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Executive Summary 
 

In order to be a lasting success, PRACE needs to understand the software requirements for 
future Petaflop/s systems. Apart from system software requirements, the performance (both 
actual and potential) of scientific applications on Petaflop/s architectures is of key importance, 
not only for procurement processes, but also to inform the PRACE peer review processes. 

This deliverable D6.3.2 takes its predecessor D6.3.1 as the starting point for the definition of 
the final PRACE Application Benchmark Suite (PABS). Based on coverage of relevant 
application areas, scalability towards petascale (and beyond) architectures, licensing and 
industrial and global usage, D6.3.2 describes the process from initial to final benchmark suite 
in detail. With respect to scalability and performance, input has been received from task 5.4, 
which is responsible for the assessment of the PRACE prototypes, using the PRACE 
benchmark suite. Ease of use of the final benchmark suite in future situations is assured by the 
integration of the final benchmark suite into a flexible framework, including testing 
procedures. 

Accompanying the process to the final benchmark suite, other software aspects are relevant as 
well. These include synthetic benchmarking and performance analysis tools, which are both 
important when the procurement of Tier-0 systems is planned. D6.3.2, again with D6.3.1 as 
the starting point, describes the required contents of a synthetic benchmark, which is able to 
assess key hardware and system software aspects of Tier-0 systems; the actual assessment of 
the PRACE prototype systems is done in WP5. With respect to performance analysis tools, 
combinations of PRACE prototypes and performance analysis tools are tested and reported 
upon. 

The PABS has been prepared in such a way that it offers high flexibility. This includes the 
possibility to use a subset of the PABS for procurement of specific Tier-0 architectures, and 
also the possibility to adapt the contents of the subset towards the specific requirements of the 
installing Tier-0 Principal Partner. Industrial and pan-European coverage of the applications 
in the PABS is another aspect which has been included, especially when proceeding from the 
initial PABS to the final PABS. Yet another element is how to weight the various applications 
in the benchmark subset, together with the synthetic benchmark results and possibly other less 
technical aspects. It should be clear that the PABS is instrumental in the selection process of 
Tier-0 systems, but has to be accompanied by other requirements and conditions.  

This document includes the results of efforts carried out during the Extension Phase in the 
first half of 2010. Tables 9, 10 and 11 actually reflect the work carried out in the Extension 
Phase. 
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1 Introduction 

The Partnership for Advanced Computing in Europe (PRACE [1]) has the overall objective to 
prepare for the creation of a persistent pan-European HPC service. PRACE consists of eight 
inter-linked Work Packages, and WP6 focuses on the software for petascale systems. 

The primary goal of PRACE WP6 is to identify and understand the software libraries, tools, 
benchmarks and skills required by users to ensure that their applications can use a Petaflop/s 
system productively and efficiently. WP6 is the largest of the technical PRACE Work 
Packages and involves all of the PRACE partners. 

Task 6.3 is responsible for the creation of a benchmark suite, to be used not only within WP6 
but also in WP5, when testing and validating PRACE prototype systems. The benchmark 
suite should represent application areas from the likely user base, but should also be such that 
the applications have enough scalability potential to run on Tier-0 systems, as aimed for by 
PRACE. Another aspect, which may become important when the actual benchmark suite will 
be used for procurement processes by the Principal Partners for petascale systems, is the 
possibility to use only a subset of the full benchmark suite. Integration of these and additional 
benchmark applications into an easy-to-use benchmark suite is also part of task 6.3. 

Throughout the PRACE project, the applications in the benchmark suite have been used by 
WP5 task 5.4, in its testing and analysing of the prototype systems, and by tasks 6.4 and 6.5, 
which covered scalability to Petaflop/s systems and optimisation of applications. 

These efforts cannot be undertaken without both suitable software tools and a thorough 
understanding of the underlying hardware. Thus, task 6.3 also covers performance analysis 
tools and synthetic benchmarking. The synthetic benchmark suite will be used by tasks 5.2 
and 5.3. 

Including the performance analysis tools and synthetic benchmark survey, the audience for 
the results of task 6.3 is not only within PRACE, but hopefully also a wider HPC audience, as 
it offers characteristics and analysis for deployment of specific, heavily-used applications 
codes on future Petaflop/s systems. 

Tables 9, 10 and 11 in sections 3 and 4 actually reflect the work carried out in the Extension 
Phase. 

 

1.1 Structure of the Report 

This document is structured as follows. In section 2, some important definitions will be given, 
and there will be a discussion on the refinement of objectives and the methodology to arrive at 
this. Early in the process in task 6.3, it was decided to subdivide the full task into a number of 
subtasks. Within this report, subdivision into subtasks is represented by the subsequent 
sections. Section 3 covers the actual transfer from the initial PRACE Application Benchmark 
Suite (PABS) into the final one. We report on the experiences with the applications in the 
initial PABS, on our analysis of licensing and scalability of the applications, and on our 
process to reach a final version of the PABS. Section 4 covers the actual integration of 
benchmark codes into the PABS, including the execuation of acceptance tests to ensure the 
quality of the PABS with respect to both usage by others and long-term maintainability. 
Section 5 describes the actual contents of a synthetic benchmark suite within PRACE, which 
is clearly focusing on petascale and larger systems. Section 6 will take its initial survey of 
Performance Analysis Tools (PATs) and reports on several combinations of PAT and PRACE 
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prototype systems. Each of the sections 3 to 6 ends with conclusions and further remarks, as 
the topics under discussion are dynamic and will change over time. 

In the Annex, we will give a brief description of each of the applications in the final PABS. 

2 Definitions, Objectives and Methodology 

 

2.1 Definitions 

The procurement process of large HPC computer systems (either focussed on capacity or 
capability) is generally supported by the execution of a set of both synthetic benchmarks and  
user applications on the systems under consideration. In this respect, we are talking of 
benchmarking the systems, leading to technical information which allows proper technical 
comparison of the systems, especially with respect to their performance for real applications. 

In D6.1 and D6.3.1, we have carefully laid out the definitions we have used with respect to 
benchmarking. For the readers’ convenience, we repeat them here: 

• A benchmark kernel is the collection of a small test program source code, run script, 
defined number of processors, possibly dataset and reference output, and is meant to test 
an individual component of the system; 

• A benchmark code is the collection of one application source code, run script, defined 
number of processors, dataset and reference output, and is meant to test the behaviour of 
the system as a whole; 

• A synthetic benchmark suite is the collection of benchmark kernels, to be run standalone; 
• A benchmark suite is the collection of benchmark codes, together with the schedule to run 

the individual benchmark codes (either standalone or in some defined form of 
throughput). To distinguish this from the synthetic benchmark suite, we may refer to this 
as the application benchmark suite; 

• A performance analysis tool is a tool for getting performance information when running 
an application, in particular a benchmark kernel or benchmark code. 

 
Throughout this document, the concepts of porting, petascaling and optimisation will be used 
frequently. It makes sense to define these concepts here as well: 

• Porting is the process of installation, compilation, linking and execution of an application 
source code on a specific hardware platform running specific software versions. 
Successfully ported (to distinguish from later optimisation and scaling efforts) means 
correct execution of the generated executable on the specific hardware platform running 
specific software versions, using representative input sets; 

• Optimisation is generally considered as the improvement of typically single-CPU (or 
single-core) performance (including IO aspects) of a code, and is typically a combination 
of memory hierarchy management (“cache optimisation”) and CPU floating-point unit 
scheduling. In this context, source code optimization is meant, rather than external factors 
such as job scheduling. 

• Petascaling is the process of scaling the performance of applications (including IO 
aspects) to petascale level, and is typically expressed in the number of cores which can 
still be efficiently used for the execution of the benchmark code. This is most likely 
dependent on actual input sets. In our view this includes node optimization and 
communication optimization. 
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2.2 Objectives and Methodology 

This section discusses the approach we have taken to arrive at the objectives for task 6.3, 
including the methodology with respect to the efficient usage of both human and hardware 
resources. The two main objectives for task 6.3 are: 

• To create a benchmark suite which will serve as a starting point for tasks 5.4, 6.4 and 6.5 
(the previous deliverable D6.3.1); 

• To eventually create a benchmark suite which becomes the PRACE benchmark suite for 
Tier-0 procurements (this deliverable D6.3.2 at the end of the PRACE project); 

• To investigate important aspects which support the process of benchmarking and 
assessment of systems, including synthetic benchmarking, performance analysis tools and 
integration of the benchmark applications into an easy-to-use framework. 

 
The initial PRACE Application Benchmark Suite (PABS) has been defined in the May-June 
2008 timeframe. Since then, work has been done on the porting, optimisation and scalability 
of the benchmark codes. In May-June 2009, we have evaluated each code of the initial PABS 
on the following aspects: 

• Actual scalability results and potential on Petascale systems and beyond; 
• Actual licensing policy. 
 
Based on this evaluation, and taking into account helpful comments from an EC review in 
March 2009, like extending the range of application areas and linkage to global scaling efforts 
and industrial usage, we have considered for each benchmark code whether to keep it in the 
PABS or to replace it by another code in the same application area. Such a replacement code 
must have demonstrated clear scalability and must have flexible licensing policies. 
Independent of that, we have studied possible extensions of the PABS into other application 
areas, under the condition of available knowledgeable human resources (Benchmark Code 
Owner, BCO) in the PRACE project. Chapter 3 describes this process and its results in detail. 

In D6.3.1, not only the contents and status of the initial PABS have been described, but also 
the following aspects: 

• Integration of codes into the applications benchmark suite; 
• Synthetic benchmark suite; 
• Performance analysis tools. 
 
The integration of codes into the applications benchmark suite is meant to enable easy future 
usage of the PABS. To verify correct integration of the benchmark codes into the PABS, we 
have defined and executed a testing procedure, which can be viewed as an internal acceptance 
test for the integration of the benchmark codes. 

Based on the survey in D6.3.1 on synthetic benchmarks, chapter 4 reports on the actual 
contents of the synthetic benchmark suite to be used in PRACE. The synthetic benchmark 
suite in PRACE is designed such that all performance aspects of petascale systems can be 
tested. In chapter 4 the contents of the synthetic benchmark suite will be described, while 
assessment of the systems will be reported upon in the deliverables of WP5. 



D6.3.2  Final Benchmark Suite 

PRACE - RI-211528  18/6/2010 5

It has been shown in D6.3.1 that there are numerous available Performance Analysis Tools. 
Given the number of prototype platforms (as defined by WP7 and used in WP5 and WP6), it 
is practically impossible for the available human resources to investigate each Performance 
Analysis Tool (PAT) on each prototype. We have chosen to investigate each PAT on at least 
one of the prototype architectures, and also the other way around: each prototype will be used 
by at least one PAT. 

Apart from substantial technical work on the benchmark codes and subtasks in task 6.3, 
considerable organisational effort was needed for the definition and distribution of benchmark 
codes, to monitor progress, and to collect results. We followed the BCO concept, which has 
turned out to be very successful. 

The concept of BCOs and contributors, the integration of individual benchmark codes into a 
benchmark suite and the future work within PRACE basically define a distributed working 
environment, in which different people contribute to shared activities. Within WP6, we have 
continued using the TRAC system, as used at CSC Finland. TRAC is a web-based software 
project management and bug/issue tracking system emphasizing ease of use and low 
administrative overhead. It provides an integrated Wiki, an interface to version control 
systems, and a number of convenient ways to stay on top of events and changes within a 
project. For more details, we refer to D6.1. 
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3 Final Benchmark Suite 

In the May-June 2008 timeframe, a variety of criteria could have been chosen to define the 
contents of the initial PABS. The most obvious criteria include coverage of application areas, 
actual usage of applications in Europe, and scalability potential of the applications to 
Petascale systems. In WP6, it was decided to use an analytical approach: based on a survey of 
application areas and particular applications, an initial PABS was defined. This could be done 
in a relatively short period of time, hence enabling the launch of other tasks within WP6 
rather quickly. Practical investigation of scalability of applications towards Petascale level is 
important but takes much more time. It was therefore decided to adapt the initial PABS to the 
final PABS, based on, e.g., actual scalability results of the codes. This section covers the 
process that WP6 has taken to evaluate the initial PABS and to build up the final PABS. 

From a logistical point of view, the actual information was collected by the WP6 task leaders 
during the April-June 2009 time frame. This has been summarized and discussed in a WP6 
face-to-face meeting in Helsinki on June 9 and 10, 2009. Some additional information has 
been collected on some codes, after which a proposal for the final PABS has been prepared. 
All WP6 participants viewed this proposal as the best way forward, and accepted it without 
objections at the end of June 2009. 
 

3.1 Starting Point: Initial Benchmark Suite 

Deliverable D6.3.1 documented the contents of the initial PABS. Based on a survey on actual 
usage of codes on European HPC systems, we have identified the most important application 
areas and most used applications in these areas. Full results can be found in D6.1 and D6.3.1. 

As a reminder, Table 1 contains a listing of the benchmark codes, application areas and the 
responsible BCO, as covered in the initial PABS. 
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Application Application Area BCO

QCD Particle physics FZJ
VASP Computational chemistry BSC
NAMD Computational chemistry EPSRC
CPMD Computational chemistry BSC
Code_Saturne Computational fluid dynamics EPSRC
GADGET Astronomy and cosmology LRZ
EUTERPE Plasma physics BSC
ECHAM5 Atmospheric modelling CSCS
NEMO Ocean modelling NCF
CP2K Computational chemistry CSC
GROMACS Computational chemistry CSC
NS3D Computational fluid dynamics HLRS

AVBP Computational fluid dynamics GENCI
HELIUM Computational physics EPSRC
TRIPOLI_4 Computational engineering GENCI
PEPC Plasma physics FZJ
GPAW Computational chemistry CSC
ALYA Computational mechanics BSC
SIESTA Computational chemistry BSC
BSIT Computational geophysics BSC  

Table 1: Overview of initial PABS. 

In D6.3.1, we have introduced the concept of a core list (applications marked green in Table 1 
and an extended list (applications marked yellow). Also in D6.3.1, we have reported on the 
actual porting status of the benchmark codes on the PRACE prototype architectures, as of 
November 2008. Table 2 repeats these results: 

 
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done In progress Done
VASP Done Done Yet to start Yet to start
NAMD Done Done Done Yet to start
CPMD Done Done In progress Yet to start
Code_Saturne Done Done Done Yet to start Done
GADGET Done Done Done
EUTERPE Done Done Yet to start
ECHAM5 Stopped Done In progress Done Yet to start
NEMO Done Done Done In progress
CP2K Done Done Done
GROMACS Done Done Done
NS3D Yet to start In progress Yet to start Done

AVBP Yet to start Done Done
HELIUM In progress Done Done
TRIPOLI_4 Yet to start Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done
SIESTA Done
BSIT Done  
Table 2: Porting status of initial PABS, as of November 2008. 
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Once the contents of the initial PABS had been defined, several other tasks in the PRACE 
project could take off. These tasks were 6.4 (petascaling of applications), 6.5 (optimisation of 
applications) and 5.4 (assessment of prototype systems). Within WP6, we have defined June 
2009 as the month to collect results from these tasks, together with the results of 6.3 with 
respect to porting the codes. This choice has enabled both a significant amount of time to 
work on the initial PABS and to obtain valuable information, as well as leaving significant 
time to incorporate potential new applications into the final PABS. In practice, this means that 
BCOs have been able to work on their benchmark codes for 6 to 12 months, so it can be 
expected that relevant information is available. This information, together with licensing 
information and EC review comments, has been taken as input for defining the final PABS. 

In section 3.2, we list the information as mentioned above. Section 3.3 analyses the 
information, while section 3.4 discusses the final PABS. 
 

3.2 Experiences with the Initial Benchmark Suite 

This section covers the various pieces of input required for a well-balanced analysis of the 
initial PABS, which ultimately leads to the definition of the final PABS. The input consists 
of: 

1. Actual porting status of the benchmark codes; 

2. Survey of licensing policy for the benchmark codes; 

3. Scalability results of the benchmark codes; 

4. EC review comments: 

• Increase the pool of applications; 

• Investigate industrial usage; 

The first piece of input for working towards a final PABS is the actual porting status of the 
benchmark codes as of June 2009 to different prototype architectures. These results are listed 
in Table 3. 
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done Done Done
VASP Done Done Stopped Stopped
NAMD Done Done Done To start
CPMD Done Done Done Done
Code_Saturne Done Done Done Stopped Done
GADGET Done Done Done
EUTERPE Done Done In progress
ECHAM5 Stopped Done Stopped Done To start
NEMO Done Done Done Done
CP2K Done Done Done
GROMACS Done Done Done
NS3D Done In progress Done Done

AVBP Done Done Done
HELIUM Done Done Done Done
TRIPOLI_4 In progress Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done Done
SIESTA Done
BSIT Done  
Table 3: Porting status of initial PABS as of June 2009. 
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The second piece of input we have collected is a survey on the licensing policy for the 
benchmark codes. This basically comes down to what type of licensing is applied by the code 
owners and developers. The following aspects are relevant within the current PRACE project, 
but also when benchmarking is required in the follow-up implementation phase of PRACE: 

• Usage of the code, scripts and input sets in current PRACE deliverables and in potential 
future benchmark efforts; 

• Publication of results with respect to scalability and optimisation of the code in current 
and potential future PRACE deliverables. 

This information has been obtained in direct contact with the code developers and is shown in 
Table 4 under the column licensing policy. The colour scheme for licensing is: orange in case 
of (severe) restrictions or no response from code developers, yellow with light obstacles and 
green for basically public licensing. 

The third piece of input has to do with the actual scalability results of the benchmark codes on 
one or more of the prototype platforms. The BCOs have been doing these experiments in the 
context of task 5.4 in the April-June 2009 time frame. Within task 5.4, it has been observed 
that comparing scalability results on the different prototype platforms should not be done by 
numbers of cores only, since the individual core performances of the various prototypes differ 
significantly. To overcome this problem, task 5.4 has defined scalability as follows: 

 
An application scales to n Tflop/s if it achieves a speed-up in excess of 1.6x between running 
on a system partition of peak performance of n/2 TFlop/s and running on a system partition of 
n TFlop/s. 
 

Before analysing the scalability results, it is important to define a threshold for sufficient 
scalability. This threshold should be such that a benchmark code which passes the threshold 
has potential for further scalability towards Petascale systems. We have decided to use the 
threshold at n=10 Tflop/s, as has been explained in D5.4. The reason this approach has been 
taken is that the size of the smallest PRACE prototype system is between 10 and 20 Tflop/s, 
system peak performance. This means that a code which passes this number shows a speed-up 
of at least 1.6 when going from a 5 Tflop/s system partition to a 10 Tflop/s system partition, 
according to the definition above. In terms of IBM POWER6 (SMP-FN-pwr6) cores, for 
instance, this means a speed-up of at least 1.6 when going from 266 cores to 532 cores1. For 
MPP-BG, MPP-Cray and SMP-TN-x86 the number of cores is higher, for SMP-FN+Cell and 
SMP-TN+vector the number of cores needed is lower. We have used this threshold in Table 4 
for a colour scheme: we have used green for the system which shows maximum scalability 
above the threshold of 10 Tflop/s, and orange for staying below the threshold. Blank cells 
indicate that there are no results for the code on the particular hardware platform – given the 
limited resources, it was not foreseen to run each code on each platform. Table 4 shows the 
results.  

The fourth piece of input considers the EC review comments. These include extension of the 
pool of applications towards additional ones with global scientific and industrial relevance. 
Looking into the initial PABS, one may argue that the areas of earth sciences and engineering 
are not well represented. Therefore, to expand the pool of applications, we have looked into 
applications in these areas, which could fill the gap, but which also have suitable scaling and 
licensing characteristics. An additional advantage here is that typically applications from earth 
sciences and engineering tend to be used outside of academic environments as well, e.g., 

                                                 
1  5 Tflop/s divided by 18.8 Gflop/s (peak POWER6 core) equals 266 cores. 
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meteorological offices (non-commercial and commercial), oil companies (seismic processing) 
and engineering companies.  

Another aspect that plays a role here is the replacement of codes from the initial PABS. 
Where this turns out to be the case (see section 3.3), our policy is to replace a benchmark code 
with a code which basically covers the same application area. 
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Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-
TN+vector

Licensing and 
response 

QCD n=80-160, 
depending on 
kernel

n=20 n=10 OK.

VASP n<10 n<10 Difficult. No 
response from 
developers.

NAMD n=5 n=20 n=20 OK.
CPMD n=10 n<10 n=10 OK.
Code_Saturne n=80 n=10 n=20 OK, GNU 

General Public 
License.

GADGET n=10 n=40 OK.

EUTERPE
ECHAM5 n<5 n<5 No response 

from 
developers.

NEMO n=10 All OK, under 
CeCILL 
licence.

CP2K n=80 (new 
version)

n=5 (old 
version)

OK, GNU 
General Public 
License (no 
execs without 
sources).

GROMACS n=20 n=40 n=40 OK, GNU 
General Public 
License.

NS3D n=20 n=20 n=10 OK.

AVBP n=20 n=40 OK, but also 
between 
benchmarker 
and CERFACS

HELIUM n=10 n=10 n=20 OK, but no 
publication on 
analysis of 
code.

TRIPOLI_4 n>10 OK, but also 
between 
benchmarker 
and CEA

GPAW n=40 n=20 n=20 OK, GNU 
General Public 
License.

ALYA n=20 n=10 OK.
SIESTA OK.
BSIT n=10 OK.

PEPC n=5 OK, GNU 
General Public 
License.

n=80 n=40 OK.

n=10

 
Table 4: Actual task 5.4 scalability results and licensing information on the initial PABS codes. 
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3.3 Analysis and update of the Initial Benchmark Suite 

This section analyses the results as obtained in section 3.2, and which have been referred to as 
pieces of input. 

First, comparison of Tables 2 and 3 shows that much progress has been made with porting the 
applications to the prototype platforms. Both tables reflect the actual fact that MPP-BG, MPP-
Cray and SMP-FN-pwr6 are the most commonly used general-purpose platforms in the top of 
the HPC arena. Systems with vectorprocessors are typically doing well for selected 
applications (many of these CFD-based). The results also show that porting applications to the 
SM-FN+Cell architecture appears to be a time consuming task, due to both its lack of 
programming tools and its non-standard programming model, and which requires a lot of 
manpower. 

Secondly, with respect to licensing, it has turned out to be very difficult to get response from 
the VASP developers. This has been tried multiple times. For ECHAM5, the BCO left his 
institute, and could not be replaced in due time. 

Thirdly, the scalability results in Table 4 show that three of the applications remain under the 
10 Tflop/s threshold: VASP, ECHAM5 and SIESTA. It has been impossible in the available 
timeframe to obtain scalability results for these codes which pass this threshold, for which the 
reason is basically twofold: lack of scalability of the numerical algorithm and an 
implementation which is not advantageous to parallel processing. 

The fourth aspect of the previous section covered the EC comments on extension of the pool 
of applications towards further global and industrial usage of the applications. We have 
identified the current industrial usage in Table 5: 

 

Application area Actual applications Industry usage 

Chemistry NAMD, CPMD, CP2K, 
GPAW, Gromacs, Helium, 
VASP, SIESTA 

Chemical, pharmaceutical 
and life sciences (typically 
each company has its “own 
flavour”) 

Computational fluid 
dynamics 

Code_Saturne, NS3D, AVBP Engineering industry, 
combustion, gas turbines, 
nuclear power, aerospace 

Earth sciences BSIT, ECHAM5, NEMO Meteorological and seismic 
communities 

Engineering ALYA, TRIPOLI-4 Similar to CFD codes, 
energy (nuclear power) 
industry 

Physics/astrophysics/ 
cosmology 

GADGET, PEPC, QCD, 
EUTERPE 

Scientific codes, in general 
not used by industry  

Table 5: Industrial  usage of the initital PABS applications. 
 

The result of our analysis was that we considered replacing VASP, ECHAM5 and SIESTA by 
alternatives. As has been discussed in the previous section, we searched for possible 
replacements of these three codes, which had to satisfy the following criteria: 

• Scalability above the 10 Tflop/s threshold; 
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• Public licensing or comparable; 

• Industrial usage and/or interest; 

• Availability of BCO to do the work. 

This has led to the following replacement codes (Table 6): 

New Code Replaces Scalability Licensing BCO 

Quantum_Espresso VASP n=20 on SMP-
FN-pwr6 

OK. GNU 
Public License 

CINECA Italy 

WRF ECHAM5 n>100 on MPP-
Cray 

OK STFC UK 

Octopus SIESTA n=20 on SMP-
FN-pwr6 

OK GNU 
Public License 

UC-LCA 
Portugal 

Table 6: Replacement codes for the final PABS. 
 

Alternatives for the codes in Table 6 have been considered: alternatives for 
Quantam_Espresso and Octopus have been MPQC and NWCHEM; for WRF, this has been 
IFS. 

Extensions of the pool of applications have been searched for in the areas of earth science and 
engineering. For an application to qualify, we have used the same criteria as for the 
replacement of the codes. This has led to Table 7: 

Code Application 
area 

Scalability Licensing BCO 

ELMER Multi-physics 
engineering 

n=40 on MPP-
Cray 

OK GNU Public 
License 

CSC Finland 

SPECFEM3D Earthquake 
simulation 

n=160 on MPP-
Cray 

OK GNU Public 
License 

CINES France 

Table 7: Extension codes for the final PABS. 
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3.4 Final Benchmark Suite 

The analysis and update process of the initial PABS towards the final PABS, as described in 
the previous section, has led to the following applications which form the final PABS (Table 
8): 
 
Application Application Area BCO 

    
  
 

QCD Particle physics FZJ 
Quantum_Espresso Computational chemistry CINECA 
NAMD Computational chemistry EPSRC 
CPMD Computational chemistry BSC 
Code_Saturne Computational fluid dynamics EPSRC 
GADGET Astronomy and cosmology LRZ 
EUTERPE Plasma physics BSC 
WRF Atmospheric modelling EPSRC 
NEMO Ocean modelling NCF 
CP2K Computational chemistry CSC 
GROMACS Computational chemistry CSC 
NS3D Computational fluid dynamics HLRS 
      
AVBP Computational fluid dynamics GENCI 
HELIUM Computational physics/chemistry EPSRC 
TRIPOLI-4 Computational engineering GENCI 
PEPC Plasma physics FZJ 
GPAW Computational chemistry CSC 
ALYA Computational mechanics BSC 
OCTOPUS Computational chemistry UC-LCA 
BSIT Computational geophysics BSC 
ELMER Computational engineering CSC 
SPECFEM3D Computational geophysics GENCI 

Table 8: Overview of final PABS. 
 
Table 8 shows that the actual coverage of the application areas is in accordance with the areas 
that have been identified in the scientific case report [3], as prepared in 2006. Compared to 
the initial PABS, we have strengthened the fields of earth sciences and engineering, as is 
shown by the replacement of ECHAM5 by WRF, and the addition of ELMER and 
SPECFEM3D. 

With respect to the area of computational chemistry, this area contains 8 applications out of 
22. On an absolute basis, this is a large number, which can be justified by the fact that 
computational chemistry applications are using 30-40% (see for instance D6.2) of the 
available cycles on many of the large national supercomputing installations (and in some 
cases even more). Also, computational chemistry can be viewed as a collective name for 
molecular dynamics, ab initio calculations, density functional theory, Car-Parinello modeling 
and even life sciences applications. 
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Finally, the actual porting status of the applications in the final PABS is shown in Table 9 
(with indicated the progress (‘New’) since October 2009): 
 
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done Done Done Done
Quantum_Espresso Done Done New Done Done
NAMD Done Done Done Done
CPMD Done Done Done Done
Code_Saturne Done Done New Done
GADGET Done Done Done New
EUTERPE Done New Done New
WRF Done Done New Done
NEMO Done Done Done Done
CP2K Done Done Done
GROMACS Done Done Done
NS3D New Done Done Done

AVBP Done Done Done
HELIUM Done Done Done Done Done
TRIPOLI_4 Done
PEPC Done Done Done Done
GPAW Done Done New Done
ALYA New Done Done
OCTOPUS New New New Done
BSIT Done
ELMER Done New New
SPECFEM3D Done  
Table 9: Actual porting status of the final PABS per June 2010. 
 
Blank fields in Table 9 denote that the particular code has not (yet) been ported to the 
hardware platform. For some applications that were “in progress” in December 2009, it has 
turned out to be not feasible to complete the porting in the extension phase. The fiels have 
become blank as well. Note that actual assessment of the prototype systems with the PABS 
have been reported in D5.4. 

3.5 Conclusions and future work 

In this chapter, we have described the process from the initial PABS towards the final PABS, 
with explicit reference to the various sources of input needed to guide this process. We have 
created a final PABS which has the following characteristics: 

• Coverage of all scientific application areas, which need sophisticated HPC equipment 
today and in the near future; 

• Coverage of a broad range of algorithmic classes; 
• Balanced coverage of all PRACE prototype architectures, as defined in WP7 (production 

systems in 2010); 
• Each application has the potential to scale to petascale systems; 
• Flexible and tested benchmark environment; 
• Potential to combine all applications into a throughput benchmark, depending on the 

anticipated type of architecture to be purchased; 
• Flexible enough to enable usage of subsets of the PABS in actual procurements. 
 
Apart from a technically sound benchmark, there are more aspects which need to be covered 
when actually using the benchmark in a procurement process. These include: 
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• The actual weight the benchmark results will have in the procurement process. This not 
only holds for the application results, but also for the synthetic benchmark results; 

• The actual weight of each application in the benchmark, which may typically be 
influenced by requirements from the actual Hosting Partner. 

 
With respect to the contents of the PABS, it must always be checked against actual practice 
and usage. This means the PABS needs to be adapted and/or extended if needed, to remain 
relevant while covering all aspects we have used to come to the current final PABS. 
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4 Integration in Benchmark Suite 

The benchmark codes from WP6 need to be integrated into a suite as part of task 6.3, in order 
to facilitate usage within other tasks in WP6, within other work packages within PRACE and 
in future projects or procurements. Therefore, all applications that are part of tasks 6.3, 6.4 
and 6.5, along with a series of synthetic benchmarks, are to form part of such an integrated 
benchmarking suite (PRACE Application Benchmark Suite – PABS) for use by the PRACE 
partners, in particular tasks 5.2, 5.3 and 5.4. The basic integration strategy has already been 
presented in deliverable D6.3.1. This chapter describes the final integration status, the 
inclusion of performance measuring tools into the benchmark suite as well as the final 
acceptance test. 

To recall the basic strategy of the chosen benchmarking framework JuBE [4], the 
framework’s workflow and strategy is shown in Figure 1 and Figure 2; a detailed description 
is given in D6.3.1 and references therein. 

 

 
Figure 1: JuBE workflow 
 
The usage idea of JuBE, or its workflow, is to set up a benchmark (suite), in which each 
benchmark is defined in a coherent way. All steps to realize the benchmark results are 
processed by JuBE, these steps are: preparation, compilation, execution, verification and 
analysis. These steps are performed for all runs needed to fullfil the general benchmark task. 
A benchmark script runs on a variety of partition sizes, automatically sets up the appropriate 
number of jobs, submits them to the supercomputer and then combines the results into one or 
more tables. This leads to a multidimensional parameter space which allows for a simple way 
of scanning large parameter spaces. Thus a scaling benchmark at various compiler 
optimization levels and problem sizes, can be defined in one step. 

The strategy to realize the automatic execution of the steps between the general benchmark 
definition and the benchmark result is to utilize templates, including all relevant parts (files) 
of the application, i.e. those which might include varying values need to be represented by 
templates. These templates will be used to generate the final versions for each point in the 
parameter space. Figure 2 illustrates this strategy.  
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Figure 2: JuBE substitution strategy 
 

Figure 2 shows a template for some application parameters and for the makefile. The way 
JuBE works is that, once the template files, here params.tmpl and makefile.tmpl, are provided 
together with the according substitution rules, no further modifications are needed. In this 
example the content of the template files would be substituted and would replace the files 
params and makefile needed by the application. This substitution is done, if needed, for each 
point in the parameter space. 

Section 4.1 provides an integration overview, containing information on how to get the 
benchmark suite and the current integration status. An example on how to include 
performance measurement tools into an integrated benchmark is presented in section 4.2, 
which is followed by the description of the carried out acceptance test (section 4.3). 

4.1 Integration Overview 

The benchmark suite is currently available in a subversion repository  
 

https://trac.csc.fi/pracewp6  
 

hosted by CSC. As the benchmark suite is currently not freely available, but restricted to 
PRACE internal use only, access permission must be granted.  

Access to the subversion repository is possible on all PRACE prototypes via the following 
command 
 

$> svn checkout https://trac.csc.fi/pracewp6/svn/benchmark 
 
The current size is in the order of 3 GB, which does not include the applications’ source code, 

as these must be gathered separately. Information on how to get each application’s source 
code is located in each benchmark’s directory, i.e. as a HowToGet.txt file. In most cases, 
these files contain commands to checkout the source code from external subversion 
repositories. 

As already stated in PRACE deliverable D6.3.1 each benchmark has to provide general 
information on how the benchmark should be run. This information is located in the top-level 
xml files. To follow a unified, i.e. standardized way of benchmarking, the aims and 
requirements of such a benchmark run have been defined. The following section (4.1.1) 
describes this definition. In section 4.1.2 an overview of the current integration status is given. 
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Benchmark Execution Standardization 
In order to standardize the benchmark suite and thus ease its use for non-BCOs, the following 
two predefined benchmark rules are set up. These benchmark types can be used as starting 
points for future benchmarking tasks as well as reference values in verification procedures. In 
addition to these aims, the two benchmark runs are the minimal required integration level and 
will be used for the acceptance test, see section 4.3. 

a. Functional Benchmark  
This setup should just verify that the benchmark is able to be compiled and executed 
on the target architecture. The problem size and the computing partition is choosen to 
be small; thus this test should consume only very little resources. However, the 
verification and analysis steps have to be considered too. The result description file 
(result.xml) contains the following table definition: 
 
<result> 
  <show active = "1" colw="10" title="prace reference timing"> 
   ncpus, time, vcheck 
  </show> 
... 
</result> 
 
This unifies the benchmark output. In this example, it is the number of tasks, 
benchmark timing and the verification flag, to be able to directly compare the timing 
with the reference values measured by the BCOs. The timing stated by the benchmark 
is definied by the BCOs; typical examples are the total execution time, the time in the 
inner loop of an application or the average time for a single main loop. The top-level 
xml file is named prace-functional-$ARCHNAME.xml and the command to start 
the benchmark from the application’s directory is 
 
$> ../../bench/jube -start prace-functional-$ARCHNAME.xml 
 

b. Scaling Benchmark   
The only difference to the functional benchmark aim is to demonstrate the 
benchmark’s (strong) scaling behaviour on small and medium size partitions. The 
problem size may be adapted as well. According to the functional benchmark, the 
naming of the benchmark definition file is prace-scaling-$ARCHNAME.xml with a 
similar initialization command. 

 
Thus the following steps are needed to run these benchmarks from scratch. The place holders 
$BMNAME and $ARCHNAME have to be replaced by the target benchmark and prototype. 

1. Get the benchmark suite; access rights assumed. 
$> svn checkout https://trac.csc.fi/pracewp6/svn/benchmark PABS 

2. Change to the benchmarks directory. 
$> cd PABS/applications/$BMNAME/ 

3. Get the benchmarks source code; follow the instructions in HowToGet.txt 
4. Start the functional benchmark on the target prototype 

$> ../../bench/jube -start prace-functional-$ARCHNAME.xml 
or the scaling benchmark 
$> ../../bench/jube -start prace-scaling-$ARCHNAME.xml 

5. Obtain the results. 
$> ../../bench/jube -update -result 
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Integration Status 
The minimal integration requirements for a benchmark are the realization of the two 
benchmarks described in section 4.1. The integration status for each benchmark on each 
prototype is shown in Table 10: Integration status as of June 2010. 

These levels are indicated by green (standardized integration), and red (no final integration 
available yet), whereas blank cells indicate that the application has not (yet) been ported to 
this platform, also as a result that efforts on certain applications had to be stopped in the 
extension phase. Compared to the previous version of D6.3.2, we have checked the 
integration of the applications and have adapted their status from completed (green) to almost 
completed (which is red). 

 
application MPP-BG MPP-Cray SMP-

ThinNode-
x86 

SMP-
FatNode-
pwr6 

SMP-
FatNode+ 
Cell 

SMP-
ThinNode+
Vector 

QCD       
Quantum_Es
presso   New    

NAMD       

CPMD       

Code_Saturne New New New New   

GADGET   New  New  

EUTERPE     New  

WRF       

NEMO       

CP2K       

GROMACS       

NS3D       

AVBP       

HELIUM       

TRIPOLI-4       

PEPC       

GPAW       

ALYA       

OCTOPUS New New New New   

BSIT       

ELMER  New New New   

SPECFEM3D       

Table 10: Integration status as of June 2010. 
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Further information on how to use the benchmark, the exact measurement and the main 
benchmarking parameters are given in the README file in each application’s directory. 

4.2 Extensions to standard Integration 

The usage of the benchmarking framework JuBE is not restricted to the variation of 
compilation or input parameters, but also allows the direct utilization of performance 
measuring tools. With this integration it becomes very easy to collect data of the application’s 
performance on a wide parameter regime and to allow comparison between runs with and 
without tools.  

The main strategy is to include flags which alter, for example, the compilation or which add 
libraries into the linkage stage. The exact impact of such flags depends on the performance 
tool they are attached to. During the analysis step, the tool’s output can be parsed as usual and 
displayed in the result phase. To illustrate this strategy in more detail, a representative 
integration example of the GNU profiler [5] is given hereafter. 

The GNU profiler gprof is a profiling tool which analyses the application’s procedure call 
distribution. This tool provides data on the time spent in a procedure, the number of each 
procedure calls as well as a calling graph. More information on this tool is given at the above 
referenced site. 

To generate a procedure profile, the compiler needs to instrument the code: the flags to do so 
are, in this example for the IBM XL compiler, -g -pg. There is no need to include any 
libraries and the executable can be run as usual. After the execution, there are some profile 
output files in the executable’s current directory. As the last step, these files have to be 
processed by gprof to generate a human readable profile. 

The steps needed to integrate gprof might be the following: 

1. Add a flag at the parameter section of the top-level xml file, to switch on/off the 
profiler. 

2. Add additional compiler flags, depending on the flag status. 
3. Provide a script to run the profiler in the analysis step. 
4. Provide patterns to grab the profile output. 
5. Add a profiler table to the result section. 

 
These steps will be demonstrated by an example, which will be kept as general as possible, 
but some explicit code references are based on the PEPC integration on the PRACE prototype 
system at SARA (IBM POWER6, Huygens). 

Step 1 
First of all, a gprof flag (GPROF) has to be defined in the top-level xml file. 
 <params 
 ... 
 GPROF = “on,off” 
 ... > 
This statement will add another dimension to the parameter space, namely the usage of gprof. 
In this example, this will trigger all benchmark runs to be run with and without gprof. As 
gprof influences the compilation step, the compilation has to be triggered if the parameter 
GPROF changes. To realize this, a new variable CMP_GPROF is defined in the compile section 
of the top-level xml file. Note that this is just a dummy variable to determine if a 
recompilation is needed. 
 <compile 
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 ... 
 CMP_GPROF = “$GPROF” 
 ... > 

Step 2 
With the definition in step 1, the GPROF flag will be used to determine additional compilation 
arguments. A possible realization in the compile.xml file is to extend the substitution of the 
compiler flags by 
 
 <sub from = "#F90FLAGS#"    

       to = "$f90flags $optflags 
             `index('$GPROF','on')==0 ? '-g -pg' : ' '` " /> 

 
This substitution demonstrates the usage of the perl evaluation possibility in JuBE. The 
placeholder #F90FLAGS# will be substituted by the values of the two variables $f90flags 
and $optflags, followed by an additional -g -pg option, but only if the value of GPROF is 
equal to on. 
 

Step 3 
After the successful execution, the profiler data has to be processed. This will be done in the 
analysis phase. During this phase, a shell script will be called to generate a readable profile, 
via gprof, and from this a JuBE parsable file, i.e. containing unique text line identification. As 
the gprof output differs on the various architectures, a template is needed which considers 
different architectures. A possible structure might be the following template file 
(collectData.sh.jube) 
 

... 
#COLLECT_GPROF# #HUYGENS# gprof #EXECUTABLE# profdir*/gmon.out 
> GPROF.dat; \ 
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -1 1 
GPROF.dat > GPROF.log 

 
#COLLECT_GPROF# #JUGENE#  gprof #EXECUTABLE# gmon.out.*        
> GPROF.dat; \ 
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -1 1 
GPROF.dat > GPROF.log 
 
#COLLECT_GPROF# #JUMP#    gprof #EXECUTABLE# gmon.*.out        
> GPROF.dat; \ 
#PERL# #BENCHHOME#/../../../utils/gprof/parseGPROF.pl -2 1 
GPROF.dat > GPROF 
... 

 
However, before the script can be used in the analysis phase, all placeholders must be 
substituted in the preparation phase. The basic idea is to substitute #COLLECT_GPROF# by the 
#-character if GPROF is not on. In addition to this, only the current architecture placeholder 
(e.g. #HUYGENS#) is replaced by a ‘ ‘-character, leaving only one command line to be 
executed. The substitution of the remaining placeholder is straight forward. The first part of 
an execution line is the call of gprof to generate the GPROF.dat file, which contains the 
collected readable profile. In the second step, the perl script 
utils/gprof/parseGPROF.pl is used to label each line and thus to be able to use the 
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search pattern shown in the next step. This final information will be stored in the file 
GPROF.log, which leads to the following extension of the preparation step: 
 
 
 
 <substitute infile="collectData.sh.jube" outfile="collectData.sh"> 
 

 <sub from="#BENCHHOME#"             to="$benchhome" /> 
 <sub from="#EXECUTABLE#"            to="pepc.exe" /> 

 
 <sub from="#PERL#"                  to="$PERL_CMD" /> 

   
 <sub from="#COLLECT_GPROF#" to="`index('$GPROF','on')>-1 ? ' ' : '#'`" /> 
 <sub from="#JUGENE#"  to="`index('$platform','Jugene')>-1  ? ' ' : '#'`" /> 
 <sub from="#JUMP#"  to="`index('$platform','Jump')>-1    ? ' ' : '#'`" /> 
 <sub from="#HUYGENS#"  to="`index('$platform','Huygens')>-1 ? ' ' : '#'`" /> 
</substitute> 

 
Then, the analysis step needs the following additional command: 
 
 <analyse cname="IBM-SP6-Huygens"> 

 <precommand>(cd $outdir; bash collectData.sh)</precommand> 
 

 <input addfiles="$subdir/GPROF.log" /> 
 

 <includepattern file="./patterns-gprof-pepc.xml" /> 
</analyse> 

 
First, an initial command will be executed, i.e. change to the working directory and execute 
the prepared data collection script. As described above, the collection script produces the file 
GPROF.log, which is added to the list of files to be parsed for the pattern defined in the 
patterns-gprof-pepc.xml file, as described in step 4: 

Step 4 
The preprocessed file can now be parsed using these JuBE patterns: 
 
 <parm name = "GPROF_01_NAME" unit = "" mode = "line,last"  

type="string" >JuBE: gprof: proc 1:\s*$patwrd\s*$patnfp</parm> 
 
<parm name = "GPROF_01_PART" unit = "%" mode = "line,last"  
type="float"  >JuBE: gprof: proc 1:\s*$patnwrd\s*$patfp</parm> 
... 

 
The variables GPROF_01_NAME and GPROF_01_PART will contain the name and the 
execution time fraction of the first procedure, sorted by the time spent in this procedure. This 
pattern list can now be extended to the desired depth.  
 

Step 5 
The final step is to report on this data, by including a section to the result.xml file in the 
following way: 
 
 <show active="1"> 

GPROF_01_NAME, GPROF_01_PART, GPROF_02_NAME, GPROF_02_PART,  
GPROF_03_NAME, GPROF_03_PART 
</show> 
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This will produce a table containing the function names and the total time fraction of the three 
(in this example) functions consuming most of the CPU time. 

4.3 Acceptance test 

The joint efforts of a large number of BCOs in building up the large benchmark suite PABS 
might result in an inhomogeneous usage quality. To ensure a high quality, i.e. all benchmarks 
are fully working also for non-BCOs and are able to reproduce the reference timings, an 
acceptance test for each code in the full benchmark suite was organised. This quality check 
ensures that future users, which in general are not the BCOs, of the benchmark suite are using 
a cross-checked benchmark suite and will thus be confronted with fewer difficulties. By 
executing the quality check as a non-BCO, all parts which might depend on the knowledge or 
setup of the BCO, e.g. environment variables or file permissions, are removed. As the 
reference timing is provided, not only will the functionality be ensured, but also a general 
estimate of the performance to make sure that the benchmark performance is similar to that 
measured by the BCO.  

Testing Procedure 
The testing procedure consists of the following steps:  

1. Each BCO chooses a problem size suited to run the functional and scaling benchmark 
described in 4.1.1 and generates the reference timing. This timing, together with the 
used subversion repository status (PABS and benchmark source code) is reported to 
the testing team; 

2. The testing team will execute both benchmarks (functional and scaling) on default 
accounts at the corresponding prototypes and will compare the timings to the BCO 
reference values. The reference timings are provided in the WP6 trac system. 

Testing Status 
At the time of writing this deliverable, not all benchmarks have yet been tested. The current 
status is shown in Table 11. Green cells mean that the actual test has been passed, red cells 
indicate that the tests have not been completed yet and blank cells will not be filled, since the 
particular combination of application and platform does not exist. 
 

4.4 Conclusions 

The PRACE Application Benchmark Suite (PABS) has been successfully integrated in the 
JuBE (Juelich Benchmarking Environment) framework. As shown in this section, the 
benchmarking environment may also be used for extended automated tasks, like the usage of 
performance measuring tools; indeed, some of the benchmarks integrated in PABS did reach 
this advanced integration status. The integration is a dynamical process, in which new code 
versions or integration features are added continuously. In order to define a reference point, 
an acceptance test procedure has been defined and executed. Although this test is still in 
progress, it became clear that it is of high importance to finish it and thus guarantee a high 
level of quality. It should be noted that the JuBE integration and acceptance tests were not 
part of the orginal work plan, but was introduced as an additional measure to ensure the long-
term sustainability of PABS. Therefore the still incomplete acceptance test does not influence 
the fulfillment of the work package’s work plan. 
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Application MPP-BG MPP-Cray SMP-
ThinNode-
x86 

SMP-
FatNode-
pwr6 

SMP-
FatNode+ 
Cell 

SMP-
ThinNode+
Vector 

QCD 3.11.2009 17.11.2009 3.11.2009 5.11.2009   
Quantum_Es
presso 12.11.2009 26.11.2009 2.12.2009 21.12.2009   

NAMD 26.11.2009 26.11.2009 11.11.2009 6.11.2009   

CPMD 9.12.2009   21.12.2009 9.12.2009  

Code_Saturne 12.01.2010 19.01.2010 1.6.2010 20.05.2010   

GADGET 2.12.2009  2.12.2009 4.12.2009   

EUTERPE 1.12.2009 25.05.2010  4.12.2009 17.12.2009  

WRF 8.12.2009 8.12.2009 8.12.2009 23.12.2009   

NEMO    14.12.2009   

CP2K 18.11.2009 25.11.2009  21.12.2009   

GROMACS 17.11.2009 22.11.2009  8.12.2009   

NS3D  8.12.2009  21.12.2009  12.12.2009 

AVBP 9.11.2009  9.11.2009 23.12.2009   

HELIUM 9.12.2009 23.11.2009 9.11.2009 21.12.2009   

TRIPOLI-4       

PEPC 3.11.2009 17.11.2009 3.11.2009 6.11.2009   

GPAW 16.11.2009 26.11.2009 16.11.2009 21.12.2009   

ALYA    23.12.2009 4.12.2009  

OCTOPUS       

BSIT       

ELMER  26.11.2009 25.05.2010 25.05.2010   

SPECFEM3D       
Table 11: Status of acceptance tests as of June 2010. 
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5 Synthetic Benchmarks 

 

5.1 Introduction 

 
The analysis of synthetic benchmarks in D6.3.1 presented the relevance of using synthetic 
benchmarks in HPC performance measurements to complement application benchmarks, 
outlined the key performance characteristics of HPC systems and listed the most important 
existing synthetic benchmarks. Based on this analysis a synthetic benchmark set, called 
PRACE-SBM was proposed.  

While the initial proposal consisted of existing benchmarks, it was also realized that there are 
several key areas for which no benchmarks exist or the current benchmarks lack a key feature. 
Therefore it was planned that WP6 should pursue implementing these benchmarks. The 
following benchmarks were successfully implemented: 

• Parallelized version of  STREAM2 (using MPI) 
• OpenMP+MPI hybrid benchmarks 
• Parallelized version of the Bonnie++ filesystem benchmark (using MPI)  
The first practical application of PRACE-SBM was the evaluation of the PRACE WP7 
prototypes in tasks 5.2 and 5.3. There has been close collaboration with the contributors to 
these tasks in adjusting details of the PRACE-SBM to best meet their requirements. The 
actual execution of the benchmarks on the prototypes was performed by WP5, while WP6 
provided the integration of the benchmarks into JuBE. WP6 also provided support for the 
WP5 members tasked with running the benchmarks, as well as assisted with the final analysis 
of the combined results from the different prototype systems. 

The next section describes the benchmarks we have chosen for the PRACE-SBM, including 
their descriptions. 

 

5.2 Descriptions of Synthetic Benchmarks 

The initial implementation of the PRACE-SBM contains the following individual 
benchmarks: 

1. Computational kernels 
a. Euroben-shm - OpenMP parallelized kernels 
b. Euroben-dm - MPI parallelized kernels 

2. Internode communication 
a. SkaMPI - Latency and bandwidth of MPI routines and communication patterns 
b. SMB - Overlap of asynchronous MPI communication and computation 
c. MixedMode - Performance when combining OpenMP and MPI 

3. Memory 
a. MPI STREAM2 - Bandwidth of different memory hierarchy levels (MPI 

parallelized version) 
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4. Disk I/O 
a. IOR - Disk I/O bandwidth when using Posix, MPI-IO or HDF5 
b. MPI Bonnie++ - Disk I/O metadata performance (MPI parallelized version) 

5. OS Jitter 
a. P-SNAP – Variance of computational performance 
b. Selfish – Amount of individual interruptions in processing 

6. Combined benchmarks 
a. HPCC – A popular benchmark suite for characterizing HPC system performance 

 
The source codes for all the benchmarks in the package are freely available, most under the 
GNU Public License (GPL). 

The synthetic benchmark codes are stored in the TRAC SVN repository and are integrated 
into the main benchmark suite in the same manner as the application benchmarks. The 
integration is described in chapter 4. 

Due to the large amount of numerical results produced by the benchmarks, the 
implementation of output processing and analysis with JuBE proved to be difficult. This 
problem was alleviated by the use of separate postprocessing scripts. Support for external 
output processors has been added to JuBE, so that these scripts can be integrated into the 
framework. 

At the PRACE general face-to-face meeting in Jülich, WP6 and WP8 made a joint decision 
that a subset of the Euroben benchmarks would be used for basic evaluation of the WP8 
prototypes and T6.6 programming models. The benchmarks chosen were: mod2am (sparse 
matrix multiply), mod2as (dense matrix multiply) and mod2f (Fourier Transformation). A 
new branch, called “euroben-ports” was added to the TRAC repository which contains 
subdirectories for the ports to different architectures. To facilitate easier porting to C and C++ 
-based languages, both serial and MPI parallelized versions of the selected Euroben kernels 
were ported from Fortran to C. 

Actual results of running the PRACE-SBM (as part of the assessment of the PRACE 
prototype systems by WP5) can be found in D5.2. This section continues with the individual 
descriptions. 

Euroben 

For more information, visit: http://www.euroben.nl/ 

The Euroben suite, developed by Aad van der Steen of NCF, is a collection of benchmarks 
covering a variety of categories: 

• Computational kernels (matrix-matrix multiply, FFT etc.) 
• Performance and accuracy of intrinsic functions 
• Communication performance measurements 
• Memory performance measurements 

There are serial, OpenMP-parallel and MPI-parallel versions of the suite available. There is 
some variation between the contents of different versions as each version contains only the 
parts relevant for it. For example, the MPI-parallel version does not include the serial intrinsic 
benchmarks.  

In the scope of PRACE-SBM, the primary area of interest in the Euroben suite are the serial 
and parallel performance of various computational kernels as well as measuring the 
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performance of intrinsic functions. Both MPI and OpenMP parallel versions of the 
benchmarks were included in the PRACE-SBM package. 

Additional ports of selected kernels were made by T6.6 and WP8 to novel programming 
languages. 

 

SkaMPI 
For more information, visit: http://liinwww.ira.uka.de/~skampi/ 

SkaMPI is a benchmark for testing MPI communication performance. The benchmark covers 
most of MPI 1 as well as parts of MPI 2, including: 

• point-to-point communication  
• collective communications  
• derived datatypes  
• one-sided communication  
• MPI I/O  

While there are several other MPI benchmark suites available, SkaMPI was chosen because it 
is independent from any specific vendor as well as extensible: Using the built-in scripting 
language and well-documented programming interfaces, it is relatively easy to add new 
features.  

 

SMB  
For more information, visit: http://www.cs.sandia.gov/smb/overhead.html 

SMB (Sandia MPI Benchmark) measures the ability of a system to overlap MPI 
communication when using asynchronous calls with computation. The measurement is 
perfomed by using a post-work-wait loop: 

• Call MPI_Isend() and MPI_Irecv(), to initiate the respective transfer 
• Perform some work on the CPU (busy loop) 
• Wait for the transfer to complete using MPI_Wait() 

During each iteration, the amount of work is increased and until the message transfer time is 
smaller than the work time. The processing  overhead can then be calculated by measuring the 
amount of time used to perform the same amount of work without overlapping a message 
transfer and subtracting this value from the loop time. Results are reported in both absolute 
time needed for processing the packet and as a precentage of the processor availability (100% 
means that communication does not require any intervention from the CPU whereas 0% 
indicates that communication processing ties up the CPU completely) 

As no traditional MPI benchmark suite has facilities to measure MPI overlap, this additional 
benchmark was needed to complement SkaMPI.  

 

MixedMode  
The MixedMode benchmark, produced by EPCC, is a set of microbenchmarks which measure 
the ability of the MPI stack to handle OpenMP/MPI hybrid parallelization. The benchmarks 
include several point-to-point (pingpong, pingping, halo) and collective (scatter-gather, 
reduction, broadcast, barrier, alltoall) measurements.  
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MPI STREAM2  
For more information, visit: http://www.cs.virginia.edu/stream/stream2/ 

The Stream2 benchmark measures the bandwidth of 4 memory operations (FILL, COPY, 
DAXPY, SUM) using a number of problem sizes. The results illustrate the sustained memory 
bandwidth on all levels of the cache hierarchy. 

Using the original, serial version of STREAM2 benchmark to measure aggregate performance 
of multicore systems by running several instances of it in parallel is time-consuming and 
prone to inaccuracy: A number of independent output files is produced and there is no 
guaranteed synchronization between the tasks: Some tasks may complete before others have 
the chance to start which skews the results as we want to measure contention caused by all the 
tasks simultaneoustly.  

To address this problem, STREAM2 was parallelized by the subtask using MPI to form MPI 
STREAM2. In the new version, each MPI task calls the original serial benchmark routines 
after which and then the results from each task are aggregated into an average. The output 
style is identical to the original version. 

 

IOR 
For more information, visit:  http://sourceforge.net/projects/ior-sio 

The IOR is the de facto standard tool for measuring disk bandwidth performance in HPC 
systems. In addition to POSIX IO, it can be used to measure HDF5 and MPI-IO performance. 

 

MPI Bonnie++ 
For more information, visit:  http://sourceforge.net/projects/ior-sio 

The Bonnie++ benchmark is a disk benchmark which measures both data and metadata 
handling performance of disk systems. It was included in the suite for its ability to measure 
metadata performance, something which IOR lacks. The operations measured are file reads, 
creates and deletes. Results are in ops/second.  

In HPC systems, a number of processes usually tend to metadata operations simultaneously.  
However, Bonnie++ does not support distributed-memory parallelization which limits it’s 
usefulness to do real stress tests on petascale systems. To address this, an MPI parallel version 
of Bonnie++, called MPI Bonnie++ was produced by the subtask.   

 

P-SNAP 
For more information, visit: http://www.ccs3.lanl.gov/pal/software/psnap/ 

P-SNAP measures the variation in the execution time, or „jitter“, by running a fixed size 
calculation repeatedly on a single CPU. The magnitude of the variation can be visualized with 
distribution graphs of the execution times.  
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Selfish 
For more information, visit: http://www.mcs.anl.gov/research/projects/zeptoos/projects 

The Selfish measures „detours“: the fraction of time the CPU spends executing instructions 
not part of the user’s application. The output can be examined to determine the length of each 
interruption. Compared to P-SNAP this is a more qualitative approach to measuring jitter 
effects. It can be used to track down jitter patterns, such as timer-based interrupts. 

 

HPCC  
For more information, visit: http://icl.cs.utk.edu/hpcc/ 

The HPCC benchmark suite is a widely-used collection of HPC benchmarks. While the 
HPCC overlaps with a number of benchmarks in the suite, it contains some individual 
benchmarks (HPL, MPI ring-patterns) which were deemed useful. 

 

5.3 Conclusions and Further Work 

It is clear that with the further evolution of high-end computer systems from Petaflop/s into 
Exaflop/s careful performance testing of the basic components of the systems becomes more 
and more important. With possibly hundreds of thousands, perhaps millions of cores, actual 
component performance is critical for sustained system performance. Further evolution of 
synthetic benchmarks must be taken into account as well. 

The introduction of other components, like graphical cards, FPGA’s and Cell-type of 
processing goes even further: development of synthetic benchmarks for these types of 
hardware needs to be started to enable future performance testing as well. 
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6 Performance Analysis Tools 

 

6.1 Introduction 

It has been shown in D6.3.1 that there are many available Performance Analysis Tools. Given 
the amount of prototype platforms (6 in total, as defined by WP7 and used in WP5 and WP6), 
it is practically impossible from an available human resources point of view to investigate 
each Performance Analysis Tool (PAT) on each prototype platform. We have chosen to re-
assess each D6.3.1 PAT on at least one of the WP7 prototype architectures. However, due to 
limited resources, we did not do any of the assessments on the NEC SX-9 prototype, or to re-
assess the CEPBA-Tools (Paraver & Dimemas). Finally, instead of the High-Performance 
Linpack Benchmark (HPL), for every PAT-WP7 prototype combination, we selected a 
relevant PABS benchmark as a testbed for the assessment. Most of the PATs have been used 
in tasks 6.4 and 6.5, leading to more details for task 6.3 as well. Based on these experiences 
and the additional experiences during this separate assessment, we have been able to report 
our experiences to the vendors and open source developers. 
 

6.2 Allinea Optimization and Profiling Tool (OPT) 

 

Introduction 
Developer 
Allinea Software, www.allinea.com. 
 
Availability  
Commercial product, license required, free 30 day trial available. 
 
Supported Platforms 
Allinea OPT is available for almost every flavor of Linux, for Itanium, Opteron, EM64T, 
Xeon, PowerPC and the IBM Cell BE. BlueGene/P support has recently been added. A 
complete list of the supported platforms is available from the website. 

Assessment Environment 

• IBM BlueGene/P  
A one-rack (4096 cores) IBM BlueGene/P system at STFC Daresbury Laboratory 
(4096 cores) has been used as the platform for the evaluation. The software and 
hardware environment of the STFC BlueGene/P is almost identical to the PRACE 
prototype at FZ Juelich, however, being a smaller machine it is more conducive to 
rapid turnaround and testing of profiling software such as OPT. 

• Allinea OPT v1.4.3 
Recent updates have added support for IBM BlueGene/P, SGI Altix and IBM Cell BE 
platforms.  

• Large-scale Application Software: Senga2b 
The Senga2 application developed at the University of Cambridge uses Direct 
Numerical Simulation (DNS) with desired levels of chemistry in order to model 
combustion processes. The original plan was to use Code_Saturne for these 
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experiments. After consultation with the developers of Allinea OPT, it was expected 
that the complexity of Code_Saturne (500k lines of Fortran, C and Python) along with 
the magnitude of available datasets would be too burdensome to demonstrate useful 
scaling features of OPT. For these reasons, we have used Senga2, which is a also a 
parallel CFD code used for large-scale real-life calculations, but with more 
manageable datasets and a less complex code structure than Code_Saturne (around 
20k lines of Fortran only). 

 

Description of the tool 

The Allinea Optimization and Profiling Tool (OPT) is a development tool for analyzing and 
improving the performance of MPI and scalar applications. It gathers profiling information by 
instrumenting the MPI communication layer. OPT is a grid-enabled application that uses the 
web-service protocol SOAP to allow profiling users to access OPT remotely and securely 
with a minimal amount of communication bandwidth. OPT’s graphical interface uses remote 
(or local) OPT servers to launch applications, store performance data and analyse user 
applications. All stages of the analysis described in this report were undertaken on the Blue 
Gene/P. 
Design Features 

• Allinea OPT has been designed for use on large-scale parallel systems.  
• Supported languages: Fortran, C and C++. 
• Easy generation of different data formats. 
• Grid capable. This allows users to access remote profiling data almost as rapidly as a 

local server. 
• Multiple runs can be compared to assess code scalability. 
• Interoperable with other profiling tools e.g. PAPI hardware counters or gprof. 
• Subsets of processors and time intervals of interest can easily be selected in order to 

keep levels of profiling data manageable. 

 
Description of the Large-scale Application Software: Senga2 

The Senga2 code has been developed at The University of Cambridge and has been designed 
to facilitate combustion DNS with any desired level of chemistry, from single-step Arrhenius 
mechanisms through all classes of reduced reaction mechanisms up to fully detailed reaction 
mechanisms. The Navier-Stokes momentum equations are solved in fully compressible form 
together with the continuity equation and a conservation equation for the stagnation internal 
energy, as well as any required number of balance equations for species mass fraction. The 
numerical framework is based on a finite-difference approach for spatial discretization 
together with a Runge-Kutta algorithm for time-stepping. High-order explicit schemes are 
preferred due to their speed of execution and ease of parallel implementation, and a 10th order 
explicit scheme is standard for interior points. The code is fully parallel using domain 
decomposition over a cubic topology. The code is written in Fortran 77 with MPI library 
routines used for passing data between processors. 

 
Computational Characteristics of the Application 

In common with other finite-difference structured grid-based codes, a typical Senga2-based 
computation consists of 3 stages: 
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1. Set up problem from parameters passed through input files. 
2. Simulate combustion processes over a series of timesteps. 
3. Gather data and output results to disk. 

 

In real-life problems the calculation time is dominated by stage 2 above. For reasons of 
accuracy and numerical stability, the time-step size undertaken must be relatively small and 
therefore the number of time-steps required to model short periods of time can be very large 
(e.g. 10 000). The principal communications structure within Senga2 is a halo-exchange in 
three dimensions between adjacent computational sub-domains in order to update the periodic 
boundary conditions. This point-to-point data transfer takes place via corresponding 
MPI_SENDs and MPI_RECVs in the program. These are therefore the dominant MPI 
routines used in the code. The benchmarks investigated here use a global grid size of 1003 for 
64 processor runs and a global grid size of 2003 for 256 and 1000 processor runs on the Blue 
Gene/P system. In order to reduce runtimes, the number of time-steps is limited to 10. This 
number is sufficient for profiling tests, as communication patterns for each time-step are 
identical. Therefore analyzing a small number of time-steps (even only 1) is representative of 
a full run involving many thousands of time-steps. 

Senga2b has recently been run on several petascale architectures, including the Blue Gene/P, 
and demonstrates excellent scaling up to tens of thousands of processor cores. 

In this analysis of OPT on the Blue Gene/P, both approaches have been used and effects on 
the code run times are shown in section 7.1. 
 

Conclusions 
OPT provides a user-friendly environment for profiling and analysis of application codes on 
HPC systems. Its mode of usage is very straightforward and the package was installed quickly 
and easily on the Blue Gene/P. The tool facilitates a wide range of features, from a detailed 
analysis of individual messages between processes in the timeline view to summary views 
from across all processes, from which users can identify load-imbalances at a glance. The 
ability to switch easily between multiple runs in the database and view profiles from different 
jobs side-by-side is particularly useful when gauging communication overheads during 
application scaling tests. OPT also has the facility to incorporate hardware event counter 
information, such as PAPI, but this feature was not investigated during this assessment. 

Due to scalability issues, the current version of OPT would probably be unsuitable for general 
profiling analysis for computing at the petascale. The timings reported in Table 12 - Table 14 
in Annex 7.1, comparing run-times for Senga2 with and without OPT, show that the 
overheads associated with the collection of OPT trace events are greatly increasing when 
profiling large numbers of MPI processes. However, it should be noted that these performance 
overheads may not be necessarily prohibitive: users may need to profile a high-core count job 
only once in order to glean useful information about the communication structure and parallel 
code behavior. It should also be noted that during this analysis, OPT always completed its 
profiling on high core counts (no crashes were observed) and the OPT viewer was stable 
throughout its usage. 

Responsive, interactive usage of the OPT viewer was reaching its limitation at the 256 process 
count on Blue Gene/P, even when invoking features that reduce profiling overheads (e.g. 
setting maxfuncs, stop/start logging) and run-time overheads associated with tracing jobs 
involving more than 100 processes were substantial. A trace file was generated for a Senga2 
job involving 1000 processes. However unless the investigator has in mind a specific point of 
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interest (e.g. the behavior of a specific function) general profiling and analysis of a 1000 
process job via the OPT viewer would be impractical. Allinea are aware of these scalability 
limitations and future development of OPT will attempt to improve performance in this area. 

 

Suggestions for Future Improvements 
Whilst there exist several methods for restricting the number of MPI Events logged during 
runtime, there appear to be few ways of reducing the amount of information loaded and 
shown in the OPT viewer. For example, it would be convenient if users could load into the 
viewer only communication data from a subset of processes. Likewise, once profiling data is 
loaded into the viewer, a feature should be added to enable users to filter the data on view, for 
example, to show only communications between two named processes. Features such as these 
would both improve the reduce overheads on the OPT viewer when analyzing high core count 
runs and provide clearer profiling data for the user. The documentation for OPT is also rather 
incomplete and the author feels that detailed explanations of many of the features available 
are not provided. 
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6.3 Cray Performance Analysis Framework 

The Cray Performance Analysis Framework consists of the Cray Performance Analysis Tools 
(CrayPat) and Cray Apprentice 2. CrayPat is a suite of programs that can be used to analyse 
the performance of parallel applications on Cray XT supercomputers. The suite includes a 
tool for instrumenting applications (pat_build), a run-time library for measurements, a text-
based tool for analyzing the results (pat_report), and an online help utility (pat_help). The 
focus areas in developing the tools have been ease of use and scalability, CrayPat has 
successfully been used to analyse the performance of applications running at scale with tens 
of thousands of processes. Apprentice 2 is a tool with a graphical user interface that can be 
used to analyse and visualize performance data. The current version of the tools, 5.0, was 
released in September 2009.  

Features 
The basic usage of CrayPat does not require one to do any source code modifications. It turns 
out to be enough to load the appropriate CrayPat module, re-link the application and thereafter 
instrument the application binary using pat_build. CrayPat produces a standalone 
instrumented program that can be run independently of the original binary and object files. It 
is also able to instrument applications compiled with optimization flags which is important in 
order to get realistic performance measurements. 

CrayPat is able to provide performance information on a wide range of metrics defined via so 
called tracegroups. They cover MPI tracing, OpenMP, Co-Array Fortran and other PGAS 
languages, numerical libraries such as BLAS and FFTW, memory allocated from the heap and 
finally metrics concerning I/O. Naturally the tool can also provide profiles for user level 
functions. CrayPat uses PAPI to measure HW counter information. The latest version of 
CrayPat supports multiplexing HW counters, allowing one to measure any combination of 
HW counters. 

CrayPat supports two kinds of performance analysis experiments: tracing (synchronous) 
experiments and sampling (asynchronous) experiments. The tracing experiments instrument 
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the program to trigger a measurement each time the event occurs. Sampling experiments 
capture performance data at specified time intervals, or when some counter overflows. 

The default mode of operation for CrayPat is to only collect a profile of the application 
performance. This is a summation of the events over time and does not provide information 
about the sequence of events. Simply by setting an environment variable to 0 
(PAT_RT_SUMMARY), one can produce a trace of the sequence of events over time. This 
tends to significantly increase the amount of captured data, which makes it in many cases 
unfeasible to trace the complete execution of a large-scale application. One can use the 
CrayPat API and insert commands in the application source code to only measure shorter 
segments of the program execution. This allows producing trace files even for very large scale 
applications. 

For report on the actual experiments with CrayPat and Apprentice2, we refer to section 7.2. 

 

Feedback and experiences 
In general the CrayPat tools have proved to be stable, reliable and scalable. There is still room 
for improvement though.  

The views in Apprentice 2 showing information on a per process basis, e.g. load balance, 
cannot be zoomed out very far. This means that one need to do a lot of scrolling to see the 
values for all processes. It would be very useful to be able to zoom out so that one process 
would be represented by only a few pixels, or even just one. One could even extend this by 
using grouping to enable one to get an overview of tens of thousands of processes. 

As the time-sequence experiments tend to produce a lot of data, one often needs to use the 
CrayPat API to only capture short segments. It would be useful to have the option to only 
capture short time segments without having to do changes to the source code of an 
application. 

6.4 Dewiz 

Dewiz is a tool-set developed by partner GUP over the last years. Its main purpose is to 
provide means of debugging and performance optimisation of large scale applications by 
analysing their communication patterns. 

Many bugs causing undeterministic behavior can be found more easily by looking at traces of 
communication events between the involved MPI processes. However, with the rise of 
petascale machines running large simulations, the human eye might be overwhelmed with 
data because of the huge number of events in large traces and the impossibility of displaying 
them in a meaningful way. This is where the pattern matching component becomes active. It 
includes several pattern matching functionalities to hint the user where expected stencil-like 
communication behavior (i.e., constantly repeating communication patterns from e.g. parallel 
PDE solvers) exhibits irregular communication structures, imposing a possible bug or 
unwanted behavior.  There has been recent research showing that this approach is applicable 
and yields good results also for large message traces. 

A shortcoming of the tool at its present development stage is that its tracing library can only 
support a very basic set of communication event types that can be traced correctly. It shows 
that most of the production codes part of the PABS use a much larger set of communication 
primitives (i.e. collective communication operations) that are omitted in the generated traces, 
leading to unreliable/unuseful information and therefore unusablitity of the tool. There exist a 
few external tools that are able to trace the complete set of communication primitives; 
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however, those are unluckily still missing certain information in their traces that are needed 
for the pattern matcher to work on current real life codes. Once this situation has been 
improved in the future, the pattern matching component will be still of greater use for the 
HPC community. 

Another tool of the Dewiz set tackles possible performance issues caused by programmers 
using wrong – in terms of communication efficiency – communication primitives (i.e. 
manually implemented communication using one to one operations instead of original, often 
more efficient, collective operations). The tool includes a transformation framework which 
transparently changes the implementation of collective communication (native or point-to-
point based collectives / in a blocking or non-blocking fashion) depending on which choice 
provides the best performance in a particular application context. Experiments on the FFTW 
and GROMACS code base, running on a commodity based Opteron cluster system using an 
Infiniband interconnect have shown an improvement over the original codes. Tests on the 
Jugene and Louhi Prototypes however have shown, that their system implementations of 
collective operation are already performing best compared to other implementations. The 
system vendors obviously put lots of efforts in designing their communication networks and 
that highly tuned libraries like the tested FFTW make use of them. The evaluation of this 
component of the Dewiz set of tools has shown that they can most probably not improve the 
use of communication in parallel codes on the current prototype systems. 

Feedback and Conclusions 
The most important drawback of the Dewiz tool is currently the lack of collective 
communication support. This makes Dewiz not really usable in practice for the PABS. 
Improvement is required in this area. On the other hand, an interesting feature is the analysis 
of communication primitives, which would be even more useful when collective 
communication could be traced as well. 

 

6.5 IBM HPCT: High Performance Computing Toolkit 

 

Introduction 
The IBM High Performance Computing Toolkit (HPCT) is a collection of tools that can be 
used to analyse the performance of both parallel and serial applications, written in C or 
Fortran, on the AIX or Linux operating systems on IBM Power Systems Servers. The tools 
should allow the user to do the following measurements of their application performance: 

• access hardware performance counters, e.g. for analyzing cache utilization and floating 
point performance, 

• profiling and tracing of MPI applications, 
• profiling OpenMP applications, 
• profiling I/O patterns. 

Although IBM does not formally support hardware performance counter tools on the Linux 
platform, since it depends on the use of an unofficial patch (perfctr) of the kernel, the 
hardware counters do work on the Huygens system. Recently, the IBM Parallel Environment 
on the Huygens system has been upgraded from version 4.3 to version 5.1. IBM PE 5.1 
includes a productized version of the HPCT, whereas HPCT previously was unsupported 
software from IBM alphaWorks. This upgraded edition includes e.g. the peekperf GUI, which 
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is the user interface to the toolkit from where it should be possible to instrument, run and 
analyse the performance measurements for your application. 

We selected the scientific application NEMO to test the HPCT in a production environment. 
NEMO is an ocean model that is used by hundreds of scientists all over the world. It is 
developed in France and it is written in a modular fashion using Fortran 90. It consists of 
120k lines of code and uses the MPI library for parallelization. 

Instrumenting the application 
To be able to instrument the application, it needs to be compiled with IBM compilers with the 
extra flags '-g -emit-stub-syms'. Fortran programs furthermore require the PSIGMA_MAIN 
environment variable to be set to the name of the main program. To enable the use of the 
hardware performance counters, the application needs to be linked with the perfctr library, 
which is not documented in the HPCT Guide. 

The compiled application can be instrumented through the peekperf GUI or the command-line 
utility hpctInst. The peekperf utility is quite slow in opening binaries and sources for 
instrumenting or analyzing, which can take up to minutes for the NEMO executable. 

For a report on the actual experiments with IBM HPCT, we refer to section 7.4. 

Feedback to Vendor 
We have given the following feedback to the vendor: 
 
• The requirement to link the application with -lperfctr when using hardware counters needs 

to be documented. 
• When the instrumenter fails, it suggests to set the environment variable PSIGMA_MAIN 

to the name of the Fortran program. However, another reason for the failure is that the 
Fortran application is not compiled with '-g -emit-stub-syms'. It would help to add this 
suggestion when instrumentation fails. 

• HPCT complains about 'missing trampoline' when using 'include mpif.h'. Sometimes it 
helps to use 'use mpi', sometimes not. 

• MPI instrumentation changes the behavior of MPI. 
• I/O analysis seems not implemented, although instrumentation changes the behavior of the 

application. 
 

Conclusions 
The High Performance Computing Toolkit from IBM contains several tools. The first tool is 
the Xprof tool, which can be used to analyse cpu time profiles from a serial or parallel 
application. The outdated GUI does not give a significant advantage over a flat profile of all 
routines. Its only useful property that sets it apart from the free GNU tools available is the 
source line profiling. The PeekPerf GUI has a few interesting features which sets it apart from 
other performance tools, e.g. the flexible instrumentation of the code with hardware 
performance counters, MPI tracing and I/O profiling through a modern-looking GUI. 
Disappointingly, only the hardware performance counters work satisfactorily on the Huygens 
system, even though all different measurements should work on the Linux-on-Power 
platform. The only feature that does work is the measurement of hardware counters. However, 
the GUI prevents the user from finding the most important routines in terms of used cpu time. 
As a result, apart from the source line profiling, the High Performance Computing Toolkit 
cannot be recommended to potential users. 
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6.6 IPM: Integrated Performance Monitoring 

 

Introduction 
As described in D6.3.1, WP6 agreed to use the Integrated Performance Monitoring (IPM) 
toolkit from NERSC [6]. By using IPM, PRACE users will have access to an open source, 
portable and scalable profiling tool. IPM reports MPI function timings, memory usage, and 
hardware counters data. 

Deployment Status 
In order to provide a uniform performance analysis environment to the users across all 
PRACE sites, IPM has been ported to most of the PRACE prototypes. To date, IPM has been 
installed at the following PRACE sites: CSC, FZJ, SARA, CEA and HLRS. Instructions to 
install and test IPM on the PRACE prototypes are available for the interested sites. In the few 
cases where PAPI was not available on the prototypes, IPM was installed in a lightweight 
mode (without support for hardware counters). IPM has not yet been set up for BSC. As part 
of the NSF and DOE "preparing for petascale" program, IPM will continue to be supported on 
various high performance computing architectures. 

Experiments with the IPM tool are reported in section 7.5 on the ECHAM5 code, when this 
ons was still investigated as part of the initial PABS. 

Considerations for Future Work 
IPM should be used as a general portable tool for performance monitoring across a number of 
platforms. It is possible to use IPM on many different architectures but currently it does not 
support user function profiling, OpenMP profiling or PGAS languages. IPM developers are 
working on the next release of the tool (IPM2) which will support I/O, additional visualization 
tools and the potential to make performance extrapolations based on a collection of runs. 
 

6.7 Scalasca 

 

Introduction 
Scalasca is a software tool designed to analyse the performance of HPC applications on a 
wide range of contemporary HPC platforms [7].  During its design, a particular emphasis was 
placed on the usability on large scale systems such as the IBM BlueGene/P and the Cray XT 
systems, both of which are deployed as prototypes within the PRACE project.  Scalasca also 
aims to facilitate performance analysis on small- and medium scale HPC platforms. The 
software is free but copyrighted by Forschungszentrum Jülich GmbH, Germany and 2003-
2008 by University of Tennessee, United States of America.  The present version 1.2 was 
released in July 2009 in the middle of this investigation. For this reason this investigation has 
been using version 1.1, beta releases of version 1.2 and the present version 1.2, depending on 
what was available on the system at the time.  The developers state they have successfully 
tested Scalasca on the following platforms: IBM BlueGene/P, IBM SP & BladeCentre 
clusters, Cray XT4/5, SGI Altix, NEC SX-8, SiCortex systems and x86, x86-64, IA64 & 
SPARC clusters.  This list includes a number of the PRACE prototypes. 
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Platforms and applications used for this investigation 
For this part of the investigation we used Scalasca on the following HPC architectures: 
 
• Huygens, IBM Power 6 system with InfiniBand interconnect at SARA in the Netherlands.  

This prototype had originally Scalasca v1.1 installed and got upgraded to Scalasca v1.2 
recently; 

• Juropa, Cluster using Intel Xeon X5570 (Nehalem) quadcore processors with Infiniband 
interconnect at JSC in Germany.  This prototype has Scalasca v1.2 installed; 

• HECToR, Cray XT4 system located at the University of Edinburgh in the UK.  HECToR 
has a beta release of Scalasca v1.2 installed.  This system is closely related to the PRACE 
prototype Louhi and findings are expected to apply to Louhi, if it had a public installation 
of Scalasca. 

 
We used two of the PRACE application code to investigate the usability of Scalasca: 
 
• HELIUM: The application HELIUM uses time-dependent solutions of the full-

dimensional Schrödinger equation to simulate the behavior of helium atoms [8]. The 
source code was developed by Queen's University Belfast and has access restrictions. The 
HELIUM source code is written in Fortran 90 and uses MPI only for the parallelism. All 
source code is in one file with 14569 lines; 

• NAMD: The application NAMD is a widely used molecular dynamics application 
designed to simulate bio-molecular systems on a wide variety of compute platforms [9].  
NAMD is developed by the “Theoretical and Computational Biophysics Group” at the 
University of Illinois at Urbana Champaign. In the design of NAMD particular emphasis 
has been placed on scalability when utilizing a large number of processors.  The 
application source is written in C++ using Charm++ parallel objects for the data exchange 
between the compute tasks [10]. 

Scalasca Details 
Scalasca presently allows analyzing codes written in C, C++ and Fortran using MPI or 
OpenMP for the communication.  With some restrictions hybrid codes using MPI and 
OpenMP simultaneously may also be analysed. 
Using Scalasca is typically a four staged process: 
 
1. Adding the Scalasca directories to your path, on many systems this is facilitated by 

loading a module 
2. Instrumenting the object files and executables, which is done by prepending “scalasca –

instrument” to the compiler and linker call 
3. Executing the instrumented code with “scalasca -analyse” 
4. Examination of the results with “scalasca -examine” 
 
The results of these case studies are reported in section 7.6. 
 

Scalasca summary 
The case studies show how Scalasca has been used in PRACE to investigate the performance 
of the HELIUM and NAMD code on a range of architectures relevant to PRACE.  This shows 
a particular strength of the tool, which is not closely linked to a hardware vendor. The tool is 
available on a wide range on hardware architectures. Experience with the tool gained on one 
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architecture can be transferred to a different architecture. As shown for the case of HELIUM, 
the tool is typically easy to use and results can be obtained quickly. 

With NAMD the tool presently struggles to instrument the executable. This could be related 
to NAMD’s complex build procedure.  In this case only a subset of Scalasca’s functionality 
could be obtained.  However it should be noted that one of the authors has outside the PRACE 
project experienced the opposite situation, where the vendor supplied tools failed and 
Scalasca could be deployed to rescue the project.  Having several tools of similar functionality 
installed provides a useful fall back option in case one of the tools fails. 

In our experience Scalasca works well on large scale experiments of this investigation, which 
utilized hundreds or even thousands of tasks.  The efficient use of colors guides the analyst 
quickly to potential trouble spots. 

Concerning future developments of Scalasca we would like to see the following 
improvements: 

• In the MPI profile information about all MPI calls consuming considerable amount of 
time is needed.  In particular less common calls can be poorly optimized in many MPI 
libraries. 

• It would be useful for the analysis of applications using an iterative algorithm, if one 
could easily visualize the difference between the results from two executions of different 
length.  This difference is typically associated with proper “working” iterations and would 
disregard overheads due to program start and finalization.  Such overheads can be 
substantial in a typical measurement and benchmarking run, but are most of the time 
negligible for a proper production run. 

 
We have detailed the proposed improvements to the code authors already. 
 

Acknowledgement 
We would like to thank Brian Wylie from Forschungszentrum Jülich for his extensive support 
during this investigation. 
 

6.8 Vampir VNG 

 
Apart from the tested and supported platforms Vampir-Trace 5.7 was compiled on Huygens 
(SARA) and on Juropa (FZJ). The building process on both platforms is relatively simple. 
One has to take special care of the flags to be used for a proper compilation, especially on 
Huygens. On this system the mpi/poe libraries had to be specified very detailed: 
 
CC=xlc_r CFLAGS=-O2 -g -q64 CXX=xlC_r CXXFLAGS=-O2 -g -q64 F77=xlf_r 
FFLAGS=-O2 -g -q64 FC=xlf90_r FCFLAGS=-O2 -g -q64 MPICC=mpcc 
MPIF77=mpfort --disable-shared 

--with-mpi-dir=/opt/ibmhpc/ppe.poe/ 
--with-mpi-lib-dir=/opt/ibmhpc/ppe.poe/lib/libmpi64 
--with-mpi-lib=-lmpi_ibm -lpoe 
--with-papi-dir=/sara/sw/papi/3.6.2/lib64 
--with-papi-lib=-lpapi -lperfctr  

 
This tool provides an interface to the PAPI performance library. Therefore, on Huygens, 
where this library is available, we could test this feature. 
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On Juropa it was necessary to pass the following flags to configure: 
 
CC=icc CXX=icpc F77=ifort FC=ifort --enable-mpi --with-mpich2 
 

Gadget was used to test this tool on both systems.  On Huygens trace generation and all 
advanced-user features worked as expected.  Since the trace files can contain several GB of 
information, filtering and the selection of parts of the code to be traced are rather important.  

On Juropa, some of this functionality was working partially.  For example: some advanced 
features like manual instrumentation and user counters worked as expected. However, 
intermediate flushing and buffer memory control were using the default setting only. The 
automatic unification, set by default, works only if it is explicitly set through the 
corresponding environment variable. 

Although the tracing library is distributed under the BSD license, the visualization tool is not 
distributed under the GPL or BSD license, but it is a commercial product instead.  
Consequently, the postprocessing had to be done on HLRB2 at LRZ.  As shown in Figure 3, 
the traces were generated from a run on Juropa with 512 MPI tasks. The trace files were 1.1 
GB in size. The client server layout was used to analyse this information.  The server used 8 
MPI tasks for speed because of the size of the uncompressed files.  

 

 
 
Figure 3: Vampir Total time line view, traces on Juropa, visualization on HLRB2. 
 
Conclusions 
 
Based on the preliminary tests with Vampir, our first conclusion is that the tool is in 
development for Petascale systems, given the working features on IBM p575 (Huygens) and 
the only partially working features on IBM BlueGene (Juropa). 
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6.9 VPA: Visual Performance Analyzer 

 

Overview 
VPA has been developed and is maintained by IBM alphaWorks. 
 
Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit. 
Each component of the package allows the user to read generated profiling data-sets produced 
by the user code and analyse them in a number of different ways. Major components of the 
package are the following: 

• Profile Analyzer 
Profile Analyzer provides a powerful set of graphical and text-based views that allow users to 
narrow down performance problems to a particular process, thread, module, symbol, offset, 
instruction, or source line. Profile Analyzer supports time-based system profiles (Tprofs) on 
IBM platforms and the profile tool oprofile on Linux systems. 

• Code Analyzer 
Code Analyzer examines executable files and displays detailed information about functions, 
basic blocks, and assembly instructions. It is built on top of the FDPR-Pro, another feedback-
based post-link optimization tool from IBM. Code Analyzer is able to show statistics; 
navigate disassembled instructions; and display performance comments, instruction grouping 
information, and map instructions back to source code. 

• Pipeline Analyzer 
Pipeline Analyzer is a port of the Performance Simulator for Linux on POWER, another IBM 
technology. Pipeline joins the VPA toolkit to provide VPA users with the means of examining 
how code is executed on various IBM POWER processors. Pipeline Analyzer displays the 
pipeline execution of instruction traces generated by a POWER series processor. It does so by 
providing a scroll view and a resource view of the instruction execution. 

• Counter Analyzer 
Counter Analyzer accepts hardware performance data from collection tools such as CPC or 
HPMCOUNT. The data is provided as XML and is parsed by this plug-in in order to allow 
visualizing and analysis. 

• Trace Analyzer 
Trace Analyzer visualizes Cell Broadband Engine traces containing information such as DMA 
communication, locking and unlocking activities, mailbox messages, etc. Trace Analyzer 
shows this data organized by core along a common timeline. Extra details are available for 
each kind of event: for example, lock identifier for lock operations, accessed address for 
DMA transfers, etc. 

• Flow Control Analyzer 
Control Flow Analyzer is a tool that analyzes call trace data collected by tools such as 
Performance Inspector. The call trace data contains information about each method call, such 
as how much time is spent in every invocation and who calls whom. Control Flow Analyzer 
provides two major ways of visualizing the call trace data: a graph of the execution flow and a 
set of tables displaying the calling tree. 
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We have conducted experiments with VPA using the SIESTA code on the Cell platform 
(SIESTA was part of the initial PABS). These results are reported in section 7.8. 

 

VPA Conclusion 
Visual Performance Analyzer is a very complex performance analysis package. It consists of 
a number of tools which enable very in-depth profiling and performance analysis. It is 
targeted for the POWER architecture but has a number of Cell processor specific optimization 
scenarios implemented. We have found these Cell-targeted functionalities very useful; 
especially SPU co-processors support is a really unique feature of the VPA package.  

VPA has been found to be a very useful tool with Cell processor single-system (processor) 
performance analysis and instructive with progressive code optimizations. Multiprocessor 
parallel performance analysis was beyond the scope of our work with VPA.  

 

6.10 General Conclusions 

For most of the performance tools, as considered in the previous subsections, we have been 
able to feedback our findings to the software vendors or open source developers. It is not 
necessary to repeat all previous subsection conclusions / recommendations here. 

In general, we need ways to limit the trace files generated by the PATs when scaling to high 
number of cores. There seems to be a consensus on the fact that developers want an easy 
mechanism to limit this without doing any source modifications (either time limited or 
number of function calls limited, and configurable either via environment variables or 
configuration files). The rationale for this wish lies in the iterative nature of many algorithms: 
doing 10-100 iterations often reveals enough information for doing a performance analysis. 
For the real fine tuning we can still rely on the available PAT APIs. 

Given large trace files, we want mechanisms to easily filter the events in the trace file (e.g. 
select only the events of the first 100-1000 tasks.) Without this, a GUI or batch analysis can 
easily take hours to process all data. 

It is good to have multiple similar tools. Looking at the previous results these tools can be 
very resource demanding or require (sometimes undocumented) hooks in the compilers and/or 
MPI libraries. If one tool fails it is good to have other tools available. 

Finally, something that is not completely obvious from the previous subsections: many PABS 
codes have been analyzed using Scalasca which scales very well and gives good insight into 
bottlenecks.
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7 Annex 

 

7.1 Scalability Experiments with Allinea OPT 

Andrew Sunderland, STFC Daresbury Laboratory, United Kingdom  

 

OPT consists of three components (that can reside on separate machines): 

1. A library that is linked to the application code and records performance data. 
2. A database component (the profiling server) to store profiling data. This consists of a 

PostgreSQL Database.  
3. A graphical user interface that interprets the profiling data and displays it in user-

specified formats. 

Once that the OPT server software and the OPT profiling library is installed on the system (an 
installation GUI is provided for this) there are three separate stages involved in profiling 
users’ application codes. Firstly, the application source code is instrumented by wrapping the 
existing MPI calls. Either the whole code can be profiled, in which case no changes to the 
source code are required, or the application can be edited to use the OPT APIs in order to 
undertake selective profiling or add extra features.  
 

Profiling Senga2 on the Blue Gene/P 

On the IBM Blue Gene/P platform the following additions to the normal compile/link line for 
Senga2 were required: 

• The OPT header-file include directory (only required if using the OPT API) 
• The OPT static library directory, OPT and OPT-support libraries 
• The GNU C++ stdc++ library 
• The dynamic-linking library 
• The “Fortran Wrapper” library (necessary when compiling Fortran codes) 

Linking Senga2 with OPT on the BlueGene/P 

When MPI profiling with OPT users can choose between linking with shared or static MPI 
libraries. For the Blue Gene/P platform the Allinea support team recommends using static 
MPI libraries. 

On Blue Gene/P the link command for is: 
mpixlf77 -g -O3 ${SENGA2_SRC_LIST} -o senga2.exe 

-L${MPICHLIB_PATH} -lfmpich.cnk 

-L${OPT_ROOTDIR}/opt/lib/static -lopt-bgp -lstdc++ -ldl 

 

When using calls to the OPT API from within the source code, the OPT header-file include 
directory needs to be specified. 
mpixlf77 -g -O3 ${SENGA2_SRC_LIST} -o senga2.exe 
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-I${OPT_ROOTDIR}/opt/include -L${MPICHLIB_PATH} -lfmpich.cnk  

-L${OPT_ROOTDIR}/opt/lib/static -lopt-bgp -lstdc++ -ldl 

 

Instrumented executables can be run in exactly the same way as normal executables, either 
interactively or in batch mode. Jobs can be launched either from the command line or the OPT 
GUI. During execution profiling data is collected in the profiling database.  

E.g. for Senga2b, the resulting executable can be run interactively or from within 
LoadLeveler scripts using the following command: 
 mpirun -np <nprocs> -env OPTPATH=/home/ags64/opt1.4/opt  

-env BG_STACKGUARDENABLE=0 ./senga2.exe 

 

(The run-time environment variable BG_STACKGUARDENABLE is required for proper 
operation of OPT profiling on Blue Gene systems.) 

All runs undertaken use one MPI process per Blue Gene/P core. 

 
Managing OPT profiling data for large-scale runs 

In common with other tracing and sampling tools it is usually advisable to limit the amount of 
information collected when tracing relatively long jobs or jobs using large numbers of 
processors. This is necessary in order to prevent both the tracing process overhead and 
resulting trace files becoming prohibitively large.  

OPT has two main methods to enable users to limit tracing: 

1. Selective OPT Logging. This uses the OPT Fortran API to turn on and turn off logging 
via calls to OPT_Stop_Logging and OPT_Start_Logging function calls. 

2. Limiting the maximum number of functions that can be traced. This is achieved by 
setting a parameter maxfuncs in the OPT configuration file opt.conf. 

Both methods are effective at reducing tracing overheads. For users familiar with the program 
to be analysed, Selective OPT Logging is probably preferable, as this allows more specific 
control of tracing. For example, when tracing Senga2 runs, OPT logging can be limited to just 
one time-step, which in this case provides trace events representative of the communication 
pattern of the complete run. Limiting the maximum number of functions via maxfuncs is 
more arbitrary in that this method simply halts tracing in the code whenever the limit is 
reached. The default setting of maxfuncs is 100 000. The Allinea support team reports that 
the logging of 3 million functions in total is a level approaching the operational limit of OPT. 

 
 
The timing results shown in Table 12 through Table 14 below report the observed runtime 
overheads associated with using OPT for runs involving 64, 256 and 1000 processes on 
BlueGene/P. As described in an earlier section of the report, it should be noted that the runs 
using 256 processes and 1000 processes simulate a problem size with double the dimensions 
of the problem using 64 processes. It can be seen that the overhead per time-step increases 
markedly when the code is run with 1000 processes. Here a time-step undertaken with OPT 
profiling takes around 9 times longer than a time-step with no OPT profiling. However, in the 
author’s experience, this level of run-time overhead is not exceptional when compared to 
other profiling tools on large processor counts. From the ‘Total Job Times’ shown it can be 
seen that OPT logging introduces very large delays at the end of the parallel job – ranging 
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from 441 seconds for 64 processes to over 3 hours for 1000 processes. This extra time spent at 
the end of the run, presumably gathering the events logged, is out of proportion to the increase 
in the number of MPI events reported as logged in the OPT viewer.  
 

 
No OPT 

With OPT 
maxfuncs=100000 
(default) 

With OPT 
maxfuncs=2000 

Time per TS  
(max / min secs) 1.35 / 1.37 1.58 / 1.55 1.68 / 1.37 

Total CPU Time (secs) 15.76 20.48 20.74 

Total Job Time (secs) 17.15 478.35 441.21 

Logged MPI Function Calls N/A 401784 128064 

 

Table 12: Runtime details – 64 process jobs. 

 
 

 
No OPT 

With OPT 
Logging for 1 time-step 
only 

Time per TS  
(max / min secs) 2.66 / 2.65 3.76 / 2.69 

Total CPU Time (secs) 30.2 42.80 

Total Job Time (secs) 40.58 
 
3012.76 
 

Logged MPI Function Calls N/A 256512 

 

Table 13: Runtime details – 256 process jobs. 

 
 

No OPT 
With OPT 
Logging for 1 time-step 
only 

Time per TS  
(max / min secs) 0.87 / 0.86 7.06 / 0.86 

Total CPU Time (secs) 20.21 614.96 

Total Job Time (secs) 35.58 
 
12687.56 
 

Logged MPI Function Calls N/A 615000 
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Table 14: Runtime details – 1000 process jobs. 

Once the job has completed the MPI profiling data can be viewed in several different formats.  

This section will discuss the different types of analysis that can be undertaken from the OPT 
viewer/GUI with an emphasis on ascertaining the suitability of OPT for high core counts – 
specifically the results from the 64 process and 256 process jobs on Blue Gene/P. Although 
tracing was completed for the 1000 process jobs, no attempt was made to view this 
information in the OPT viewer (it was concluded that this would be too demanding for the 
OPT viewer). 

On starting the OPTGUI, the first window shown is the Session Manager screen. This 
database, shown in Figure 4, contains a list of all the user’s jobs run with OPT tracing, along 
with associated details such as processors used, runtime, number of MPI events logged. This 
ability to easily switch between trace results obtained from different jobs is an extremely 
useful feature when analyzing communication patterns from scalability tests. Users can thus 
view tracings from different core counts side-by-side, organized conveniently within the 
viewer’s tabbed environment. 

 

 
 
 
Figure 4: Session Manager of OPT summarizing a range of different jobs. 

Timeline View 

This is a chronological display of the users program. The profiling information from each 
processor is listed as a separate line and within each line the colored boxes represent MPI 
communications or other MPI function calls. Areas of interest in the timeline can be navigated 
via zoom and mouse drag or time intervals can be entered manually. Communication lines 
representing messages can also be toggled on/off. Individual message occurrences can also be 
highlighted and detailed performance data can be obtained (see Figure 5). The timeline view 
can be useful for highlighting asynchronous behavior or load imbalances between processors.  

The timeline is best when we consider only a small section of the actual run time of a program 
– as long as this section is representative of overall performance. Figure 5 shows a timeline 
for a 64 process run of Senga2 where maxfuncs=2000 has been specified in the user’s 
opt.conf configuration file. Figure 6 demonstrates a timeline for a 64 process run on 
Senga2 where the profiling has been restricted to three time-steps via calls in the source code 
to OPT_START_LOGGING and OPT_STOP_LOGGING. Non-traced sections of the timeline 
are represented by the light grey bars on either side of the traced time-steps in the centre of 
the view. As discussed in a previous section, this communication pattern is repeated 
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throughout the run and therefore tracing small numbers of time-steps provides an analysis 
representative of the complete run whilst reducing tracing overheads significantly. 
 

 
 
Figure 5: OPT Timeline view of a 64 process job with tracing restricted to 2000 functions. 
 
 

 
 
Figure 6: OPT Timeline view of a 64 process job with tracing restricted to 3 time-steps. 
 
Figure 7 shows a zoomed timeline view of a halo-exchange between processors. The green 
and purple blocks represent time spent in MPI_SENDs and associated MPI_RECVs. The 
block lines represent the individual data transfers between processor cores. Details 
corresponding to an individual message can be shown by clicking on the associated line. The 
huge volume of messages in the larger process count run 256 processors meant that both 
communication patterns and individual messages became difficult to follow and some kind of 
filtering option in the viewer would have been useful (e.g. restricting messages shown to 
those above a certain size or between specific MPI ranks). 
 

 
 
Figure 7: Zoomed timeline view for halo exchange communication pattern on 64 processes. 
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The timeline view was quite responsive to user instructions (e.g. zoom, toggle on/off 
communication lines) for 64 process jobs. Load times were somewhat longer when switching 
views for 256 process jobs, though the GUI remained quite useable. 

MPI Summary View 

In many cases summarizing the MPI communications across all processes for the complete 
job is informative. Figure 8 shows that the message passing in a 256 process run of Senga2 is 
dominated by calls to MPI_SSEND, MPI_RECV and MPI_GET_COUNT, with a small 
amount of time spent in MPI_ALLREDUCE. The Min/Max/Mean/Variance across the 256 
processes is also shown. 
 

 
 
 
Figure 8: MPI Summary View for 256 process run of Senga2. 
 
 

Histogram View 

This view arranges metric values from processes into buckets and gives a view of selected 
measurements by plotting a histogram. By viewing the data in this format users can easily 
identify load imbalances between selected processors. Figure 9 shows the large variance in 
time spent in MPI_ALLREDUCE across 256 processes. Figure 10 displays a stacked 
histogram of time spent in all MPI calls across 256 processes. Both views are examples of 
how users can use OPT to easily spot communication load imbalances in their programs and 
are of particular use on runs involving large process counts. 
 



D6.3.2  Final Benchmark Suite 

PRACE - RI-211528  18/6/2010 50

 
 
Figure 9: Variance of time spent in MPI_ALLREDUCE for 256 process run of Senga2. 
 
 

 
 
Figure 10: Stacked Histogram of Time Spent in all MPI Calls for 256 process run on Blue Gene/P. 
 

Message Profile View 

The Message Profile view provides a summary view of point-to-point communications 
between different processors. The information is provided in the form of a grid. The banded 
structure seen in Figure 11 and Figure 12 below is a classic communication pattern for finite-
difference based algorithms. Metrics such as bytes transferred, number of MPI calls and time 
spent in MPI communications can be selected. This view is particularly useful for identifying 
communication patterns for jobs involving large processor counts. The 256 process message 
profile view was slow to load (around 10 minutes), but once loaded changing the view’s 
parameters was quite responsive. 
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Figure 11: Message Profile View for 64 process run of Senga2. 
 

 
 
 
Figure 12: Message Profile View for 256 process run of Senga2. 
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7.2 Scalability Experiments with CrayPat and Apprentice2  

Sebastian von Alfthan, CSC, Finland 

 

To assess the functionality and scalability of CrayPat and Apprentice 2, we have analysed the 
performance of Gromacs running the PABS benchmark dataset. In this section we present 
step-by-step how the analysis was performed. 

We first produced a profile of the Gromacs performance. The first step was to load the 
CrayPat module (xt-craypat) and to relink Gromacs. 

module load xt-craypat 
 make mdrun 

 Here we used the recommended two phase method called Automatic Profiling Analysis 
(APA). In the first phase the binary was instrumented to collect information on the most time 
consuming functions: 

pat_build -O apa mdrun 

This command produced an instrumented binary (mdrun+apa) that was run using the test 
case. After the job had finished a performance file or a directory with multiple files had been 
created. A directory with multiple files is created when running large scale jobs. This is one 
key aspect which enables CrayPat to support performance measurement at scale. The 
performance file was thereafter analysed and a text report and an apa file was produced using 
the pat_report command: 

 pat_report performance_file.xf 

The apa file is a text file which defines how to instrument the binary in the second phase. The 
initial content of this file is automatically generated based on the information gathered in the 
first stage. The automatic values are most of the time good, but the user can also easily change 
them, e.g., add user level functions to be traced or change which hardware counters are 
captured. For Gromacs we noticed that the APA based scheme was not completely successful, 
we had to activate several important user level functions. In addition to user level functions 
we also traced MPI and collected some basic HW counter information. Based on the apa file 
we produced the final instrumented binary: 

pat_build -O apafile.apa 

An expert user can also discard the first stage in the APA scheme, and directly produce an 
instrumented binary. After all, the apa file mostly contains flags for pat_build. After we run 
the final instrumented binary we obtained a new performance file. Running pat_report on it 
produced a performance report and an ap2 file that can be visualized using Apprentice 2. The 
report contains information such as a profile (Table 15): 

Time %    |       Time | Imb. Time |   Imb. |    Calls |Group 
          |            |           | Time % |          | Function 
          |            |           |        |          |  PE='HIDE' 
 
   100.0% | 148.349789 |        -- |     -- | 177406.9 |Total 
|---------------------------------------------------------------- 
|   76.5% | 113.532364 |        -- |     -- |  73514.7 |USER 
||--------------------------------------------------------------- 
||  54.9% |  81.393673 |  2.780510 |   3.3% |  10001.0 |do_nonbonded 
||  10.8% |  15.986473 |  8.292538 |  34.3% |  10001.0 |do_force 
||   4.5% |   6.629125 |  3.868527 |  37.0% |      1.0 |do_md 
||   2.5% |   3.747337 |  8.112071 |  68.7% |  10001.0 |do_force_lowlevel 
||   1.9% |   2.881715 |  0.651005 |  18.5% |  10003.0 |csettle 
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||=============================================================== 
|  14.0%  |  20.785209 |        -- |     -- |   6691.3 |MPI_SYNC 
||--------------------------------------------------------------- 
||  11.8% |  17.472643 | 13.257841 |  43.3% |   4390.6 |MPI_Bcast(sync) 
||   1.9% |   2.826379 | 11.005785 |  79.9% |   1130.5 |MPI_Allreduce(sync) 
||=============================================================== 
|    9.5% |  14.032195 |        -- |     -- |  97197.9 |MPI 
||--------------------------------------------------------------- 
||   9.2% |  13.683468 |  8.110984 |  37.4% |  87094.8 |MPI_Sendrecv 
|================================================================ 

Table 15: Profile report for Gromacs. 
 
We also get HW counter information on the whole program, and on individual functions, as 
shown in Table 16: 
USER / do_nonbonded 
------------------------------------------------------------------------ 
  Time%                                              54.9% 
  Time                                           81.393673 secs 
  Imb.Time                                        2.780510 secs 
  Imb.Time%                                           3.3% 
  Calls                           122.9 /sec       10001.0 calls 
  PAPI_L1_DCM                    15.140M/sec    1232454976 misses 
  PAPI_TLB_DM                     0.019M/sec       1560986 misses 
  PAPI_L1_DCA                  1872.994M/sec  152465437424 refs 
  PAPI_FP_OPS                  6320.028M/sec  514462747250 ops 
  User time (approx)             81.402 secs  219785329131 cycles  100.0%Time 
  Average Time per Call                           0.008139 sec 
  CrayPat Overhead : Time          0.0% 
  HW FP Ops / User time        6320.028M/sec  514462747250 ops  58.5%peak(DP) 
  HW FP Ops / WCT              6320.028M/sec 
  Computational intensity          2.34 ops/cycle     3.37 ops/ref 
  MFLOPS (aggregate)         1617927.15M/sec 
  TLB utilization              97672.50 refs/miss  190.767 avg uses 
  D1 cache hit,miss ratios        99.2% hits          0.8% misses 
  D1 cache utilization (misses)  123.71 refs/miss   15.464 avg hits 
======================================================================== 

Table 16: HW counter information for Gromacs. 
 

Load balance is also of outmost importance to improve performance; the report contains a 
table showing time spent in user functions, and the synchronization and normal MPI time 
(Table 17): 

 
   Time % |       Time |  MPI Msg |MPI Msg Bytes |  Avg MPI |Group 
          |            |    Count |              | Msg Size | PE[mmm] 
 
   100.0% | 148.463816 |  95441.6 | 1608213464.0 | 16850.24 |Total 
|------------------------------------------------------------------ 
|   76.5% | 113.579615 |       -- |           -- |       -- |USER 
||----------------------------------------------------------------- 
||   0.3% | 119.268743 |       -- |           -- |       -- |pe.85 
||   0.3% | 113.554316 |       -- |           -- |       -- |pe.240 
||   0.3% | 111.465198 |       -- |           -- |       -- |pe.176 
||================================================================= 
|   14.0% |  20.789510 |       -- |           -- |       -- |MPI_SYNC 
||----------------------------------------------------------------- 
||   0.1% |  31.694825 |       -- |           -- |       -- |pe.45 
||   0.1% |  20.931146 |       -- |           -- |       -- |pe.166 
||   0.0% |   8.090958 |       -- |           -- |       -- |pe.201 
||================================================================= 
|    9.5% |  14.094668 |  95441.6 | 1608213464.0 | 16850.24 |MPI 
||----------------------------------------------------------------- 
||   0.1% |  22.218904 |  95122.0 | 1571528263.0 | 16521.19 |pe.237 
||   0.0% |  13.053821 |  95244.0 | 1671435159.0 | 17548.98 |pe.131 
||   0.0% |  10.544807 | 100104.0 | 1661084499.0 | 16593.59 |pe.96 
|================================================================== 

Table 17: MPI information for Gromacs. 
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Finally we also get statistics about message counts and sizes, both for the whole program and 
for individual MPI calls (Table 18): 

 
Totals for program 
------------------------------------------------------------------------ 
  MPI Msg Bytes              1608213467.0 
  MPI Msg Count                   95441.6 msgs 
  MsgSz <16B Count                11718.8 msgs 
  16B<= MsgSz <256B Count         14476.2 msgs 
  256B<= MsgSz <4KB Count          5952.7 msgs 
  4KB<= MsgSz <64KB Count         63287.3 msgs 
  64KB<= MsgSz <1MB Count             4.6 msgs 
  1MB<= MsgSz <16MB Count             2.0 msgs 
======================================================================== 
MPI_Sendrecv / dd_sendrecv_rvec / dd_move_x / do_force 
------------------------------------------------------------------------ 
  MPI Msg Bytes              781831261.0 
  MPI Msg Count                  30003.0 msgs 
  4KB<= MsgSz <64KB Count        30000.7 msgs 
  64KB<= MsgSz <1MB Count            2.3 msgs 
======================================================================== 
Table 18: Summary of profile information for Gromacs. 
 

The examples above only show the default reports; there are several options for additional 
reports and for changing the default ones. 

Running Apprentice2 on the ap2 file enables one to visualize the performance data. We will 
here present a subset of the results one obtains. In Figure 13 the profile is shown as two pie-
charts, showing the profile based both on calls and on time. Clicking on a function in the pie-
chart shows its load balance, as shown in Figure 14. 
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Figure 13: Profile of execution as shown by Apprentice2. 
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Figure 14: Load balance view in Apprentice 2. 
 

Another very useful view is the call graph (Figure 15), showing a compact presentation about 
the load balance, how much time is spent in different routines and the relationship between 
callers and callees. This enables one to get an overview of the program, even if its structure is 
not familiar. The load balance information is represented by colors, the yellow bar in the 
background shows the maximum time, the purple bar shows the average time, and the cyan 
bar shows the minimum time spent in the function. The size of the boxes show the relative 
time spent in the function, the height represents the time spent in that particular function, 
while the width corresponds to the cumulative time spent in the children of the function. 
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Figure 15: Callgraph view in Apprentice 2. 
  
To enable a time sequence view in Apprentice 2 one simply needs to set an environment 
variable prior to running the instrumented application: 
 export PAT_RT_SUMMARY=0 

This works well for short jobs, running on a small number of cores. If this is not the case, the 
amount of data captured is too large to be analysed with ease. The simple solution for an 
iterative algorithm, such as the Molecular Dynamics one in Gromacs, is to only turn on 
tracing for a few iterations. Each iteration is essentially similar to all the other ones, it's thus 
enough to just sample a few of them. This can be done using the CrayPat API by adding 
instructions in the source code. We modified Gromacs by turning off tracing right after 
MPI_Init in the gmx_setup function: 
  (void) MPI_Init(argc,&argv); 
  PAT_tracing_state(PAT_STATE_OFF); 

In the main iteration loop we then turned on tracing for a few iterations as follows: 
  if(step==910){ 
        PAT_tracing_state(PAT_STATE_ON); 
    } 
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    else if(step==920){ 
        PAT_tracing_state(PAT_STATE_OFF); 
    } 

In Figure 16 a timeline is shown for Gromacs. In this case only MPI routines have been 
traced, therefore the time between MPI_Sendrecv's is white. This kind of a view can be very 
useful in pinpointing the reason for bad load balance. In this case the view is quite simple, as 
the only communication is MPI_Sendrecv between neighbors. When looking at another test 
case for Gromacs in PRACE report D6.4, the view proved extremely useful as it showed that 
the major bottleneck was MPI_Alltoall. 

 

 
Figure 16: Timeline of Gromacs visualized using Apprentice 2. 
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7.3 Scalability Experiments with IBM HPCT 

 

John Donners, SARA, the Netherlands 
 
Analyzing the CPU performance 
 
The NEMO executable is instrumented for hardware performance measurements using 
hpctInst: 
 

hpctInst -dhpm nemo 
 
When running the instrumented binary, the following error message appears: 
 

symbol lookup error: /opt/ibmhpc/ppe.hpct/lib64/libshpc.so: 
undefined symbol: _vperfctr_open 

This can be solved by linking the application with the perfctr library, but this is not described 
in the documentation. The instrumentation also creates a hidden file called 
'.psigma.hpmhandle', which needs to reside in the same directory as the instrumented 
executable, which is neither documented. 

The output is one file with the hardware counters for the first task only. The measurements are 
analysed using the peekperf utility, which shows two windows (cf. Figure 17): one window 
with a tree with the different source files and subroutines and another window with the source 
for each file. Once a subroutine is selected in the left window, the selected subroutine is 
marked in the right window. The tree view can be sorted alphabetically on subroutine and 
source file name or on the execution time, but it is difficult to find which routines are most 
cpu-intensive: the execution time includes all callees and the execution time for callees 
includes the calls from all its callers. The data can also be shown as a large spreadsheet and 
saved to a file for further analysis. However, this table neither contains the exclusive timing of 
subroutines. Further details (e.g. the flop rate and the instructions per cycle) are available and 
are clearly explained in the documentation. The peekperf utility allows specifying the group 
of hardware counters that should be used, but this option seems only available when the 
program is run from peekperf, which is usually not the case for massively parallel 
applications.  
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Figure 17: Main window of peekperf. 
 
Analyzing the MPI performance 
 
The MPI calls in the NEMO application can be instrumented as follows: 

hpctInst -dmpi nemo 

which initially results in an error message for NEMO: 
2750-202 ERROR: cannot find the trampoline for 
'mpi_pack_external_size'. 
       Please add the -emit-stub-syms option while linking 
       (assume the user uses the XL compiler)! 
 2750-507 hpctInst: could not do instrumentation 

For NEMO this problem could be solved by replacing 'include mpif.h' with 'use mpi' in the 
code. However, other Fortran 90 MPI applications give the same error message, even though 
the code does say 'use mpi'. It is unclear what is the cause of this ambiguous behavior. The 
instrumented NEMO binary needs 128 MPI tasks to run, so it is submitted as a batch job and 
runs from a scratch directory. Unfortunately, running the instrumented binary fails: 
ERROR: 0032-154 Not a persistent request  (0), MPI_Start, task 124 
ERROR: 0032-154 Not a persistent request  (0), MPI_Start, task 125 
ERROR: 0032-154 Not a persistent request  (0), MPI_Start, task 126 
ERROR: 0032-154 Not a persistent request  (0), MPI_Start, task 127 
ERROR: 0031-250  task 65: Terminated 

while the original binary does function properly. As a result, we have been unable to further 
test the MPI analysis with the HPCT.  

 

Analyzing the I/O performance 
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HPCT can also instrument I/O system calls (called 'MIO'), which can be very valuable for 
benchmarking high-performance computing applications, because I/O is often an important 
bottleneck for performance and scaling. The NEMO application uses primarily the NetCDF 
library for output, so the executable was linked with the static NetCDF libraries to enable 
instrumentation. NEMO was instrumented with the hpctInst command-line tool as follows: 
 

hpctInst -dmio nemo_world 
 
This creates an instrumented executable nemo_world.inst, as is the case for the 
instrumentation of MPI calls and hardware counters. The environment variable MIO_FILES 
was set in the batch job as suggested in the manual: 
 

export MIO_FILES=”*[trace/xml/events={./mio.evt}]” 
 
Unfortunately, no I/O measurements are produced. Interestingly, the I/O instrumentation does 
change the runtime behavior of the application. After 66 timesteps with many I/O requests, 
the NetCDF library stops with an error: 
 

iom_nf90_rp0123d: should have been an impossible case... 

The tab window for the MIO instrumentation is empty when trying to instrument a very 
simple C program with file I/O using peekperf. There is no mention that this part of the HPCT 
is not supported on the Huygens platform (Power-on-Linux), so it is unclear why this doesn't 
work. 
 
X Windows Performance Profiler 
Xprof is a GUI that can be used to graphically display a set of cpu profiles from each task of a 
parallel code. The call tree is graphically represented: each node is represented by a green box 
whose width represents the inclusive time (time to execute itself and all its callees) and its 
height represents the exclusive time (cpu time without callees). In 'averaged view' the boxes 
are scaled according to the standard deviation of all the profiles. Filter functions can be 
applied to select functions with certain names (e.g. to filter Fortran modules), the number of 
calls or is cpu time usage. This last filter is useful to declutter the view for large programs like 
NEMO. Profiles are available down to the source line level, which is an important advantage 
over the standard gprof. It displays the cpu usage for the source as 'ticks per line' (0.01 
seconds), not as a percentage. The boxes are scaled linearly but with a lower limit, which 
makes insignificant routines appear much larger than they should. 
 

7.4 Scalability Experiments with IPM 

Jean-Guillaume Piccinali, CSCS, Switzerland 
 
We have chosen to investigate IPM on the CRAY XT5 using ECHAM5. ECHAM5 was run 
with a T106L31 configuration, simulating one month of model time. IPM shows a rather poor 
scalability of the code (Figure 18). For instance, on 64 cores 35% of the execution time is 
taken by MPI communication routines. For 128 and 512 cores, this is even more. 
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Figure 18: Scalability details of IPM. 
 
As described in D6.3.1, ECHAM5 suffers from high frequency of small messages. Scalability 
results show (see chapter 3) that ECHAM5 remains under the 10 Tflop/s threshold. It turned 
out to be impossible to obtain scalability results for that code which pass this threshold. In 
conclusion, the current problem size of ECHAM5 will not scale to large numbers of cores. As 
a replacement, we used the LINPACK benchmark to evaluate the performance analysis tool. 
The issue of the time taken by the tools to generate sufficiently small traces with as much 
details as possible has been raised in WP6. The following table shows the overhead induced 
by using either CrayPat or IPM (Table 19): 
 
Cores No Tool IPM IPM 

Overhead 
CrayPat CrayPat 

Overhead 
2916 1531.3 1459.7 -5% - - 
3600 1292.2 1232.6 -5% 1348.4 4% 
6084 855.3 868.1 2% 911.4 7% 
10404 583.2 668.0 15% 672.6 15% 
14400 477.0 614.4 29% 562.8 18% 
15876 457.2 616.9 35% 547.8 20% 

 

35% 

T106 
064 cores

T106  
128 cores

50% 

T106  
512 cores

76% 



D6.3.2  Final Benchmark Suite 

PRACE - RI-211528  18/6/2010 63

17424 440.3 642.3 46% 530.7 21% 
19044 429.4 690.5 61% 531.9 24% 
20736 418.4 710.0 70% 517.6 24% 
 
Table 19: Comparison of overhead introduced by CrayPat and IPM. 
 

It is interesting to observe that for a few thousands of cores, the run with usage of the IPM 
tool is faster than without. We have not investigated this further, although it is a rather strange 
effect. It is unlikely that such tools will scale without modification to hundreds of thousands 
of processes (although several thousands is not a problem). Based on these results, detailed 
feedback has been sent to the developers of IPM and the decision has been taken to modify 
some components of the tool.  

IPM wasn't easy to install initially but input from the NERSC staff helped to overcome the 
issue. 

With respect to file handling transparency, IPM can collect individual performance profiles 
into a database which synthesizes the performance reports via a web interface. Since profiles 
are stored centrally in an SQL database they provide a performance track record to developers 
and a means of workload characterization to HPC managers. Analysis can also be done on a 
local laptop. 

 

7.5 Scalability Experiments with Scalasca 

Xu Guo and Joachim Hein, EPCC, United Kingdom 
 
Using Scalasca for HELIUM profiling 
 
The Scalasca toolset was used for profiling HELIUM performance on the SARA POWER6 
system, Huygens, and the new Jülich cluster with Nehalem cores, Juropa.  The profiling was 
used to help with the petascaling and optimization for PRACE WP6 task 6.4 and task 6.5. For 
the HELIUM profiling on Huygens and Juropa, a 1540-block test case was run on 1540 cores 
with Scalasca used. 
 
Using Scalasca for HELIUM profiling is straightforward. The implementation steps on both 
prototypes are listed as below. 

Huygens: 
 
• Load modules for Scalasca usage: 

module load papi scalasca 
• Recompile and link HELIUM with Scalasca: 

scalasca -instrument /sara/sw/modules/wrappers/sara/mpfort -
qfree=f90 -O4  
-qessl -qarch=auto -qtune=auto -qhot   
-o helium_scalasca helium.f90 

• Run HELIUM with Scalasca analysis: 
scalasca –analyse poe helium_scalasca 

• The profiling results will be worked out in a separate directory. After checking the 
execution correctness, the profiling results can be viewed via the Scalasca GUI: 

       scalasca -examine [epik_dir] 
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Where [epik_dir] is the directory containing all the profiling results. 

Juropa: 
 
• Load modules for Intel compiler and Scalasca toolset usage: 

module load parastation/intel 
module load UNITE 
module load scalasca 

• Recompile and link HELIUM with Scalasca: 
scalasca -instrument mpif90 -O3 -ipo \ 
             –o helium_scalasca helium.f90 

• Run HELIUM with Scalasca analysis: 
scalasca -analyse mpiexec –np 1540 ./helium_scalasca 

• The profiling results will be worked out in a separate directory. After checking the 
execution correctness, the profiling results can be viewed via the Scalasca GUI: 

scalasca –examine [epik_dir] 
where [epik_dir] is the directory containing all the profiling results. 

 
Running HELIUM with Scalasca was successful on both systems. The profiling results were 
produced as expected. All the profiling data can be viewed via the Scalasca GUI using CUBE. 
Figure 19 shows an example of using Scalasca GUI to view and analyse the HELIUM 
profiling results on Huygens. This is very similar to that on Juropa system. 
 

 
 

Figure 19: Viewing the HELIUM profile via Scalasca GUI on the Huygens system. 
 
The profiling results with Scalasca were very useful for the HELIUM petascaling and 
optimization tasks. The main Scalasca functionalities used for HELIUM profiling included: 
 
• MPI communications and synchronizations profiling:  
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This is to identify the most expensive MPI communications and synchronizations for 
reducing the communication overheads. 

• User functions execution time profiling:  
This is quite helpful to produce the source code calling tree, identify the most expensive 
user functions and if possible, locate the bottlenecks in the original source code. 

• Load balance profiling: 
It helped to analyse the reasons for communications and user functions expense. 

 
Scalasca is portable to multiple systems. It makes easier to compare the behavior of the same 
application on different architectures. For example, when comparing the Scalasca profiling 
data on Huygens and Juropa, it can be seen clearly via the CUBE GUI that the key 
bottlenecks were similar, but the percentage of synchronizations is higher on Juropa.  
 
Using Scalasca for NAMD profiling 
In contrast to HELIUM, which builds with a standard compiler call, building an NAMD 
executable is more complex.  As discussed when instrumenting an executable for Scalasca, 
the developer has to prepend all compiler/linker calls with a call to the Scalasca executable. 

When building an NAMD executable at least the link step is triggered by calling the charmc 
command, which is the compile command of the Charm++ installation.  This command sets 
up the environment required when using the Charm++ library and invokes the system 
compiler or linker.  To instrument the NAMD executable the call to Scalasca has to be added 
to Charm++ scripts.  For a C++ code, the compiler invoked by charmc appears to be defined 
by the CMK_CXX variable and the linker is defined by the CMK_LDXX variable, both are set in 
the subdirectory of src/arch relevant for your system.  The file is typically named conv-
mach.sh, but for some architecture different names are used and some experimentation will 
be required, when searching for the right place. 

During this investigation we did not manage to successfully instrument a NAMD executable 
with Scalasca.  The reason is that the compilation of key NAMD objects failed when 
“scalasca –instrument” was added to the CMK_CXX variable.  Within the time 
available, we did not manage to overcome these problems. We can only speculate about the 
cause.   

While not managing to get a full profile on the HECToR system and the JUROPA system, we 
managed to obtain results for MPI profiling with Scalasca.  On the Huygens system even that 
failed, the instrumented code on execution would not open the required repository to write the 
results. The Scalasca developers have since traced the cause to be a configuration issue of the 
Scalasca installation on Huygens, which according to their testing overcomes the problem. 
We are presently awaiting an updated Scalasca installation to confirm their findings. 

We like to note that with Cray’s proprietary tool CrayPat, which uses in many aspects a 
similar approach to Scalasca, we had no problems obtaining a full NAMD profile for the 
HECToR and Louhi system.  A hardware vendor which only has to cover their own systems 
and has easier access to undocumented features of the hardware and system software might be 
at an advantage here.  In this context it is also interesting to note that the developers of 
Charm++ are introducing a profiling interface to their code and are collaborating with tool 
experts on exploiting this interface [11]. 

MPI profiling on Juropa 
To obtain an MPI profile from Scalasca on the Juropa system one needs to: 
 



D6.3.2  Final Benchmark Suite 

PRACE - RI-211528  18/6/2010 66

• Enable linking with Scalasca by adding “scalasca –instrument” to the 
CMK_LDXX variable in the file cc-mpicxx.sh in the directory /src/arch/mpi-
linux-x86_64 of the charm++ installation. 

• Load modules for Intel compiler and Scalasca toolset usage: 
module load parastation/intel 
module load UNITE 
module load scalasca 

• Relink the namd executable 
• When executing the instrumented executable the above modules also need to be loaded in 

the job submission script and the mpiexec needs to be prefixed by “scalasca –
analyse”. 

• The results can be visualized by running “scalasca –examine” on the epik directory. 
 
In Figure 20 we show a screen dump of the GUI showing the resulting profile from a 512 task 
run.  When compared to Figure 19, it is obvious that the call tree now contains references to 
MPI calls only. The approach NAMD takes to data exchange makes extensive use of 
MPI_Iprobe, when Charm++ is build onto of MPI.  Examination of Figure 20 shows that 
MPI_Iprobe calls do not appear in the profile.  The Scalasca developers confirmed that the 
present version is not profiling MPI_Iprobe.  The reason behind is that the overheads 
associated with calls of this nature could be substantial and distort the results.  They are 
presently working on a solution which will be added in a future release. 
 
 

 
 
Figure 20: MPI profiling of NAMD on Juropa. 

MPI profiling on Cray XT 

A similar procedure to Juropa also allowed MPI profiling on the Cray XT. We added 
“scalasca –instrument” to the conv-mach.sh file in the Charm++ subdirectory 
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/src/arch/mpi-crayxt and re-linked the executable after loading the Scalasca 
module. On execution, the aprun command inside the job submission script needs 
prepending with scalasca –analyse.   A screen shot of the MPI profile is shown in Figure 
21.  This is also from a 512 task run. 

Figure 21 gives an example of counting the number of MPI_Isend commands issued.  In the 
right hand column one can see a break-down by nodes and cores.  The green color in the right 
hand column against process 0 shows that this is issuing significantly fewer MPI_Isend 
calls then the other processors, while the red color against process 1 shows that this process is 
issuing more calls than the other processors.  This is a good example of how Scalasca’s use of 
color to guide the analyst quickly to the potential trouble spots. 

As noted the screen shot is from a 512 task run.  The GUI is well designed for the task of 
analyzing performance data from experiments with several hundred or thousand tasks.  On 
start-up the GUI gives the analyst an overview of the application quickly and allows getting 
very detailed information on individual tasks by expanding a few boxes. 

As expected from the feedback received from the Scalasca developers, MPI_Iprobe is also 
not profiled on the Cray XT. 

 
 

 
 
Figure 21: MPI profiling of NAMD on HECToR. 
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7.6 Scalability Experiments with VPA 

Maciej Filocha and Maciej Szpindler, PSNC, Poland 
 
We have used VPA to analyse the progress of optimizations works with the SIESTA package 
on Cell architecture. We have focused on performance issues on a single Cell-based QS22 
blade server - two PowerXCell processors (2 PowerPC cores and 16 SPU cores), see Figure 
22 for a sample-based profile of the computational kernel. 
 

 
 
Figure 22: Screenshot: Profile Analyzer with sample-based profile. 
 

In order to generate a sample-based profile one must use the oprofile tool (under Linux) to run 
a program and collect samples. This requires having root permissions which is a little 
embarrassing. Nevertheless we have found this functionality very useful during single-core 
performance optimization phase. One can browse the source code annotated with a profile 
data line-by-line. There is also a functionality of browsing de-assembled instructions mixed 
together with a sample-based statistics. Another very useful feature is the ability to show 
profile results per statement/instruction, in one screen. Figure 23 is an example of this. 
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Figure 23: Screenshot: Profile Analyzer showing profile-based annotated source code. 
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7.7 Descriptions of Application Benchmark Codes 

This section contains brief descriptions of the benchmark applications from the PABS. 

7.7.1 QCD 

Lukas Arnold, FZJ Germany 

The QCD-benchmark contains five kernels. These kernels are executed within a wrapper 
application (src/qcd-bench.c). This is done by calling one function (kernel_x) for each kernel, 
which does the initialization, the computation and the finalization of the kernel. In all cases 
this is (was) the original main function. Each call of the kernel functions includes calls to the 
wrapper to trigger diagnostics. Some modifications to the code needed to be done, in order to 
be compatible to the benchmarking environment. The general structure of a kernel separates 
into three phases: initial, run and finalize. Therefore the diagnostic functions (jube_kernel_*, 
the corresponding source code is located in src/qcd-diag.h) are called at the begining of each 
phase and at the end of the finalize phase. 

The compilation of the qcd benchmark is the following: each kernel compiles it’s sources 
using the parameter set in src/kernel_x/Makefile.defs, which will be included by the 
corresponding src/kernel_x/Makefile. The main make file src/Makefile calls each kernels 
make files, with an object archive src/kernel_x.a as target, compiles the wrapper application 
and links the wrapper and archive objects to one executeable. The whole application is a 
fortran 90 / C mixture. 

The parameter files needed for each kernel (kernel_x.input*) have to be located in the 
execution directory and are used to specify for example the problem size. At the moment the 
problem size and processor distribution for kernel_C needs to be specified at the compilation.  

kernel A 

name  BQCD  

label  kernel_A  

short label  KA  

kernel origin  Berlin Quantum ChromoDynamics program (BQCD), DEISA 
benchmark suite  

kernel contact person  Hinnerk Stueben  

kernel code status  2008/08/25  

problem size parameter  KA_N{X,Y,Z,T}, 4D lattice  

problem run time parameter KA_MAXITER, iteration steps  

other needed parameter KA_P{X,Y,Z,T}, distribution of processes in 4D  

 KA_LIBCOMM, see readme section  

 KA_LIBCLOVER, see readme section  

 KA_LIBD, see readme section  

notes  
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kernel B 

name  SU3_AHiggs  

label  kernel_B  

short label KB  

kernel origin University of Oulu, Finland, DEISA benchmark suite  

kernel contact person Kari Rummukainen  

kernel code status 2008/08/22  

problem size parameter KB_NX, x component of the 3D grid  

 KB_NY, y component of the 3D grid  

 KB_NZ, z component of the 3D grid  

problem run time parameter KB_MAXITER, iteration steps  

other needed parameter   

notes number of processes needs to be a power of 2  

kernel C 

name  not stated by the authors  

label kernel_C  

short label  KC  

kernel origin private communication  

kernel contact person  Bjoern Leder  

kernel code status 2008/09/22  

problem size parameter KC_N{X,Y,Z,T}, local size of the 4D grid in {x,y,z,t}-direction 

problem run time parameter   

other needed parameter KC_P{X,Y,Z,T}, number of processes in {x,y,z,t}-direction  

notes local grid size must be a multiple of 4 and not smaller than 8  

kernel D 

name  not stated by the authors  

label kernel_D  

short label  KD  

kernel origin private communication  

kernel contact person  Carsten Urbach  

kernel code status 2008/10/23  

problem size parameter KD_NL, size of the 4D grid in {x,y,z}-direction  
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 KD_NT, size of the 4D grid in t-direction  

problem run time parameter   

other needed parameter KD_P{X,Y,Z}, number of processes in {x,y,z}-direction, the 
number of processes in t-direction is computed  

notes  

kernel E 

name  Wuppertal Portable Inverter  

label kernel_E  

short label  KE  

kernel origin private communication  

kernel contact person  Stefan Krieg  

kernel code status 2008/11/10  

problem size parameter KE_N{X,Y,Z,T}, size of the 4D grid in {x,y,z,t}-direction  

problem run time parameter  KE_MAXITER, number of iteration steps  

other needed parameter KE_N{X,Y,Z,T}, number of processes in {x,y,z,t}-direction  

notes  

 

 

7.7.2 Quantum_Espresso 
Carlo Cavazzoni 

CINECA Italy 

 

QUANTUM ESPRESSO is an integrated suite of computer codes for electronic-structure 
calculations and materials modeling, based on density-functional theory, plane waves, and 
pseudopotentials (norm-conserving, ultrasoft, and projector-augmented wave). QUANTUM 
ESPRESSO stands for opEn Source Package for Research in Electronic Structure, Simulation, 
and Optimization. It is freely available to researchers around the world under the terms of the 
GNU General Public License. QUANTUM ESPRESSO builds upon newly restructured 
electronic-structure codes that have been developed and tested by some of the original authors 
of novel electronic-structure algorithms and applied in the last twenty years by some of the 
leading materials modeling groups worldwide. Innovation and efficiency are still its main 
focus, with special attention paid to massively-parallel architectures, and a great effort being 
devoted to user friendliness. QUANTUM ESPRESSO is evolving towards a distribution of 
independent and inter-operable codes in the spirit of an open-source project, where 
researchers active in the field of electronic-structure calculations are encouraged to participate 
in the project by contributing their own codes or by implementing their own ideas into 
existing codes. 
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QUANTUM ESPRESSO implements a variety of methods and algorithms aimed at a 
chemically realistic modeling of materials from the nanoscale upwards, based on the solution 
of density-functional theory (DFT) problem, using a plane waves (PW) basis set and 
pseudopotentials (PP) to represent electron-ion interactions. The codes are constructed around 
the use of periodic boundary conditions, which allows for a straightforward treatment of 
infinite crystalline systems, and an efficient convergence to the thermodynamic limit for 
aperiodic but extended systems, such as liquids or amorphous materials. Finite systems are 
also treated using supercells; if required, open-boundary conditions can be used through the 
use of the density-countercharge method. QUANTUM ESPRESSO can thus be used for any 
crystal structure or supercell, and for metals as well as for insulators. The atomic cores can be 
described by separable norm-conserving (NC) PPs, ultra-soft (US) PPs, or by projector-
augmented wave (PAW) sets. Many different exchange-correlation functionals are available 
in the framework of the local-density (LDA) or generalized-gradient approximation (GGA), 
plus advanced functionals like Hubbard U corrections and few meta-GGA and hybrid 
functionals.  

The complete QUANTUM ESPRESSO distribution is relative large: about 240,000 lines of 
code, excluding copies of the external libraries. With such a sizable code basis, 
modularization becomes necessary. QUANTUM ESPRESSO is presently divided into several 
executables, performing different types of calculations, although some of them have 
overlapping functionalities. Typically there is a single set of functions/ subroutines or a single 
Fortran 90 module that performs each specific task (e.g. matrix diagonalizations, or potential 
updates), but there are still important exceptions to this rule, reflecting the different origin and 
different styles of the original components. QUANTUM ESPRESSO has in fact been built out 
of the merge and re-engineering of different packages, that were independently developed for 
several years. In the following, the main components are briefly described.  

PWscf 
PWscf implements an iterative approach to reach selfconsistency, using at each step iterative 
diagonalization techniques, in the framework of the plane-wave pseudopotential method. Both 
separable NC-PPs and US-PPs are implemented; recently, also the projector augmented-wave 
method has been added. PWscf can use the established LDA and GGA exchange-correlation 
functionals, including spin-polarization and can treat non-collinear magnetism induced by 
relativistic effects (spinorbit interactions) or by complex magnetic interactions.  

CP 
The CP code is the massively-parallel module for Car- Parrinello ab-initio Molecular 
Dynamics (MD). CP can use both NC PPs and US PPs. In the latter case, the electron density 
is augmented through a Fourier interpolation scheme in real space (“box grid”) that is 
particular efficient for large scale calculations. CP implements the same functionals as in 
PWscf, with the exception of hybrid functionals.  

Parallelization 
Keeping the pace with the evolution of high-end supercomputers is one of the guiding lines in 
the design of QUANTUM ESPRESSO, with a significant effort being dedicated to porting it 
to the latest available architectures. This effort is motivated not only by the need to stay at the 
forefront of architectural innovation for large to very-large scale materials science 
simulations, but also by the speed at which hardware features specifically designed for 
supercomputers find their way into commodity computers. The architecture of today’s 
supercomputers is characterized by multiple levels and layers of parallelism: the bottom layer 
is the one affecting the instruction set of a single core (simultaneous multithreading, 
hyperthreading); then one has parallel processing at processor level (many CPU cores inside a 
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single processor sharing caches) and at node level (many processors sharing the same memory 
inside the node); at the top level, many nodes are finally interconnected with a high-
performance network. The main components of the QUANTUM ESPRESSO distribution are 
designed to exploit this highly structured hardware hierarchy. High performance on massively 
parallel architectures is achieved by distributing both data and computations in a hierarchical 
way across available processors, ending up with multiple parallelization levels that can be 
tuned to the specific application and to the specific architecture. This remarkable 
characteristic makes it possible for the main codes of the distribution to run in parallel on 
most or all parallel machines with very good performance in all cases.  

More in detail, the various parallelization levels are geared into a hierarchy of processor 
groups, identified by different MPI communicators. In this hierarchy, groups implementing 
coarser-grained parallel tasks are split into groups implementing finer-grained parallel tasks. 
The first level is image parallelization, implemented by dividing processors into image 
groups, each taking care of one or more images (i.e. a point in the configuration space, used 
by the NEB method). The second level is pool parallelization, implemented by further 
dividing each group of processors into npool pools of processors, each taking care of one or 
more k-points. The third level is plane-wave parallelization, implemented by distributing real- 
and reciprocal-space grids across the nPW processors of each pool. The final level is task 
group parallelization, in which processors are divided into ntask task groups of nFFT = 
nPW/ntask processors, each one taking care of different groups of electron states to be 
Fourier-transformed, while each FFT is parallelized inside a task group. A further 
paralellization level, linear-algebra, coexists side-to-side with plane-wave parallelization, i.e. 
they take care of different sets of operations, with different data distribution. Linear-algebra 
parallelization is implemented both with custom algorithms and using ScaLAPACK, which 
on massively parallel machines yield much superior performances. The table below contains a 
summary of the five levels currently implemented. With the recent addition of the two last 
levels, most parallelization bottlenecks have been removed, both computations and data 
structures are fully distributed, scalability on parallel machines is only limited by the physical 
sizes of the system being simulated. Scalability is thus guaranteed for large-scale simulations. 
This being said, it is obvious that the size and specific nature of the specific application sets 
quite naturally limits to the maximum number of processors up to which the performances of 
the various codes are expected to scale. For instance, the number of images in a NEB 
calculation sets a natural limit to the level of image groups, or the number of electronic bands 
sets a limit for the parallelization of the linear algebra operations. Moreover some numerical 
algorithms scale better than others. For example, the use of norm-conserving pseudopotentials 
allows for a better scaling than ultrasoft pseudopotentials for a same system, because a larger 
plane wave basis set and a larger real- and reciprocal-space grids are required in the former 
case. On the other hand, using ultrasoft pseudopotentials is generally faster because the use of 
a smaller basis set is obviously more efficient, even though the overall parallel performance 
may be not as good.  

Summary of parallelization levels in QUANTUM ESPRESSO 

group  distributed quantities  communications performance  

image  NEB images  very low  
linear CPU scaling, fair to good load 
balancing; 
does not distribute RAM  

pool  k-points  low  
almost linear CPU scaling,fair to 
good load balancing;
does not distribute RAM  
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plane-
wave  

plane waves, G-vector 
coefficients,  
R-space FFT arrays  

high  
good CPU scaling, good load 
balancing, 
distributes most RAM  

task  FFT on electron states  high  improves load balancing  

linear 
algebra  subspace Hamiltonians  very high  

improves scaling, and constraints 
matrices  
distributes more RAM  

 

 

7.7.3 NAMD 
Joachim Hein 

EPCC United Kingdom 

 

NAMD is a widely used molecular dynamics application designed to simulate bio-molecular 
systems on a wide variety of compute platforms.  NAMD is developed by the “Theoretical 
and Computational Biophysics Group” at the University of Illinois at Urbana Champaign. In 
the design of NAMD particular emphasis has been placed on scalability when utilising a large 
number of processors.  The application can read a wide variety of different file formats for 
e.g. force fields, protein structure, which are commonly used in bio-molecular science.   

A NAMD license can be applied for on the developer’s website free of charge.  Once the 
license has been obtained, binaries for a number of platforms and the source can be 
downloaded from the website.  The entire process is very quick. 

Deployment areas of NAMD include pharmaceutical research by academic and industrial 
users.  NAMD is particularly suitable when the interaction between a number of proteins or 
between proteins and other chemical substances is of interest.  Typical examples are vaccine 
research and transport processes through cell membrane proteins.   

 

 

7.7.4 CPMD 
Albert Farrés 

BSC-CNS Spain 

 

The CPMD code is a plane wave/pseudopotential implementation of Density Functional 
Theory, particularly designed for ab-initio molecular dynamics. Its first version was 
developed by Jurg Hutter at IBM Zurich Research Laboratory starting from the original Car-
Parrinello codes. During the years many people from diverse organizations contributed to the 
development of the code and of its pseudopotential library: 

Michele Parrinello, Jurg Hutter, D. Marx, P. Focher, M. Tuckerman, W. Andreoni, A. 
Curioni, E. Fois, U. Roetlisberger, P. Giannozzi, T. Deutsch, A. Alavi, D. Sebastiani, A. Laio, 
J. VandeVondele, A. Seitsonen, S. Billeter and others. 
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The current version, 3.13, is copyrighted jointly by IBM Corp and by Max Planck Institute, 
Stuttgart, and is distributed free of charge to non-profit organizations. CPMD runs on many 
different computer architectures and it is well parallelized (MPI and Mixed MPI/SMP). 

Main characteristics of CPMD: 
• works with norm conserving or ultrasoft pseudopotentials  
• LDA, LSD and the most popular gradient correction schemes; free energy density 

functional implementation  
• isolated systems and system with periodic boundary conditions; k-points  
• molecular and crystal symmetry  
• wavefunction optimization: direct minimization and diagonalization  
• geometry optimization: local optimization and simulated annealing  
• molecular dynamics: constant energy, constant temperature and constant pressure  
• path integral MD  
• response functions  
• excited states  
• many electronic properties  
• time-dependent DFT (excitations, molecular dynamics in excited states)  
• coarse-grained non-Markovian metadynamics  

 

7.7.5 Code_Saturne 
Andrew Sunderland, Charles Moulinec 

STFC United Kingdom 

 

Code_Saturne® is a multipurpose Computational Fluid Dynamics (CFD) software, which has 
been developed by EDF-R&D (France) since 1997. The code was originally designed for 
industrial applications and research activities in several fields related to energy production; 
typical examples include nuclear power thermal-hydraulics, gas and coal combustion, turbo-
machinery, heating, ventilation, and air conditioning. In 2007, EDF released the code as open-
source and this provides both industry and academia to benefit from its extensive pedigree. 
Code_Saturne®’s open-source status allows for answers to specific needs that cannot easily 
be made available in commercial “black box” packages. It also makes it possible for industrial 
users and for their subcontractors to develop and maintain their own independent expertise 
and to fully control the software they use.  

Code_Saturne® is based on a co-located finite volume approach that can handle three-
dimensional meshes built with any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, 
polyhedral) and with any type of grid structure (unstructured, block structured, hybrid). The 
code is able to simulate either incompressible or compressible flows, with or without heat 
transfer, and has a variety of models to account for turbulence. Dedicated modules are 
available for specific physics such as radiative heat transfer, combustion (e.g. with gas, coal 
and heavy fuel oil), magneto-hydro dynamics, and compressible flows, two-phase flows. 
There are extensions for specific applications. For example the related code Mercure_Saturne 
can be used to model atmospheric environment and flows. 

The software comprises of around 500 000 lines of source code, with around 50% written in 
Fortran90, 40% in C and 10% in Python.  The code is portable to Linux-based  PCs and 
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several HEC architectures – e.g. SGI Origin, several PC clusters, Cray XT series and IBM 
PWR series. 

Industrial Usage 

Code_Saturne® has been developed specifically for industrial usage by EDF.  

The main industrial application examples include: 
• The Study of Flows in Pressurized Water Reactors (PWRs), in particular: 

o The modelling of flows around bundles of pipes in nuclear reactors in order to 
maintain internal structures of reactor vessels.  Knowledge of flow conditions 
in the lower core is especially important to study deformation and fretting of 
the fuel assemblies. 

o Pressurized thermal shock on a PWR vessel. This involves the injection of cold 
water in a PWR vessel following the loss of coolant. A coupled local 3D 
approach, involving Code_Saturne® for the fluid and SYRTHES for heat 
transfer in the solid, models the temperature evolution at critical locations in 
the metal of the vessel.  

• Pulverized coal furnace slagging 
o Ash deposit on shell plates and exchangers reduces the efficiency of pulverized 

coal-fired boilers. This ‘slagging’ is investigated with Code_Saturne® in order 
to compute the temperature and flow field of the carrying phase. A high 
accuracy Lagrangian approach is invoked to track individual pulverized coal 
particles. 

• Air Quality in Hospital Operating Theatres 
o In hospitals, and particularly in operating theatres, infections can be transmitted 

via airborne routes and therefore controlling air quality is of high importance. 
Code_Saturne® enables an accurate representation of the equipment, medical 
staff, patients and heating, ventilation and air-conditioning systems in order to 
identify high-risk zones for contamination and to evaluate the efficiency of the 
ceiling ventilation device. 

 

 

7.7.6 GADGET 

Orlando Rivera  

LRZ Germany 

 

Gadget is a freely available code for cosmological N-body/SPH simulations on massively 
parallel computers with distributed memory written by Volker Springel, Max-Plank-Institute 
for Astrophysics, Garching, Germany. GADGET uses an explicit communication model that 
is implemented with the standardized MPI communication interface. The code can be run on 
essentially all supercomputer systems presently in use, including clusters of workstations or 
individual PCs. 

GADGET computes gravitational forces with a hierarchical tree algorithm (optionally in 
combination with a particle-mesh scheme for long-range gravitational forces) and represents 
fluids by means of smoothed particle hydrodynamics (SPH). The code can be used for studies 
of isolated systems, or for simulations that include the cosmological expansion of space, both 
with or without periodic boundary conditions. 
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In all these types of simulations, GADGET follows the evolution of a self-gravitating 
collisionless N-body system, and allows gas dynamics to be optionally included. Both the 
force computation and the time stepping of GADGET are fully adaptive, with a dynamic 
range which is, in principle, unlimited.  

GADGET can therefore be used to address a wide array of astrophysics interesting problems, 
ranging from colliding and merging galaxies, to the formation of large-scale structure in the 
Universe. With the inclusion of additional physical processes such as radiative cooling and 
heating, GADGET can also be used to study the dynamics of the gaseous intergalactic 
medium, or to address star formation and its regulation by feedback processes. Gadget is used 
regularly in several centers and it has a very active user community. 

 

 

7.7.7 EUTERPE (TORB) 
Xavier Saez 

BSC-CNS Spain 

 

The EUTERPE gyrokinetic code was created at the EPFL in Lausanne as a global linear 
particle in cell code for studying electrostatic plasma instabilities. It allows three-dimensional 
turbulence simulations using a plasma equilibrium calculated with the VMEC code as a 
starting point. EUTERPE was further developed at the Max Planck IPP and several linear 
calculations of ion temperature gradient (ITG) driven turbulence in tokamak and stellarator 
geometry have been carried out using it. The code has been afterwards heavily optimized and 
improved and non-linear dynamics have been included. 

The EUTERPE code solves the linear electrostatic gyrokinetic equation for ions (the electrons 
are assumed to be adiabatic) in the whole plasma domain (full radius) for a three-dimensional 
realistic stellarator geometry. Numerically the code uses a Monte Carlo method, the so-called 
particle-in-cell (PIC) method, to follow the characteristics of the gyrokinetic partial 
differential equation. In order to decrease the statistical noise a δf-approach, which is 
equivalent to a control variates method, is used. This method serves to reduce the noise by 
orders of magnitude. The charge assignment process and the discretization of the three-
dimensional Helmholtz equation have been unified by employing tensor product B-splines as 
finite elements. The resulting very large system of equations is solved using the PETSc library 
which simplifies parallelization of the sparse matrix operations and provides various parallel 
iterative solvers and preconditioners. The parallelization strategy consists of a domain 
decomposition concept in the toroidal direction. It has been implemented with the Message-
Passing Interface (MPI library). 
 

 

7.7.8 WRF 
Andrew Porter 

STFC United Kingdom 
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The Weather Research & Forecasting (WRF) model was developed at the National Center for 
Atmospheric Research (NCAR) in the United States as a regional- to global-scale model for 
both research applications and operational weather-forecast systems.  

WRF is now used as the National Oceanic and Atmospheric Administration’s primary 
forecast model, for forecasts of 1-3 days ahead, and is used by weather agencies all over the 
world (including weather agencies in Indo-China and Asia).  As of June 2008 there are in 
excess of 6000 registered WRF users. 

The WRF system incorporates two different dynamics solvers; the Advanced Research WRF 
(ARW) solver (developed by Mesoscale and Microscale Meteorology Division of NCAR) and 
the Nonhydrostatic Mesoscale Model solver (developed by the National Centers for 
Environmental Prediction, US). In this document we will discuss only the ARW version of 
the WRF modeling system. 

The ARW solves the fully-compressible, non-hydrostatic Euler equations on an Arakawa C-
grid staggering in the horizontal plane and a terrain-following, dry hydrostatic pressure 
vertical coordinate. There are 2nd- to 6th-order advection options for spatial discretization in 
both horizontal and vertical directions. Integration in time is performed using a time-split 
method with a 2nd- or 3rd-order Runge-Kutta scheme with a smaller time step for acoustic- and 
gravity-wave modes. The model supports periodic, open, symmetric and specified lateral 
boundary conditions and is capable of whole-globe simulations using polar Fourier filtering 
and periodic east-west boundary conditions. 

The WRF model has the ability to incorporate a one- or two-way nested sub-structure 
(including moving nests) that enables it to be used for high-resolution case studies.  

The WRF model has, from the outset, been designed and written to perform well on 
massively-parallel computers. It is written in Fortran90 and can be built in serial, parallel 
(MPI) and mixed-mode (OpenMP and MPI) forms, simply by choosing the appropriate option 
during the configure process. 

The code has been ported to a range of high-end computing architectures including the IBM 
Blue Gene, IBM Power series and the Cray XT series. 

The WRF code is freely downloadable following on-line registration and is explicitly declared 
to be in the public domain (see http://www.mmm.ucar.edu/wrf/users/public.html). 

 

7.7.9 NEMO 
John Donners 

SARA the Netherlands 

 

NEMO (Nucleus for European Modelling of the Ocean) is a state-of-the-art modeling 
framework for oceanographic research, operational oceanography seasonal forecast and 
climate studies. 

NEMO includes: 
• 4 major components  

o the blue ocean (ocean dynamics, NEMO-OPA)  
o the white ocean (sea-ice, NEMO-LIM)  
o the green ocean (biogeochemistry, NEMO-TOP) ;  
o the adaptative mesh refinement software (AGRIF) ;  
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• some reference configurations allowing to set-up and validate the applications; 
• a set of scripts and tools (including pre- and post-processing) to use the system.  

 

NEMO is used by a large community: 240 projects in 27 countries (14 in Europe, 13 
elsewhere), 350 registered users (numbers for year 2008). NEMO is available under CeCILL 
license (public license). 

 

7.7.10 CP2K 
Pekka Manninen 

CSC Finland 

 

CP2K is a freely available (GPL) program to perform atomistic and molecular simulations of 
solid state, liquid, molecular and biological systems. It provides a general framework for 
different methods such as e.g. density functional theory (DFT) using a mixed Gaussian and 
plane waves approach (GPW), and classical pair and many-body potentials. It is very well and 
consistently written, standards-conforming Fortran 95, parallelized with MPI and in some 
parts with hybrid OpenMP+MPI as an option.  

CP2K provides state-of-the-art methods for efficient and accurate atomistic simulations, 
sources are freely available and actively improved. It is therefore easy to give the code a try, 
and to make modifications as needed. However, The CP2K code comes with little 
documentation and without any warranty. No official release has been made. Substantial 
changes, improvements and bug fixes will be made at irregular intervals. Using the code for 
production quality simulations is possible but requires detailed knowledge about the active 
development. It has an active international development team, with the unofficial head-
quarters in the University of Zürich.  

 

7.7.11 GROMACS 

Sebastian von Alfthan 

CSC Finland 

The GROMACS website contains the following brief description of the GROMACS code: 
http://www.gromacs.org/About_Gromacs. 

 

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the 
Newtonian equations of motion for systems with hundreds to millions of particles. 

It is primarily designed for biochemical molecules like proteins and lipids that have a lot of 
complicated bonded interactions, but since GROMACS is extremely fast at calculating the 
nonbonded interactions (that usually dominate simulations) many groups are also using it for 
research on non-biological systems, e.g. polymers. 

GROMACS supports all the usual algorithms you expect from a modern molecular dynamics 
implementation, (check the online reference or manual for details), but there are also quite a 
few features that make it stand out from the competition: 

• GROMACS provides extremely high performance compared to all other programs. A 
lot of algorithmic optimizations have been introduced in the code; we have for 
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instance extracted the calculation of the virial from the innermost loops over pairwise 
interactions, and we use our own software routines to calculate the inverse square root. 
The innermost loops are generated automatically in either C or Fortran at compile 
time, with optimizations adopted to your architecture. Assembly loops using SSE and 
3DNow! multimedia instructions are provided for i386 processors, separate versions 
using all x86-64 registers are used on Opteron x86-64 and Xeon EM64t machines. 
This results in exceptional performance on inexpensive PC workstations, and for 
Pentium IV/Opteron processors there are also SSE2 double precision assembly loops. 
There are new manually tuned assembly loops for ia64 (both single and double 
precision), and last but certainly not least we have written Altivec assembly loops both 
for Linux and Mac OS X. Gromacs is normally 3-10 times faster than any other 
program; check the article in Journal of Molecular Modeling (reference can be found 
under resources) for a comparison benchmark. 

• GROMACS is user-friendly, with topologies and parameter files written in clear text 
format. There is a lot of consistency checking, and clear error messages are issued 
when something is wrong. Since the C preprocessor is used, you can have conditional 
parts in your topologies and include other files. You can even compress most files and 
GROMACS will automatically pipe them through gzip upon reading. 

• There is no scripting language - all programs use a simple interface with command 
line options for input and output files. You can always get help on the options by using 
the -h option, or use the extensive manuals provided free of charge in electronic or 
paper format. There is also an integrated graphical user interface available for all 
programs. 

• As the simulation is proceeding, GROMACS will continuously tell you how far it has 
come, and what time and date it expects to be finished. 

• Both run input files and trajectories are independent of hardware endian and can thus 
be read by any version GROMACS, even if it was compiled using a different floating-
point precision. All files from GROMACS 2.0 can further be used in the new version 
3! 

• GROMACS can write coordinates using lossy compression, which provides a very 
compact way of storing trajectory data. The accuracy can be selected by the user. 

• GROMACS comes with a large selection of flexible tools for trajectory analysis - you 
won't have to write any code to perform routine analyses. The output is further 
provided in the form of finished Xmgr/Grace graphs, with axis labels, legends, etc. 
already in place! 

• A basic trajectory viewer that only requires standard X libraries is included, and 
several external visualization tools can read the GROMACS file formats. 

• GROMACS can be run in parallel, using standard MPI communication. 
• GROMACS contains several state-of-the-art algorithms that make it possible to extend 

the time steps is simulations significantly, and thereby further enhance performance 
without sacrificing accuracy or detail. 

• The package includes a fully automated topology builder for proteins, even multimeric 
structures. Building blocks are available for the 20 standard aminoacid residues as 
well as some modified ones, the 4 nucleotide and 4 deoxinucleotide resides, several 
sugars and lipids, and some special groups like hemes and several small molecules. 

• There is ongoing development to extend GROMACS with interfaces both to Quantum 
Chemistry and Bioinformatics/databases. 

• GROMACS is Free Software, available under the GNU General Public License. 
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7.7.12 NS3D 
Harald Klimach 

HLRS Germany 

 

The code NS3D has been developed for direct numerical simulation (DNS) of the 
compressible Navier-Stokes equations. Spatial discretization in streamwise and normal 
directions is done by 6th-order compact finite differences. Since periodicity is assumed in 
spanwise direction, a spectral ansatz is used here. Instead of evaluating some sort of viscous 
fluxes, second derivatives are computed directly, which better resolves viscous terms. Time 
integration is done using the standard 4th-order Runge-Kutta scheme. Execution on multiple 
processors is implemented by domain decomposition (MPI) and shared-memory 
parallelization. With the combination of grid transformation and domain decomposition, the 
code can be applied to a wide range of geometric configurations. 

Applications range from sub- to supersonic flows with emphasis on laminar-turbulent 
transition, aeroacoustics and flow control. The code has been developed at the Institute for 
Aerodynamics and Gasdynamics (IAG) at the Universität Stuttgart. 

Right now, it is applied only at this institution but usage includes also industrial cooperations. 
For Airbus, new high-lift configurations are simulated where active flow control is intended 
to avoid separation of the flow. Another exmaple is the cooperation with iTronic GmbH 
where a new acoustic sensor of surface roughness was investigated. 

 

 

7.7.13 AVBP 
Bertrand Cirou 

CINES France 
 
AVBP is one of the very few codes that can simulate turbulent combustion taking place in 
turbulent flows within complex geometries. It has been jointly developed in France by 
CERFACS and IFP to perform Large Eddy Simulation (LES) of reacting flows, in gas 
turbines, piston engines or industrial furnaces. This compressible LES solver on unstructured 
and hybrid grids is employed in multiple configurations for industrial gas turbines (Alstom, 
Siemens, Turbomeca), aero gas turbines (SNECMA, Turbomeca), rocket engines (SNECMA 
DMF Vernon), laboratory burners used to study unsteady combustion (Cambridge, École 
Centrale Paris, Coria Rouen, DLR, Karlsruhe University, Munich University).  

In 2008, the DoE (U.S. Department of Energy) for research in massively parallel applications 
has allocated 4,000,000 hours of CPU to a project using AVBP, also in the scope of the 
INCITE project. Further, AVBP has been used in many EC projects (in FP4, FP5, FP6 and 
FP7).  
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7.7.14 HELIUM 
Xu Guo (also with the effort from Jon Hill and Andrew Sunderland) 

EPCC United Kingdom 

 

The application HELIUM simulates the interaction between an intense linearly-polarized laser 
pulse and a Helium atom. It does so by numerically solving a time-dependent Schrodinger 
equation for the full system. 

The source code was developed by the Queen's University Belfast and has access restrictions: 
permission for using HELIUM must be obtained from Ken Taylor <k.taylor@qub.ac.uk>. For 
the PRACE project, all the project members outside UK are required to sign the HELIUM 
NDA before usage. 

 

7.7.15 TRIPOLI-4 
Jacques David 

CEA France 

 

TRIPOLI-4 is a computer code simulating the 3D transport of neutrons, photons, electrons 
and positrons with the Monte Carlo method. It uses full pointwise as well as multigroup cross-
sections. It addresses radiation shielding and neutronic (subcritical and critical) problems. The 
code has been validated through several hundred benchmarks as well as measurement 
campaigns, and is used by the french nuclear industry. It is available from the OECD/NEA 
databank. 

TRIPOLI-4 is directly compatible with pointwise cross-sections produced by the NJOY 
processing code system. It may also be run with homogenized multigroup cross-sections, and 
multigroup cross-sections with probability tables. It computes the following quantities: flux, 
current, reaction rates, dose equivalent rates, deposit of energy, recoil energy and 
multiplication factor (in criticality mode). The associated types of estimator are collision, 
tracklength, surface and point detectors. The geometry may be described by predefined shapes 
combination and/or surface’ equations. Complex lattices and lattices of lattices are available. 
The source description is factorized in space, energy, direction and time, providing the user 
with an extended choice through tabulated or analytical laws. TRIPOLI-4 makes use of 
several variance reduction techniques, which are essential in shielding calculations. The code 
has perturbation estimation capabilities (concentration, density), using the correlated sampling 
technique. TRIPOLI-4 can be executed in a parallel mode on workstation networks as well as 
massively parallel machines. The communication graph is very simple and fault-tolerant: 
should some processor be stopped for any reason, the whole simulation would keep on until 
the right number of batches is obtained from the remaining processors. 
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7.7.16 PEPC 
Lukas Arnold 

FZJ Germany 

 

PEPC - Pretty Efficient Parallel Coulomb-solver - is a parallel tree-code for rapid computation 
of long-range Coulomb forces in N-body particle systems. Based on the original Barnes-Hut 
algorithm, the code uses successively larger multipole-groupings of distant particles to reduce 
the computational effort in the force calculation from the generally unaffordable O(N2) 
operations needed for brute-force summation, to a more amenable O(N log N) complexity. 
The parallel version is a pure MPI implementation of the Warren-Salmon 'Hashed Oct Tree' 
scheme, including several different variations of the tree traversal routine - the most 
challenging component in terms of scalability.  

The public version is divided into kernel routines and 'front-end' applications, which currently 
include a skeleton molecular dynamics program ( PEPC-E), and a code for simulating laser- 
or beam-plasma interactions ( PEPC-B), developed at the Forschungszentrum Juelich. There 
is also a (non-public) gravitational version ( PEGS) for modelling astrophysical discs, 
developed in collaboration with the University of Cologne.  

The code currently runs on IBM Regatta, BlueGene/L/P and standard Linux clusters, but 
should be portable to any Unix-based parallel architecture. The User Guide provides an 
introduction to compiling and running the code.  

More information, downloads and references are available at 
http://www.fz-juelich.de/jsc/pepc/ . 

 

 

7.7.17 GPAW 
Jussi Enkovaara 

CSC Finland 

 

GPAW is an efficient program package for electronic structure calculations based on the 
density functional theory (DFT) and the time-dependent density functional theory (TD-DFT). 
The density-functional theory allows studies of ground state properties such as energetics and 
equilibirum geometries, while the time-depedent density functional theory can be used for 
calculating excited state properties like optical spectra. The program package includes two 
complementary implementations of time-dependent density functionaly theory, a linear 
response formalism and a time-propagation in real time. 

The program uses the projector augmented wave (PAW) method which allows one to get rid 
of the core electrons and work with soft pseudo valence wave functions. The PAW method 
can be applied on the same footing to all elements, for example, it provides a reliable 
description of the transition metal elements and the first row elements with open p-shells 
which are often problematic for standard pseudopotentials. A further advantage of the PAW 
method is that it is an all-electron method (frozen core approximation) and there is a one to 
one transformation between the pseudo and all-electron quantities. 

The equations of the (time-dependent) density functional theory within the PAW method are 
discretized using finite-differences and uniform real-space grids. The real-space 
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representation allows flexible boundary conditions as the system can be finite or periodic in 
one, two or three dimensions (e.g. cluster, slab, bulk). The accuracy of the discretization is 
controlled basically by single parameter, the grid spacing. The real-space representation 
allows also efficient parallelization with domain decomposition. 

The program offers several parallelization levels. The most basic parallelization strategy is 
domain decomposition over the real-space grid. In magnetic systems it is possible to 
parallelize over spin, and in systems which have k-points (surfaces or bulk systems) 
parallelization over k-points is also possible. Furthermore, parallelization over electronic 
states is possible in DFT and in real-time TD-DFT calculations. 

 

 

7.7.18 ALYA 
Guillaume Houzeaux and Raúl de la Cruz 

BSC-CNS Spain 

 

The Alya System is a Computational Mechanics (CM) code with two main features. Firstly, it 
is specially designed for running with the highest efficiency standards in large scale 
supercomputing facilities. Secondly, it is capable of solving different physics, each one with 
its own modelization characteristics, in a coupled way. Both main features are intimately 
related, meaning that all complex coupled problems solved by Alya must retain the efficiency. 
Among the problems it solves are: Convection-Diffusion-Reaction, Incompressible Flows, 
Compressible Flows, Turbulence, Bi-Phasic Flows and free surface, Excitable Media, 
Acoustics, Thermal Flow, Quantum Mechanics (TDFT) and Solid Mechanics (Large strain). 
By specially designed we mean that Alya is designed from scratch to program in a flexible yet 
clear way every kind of CM model to run in parallel computers. That is to say that Alya is not 
an original sequential code parallelized afterwards, but a code so designed from scratch.  

For more information: Alya home page: http://www.bsc.es/plantillaA.php?cat_id=552 

 

7.7.19 OCTOPUS 

Fernando Nogueira 

UC-LA Portugal 

 

Octopus is a code that aims to simulate with great accuracy some complex electronic 
processes in medium to large systems. To achieve this, octopus relies on Density-Functional 
Theory (DFT) and in particular on its time-dependent formulation (TDDFT). The use of DFT 
allows Octopus to deal with systems larger than those typically studied with traditional 
Quantum Chemistry or Quantum Monte-Carlo techniques (e.g., molecular systems of 
biological interest). Although DFT is not as accurate as these techniques, its scaling with the 
number of electrons of the system is much more favourable. Octopus differs from most of 
DFT codes in several aspects: 

Target problems:  

(i) Response of molecules or clusters to external perturbations: 
a. Linear optical (i.e. electronic) response of molecules or clusters; 
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b. Non-linear response to classical high-intensity electromagnetic fields, taking into 
account both the ionic and electronic degrees of freedom. 

(ii) Ground-state and excited state electronic properties of 1- and 2-dimensional systems, 
such as quantum dots. 

(iii) Photo-induced reactions of molecules (e.g., photo-dissociation, photo-isomerization, 
etc.). 

 

Two different approaches to TDDFT:  

(i) “Standard” TDDFT-based linear-response theory, which provides excitation energies 
and oscillator strengths for ground-state to excited-state transitions. 

(ii) Explicit time-propagation of TDDFT equations, allowing the use of large external 
potentials, well beyond the range of validity of perturbation theory. 

Methodology: 

Instead of using a basis set expansion of the (Kohn-Sham) wavefunctions, octopus uses a 
numerical mesh. Auxiliary basis sets (plane waves, atomic orbitals) are used only when 
necessary. Grids can be non-uniform, adapting to the inhomogeneity of the problem. 
Multigrid techniques can be used to accelerate the calculations. 

For most calculations, the code relies on the use of several types of pseudopotentials: 
Troullier–Martins, Hamann, and Hartwigsen–Goedecker–Hutter. 

Technical aspects:  

(i) The code has been designed with emphasis on parallel scalability. As a consequence, it 
allows for multiple task divisions: k-points, Kohn-Sham states, and real space regions. 

(ii) The language of most of the code is Fortran 90. Other languages, such as C or Perl, are 
also used. 

(iii) It only uses standard and portable tools. The resulting code may thus run on virtually 
any Unix-like platform.  

(iv) The package is licensed under the GNU General Public License (GPL). 

 

Users: 

The code is used by researchers in electronic structure (condensed matter physicists, chemists, 
astrophysicists) studying the interaction of matter with light. It is one of the base tools of the 
European Theoretical Spectroscopy Facility (ETSF). octopus mailing list has more than 230 
active users, and the code is downloaded from the website on average 143.3 times per month 
since 2004. 

 

 

7.7.20 BSIT 
Mauricio Araya 

BSC-CNS 

 

BSIT stands for Barcelona Seismic Imaging Tools, which is a tool set for computational 
geophysics composed by:  
• Reverse Time Migration (RTM), this one is actually the code been mapped to Cell/B.E.  
• Forward modeling  
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• Tomography  
• Seismic data-base management  
• Seismic data processing tools 
 
 

7.7.21 ELMER 
Mikko Lyly 

CSC Finland 

 

Elmer is a finite element software package for the solution of partial differential equations. 
Elmer can deal with a great number of different equations, which may be coupled in a generic 
manner making Elmer a versatile tool for multiphysical simulations. As an open source 
software, Elmer also gives the user the means to modify the existing solution procedures and 
to develop new solvers for equations of interest to the user. 

The development of Elmer was started in 1995 as part of a national CFD technology program 
funded by the Finnish funding agency for technology and innovation, Tekes. The original 
development consortia included partners from CSC – IT Center for Science (formely known 
as CSC – Scientific Computing), Helsinki University of Technology TKK, VTT Technical 
Research Centre of Finland, University of Jyväskylä, and Okmetic Ltd. After the five years 
initial project ended the development has been continued by CSC in different application 
fields. 

In September 2005 Elmer was released under GNU General Public License (GPL). This has 
widened the user community, particularly the number of international users has grown. 
However, as the sole owner of the copyright to Elmer source code, CSC may distribute Elmer 
also under other licensing terms. Therefore, if GPL does not suit your purposes, you may 
contact the Elmer team for other licensing options. 

Elmer is distributed only through the Internet. The actual distribution site may vary but the 
pointer to the location may always be found at http://www.csc.fi/elmer. The distribution of 
Elmer comes in three different parts: sources, binaries, and documentation. Unix users are 
encouraged to compile the software themselves. The compilation instructions are given at the 
www-page. For Windows and Macintosh a precompiled binary version of the code is also 
provided. The documentation of the software is already quite extensive, but unfortunately still 
not complete. 

Everybody is welcome to contribute to the Elmer project. Often the bottle-neck is in case 
specification, testing and verification which may be done without in-depth knowhow of the 
code. Also contributions to the code are welcome. However, before granting a permission to 
commit to the main source file archive a Elmer Contributor Agreement has to be signed. This 
gives CSC the right to use contributions to Elmer under the current free software license, and 
also under other licenses we may use. However, this does not limit the contributors right to 
use the contributed code in any way. 

Elmer offers a wide range of methods and techniques for the computational modeling of 
physical phenomena described by partial differential equations. In the following some of the 
most essential ones are summarized. 

The Elmer package contains solvers for a variety of mathematical models. The following list 
summarizes the capabilities of Elmer in specialized fields: 
• Heat transfer: models for conduction, radiation and phase change 
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• Fluid flow: the Navier-Stokes, Stokes and Reynolds equations, k-" model 
• Species transport: generic convection-diffusion equation 
• Elasticity: general elasticity equations, dimensionally reduced models for plates and shells 
• Acoustics: the Helmholtz equation 
• Electromagnetism: electrostatics, magnetostatics, induction 
• Microfluidics: slip conditions, the Poisson-Boltzmann equation 
• Levelset method: Eulerian free boundary problems 
• Quantum Mechanics: density functional theory (Kohn-Sham) 

 
For approximation and linear system solution Elmer offers a great number of possibilities. 
The following list summarizes some of the most essential ones. 

• All basic element shapes in 1D, 2D and 3D with the Lagrange shape functions of degree k 
_ 2 

• Higher degree approximation using p-elements 
• Time integration schemes for the first and second order equations 
• Solution methods for eigenvalue problems 
• Direct linear system solvers (Lapack & Umfpack) 
• Iterative Krylov subspace solvers for linear systems 
• Multigrid solvers (GMG and AMG) for some basic equations 
• ILU preconditioning of linear systems 
• Parallelization of iterative methods 
• The discontinuous Galerkin method 
• Stabilized finite element formulations, including the methods of residual free bubbles and 

SUPG 
• Adaptivity, particularly in 2D 
• BEM solvers (without multipole acceleration) 

 

7.7.22 SPECFEM3D 
Eric Boyer 

CINES France 

 
The software package SPECFEM3D simulates southern California seismic wave propagation 
based upon the spectral-element method (SEM). Effects due to lateral variations in 
compressional-wave speed, shear-wave speed, density, a 3D crustal model, topography and 
bathymetry are included. For a detailed introduction to the SEM as applied to regional seismic 
wave propagation. The Moho map was determined by Zhu and Kanamori. The 1D soCal 
model was developed by Dreger and Helmberger. The package can accommodate full 21-
parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and 
finite-frequency kernel simulations are included.  

All SPECFEM3D software is written in Fortran90, and conforms strictly to the Fortran95 
standard. It uses no obsolete or obsolescent features of Fortran77. The package uses parallel 
programming based upon the Message Passing Interface (MPI). 


