

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2007-2.2.2.1 - Preparatory phase for 'Computer and Data
Treatment' research infrastructures in the 2006 ESFRI Roadmap

PRACE

Partnership for Advanced Computing in Europe

Grant Agreement Number: RI-211528

D6.3.2

Final Benchmark Suite

Final

Version: 1.1
Author(s): Peter Michielse (NCF), Lukas Arnold (FZJ), Olli-Pekka Lehto (CSC), Walter

Lioen (SARA)
Date: 18/06/2010

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 i

Project and Deliverable Information Sheet

Project Ref. №: RI-211528
Project Title: Partnership for Advanced Computing in Europe
Project Web Site: http://www.prace-project.eu
Deliverable ID: D6.3.2
Deliverable Nature: Report, Final Benchmark Suite

Contractual Date of Delivery:
30 / June / 2010

Deliverable Level:
PU

Actual Date of Delivery:
30 / June / 2010

PRACE Project

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 ii

Document Control Sheet

Title: Final Benchmark Suite

ID: D6.3.2
Version: 1.1 Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2003

Document

File(s): D6.3.2 Final Benchmark Suite.doc
Written by: Peter Michielse (NCF), Lukas Arnold

(FZJ), Olli-Pekka Lehto (CSC), Walter
Lioen (SARA)

Contributors: Sebastian von Alfthan, CSC, Finland
Mauricio Araya, BSC, Spain
Eric Boyer, CINES, France
Carlo Cavazzoni, CINECA, Italy
Bertrand Cirou, CINES, France
Raúl de la Cruz, BSC, Spain
Jacques David, CEA, France
John Donners, SARA, The Netherlands
Jussi Enkovaara, CSC, Finland
Albert Farres, BSC, Spain
Maciej Filocha, PSNC, Poland
Xu Guo, EPCC, United Kingdom
Joachim Hein, EPCC, United Kingdom
Guillaume Houzeaux, BSC, Spain
Harald Klimach, HLRS, Germany
Mikko Lyly, CSC, Finland
Pekka Manninen, CSC, Finland
Charles Moulinec, STFC, United Kingdom
Fernando Nogueira, UC-LCA, Portugal
Jean-Guillaume Piccinali, CSCS,
Switzerland
Martin Polak, GUP, Austria
Andrew Porter, STFC, United Kingdom
Orlando Rivera, LRZ, Germany
Xavier Saez, BSC, Spain
Andrew Sunderland, STFC Daresbury
Laboratory, United Kingdom
Maciej Szpindler, PSNC, Poland

Reviewed by: Tim Stitt (CSCS), Thomas Eickermann
(FZJ)

Authorship

Approved by: Technical Board

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 iii

Document Status Sheet

Version Date Status Comments
0.1 04/August/2009 Draft Outline version
0.2 14/September/2009 Draft Draft for:

chapters 1, 2, 3
chapters 4 and 5
Appendix
(not complete yet)
Distribution to task
leaders WP6

0.3 15/October/2009 Draft Appendix completed
0.4 30/October/2009 Draft Chapter 3 completed
0.5 25/November/2009 Draft Included subtask text for

chapters 4, 5 and 6
0.9 30/November/2009 Final Draft WP6 Lay-out checked
0.95 04/December/2009 Final Draft PMO Comments and last

updates WP6 included
1.0 21/December/2009 Final version
1.05 04/June/2010 Draft in Extension

Phase (1H2010)
Relevant tables in
chapters 3 and 4 updated
based on work in
extension phase
(1H2010)

1.07 11/June/2010 Review in WP6 Minor modifications,
check of results

1.09 16/June/2010 Review in PMO Minor modifications
1.1 18/June/2010 Final version

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 iv

Document Keywords and Abstract

Keywords: PRACE, HPC, Research Infrastructure, Applications, Benchmark

Suite, Synthetic Benchmarks, Prototypes, Performance Analysis Tools
Abstract: This deliverable D6.3.2 takes its predecessor D6.3.1 as the starting

point for the definition of the final PRACE Application Benchmark
Suite (PABS). This report describes the process from initial to final
benchmark suite in detail. Scalability input has been received from
task 5.4, which is responsible for the assessment of the PRACE
prototypes, using the PRACE benchmark suite. Ease of use of the final
benchmark suite in future situations is assured by the integration of the
final benchmark suite into a framework, including testing procedures.
The final PABS is part of D6.3.2, including its integration in the
benchmark framework.
Accompanying the process to the final benchmark suite, other software
aspects are relevant as well. These include synthetic benchmarking and
performance analysis tools, which are both important when the
procurement of Tier-0 systems is prepared. D6.3.2, again with D6.3.1
as a starting point, describes the required contents of a synthetic
benchmark, which is able to assess key hardware and system software
aspects of Tier-0 systems; the actual assessment of the PRACE
prototype systems is done in WP5. With respect to performance
analysis tools, combinations of PRACE prototypes and performance
analysis tools are tested and reported upon.
The PABS has been prepared in such a way that it offers optimal
flexibility. This includes the possibility to use a subset of the PABS for
procurement of specific Tier-0 architectures, and also the possibility to
adapt the contents of the subset towards the specific wishes of the
installing Tier-0 Principal Partner. Industrial and pan-European
coverage of the applications in the PABS is another aspect which has
been included, especially when proceeding from the initial PABS to
the final PABS. Yet another aspect is how to weight the various
applications in the benchmark subset, together with the synthetic
benchmark results and possibly less technical aspects. It should be
clear that the PABS is instrumental in the selection process of Tier-0
systems, but has to be accompanied by other requirements.
This document includes the results of efforts carried out during the
Extension Phase in the first half of 2010.

Copyright notices

© 2010 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-211528 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as owned by the respective holders.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 v

Table of Contents
Project and Deliverable Information Sheet ... i
Document Control Sheet... ii
Document Status Sheet ..iii
Document Keywords and Abstract... iv
Table of Contents .. v
List of Figures ..vii
List of Tables...viii
References and Applicable Documents ..viii
List of Acronyms and Abbreviations.. ix
Executive Summary .. 1
1 Introduction ... 2

1.1 Structure of the Report ... 2
2 Definitions, Objectives and Methodology.. 3

2.1 Definitions .. 3
2.2 Objectives and Methodology .. 4

3 Final Benchmark Suite ... 6
3.1 Starting Point: Initial Benchmark Suite.. 6
3.2 Experiences with the Initial Benchmark Suite.. 8
3.3 Analysis and update of the Initial Benchmark Suite .. 12
3.4 Final Benchmark Suite.. 14
3.5 Conclusions and future work.. 15

4 Integration in Benchmark Suite... 17
4.1 Integration Overview .. 18

Benchmark Execution Standardization.. 19
Integration Status .. 20

4.2 Extensions to standard Integration.. 21
4.3 Acceptance test .. 24

Testing Procedure ... 24
Testing Status .. 24

4.4 Conclusions .. 24
5 Synthetic Benchmarks .. 26

5.1 Introduction ... 26
5.2 Descriptions of Synthetic Benchmarks .. 26
5.3 Conclusions and Further Work.. 30

6 Performance Analysis Tools ... 31
6.1 Introduction ... 31
6.2 Allinea Optimization and Profiling Tool (OPT) ... 31

Introduction ... 31
Assessment Environment ... 31
Conclusions ... 33
Suggestions for Future Improvements ... 34
Acknowledgements .. 34

6.3 Cray Performance Analysis Framework... 34

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 vi

Features 34
Feedback and experiences... 35

6.4 Dewiz .. 35
6.5 IBM HPCT: High Performance Computing Toolkit.. 36

Introduction ... 36
Instrumenting the application.. 37
Feedback to Vendor... 37
Conclusions ... 37

6.6 IPM: Integrated Performance Monitoring.. 38
Introduction ... 38
Deployment Status ... 38
Considerations for Future Work.. 38

6.7 Scalasca .. 38
Introduction ... 38
Platforms and applications used for this investigation.. 39
Scalasca Details .. 39
Scalasca summary ... 39
Acknowledgement .. 40

6.8 Vampir VNG.. 40
6.9 VPA: Visual Performance Analyzer .. 42

Overview.. 42
VPA Conclusion .. 43

6.10 General Conclusions.. 43
7 Annex.. 44

7.1 Scalability Experiments with Allinea OPT.. 44
Linking Senga2 with OPT on the BlueGene/P... 44
Managing OPT profiling data for large-scale runs.. 45
Timeline View ... 47
MPI Summary View ... 49
Histogram View .. 49
Message Profile View ... 50
7.2 Scalability Experiments with CrayPat and Apprentice2 ... 52
7.3 Scalability Experiments with IBM HPCT... 59
7.4 Scalability Experiments with IPM ... 61
7.5 Scalability Experiments with Scalasca... 63
7.6 Scalability Experiments with VPA... 68
7.7 Descriptions of Application Benchmark Codes .. 70

7.7.1 QCD.. 70
7.7.2 Quantum_Espresso ... 72
7.7.3 NAMD... 75
7.7.4 CPMD... 75
7.7.5 Code_Saturne.. 76
7.7.6 GADGET... 77
7.7.7 EUTERPE (TORB).. 78
7.7.8 WRF .. 78
7.7.9 NEMO... 79
7.7.10 CP2K... 80
7.7.11 GROMACS.. 80
7.7.12 NS3D... 82
7.7.13 AVBP... 82
7.7.14 HELIUM ... 83

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 vii

7.7.15 TRIPOLI-4 .. 83
7.7.16 PEPC .. 84
7.7.17 GPAW ... 84
7.7.18 ALYA... 85
7.7.19 OCTOPUS .. 85
7.7.20 BSIT .. 86
7.7.21 ELMER ... 87
7.7.22 SPECFEM3D.. 88

List of Figures

Figure 1: JuBE workflow .. 17
Figure 2: JuBE substitution strategy.. 18
Figure 3: Vampir Total time line view, traces on Juropa, visualization on HLRB2. 41
Figure 4: Session Manager of OPT summarizing a range of different jobs. ... 47
Figure 5: OPT Timeline view of a 64 process job with tracing restricted to 2000 functions................ 48
Figure 6: OPT Timeline view of a 64 process job with tracing restricted to 3 time-steps. 48
Figure 7: Zoomed timeline view for halo exchange communication pattern on 64 processes.............. 48
Figure 8: MPI Summary View for 256 process run of Senga2. .. 49
Figure 9: Variance of time spent in MPI_ALLREDUCE for 256 process run of Senga2. 50
Figure 10: Stacked Histogram of Time Spent in all MPI Calls for 256 process run on Blue Gene/P... 50
Figure 11: Message Profile View for 64 process run of Senga2. .. 51
Figure 12: Message Profile View for 256 process run of Senga2. .. 51
Figure 13: Profile of execution as shown by Apprentice2. ... 55
Figure 14: Load balance view in Apprentice 2. .. 56
Figure 15: Callgraph view in Apprentice 2. .. 57
Figure 16: Timeline of Gromacs visualized using Apprentice 2... 58
Figure 17: Main window of peekperf.. 60
Figure 18: Scalability details of IPM... 62
Figure 19: Viewing the HELIUM profile via Scalasca GUI on the Huygens system. 64
Figure 20: MPI profiling of NAMD on Juropa. .. 66
Figure 21: MPI profiling of NAMD on HECToR... 67
Figure 22: Screenshot: Profile Analyzer with sample-based profile. .. 68
Figure 23: Screenshot: Profile Analyzer showing profile-based annotated source code. 69

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 viii

List of Tables

Table 1: Overview of initial PABS. .. 7
Table 2: Porting status of initial PABS, as of November 2008... 7
Table 3: Porting status of initial PABS as of June 2009. .. 8
Table 4: Actual task 5.4 scalability results and licensing information on the initial PABS codes........ 11
Table 5: Industrial usage of the initital PABS applications.. 12
Table 6: Replacement codes for the final PABS. .. 13
Table 7: Extension codes for the final PABS.. 13
Table 8: Overview of final PABS. .. 14
Table 9: Actual porting status of the final PABS per June 2010... 15
Table 10: Integration status as of June 2010. .. 20
Table 11: Status of acceptance tests as of June 2010. ... 25
Table 12: Runtime details – 64 process jobs. .. 46
Table 13: Runtime details – 256 process jobs. .. 46
Table 14: Runtime details – 1000 process jobs. .. 47
Table 15: Profile report for Gromacs. ... 53
Table 16: HW counter information for Gromacs. ... 53
Table 17: MPI information for Gromacs... 53
Table 18: Summary of profile information for Gromacs. ... 54
Table 19: Comparison of overhead introduced by CrayPat and IPM.. 63

References and Applicable Documents

[1] PRACE: http://www.prace-project.eu
[2] TRAC: http://trac.edgewall.org/
[3] The Scientific Case for a European Super Computing Industry, HET (HPC in Europe

Taskforce, 2006)
[4] JuBE: http://www.fz-juelich.de/jsc/jube/
[5] http://sourceware.org/binutils/docs/gprof/index.html
[6] http://ipm-hpc.sourceforge.net
[7] Performance measurement and analysis of large-scale parallel applications on

leadership computing systems Brian J.N. Wylie, Markus Geimer, Felix Wolf, Scientific
Programming 16 (2008) 167-181.

[8] Numerical integration of the time-dependent Schrödinger equation for laser-driven
helium, Edward S. Smyth, Jonathan S. Parker, K.T. Taylor, Computer Physics
Communications 114 (1998) 1-14.

[9] Scalable Molecular Dynamics with NAMD, J. Phillips et al., Journal of Computational
Chemistry 26, 1781 (2005).

[10] Charm++: Parallel Programming with Message-Driven Objects, L. Kalé, S.Krishnan,
in: Parallel Programming using C++, by G.V. Wilson and P. Lu. MIT Press, 175
(1996).

[11] Integrated Performance Views in Charm++: Projections Meets TAU, Scott Biersdorff,
Chee Wai Lee, Allen D. Malony, Laxmikant V. Kale, PPL Paper Number: 09-06,
http://charm.cs.uiuc.edu/papers/TauICPP09.shtml.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 ix

List of Acronyms and Abbreviations
BCO Benchmark Code Owner.
BLAS Basic Linear Algebra Subprograms (basic library).
BSCW Basic Support for Cooperative Work, a collaborative workspace

software package.
CAF Co-Array Fortran
CPU Central Processing Unit.
CSC Center for Scientific Computing (Finland).
EC European Commission.
FZJ Forschungszentrum Juelich (Germany).
Gflop/s 10 9 floating-point operations per second (Gigaflop/s).
GUI Graphical User Interface.
HPC High Performance Computing; Computing at a high performance

level at any given time; often used synonym of Supercomputing.
HPL High Performance Linpack benchmark.
IO Input-Output
JuBE Juelich Benchmarking Environment.
Mflop/s 10 6 floating-point operations per second (Megaflop/s).
MHz 10 6 Hz.
MPI Message Passing Interface. A library for message-passing

programming.
NERSC National Energy Research Scientific Computing Center.
OpenMP Open Multi-Processing. An API for shared-memory parallel

programming.
PABS PRACE Application Benchmark Suite.
PAPI Parallel Application Programming Interface.
PAT Performance Analysis Tool.
Pflop/s 10 15 floating-point operations per second (Petaflop/s).
PGAS Partitioned Global Address Space (classification of programming

languages).
PRACE Partnership for Advanced Computing in Europe; Project Acronym.
QCD Quantum Chromo Dynamics.
SARA SARA Computing and Networking Services Amsterdam (the

Netherlands).
PRACE-SBM PRACE Synthetic Benchmarks.
Tflop/s 10 12 floating-point operations per second (Teraflop/s).
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
tier-0 systems, while national or topical HPC centres would constitute
tier-1.

Tier-1 Major national or topical HPC systems.
UPC Unified Parallel C
Wiki Web page or collection of web pages for creating collaborative web

sites.
WP Work Package.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 1

Executive Summary

In order to be a lasting success, PRACE needs to understand the software requirements for
future Petaflop/s systems. Apart from system software requirements, the performance (both
actual and potential) of scientific applications on Petaflop/s architectures is of key importance,
not only for procurement processes, but also to inform the PRACE peer review processes.

This deliverable D6.3.2 takes its predecessor D6.3.1 as the starting point for the definition of
the final PRACE Application Benchmark Suite (PABS). Based on coverage of relevant
application areas, scalability towards petascale (and beyond) architectures, licensing and
industrial and global usage, D6.3.2 describes the process from initial to final benchmark suite
in detail. With respect to scalability and performance, input has been received from task 5.4,
which is responsible for the assessment of the PRACE prototypes, using the PRACE
benchmark suite. Ease of use of the final benchmark suite in future situations is assured by the
integration of the final benchmark suite into a flexible framework, including testing
procedures.

Accompanying the process to the final benchmark suite, other software aspects are relevant as
well. These include synthetic benchmarking and performance analysis tools, which are both
important when the procurement of Tier-0 systems is planned. D6.3.2, again with D6.3.1 as
the starting point, describes the required contents of a synthetic benchmark, which is able to
assess key hardware and system software aspects of Tier-0 systems; the actual assessment of
the PRACE prototype systems is done in WP5. With respect to performance analysis tools,
combinations of PRACE prototypes and performance analysis tools are tested and reported
upon.

The PABS has been prepared in such a way that it offers high flexibility. This includes the
possibility to use a subset of the PABS for procurement of specific Tier-0 architectures, and
also the possibility to adapt the contents of the subset towards the specific requirements of the
installing Tier-0 Principal Partner. Industrial and pan-European coverage of the applications
in the PABS is another aspect which has been included, especially when proceeding from the
initial PABS to the final PABS. Yet another element is how to weight the various applications
in the benchmark subset, together with the synthetic benchmark results and possibly other less
technical aspects. It should be clear that the PABS is instrumental in the selection process of
Tier-0 systems, but has to be accompanied by other requirements and conditions.

This document includes the results of efforts carried out during the Extension Phase in the
first half of 2010. Tables 9, 10 and 11 actually reflect the work carried out in the Extension
Phase.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 2

1 Introduction

The Partnership for Advanced Computing in Europe (PRACE [1]) has the overall objective to
prepare for the creation of a persistent pan-European HPC service. PRACE consists of eight
inter-linked Work Packages, and WP6 focuses on the software for petascale systems.

The primary goal of PRACE WP6 is to identify and understand the software libraries, tools,
benchmarks and skills required by users to ensure that their applications can use a Petaflop/s
system productively and efficiently. WP6 is the largest of the technical PRACE Work
Packages and involves all of the PRACE partners.

Task 6.3 is responsible for the creation of a benchmark suite, to be used not only within WP6
but also in WP5, when testing and validating PRACE prototype systems. The benchmark
suite should represent application areas from the likely user base, but should also be such that
the applications have enough scalability potential to run on Tier-0 systems, as aimed for by
PRACE. Another aspect, which may become important when the actual benchmark suite will
be used for procurement processes by the Principal Partners for petascale systems, is the
possibility to use only a subset of the full benchmark suite. Integration of these and additional
benchmark applications into an easy-to-use benchmark suite is also part of task 6.3.

Throughout the PRACE project, the applications in the benchmark suite have been used by
WP5 task 5.4, in its testing and analysing of the prototype systems, and by tasks 6.4 and 6.5,
which covered scalability to Petaflop/s systems and optimisation of applications.

These efforts cannot be undertaken without both suitable software tools and a thorough
understanding of the underlying hardware. Thus, task 6.3 also covers performance analysis
tools and synthetic benchmarking. The synthetic benchmark suite will be used by tasks 5.2
and 5.3.

Including the performance analysis tools and synthetic benchmark survey, the audience for
the results of task 6.3 is not only within PRACE, but hopefully also a wider HPC audience, as
it offers characteristics and analysis for deployment of specific, heavily-used applications
codes on future Petaflop/s systems.

Tables 9, 10 and 11 in sections 3 and 4 actually reflect the work carried out in the Extension
Phase.

1.1 Structure of the Report

This document is structured as follows. In section 2, some important definitions will be given,
and there will be a discussion on the refinement of objectives and the methodology to arrive at
this. Early in the process in task 6.3, it was decided to subdivide the full task into a number of
subtasks. Within this report, subdivision into subtasks is represented by the subsequent
sections. Section 3 covers the actual transfer from the initial PRACE Application Benchmark
Suite (PABS) into the final one. We report on the experiences with the applications in the
initial PABS, on our analysis of licensing and scalability of the applications, and on our
process to reach a final version of the PABS. Section 4 covers the actual integration of
benchmark codes into the PABS, including the execuation of acceptance tests to ensure the
quality of the PABS with respect to both usage by others and long-term maintainability.
Section 5 describes the actual contents of a synthetic benchmark suite within PRACE, which
is clearly focusing on petascale and larger systems. Section 6 will take its initial survey of
Performance Analysis Tools (PATs) and reports on several combinations of PAT and PRACE

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 3

prototype systems. Each of the sections 3 to 6 ends with conclusions and further remarks, as
the topics under discussion are dynamic and will change over time.

In the Annex, we will give a brief description of each of the applications in the final PABS.

2 Definitions, Objectives and Methodology

2.1 Definitions

The procurement process of large HPC computer systems (either focussed on capacity or
capability) is generally supported by the execution of a set of both synthetic benchmarks and
user applications on the systems under consideration. In this respect, we are talking of
benchmarking the systems, leading to technical information which allows proper technical
comparison of the systems, especially with respect to their performance for real applications.

In D6.1 and D6.3.1, we have carefully laid out the definitions we have used with respect to
benchmarking. For the readers’ convenience, we repeat them here:

• A benchmark kernel is the collection of a small test program source code, run script,
defined number of processors, possibly dataset and reference output, and is meant to test
an individual component of the system;

• A benchmark code is the collection of one application source code, run script, defined
number of processors, dataset and reference output, and is meant to test the behaviour of
the system as a whole;

• A synthetic benchmark suite is the collection of benchmark kernels, to be run standalone;
• A benchmark suite is the collection of benchmark codes, together with the schedule to run

the individual benchmark codes (either standalone or in some defined form of
throughput). To distinguish this from the synthetic benchmark suite, we may refer to this
as the application benchmark suite;

• A performance analysis tool is a tool for getting performance information when running
an application, in particular a benchmark kernel or benchmark code.

Throughout this document, the concepts of porting, petascaling and optimisation will be used
frequently. It makes sense to define these concepts here as well:

• Porting is the process of installation, compilation, linking and execution of an application
source code on a specific hardware platform running specific software versions.
Successfully ported (to distinguish from later optimisation and scaling efforts) means
correct execution of the generated executable on the specific hardware platform running
specific software versions, using representative input sets;

• Optimisation is generally considered as the improvement of typically single-CPU (or
single-core) performance (including IO aspects) of a code, and is typically a combination
of memory hierarchy management (“cache optimisation”) and CPU floating-point unit
scheduling. In this context, source code optimization is meant, rather than external factors
such as job scheduling.

• Petascaling is the process of scaling the performance of applications (including IO
aspects) to petascale level, and is typically expressed in the number of cores which can
still be efficiently used for the execution of the benchmark code. This is most likely
dependent on actual input sets. In our view this includes node optimization and
communication optimization.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 4

2.2 Objectives and Methodology

This section discusses the approach we have taken to arrive at the objectives for task 6.3,
including the methodology with respect to the efficient usage of both human and hardware
resources. The two main objectives for task 6.3 are:

• To create a benchmark suite which will serve as a starting point for tasks 5.4, 6.4 and 6.5
(the previous deliverable D6.3.1);

• To eventually create a benchmark suite which becomes the PRACE benchmark suite for
Tier-0 procurements (this deliverable D6.3.2 at the end of the PRACE project);

• To investigate important aspects which support the process of benchmarking and
assessment of systems, including synthetic benchmarking, performance analysis tools and
integration of the benchmark applications into an easy-to-use framework.

The initial PRACE Application Benchmark Suite (PABS) has been defined in the May-June
2008 timeframe. Since then, work has been done on the porting, optimisation and scalability
of the benchmark codes. In May-June 2009, we have evaluated each code of the initial PABS
on the following aspects:

• Actual scalability results and potential on Petascale systems and beyond;
• Actual licensing policy.

Based on this evaluation, and taking into account helpful comments from an EC review in
March 2009, like extending the range of application areas and linkage to global scaling efforts
and industrial usage, we have considered for each benchmark code whether to keep it in the
PABS or to replace it by another code in the same application area. Such a replacement code
must have demonstrated clear scalability and must have flexible licensing policies.
Independent of that, we have studied possible extensions of the PABS into other application
areas, under the condition of available knowledgeable human resources (Benchmark Code
Owner, BCO) in the PRACE project. Chapter 3 describes this process and its results in detail.

In D6.3.1, not only the contents and status of the initial PABS have been described, but also
the following aspects:

• Integration of codes into the applications benchmark suite;
• Synthetic benchmark suite;
• Performance analysis tools.

The integration of codes into the applications benchmark suite is meant to enable easy future
usage of the PABS. To verify correct integration of the benchmark codes into the PABS, we
have defined and executed a testing procedure, which can be viewed as an internal acceptance
test for the integration of the benchmark codes.

Based on the survey in D6.3.1 on synthetic benchmarks, chapter 4 reports on the actual
contents of the synthetic benchmark suite to be used in PRACE. The synthetic benchmark
suite in PRACE is designed such that all performance aspects of petascale systems can be
tested. In chapter 4 the contents of the synthetic benchmark suite will be described, while
assessment of the systems will be reported upon in the deliverables of WP5.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 5

It has been shown in D6.3.1 that there are numerous available Performance Analysis Tools.
Given the number of prototype platforms (as defined by WP7 and used in WP5 and WP6), it
is practically impossible for the available human resources to investigate each Performance
Analysis Tool (PAT) on each prototype. We have chosen to investigate each PAT on at least
one of the prototype architectures, and also the other way around: each prototype will be used
by at least one PAT.

Apart from substantial technical work on the benchmark codes and subtasks in task 6.3,
considerable organisational effort was needed for the definition and distribution of benchmark
codes, to monitor progress, and to collect results. We followed the BCO concept, which has
turned out to be very successful.

The concept of BCOs and contributors, the integration of individual benchmark codes into a
benchmark suite and the future work within PRACE basically define a distributed working
environment, in which different people contribute to shared activities. Within WP6, we have
continued using the TRAC system, as used at CSC Finland. TRAC is a web-based software
project management and bug/issue tracking system emphasizing ease of use and low
administrative overhead. It provides an integrated Wiki, an interface to version control
systems, and a number of convenient ways to stay on top of events and changes within a
project. For more details, we refer to D6.1.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 6

3 Final Benchmark Suite

In the May-June 2008 timeframe, a variety of criteria could have been chosen to define the
contents of the initial PABS. The most obvious criteria include coverage of application areas,
actual usage of applications in Europe, and scalability potential of the applications to
Petascale systems. In WP6, it was decided to use an analytical approach: based on a survey of
application areas and particular applications, an initial PABS was defined. This could be done
in a relatively short period of time, hence enabling the launch of other tasks within WP6
rather quickly. Practical investigation of scalability of applications towards Petascale level is
important but takes much more time. It was therefore decided to adapt the initial PABS to the
final PABS, based on, e.g., actual scalability results of the codes. This section covers the
process that WP6 has taken to evaluate the initial PABS and to build up the final PABS.

From a logistical point of view, the actual information was collected by the WP6 task leaders
during the April-June 2009 time frame. This has been summarized and discussed in a WP6
face-to-face meeting in Helsinki on June 9 and 10, 2009. Some additional information has
been collected on some codes, after which a proposal for the final PABS has been prepared.
All WP6 participants viewed this proposal as the best way forward, and accepted it without
objections at the end of June 2009.

3.1 Starting Point: Initial Benchmark Suite

Deliverable D6.3.1 documented the contents of the initial PABS. Based on a survey on actual
usage of codes on European HPC systems, we have identified the most important application
areas and most used applications in these areas. Full results can be found in D6.1 and D6.3.1.

As a reminder, Table 1 contains a listing of the benchmark codes, application areas and the
responsible BCO, as covered in the initial PABS.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 7

Application Application Area BCO

QCD Particle physics FZJ
VASP Computational chemistry BSC
NAMD Computational chemistry EPSRC
CPMD Computational chemistry BSC
Code_Saturne Computational fluid dynamics EPSRC
GADGET Astronomy and cosmology LRZ
EUTERPE Plasma physics BSC
ECHAM5 Atmospheric modelling CSCS
NEMO Ocean modelling NCF
CP2K Computational chemistry CSC
GROMACS Computational chemistry CSC
NS3D Computational fluid dynamics HLRS

AVBP Computational fluid dynamics GENCI
HELIUM Computational physics EPSRC
TRIPOLI_4 Computational engineering GENCI
PEPC Plasma physics FZJ
GPAW Computational chemistry CSC
ALYA Computational mechanics BSC
SIESTA Computational chemistry BSC
BSIT Computational geophysics BSC

Table 1: Overview of initial PABS.

In D6.3.1, we have introduced the concept of a core list (applications marked green in Table 1
and an extended list (applications marked yellow). Also in D6.3.1, we have reported on the
actual porting status of the benchmark codes on the PRACE prototype architectures, as of
November 2008. Table 2 repeats these results:

Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done In progress Done
VASP Done Done Yet to start Yet to start
NAMD Done Done Done Yet to start
CPMD Done Done In progress Yet to start
Code_Saturne Done Done Done Yet to start Done
GADGET Done Done Done
EUTERPE Done Done Yet to start
ECHAM5 Stopped Done In progress Done Yet to start
NEMO Done Done Done In progress
CP2K Done Done Done
GROMACS Done Done Done
NS3D Yet to start In progress Yet to start Done

AVBP Yet to start Done Done
HELIUM In progress Done Done
TRIPOLI_4 Yet to start Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done
SIESTA Done
BSIT Done
Table 2: Porting status of initial PABS, as of November 2008.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 8

Once the contents of the initial PABS had been defined, several other tasks in the PRACE
project could take off. These tasks were 6.4 (petascaling of applications), 6.5 (optimisation of
applications) and 5.4 (assessment of prototype systems). Within WP6, we have defined June
2009 as the month to collect results from these tasks, together with the results of 6.3 with
respect to porting the codes. This choice has enabled both a significant amount of time to
work on the initial PABS and to obtain valuable information, as well as leaving significant
time to incorporate potential new applications into the final PABS. In practice, this means that
BCOs have been able to work on their benchmark codes for 6 to 12 months, so it can be
expected that relevant information is available. This information, together with licensing
information and EC review comments, has been taken as input for defining the final PABS.

In section 3.2, we list the information as mentioned above. Section 3.3 analyses the
information, while section 3.4 discusses the final PABS.

3.2 Experiences with the Initial Benchmark Suite

This section covers the various pieces of input required for a well-balanced analysis of the
initial PABS, which ultimately leads to the definition of the final PABS. The input consists
of:

1. Actual porting status of the benchmark codes;

2. Survey of licensing policy for the benchmark codes;

3. Scalability results of the benchmark codes;

4. EC review comments:

• Increase the pool of applications;

• Investigate industrial usage;

The first piece of input for working towards a final PABS is the actual porting status of the
benchmark codes as of June 2009 to different prototype architectures. These results are listed
in Table 3.
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done Done Done
VASP Done Done Stopped Stopped
NAMD Done Done Done To start
CPMD Done Done Done Done
Code_Saturne Done Done Done Stopped Done
GADGET Done Done Done
EUTERPE Done Done In progress
ECHAM5 Stopped Done Stopped Done To start
NEMO Done Done Done Done
CP2K Done Done Done
GROMACS Done Done Done
NS3D Done In progress Done Done

AVBP Done Done Done
HELIUM Done Done Done Done
TRIPOLI_4 In progress Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done Done
SIESTA Done
BSIT Done
Table 3: Porting status of initial PABS as of June 2009.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 9

The second piece of input we have collected is a survey on the licensing policy for the
benchmark codes. This basically comes down to what type of licensing is applied by the code
owners and developers. The following aspects are relevant within the current PRACE project,
but also when benchmarking is required in the follow-up implementation phase of PRACE:

• Usage of the code, scripts and input sets in current PRACE deliverables and in potential
future benchmark efforts;

• Publication of results with respect to scalability and optimisation of the code in current
and potential future PRACE deliverables.

This information has been obtained in direct contact with the code developers and is shown in
Table 4 under the column licensing policy. The colour scheme for licensing is: orange in case
of (severe) restrictions or no response from code developers, yellow with light obstacles and
green for basically public licensing.

The third piece of input has to do with the actual scalability results of the benchmark codes on
one or more of the prototype platforms. The BCOs have been doing these experiments in the
context of task 5.4 in the April-June 2009 time frame. Within task 5.4, it has been observed
that comparing scalability results on the different prototype platforms should not be done by
numbers of cores only, since the individual core performances of the various prototypes differ
significantly. To overcome this problem, task 5.4 has defined scalability as follows:

An application scales to n Tflop/s if it achieves a speed-up in excess of 1.6x between running
on a system partition of peak performance of n/2 TFlop/s and running on a system partition of
n TFlop/s.

Before analysing the scalability results, it is important to define a threshold for sufficient
scalability. This threshold should be such that a benchmark code which passes the threshold
has potential for further scalability towards Petascale systems. We have decided to use the
threshold at n=10 Tflop/s, as has been explained in D5.4. The reason this approach has been
taken is that the size of the smallest PRACE prototype system is between 10 and 20 Tflop/s,
system peak performance. This means that a code which passes this number shows a speed-up
of at least 1.6 when going from a 5 Tflop/s system partition to a 10 Tflop/s system partition,
according to the definition above. In terms of IBM POWER6 (SMP-FN-pwr6) cores, for
instance, this means a speed-up of at least 1.6 when going from 266 cores to 532 cores1. For
MPP-BG, MPP-Cray and SMP-TN-x86 the number of cores is higher, for SMP-FN+Cell and
SMP-TN+vector the number of cores needed is lower. We have used this threshold in Table 4
for a colour scheme: we have used green for the system which shows maximum scalability
above the threshold of 10 Tflop/s, and orange for staying below the threshold. Blank cells
indicate that there are no results for the code on the particular hardware platform – given the
limited resources, it was not foreseen to run each code on each platform. Table 4 shows the
results.

The fourth piece of input considers the EC review comments. These include extension of the
pool of applications towards additional ones with global scientific and industrial relevance.
Looking into the initial PABS, one may argue that the areas of earth sciences and engineering
are not well represented. Therefore, to expand the pool of applications, we have looked into
applications in these areas, which could fill the gap, but which also have suitable scaling and
licensing characteristics. An additional advantage here is that typically applications from earth
sciences and engineering tend to be used outside of academic environments as well, e.g.,

1 5 Tflop/s divided by 18.8 Gflop/s (peak POWER6 core) equals 266 cores.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 10

meteorological offices (non-commercial and commercial), oil companies (seismic processing)
and engineering companies.

Another aspect that plays a role here is the replacement of codes from the initial PABS.
Where this turns out to be the case (see section 3.3), our policy is to replace a benchmark code
with a code which basically covers the same application area.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 11

Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-
TN+vector

Licensing and
response

QCD n=80-160,
depending on
kernel

n=20 n=10 OK.

VASP n<10 n<10 Difficult. No
response from
developers.

NAMD n=5 n=20 n=20 OK.
CPMD n=10 n<10 n=10 OK.
Code_Saturne n=80 n=10 n=20 OK, GNU

General Public
License.

GADGET n=10 n=40 OK.

EUTERPE
ECHAM5 n<5 n<5 No response

from
developers.

NEMO n=10 All OK, under
CeCILL
licence.

CP2K n=80 (new
version)

n=5 (old
version)

OK, GNU
General Public
License (no
execs without
sources).

GROMACS n=20 n=40 n=40 OK, GNU
General Public
License.

NS3D n=20 n=20 n=10 OK.

AVBP n=20 n=40 OK, but also
between
benchmarker
and CERFACS

HELIUM n=10 n=10 n=20 OK, but no
publication on
analysis of
code.

TRIPOLI_4 n>10 OK, but also
between
benchmarker
and CEA

GPAW n=40 n=20 n=20 OK, GNU
General Public
License.

ALYA n=20 n=10 OK.
SIESTA OK.
BSIT n=10 OK.

PEPC n=5 OK, GNU
General Public
License.

n=80 n=40 OK.

n=10

Table 4: Actual task 5.4 scalability results and licensing information on the initial PABS codes.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 12

3.3 Analysis and update of the Initial Benchmark Suite

This section analyses the results as obtained in section 3.2, and which have been referred to as
pieces of input.

First, comparison of Tables 2 and 3 shows that much progress has been made with porting the
applications to the prototype platforms. Both tables reflect the actual fact that MPP-BG, MPP-
Cray and SMP-FN-pwr6 are the most commonly used general-purpose platforms in the top of
the HPC arena. Systems with vectorprocessors are typically doing well for selected
applications (many of these CFD-based). The results also show that porting applications to the
SM-FN+Cell architecture appears to be a time consuming task, due to both its lack of
programming tools and its non-standard programming model, and which requires a lot of
manpower.

Secondly, with respect to licensing, it has turned out to be very difficult to get response from
the VASP developers. This has been tried multiple times. For ECHAM5, the BCO left his
institute, and could not be replaced in due time.

Thirdly, the scalability results in Table 4 show that three of the applications remain under the
10 Tflop/s threshold: VASP, ECHAM5 and SIESTA. It has been impossible in the available
timeframe to obtain scalability results for these codes which pass this threshold, for which the
reason is basically twofold: lack of scalability of the numerical algorithm and an
implementation which is not advantageous to parallel processing.

The fourth aspect of the previous section covered the EC comments on extension of the pool
of applications towards further global and industrial usage of the applications. We have
identified the current industrial usage in Table 5:

Application area Actual applications Industry usage

Chemistry NAMD, CPMD, CP2K,
GPAW, Gromacs, Helium,
VASP, SIESTA

Chemical, pharmaceutical
and life sciences (typically
each company has its “own
flavour”)

Computational fluid
dynamics

Code_Saturne, NS3D, AVBP Engineering industry,
combustion, gas turbines,
nuclear power, aerospace

Earth sciences BSIT, ECHAM5, NEMO Meteorological and seismic
communities

Engineering ALYA, TRIPOLI-4 Similar to CFD codes,
energy (nuclear power)
industry

Physics/astrophysics/
cosmology

GADGET, PEPC, QCD,
EUTERPE

Scientific codes, in general
not used by industry

Table 5: Industrial usage of the initital PABS applications.

The result of our analysis was that we considered replacing VASP, ECHAM5 and SIESTA by
alternatives. As has been discussed in the previous section, we searched for possible
replacements of these three codes, which had to satisfy the following criteria:

• Scalability above the 10 Tflop/s threshold;

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 13

• Public licensing or comparable;

• Industrial usage and/or interest;

• Availability of BCO to do the work.

This has led to the following replacement codes (Table 6):

New Code Replaces Scalability Licensing BCO

Quantum_Espresso VASP n=20 on SMP-
FN-pwr6

OK. GNU
Public License

CINECA Italy

WRF ECHAM5 n>100 on MPP-
Cray

OK STFC UK

Octopus SIESTA n=20 on SMP-
FN-pwr6

OK GNU
Public License

UC-LCA
Portugal

Table 6: Replacement codes for the final PABS.

Alternatives for the codes in Table 6 have been considered: alternatives for
Quantam_Espresso and Octopus have been MPQC and NWCHEM; for WRF, this has been
IFS.

Extensions of the pool of applications have been searched for in the areas of earth science and
engineering. For an application to qualify, we have used the same criteria as for the
replacement of the codes. This has led to Table 7:

Code Application
area

Scalability Licensing BCO

ELMER Multi-physics
engineering

n=40 on MPP-
Cray

OK GNU Public
License

CSC Finland

SPECFEM3D Earthquake
simulation

n=160 on MPP-
Cray

OK GNU Public
License

CINES France

Table 7: Extension codes for the final PABS.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 14

3.4 Final Benchmark Suite

The analysis and update process of the initial PABS towards the final PABS, as described in
the previous section, has led to the following applications which form the final PABS (Table
8):

Application Application Area BCO

QCD Particle physics FZJ
Quantum_Espresso Computational chemistry CINECA
NAMD Computational chemistry EPSRC
CPMD Computational chemistry BSC
Code_Saturne Computational fluid dynamics EPSRC
GADGET Astronomy and cosmology LRZ
EUTERPE Plasma physics BSC
WRF Atmospheric modelling EPSRC
NEMO Ocean modelling NCF
CP2K Computational chemistry CSC
GROMACS Computational chemistry CSC
NS3D Computational fluid dynamics HLRS

AVBP Computational fluid dynamics GENCI
HELIUM Computational physics/chemistry EPSRC
TRIPOLI-4 Computational engineering GENCI
PEPC Plasma physics FZJ
GPAW Computational chemistry CSC
ALYA Computational mechanics BSC
OCTOPUS Computational chemistry UC-LCA
BSIT Computational geophysics BSC
ELMER Computational engineering CSC
SPECFEM3D Computational geophysics GENCI

Table 8: Overview of final PABS.

Table 8 shows that the actual coverage of the application areas is in accordance with the areas
that have been identified in the scientific case report [3], as prepared in 2006. Compared to
the initial PABS, we have strengthened the fields of earth sciences and engineering, as is
shown by the replacement of ECHAM5 by WRF, and the addition of ELMER and
SPECFEM3D.

With respect to the area of computational chemistry, this area contains 8 applications out of
22. On an absolute basis, this is a large number, which can be justified by the fact that
computational chemistry applications are using 30-40% (see for instance D6.2) of the
available cycles on many of the large national supercomputing installations (and in some
cases even more). Also, computational chemistry can be viewed as a collective name for
molecular dynamics, ab initio calculations, density functional theory, Car-Parinello modeling
and even life sciences applications.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 15

Finally, the actual porting status of the applications in the final PABS is shown in Table 9
(with indicated the progress (‘New’) since October 2009):

Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done Done Done Done
Quantum_Espresso Done Done New Done Done
NAMD Done Done Done Done
CPMD Done Done Done Done
Code_Saturne Done Done New Done
GADGET Done Done Done New
EUTERPE Done New Done New
WRF Done Done New Done
NEMO Done Done Done Done
CP2K Done Done Done
GROMACS Done Done Done
NS3D New Done Done Done

AVBP Done Done Done
HELIUM Done Done Done Done Done
TRIPOLI_4 Done
PEPC Done Done Done Done
GPAW Done Done New Done
ALYA New Done Done
OCTOPUS New New New Done
BSIT Done
ELMER Done New New
SPECFEM3D Done
Table 9: Actual porting status of the final PABS per June 2010.

Blank fields in Table 9 denote that the particular code has not (yet) been ported to the
hardware platform. For some applications that were “in progress” in December 2009, it has
turned out to be not feasible to complete the porting in the extension phase. The fiels have
become blank as well. Note that actual assessment of the prototype systems with the PABS
have been reported in D5.4.

3.5 Conclusions and future work

In this chapter, we have described the process from the initial PABS towards the final PABS,
with explicit reference to the various sources of input needed to guide this process. We have
created a final PABS which has the following characteristics:

• Coverage of all scientific application areas, which need sophisticated HPC equipment
today and in the near future;

• Coverage of a broad range of algorithmic classes;
• Balanced coverage of all PRACE prototype architectures, as defined in WP7 (production

systems in 2010);
• Each application has the potential to scale to petascale systems;
• Flexible and tested benchmark environment;
• Potential to combine all applications into a throughput benchmark, depending on the

anticipated type of architecture to be purchased;
• Flexible enough to enable usage of subsets of the PABS in actual procurements.

Apart from a technically sound benchmark, there are more aspects which need to be covered
when actually using the benchmark in a procurement process. These include:

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 16

• The actual weight the benchmark results will have in the procurement process. This not
only holds for the application results, but also for the synthetic benchmark results;

• The actual weight of each application in the benchmark, which may typically be
influenced by requirements from the actual Hosting Partner.

With respect to the contents of the PABS, it must always be checked against actual practice
and usage. This means the PABS needs to be adapted and/or extended if needed, to remain
relevant while covering all aspects we have used to come to the current final PABS.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 17

4 Integration in Benchmark Suite

The benchmark codes from WP6 need to be integrated into a suite as part of task 6.3, in order
to facilitate usage within other tasks in WP6, within other work packages within PRACE and
in future projects or procurements. Therefore, all applications that are part of tasks 6.3, 6.4
and 6.5, along with a series of synthetic benchmarks, are to form part of such an integrated
benchmarking suite (PRACE Application Benchmark Suite – PABS) for use by the PRACE
partners, in particular tasks 5.2, 5.3 and 5.4. The basic integration strategy has already been
presented in deliverable D6.3.1. This chapter describes the final integration status, the
inclusion of performance measuring tools into the benchmark suite as well as the final
acceptance test.

To recall the basic strategy of the chosen benchmarking framework JuBE [4], the
framework’s workflow and strategy is shown in Figure 1 and Figure 2; a detailed description
is given in D6.3.1 and references therein.

Figure 1: JuBE workflow

The usage idea of JuBE, or its workflow, is to set up a benchmark (suite), in which each
benchmark is defined in a coherent way. All steps to realize the benchmark results are
processed by JuBE, these steps are: preparation, compilation, execution, verification and
analysis. These steps are performed for all runs needed to fullfil the general benchmark task.
A benchmark script runs on a variety of partition sizes, automatically sets up the appropriate
number of jobs, submits them to the supercomputer and then combines the results into one or
more tables. This leads to a multidimensional parameter space which allows for a simple way
of scanning large parameter spaces. Thus a scaling benchmark at various compiler
optimization levels and problem sizes, can be defined in one step.

The strategy to realize the automatic execution of the steps between the general benchmark
definition and the benchmark result is to utilize templates, including all relevant parts (files)
of the application, i.e. those which might include varying values need to be represented by
templates. These templates will be used to generate the final versions for each point in the
parameter space. Figure 2 illustrates this strategy.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 18

Figure 2: JuBE substitution strategy

Figure 2 shows a template for some application parameters and for the makefile. The way
JuBE works is that, once the template files, here params.tmpl and makefile.tmpl, are provided
together with the according substitution rules, no further modifications are needed. In this
example the content of the template files would be substituted and would replace the files
params and makefile needed by the application. This substitution is done, if needed, for each
point in the parameter space.

Section 4.1 provides an integration overview, containing information on how to get the
benchmark suite and the current integration status. An example on how to include
performance measurement tools into an integrated benchmark is presented in section 4.2,
which is followed by the description of the carried out acceptance test (section 4.3).

4.1 Integration Overview

The benchmark suite is currently available in a subversion repository

https://trac.csc.fi/pracewp6

hosted by CSC. As the benchmark suite is currently not freely available, but restricted to
PRACE internal use only, access permission must be granted.

Access to the subversion repository is possible on all PRACE prototypes via the following
command

$> svn checkout https://trac.csc.fi/pracewp6/svn/benchmark

The current size is in the order of 3 GB, which does not include the applications’ source code,

as these must be gathered separately. Information on how to get each application’s source
code is located in each benchmark’s directory, i.e. as a HowToGet.txt file. In most cases,
these files contain commands to checkout the source code from external subversion
repositories.

As already stated in PRACE deliverable D6.3.1 each benchmark has to provide general
information on how the benchmark should be run. This information is located in the top-level
xml files. To follow a unified, i.e. standardized way of benchmarking, the aims and
requirements of such a benchmark run have been defined. The following section (4.1.1)
describes this definition. In section 4.1.2 an overview of the current integration status is given.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 19

Benchmark Execution Standardization
In order to standardize the benchmark suite and thus ease its use for non-BCOs, the following
two predefined benchmark rules are set up. These benchmark types can be used as starting
points for future benchmarking tasks as well as reference values in verification procedures. In
addition to these aims, the two benchmark runs are the minimal required integration level and
will be used for the acceptance test, see section 4.3.

a. Functional Benchmark
This setup should just verify that the benchmark is able to be compiled and executed
on the target architecture. The problem size and the computing partition is choosen to
be small; thus this test should consume only very little resources. However, the
verification and analysis steps have to be considered too. The result description file
(result.xml) contains the following table definition:

<result>
 <show active = "1" colw="10" title="prace reference timing">
 ncpus, time, vcheck
 </show>
...
</result>

This unifies the benchmark output. In this example, it is the number of tasks,
benchmark timing and the verification flag, to be able to directly compare the timing
with the reference values measured by the BCOs. The timing stated by the benchmark
is definied by the BCOs; typical examples are the total execution time, the time in the
inner loop of an application or the average time for a single main loop. The top-level
xml file is named prace-functional-$ARCHNAME.xml and the command to start
the benchmark from the application’s directory is

$> ../../bench/jube -start prace-functional-$ARCHNAME.xml

b. Scaling Benchmark
The only difference to the functional benchmark aim is to demonstrate the
benchmark’s (strong) scaling behaviour on small and medium size partitions. The
problem size may be adapted as well. According to the functional benchmark, the
naming of the benchmark definition file is prace-scaling-$ARCHNAME.xml with a
similar initialization command.

Thus the following steps are needed to run these benchmarks from scratch. The place holders
$BMNAME and $ARCHNAME have to be replaced by the target benchmark and prototype.

1. Get the benchmark suite; access rights assumed.
$> svn checkout https://trac.csc.fi/pracewp6/svn/benchmark PABS

2. Change to the benchmarks directory.
$> cd PABS/applications/$BMNAME/

3. Get the benchmarks source code; follow the instructions in HowToGet.txt
4. Start the functional benchmark on the target prototype

$> ../../bench/jube -start prace-functional-$ARCHNAME.xml
or the scaling benchmark
$> ../../bench/jube -start prace-scaling-$ARCHNAME.xml

5. Obtain the results.
$> ../../bench/jube -update -result

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 20

Integration Status
The minimal integration requirements for a benchmark are the realization of the two
benchmarks described in section 4.1. The integration status for each benchmark on each
prototype is shown in Table 10: Integration status as of June 2010.

These levels are indicated by green (standardized integration), and red (no final integration
available yet), whereas blank cells indicate that the application has not (yet) been ported to
this platform, also as a result that efforts on certain applications had to be stopped in the
extension phase. Compared to the previous version of D6.3.2, we have checked the
integration of the applications and have adapted their status from completed (green) to almost
completed (which is red).

application MPP-BG MPP-Cray SMP-

ThinNode-
x86

SMP-
FatNode-
pwr6

SMP-
FatNode+
Cell

SMP-
ThinNode+
Vector

QCD
Quantum_Es
presso New

NAMD

CPMD

Code_Saturne New New New New

GADGET New New

EUTERPE New

WRF

NEMO

CP2K

GROMACS

NS3D

AVBP

HELIUM

TRIPOLI-4

PEPC

GPAW

ALYA

OCTOPUS New New New New

BSIT

ELMER New New New

SPECFEM3D

Table 10: Integration status as of June 2010.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 21

Further information on how to use the benchmark, the exact measurement and the main
benchmarking parameters are given in the README file in each application’s directory.

4.2 Extensions to standard Integration

The usage of the benchmarking framework JuBE is not restricted to the variation of
compilation or input parameters, but also allows the direct utilization of performance
measuring tools. With this integration it becomes very easy to collect data of the application’s
performance on a wide parameter regime and to allow comparison between runs with and
without tools.

The main strategy is to include flags which alter, for example, the compilation or which add
libraries into the linkage stage. The exact impact of such flags depends on the performance
tool they are attached to. During the analysis step, the tool’s output can be parsed as usual and
displayed in the result phase. To illustrate this strategy in more detail, a representative
integration example of the GNU profiler [5] is given hereafter.

The GNU profiler gprof is a profiling tool which analyses the application’s procedure call
distribution. This tool provides data on the time spent in a procedure, the number of each
procedure calls as well as a calling graph. More information on this tool is given at the above
referenced site.

To generate a procedure profile, the compiler needs to instrument the code: the flags to do so
are, in this example for the IBM XL compiler, -g -pg. There is no need to include any
libraries and the executable can be run as usual. After the execution, there are some profile
output files in the executable’s current directory. As the last step, these files have to be
processed by gprof to generate a human readable profile.

The steps needed to integrate gprof might be the following:

1. Add a flag at the parameter section of the top-level xml file, to switch on/off the
profiler.

2. Add additional compiler flags, depending on the flag status.
3. Provide a script to run the profiler in the analysis step.
4. Provide patterns to grab the profile output.
5. Add a profiler table to the result section.

These steps will be demonstrated by an example, which will be kept as general as possible,
but some explicit code references are based on the PEPC integration on the PRACE prototype
system at SARA (IBM POWER6, Huygens).

Step 1
First of all, a gprof flag (GPROF) has to be defined in the top-level xml file.
 <params
 ...
 GPROF = “on,off”
 ... >
This statement will add another dimension to the parameter space, namely the usage of gprof.
In this example, this will trigger all benchmark runs to be run with and without gprof. As
gprof influences the compilation step, the compilation has to be triggered if the parameter
GPROF changes. To realize this, a new variable CMP_GPROF is defined in the compile section
of the top-level xml file. Note that this is just a dummy variable to determine if a
recompilation is needed.
 <compile

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 22

 ...
 CMP_GPROF = “$GPROF”
 ... >

Step 2
With the definition in step 1, the GPROF flag will be used to determine additional compilation
arguments. A possible realization in the compile.xml file is to extend the substitution of the
compiler flags by

 <sub from = "#F90FLAGS#"

 to = "$f90flags $optflags
 `index('$GPROF','on')==0 ? '-g -pg' : ' '` " />

This substitution demonstrates the usage of the perl evaluation possibility in JuBE. The
placeholder #F90FLAGS# will be substituted by the values of the two variables $f90flags
and $optflags, followed by an additional -g -pg option, but only if the value of GPROF is
equal to on.

Step 3
After the successful execution, the profiler data has to be processed. This will be done in the
analysis phase. During this phase, a shell script will be called to generate a readable profile,
via gprof, and from this a JuBE parsable file, i.e. containing unique text line identification. As
the gprof output differs on the various architectures, a template is needed which considers
different architectures. A possible structure might be the following template file
(collectData.sh.jube)

...
#COLLECT_GPROF# #HUYGENS# gprof #EXECUTABLE# profdir*/gmon.out
> GPROF.dat; \
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -1 1
GPROF.dat > GPROF.log

#COLLECT_GPROF# #JUGENE# gprof #EXECUTABLE# gmon.out.*
> GPROF.dat; \
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -1 1
GPROF.dat > GPROF.log

#COLLECT_GPROF# #JUMP# gprof #EXECUTABLE# gmon.*.out
> GPROF.dat; \
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -2 1
GPROF.dat > GPROF
...

However, before the script can be used in the analysis phase, all placeholders must be
substituted in the preparation phase. The basic idea is to substitute #COLLECT_GPROF# by the
#-character if GPROF is not on. In addition to this, only the current architecture placeholder
(e.g. #HUYGENS#) is replaced by a ‘ ‘-character, leaving only one command line to be
executed. The substitution of the remaining placeholder is straight forward. The first part of
an execution line is the call of gprof to generate the GPROF.dat file, which contains the
collected readable profile. In the second step, the perl script
utils/gprof/parseGPROF.pl is used to label each line and thus to be able to use the

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 23

search pattern shown in the next step. This final information will be stored in the file
GPROF.log, which leads to the following extension of the preparation step:

 <substitute infile="collectData.sh.jube" outfile="collectData.sh">

 <sub from="#BENCHHOME#" to="$benchhome" />
 <sub from="#EXECUTABLE#" to="pepc.exe" />

 <sub from="#PERL#" to="$PERL_CMD" />

 <sub from="#COLLECT_GPROF#" to="`index('$GPROF','on')>-1 ? ' ' : '#'`" />
 <sub from="#JUGENE#" to="`index('$platform','Jugene')>-1 ? ' ' : '#'`" />
 <sub from="#JUMP#" to="`index('$platform','Jump')>-1 ? ' ' : '#'`" />
 <sub from="#HUYGENS#" to="`index('$platform','Huygens')>-1 ? ' ' : '#'`" />
</substitute>

Then, the analysis step needs the following additional command:

 <analyse cname="IBM-SP6-Huygens">

 <precommand>(cd $outdir; bash collectData.sh)</precommand>

 <input addfiles="$subdir/GPROF.log" />

 <includepattern file="./patterns-gprof-pepc.xml" />
</analyse>

First, an initial command will be executed, i.e. change to the working directory and execute
the prepared data collection script. As described above, the collection script produces the file
GPROF.log, which is added to the list of files to be parsed for the pattern defined in the
patterns-gprof-pepc.xml file, as described in step 4:

Step 4
The preprocessed file can now be parsed using these JuBE patterns:

 <parm name = "GPROF_01_NAME" unit = "" mode = "line,last"

type="string" >JuBE: gprof: proc 1:\s*$patwrd\s*$patnfp</parm>

<parm name = "GPROF_01_PART" unit = "%" mode = "line,last"
type="float" >JuBE: gprof: proc 1:\s*$patnwrd\s*$patfp</parm>
...

The variables GPROF_01_NAME and GPROF_01_PART will contain the name and the
execution time fraction of the first procedure, sorted by the time spent in this procedure. This
pattern list can now be extended to the desired depth.

Step 5
The final step is to report on this data, by including a section to the result.xml file in the
following way:

 <show active="1">

GPROF_01_NAME, GPROF_01_PART, GPROF_02_NAME, GPROF_02_PART,
GPROF_03_NAME, GPROF_03_PART
</show>

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 24

This will produce a table containing the function names and the total time fraction of the three
(in this example) functions consuming most of the CPU time.

4.3 Acceptance test

The joint efforts of a large number of BCOs in building up the large benchmark suite PABS
might result in an inhomogeneous usage quality. To ensure a high quality, i.e. all benchmarks
are fully working also for non-BCOs and are able to reproduce the reference timings, an
acceptance test for each code in the full benchmark suite was organised. This quality check
ensures that future users, which in general are not the BCOs, of the benchmark suite are using
a cross-checked benchmark suite and will thus be confronted with fewer difficulties. By
executing the quality check as a non-BCO, all parts which might depend on the knowledge or
setup of the BCO, e.g. environment variables or file permissions, are removed. As the
reference timing is provided, not only will the functionality be ensured, but also a general
estimate of the performance to make sure that the benchmark performance is similar to that
measured by the BCO.

Testing Procedure
The testing procedure consists of the following steps:

1. Each BCO chooses a problem size suited to run the functional and scaling benchmark
described in 4.1.1 and generates the reference timing. This timing, together with the
used subversion repository status (PABS and benchmark source code) is reported to
the testing team;

2. The testing team will execute both benchmarks (functional and scaling) on default
accounts at the corresponding prototypes and will compare the timings to the BCO
reference values. The reference timings are provided in the WP6 trac system.

Testing Status
At the time of writing this deliverable, not all benchmarks have yet been tested. The current
status is shown in Table 11. Green cells mean that the actual test has been passed, red cells
indicate that the tests have not been completed yet and blank cells will not be filled, since the
particular combination of application and platform does not exist.

4.4 Conclusions

The PRACE Application Benchmark Suite (PABS) has been successfully integrated in the
JuBE (Juelich Benchmarking Environment) framework. As shown in this section, the
benchmarking environment may also be used for extended automated tasks, like the usage of
performance measuring tools; indeed, some of the benchmarks integrated in PABS did reach
this advanced integration status. The integration is a dynamical process, in which new code
versions or integration features are added continuously. In order to define a reference point,
an acceptance test procedure has been defined and executed. Although this test is still in
progress, it became clear that it is of high importance to finish it and thus guarantee a high
level of quality. It should be noted that the JuBE integration and acceptance tests were not
part of the orginal work plan, but was introduced as an additional measure to ensure the long-
term sustainability of PABS. Therefore the still incomplete acceptance test does not influence
the fulfillment of the work package’s work plan.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 25

Application MPP-BG MPP-Cray SMP-
ThinNode-
x86

SMP-
FatNode-
pwr6

SMP-
FatNode+
Cell

SMP-
ThinNode+
Vector

QCD 3.11.2009 17.11.2009 3.11.2009 5.11.2009
Quantum_Es
presso 12.11.2009 26.11.2009 2.12.2009 21.12.2009

NAMD 26.11.2009 26.11.2009 11.11.2009 6.11.2009

CPMD 9.12.2009 21.12.2009 9.12.2009

Code_Saturne 12.01.2010 19.01.2010 1.6.2010 20.05.2010

GADGET 2.12.2009 2.12.2009 4.12.2009

EUTERPE 1.12.2009 25.05.2010 4.12.2009 17.12.2009

WRF 8.12.2009 8.12.2009 8.12.2009 23.12.2009

NEMO 14.12.2009

CP2K 18.11.2009 25.11.2009 21.12.2009

GROMACS 17.11.2009 22.11.2009 8.12.2009

NS3D 8.12.2009 21.12.2009 12.12.2009

AVBP 9.11.2009 9.11.2009 23.12.2009

HELIUM 9.12.2009 23.11.2009 9.11.2009 21.12.2009

TRIPOLI-4

PEPC 3.11.2009 17.11.2009 3.11.2009 6.11.2009

GPAW 16.11.2009 26.11.2009 16.11.2009 21.12.2009

ALYA 23.12.2009 4.12.2009

OCTOPUS

BSIT

ELMER 26.11.2009 25.05.2010 25.05.2010

SPECFEM3D
Table 11: Status of acceptance tests as of June 2010.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 26

5 Synthetic Benchmarks

5.1 Introduction

The analysis of synthetic benchmarks in D6.3.1 presented the relevance of using synthetic
benchmarks in HPC performance measurements to complement application benchmarks,
outlined the key performance characteristics of HPC systems and listed the most important
existing synthetic benchmarks. Based on this analysis a synthetic benchmark set, called
PRACE-SBM was proposed.

While the initial proposal consisted of existing benchmarks, it was also realized that there are
several key areas for which no benchmarks exist or the current benchmarks lack a key feature.
Therefore it was planned that WP6 should pursue implementing these benchmarks. The
following benchmarks were successfully implemented:

• Parallelized version of STREAM2 (using MPI)
• OpenMP+MPI hybrid benchmarks
• Parallelized version of the Bonnie++ filesystem benchmark (using MPI)
The first practical application of PRACE-SBM was the evaluation of the PRACE WP7
prototypes in tasks 5.2 and 5.3. There has been close collaboration with the contributors to
these tasks in adjusting details of the PRACE-SBM to best meet their requirements. The
actual execution of the benchmarks on the prototypes was performed by WP5, while WP6
provided the integration of the benchmarks into JuBE. WP6 also provided support for the
WP5 members tasked with running the benchmarks, as well as assisted with the final analysis
of the combined results from the different prototype systems.

The next section describes the benchmarks we have chosen for the PRACE-SBM, including
their descriptions.

5.2 Descriptions of Synthetic Benchmarks

The initial implementation of the PRACE-SBM contains the following individual
benchmarks:

1. Computational kernels
a. Euroben-shm - OpenMP parallelized kernels
b. Euroben-dm - MPI parallelized kernels

2. Internode communication
a. SkaMPI - Latency and bandwidth of MPI routines and communication patterns
b. SMB - Overlap of asynchronous MPI communication and computation
c. MixedMode - Performance when combining OpenMP and MPI

3. Memory
a. MPI STREAM2 - Bandwidth of different memory hierarchy levels (MPI

parallelized version)

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 27

4. Disk I/O
a. IOR - Disk I/O bandwidth when using Posix, MPI-IO or HDF5
b. MPI Bonnie++ - Disk I/O metadata performance (MPI parallelized version)

5. OS Jitter
a. P-SNAP – Variance of computational performance
b. Selfish – Amount of individual interruptions in processing

6. Combined benchmarks
a. HPCC – A popular benchmark suite for characterizing HPC system performance

The source codes for all the benchmarks in the package are freely available, most under the
GNU Public License (GPL).

The synthetic benchmark codes are stored in the TRAC SVN repository and are integrated
into the main benchmark suite in the same manner as the application benchmarks. The
integration is described in chapter 4.

Due to the large amount of numerical results produced by the benchmarks, the
implementation of output processing and analysis with JuBE proved to be difficult. This
problem was alleviated by the use of separate postprocessing scripts. Support for external
output processors has been added to JuBE, so that these scripts can be integrated into the
framework.

At the PRACE general face-to-face meeting in Jülich, WP6 and WP8 made a joint decision
that a subset of the Euroben benchmarks would be used for basic evaluation of the WP8
prototypes and T6.6 programming models. The benchmarks chosen were: mod2am (sparse
matrix multiply), mod2as (dense matrix multiply) and mod2f (Fourier Transformation). A
new branch, called “euroben-ports” was added to the TRAC repository which contains
subdirectories for the ports to different architectures. To facilitate easier porting to C and C++
-based languages, both serial and MPI parallelized versions of the selected Euroben kernels
were ported from Fortran to C.

Actual results of running the PRACE-SBM (as part of the assessment of the PRACE
prototype systems by WP5) can be found in D5.2. This section continues with the individual
descriptions.

Euroben

For more information, visit: http://www.euroben.nl/

The Euroben suite, developed by Aad van der Steen of NCF, is a collection of benchmarks
covering a variety of categories:

• Computational kernels (matrix-matrix multiply, FFT etc.)
• Performance and accuracy of intrinsic functions
• Communication performance measurements
• Memory performance measurements

There are serial, OpenMP-parallel and MPI-parallel versions of the suite available. There is
some variation between the contents of different versions as each version contains only the
parts relevant for it. For example, the MPI-parallel version does not include the serial intrinsic
benchmarks.

In the scope of PRACE-SBM, the primary area of interest in the Euroben suite are the serial
and parallel performance of various computational kernels as well as measuring the

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 28

performance of intrinsic functions. Both MPI and OpenMP parallel versions of the
benchmarks were included in the PRACE-SBM package.

Additional ports of selected kernels were made by T6.6 and WP8 to novel programming
languages.

SkaMPI
For more information, visit: http://liinwww.ira.uka.de/~skampi/

SkaMPI is a benchmark for testing MPI communication performance. The benchmark covers
most of MPI 1 as well as parts of MPI 2, including:

• point-to-point communication
• collective communications
• derived datatypes
• one-sided communication
• MPI I/O

While there are several other MPI benchmark suites available, SkaMPI was chosen because it
is independent from any specific vendor as well as extensible: Using the built-in scripting
language and well-documented programming interfaces, it is relatively easy to add new
features.

SMB
For more information, visit: http://www.cs.sandia.gov/smb/overhead.html

SMB (Sandia MPI Benchmark) measures the ability of a system to overlap MPI
communication when using asynchronous calls with computation. The measurement is
perfomed by using a post-work-wait loop:

• Call MPI_Isend() and MPI_Irecv(), to initiate the respective transfer
• Perform some work on the CPU (busy loop)
• Wait for the transfer to complete using MPI_Wait()

During each iteration, the amount of work is increased and until the message transfer time is
smaller than the work time. The processing overhead can then be calculated by measuring the
amount of time used to perform the same amount of work without overlapping a message
transfer and subtracting this value from the loop time. Results are reported in both absolute
time needed for processing the packet and as a precentage of the processor availability (100%
means that communication does not require any intervention from the CPU whereas 0%
indicates that communication processing ties up the CPU completely)

As no traditional MPI benchmark suite has facilities to measure MPI overlap, this additional
benchmark was needed to complement SkaMPI.

MixedMode
The MixedMode benchmark, produced by EPCC, is a set of microbenchmarks which measure
the ability of the MPI stack to handle OpenMP/MPI hybrid parallelization. The benchmarks
include several point-to-point (pingpong, pingping, halo) and collective (scatter-gather,
reduction, broadcast, barrier, alltoall) measurements.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 29

MPI STREAM2
For more information, visit: http://www.cs.virginia.edu/stream/stream2/

The Stream2 benchmark measures the bandwidth of 4 memory operations (FILL, COPY,
DAXPY, SUM) using a number of problem sizes. The results illustrate the sustained memory
bandwidth on all levels of the cache hierarchy.

Using the original, serial version of STREAM2 benchmark to measure aggregate performance
of multicore systems by running several instances of it in parallel is time-consuming and
prone to inaccuracy: A number of independent output files is produced and there is no
guaranteed synchronization between the tasks: Some tasks may complete before others have
the chance to start which skews the results as we want to measure contention caused by all the
tasks simultaneoustly.

To address this problem, STREAM2 was parallelized by the subtask using MPI to form MPI
STREAM2. In the new version, each MPI task calls the original serial benchmark routines
after which and then the results from each task are aggregated into an average. The output
style is identical to the original version.

IOR
For more information, visit: http://sourceforge.net/projects/ior-sio

The IOR is the de facto standard tool for measuring disk bandwidth performance in HPC
systems. In addition to POSIX IO, it can be used to measure HDF5 and MPI-IO performance.

MPI Bonnie++
For more information, visit: http://sourceforge.net/projects/ior-sio

The Bonnie++ benchmark is a disk benchmark which measures both data and metadata
handling performance of disk systems. It was included in the suite for its ability to measure
metadata performance, something which IOR lacks. The operations measured are file reads,
creates and deletes. Results are in ops/second.

In HPC systems, a number of processes usually tend to metadata operations simultaneously.
However, Bonnie++ does not support distributed-memory parallelization which limits it’s
usefulness to do real stress tests on petascale systems. To address this, an MPI parallel version
of Bonnie++, called MPI Bonnie++ was produced by the subtask.

P-SNAP
For more information, visit: http://www.ccs3.lanl.gov/pal/software/psnap/

P-SNAP measures the variation in the execution time, or „jitter“, by running a fixed size
calculation repeatedly on a single CPU. The magnitude of the variation can be visualized with
distribution graphs of the execution times.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 30

Selfish
For more information, visit: http://www.mcs.anl.gov/research/projects/zeptoos/projects

The Selfish measures „detours“: the fraction of time the CPU spends executing instructions
not part of the user’s application. The output can be examined to determine the length of each
interruption. Compared to P-SNAP this is a more qualitative approach to measuring jitter
effects. It can be used to track down jitter patterns, such as timer-based interrupts.

HPCC
For more information, visit: http://icl.cs.utk.edu/hpcc/

The HPCC benchmark suite is a widely-used collection of HPC benchmarks. While the
HPCC overlaps with a number of benchmarks in the suite, it contains some individual
benchmarks (HPL, MPI ring-patterns) which were deemed useful.

5.3 Conclusions and Further Work

It is clear that with the further evolution of high-end computer systems from Petaflop/s into
Exaflop/s careful performance testing of the basic components of the systems becomes more
and more important. With possibly hundreds of thousands, perhaps millions of cores, actual
component performance is critical for sustained system performance. Further evolution of
synthetic benchmarks must be taken into account as well.

The introduction of other components, like graphical cards, FPGA’s and Cell-type of
processing goes even further: development of synthetic benchmarks for these types of
hardware needs to be started to enable future performance testing as well.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 31

6 Performance Analysis Tools

6.1 Introduction

It has been shown in D6.3.1 that there are many available Performance Analysis Tools. Given
the amount of prototype platforms (6 in total, as defined by WP7 and used in WP5 and WP6),
it is practically impossible from an available human resources point of view to investigate
each Performance Analysis Tool (PAT) on each prototype platform. We have chosen to re-
assess each D6.3.1 PAT on at least one of the WP7 prototype architectures. However, due to
limited resources, we did not do any of the assessments on the NEC SX-9 prototype, or to re-
assess the CEPBA-Tools (Paraver & Dimemas). Finally, instead of the High-Performance
Linpack Benchmark (HPL), for every PAT-WP7 prototype combination, we selected a
relevant PABS benchmark as a testbed for the assessment. Most of the PATs have been used
in tasks 6.4 and 6.5, leading to more details for task 6.3 as well. Based on these experiences
and the additional experiences during this separate assessment, we have been able to report
our experiences to the vendors and open source developers.

6.2 Allinea Optimization and Profiling Tool (OPT)

Introduction
Developer
Allinea Software, www.allinea.com.

Availability
Commercial product, license required, free 30 day trial available.

Supported Platforms
Allinea OPT is available for almost every flavor of Linux, for Itanium, Opteron, EM64T,
Xeon, PowerPC and the IBM Cell BE. BlueGene/P support has recently been added. A
complete list of the supported platforms is available from the website.

Assessment Environment

• IBM BlueGene/P
A one-rack (4096 cores) IBM BlueGene/P system at STFC Daresbury Laboratory
(4096 cores) has been used as the platform for the evaluation. The software and
hardware environment of the STFC BlueGene/P is almost identical to the PRACE
prototype at FZ Juelich, however, being a smaller machine it is more conducive to
rapid turnaround and testing of profiling software such as OPT.

• Allinea OPT v1.4.3
Recent updates have added support for IBM BlueGene/P, SGI Altix and IBM Cell BE
platforms.

• Large-scale Application Software: Senga2b
The Senga2 application developed at the University of Cambridge uses Direct
Numerical Simulation (DNS) with desired levels of chemistry in order to model
combustion processes. The original plan was to use Code_Saturne for these

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 32

experiments. After consultation with the developers of Allinea OPT, it was expected
that the complexity of Code_Saturne (500k lines of Fortran, C and Python) along with
the magnitude of available datasets would be too burdensome to demonstrate useful
scaling features of OPT. For these reasons, we have used Senga2, which is a also a
parallel CFD code used for large-scale real-life calculations, but with more
manageable datasets and a less complex code structure than Code_Saturne (around
20k lines of Fortran only).

Description of the tool

The Allinea Optimization and Profiling Tool (OPT) is a development tool for analyzing and
improving the performance of MPI and scalar applications. It gathers profiling information by
instrumenting the MPI communication layer. OPT is a grid-enabled application that uses the
web-service protocol SOAP to allow profiling users to access OPT remotely and securely
with a minimal amount of communication bandwidth. OPT’s graphical interface uses remote
(or local) OPT servers to launch applications, store performance data and analyse user
applications. All stages of the analysis described in this report were undertaken on the Blue
Gene/P.
Design Features

• Allinea OPT has been designed for use on large-scale parallel systems.
• Supported languages: Fortran, C and C++.
• Easy generation of different data formats.
• Grid capable. This allows users to access remote profiling data almost as rapidly as a

local server.
• Multiple runs can be compared to assess code scalability.
• Interoperable with other profiling tools e.g. PAPI hardware counters or gprof.
• Subsets of processors and time intervals of interest can easily be selected in order to

keep levels of profiling data manageable.

Description of the Large-scale Application Software: Senga2

The Senga2 code has been developed at The University of Cambridge and has been designed
to facilitate combustion DNS with any desired level of chemistry, from single-step Arrhenius
mechanisms through all classes of reduced reaction mechanisms up to fully detailed reaction
mechanisms. The Navier-Stokes momentum equations are solved in fully compressible form
together with the continuity equation and a conservation equation for the stagnation internal
energy, as well as any required number of balance equations for species mass fraction. The
numerical framework is based on a finite-difference approach for spatial discretization
together with a Runge-Kutta algorithm for time-stepping. High-order explicit schemes are
preferred due to their speed of execution and ease of parallel implementation, and a 10th order
explicit scheme is standard for interior points. The code is fully parallel using domain
decomposition over a cubic topology. The code is written in Fortran 77 with MPI library
routines used for passing data between processors.

Computational Characteristics of the Application

In common with other finite-difference structured grid-based codes, a typical Senga2-based
computation consists of 3 stages:

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 33

1. Set up problem from parameters passed through input files.
2. Simulate combustion processes over a series of timesteps.
3. Gather data and output results to disk.

In real-life problems the calculation time is dominated by stage 2 above. For reasons of
accuracy and numerical stability, the time-step size undertaken must be relatively small and
therefore the number of time-steps required to model short periods of time can be very large
(e.g. 10 000). The principal communications structure within Senga2 is a halo-exchange in
three dimensions between adjacent computational sub-domains in order to update the periodic
boundary conditions. This point-to-point data transfer takes place via corresponding
MPI_SENDs and MPI_RECVs in the program. These are therefore the dominant MPI
routines used in the code. The benchmarks investigated here use a global grid size of 1003 for
64 processor runs and a global grid size of 2003 for 256 and 1000 processor runs on the Blue
Gene/P system. In order to reduce runtimes, the number of time-steps is limited to 10. This
number is sufficient for profiling tests, as communication patterns for each time-step are
identical. Therefore analyzing a small number of time-steps (even only 1) is representative of
a full run involving many thousands of time-steps.

Senga2b has recently been run on several petascale architectures, including the Blue Gene/P,
and demonstrates excellent scaling up to tens of thousands of processor cores.

In this analysis of OPT on the Blue Gene/P, both approaches have been used and effects on
the code run times are shown in section 7.1.

Conclusions
OPT provides a user-friendly environment for profiling and analysis of application codes on
HPC systems. Its mode of usage is very straightforward and the package was installed quickly
and easily on the Blue Gene/P. The tool facilitates a wide range of features, from a detailed
analysis of individual messages between processes in the timeline view to summary views
from across all processes, from which users can identify load-imbalances at a glance. The
ability to switch easily between multiple runs in the database and view profiles from different
jobs side-by-side is particularly useful when gauging communication overheads during
application scaling tests. OPT also has the facility to incorporate hardware event counter
information, such as PAPI, but this feature was not investigated during this assessment.

Due to scalability issues, the current version of OPT would probably be unsuitable for general
profiling analysis for computing at the petascale. The timings reported in Table 12 - Table 14
in Annex 7.1, comparing run-times for Senga2 with and without OPT, show that the
overheads associated with the collection of OPT trace events are greatly increasing when
profiling large numbers of MPI processes. However, it should be noted that these performance
overheads may not be necessarily prohibitive: users may need to profile a high-core count job
only once in order to glean useful information about the communication structure and parallel
code behavior. It should also be noted that during this analysis, OPT always completed its
profiling on high core counts (no crashes were observed) and the OPT viewer was stable
throughout its usage.

Responsive, interactive usage of the OPT viewer was reaching its limitation at the 256 process
count on Blue Gene/P, even when invoking features that reduce profiling overheads (e.g.
setting maxfuncs, stop/start logging) and run-time overheads associated with tracing jobs
involving more than 100 processes were substantial. A trace file was generated for a Senga2
job involving 1000 processes. However unless the investigator has in mind a specific point of

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 34

interest (e.g. the behavior of a specific function) general profiling and analysis of a 1000
process job via the OPT viewer would be impractical. Allinea are aware of these scalability
limitations and future development of OPT will attempt to improve performance in this area.

Suggestions for Future Improvements
Whilst there exist several methods for restricting the number of MPI Events logged during
runtime, there appear to be few ways of reducing the amount of information loaded and
shown in the OPT viewer. For example, it would be convenient if users could load into the
viewer only communication data from a subset of processes. Likewise, once profiling data is
loaded into the viewer, a feature should be added to enable users to filter the data on view, for
example, to show only communications between two named processes. Features such as these
would both improve the reduce overheads on the OPT viewer when analyzing high core count
runs and provide clearer profiling data for the user. The documentation for OPT is also rather
incomplete and the author feels that detailed explanations of many of the features available
are not provided.

Acknowledgements
The author would like to thank the Allinea Support team for their prompt and informative in-
depth assistance.

6.3 Cray Performance Analysis Framework

The Cray Performance Analysis Framework consists of the Cray Performance Analysis Tools
(CrayPat) and Cray Apprentice 2. CrayPat is a suite of programs that can be used to analyse
the performance of parallel applications on Cray XT supercomputers. The suite includes a
tool for instrumenting applications (pat_build), a run-time library for measurements, a text-
based tool for analyzing the results (pat_report), and an online help utility (pat_help). The
focus areas in developing the tools have been ease of use and scalability, CrayPat has
successfully been used to analyse the performance of applications running at scale with tens
of thousands of processes. Apprentice 2 is a tool with a graphical user interface that can be
used to analyse and visualize performance data. The current version of the tools, 5.0, was
released in September 2009.

Features
The basic usage of CrayPat does not require one to do any source code modifications. It turns
out to be enough to load the appropriate CrayPat module, re-link the application and thereafter
instrument the application binary using pat_build. CrayPat produces a standalone
instrumented program that can be run independently of the original binary and object files. It
is also able to instrument applications compiled with optimization flags which is important in
order to get realistic performance measurements.

CrayPat is able to provide performance information on a wide range of metrics defined via so
called tracegroups. They cover MPI tracing, OpenMP, Co-Array Fortran and other PGAS
languages, numerical libraries such as BLAS and FFTW, memory allocated from the heap and
finally metrics concerning I/O. Naturally the tool can also provide profiles for user level
functions. CrayPat uses PAPI to measure HW counter information. The latest version of
CrayPat supports multiplexing HW counters, allowing one to measure any combination of
HW counters.

CrayPat supports two kinds of performance analysis experiments: tracing (synchronous)
experiments and sampling (asynchronous) experiments. The tracing experiments instrument

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 35

the program to trigger a measurement each time the event occurs. Sampling experiments
capture performance data at specified time intervals, or when some counter overflows.

The default mode of operation for CrayPat is to only collect a profile of the application
performance. This is a summation of the events over time and does not provide information
about the sequence of events. Simply by setting an environment variable to 0
(PAT_RT_SUMMARY), one can produce a trace of the sequence of events over time. This
tends to significantly increase the amount of captured data, which makes it in many cases
unfeasible to trace the complete execution of a large-scale application. One can use the
CrayPat API and insert commands in the application source code to only measure shorter
segments of the program execution. This allows producing trace files even for very large scale
applications.

For report on the actual experiments with CrayPat and Apprentice2, we refer to section 7.2.

Feedback and experiences
In general the CrayPat tools have proved to be stable, reliable and scalable. There is still room
for improvement though.

The views in Apprentice 2 showing information on a per process basis, e.g. load balance,
cannot be zoomed out very far. This means that one need to do a lot of scrolling to see the
values for all processes. It would be very useful to be able to zoom out so that one process
would be represented by only a few pixels, or even just one. One could even extend this by
using grouping to enable one to get an overview of tens of thousands of processes.

As the time-sequence experiments tend to produce a lot of data, one often needs to use the
CrayPat API to only capture short segments. It would be useful to have the option to only
capture short time segments without having to do changes to the source code of an
application.

6.4 Dewiz

Dewiz is a tool-set developed by partner GUP over the last years. Its main purpose is to
provide means of debugging and performance optimisation of large scale applications by
analysing their communication patterns.

Many bugs causing undeterministic behavior can be found more easily by looking at traces of
communication events between the involved MPI processes. However, with the rise of
petascale machines running large simulations, the human eye might be overwhelmed with
data because of the huge number of events in large traces and the impossibility of displaying
them in a meaningful way. This is where the pattern matching component becomes active. It
includes several pattern matching functionalities to hint the user where expected stencil-like
communication behavior (i.e., constantly repeating communication patterns from e.g. parallel
PDE solvers) exhibits irregular communication structures, imposing a possible bug or
unwanted behavior. There has been recent research showing that this approach is applicable
and yields good results also for large message traces.

A shortcoming of the tool at its present development stage is that its tracing library can only
support a very basic set of communication event types that can be traced correctly. It shows
that most of the production codes part of the PABS use a much larger set of communication
primitives (i.e. collective communication operations) that are omitted in the generated traces,
leading to unreliable/unuseful information and therefore unusablitity of the tool. There exist a
few external tools that are able to trace the complete set of communication primitives;

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 36

however, those are unluckily still missing certain information in their traces that are needed
for the pattern matcher to work on current real life codes. Once this situation has been
improved in the future, the pattern matching component will be still of greater use for the
HPC community.

Another tool of the Dewiz set tackles possible performance issues caused by programmers
using wrong – in terms of communication efficiency – communication primitives (i.e.
manually implemented communication using one to one operations instead of original, often
more efficient, collective operations). The tool includes a transformation framework which
transparently changes the implementation of collective communication (native or point-to-
point based collectives / in a blocking or non-blocking fashion) depending on which choice
provides the best performance in a particular application context. Experiments on the FFTW
and GROMACS code base, running on a commodity based Opteron cluster system using an
Infiniband interconnect have shown an improvement over the original codes. Tests on the
Jugene and Louhi Prototypes however have shown, that their system implementations of
collective operation are already performing best compared to other implementations. The
system vendors obviously put lots of efforts in designing their communication networks and
that highly tuned libraries like the tested FFTW make use of them. The evaluation of this
component of the Dewiz set of tools has shown that they can most probably not improve the
use of communication in parallel codes on the current prototype systems.

Feedback and Conclusions
The most important drawback of the Dewiz tool is currently the lack of collective
communication support. This makes Dewiz not really usable in practice for the PABS.
Improvement is required in this area. On the other hand, an interesting feature is the analysis
of communication primitives, which would be even more useful when collective
communication could be traced as well.

6.5 IBM HPCT: High Performance Computing Toolkit

Introduction
The IBM High Performance Computing Toolkit (HPCT) is a collection of tools that can be
used to analyse the performance of both parallel and serial applications, written in C or
Fortran, on the AIX or Linux operating systems on IBM Power Systems Servers. The tools
should allow the user to do the following measurements of their application performance:

• access hardware performance counters, e.g. for analyzing cache utilization and floating
point performance,

• profiling and tracing of MPI applications,
• profiling OpenMP applications,
• profiling I/O patterns.

Although IBM does not formally support hardware performance counter tools on the Linux
platform, since it depends on the use of an unofficial patch (perfctr) of the kernel, the
hardware counters do work on the Huygens system. Recently, the IBM Parallel Environment
on the Huygens system has been upgraded from version 4.3 to version 5.1. IBM PE 5.1
includes a productized version of the HPCT, whereas HPCT previously was unsupported
software from IBM alphaWorks. This upgraded edition includes e.g. the peekperf GUI, which

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 37

is the user interface to the toolkit from where it should be possible to instrument, run and
analyse the performance measurements for your application.

We selected the scientific application NEMO to test the HPCT in a production environment.
NEMO is an ocean model that is used by hundreds of scientists all over the world. It is
developed in France and it is written in a modular fashion using Fortran 90. It consists of
120k lines of code and uses the MPI library for parallelization.

Instrumenting the application
To be able to instrument the application, it needs to be compiled with IBM compilers with the
extra flags '-g -emit-stub-syms'. Fortran programs furthermore require the PSIGMA_MAIN
environment variable to be set to the name of the main program. To enable the use of the
hardware performance counters, the application needs to be linked with the perfctr library,
which is not documented in the HPCT Guide.

The compiled application can be instrumented through the peekperf GUI or the command-line
utility hpctInst. The peekperf utility is quite slow in opening binaries and sources for
instrumenting or analyzing, which can take up to minutes for the NEMO executable.

For a report on the actual experiments with IBM HPCT, we refer to section 7.4.

Feedback to Vendor
We have given the following feedback to the vendor:

• The requirement to link the application with -lperfctr when using hardware counters needs

to be documented.
• When the instrumenter fails, it suggests to set the environment variable PSIGMA_MAIN

to the name of the Fortran program. However, another reason for the failure is that the
Fortran application is not compiled with '-g -emit-stub-syms'. It would help to add this
suggestion when instrumentation fails.

• HPCT complains about 'missing trampoline' when using 'include mpif.h'. Sometimes it
helps to use 'use mpi', sometimes not.

• MPI instrumentation changes the behavior of MPI.
• I/O analysis seems not implemented, although instrumentation changes the behavior of the

application.

Conclusions
The High Performance Computing Toolkit from IBM contains several tools. The first tool is
the Xprof tool, which can be used to analyse cpu time profiles from a serial or parallel
application. The outdated GUI does not give a significant advantage over a flat profile of all
routines. Its only useful property that sets it apart from the free GNU tools available is the
source line profiling. The PeekPerf GUI has a few interesting features which sets it apart from
other performance tools, e.g. the flexible instrumentation of the code with hardware
performance counters, MPI tracing and I/O profiling through a modern-looking GUI.
Disappointingly, only the hardware performance counters work satisfactorily on the Huygens
system, even though all different measurements should work on the Linux-on-Power
platform. The only feature that does work is the measurement of hardware counters. However,
the GUI prevents the user from finding the most important routines in terms of used cpu time.
As a result, apart from the source line profiling, the High Performance Computing Toolkit
cannot be recommended to potential users.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 38

6.6 IPM: Integrated Performance Monitoring

Introduction
As described in D6.3.1, WP6 agreed to use the Integrated Performance Monitoring (IPM)
toolkit from NERSC [6]. By using IPM, PRACE users will have access to an open source,
portable and scalable profiling tool. IPM reports MPI function timings, memory usage, and
hardware counters data.

Deployment Status
In order to provide a uniform performance analysis environment to the users across all
PRACE sites, IPM has been ported to most of the PRACE prototypes. To date, IPM has been
installed at the following PRACE sites: CSC, FZJ, SARA, CEA and HLRS. Instructions to
install and test IPM on the PRACE prototypes are available for the interested sites. In the few
cases where PAPI was not available on the prototypes, IPM was installed in a lightweight
mode (without support for hardware counters). IPM has not yet been set up for BSC. As part
of the NSF and DOE "preparing for petascale" program, IPM will continue to be supported on
various high performance computing architectures.

Experiments with the IPM tool are reported in section 7.5 on the ECHAM5 code, when this
ons was still investigated as part of the initial PABS.

Considerations for Future Work
IPM should be used as a general portable tool for performance monitoring across a number of
platforms. It is possible to use IPM on many different architectures but currently it does not
support user function profiling, OpenMP profiling or PGAS languages. IPM developers are
working on the next release of the tool (IPM2) which will support I/O, additional visualization
tools and the potential to make performance extrapolations based on a collection of runs.

6.7 Scalasca

Introduction
Scalasca is a software tool designed to analyse the performance of HPC applications on a
wide range of contemporary HPC platforms [7]. During its design, a particular emphasis was
placed on the usability on large scale systems such as the IBM BlueGene/P and the Cray XT
systems, both of which are deployed as prototypes within the PRACE project. Scalasca also
aims to facilitate performance analysis on small- and medium scale HPC platforms. The
software is free but copyrighted by Forschungszentrum Jülich GmbH, Germany and 2003-
2008 by University of Tennessee, United States of America. The present version 1.2 was
released in July 2009 in the middle of this investigation. For this reason this investigation has
been using version 1.1, beta releases of version 1.2 and the present version 1.2, depending on
what was available on the system at the time. The developers state they have successfully
tested Scalasca on the following platforms: IBM BlueGene/P, IBM SP & BladeCentre
clusters, Cray XT4/5, SGI Altix, NEC SX-8, SiCortex systems and x86, x86-64, IA64 &
SPARC clusters. This list includes a number of the PRACE prototypes.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 39

Platforms and applications used for this investigation
For this part of the investigation we used Scalasca on the following HPC architectures:

• Huygens, IBM Power 6 system with InfiniBand interconnect at SARA in the Netherlands.

This prototype had originally Scalasca v1.1 installed and got upgraded to Scalasca v1.2
recently;

• Juropa, Cluster using Intel Xeon X5570 (Nehalem) quadcore processors with Infiniband
interconnect at JSC in Germany. This prototype has Scalasca v1.2 installed;

• HECToR, Cray XT4 system located at the University of Edinburgh in the UK. HECToR
has a beta release of Scalasca v1.2 installed. This system is closely related to the PRACE
prototype Louhi and findings are expected to apply to Louhi, if it had a public installation
of Scalasca.

We used two of the PRACE application code to investigate the usability of Scalasca:

• HELIUM: The application HELIUM uses time-dependent solutions of the full-

dimensional Schrödinger equation to simulate the behavior of helium atoms [8]. The
source code was developed by Queen's University Belfast and has access restrictions. The
HELIUM source code is written in Fortran 90 and uses MPI only for the parallelism. All
source code is in one file with 14569 lines;

• NAMD: The application NAMD is a widely used molecular dynamics application
designed to simulate bio-molecular systems on a wide variety of compute platforms [9].
NAMD is developed by the “Theoretical and Computational Biophysics Group” at the
University of Illinois at Urbana Champaign. In the design of NAMD particular emphasis
has been placed on scalability when utilizing a large number of processors. The
application source is written in C++ using Charm++ parallel objects for the data exchange
between the compute tasks [10].

Scalasca Details
Scalasca presently allows analyzing codes written in C, C++ and Fortran using MPI or
OpenMP for the communication. With some restrictions hybrid codes using MPI and
OpenMP simultaneously may also be analysed.
Using Scalasca is typically a four staged process:

1. Adding the Scalasca directories to your path, on many systems this is facilitated by

loading a module
2. Instrumenting the object files and executables, which is done by prepending “scalasca –

instrument” to the compiler and linker call
3. Executing the instrumented code with “scalasca -analyse”
4. Examination of the results with “scalasca -examine”

The results of these case studies are reported in section 7.6.

Scalasca summary
The case studies show how Scalasca has been used in PRACE to investigate the performance
of the HELIUM and NAMD code on a range of architectures relevant to PRACE. This shows
a particular strength of the tool, which is not closely linked to a hardware vendor. The tool is
available on a wide range on hardware architectures. Experience with the tool gained on one

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 40

architecture can be transferred to a different architecture. As shown for the case of HELIUM,
the tool is typically easy to use and results can be obtained quickly.

With NAMD the tool presently struggles to instrument the executable. This could be related
to NAMD’s complex build procedure. In this case only a subset of Scalasca’s functionality
could be obtained. However it should be noted that one of the authors has outside the PRACE
project experienced the opposite situation, where the vendor supplied tools failed and
Scalasca could be deployed to rescue the project. Having several tools of similar functionality
installed provides a useful fall back option in case one of the tools fails.

In our experience Scalasca works well on large scale experiments of this investigation, which
utilized hundreds or even thousands of tasks. The efficient use of colors guides the analyst
quickly to potential trouble spots.

Concerning future developments of Scalasca we would like to see the following
improvements:

• In the MPI profile information about all MPI calls consuming considerable amount of
time is needed. In particular less common calls can be poorly optimized in many MPI
libraries.

• It would be useful for the analysis of applications using an iterative algorithm, if one
could easily visualize the difference between the results from two executions of different
length. This difference is typically associated with proper “working” iterations and would
disregard overheads due to program start and finalization. Such overheads can be
substantial in a typical measurement and benchmarking run, but are most of the time
negligible for a proper production run.

We have detailed the proposed improvements to the code authors already.

Acknowledgement
We would like to thank Brian Wylie from Forschungszentrum Jülich for his extensive support
during this investigation.

6.8 Vampir VNG

Apart from the tested and supported platforms Vampir-Trace 5.7 was compiled on Huygens
(SARA) and on Juropa (FZJ). The building process on both platforms is relatively simple.
One has to take special care of the flags to be used for a proper compilation, especially on
Huygens. On this system the mpi/poe libraries had to be specified very detailed:

CC=xlc_r CFLAGS=-O2 -g -q64 CXX=xlC_r CXXFLAGS=-O2 -g -q64 F77=xlf_r
FFLAGS=-O2 -g -q64 FC=xlf90_r FCFLAGS=-O2 -g -q64 MPICC=mpcc
MPIF77=mpfort --disable-shared

--with-mpi-dir=/opt/ibmhpc/ppe.poe/
--with-mpi-lib-dir=/opt/ibmhpc/ppe.poe/lib/libmpi64
--with-mpi-lib=-lmpi_ibm -lpoe
--with-papi-dir=/sara/sw/papi/3.6.2/lib64
--with-papi-lib=-lpapi -lperfctr

This tool provides an interface to the PAPI performance library. Therefore, on Huygens,
where this library is available, we could test this feature.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 41

On Juropa it was necessary to pass the following flags to configure:

CC=icc CXX=icpc F77=ifort FC=ifort --enable-mpi --with-mpich2

Gadget was used to test this tool on both systems. On Huygens trace generation and all
advanced-user features worked as expected. Since the trace files can contain several GB of
information, filtering and the selection of parts of the code to be traced are rather important.

On Juropa, some of this functionality was working partially. For example: some advanced
features like manual instrumentation and user counters worked as expected. However,
intermediate flushing and buffer memory control were using the default setting only. The
automatic unification, set by default, works only if it is explicitly set through the
corresponding environment variable.

Although the tracing library is distributed under the BSD license, the visualization tool is not
distributed under the GPL or BSD license, but it is a commercial product instead.
Consequently, the postprocessing had to be done on HLRB2 at LRZ. As shown in Figure 3,
the traces were generated from a run on Juropa with 512 MPI tasks. The trace files were 1.1
GB in size. The client server layout was used to analyse this information. The server used 8
MPI tasks for speed because of the size of the uncompressed files.

Figure 3: Vampir Total time line view, traces on Juropa, visualization on HLRB2.

Conclusions

Based on the preliminary tests with Vampir, our first conclusion is that the tool is in
development for Petascale systems, given the working features on IBM p575 (Huygens) and
the only partially working features on IBM BlueGene (Juropa).

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 42

6.9 VPA: Visual Performance Analyzer

Overview
VPA has been developed and is maintained by IBM alphaWorks.

Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit.
Each component of the package allows the user to read generated profiling data-sets produced
by the user code and analyse them in a number of different ways. Major components of the
package are the following:

• Profile Analyzer
Profile Analyzer provides a powerful set of graphical and text-based views that allow users to
narrow down performance problems to a particular process, thread, module, symbol, offset,
instruction, or source line. Profile Analyzer supports time-based system profiles (Tprofs) on
IBM platforms and the profile tool oprofile on Linux systems.

• Code Analyzer
Code Analyzer examines executable files and displays detailed information about functions,
basic blocks, and assembly instructions. It is built on top of the FDPR-Pro, another feedback-
based post-link optimization tool from IBM. Code Analyzer is able to show statistics;
navigate disassembled instructions; and display performance comments, instruction grouping
information, and map instructions back to source code.

• Pipeline Analyzer
Pipeline Analyzer is a port of the Performance Simulator for Linux on POWER, another IBM
technology. Pipeline joins the VPA toolkit to provide VPA users with the means of examining
how code is executed on various IBM POWER processors. Pipeline Analyzer displays the
pipeline execution of instruction traces generated by a POWER series processor. It does so by
providing a scroll view and a resource view of the instruction execution.

• Counter Analyzer
Counter Analyzer accepts hardware performance data from collection tools such as CPC or
HPMCOUNT. The data is provided as XML and is parsed by this plug-in in order to allow
visualizing and analysis.

• Trace Analyzer
Trace Analyzer visualizes Cell Broadband Engine traces containing information such as DMA
communication, locking and unlocking activities, mailbox messages, etc. Trace Analyzer
shows this data organized by core along a common timeline. Extra details are available for
each kind of event: for example, lock identifier for lock operations, accessed address for
DMA transfers, etc.

• Flow Control Analyzer
Control Flow Analyzer is a tool that analyzes call trace data collected by tools such as
Performance Inspector. The call trace data contains information about each method call, such
as how much time is spent in every invocation and who calls whom. Control Flow Analyzer
provides two major ways of visualizing the call trace data: a graph of the execution flow and a
set of tables displaying the calling tree.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 43

We have conducted experiments with VPA using the SIESTA code on the Cell platform
(SIESTA was part of the initial PABS). These results are reported in section 7.8.

VPA Conclusion
Visual Performance Analyzer is a very complex performance analysis package. It consists of
a number of tools which enable very in-depth profiling and performance analysis. It is
targeted for the POWER architecture but has a number of Cell processor specific optimization
scenarios implemented. We have found these Cell-targeted functionalities very useful;
especially SPU co-processors support is a really unique feature of the VPA package.

VPA has been found to be a very useful tool with Cell processor single-system (processor)
performance analysis and instructive with progressive code optimizations. Multiprocessor
parallel performance analysis was beyond the scope of our work with VPA.

6.10 General Conclusions

For most of the performance tools, as considered in the previous subsections, we have been
able to feedback our findings to the software vendors or open source developers. It is not
necessary to repeat all previous subsection conclusions / recommendations here.

In general, we need ways to limit the trace files generated by the PATs when scaling to high
number of cores. There seems to be a consensus on the fact that developers want an easy
mechanism to limit this without doing any source modifications (either time limited or
number of function calls limited, and configurable either via environment variables or
configuration files). The rationale for this wish lies in the iterative nature of many algorithms:
doing 10-100 iterations often reveals enough information for doing a performance analysis.
For the real fine tuning we can still rely on the available PAT APIs.

Given large trace files, we want mechanisms to easily filter the events in the trace file (e.g.
select only the events of the first 100-1000 tasks.) Without this, a GUI or batch analysis can
easily take hours to process all data.

It is good to have multiple similar tools. Looking at the previous results these tools can be
very resource demanding or require (sometimes undocumented) hooks in the compilers and/or
MPI libraries. If one tool fails it is good to have other tools available.

Finally, something that is not completely obvious from the previous subsections: many PABS
codes have been analyzed using Scalasca which scales very well and gives good insight into
bottlenecks.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 44

7 Annex

7.1 Scalability Experiments with Allinea OPT

Andrew Sunderland, STFC Daresbury Laboratory, United Kingdom

OPT consists of three components (that can reside on separate machines):

1. A library that is linked to the application code and records performance data.
2. A database component (the profiling server) to store profiling data. This consists of a

PostgreSQL Database.
3. A graphical user interface that interprets the profiling data and displays it in user-

specified formats.

Once that the OPT server software and the OPT profiling library is installed on the system (an
installation GUI is provided for this) there are three separate stages involved in profiling
users’ application codes. Firstly, the application source code is instrumented by wrapping the
existing MPI calls. Either the whole code can be profiled, in which case no changes to the
source code are required, or the application can be edited to use the OPT APIs in order to
undertake selective profiling or add extra features.

Profiling Senga2 on the Blue Gene/P

On the IBM Blue Gene/P platform the following additions to the normal compile/link line for
Senga2 were required:

• The OPT header-file include directory (only required if using the OPT API)
• The OPT static library directory, OPT and OPT-support libraries
• The GNU C++ stdc++ library
• The dynamic-linking library
• The “Fortran Wrapper” library (necessary when compiling Fortran codes)

Linking Senga2 with OPT on the BlueGene/P

When MPI profiling with OPT users can choose between linking with shared or static MPI
libraries. For the Blue Gene/P platform the Allinea support team recommends using static
MPI libraries.

On Blue Gene/P the link command for is:
mpixlf77 -g -O3 ${SENGA2_SRC_LIST} -o senga2.exe

-L${MPICHLIB_PATH} -lfmpich.cnk

-L${OPT_ROOTDIR}/opt/lib/static -lopt-bgp -lstdc++ -ldl

When using calls to the OPT API from within the source code, the OPT header-file include
directory needs to be specified.
mpixlf77 -g -O3 ${SENGA2_SRC_LIST} -o senga2.exe

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 45

-I${OPT_ROOTDIR}/opt/include -L${MPICHLIB_PATH} -lfmpich.cnk

-L${OPT_ROOTDIR}/opt/lib/static -lopt-bgp -lstdc++ -ldl

Instrumented executables can be run in exactly the same way as normal executables, either
interactively or in batch mode. Jobs can be launched either from the command line or the OPT
GUI. During execution profiling data is collected in the profiling database.

E.g. for Senga2b, the resulting executable can be run interactively or from within
LoadLeveler scripts using the following command:
 mpirun -np <nprocs> -env OPTPATH=/home/ags64/opt1.4/opt

-env BG_STACKGUARDENABLE=0 ./senga2.exe

(The run-time environment variable BG_STACKGUARDENABLE is required for proper
operation of OPT profiling on Blue Gene systems.)

All runs undertaken use one MPI process per Blue Gene/P core.

Managing OPT profiling data for large-scale runs

In common with other tracing and sampling tools it is usually advisable to limit the amount of
information collected when tracing relatively long jobs or jobs using large numbers of
processors. This is necessary in order to prevent both the tracing process overhead and
resulting trace files becoming prohibitively large.

OPT has two main methods to enable users to limit tracing:

1. Selective OPT Logging. This uses the OPT Fortran API to turn on and turn off logging
via calls to OPT_Stop_Logging and OPT_Start_Logging function calls.

2. Limiting the maximum number of functions that can be traced. This is achieved by
setting a parameter maxfuncs in the OPT configuration file opt.conf.

Both methods are effective at reducing tracing overheads. For users familiar with the program
to be analysed, Selective OPT Logging is probably preferable, as this allows more specific
control of tracing. For example, when tracing Senga2 runs, OPT logging can be limited to just
one time-step, which in this case provides trace events representative of the communication
pattern of the complete run. Limiting the maximum number of functions via maxfuncs is
more arbitrary in that this method simply halts tracing in the code whenever the limit is
reached. The default setting of maxfuncs is 100 000. The Allinea support team reports that
the logging of 3 million functions in total is a level approaching the operational limit of OPT.

The timing results shown in Table 12 through Table 14 below report the observed runtime
overheads associated with using OPT for runs involving 64, 256 and 1000 processes on
BlueGene/P. As described in an earlier section of the report, it should be noted that the runs
using 256 processes and 1000 processes simulate a problem size with double the dimensions
of the problem using 64 processes. It can be seen that the overhead per time-step increases
markedly when the code is run with 1000 processes. Here a time-step undertaken with OPT
profiling takes around 9 times longer than a time-step with no OPT profiling. However, in the
author’s experience, this level of run-time overhead is not exceptional when compared to
other profiling tools on large processor counts. From the ‘Total Job Times’ shown it can be
seen that OPT logging introduces very large delays at the end of the parallel job – ranging

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 46

from 441 seconds for 64 processes to over 3 hours for 1000 processes. This extra time spent at
the end of the run, presumably gathering the events logged, is out of proportion to the increase
in the number of MPI events reported as logged in the OPT viewer.

No OPT

With OPT
maxfuncs=100000
(default)

With OPT
maxfuncs=2000

Time per TS
(max / min secs) 1.35 / 1.37 1.58 / 1.55 1.68 / 1.37

Total CPU Time (secs) 15.76 20.48 20.74

Total Job Time (secs) 17.15 478.35 441.21

Logged MPI Function Calls N/A 401784 128064

Table 12: Runtime details – 64 process jobs.

No OPT

With OPT
Logging for 1 time-step
only

Time per TS
(max / min secs) 2.66 / 2.65 3.76 / 2.69

Total CPU Time (secs) 30.2 42.80

Total Job Time (secs) 40.58

3012.76

Logged MPI Function Calls N/A 256512

Table 13: Runtime details – 256 process jobs.

No OPT
With OPT
Logging for 1 time-step
only

Time per TS
(max / min secs) 0.87 / 0.86 7.06 / 0.86

Total CPU Time (secs) 20.21 614.96

Total Job Time (secs) 35.58

12687.56

Logged MPI Function Calls N/A 615000

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 47

Table 14: Runtime details – 1000 process jobs.

Once the job has completed the MPI profiling data can be viewed in several different formats.

This section will discuss the different types of analysis that can be undertaken from the OPT
viewer/GUI with an emphasis on ascertaining the suitability of OPT for high core counts –
specifically the results from the 64 process and 256 process jobs on Blue Gene/P. Although
tracing was completed for the 1000 process jobs, no attempt was made to view this
information in the OPT viewer (it was concluded that this would be too demanding for the
OPT viewer).

On starting the OPTGUI, the first window shown is the Session Manager screen. This
database, shown in Figure 4, contains a list of all the user’s jobs run with OPT tracing, along
with associated details such as processors used, runtime, number of MPI events logged. This
ability to easily switch between trace results obtained from different jobs is an extremely
useful feature when analyzing communication patterns from scalability tests. Users can thus
view tracings from different core counts side-by-side, organized conveniently within the
viewer’s tabbed environment.

Figure 4: Session Manager of OPT summarizing a range of different jobs.

Timeline View

This is a chronological display of the users program. The profiling information from each
processor is listed as a separate line and within each line the colored boxes represent MPI
communications or other MPI function calls. Areas of interest in the timeline can be navigated
via zoom and mouse drag or time intervals can be entered manually. Communication lines
representing messages can also be toggled on/off. Individual message occurrences can also be
highlighted and detailed performance data can be obtained (see Figure 5). The timeline view
can be useful for highlighting asynchronous behavior or load imbalances between processors.

The timeline is best when we consider only a small section of the actual run time of a program
– as long as this section is representative of overall performance. Figure 5 shows a timeline
for a 64 process run of Senga2 where maxfuncs=2000 has been specified in the user’s
opt.conf configuration file. Figure 6 demonstrates a timeline for a 64 process run on
Senga2 where the profiling has been restricted to three time-steps via calls in the source code
to OPT_START_LOGGING and OPT_STOP_LOGGING. Non-traced sections of the timeline
are represented by the light grey bars on either side of the traced time-steps in the centre of
the view. As discussed in a previous section, this communication pattern is repeated

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 48

throughout the run and therefore tracing small numbers of time-steps provides an analysis
representative of the complete run whilst reducing tracing overheads significantly.

Figure 5: OPT Timeline view of a 64 process job with tracing restricted to 2000 functions.

Figure 6: OPT Timeline view of a 64 process job with tracing restricted to 3 time-steps.

Figure 7 shows a zoomed timeline view of a halo-exchange between processors. The green
and purple blocks represent time spent in MPI_SENDs and associated MPI_RECVs. The
block lines represent the individual data transfers between processor cores. Details
corresponding to an individual message can be shown by clicking on the associated line. The
huge volume of messages in the larger process count run 256 processors meant that both
communication patterns and individual messages became difficult to follow and some kind of
filtering option in the viewer would have been useful (e.g. restricting messages shown to
those above a certain size or between specific MPI ranks).

Figure 7: Zoomed timeline view for halo exchange communication pattern on 64 processes.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 49

The timeline view was quite responsive to user instructions (e.g. zoom, toggle on/off
communication lines) for 64 process jobs. Load times were somewhat longer when switching
views for 256 process jobs, though the GUI remained quite useable.

MPI Summary View

In many cases summarizing the MPI communications across all processes for the complete
job is informative. Figure 8 shows that the message passing in a 256 process run of Senga2 is
dominated by calls to MPI_SSEND, MPI_RECV and MPI_GET_COUNT, with a small
amount of time spent in MPI_ALLREDUCE. The Min/Max/Mean/Variance across the 256
processes is also shown.

Figure 8: MPI Summary View for 256 process run of Senga2.

Histogram View

This view arranges metric values from processes into buckets and gives a view of selected
measurements by plotting a histogram. By viewing the data in this format users can easily
identify load imbalances between selected processors. Figure 9 shows the large variance in
time spent in MPI_ALLREDUCE across 256 processes. Figure 10 displays a stacked
histogram of time spent in all MPI calls across 256 processes. Both views are examples of
how users can use OPT to easily spot communication load imbalances in their programs and
are of particular use on runs involving large process counts.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 50

Figure 9: Variance of time spent in MPI_ALLREDUCE for 256 process run of Senga2.

Figure 10: Stacked Histogram of Time Spent in all MPI Calls for 256 process run on Blue Gene/P.

Message Profile View

The Message Profile view provides a summary view of point-to-point communications
between different processors. The information is provided in the form of a grid. The banded
structure seen in Figure 11 and Figure 12 below is a classic communication pattern for finite-
difference based algorithms. Metrics such as bytes transferred, number of MPI calls and time
spent in MPI communications can be selected. This view is particularly useful for identifying
communication patterns for jobs involving large processor counts. The 256 process message
profile view was slow to load (around 10 minutes), but once loaded changing the view’s
parameters was quite responsive.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 51

Figure 11: Message Profile View for 64 process run of Senga2.

Figure 12: Message Profile View for 256 process run of Senga2.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 52

7.2 Scalability Experiments with CrayPat and Apprentice2

Sebastian von Alfthan, CSC, Finland

To assess the functionality and scalability of CrayPat and Apprentice 2, we have analysed the
performance of Gromacs running the PABS benchmark dataset. In this section we present
step-by-step how the analysis was performed.

We first produced a profile of the Gromacs performance. The first step was to load the
CrayPat module (xt-craypat) and to relink Gromacs.

module load xt-craypat
 make mdrun

 Here we used the recommended two phase method called Automatic Profiling Analysis
(APA). In the first phase the binary was instrumented to collect information on the most time
consuming functions:

pat_build -O apa mdrun

This command produced an instrumented binary (mdrun+apa) that was run using the test
case. After the job had finished a performance file or a directory with multiple files had been
created. A directory with multiple files is created when running large scale jobs. This is one
key aspect which enables CrayPat to support performance measurement at scale. The
performance file was thereafter analysed and a text report and an apa file was produced using
the pat_report command:

 pat_report performance_file.xf

The apa file is a text file which defines how to instrument the binary in the second phase. The
initial content of this file is automatically generated based on the information gathered in the
first stage. The automatic values are most of the time good, but the user can also easily change
them, e.g., add user level functions to be traced or change which hardware counters are
captured. For Gromacs we noticed that the APA based scheme was not completely successful,
we had to activate several important user level functions. In addition to user level functions
we also traced MPI and collected some basic HW counter information. Based on the apa file
we produced the final instrumented binary:

pat_build -O apafile.apa

An expert user can also discard the first stage in the APA scheme, and directly produce an
instrumented binary. After all, the apa file mostly contains flags for pat_build. After we run
the final instrumented binary we obtained a new performance file. Running pat_report on it
produced a performance report and an ap2 file that can be visualized using Apprentice 2. The
report contains information such as a profile (Table 15):

Time % | Time | Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 148.349789 | -- | -- | 177406.9 |Total
|--
| 76.5% | 113.532364 | -- | -- | 73514.7 |USER
||---
|| 54.9% | 81.393673 | 2.780510 | 3.3% | 10001.0 |do_nonbonded
|| 10.8% | 15.986473 | 8.292538 | 34.3% | 10001.0 |do_force
|| 4.5% | 6.629125 | 3.868527 | 37.0% | 1.0 |do_md
|| 2.5% | 3.747337 | 8.112071 | 68.7% | 10001.0 |do_force_lowlevel
|| 1.9% | 2.881715 | 0.651005 | 18.5% | 10003.0 |csettle

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 53

||===
| 14.0% | 20.785209 | -- | -- | 6691.3 |MPI_SYNC
||---
|| 11.8% | 17.472643 | 13.257841 | 43.3% | 4390.6 |MPI_Bcast(sync)
|| 1.9% | 2.826379 | 11.005785 | 79.9% | 1130.5 |MPI_Allreduce(sync)
||===
| 9.5% | 14.032195 | -- | -- | 97197.9 |MPI
||---
|| 9.2% | 13.683468 | 8.110984 | 37.4% | 87094.8 |MPI_Sendrecv
|==

Table 15: Profile report for Gromacs.

We also get HW counter information on the whole program, and on individual functions, as
shown in Table 16:
USER / do_nonbonded
--
 Time% 54.9%
 Time 81.393673 secs
 Imb.Time 2.780510 secs
 Imb.Time% 3.3%
 Calls 122.9 /sec 10001.0 calls
 PAPI_L1_DCM 15.140M/sec 1232454976 misses
 PAPI_TLB_DM 0.019M/sec 1560986 misses
 PAPI_L1_DCA 1872.994M/sec 152465437424 refs
 PAPI_FP_OPS 6320.028M/sec 514462747250 ops
 User time (approx) 81.402 secs 219785329131 cycles 100.0%Time
 Average Time per Call 0.008139 sec
 CrayPat Overhead : Time 0.0%
 HW FP Ops / User time 6320.028M/sec 514462747250 ops 58.5%peak(DP)
 HW FP Ops / WCT 6320.028M/sec
 Computational intensity 2.34 ops/cycle 3.37 ops/ref
 MFLOPS (aggregate) 1617927.15M/sec
 TLB utilization 97672.50 refs/miss 190.767 avg uses
 D1 cache hit,miss ratios 99.2% hits 0.8% misses
 D1 cache utilization (misses) 123.71 refs/miss 15.464 avg hits
==

Table 16: HW counter information for Gromacs.

Load balance is also of outmost importance to improve performance; the report contains a
table showing time spent in user functions, and the synchronization and normal MPI time
(Table 17):

 Time % | Time | MPI Msg |MPI Msg Bytes | Avg MPI |Group
 | | Count | | Msg Size | PE[mmm]

 100.0% | 148.463816 | 95441.6 | 1608213464.0 | 16850.24 |Total
|--
| 76.5% | 113.579615 | -- | -- | -- |USER
||---
|| 0.3% | 119.268743 | -- | -- | -- |pe.85
|| 0.3% | 113.554316 | -- | -- | -- |pe.240
|| 0.3% | 111.465198 | -- | -- | -- |pe.176
||===
| 14.0% | 20.789510 | -- | -- | -- |MPI_SYNC
||---
|| 0.1% | 31.694825 | -- | -- | -- |pe.45
|| 0.1% | 20.931146 | -- | -- | -- |pe.166
|| 0.0% | 8.090958 | -- | -- | -- |pe.201
||===
| 9.5% | 14.094668 | 95441.6 | 1608213464.0 | 16850.24 |MPI
||---
|| 0.1% | 22.218904 | 95122.0 | 1571528263.0 | 16521.19 |pe.237
|| 0.0% | 13.053821 | 95244.0 | 1671435159.0 | 17548.98 |pe.131
|| 0.0% | 10.544807 | 100104.0 | 1661084499.0 | 16593.59 |pe.96
|==

Table 17: MPI information for Gromacs.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 54

Finally we also get statistics about message counts and sizes, both for the whole program and
for individual MPI calls (Table 18):

Totals for program
--
 MPI Msg Bytes 1608213467.0
 MPI Msg Count 95441.6 msgs
 MsgSz <16B Count 11718.8 msgs
 16B<= MsgSz <256B Count 14476.2 msgs
 256B<= MsgSz <4KB Count 5952.7 msgs
 4KB<= MsgSz <64KB Count 63287.3 msgs
 64KB<= MsgSz <1MB Count 4.6 msgs
 1MB<= MsgSz <16MB Count 2.0 msgs
==
MPI_Sendrecv / dd_sendrecv_rvec / dd_move_x / do_force
--
 MPI Msg Bytes 781831261.0
 MPI Msg Count 30003.0 msgs
 4KB<= MsgSz <64KB Count 30000.7 msgs
 64KB<= MsgSz <1MB Count 2.3 msgs
==
Table 18: Summary of profile information for Gromacs.

The examples above only show the default reports; there are several options for additional
reports and for changing the default ones.

Running Apprentice2 on the ap2 file enables one to visualize the performance data. We will
here present a subset of the results one obtains. In Figure 13 the profile is shown as two pie-
charts, showing the profile based both on calls and on time. Clicking on a function in the pie-
chart shows its load balance, as shown in Figure 14.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 55

Figure 13: Profile of execution as shown by Apprentice2.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 56

Figure 14: Load balance view in Apprentice 2.

Another very useful view is the call graph (Figure 15), showing a compact presentation about
the load balance, how much time is spent in different routines and the relationship between
callers and callees. This enables one to get an overview of the program, even if its structure is
not familiar. The load balance information is represented by colors, the yellow bar in the
background shows the maximum time, the purple bar shows the average time, and the cyan
bar shows the minimum time spent in the function. The size of the boxes show the relative
time spent in the function, the height represents the time spent in that particular function,
while the width corresponds to the cumulative time spent in the children of the function.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 57

Figure 15: Callgraph view in Apprentice 2.

To enable a time sequence view in Apprentice 2 one simply needs to set an environment
variable prior to running the instrumented application:
 export PAT_RT_SUMMARY=0

This works well for short jobs, running on a small number of cores. If this is not the case, the
amount of data captured is too large to be analysed with ease. The simple solution for an
iterative algorithm, such as the Molecular Dynamics one in Gromacs, is to only turn on
tracing for a few iterations. Each iteration is essentially similar to all the other ones, it's thus
enough to just sample a few of them. This can be done using the CrayPat API by adding
instructions in the source code. We modified Gromacs by turning off tracing right after
MPI_Init in the gmx_setup function:
 (void) MPI_Init(argc,&argv);
 PAT_tracing_state(PAT_STATE_OFF);

In the main iteration loop we then turned on tracing for a few iterations as follows:
 if(step==910){
 PAT_tracing_state(PAT_STATE_ON);
 }

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 58

 else if(step==920){
 PAT_tracing_state(PAT_STATE_OFF);
 }

In Figure 16 a timeline is shown for Gromacs. In this case only MPI routines have been
traced, therefore the time between MPI_Sendrecv's is white. This kind of a view can be very
useful in pinpointing the reason for bad load balance. In this case the view is quite simple, as
the only communication is MPI_Sendrecv between neighbors. When looking at another test
case for Gromacs in PRACE report D6.4, the view proved extremely useful as it showed that
the major bottleneck was MPI_Alltoall.

Figure 16: Timeline of Gromacs visualized using Apprentice 2.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 59

7.3 Scalability Experiments with IBM HPCT

John Donners, SARA, the Netherlands

Analyzing the CPU performance

The NEMO executable is instrumented for hardware performance measurements using
hpctInst:

hpctInst -dhpm nemo

When running the instrumented binary, the following error message appears:

symbol lookup error: /opt/ibmhpc/ppe.hpct/lib64/libshpc.so:
undefined symbol: _vperfctr_open

This can be solved by linking the application with the perfctr library, but this is not described
in the documentation. The instrumentation also creates a hidden file called
'.psigma.hpmhandle', which needs to reside in the same directory as the instrumented
executable, which is neither documented.

The output is one file with the hardware counters for the first task only. The measurements are
analysed using the peekperf utility, which shows two windows (cf. Figure 17): one window
with a tree with the different source files and subroutines and another window with the source
for each file. Once a subroutine is selected in the left window, the selected subroutine is
marked in the right window. The tree view can be sorted alphabetically on subroutine and
source file name or on the execution time, but it is difficult to find which routines are most
cpu-intensive: the execution time includes all callees and the execution time for callees
includes the calls from all its callers. The data can also be shown as a large spreadsheet and
saved to a file for further analysis. However, this table neither contains the exclusive timing of
subroutines. Further details (e.g. the flop rate and the instructions per cycle) are available and
are clearly explained in the documentation. The peekperf utility allows specifying the group
of hardware counters that should be used, but this option seems only available when the
program is run from peekperf, which is usually not the case for massively parallel
applications.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 60

Figure 17: Main window of peekperf.

Analyzing the MPI performance

The MPI calls in the NEMO application can be instrumented as follows:

hpctInst -dmpi nemo

which initially results in an error message for NEMO:
2750-202 ERROR: cannot find the trampoline for
'mpi_pack_external_size'.
 Please add the -emit-stub-syms option while linking
 (assume the user uses the XL compiler)!
 2750-507 hpctInst: could not do instrumentation

For NEMO this problem could be solved by replacing 'include mpif.h' with 'use mpi' in the
code. However, other Fortran 90 MPI applications give the same error message, even though
the code does say 'use mpi'. It is unclear what is the cause of this ambiguous behavior. The
instrumented NEMO binary needs 128 MPI tasks to run, so it is submitted as a batch job and
runs from a scratch directory. Unfortunately, running the instrumented binary fails:
ERROR: 0032-154 Not a persistent request (0), MPI_Start, task 124
ERROR: 0032-154 Not a persistent request (0), MPI_Start, task 125
ERROR: 0032-154 Not a persistent request (0), MPI_Start, task 126
ERROR: 0032-154 Not a persistent request (0), MPI_Start, task 127
ERROR: 0031-250 task 65: Terminated

while the original binary does function properly. As a result, we have been unable to further
test the MPI analysis with the HPCT.

Analyzing the I/O performance

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 61

HPCT can also instrument I/O system calls (called 'MIO'), which can be very valuable for
benchmarking high-performance computing applications, because I/O is often an important
bottleneck for performance and scaling. The NEMO application uses primarily the NetCDF
library for output, so the executable was linked with the static NetCDF libraries to enable
instrumentation. NEMO was instrumented with the hpctInst command-line tool as follows:

hpctInst -dmio nemo_world

This creates an instrumented executable nemo_world.inst, as is the case for the
instrumentation of MPI calls and hardware counters. The environment variable MIO_FILES
was set in the batch job as suggested in the manual:

export MIO_FILES=”*[trace/xml/events={./mio.evt}]”

Unfortunately, no I/O measurements are produced. Interestingly, the I/O instrumentation does
change the runtime behavior of the application. After 66 timesteps with many I/O requests,
the NetCDF library stops with an error:

iom_nf90_rp0123d: should have been an impossible case...

The tab window for the MIO instrumentation is empty when trying to instrument a very
simple C program with file I/O using peekperf. There is no mention that this part of the HPCT
is not supported on the Huygens platform (Power-on-Linux), so it is unclear why this doesn't
work.

X Windows Performance Profiler
Xprof is a GUI that can be used to graphically display a set of cpu profiles from each task of a
parallel code. The call tree is graphically represented: each node is represented by a green box
whose width represents the inclusive time (time to execute itself and all its callees) and its
height represents the exclusive time (cpu time without callees). In 'averaged view' the boxes
are scaled according to the standard deviation of all the profiles. Filter functions can be
applied to select functions with certain names (e.g. to filter Fortran modules), the number of
calls or is cpu time usage. This last filter is useful to declutter the view for large programs like
NEMO. Profiles are available down to the source line level, which is an important advantage
over the standard gprof. It displays the cpu usage for the source as 'ticks per line' (0.01
seconds), not as a percentage. The boxes are scaled linearly but with a lower limit, which
makes insignificant routines appear much larger than they should.

7.4 Scalability Experiments with IPM

Jean-Guillaume Piccinali, CSCS, Switzerland

We have chosen to investigate IPM on the CRAY XT5 using ECHAM5. ECHAM5 was run
with a T106L31 configuration, simulating one month of model time. IPM shows a rather poor
scalability of the code (Figure 18). For instance, on 64 cores 35% of the execution time is
taken by MPI communication routines. For 128 and 512 cores, this is even more.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 62

Figure 18: Scalability details of IPM.

As described in D6.3.1, ECHAM5 suffers from high frequency of small messages. Scalability
results show (see chapter 3) that ECHAM5 remains under the 10 Tflop/s threshold. It turned
out to be impossible to obtain scalability results for that code which pass this threshold. In
conclusion, the current problem size of ECHAM5 will not scale to large numbers of cores. As
a replacement, we used the LINPACK benchmark to evaluate the performance analysis tool.
The issue of the time taken by the tools to generate sufficiently small traces with as much
details as possible has been raised in WP6. The following table shows the overhead induced
by using either CrayPat or IPM (Table 19):

Cores No Tool IPM IPM

Overhead
CrayPat CrayPat

Overhead
2916 1531.3 1459.7 -5% - -
3600 1292.2 1232.6 -5% 1348.4 4%
6084 855.3 868.1 2% 911.4 7%
10404 583.2 668.0 15% 672.6 15%
14400 477.0 614.4 29% 562.8 18%
15876 457.2 616.9 35% 547.8 20%

35%

T106
064 cores

T106
128 cores

50%

T106
512 cores

76%

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 63

17424 440.3 642.3 46% 530.7 21%
19044 429.4 690.5 61% 531.9 24%
20736 418.4 710.0 70% 517.6 24%

Table 19: Comparison of overhead introduced by CrayPat and IPM.

It is interesting to observe that for a few thousands of cores, the run with usage of the IPM
tool is faster than without. We have not investigated this further, although it is a rather strange
effect. It is unlikely that such tools will scale without modification to hundreds of thousands
of processes (although several thousands is not a problem). Based on these results, detailed
feedback has been sent to the developers of IPM and the decision has been taken to modify
some components of the tool.

IPM wasn't easy to install initially but input from the NERSC staff helped to overcome the
issue.

With respect to file handling transparency, IPM can collect individual performance profiles
into a database which synthesizes the performance reports via a web interface. Since profiles
are stored centrally in an SQL database they provide a performance track record to developers
and a means of workload characterization to HPC managers. Analysis can also be done on a
local laptop.

7.5 Scalability Experiments with Scalasca

Xu Guo and Joachim Hein, EPCC, United Kingdom

Using Scalasca for HELIUM profiling

The Scalasca toolset was used for profiling HELIUM performance on the SARA POWER6
system, Huygens, and the new Jülich cluster with Nehalem cores, Juropa. The profiling was
used to help with the petascaling and optimization for PRACE WP6 task 6.4 and task 6.5. For
the HELIUM profiling on Huygens and Juropa, a 1540-block test case was run on 1540 cores
with Scalasca used.

Using Scalasca for HELIUM profiling is straightforward. The implementation steps on both
prototypes are listed as below.

Huygens:

• Load modules for Scalasca usage:

module load papi scalasca
• Recompile and link HELIUM with Scalasca:

scalasca -instrument /sara/sw/modules/wrappers/sara/mpfort -
qfree=f90 -O4
-qessl -qarch=auto -qtune=auto -qhot
-o helium_scalasca helium.f90

• Run HELIUM with Scalasca analysis:
scalasca –analyse poe helium_scalasca

• The profiling results will be worked out in a separate directory. After checking the
execution correctness, the profiling results can be viewed via the Scalasca GUI:

 scalasca -examine [epik_dir]

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 64

Where [epik_dir] is the directory containing all the profiling results.

Juropa:

• Load modules for Intel compiler and Scalasca toolset usage:

module load parastation/intel
module load UNITE
module load scalasca

• Recompile and link HELIUM with Scalasca:
scalasca -instrument mpif90 -O3 -ipo \
 –o helium_scalasca helium.f90

• Run HELIUM with Scalasca analysis:
scalasca -analyse mpiexec –np 1540 ./helium_scalasca

• The profiling results will be worked out in a separate directory. After checking the
execution correctness, the profiling results can be viewed via the Scalasca GUI:

scalasca –examine [epik_dir]
where [epik_dir] is the directory containing all the profiling results.

Running HELIUM with Scalasca was successful on both systems. The profiling results were
produced as expected. All the profiling data can be viewed via the Scalasca GUI using CUBE.
Figure 19 shows an example of using Scalasca GUI to view and analyse the HELIUM
profiling results on Huygens. This is very similar to that on Juropa system.

Figure 19: Viewing the HELIUM profile via Scalasca GUI on the Huygens system.

The profiling results with Scalasca were very useful for the HELIUM petascaling and
optimization tasks. The main Scalasca functionalities used for HELIUM profiling included:

• MPI communications and synchronizations profiling:

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 65

This is to identify the most expensive MPI communications and synchronizations for
reducing the communication overheads.

• User functions execution time profiling:
This is quite helpful to produce the source code calling tree, identify the most expensive
user functions and if possible, locate the bottlenecks in the original source code.

• Load balance profiling:
It helped to analyse the reasons for communications and user functions expense.

Scalasca is portable to multiple systems. It makes easier to compare the behavior of the same
application on different architectures. For example, when comparing the Scalasca profiling
data on Huygens and Juropa, it can be seen clearly via the CUBE GUI that the key
bottlenecks were similar, but the percentage of synchronizations is higher on Juropa.

Using Scalasca for NAMD profiling
In contrast to HELIUM, which builds with a standard compiler call, building an NAMD
executable is more complex. As discussed when instrumenting an executable for Scalasca,
the developer has to prepend all compiler/linker calls with a call to the Scalasca executable.

When building an NAMD executable at least the link step is triggered by calling the charmc
command, which is the compile command of the Charm++ installation. This command sets
up the environment required when using the Charm++ library and invokes the system
compiler or linker. To instrument the NAMD executable the call to Scalasca has to be added
to Charm++ scripts. For a C++ code, the compiler invoked by charmc appears to be defined
by the CMK_CXX variable and the linker is defined by the CMK_LDXX variable, both are set in
the subdirectory of src/arch relevant for your system. The file is typically named conv-
mach.sh, but for some architecture different names are used and some experimentation will
be required, when searching for the right place.

During this investigation we did not manage to successfully instrument a NAMD executable
with Scalasca. The reason is that the compilation of key NAMD objects failed when
“scalasca –instrument” was added to the CMK_CXX variable. Within the time
available, we did not manage to overcome these problems. We can only speculate about the
cause.

While not managing to get a full profile on the HECToR system and the JUROPA system, we
managed to obtain results for MPI profiling with Scalasca. On the Huygens system even that
failed, the instrumented code on execution would not open the required repository to write the
results. The Scalasca developers have since traced the cause to be a configuration issue of the
Scalasca installation on Huygens, which according to their testing overcomes the problem.
We are presently awaiting an updated Scalasca installation to confirm their findings.

We like to note that with Cray’s proprietary tool CrayPat, which uses in many aspects a
similar approach to Scalasca, we had no problems obtaining a full NAMD profile for the
HECToR and Louhi system. A hardware vendor which only has to cover their own systems
and has easier access to undocumented features of the hardware and system software might be
at an advantage here. In this context it is also interesting to note that the developers of
Charm++ are introducing a profiling interface to their code and are collaborating with tool
experts on exploiting this interface [11].

MPI profiling on Juropa
To obtain an MPI profile from Scalasca on the Juropa system one needs to:

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 66

• Enable linking with Scalasca by adding “scalasca –instrument” to the
CMK_LDXX variable in the file cc-mpicxx.sh in the directory /src/arch/mpi-
linux-x86_64 of the charm++ installation.

• Load modules for Intel compiler and Scalasca toolset usage:
module load parastation/intel
module load UNITE
module load scalasca

• Relink the namd executable
• When executing the instrumented executable the above modules also need to be loaded in

the job submission script and the mpiexec needs to be prefixed by “scalasca –
analyse”.

• The results can be visualized by running “scalasca –examine” on the epik directory.

In Figure 20 we show a screen dump of the GUI showing the resulting profile from a 512 task
run. When compared to Figure 19, it is obvious that the call tree now contains references to
MPI calls only. The approach NAMD takes to data exchange makes extensive use of
MPI_Iprobe, when Charm++ is build onto of MPI. Examination of Figure 20 shows that
MPI_Iprobe calls do not appear in the profile. The Scalasca developers confirmed that the
present version is not profiling MPI_Iprobe. The reason behind is that the overheads
associated with calls of this nature could be substantial and distort the results. They are
presently working on a solution which will be added in a future release.

Figure 20: MPI profiling of NAMD on Juropa.

MPI profiling on Cray XT

A similar procedure to Juropa also allowed MPI profiling on the Cray XT. We added
“scalasca –instrument” to the conv-mach.sh file in the Charm++ subdirectory

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 67

/src/arch/mpi-crayxt and re-linked the executable after loading the Scalasca
module. On execution, the aprun command inside the job submission script needs
prepending with scalasca –analyse. A screen shot of the MPI profile is shown in Figure
21. This is also from a 512 task run.

Figure 21 gives an example of counting the number of MPI_Isend commands issued. In the
right hand column one can see a break-down by nodes and cores. The green color in the right
hand column against process 0 shows that this is issuing significantly fewer MPI_Isend
calls then the other processors, while the red color against process 1 shows that this process is
issuing more calls than the other processors. This is a good example of how Scalasca’s use of
color to guide the analyst quickly to the potential trouble spots.

As noted the screen shot is from a 512 task run. The GUI is well designed for the task of
analyzing performance data from experiments with several hundred or thousand tasks. On
start-up the GUI gives the analyst an overview of the application quickly and allows getting
very detailed information on individual tasks by expanding a few boxes.

As expected from the feedback received from the Scalasca developers, MPI_Iprobe is also
not profiled on the Cray XT.

Figure 21: MPI profiling of NAMD on HECToR.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 68

7.6 Scalability Experiments with VPA

Maciej Filocha and Maciej Szpindler, PSNC, Poland

We have used VPA to analyse the progress of optimizations works with the SIESTA package
on Cell architecture. We have focused on performance issues on a single Cell-based QS22
blade server - two PowerXCell processors (2 PowerPC cores and 16 SPU cores), see Figure
22 for a sample-based profile of the computational kernel.

Figure 22: Screenshot: Profile Analyzer with sample-based profile.

In order to generate a sample-based profile one must use the oprofile tool (under Linux) to run
a program and collect samples. This requires having root permissions which is a little
embarrassing. Nevertheless we have found this functionality very useful during single-core
performance optimization phase. One can browse the source code annotated with a profile
data line-by-line. There is also a functionality of browsing de-assembled instructions mixed
together with a sample-based statistics. Another very useful feature is the ability to show
profile results per statement/instruction, in one screen. Figure 23 is an example of this.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 69

Figure 23: Screenshot: Profile Analyzer showing profile-based annotated source code.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 70

7.7 Descriptions of Application Benchmark Codes

This section contains brief descriptions of the benchmark applications from the PABS.

7.7.1 QCD

Lukas Arnold, FZJ Germany

The QCD-benchmark contains five kernels. These kernels are executed within a wrapper
application (src/qcd-bench.c). This is done by calling one function (kernel_x) for each kernel,
which does the initialization, the computation and the finalization of the kernel. In all cases
this is (was) the original main function. Each call of the kernel functions includes calls to the
wrapper to trigger diagnostics. Some modifications to the code needed to be done, in order to
be compatible to the benchmarking environment. The general structure of a kernel separates
into three phases: initial, run and finalize. Therefore the diagnostic functions (jube_kernel_*,
the corresponding source code is located in src/qcd-diag.h) are called at the begining of each
phase and at the end of the finalize phase.

The compilation of the qcd benchmark is the following: each kernel compiles it’s sources
using the parameter set in src/kernel_x/Makefile.defs, which will be included by the
corresponding src/kernel_x/Makefile. The main make file src/Makefile calls each kernels
make files, with an object archive src/kernel_x.a as target, compiles the wrapper application
and links the wrapper and archive objects to one executeable. The whole application is a
fortran 90 / C mixture.

The parameter files needed for each kernel (kernel_x.input*) have to be located in the
execution directory and are used to specify for example the problem size. At the moment the
problem size and processor distribution for kernel_C needs to be specified at the compilation.

kernel A

name BQCD

label kernel_A

short label KA

kernel origin Berlin Quantum ChromoDynamics program (BQCD), DEISA
benchmark suite

kernel contact person Hinnerk Stueben

kernel code status 2008/08/25

problem size parameter KA_N{X,Y,Z,T}, 4D lattice

problem run time parameter KA_MAXITER, iteration steps

other needed parameter KA_P{X,Y,Z,T}, distribution of processes in 4D

 KA_LIBCOMM, see readme section

 KA_LIBCLOVER, see readme section

 KA_LIBD, see readme section

notes

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 71

kernel B

name SU3_AHiggs

label kernel_B

short label KB

kernel origin University of Oulu, Finland, DEISA benchmark suite

kernel contact person Kari Rummukainen

kernel code status 2008/08/22

problem size parameter KB_NX, x component of the 3D grid

 KB_NY, y component of the 3D grid

 KB_NZ, z component of the 3D grid

problem run time parameter KB_MAXITER, iteration steps

other needed parameter

notes number of processes needs to be a power of 2

kernel C

name not stated by the authors

label kernel_C

short label KC

kernel origin private communication

kernel contact person Bjoern Leder

kernel code status 2008/09/22

problem size parameter KC_N{X,Y,Z,T}, local size of the 4D grid in {x,y,z,t}-direction

problem run time parameter

other needed parameter KC_P{X,Y,Z,T}, number of processes in {x,y,z,t}-direction

notes local grid size must be a multiple of 4 and not smaller than 8

kernel D

name not stated by the authors

label kernel_D

short label KD

kernel origin private communication

kernel contact person Carsten Urbach

kernel code status 2008/10/23

problem size parameter KD_NL, size of the 4D grid in {x,y,z}-direction

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 72

 KD_NT, size of the 4D grid in t-direction

problem run time parameter

other needed parameter KD_P{X,Y,Z}, number of processes in {x,y,z}-direction, the
number of processes in t-direction is computed

notes

kernel E

name Wuppertal Portable Inverter

label kernel_E

short label KE

kernel origin private communication

kernel contact person Stefan Krieg

kernel code status 2008/11/10

problem size parameter KE_N{X,Y,Z,T}, size of the 4D grid in {x,y,z,t}-direction

problem run time parameter KE_MAXITER, number of iteration steps

other needed parameter KE_N{X,Y,Z,T}, number of processes in {x,y,z,t}-direction

notes

7.7.2 Quantum_Espresso
Carlo Cavazzoni

CINECA Italy

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure
calculations and materials modeling, based on density-functional theory, plane waves, and
pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). QUANTUM
ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation,
and Optimization. It is freely available to researchers around the world under the terms of the
GNU General Public License. QUANTUM ESPRESSO builds upon newly restructured
electronic-structure codes that have been developed and tested by some of the original authors
of novel electronic-structure algorithms and applied in the last twenty years by some of the
leading materials modeling groups worldwide. Innovation and efficiency are still its main
focus, with special attention paid to massively-parallel architectures, and a great effort being
devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of
independent and inter-operable codes in the spirit of an open-source project, where
researchers active in the field of electronic-structure calculations are encouraged to participate
in the project by contributing their own codes or by implementing their own ideas into
existing codes.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 73

QUANTUM ESPRESSO implements a variety of methods and algorithms aimed at a
chemically realistic modeling of materials from the nanoscale upwards, based on the solution
of density-functional theory (DFT) problem, using a plane waves (PW) basis set and
pseudopotentials (PP) to represent electron-ion interactions. The codes are constructed around
the use of periodic boundary conditions, which allows for a straightforward treatment of
infinite crystalline systems, and an efficient convergence to the thermodynamic limit for
aperiodic but extended systems, such as liquids or amorphous materials. Finite systems are
also treated using supercells; if required, open-boundary conditions can be used through the
use of the density-countercharge method. QUANTUM ESPRESSO can thus be used for any
crystal structure or supercell, and for metals as well as for insulators. The atomic cores can be
described by separable norm-conserving (NC) PPs, ultra-soft (US) PPs, or by projector-
augmented wave (PAW) sets. Many different exchange-correlation functionals are available
in the framework of the local-density (LDA) or generalized-gradient approximation (GGA),
plus advanced functionals like Hubbard U corrections and few meta-GGA and hybrid
functionals.

The complete QUANTUM ESPRESSO distribution is relative large: about 240,000 lines of
code, excluding copies of the external libraries. With such a sizable code basis,
modularization becomes necessary. QUANTUM ESPRESSO is presently divided into several
executables, performing different types of calculations, although some of them have
overlapping functionalities. Typically there is a single set of functions/ subroutines or a single
Fortran 90 module that performs each specific task (e.g. matrix diagonalizations, or potential
updates), but there are still important exceptions to this rule, reflecting the different origin and
different styles of the original components. QUANTUM ESPRESSO has in fact been built out
of the merge and re-engineering of different packages, that were independently developed for
several years. In the following, the main components are briefly described.

PWscf
PWscf implements an iterative approach to reach selfconsistency, using at each step iterative
diagonalization techniques, in the framework of the plane-wave pseudopotential method. Both
separable NC-PPs and US-PPs are implemented; recently, also the projector augmented-wave
method has been added. PWscf can use the established LDA and GGA exchange-correlation
functionals, including spin-polarization and can treat non-collinear magnetism induced by
relativistic effects (spinorbit interactions) or by complex magnetic interactions.

CP
The CP code is the massively-parallel module for Car- Parrinello ab-initio Molecular
Dynamics (MD). CP can use both NC PPs and US PPs. In the latter case, the electron density
is augmented through a Fourier interpolation scheme in real space (“box grid”) that is
particular efficient for large scale calculations. CP implements the same functionals as in
PWscf, with the exception of hybrid functionals.

Parallelization
Keeping the pace with the evolution of high-end supercomputers is one of the guiding lines in
the design of QUANTUM ESPRESSO, with a significant effort being dedicated to porting it
to the latest available architectures. This effort is motivated not only by the need to stay at the
forefront of architectural innovation for large to very-large scale materials science
simulations, but also by the speed at which hardware features specifically designed for
supercomputers find their way into commodity computers. The architecture of today’s
supercomputers is characterized by multiple levels and layers of parallelism: the bottom layer
is the one affecting the instruction set of a single core (simultaneous multithreading,
hyperthreading); then one has parallel processing at processor level (many CPU cores inside a

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 74

single processor sharing caches) and at node level (many processors sharing the same memory
inside the node); at the top level, many nodes are finally interconnected with a high-
performance network. The main components of the QUANTUM ESPRESSO distribution are
designed to exploit this highly structured hardware hierarchy. High performance on massively
parallel architectures is achieved by distributing both data and computations in a hierarchical
way across available processors, ending up with multiple parallelization levels that can be
tuned to the specific application and to the specific architecture. This remarkable
characteristic makes it possible for the main codes of the distribution to run in parallel on
most or all parallel machines with very good performance in all cases.

More in detail, the various parallelization levels are geared into a hierarchy of processor
groups, identified by different MPI communicators. In this hierarchy, groups implementing
coarser-grained parallel tasks are split into groups implementing finer-grained parallel tasks.
The first level is image parallelization, implemented by dividing processors into image
groups, each taking care of one or more images (i.e. a point in the configuration space, used
by the NEB method). The second level is pool parallelization, implemented by further
dividing each group of processors into npool pools of processors, each taking care of one or
more k-points. The third level is plane-wave parallelization, implemented by distributing real-
and reciprocal-space grids across the nPW processors of each pool. The final level is task
group parallelization, in which processors are divided into ntask task groups of nFFT =
nPW/ntask processors, each one taking care of different groups of electron states to be
Fourier-transformed, while each FFT is parallelized inside a task group. A further
paralellization level, linear-algebra, coexists side-to-side with plane-wave parallelization, i.e.
they take care of different sets of operations, with different data distribution. Linear-algebra
parallelization is implemented both with custom algorithms and using ScaLAPACK, which
on massively parallel machines yield much superior performances. The table below contains a
summary of the five levels currently implemented. With the recent addition of the two last
levels, most parallelization bottlenecks have been removed, both computations and data
structures are fully distributed, scalability on parallel machines is only limited by the physical
sizes of the system being simulated. Scalability is thus guaranteed for large-scale simulations.
This being said, it is obvious that the size and specific nature of the specific application sets
quite naturally limits to the maximum number of processors up to which the performances of
the various codes are expected to scale. For instance, the number of images in a NEB
calculation sets a natural limit to the level of image groups, or the number of electronic bands
sets a limit for the parallelization of the linear algebra operations. Moreover some numerical
algorithms scale better than others. For example, the use of norm-conserving pseudopotentials
allows for a better scaling than ultrasoft pseudopotentials for a same system, because a larger
plane wave basis set and a larger real- and reciprocal-space grids are required in the former
case. On the other hand, using ultrasoft pseudopotentials is generally faster because the use of
a smaller basis set is obviously more efficient, even though the overall parallel performance
may be not as good.

Summary of parallelization levels in QUANTUM ESPRESSO

group distributed quantities communications performance

image NEB images very low
linear CPU scaling, fair to good load
balancing;
does not distribute RAM

pool k-points low
almost linear CPU scaling,fair to
good load balancing;
does not distribute RAM

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 75

plane-
wave

plane waves, G-vector
coefficients,
R-space FFT arrays

high
good CPU scaling, good load
balancing,
distributes most RAM

task FFT on electron states high improves load balancing

linear
algebra subspace Hamiltonians very high

improves scaling, and constraints
matrices
distributes more RAM

7.7.3 NAMD
Joachim Hein

EPCC United Kingdom

NAMD is a widely used molecular dynamics application designed to simulate bio-molecular
systems on a wide variety of compute platforms. NAMD is developed by the “Theoretical
and Computational Biophysics Group” at the University of Illinois at Urbana Champaign. In
the design of NAMD particular emphasis has been placed on scalability when utilising a large
number of processors. The application can read a wide variety of different file formats for
e.g. force fields, protein structure, which are commonly used in bio-molecular science.

A NAMD license can be applied for on the developer’s website free of charge. Once the
license has been obtained, binaries for a number of platforms and the source can be
downloaded from the website. The entire process is very quick.

Deployment areas of NAMD include pharmaceutical research by academic and industrial
users. NAMD is particularly suitable when the interaction between a number of proteins or
between proteins and other chemical substances is of interest. Typical examples are vaccine
research and transport processes through cell membrane proteins.

7.7.4 CPMD
Albert Farrés

BSC-CNS Spain

The CPMD code is a plane wave/pseudopotential implementation of Density Functional
Theory, particularly designed for ab-initio molecular dynamics. Its first version was
developed by Jurg Hutter at IBM Zurich Research Laboratory starting from the original Car-
Parrinello codes. During the years many people from diverse organizations contributed to the
development of the code and of its pseudopotential library:

Michele Parrinello, Jurg Hutter, D. Marx, P. Focher, M. Tuckerman, W. Andreoni, A.
Curioni, E. Fois, U. Roetlisberger, P. Giannozzi, T. Deutsch, A. Alavi, D. Sebastiani, A. Laio,
J. VandeVondele, A. Seitsonen, S. Billeter and others.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 76

The current version, 3.13, is copyrighted jointly by IBM Corp and by Max Planck Institute,
Stuttgart, and is distributed free of charge to non-profit organizations. CPMD runs on many
different computer architectures and it is well parallelized (MPI and Mixed MPI/SMP).

Main characteristics of CPMD:
• works with norm conserving or ultrasoft pseudopotentials
• LDA, LSD and the most popular gradient correction schemes; free energy density

functional implementation
• isolated systems and system with periodic boundary conditions; k-points
• molecular and crystal symmetry
• wavefunction optimization: direct minimization and diagonalization
• geometry optimization: local optimization and simulated annealing
• molecular dynamics: constant energy, constant temperature and constant pressure
• path integral MD
• response functions
• excited states
• many electronic properties
• time-dependent DFT (excitations, molecular dynamics in excited states)
• coarse-grained non-Markovian metadynamics

7.7.5 Code_Saturne
Andrew Sunderland, Charles Moulinec

STFC United Kingdom

Code_Saturne® is a multipurpose Computational Fluid Dynamics (CFD) software, which has
been developed by EDF-R&D (France) since 1997. The code was originally designed for
industrial applications and research activities in several fields related to energy production;
typical examples include nuclear power thermal-hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation, and air conditioning. In 2007, EDF released the code as open-
source and this provides both industry and academia to benefit from its extensive pedigree.
Code_Saturne®’s open-source status allows for answers to specific needs that cannot easily
be made available in commercial “black box” packages. It also makes it possible for industrial
users and for their subcontractors to develop and maintain their own independent expertise
and to fully control the software they use.

Code_Saturne® is based on a co-located finite volume approach that can handle three-
dimensional meshes built with any type of cell (tetrahedral, hexahedral, prismatic, pyramidal,
polyhedral) and with any type of grid structure (unstructured, block structured, hybrid). The
code is able to simulate either incompressible or compressible flows, with or without heat
transfer, and has a variety of models to account for turbulence. Dedicated modules are
available for specific physics such as radiative heat transfer, combustion (e.g. with gas, coal
and heavy fuel oil), magneto-hydro dynamics, and compressible flows, two-phase flows.
There are extensions for specific applications. For example the related code Mercure_Saturne
can be used to model atmospheric environment and flows.

The software comprises of around 500 000 lines of source code, with around 50% written in
Fortran90, 40% in C and 10% in Python. The code is portable to Linux-based PCs and

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 77

several HEC architectures – e.g. SGI Origin, several PC clusters, Cray XT series and IBM
PWR series.

Industrial Usage

Code_Saturne® has been developed specifically for industrial usage by EDF.

The main industrial application examples include:
• The Study of Flows in Pressurized Water Reactors (PWRs), in particular:

o The modelling of flows around bundles of pipes in nuclear reactors in order to
maintain internal structures of reactor vessels. Knowledge of flow conditions
in the lower core is especially important to study deformation and fretting of
the fuel assemblies.

o Pressurized thermal shock on a PWR vessel. This involves the injection of cold
water in a PWR vessel following the loss of coolant. A coupled local 3D
approach, involving Code_Saturne® for the fluid and SYRTHES for heat
transfer in the solid, models the temperature evolution at critical locations in
the metal of the vessel.

• Pulverized coal furnace slagging
o Ash deposit on shell plates and exchangers reduces the efficiency of pulverized

coal-fired boilers. This ‘slagging’ is investigated with Code_Saturne® in order
to compute the temperature and flow field of the carrying phase. A high
accuracy Lagrangian approach is invoked to track individual pulverized coal
particles.

• Air Quality in Hospital Operating Theatres
o In hospitals, and particularly in operating theatres, infections can be transmitted

via airborne routes and therefore controlling air quality is of high importance.
Code_Saturne® enables an accurate representation of the equipment, medical
staff, patients and heating, ventilation and air-conditioning systems in order to
identify high-risk zones for contamination and to evaluate the efficiency of the
ceiling ventilation device.

7.7.6 GADGET

Orlando Rivera

LRZ Germany

Gadget is a freely available code for cosmological N-body/SPH simulations on massively
parallel computers with distributed memory written by Volker Springel, Max-Plank-Institute
for Astrophysics, Garching, Germany. GADGET uses an explicit communication model that
is implemented with the standardized MPI communication interface. The code can be run on
essentially all supercomputer systems presently in use, including clusters of workstations or
individual PCs.

GADGET computes gravitational forces with a hierarchical tree algorithm (optionally in
combination with a particle-mesh scheme for long-range gravitational forces) and represents
fluids by means of smoothed particle hydrodynamics (SPH). The code can be used for studies
of isolated systems, or for simulations that include the cosmological expansion of space, both
with or without periodic boundary conditions.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 78

In all these types of simulations, GADGET follows the evolution of a self-gravitating
collisionless N-body system, and allows gas dynamics to be optionally included. Both the
force computation and the time stepping of GADGET are fully adaptive, with a dynamic
range which is, in principle, unlimited.

GADGET can therefore be used to address a wide array of astrophysics interesting problems,
ranging from colliding and merging galaxies, to the formation of large-scale structure in the
Universe. With the inclusion of additional physical processes such as radiative cooling and
heating, GADGET can also be used to study the dynamics of the gaseous intergalactic
medium, or to address star formation and its regulation by feedback processes. Gadget is used
regularly in several centers and it has a very active user community.

7.7.7 EUTERPE (TORB)
Xavier Saez

BSC-CNS Spain

The EUTERPE gyrokinetic code was created at the EPFL in Lausanne as a global linear
particle in cell code for studying electrostatic plasma instabilities. It allows three-dimensional
turbulence simulations using a plasma equilibrium calculated with the VMEC code as a
starting point. EUTERPE was further developed at the Max Planck IPP and several linear
calculations of ion temperature gradient (ITG) driven turbulence in tokamak and stellarator
geometry have been carried out using it. The code has been afterwards heavily optimized and
improved and non-linear dynamics have been included.

The EUTERPE code solves the linear electrostatic gyrokinetic equation for ions (the electrons
are assumed to be adiabatic) in the whole plasma domain (full radius) for a three-dimensional
realistic stellarator geometry. Numerically the code uses a Monte Carlo method, the so-called
particle-in-cell (PIC) method, to follow the characteristics of the gyrokinetic partial
differential equation. In order to decrease the statistical noise a δf-approach, which is
equivalent to a control variates method, is used. This method serves to reduce the noise by
orders of magnitude. The charge assignment process and the discretization of the three-
dimensional Helmholtz equation have been unified by employing tensor product B-splines as
finite elements. The resulting very large system of equations is solved using the PETSc library
which simplifies parallelization of the sparse matrix operations and provides various parallel
iterative solvers and preconditioners. The parallelization strategy consists of a domain
decomposition concept in the toroidal direction. It has been implemented with the Message-
Passing Interface (MPI library).

7.7.8 WRF
Andrew Porter

STFC United Kingdom

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 79

The Weather Research & Forecasting (WRF) model was developed at the National Center for
Atmospheric Research (NCAR) in the United States as a regional- to global-scale model for
both research applications and operational weather-forecast systems.

WRF is now used as the National Oceanic and Atmospheric Administration’s primary
forecast model, for forecasts of 1-3 days ahead, and is used by weather agencies all over the
world (including weather agencies in Indo-China and Asia). As of June 2008 there are in
excess of 6000 registered WRF users.

The WRF system incorporates two different dynamics solvers; the Advanced Research WRF
(ARW) solver (developed by Mesoscale and Microscale Meteorology Division of NCAR) and
the Nonhydrostatic Mesoscale Model solver (developed by the National Centers for
Environmental Prediction, US). In this document we will discuss only the ARW version of
the WRF modeling system.

The ARW solves the fully-compressible, non-hydrostatic Euler equations on an Arakawa C-
grid staggering in the horizontal plane and a terrain-following, dry hydrostatic pressure
vertical coordinate. There are 2nd- to 6th-order advection options for spatial discretization in
both horizontal and vertical directions. Integration in time is performed using a time-split
method with a 2nd- or 3rd-order Runge-Kutta scheme with a smaller time step for acoustic- and
gravity-wave modes. The model supports periodic, open, symmetric and specified lateral
boundary conditions and is capable of whole-globe simulations using polar Fourier filtering
and periodic east-west boundary conditions.

The WRF model has the ability to incorporate a one- or two-way nested sub-structure
(including moving nests) that enables it to be used for high-resolution case studies.

The WRF model has, from the outset, been designed and written to perform well on
massively-parallel computers. It is written in Fortran90 and can be built in serial, parallel
(MPI) and mixed-mode (OpenMP and MPI) forms, simply by choosing the appropriate option
during the configure process.

The code has been ported to a range of high-end computing architectures including the IBM
Blue Gene, IBM Power series and the Cray XT series.

The WRF code is freely downloadable following on-line registration and is explicitly declared
to be in the public domain (see http://www.mmm.ucar.edu/wrf/users/public.html).

7.7.9 NEMO
John Donners

SARA the Netherlands

NEMO (Nucleus for European Modelling of the Ocean) is a state-of-the-art modeling
framework for oceanographic research, operational oceanography seasonal forecast and
climate studies.

NEMO includes:
• 4 major components

o the blue ocean (ocean dynamics, NEMO-OPA)
o the white ocean (sea-ice, NEMO-LIM)
o the green ocean (biogeochemistry, NEMO-TOP) ;
o the adaptative mesh refinement software (AGRIF) ;

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 80

• some reference configurations allowing to set-up and validate the applications;
• a set of scripts and tools (including pre- and post-processing) to use the system.

NEMO is used by a large community: 240 projects in 27 countries (14 in Europe, 13
elsewhere), 350 registered users (numbers for year 2008). NEMO is available under CeCILL
license (public license).

7.7.10 CP2K
Pekka Manninen

CSC Finland

CP2K is a freely available (GPL) program to perform atomistic and molecular simulations of
solid state, liquid, molecular and biological systems. It provides a general framework for
different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and
plane waves approach (GPW), and classical pair and many-body potentials. It is very well and
consistently written, standards-conforming Fortran 95, parallelized with MPI and in some
parts with hybrid OpenMP+MPI as an option.

CP2K provides state-of-the-art methods for efficient and accurate atomistic simulations,
sources are freely available and actively improved. It is therefore easy to give the code a try,
and to make modifications as needed. However, The CP2K code comes with little
documentation and without any warranty. No official release has been made. Substantial
changes, improvements and bug fixes will be made at irregular intervals. Using the code for
production quality simulations is possible but requires detailed knowledge about the active
development. It has an active international development team, with the unofficial head-
quarters in the University of Zürich.

7.7.11 GROMACS

Sebastian von Alfthan

CSC Finland

The GROMACS website contains the following brief description of the GROMACS code:
http://www.gromacs.org/About_Gromacs.

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the
Newtonian equations of motion for systems with hundreds to millions of particles.

It is primarily designed for biochemical molecules like proteins and lipids that have a lot of
complicated bonded interactions, but since GROMACS is extremely fast at calculating the
nonbonded interactions (that usually dominate simulations) many groups are also using it for
research on non-biological systems, e.g. polymers.

GROMACS supports all the usual algorithms you expect from a modern molecular dynamics
implementation, (check the online reference or manual for details), but there are also quite a
few features that make it stand out from the competition:

• GROMACS provides extremely high performance compared to all other programs. A
lot of algorithmic optimizations have been introduced in the code; we have for

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 81

instance extracted the calculation of the virial from the innermost loops over pairwise
interactions, and we use our own software routines to calculate the inverse square root.
The innermost loops are generated automatically in either C or Fortran at compile
time, with optimizations adopted to your architecture. Assembly loops using SSE and
3DNow! multimedia instructions are provided for i386 processors, separate versions
using all x86-64 registers are used on Opteron x86-64 and Xeon EM64t machines.
This results in exceptional performance on inexpensive PC workstations, and for
Pentium IV/Opteron processors there are also SSE2 double precision assembly loops.
There are new manually tuned assembly loops for ia64 (both single and double
precision), and last but certainly not least we have written Altivec assembly loops both
for Linux and Mac OS X. Gromacs is normally 3-10 times faster than any other
program; check the article in Journal of Molecular Modeling (reference can be found
under resources) for a comparison benchmark.

• GROMACS is user-friendly, with topologies and parameter files written in clear text
format. There is a lot of consistency checking, and clear error messages are issued
when something is wrong. Since the C preprocessor is used, you can have conditional
parts in your topologies and include other files. You can even compress most files and
GROMACS will automatically pipe them through gzip upon reading.

• There is no scripting language - all programs use a simple interface with command
line options for input and output files. You can always get help on the options by using
the -h option, or use the extensive manuals provided free of charge in electronic or
paper format. There is also an integrated graphical user interface available for all
programs.

• As the simulation is proceeding, GROMACS will continuously tell you how far it has
come, and what time and date it expects to be finished.

• Both run input files and trajectories are independent of hardware endian and can thus
be read by any version GROMACS, even if it was compiled using a different floating-
point precision. All files from GROMACS 2.0 can further be used in the new version
3!

• GROMACS can write coordinates using lossy compression, which provides a very
compact way of storing trajectory data. The accuracy can be selected by the user.

• GROMACS comes with a large selection of flexible tools for trajectory analysis - you
won't have to write any code to perform routine analyses. The output is further
provided in the form of finished Xmgr/Grace graphs, with axis labels, legends, etc.
already in place!

• A basic trajectory viewer that only requires standard X libraries is included, and
several external visualization tools can read the GROMACS file formats.

• GROMACS can be run in parallel, using standard MPI communication.
• GROMACS contains several state-of-the-art algorithms that make it possible to extend

the time steps is simulations significantly, and thereby further enhance performance
without sacrificing accuracy or detail.

• The package includes a fully automated topology builder for proteins, even multimeric
structures. Building blocks are available for the 20 standard aminoacid residues as
well as some modified ones, the 4 nucleotide and 4 deoxinucleotide resides, several
sugars and lipids, and some special groups like hemes and several small molecules.

• There is ongoing development to extend GROMACS with interfaces both to Quantum
Chemistry and Bioinformatics/databases.

• GROMACS is Free Software, available under the GNU General Public License.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 82

7.7.12 NS3D
Harald Klimach

HLRS Germany

The code NS3D has been developed for direct numerical simulation (DNS) of the
compressible Navier-Stokes equations. Spatial discretization in streamwise and normal
directions is done by 6th-order compact finite differences. Since periodicity is assumed in
spanwise direction, a spectral ansatz is used here. Instead of evaluating some sort of viscous
fluxes, second derivatives are computed directly, which better resolves viscous terms. Time
integration is done using the standard 4th-order Runge-Kutta scheme. Execution on multiple
processors is implemented by domain decomposition (MPI) and shared-memory
parallelization. With the combination of grid transformation and domain decomposition, the
code can be applied to a wide range of geometric configurations.

Applications range from sub- to supersonic flows with emphasis on laminar-turbulent
transition, aeroacoustics and flow control. The code has been developed at the Institute for
Aerodynamics and Gasdynamics (IAG) at the Universität Stuttgart.

Right now, it is applied only at this institution but usage includes also industrial cooperations.
For Airbus, new high-lift configurations are simulated where active flow control is intended
to avoid separation of the flow. Another exmaple is the cooperation with iTronic GmbH
where a new acoustic sensor of surface roughness was investigated.

7.7.13 AVBP
Bertrand Cirou

CINES France

AVBP is one of the very few codes that can simulate turbulent combustion taking place in
turbulent flows within complex geometries. It has been jointly developed in France by
CERFACS and IFP to perform Large Eddy Simulation (LES) of reacting flows, in gas
turbines, piston engines or industrial furnaces. This compressible LES solver on unstructured
and hybrid grids is employed in multiple configurations for industrial gas turbines (Alstom,
Siemens, Turbomeca), aero gas turbines (SNECMA, Turbomeca), rocket engines (SNECMA
DMF Vernon), laboratory burners used to study unsteady combustion (Cambridge, École
Centrale Paris, Coria Rouen, DLR, Karlsruhe University, Munich University).

In 2008, the DoE (U.S. Department of Energy) for research in massively parallel applications
has allocated 4,000,000 hours of CPU to a project using AVBP, also in the scope of the
INCITE project. Further, AVBP has been used in many EC projects (in FP4, FP5, FP6 and
FP7).

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 83

7.7.14 HELIUM
Xu Guo (also with the effort from Jon Hill and Andrew Sunderland)

EPCC United Kingdom

The application HELIUM simulates the interaction between an intense linearly-polarized laser
pulse and a Helium atom. It does so by numerically solving a time-dependent Schrodinger
equation for the full system.

The source code was developed by the Queen's University Belfast and has access restrictions:
permission for using HELIUM must be obtained from Ken Taylor <k.taylor@qub.ac.uk>. For
the PRACE project, all the project members outside UK are required to sign the HELIUM
NDA before usage.

7.7.15 TRIPOLI-4
Jacques David

CEA France

TRIPOLI-4 is a computer code simulating the 3D transport of neutrons, photons, electrons
and positrons with the Monte Carlo method. It uses full pointwise as well as multigroup cross-
sections. It addresses radiation shielding and neutronic (subcritical and critical) problems. The
code has been validated through several hundred benchmarks as well as measurement
campaigns, and is used by the french nuclear industry. It is available from the OECD/NEA
databank.

TRIPOLI-4 is directly compatible with pointwise cross-sections produced by the NJOY
processing code system. It may also be run with homogenized multigroup cross-sections, and
multigroup cross-sections with probability tables. It computes the following quantities: flux,
current, reaction rates, dose equivalent rates, deposit of energy, recoil energy and
multiplication factor (in criticality mode). The associated types of estimator are collision,
tracklength, surface and point detectors. The geometry may be described by predefined shapes
combination and/or surface’ equations. Complex lattices and lattices of lattices are available.
The source description is factorized in space, energy, direction and time, providing the user
with an extended choice through tabulated or analytical laws. TRIPOLI-4 makes use of
several variance reduction techniques, which are essential in shielding calculations. The code
has perturbation estimation capabilities (concentration, density), using the correlated sampling
technique. TRIPOLI-4 can be executed in a parallel mode on workstation networks as well as
massively parallel machines. The communication graph is very simple and fault-tolerant:
should some processor be stopped for any reason, the whole simulation would keep on until
the right number of batches is obtained from the remaining processors.

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 84

7.7.16 PEPC
Lukas Arnold

FZJ Germany

PEPC - Pretty Efficient Parallel Coulomb-solver - is a parallel tree-code for rapid computation
of long-range Coulomb forces in N-body particle systems. Based on the original Barnes-Hut
algorithm, the code uses successively larger multipole-groupings of distant particles to reduce
the computational effort in the force calculation from the generally unaffordable O(N2)
operations needed for brute-force summation, to a more amenable O(N log N) complexity.
The parallel version is a pure MPI implementation of the Warren-Salmon 'Hashed Oct Tree'
scheme, including several different variations of the tree traversal routine - the most
challenging component in terms of scalability.

The public version is divided into kernel routines and 'front-end' applications, which currently
include a skeleton molecular dynamics program (PEPC-E), and a code for simulating laser-
or beam-plasma interactions (PEPC-B), developed at the Forschungszentrum Juelich. There
is also a (non-public) gravitational version (PEGS) for modelling astrophysical discs,
developed in collaboration with the University of Cologne.

The code currently runs on IBM Regatta, BlueGene/L/P and standard Linux clusters, but
should be portable to any Unix-based parallel architecture. The User Guide provides an
introduction to compiling and running the code.

More information, downloads and references are available at
http://www.fz-juelich.de/jsc/pepc/ .

7.7.17 GPAW
Jussi Enkovaara

CSC Finland

GPAW is an efficient program package for electronic structure calculations based on the
density functional theory (DFT) and the time-dependent density functional theory (TD-DFT).
The density-functional theory allows studies of ground state properties such as energetics and
equilibirum geometries, while the time-depedent density functional theory can be used for
calculating excited state properties like optical spectra. The program package includes two
complementary implementations of time-dependent density functionaly theory, a linear
response formalism and a time-propagation in real time.

The program uses the projector augmented wave (PAW) method which allows one to get rid
of the core electrons and work with soft pseudo valence wave functions. The PAW method
can be applied on the same footing to all elements, for example, it provides a reliable
description of the transition metal elements and the first row elements with open p-shells
which are often problematic for standard pseudopotentials. A further advantage of the PAW
method is that it is an all-electron method (frozen core approximation) and there is a one to
one transformation between the pseudo and all-electron quantities.

The equations of the (time-dependent) density functional theory within the PAW method are
discretized using finite-differences and uniform real-space grids. The real-space

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 85

representation allows flexible boundary conditions as the system can be finite or periodic in
one, two or three dimensions (e.g. cluster, slab, bulk). The accuracy of the discretization is
controlled basically by single parameter, the grid spacing. The real-space representation
allows also efficient parallelization with domain decomposition.

The program offers several parallelization levels. The most basic parallelization strategy is
domain decomposition over the real-space grid. In magnetic systems it is possible to
parallelize over spin, and in systems which have k-points (surfaces or bulk systems)
parallelization over k-points is also possible. Furthermore, parallelization over electronic
states is possible in DFT and in real-time TD-DFT calculations.

7.7.18 ALYA
Guillaume Houzeaux and Raúl de la Cruz

BSC-CNS Spain

The Alya System is a Computational Mechanics (CM) code with two main features. Firstly, it
is specially designed for running with the highest efficiency standards in large scale
supercomputing facilities. Secondly, it is capable of solving different physics, each one with
its own modelization characteristics, in a coupled way. Both main features are intimately
related, meaning that all complex coupled problems solved by Alya must retain the efficiency.
Among the problems it solves are: Convection-Diffusion-Reaction, Incompressible Flows,
Compressible Flows, Turbulence, Bi-Phasic Flows and free surface, Excitable Media,
Acoustics, Thermal Flow, Quantum Mechanics (TDFT) and Solid Mechanics (Large strain).
By specially designed we mean that Alya is designed from scratch to program in a flexible yet
clear way every kind of CM model to run in parallel computers. That is to say that Alya is not
an original sequential code parallelized afterwards, but a code so designed from scratch.

For more information: Alya home page: http://www.bsc.es/plantillaA.php?cat_id=552

7.7.19 OCTOPUS

Fernando Nogueira

UC-LA Portugal

Octopus is a code that aims to simulate with great accuracy some complex electronic
processes in medium to large systems. To achieve this, octopus relies on Density-Functional
Theory (DFT) and in particular on its time-dependent formulation (TDDFT). The use of DFT
allows Octopus to deal with systems larger than those typically studied with traditional
Quantum Chemistry or Quantum Monte-Carlo techniques (e.g., molecular systems of
biological interest). Although DFT is not as accurate as these techniques, its scaling with the
number of electrons of the system is much more favourable. Octopus differs from most of
DFT codes in several aspects:

Target problems:

(i) Response of molecules or clusters to external perturbations:
a. Linear optical (i.e. electronic) response of molecules or clusters;

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 86

b. Non-linear response to classical high-intensity electromagnetic fields, taking into
account both the ionic and electronic degrees of freedom.

(ii) Ground-state and excited state electronic properties of 1- and 2-dimensional systems,
such as quantum dots.

(iii) Photo-induced reactions of molecules (e.g., photo-dissociation, photo-isomerization,
etc.).

Two different approaches to TDDFT:

(i) “Standard” TDDFT-based linear-response theory, which provides excitation energies
and oscillator strengths for ground-state to excited-state transitions.

(ii) Explicit time-propagation of TDDFT equations, allowing the use of large external
potentials, well beyond the range of validity of perturbation theory.

Methodology:

Instead of using a basis set expansion of the (Kohn-Sham) wavefunctions, octopus uses a
numerical mesh. Auxiliary basis sets (plane waves, atomic orbitals) are used only when
necessary. Grids can be non-uniform, adapting to the inhomogeneity of the problem.
Multigrid techniques can be used to accelerate the calculations.

For most calculations, the code relies on the use of several types of pseudopotentials:
Troullier–Martins, Hamann, and Hartwigsen–Goedecker–Hutter.

Technical aspects:

(i) The code has been designed with emphasis on parallel scalability. As a consequence, it
allows for multiple task divisions: k-points, Kohn-Sham states, and real space regions.

(ii) The language of most of the code is Fortran 90. Other languages, such as C or Perl, are
also used.

(iii) It only uses standard and portable tools. The resulting code may thus run on virtually
any Unix-like platform.

(iv) The package is licensed under the GNU General Public License (GPL).

Users:

The code is used by researchers in electronic structure (condensed matter physicists, chemists,
astrophysicists) studying the interaction of matter with light. It is one of the base tools of the
European Theoretical Spectroscopy Facility (ETSF). octopus mailing list has more than 230
active users, and the code is downloaded from the website on average 143.3 times per month
since 2004.

7.7.20 BSIT
Mauricio Araya

BSC-CNS

BSIT stands for Barcelona Seismic Imaging Tools, which is a tool set for computational
geophysics composed by:
• Reverse Time Migration (RTM), this one is actually the code been mapped to Cell/B.E.
• Forward modeling

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 87

• Tomography
• Seismic data-base management
• Seismic data processing tools

7.7.21 ELMER
Mikko Lyly

CSC Finland

Elmer is a finite element software package for the solution of partial differential equations.
Elmer can deal with a great number of different equations, which may be coupled in a generic
manner making Elmer a versatile tool for multiphysical simulations. As an open source
software, Elmer also gives the user the means to modify the existing solution procedures and
to develop new solvers for equations of interest to the user.

The development of Elmer was started in 1995 as part of a national CFD technology program
funded by the Finnish funding agency for technology and innovation, Tekes. The original
development consortia included partners from CSC – IT Center for Science (formely known
as CSC – Scientific Computing), Helsinki University of Technology TKK, VTT Technical
Research Centre of Finland, University of Jyväskylä, and Okmetic Ltd. After the five years
initial project ended the development has been continued by CSC in different application
fields.

In September 2005 Elmer was released under GNU General Public License (GPL). This has
widened the user community, particularly the number of international users has grown.
However, as the sole owner of the copyright to Elmer source code, CSC may distribute Elmer
also under other licensing terms. Therefore, if GPL does not suit your purposes, you may
contact the Elmer team for other licensing options.

Elmer is distributed only through the Internet. The actual distribution site may vary but the
pointer to the location may always be found at http://www.csc.fi/elmer. The distribution of
Elmer comes in three different parts: sources, binaries, and documentation. Unix users are
encouraged to compile the software themselves. The compilation instructions are given at the
www-page. For Windows and Macintosh a precompiled binary version of the code is also
provided. The documentation of the software is already quite extensive, but unfortunately still
not complete.

Everybody is welcome to contribute to the Elmer project. Often the bottle-neck is in case
specification, testing and verification which may be done without in-depth knowhow of the
code. Also contributions to the code are welcome. However, before granting a permission to
commit to the main source file archive a Elmer Contributor Agreement has to be signed. This
gives CSC the right to use contributions to Elmer under the current free software license, and
also under other licenses we may use. However, this does not limit the contributors right to
use the contributed code in any way.

Elmer offers a wide range of methods and techniques for the computational modeling of
physical phenomena described by partial differential equations. In the following some of the
most essential ones are summarized.

The Elmer package contains solvers for a variety of mathematical models. The following list
summarizes the capabilities of Elmer in specialized fields:
• Heat transfer: models for conduction, radiation and phase change

D6.3.2 Final Benchmark Suite

PRACE - RI-211528 18/6/2010 88

• Fluid flow: the Navier-Stokes, Stokes and Reynolds equations, k-" model
• Species transport: generic convection-diffusion equation
• Elasticity: general elasticity equations, dimensionally reduced models for plates and shells
• Acoustics: the Helmholtz equation
• Electromagnetism: electrostatics, magnetostatics, induction
• Microfluidics: slip conditions, the Poisson-Boltzmann equation
• Levelset method: Eulerian free boundary problems
• Quantum Mechanics: density functional theory (Kohn-Sham)

For approximation and linear system solution Elmer offers a great number of possibilities.
The following list summarizes some of the most essential ones.

• All basic element shapes in 1D, 2D and 3D with the Lagrange shape functions of degree k
_ 2

• Higher degree approximation using p-elements
• Time integration schemes for the first and second order equations
• Solution methods for eigenvalue problems
• Direct linear system solvers (Lapack & Umfpack)
• Iterative Krylov subspace solvers for linear systems
• Multigrid solvers (GMG and AMG) for some basic equations
• ILU preconditioning of linear systems
• Parallelization of iterative methods
• The discontinuous Galerkin method
• Stabilized finite element formulations, including the methods of residual free bubbles and

SUPG
• Adaptivity, particularly in 2D
• BEM solvers (without multipole acceleration)

7.7.22 SPECFEM3D
Eric Boyer

CINES France

The software package SPECFEM3D simulates southern California seismic wave propagation
based upon the spectral-element method (SEM). Effects due to lateral variations in
compressional-wave speed, shear-wave speed, density, a 3D crustal model, topography and
bathymetry are included. For a detailed introduction to the SEM as applied to regional seismic
wave propagation. The Moho map was determined by Zhu and Kanamori. The 1D soCal
model was developed by Dreger and Helmberger. The package can accommodate full 21-
parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and
finite-frequency kernel simulations are included.

All SPECFEM3D software is written in Fortran90, and conforms strictly to the Fortran95
standard. It uses no obsolete or obsolescent features of Fortran77. The package uses parallel
programming based upon the Message Passing Interface (MPI).

