation result: Successful

Consistency of the numerical results:
Correct

General comments:
Very good UPC environment at LRZ.

Problems encountered:
Some small syntax errors in the shared data structures that were okay for some reason on Cray
XT.

Maturity of the standard/compiler:
Superb

Number of lines of source code:
mod2am: 550
mod2as: 390
mod2f: 1230

Suitability of the compiler/ paradigm to implement the kernel:
Very good

Porting Results on System Huygens (Power5)

Overall implementation result: Partially Successful

Consistency of the numerical results:
Correct

General comments:
The mod2am algorithm shows poor performance and scalability due to several reasons:

1) Pointer arithmetic is very costly in general and it is one of the limitations of the xlupc
compiler. Xlupc compiler developers are aware of it, pointer arithmetic design is being
reworked and better performance is expected in the near future.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 141

2) The algorithm could be further improved, here are some comments:
- Regarding the memory allocation: over-use of upc_alloc damages performance

(in the xlupc compiler) the same purpose could be achieved by calling
upc_alloc once per thread and redistributing the data with pointer arithmetic.

- Regarding array distribution, a different layout could be used for a better
locality (P x Q cubes where P x Q = THREADS). This change however will be
in detriment of programmability.

- Another bottleneck is in the kernel core. The upc_memgets are translated
either to memory copies if shared memory or communication if distributed
memory. The i,j,k distribution of the loops leads to 2 memory copies per inner
loop iteration O(n3), which is expensive. I would suggest using pointer cast in
shared memory architecture. Or broadcast the required block in a distributed
memory architecture, this will imply some extra-memory (programmability
will be damaged).

- A different algorithm could be used, more suitable for distributed memory
machines, like Cannon’s algorithm. (http://ilpubs.stanford.edu:8090/59/)

- Finally, xlupc compiler supports a language extension that is a syntax sugar for
defining multi-dimensional blocks. The extension is trying to be pushed into
the standard. At this point the extension is supported only for static memory
allocation.

Problems encountered:
Some bugs related with pointer arithmetic in the xlupc compiler. They were fixed, but there
are still others that prevent me to run mod2f.

Maturity of the standard/compiler:
Superb

Number of lines of source code:
mod2am: 550
mod2as: 390

Suitability of the compiler/ paradigm to implement the kernel:
The language has a smooth learning curve, but it does not provide good performance at once.
With the appropriate effort a better performance can be achieved.

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 142

Performance Measurements

mod2am

Figure 50: UPC mod2am performances (tests performed on itanium and huygens)

mod2as

Figure 51: UPC mod2as performances (tests performed on itanium and huygens)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 143

mod2f

Figure 52: UPC mod2f performances (tests performed on itanium and louhi)

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 144

14.13 X10

Porting the kernels using distributed arrays was not successful. For both mod2am and mod2as
a multi-threaded version (using Local Activities in X10 terminology) has been implemented.

Basic Information

Author: Walter Lioen (SARA)
Euroben Kernel: mod2am, mod2as
Hardware: huygens
Compiler Version: X10 v1.7.5

Developer Diary

mod2am
Development

Time
Achieved

Performance
Number
of Cores

Dataset
used Comments

3 d n/a n/a

Started as X10 novice (having significant albeit
somewhat rusty Java experience). Studying
language report and some tutorial material.
Installing X10 and toying around with “Hello
World” and some trivial examples.

1d 246.4 s 1 n/a Minimalistic implementation of matrix multiply as
in mod2am.

1d n/a More-or-less full implementation of mod2am.

4h n/a

Feeble attempt to simply read an input file. This can
not be found in the language report. There is no
API doc. (I tried understanding the (Java) X10
compiler runtime source.) There is no good tutorial
example.

2h 23.44 s 32 n/a

Multi-threaded version: basically changing a for
loop into a foreach loop. In X10 terminology, this
creates multiple “local” “activities”. Due to a
compiler bug it was not possible to simply “extend”
the Mod2amBase class to a
Mod2amLocalActivities class where we only have
to override the “mxm” method. (It is not possible to
use the class constructor.)
We could improve on this implementation by
blocking the foreach loop limiting the number of
threads to the number of available cores, however,
this is something that should come natural by using
distributed arrays.

3h

9.785 s (base)

4.967 s (multi-
threaded)

1
32 n/a

Used the C++ compiler backend instead of the Java
backend. Stumbled into some differences.
1. Formatted I/O differs (Java and C++ format

strings).
2. An X10 program that compiled and ran

successfully using the C++ backend was
rejected by the Java backend. The Java
backend turned out to be right.

2d n/a See (*)

(*) Failed attempt (basically due to both lack of X10 experience and time) to use distributed arrays (the actual
PGAS paradigm). Since on the machine at hand we are limited to a single node there is no need to use PGAS.
Creating a block distribution is an example of something that is incorrectly described in the Language Report.
Clearly this takes extra time to understand. Furthermore, at present there is no possibility to create user
distributions. For the matrix-multiply we most probably want to create a 2 dimensional blocking which is

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 145

something that is not yet available. The problem is not in writing a syntactically correct X10 version: creating a
block-distributed array is more-or-less trivial. Using a single distributed array is also simple, the problem arises
when using multiple distributed (or even using 1 distributed array where the other arrays are not distributed). At
this point we encounter runtime errors (“bad place exceptions”). Since these exceptions are thrown without much
additional info, it is hard to find out what exactly is wrong. On top of this debugging problem the compilation for
our simple x10 class takes 1 minute, this also hinders the development / debugging speed.

mod2as
Development

Time
Achieved

Performance
Number
of Cores

Dataset
used Comments

1d More-or-less full mod2as port.

1d 14.912 s 1 10240

Added a private rand64 class that produces the
same result as the rand64 function. The “problem”
here is that the current X10 compiler does not
support the ULong type as described in the
Language Report (probably because Java itself also
does not have (native) unsigned integers). This is
true for both the Java as well as the C++ compiler
backend.
However, rand64 can also be implemented using
(signed) longs, still producing the same random
sequence.

1h 62.732 s 32 10240 Multi-threaded version using “foreach”. Due to the
thread overhead there is a performance drop.

1h 7.8296 s 32 10240

Multi-threaded version using “foreach”. Here we
use 32 threads (the number of cores) instead of the
outvec dimension (nrows). Due to the thread
overhead we only reach a speed-up factor of 2.

Porting Results

mod2am
Overall implementation result: Successful
Successful in the sense that we have single node version that more-or-less scales. (The Java
backend uses a thread pool with 64 threads corresponding with 32 cores in a node running in
SMT mode. The C++ backend appears to allow 2 – 4 threads). The parallel speed-up when
using the Java backend was a factor of 10.5. The parallel speed-up when using the C++
backend was a factor of 2. We did not manage to correctly use distributed arrays (PGAS!) in
the available time.

Consistency of the numerical results:
The results are identical, i.e. the “check” function / methods are implemented and
intermediate results / work arrays have been checked by hand.

General comments:
The Java backend is extremely slow; the C++ version is a lot faster, however still too slow
(both compared to e.g. the portable C version). This of is in line with the experimental state of
the language. Performance is possible by linking optimized libraries e.g. ESSL/BLAS
dgemm, however, in that case we are no longer looking at the X10 performance.

Problems encountered:
• X10 is an evolving standard. It started as a Java extension, however, it is diverging from

Java. The language report is a (very) formal description and does not contain much
tutorial material. The current X10 version is the so-called 1.7 language version. Most

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 146

tutorials are still based on the 1.5 definition (more Java like). The language report
contains some bugs, so you have to fall back on some example programs or even the
compiler source. There is also a reference to the API documentation (I assume like the
Java API documentation), however this (online?) documentation is not available.

• Compiler errors can be very obscure: when using the Java compiler backend, the X10
code is transformed to Java code and very often a user programming error results in Java
compiler error messages on the intermediate file without having a direct clue on what is
wrong in your X10 code.

• The C++ backend on Linux allows for “multiple places”, however, this does not (yet)
work for Linux on Power.

Maturity of the standard/compiler:
This is not meant as criticism, however, the “Experimental” in the title of the language report:
“Report on the Experimental Language X10” says all. The language itself is still evolving
meaning that code had/has to be changed coming from 1.5 to 1.7. Clearly, X10 should not yet
be used for production work; however, it is good to see where we are heading with PGAS
languages. Since there is no native compiler, both compiler messages and runtime errors can
originate from intermediate files.

Number of lines of source code:
Both versions are 160 lines of code.

Suitability of the compiler/ paradigm to implement the kernel:
Matrix multiplication is very well suited for the PGAS paradigm.

mod2as
Overall implementation result: Successful
Successful in the sense that we have a parallel version that gives a parallel speed-up, however
using 32 threads (identical to the number of course) we roughly see a speed-up of 2. This is
probably due to the thread overhead and the limited amount of work per thread.

Consistency of the numerical results:
The results are identical, i.e. the “check” function / methods are implemented and
intermediate results / work arrays have been checked by hand.

General comments:
For all other comments also for the fields below, we refer to the mod2am diary. An interesting
observation is that opposed to the mod2am case, the Java runtime results in better execution
times than the C++ runtime.

Problems encountered:
See mod2am

Maturity of the standard/compiler:
See mod2am

Number of lines of source code:
294 lines of code.

Suitability of the compiler/ paradigm to implement the kernel:

D6.6 Report on petascale software libraries and programming models

PRACE - RI-211528 26/10/09 147

Using a (probably slightly re-ordered / padded) distributed sparse matrix seems well-suited
for the PGAS paradigm.

Performance Measurements

mod2am

Figure 53: X10 mod2am performances (tests performed on huygens)

mod2as

Figure 54: X10 mod2as performances (tests performed on huygens)

