

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2007-2.2.2.1 - Preparatory phase for 'Computer and Data
Treatment' research infrastructures in the 2006 ESFRI Roadmap

PRACE

Partnership for Advanced Computing in Europe

Grant Agreement Number: RI-211528

D6.3.1

Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

Version: 1.0
Author(s): Peter Michielse (NCF), Jon Hill (EPCC), Guillaume Houzeaux (BSC), Olli-

Pekka Lehto (CSC), Walter Lioen (SARA)
Date: 24/11/2008

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 i

Project and Deliverable Information Sheet

Project Ref. №: RI-211528
Project Title: Partnership for Advanced Computing in Europe
Project Web Site: http://www.prace-project.eu
Deliverable ID: D6.3.1
Deliverable Nature: Report, Initial Benchmark Suite

Contractual Date of Delivery:
30 / November / 2008

Deliverable Level:
PU

Actual Date of Delivery:
30 / November / 2008

PRACE Project

EC Project Officer: Maria Ramalho-Natario

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Title: Report on available Performance Analysis and Benchmark
Tools, Representative Benchmark

ID: D6.3.1
Version: 1.0 Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2003

Document

File(s): PRACE-D6.3.1-final-24112008

Authorship

Written by: Peter Michielse (NCF), Jon Hill (EPCC),
Guillaume Houzeaux (BSC), Olli-Pekka
Lehto (CSC), Walter Lioen (SARA)

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 ii

Contributors: Martin Polak (GUP), Albert Farres (BSC),
Miquel Catala (BSC), Jesus Labarta (BSC),
Judit Jimenez (BSC), Xavi Saez (BSC),
Raul de la Cruz (BSC), Rogeli Grima
(BSC), Mauricio Araya (BSC), Rosa Badia
(BSC), Eduard Aiguadé (BSC), Jussi
Enkovaara (CSC), Pekka Manninen (CSC),
Sebastian von Alfthan (CSC), Jussi
Heikonen (CSC), Harald Klimach (HLRS),
Stefan Wesner (HLRS), Stefanie Meier
(FZJ), Wolfgang Frings (FZJ), Lukas
Arnold (FZJ), Florian Janetzko (FZJ),
Alexander Schnurpfeil (FZJ), Orlando
Rivera (LRZ), Matthis Brehm (LRZ), Iris
Christadler (LRZ), Maciej Filocha (PSNC),
Maciej Cytowski (PSNC), Maciej
Szpindler (PSNC), Mark Cheeseman
(CSCS), Tim Robinson (CSCS), Neil
Stringfellow (CSCS), Jean-Guillaume
Piccinali (CSCS), John Donners (SARA),
Rob de Bruin (RUG), Arnold Meijster
(RUG), Aad van der Steen (NCF), Andy
Sunderland (STFC), Charles Moulinec
(STFC), Ilian Todorov (STFC), Joachim
Hein (EPCC), Xu Guo (EPCC), Mark Bull
(EPCC), Alan Simpson (EPCC), Bertrand
Cirou (CINES), Jean-Cristophe Trama
(CEA), Pierre-Francois Lavallee (IDRIS),
Nikos Tsakiris (GRNET), Giorgos Goumas
(GRNET), Vegard Eide (SIGMA),
Giovanni Erbacci (CINECA), Carlo
Cavazzoni (CINECA), Ulf Andersson
(SNIC), Aad van der Steen (NCF)

Reviewed by: Miroslaw Kupczyk, PSNC,

Thomas Eickermann, FZJ
Approved by: Technical Board

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 iii

Document Status Sheet

Version Date Status Comments
0.1 05/September/2008 Draft Outline version
0.2 26/September/2008 Draft Chapter 1, 2, 3 details

added
0.3 08/October/2008 Draft Synthetic bmark and

Integration bmark suite
added

0.4 15/October/2008 Draft Chapter 3 completed
0.5 24/October/2008 Draft Complete document, for

internal WP6 review
0.9 12/November/2008 Final Draft WP6 Integration of comments

from WP6 review, made
available to PRACE
internal review

0.95 24/November/2008 Final Draft PMO Integration of PRACE
internal reviewers
comments

1.0 24/November/2008 Final version

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 iv

Document Keywords and Abstract

Keywords: PRACE, HPC, Research Infrastructure, Applications, Benchmark

Suite, Synthetic Benchmarks, Prototypes, Performance Analysis Tools

Abstract: This document reports on the construction of a benchmark suite, to be
used both within the current PRACE project and beyond, when actual
Tier-0 systems will be purchased. Apart from the benchmark suite, this
document also reports on currently available performance analysis
tools and synthetic benchmarks, as these are essential tools for
monitoring scalability and optimisation of benchmark codes, and for
analysing and comparing the basic components of HPC systems.

This document takes its input from various sources. First, there is the
list of applications and their requirements, as delivered by tasks 6.1
and 6.2. As these applications belong to the most frequently used on
current European HPC platforms, they should form the basis of a
PRACE benchmark suite. Secondly, there is the hardware architecture
survey, as conducted by WP7 and its consequences for prototype
systems to be used within PRACE. As these prototype architectures
are considered as important, it makes sense to use these as platforms
for benchmark preparations on scalability (to be handled by task 6.4)
and optimisation (task 6.5). A third aspect is the available
combinations of expertise on applications and expertise on
architecture, for which it makes sense to be used as appropriate and
efficient as possible.

PRACE targets towards a European research Infrastructure, ideally
consisting of various hardware architectures. This implicitly means
that some applications are more suited to certain architectures than
others. This needs to be reflected in the final benchmark suite, with the
idea that potentially subsets of the overall benchmark suite may be
used for benchmarking different architectures.

These aspects together lead to the output as described in this
document, which consists of an initial benchmark suite, with
applications ported to target architectures, including recommendations
on further work and effort estimates for petascaling (task 6.4) and
optimisation (task 6.5). Integration of the benchmark codes into a
benchmark suite is an important subtask, as it ensures that other tasks
and workpackages within PRACE can use the benchmark suite as their
starting point. Identification and categorisation of performance
analysis tools and synthetic benchmarks is included as well, especially
to be used when tasks 6.4 and 6.5 take off. The document and the
initial benchmark suite form a strong basis for this future work.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 v

Copyright notices

© 2008 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-211528 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as owned by the respective holders.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 vi

Table of Contents
Project and Deliverable Information Sheet ... i
Document Control Sheet.. i
Document Status Sheet ..iii
Document Keywords and Abstract... iv
Table of Contents ... vi
List of Figures ...viii
List of Tables... ix
References and Applicable Documents .. ix
List of Acronyms and Abbreviations... x
Executive Summary .. 1
1 Introduction ... 2

1.1 Structure of the Report ... 2
2 Definitions, Objectives and Methodology.. 3

2.1 Definitions .. 3
2.2 Objectives and Methodology .. 4

3 Benchmark Selection... 6
3.1 Relevance to PRACE... 6
3.2 Selection Approach.. 6
3.3 Actual Results .. 9
3.4 Conclusions and Future Work ... 12

4 Integration in Benchmark Suite... 13
4.1 Introduction ... 13
4.2 Integration Framework... 13
4.3 Conclusions and Future Work ... 16

5 Synthetic Benchmarks .. 17
5.1 Introduction ... 17
5.2 Synthetic Benchmarks: Overview.. 17

5.2.1 Synthetic benchmarks: the why ... 17
5.2.2 Synthetic benchmarks: the what.. 18

5.3 An Outline for a Synthetic Benchmark ... 21
5.4 Review of some Synthetic Benchmarks ... 23

5.4.1 Computationally oriented benchmarks ... 23
5.4.2 Communication oriented benchmarks... 24
5.4.3 Combined benchmarks.. 25
5.4.4 IO Benchmarks ... 26

5.5 Interpretation of results .. 27
5.5.1 Run rules ... 27
5.5.2 Benchmark results... 28

5.6 Conclusions and Future Work ... 29
6 Performance Analysis Tools ... 31

6.1 Introduction ... 31
6.2 Allinea Optimisation and Profiling Tool (OPT).. 32

6.2.1 Introduction .. 32

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 vii

6.2.2 Availability.. 32
6.2.3 Supported Platforms ... 32
6.2.4 Assessment Environment... 32

6.3 CEPBA-Tools: Paraver & Dimemas.. 36
6.3.1 Introduction .. 36
6.3.2 Availability.. 37
6.3.3 Supported Platforms ... 37
6.3.4 Scalability ... 37
6.3.5 Paraver Details... 38
6.3.6 Dimemas Details... 40
6.3.7 Future Developments .. 41

6.4 Cray Performance Analysis Tools.. 41
6.4.1 Introduction .. 41
6.4.2 CrayPat Details .. 42

6.5 DewizPat – Automatic Communication Pattern recognition... 45
6.5.1 Introduction .. 45
6.5.2 NOPE and ATEMPT: Details ... 45

6.6 IBM HPCT: High Performance Computing Toolkit.. 47
6.6.1 Introduction .. 47
6.6.2 IBM HPCT Details.. 47
6.6.3 Future Work and Developments ... 48

6.7 IPM: Integrated Performance Monitoring.. 48
6.7.1 Introduction .. 48
6.7.2 IPM Details... 49

6.8 Scalasca .. 51
6.8.1 Introduction .. 51
6.8.2 Platforms used for assessment .. 51
6.8.3 Scalasca Details.. 51
6.8.4 Future Work.. 53

6.9 Vampir VNG.. 53
6.9.1 Introduction .. 53
6.9.2 Vampir Details.. 53

6.10 VPA: Visual Performance Analyzer .. 57
6.10.1 Introduction .. 57
6.10.2 VPA Details... 57

6.11 Considerations for Future Work.. 59
7 Annex.. 60

7.1 Benchmark Report Template ... 60
7.2 Benchmark Porting Details... 61

7.2.1 QCD.. 61
7.2.2 VASP... 65
7.2.3 NAMD... 67
7.2.4 CPMD... 73
7.2.5 Code_Saturne.. 75
7.2.6 GADGET... 82
7.2.7 TORB .. 86
7.2.8 ECHAM5... 88
7.2.9 NEMO... 92
7.2.10 CP2K... 97
7.2.11 GROMACS.. 99
7.2.12 N3D... 106

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 viii

7.2.13 AVBP... 108
7.2.14 HELIUM ... 110
7.2.15 TRIPOLI4 ... 120
7.2.16 PEPC .. 121
7.2.17 GPAW ... 127
7.2.18 ALYA... 129
7.2.19 SIESTA.. 131
7.2.20 BSIT .. 133

7.3 Example of Code Integration into JuBE ... 136
7.3.1 bench-platform.xml ... 137
7.3.2 compile.xml ... 137
7.3.3 prepare.xml ... 139
7.3.4 execute.xml.. 139
7.3.5 verify.xml .. 140
7.3.6 analyse.xml ... 141

7.4 CrayPat Case study: High-Performance Linpack Benchmark (HPL) 143
7.5 IBM HPCT Assessment .. 147

7.5.1 Hardware Performance Monitor (HPM) .. 147
7.5.2 MPI Profiler.. 148
7.5.3 Xprofiler.. 149

7.6 IPM Assessment... 150
7.6.1 MPI subs ... 151
7.6.2 MPI topology .. 152
7.6.3 MPI message sizes .. 153
7.6.4 MPI load balance.. 153

List of Figures

Figure 1: Overview hardware platform porting results. .. 10
Figure 2: Overview of the JuBE framework. .. 13
Figure 3: Folder layout for PABS. .. 14
Figure 4: Screen-grab of JuBE output for NAMD benchmark. .. 15
Figure 5: Screenshot of timeline view of OPT Linpack run on IBM BG/P. ... 34
Figure 6: Screenshot of histogram view of OPT Linpack run on IBM BG/P. 35
Figure 7: Screenshot of Message Profile view of OPT Linpack on IBM BG/P.................................... 35
Figure 8: Linpack@MareNostrum, 10k cores x 1700 seconds. .. 38
Figure 9: Screenshot of a NOPE generated Trace using the Eclipse Traceviewer................................ 46
Figure 10: Screenshot of cube3 running Linpack on a 2048 core partition of the IBM BG/P. 52
Figure 11: Timeline view of 64 MPI-tasks in HPL benchmark, VampirServer uses 128 MPI-Tasks. . 55
Figure 12: Example of individual process timeline view. ... 56
Figure 13: System architecture of Visual Performance Analyzer. .. 58
Figure 14: Pie chart example... 146
Figure 15: Load balance example of HLP_dgemm... 147
Figure 16: Peekperf visualisation of trace files. .. 149
Figure 17: Xprofiler example. ... 150
Figure 18: IPM pie charts. ... 151
Figure 19: IPM MPI topology overview. .. 152
Figure 20: IPM message sizes graphs. .. 153
Figure 21: IPM MPI load balance information. .. 153

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 ix

List of Tables

Table 1: The proposed list of core applications in D6.1.. 7
Table 2: Possible extensions to the core list of applications in D6.1. ... 7
Table 3: Actual prototype architectures in PRACE. ... 8
Table 4: Application to benchmark translation, with BCO distribution.. 8
Table 5: Benchmark code characteristics. ... 9
Table 6: Summary on porting efforts for benchmark codes and prototype architectures. 10
Table 7: Expected scalability potential and estimated effort for benchmark codes. 11
Table 8: Expected optimisation potential and estimated effort for benchmark codes........................... 12
Table 9: Influence of problem size for two processor cores.. 19
Table 10: Desirable components represented in a synthetic benchmark set. .. 22
Table 11: Availability of IPM. .. 50
Table 12: MPI-profile.. 143
Table 13: Function profile. .. 144
Table 14: Function profile, less complex. ... 144
Table 15: Program totals. .. 145
Table 16: All sent message statistics from process number 9. .. 145
Table 17: Sent message statistics from process 9 to 2... 145
Table 18: Performance results with the default HWPC experiment. .. 146

References and Applicable Documents

[1] PRACE: http://www.prace-project.eu
[2] TRAC: http://trac.edgewall.org/
[3] JuBE: http://www.fz-juelich.de/jsc/jube/
[4] DEISA: http://www.deisa.eu/science/benchmarking
[5] STREAMS: http://www.streambench.org/
[6] EuroBen: www.euroben.nl
[7] SPEC: www.spec.org
[8] PERFECT:
[9] ASC Sequoia: https://asc.llnl.gov/sequoia/benchmarks/
[10] LINPACK (HPL): http://www.netlib.org/benchmark/hpl/
[11] NAS Parallel Benchmarks: www.nas.nasa.gov/Resources/Software/npb.html
[12] STREAM2: http://www.cs.virginia.edu/stream/stream2/
[13] P-SNAP: http://www.c3.lanl.gov/pal/software/psnap/
[14] Selfish: http://www-unix.mcs.anl.gov/zeptoos/projects/
[15] EPPC OpenMP:
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
[16] Intel MPI: http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
[17] SPEC MPI: http://www.spec.org/mpi/
[18] SKaMPI: http://liinwww.ira.uka.de/~skampi/
[19] Sandia SMB: http://www.cs.sandia.gov/smb/
[20] HPCC: http://icl.cs.utk.edu/hpcc/
[21] PARKBENCH: http://www.netlib.org/parkbench/
[22] IOR: http://sourceforge.net/projects/ior-sio/
[23] IOZONE: http://www.iozone.org/
[24] Bonnie++: http://sourceforge.net/projects/bonnie/

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 x

[25] B_eff_IO: http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/
[26] Allinea: www.allinea.com
[27] CEPBA: www.bsc.es
[28] Cray Inc.: www.cray.com
[29] HPCT: http://domino.research.ibm.com/comm/research_teams.nsf/pages/actc.index.html
[30] IPM: http://www.nersc.gov/nusers/resources/software/tools/perf.php
[31] Scalasca: www.fz-juelich.de/jsc/scalasca
[32] VAMPIR: www.vampir.eu
[33] VPA: http://www.alphaworks.ibm.com/tech/vpa
[34] HPL Cell example: http://www.netlib.org/benchmark/hpl/

List of Acronyms and Abbreviations

ASC Advanced Strategic Computing.
BCO Benchmark Code Owner.
BLAS Basic Linear Algebra Subroutines (basic library).
BSC Barcelona Supercomputer Center (Spain).
BSCW Basic Support for Cooperative Work, a collaborative workspace

software package.
BT Block Tridiagonal (NPB application).
B/s Bytes per second.
CAF Co-Array Fortran
CEPBA European Center for Parallellisation at Barcelona
CFD Computational Fluid Dynamics.
CPU Central Processing Unit.
CSC Center for Scientific Computing (Finland).
CSCS Swiss National Supercomputing Centre (Switzerland).
CPI Cycles per Instruction.
DEISA Distributed European Infrastructure for Supercomputing

Applications. EU project by leading national HPC centres.
EPCC Edinburgh Parallel Computing Centre.
FFT Fast Fourier Transform.
FT Fast Fourier Transform (NPB application).
flop/s floating-point operations per second.
Gflop/s 10 9 floating-point operations per second (Gigaflop/s).
GMRES Generalised Minimal Residual Method.
GUI Graphical User Interface.
GUP Institute of Graphics and Parallel Processing, Johannes Kepler

University Linz (Austria).
HDF Hierarchical Data Format.
HLRS High Performance Computing Center Stuttgart (Germany).

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 xi

HPC High Performance Computing; Computing at a high performance
level at any given time; often used synonym of Supercomputing.

HPCC High Performance Computing Challenge.
HPL High Performance Linpack benchmark.
IO Input-Output
JuBE Juelich Benchmarking Environment.
LAPACK Linear Algebra PACKage (numerical linear algebra library).
LU Lower Upper diagonal factorization (NPB application).
MD Molecular Dynamics.
Mflop/s 10 6 floating-point operations per second (Megaflop/s).
MHz 10 6 Hz.
MPI Message Passing Interface. A library for message-passing

programming.
MRNet Multicast Reduction Network.
NAS Numerical Aerodynamic Simulation.
NERSC National Energy Research Scientific Computing Center.
NPB NAS Parallel Benchmark.
OpenMP Open Multi-Processing. An API for shared-memory parallel

programming.
OS Operating System.
PABS PRACE Application Benchmark Suite.
PAPI Parallel Application Programming Interface.
PAT Performance Analysis Tool.
Perl Practical Extraction and Reporting Language.
Pflop/s 10 15 floating-point operations per second (Petaflop/s).
PGAS Partitioned Global Address Space (classification of programming

languages).
PRACE Partnership for Advanced Computing in Europe; Project Acronym.
PSTSWM Parallel Spectral Transform Shallow Water Model.
QCD Quantum Chromo Dynamics.
SARA SARA Computing and Networking Services Amsterdam (the

Netherlands).
SPECfp SPEC floating point benchmark.
SOAP Simple Object Access Protocol
SP Scalar Pentadiagonal (NPB application).
Tflop/s 10 12 floating-point operations per second (Teraflop/s).
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
tier-0 systems, while national or topical HPC centres would constitute
tier-1.

Tier-1 Major national or topical HPC systems.
TPP Theoretical Peak Performance.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 xii

UPC Unified Parallel C
Wiki Web page or collection of web pages for creating collaborative web

sites.
XML eXtensible Markup Langauage.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 1

Executive Summary

In order to be a success, PRACE needs to understand the software requirements for future
Pflop/s systems. This deliverable takes the key scientific and technical categories of
applications, as conducted through a survey of most major European HPC systems and the
applications that exploit these, carried out by task 6.1. It reports on the construction of a
benchmark suite, to be used both within the current PRACE project and beyond, when actual
Tier-0 systems will be purchased. Apart from the benchmark suite, this document reports on
currently available performance analysis tools and synthetic benchmarks, as these are
essential tools for monitoring scalability and optimisation of benchmark codes, and for
analysing and comparing the basic components of HPC systems.

This document takes its input from various sources. First, there is the list of applications and
their requirements, as delivered by tasks 6.1 and 6.2. As these applications belong to the most
frequently used on current European HPC platforms, they should form the basis of a PRACE
benchmark suite. Secondly, there is the hardware architecture survey, as conducted by WP7
and its consequences for prototype systems to be used within PRACE. As these prototype
architectures are considered as important, it makes sense to use these as platforms for
benchmark preparations on scalability (to be handled by task 6.4) and optimisation (task 6.5).
A third aspect is the available combination of expertise on applications and expertise on
architecture, for which it makes sense to be used as appropriate and efficient as possible.

PRACE targets towards a European Research Infrastructure, ideally consisting of various
hardware architectures. This implicitly means that some applications are more suited to
certain architectures than others. This needs to be reflected in the final benchmark suite, with
the idea that potentially subsets of the overall benchmark suite may be used for benchmarking
different architectures.

These aspects together lead to the output as described in this document, which consists of an
initial benchmark suite, with applications ported (and to some extent analysed) to target
architectures, including recommendations on further work and effort estimates for petascaling
(task 6.4) and optimisation (task 6.5). Integration of the benchmark codes into a benchmark
suite is an important subtask, as it ensures that other tasks and workpackages within PRACE
can use the benchmark suite as their starting point. Identification and categorisation of
performance analysis tools and synthetic benchmarks are included as well, to be used later in
the project when tasks 5.4, 6.4 and 6.5 take off. We believe the document and the initial
benchmark suite form a strong basis for this future work.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 2

1 Introduction

The Partnership for Advanced Computing in Europe (PRACE, [1]) has the overall objective
to prepare for the creation of a persistent pan-European HPC service. PRACE is divided into a
number of inter-linked work packages, and WP6 focuses on the software for petascale
systems.

The primary goal of PRACE WP6 is to identify and understand the software libraries, tools,
benchmarks and skills required by users to ensure that their applications can use a Pflop/s
system productively and efficiently. WP6 is the largest of the technical PRACE work
packages and involves all of the PRACE partners.

Task 6.3 is responsible for the creation of a benchmark suite, to be used not only within WP6
but also in WP5, when testing and validating prototype systems. The benchmark suite should
represent application areas from the potential user bases, and should take into account the
available prototype architectures and available expertise within the PRACE project. This
means that task 6.3 receives its input from tasks 6.1 and 6.2. With the application benchmark
suite, task 5.4 will conduct its testing and analysing of the prototype systems, while tasks 6.4
and 6.5 will be able to cover aspects of scalability to Pflop/s systems and optimisation of
applications. Since these efforts can not be done without suitable software tools and thorough
understanding of the underlying hardware, task 6.3 covers performance analysis tools and
synthetic benchmarking as well. The synthetic benchmark suite will be used by tasks 5.2 and
5.3.

Including the performance analysis tools and synthetic benchmark survey, the audience for
this document is not only within other PRACE tasks, but hopefully also a wider HPC
audience, as it offers characteristics and analysis for deployment of specific, heavily used
applications codes on future Pflop/s systems.

1.1 Structure of the Report

This document is structured as follows. In section 2, besides some important definitions, a
refinement of objectives and the methodology to arrive at them, will be discussed. This
includes the practical approach of splitting the full task into a number of subtasks, but also the
approach to use human resources as efficiently as possible. Section 3 covers the actual
assignment of applications to people and prototype architectures, the obtained results with
respect to porting, and the forecast with respect to scalability to Pflop/s systems and
optimisation. Section 4 covers the actual integration of benchmark codes into a benchmark
suite. Sections 5 and 6 discuss available synthetic benchmarks and performance analysis
tools, respectively. With respect to conclusions and future work, we have taken the approach
to include these aspects as a subsection in each of the sections 3 to 6, as this fits more natural
to the actual subjects in the individual sections. Many details on porting of the applications to
the prototype architectures can be found in the Annex.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 3

2 Definitions, Objectives and Methodology

2.1 Definitions

The purchase process of large HPC computer systems (either focussed on capacity or
capability) is generally supported by the execution of a set of user applications on the systems
under consideration. In this respect, we are talking of benchmarking the systems, leading to
technical information which allows proper technical comparison of the systems, especially
with respect to their performance on real applications.

Technical information typically consists of actual performance details of the systems, which
vary from the performance on component level to the performance of the system as a whole.
This is reflected in the tests that are in use: tests on a component level (processor, caches,
memory, interconnect, IO system) and obviously tests for the system as a whole. Tests on
component levels are generally referred to as benchmark kernels or synthetic benchmarks,
tests for the whole system as benchmark applications.

In order to avoid confusion, it is important to define clearly what is meant with the relevant
terminology. For that reason, throughout this document, the following definitions will be
used:

• A benchmark kernel is the collection of a small test program source code, run script,

defined number of processors, possibly dataset and reference output, and is meant to test
an individual component of the system;

• A benchmark code is the collection of one application source code, run script, defined
number of processors, dataset and reference output, and is meant to test the behaviour of
the system as a whole;

• A synthetic benchmark suite is the collection of benchmark kernels, to be run standalone;
• A benchmark suite is the collection of benchmark codes, together with the schedule to run

the individual benchmark codes (either standalone or in some defined form of
throughput). To distinguish this from the synthetic benchmark suite, we may refer to this
as application benchmark suite;

• A performance analysis tool is a tool to use for getting performance information when
running an application, in particular a benchmark kernel or benchmark code.

Throughout this document, the concepts of porting, petascaling and optimisation will be used
frequently. It makes sense to describe these concepts here as well:

• Porting is the process of installation, compilation, linking and execution of an application

source code on a specific hardware platform running specific software versions.
Successfully ported (to distinguish from later optimisation and scaling efforts) means
correct execution of the generated executable on the specific hardware platform running
specific software versions, using representative input sets;

• Petascaling is the performance scalability of benchmark codes (including IO aspects) to
petascale level architectures, and is typically expressed in the amount of cores which can
still be efficiently used for the execuation of the benchmark code. This is most likely

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 4

depending on actual input sets. Using ca. 10 Gflop/s per processor core, this means
systems with a number of processor cores in the order of 100,000;

• Optimisation is the improvement of typically single-CPU (or: single-core) (standalone)
performance (including IO aspects) of a benchmark code, and is typically a combination
of memory hierarchy management (“cache optimisation”) and CPU floating-point unit
scheduling. In this context, source code optimization is meant, rather than external factors
such as job scheduling.

2.2 Objectives and Methodology

This section discusses the approach we have taken to arrive at the objectives for task 6.3,
including the methodology with respect to the efficient usage of both human and hardware
resources. The two main objectives for task 6.3 are:

• To create a benchmark suite which will serve as a starting point for tasks 5.4, 6.4 and 6.5

(this deliverable D6.3.1);
• To eventually create a benchmark suite which becomes the PRACE benchmark suite for

Tier-0 procurement (D6.3.2 at the end of the PRACE project).

Further refinement of these objectives, in order to design a detailed work plan for task 6.3, has
been done in the following way:

1. Definition of a representative set of benchmark codes, including representative datasets

with respect to required size for petascaling;

2. Porting of benchmark codes to prototype hardware architectures, initial execution results,
preparation for task 5.4 (benchmark evaluation on prototype systems), task 6.4
(petascaling) and task 6.5 (optimisation), identification of potential performance and
scalability bottlenecks (including licensing);

3. Survey on integration of benchmark codes into a benchmark suite, and actual
implementation as input for other WP/tasks in PRACE (in particular 5.4, 6.4 and 6.5)

4. Survey on available performance analysis tools (structured testing on benchmark codes
will be covered in D6.3.2, which may result in collaboration with vendors of these tools);

5. Survey on synthetic benchmarks (not yet structured testing on platforms, nor adapting to
cover petascale architectures, which is reserved for future work in 5.4 and 6.3). The
results of the synthetic benchmark survey will be used by tasks 5.2 and 5.3.

Objectives 3, 4 and 5 are basically independent of the actual benchmark codes they should
work with. They are also independent of each other, which means that for each of these
individual work plans can be designed. This has actually been done, leading to three so-called
subtask leaders, each responsible for reaching one of the objectives 3 to 5. Sections 4 to 6 will
cover the results obtained for these objectives. For objective 2, the situation is more complex.
First, objective 2 takes objective 1 as input. This process will be described in section 3.1.
Secondly, the actual technical work for objective 2 will be continued after deliverable D6.3.1
and reported in D6.3.2, but also within tasks 6.4 and 6.5, which deal with petascaling and
optimisation of the benchmark codes. For that reason, in agreement with tasks 6.4 and 6.5, we
have chosen for a horizontal approach, which means the following:

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 5

• For the execution of tasks 6.3, 6.4 and 6.5, each benchmark code will be worked on under
the responsibility of a so-called Benchmark Code Owner (BCO). The BCO is a person
who in most cases belongs to the staff of one of the PRACE partners;

• The BCO will steer the actual (porting, petascaling and optimisation) efforts, such that the
benchmark code will run on each of the designated prototype hardware architectures. This
includes the scheduling of work among the contributing PRACE partners to the
benchmark code;

• During the porting, optimisation and scaling process, the BCO communicates with the
application owners on all aspects of the application: source code, dataset, output, etc. In
particular, actual results will first be communicated to the application owner, and through
the public status of the deliverable report also to hardware or software vendors, and the
rest of the HPC community;

• Reporting of the actual benchmark results (porting, petascaling, optimisation) must be
within PRACE and the EU, without reporting constraints set by the application owner. In
case the application owner does set such constraints on this, we will not transfer the
application into a benchmark code within the PRACE benchmark suite;

• In case licensing of the application is relevant, as a rule of thumb we have accepted
licenses that allow free usage within PRACE as a minimum possibility.

Apart from a lot of technical effort to the benchmark codes and subtasks, quite some
organisational effort has been needed on a central level to cover the definition and distribution
of benchmark codes, to monitor progress and to obtain results. Each BCO has had a similar
organisational task on its benchmark code level, just as each of the subtask leaders for their
assigned subtask. This has led to a tree-structure of communication, with its root at the level
of WP6 management. The whole PRACE project may benefit from this structure.

The concept of BCOs and contributors, the integration of individual benchmark codes into a
benchmark suite and the future work within PRACE basically define a distributed working
environment, in which various people contribute to shared entities. This means that, both
within PRACE WP6 and later on also in other WPs, it is necessary to use software tools to
support such a distributed working environment. For the moment, this has been done using
the TRAC system, as used at CSC Finland. TRAC is a web-based software project
management and bug/issue tracking system emphasizing ease of use and low ceremony. It
provides an integrated Wiki, an interface to version control systems, and a number convenient
ways to stay on top of events and changes within a project. For more details, we refer to [2].

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 6

3 Benchmark Selection

3.1 Relevance to PRACE

Considering the goals of PRACE (HPC ecosystem, various Tier-0 systems, sustainability,
facilitating science), a benchmark suite to technically support these goals will need to
consider the following aspects:

• coverage of relevant application areas;

• representative applications within the covered application areas;

• coverage of (the range of) hardware platforms (prototypes) which are relevant for
PRACE;

• opportunities to test system components with synthetic benchmarks;

• petascaling opportunities of benchmark codes with relevant datasets;

• optimisation opportunities of benchmark codes.

These aspects have to be taken into account when designing both a synthetic benchmark suite
as well as an application benchmark suite. This means that we will develop synthetic
benchmark and application benchmark suites, which are both formal in approach and flexible
in usage. After all, if the resulting HPC ecosystem is to support various Tier-0 architectures,
we must be able to distinguish between these architectures with respect to the applications
targeted for the Tier-0 systems, and hence in the ability to use subsets of the overall
benchmark suites (synthetic and application).

3.2 Selection Approach

First, we have considered earlier work in WP6. Deliverable D6.1 has been working on the
identification and categorisation of applications and initial benchmark suite. It has taken
various angles to reach a list of so-called core applications, and a list of possible extensions.
These are contained in tables 1 and 2. Note that the actual acronyms of the applications are
explained in Annex 7.2.

It is clear that as many as possible applications of the core list should be integrated in a
PRACE benchmark suite, as they represent a significant user community of the systems at
PRACE partners.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 7

Application name Application area

QCD Particle physics
VASP Computational chemistry, condensed matter physics
NAMD Computational chemistry, life sciences
CPMD Computational chemistry, condensed matter physics
Code_Saturne Computational fluid dynamics
GADGET Astronomy and cosmology
TORB Plasma physics
ECHAM5 Atmospheric modelling
NEMO Ocean modelling
Table 1: The proposed list of core applications in D6.1.

Application name Application area

AVBP Computational fluid dynamics
CP2K Computational chemistry, condensed matter physics
GROMACS Computational chemistry
HELIUM Computational physics
SMMP Life sciences
TRIPOLI4 Computational engineering
PEPC Plasma physics
RAMSES Astronomy and cosmology
CACTUS Astronomy and cosmology
N3D Computational fluid dynamics
Table 2: Possible extensions to the core list of applications in D6.1.

A second consideration is the actual choice of prototype architectures, as being consolidated
by the Technical Board as an advice to the Management Board (MB) of the PRACE Project,
and prepared by WP2 and WP7. This has led to a MB decision on the following prototype
architectures, as (near-) production systems, in table 3.

The third consideration to select the applications to be transferred into a benchmark code is a
practical one. It basically consists of the combination of knowledge of the particular
application, expertise with certain hardware platforms and access to prototype architectures.
Typically, we have tried to identify PRACE partners which combine all three aspects as
preferred BCO. For most applications, both from the core list as well from the extended list,
this has been successful. Contributors to a benchmark code typically qualify if they satisfy at
least one, and preferably two or even three of these aspects.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 8

Architecture type Actual system Location

MPP-BG IBM BlueGene/P FZJ, Germany

MPP-Cray Cray XT5 CSC, Finland

SMP-FatNode-pwr6 IBM p575 Power6 SARA, Netherlands

SMP-ThinNode-x86 Bull – Intel Xeon/Nehalem
cluster

FZJ, Germany and CEA,
France

SMP-
ThinNode+Vector

NEC SX-9 + x86 … HLRS, Germany

SMP-FatNode+Cell IBM Power6 with Cell BSC, Spain
Table 3: Actual prototype architectures in PRACE.

Taking this approach, we have mapped both the applications of the core list and the
applications of the extended list to the set of prototype architectures, with BCOs and
contributors. This has led to table 4:
Application BCO MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector Contributors

QCD FZJ X X X EPCC, CSC
VASP BSC X X X X NCF, GUP, HLRS, (PSNC)
NAMD EPSRC X X X maybe CSC, GRNET, GUP
CPMD BSC X X X X CSC, CINECA, SIGMA, HLRS, PSNC
Code_Saturne EPSRC X X X X maybe HLRS, BSC
GADGET LRZ X X X CINECA, DL, CSCS
TORB BSC X X X
ECHAM5 CSCS X X maybe X X CSC, HLRS
NEMO NCF X X X X DL, CSCS, SIGMA
CP2K CSC X X X EPCC, CINECA, CSCS, SIGMA
GROMACS CSC X X X SNIC, NCF, CSCS
N3D HLRS X X X X

AVBP GENCI X X X
HELIUM EPSRC X X X
TRIPOLI_4 GENCI X X
PEPC FZJ X X X
GPAW CSC X X X CINECA
ALYA BSC X
SIESTA PSNC X
BSIT BSC X
Table 4: Application to benchmark translation, with BCO distribution.

Table 4 shows that all applications from the core list have come back as benchmark codes, on
at least 3 target prototype architectures, completed with 3 applications from the non-core list:
CP2K, GROMACS and N3D. These are the first 12 (green) rows of the table. SMMP,
RAMSES and CACTUS have disappeared from the extended (yellow) list, as it turned out to
be that there was no PRACE partner that could volunteer as BCO. Instead, GPAW
(computational chemistry), ALYA (computational mechanics and fluid dynamics), SIESTA
(computational chemistry, molecular dynamics) and BSIT (computational geophysics) have
joined the application set, mainly to make sure that enough coverage of the SMP-FN+Cell
platform could be guaranteed (yellow rows). An additional advantage of this is that two other
application areas are introduced: computational mechanics and computational geophysics.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 9

After finalisation of table 4, each BCO and its contributors have started the work on the
benchmark codes and hardware architectures. The qualitative results of these efforts will be
discussed in the next section.

3.3 Actual Results

Technically, task 6.3 is preparing benchmark codes for further research on petascaling and
optimisation. Keeping this in mind, task 6.3 is covering porting of the agreed set of
applications to the agreed set of prototype architectures, preparing the scene for future work.
This section therefore does not contain high detail on scalability and optimisation, but does
contain porting statistics and to some extent porting details. It also considers details with
respect to petascaling and optimisation potential, including effort estimates.

Table 5 shows code characteristics with respect to programming languages, libraries,
programming models and IO models.

Benchmark code Languages Libraries Programming Model IO characteristics

QCD Fortran 90, C MPI no special
VASP Fortran 90 BLACS, SCALAPACK MPI (+ pthreads) no special
NAMD C++ Charm++, FFTW, TCL Charm++, MPI, master-slave no special
CPMD Fortran 77 BLAS, LAPACK MPI
Code_Saturne Fortran 77, C99, python BLAS MPI read at start, write periodically
GADGET C 89 FFTW, GSL, HDF5 MPI
TORB Fortran 90 PETSC, FFTW MPI read at start, write periodically
ECHAM5 Fortran 90 BLAS, LAPACK, NetCDF MPI/OpenMP read at start, write periodically
NEMO Fortran 90 NetCDF MPI read at start, write periodically
CP2K Fortran 95 FFTW, LAPCK, ACML MPI checkpoints and output, intense
GROMACS C, assembler FFTW, BLAS, LAPACK MPI read at start, write periodically, relaxed
N3D Fortran 90 EAS3, Netlib (FFT) MPI + NEC-microtasking read at start, write periodically

AVBP Fortran 90 Hdf5, szip, Metis MPI read at start, write periodically
HELIUM Fortran 90 MPI read at start, write periodically
TRIPOLI_4 C++ TCP/IP sockets read at start, write periodically
PEPC Fortran 90 MPI read at start, write periodically
GPAW Python, C LAPACK, BLAS MPI read at start, write at end
ALYA Fortran 90 Metis MPI/OpenMP read at start, write periodically
SIESTA Fortran 90 Metis, BLAS, SCALAPACK MPI read at start, write periodically
BSIT Fortran 95, C Compression lib MPI/OpenMP read at start, write periodically
Table 5: Benchmark code characteristics.

Table 5 does not show big surprises. By far the most common programming language is some
instance of Fortran, while MPI is by far the most popular programming model. Pure OpenMP
(shared memory parallel) codes are absent in this list, four of the codes (counting NEC
microtasking for OpenMP) implement a combination of MPI and OpenMP. IO characteristics
typically are a result of the time-dependent nature of the underlying physical model, which
gives rise to time stepping through the computational domain, resulting in periodic output.
From a future perspective, an interesting conclusion that may be derived from table 5 is that
scaling application performance to petascale systems will have to deal, one way or another,
with both Fortran and MPI.

Figure 1 is the actual result of the porting activities. It shows the amount of assigned codes, as
specified in table 4, and the amount of actually ported codes until now. This is typically work
in progress, the most important reason being the fact that the full set of actual agreed
prototype architectures is not yet available. We have been creative in using similar

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 10

architectures to cover as much porting work as possible, to be able to start the work already
before the actual prototype systems became available. Another aspect we face here is the fact
that people skills for working on SMP-FN+Cell in particular are scarce.

0

2

4

6

8

10

12

14

16

18

MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+Vector

Codes assigned Codes ported successfully

Figure 1: Overview hardware platform porting results.

Figure 1 does not give any details on which codes have been ported to which prototype
architectures. Table 6 shows these porting details. In fact, table 6 is comparable to table 4 in
the sense that it has the exact same sparsity pattern as table 4. Green colors denote successful
porting, yellow means that porting is in progress, and orange means that porting has not
started yet (and only in one case that porting has been stopped because of technical problems
– ECHAM5 on MPP-BG).
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done In progress Done
VASP Done Done Yet to start Yet to start
NAMD Done Done Done Yet to start
CPMD Done Done In progress Yet to start
Code_Saturne Done Done Done Yet to start Done
GADGET Done Done Done
TORB Done Done Yet to start
ECHAM5 Stopped Done In progress Done Yet to start
NEMO Done Done Done In progress
CP2K Done Done Done
GROMACS Done Done Done
N3D Yet to start In progress Yet to start Done

AVBP Yet to start Done Done
HELIUM In progress Done Done
TRIPOLI_4 Yet to start Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done
SIESTA Done
BSIT Done
Table 6: Summary on porting efforts for benchmark codes and prototype architectures.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 11

Apart from porting efforts to the prototype architectures, initial insights in the potential for
scaling to petascale systems and single-CPU optimisation have been obtained. Table 71
contains the scalability potential of each of the benchmark codes, including an estimate on the
amount of effort in person months (pm’s). We have defined the range none-low-medium-high
with respect to scalability as follows, and have assumed one core to deliver a minimum of 10
GFlop/s peak performance.

None (red): No speed-up above 2500 cores;
Low (orange): Speed-up obtained up to 5000 cores;
Medium (yellow): Speed-up obtained up to 10000 cores;
High (green): Speed-up obtained for more than 100000 cores.

Speed-up at a certain number of cores is defined as still getting execution time improvement
when comparing the execution time on that number of cores to the execution time on half the
number of cores.

From table 7, the following initial observations can be made:

• Within the set of computational chemistry codes (VASP, NAMD, CPMD, CP2K,
GROMACS, GPAW) the potential varies from low to high. At first sight, this may seem
surprising, as they all cover the same (broad) application area, although individual codes
may use different approaches. It will make sense to investigate how low-scalable codes
may benefit from algorithms and implementations used in high-scalable codes;

• The amount of effort estimated to improve scalability to medium or high seems to be
reasonable: on average around 4 to 5 person months. This will be taken forward in task
6.4 for selected promising applications in close collaboration with the code owners.
Further work on task 6.4 will take this forward.

Benchmark code Expected scalability Estimated effort Comments and areas of attention

QCD high 0-1 person months
VASP high Depends on FFT and BLAS implementations
NAMD medium-high 8-10 person monthsInvestigate master-slave (3 pm), investigate shared memory (7 pm)
CPMD high 2 person months Well parallelised already, some tuning needed
Code_Saturne medium 3 person months Preprocessing stage and IO
GADGET medium-high 2 person months Investigate potential OpenMP constructs and MPI implementation
TORB high 3-5 person months Adapt code internals (up to now 999 processes is max.)
ECHAM5 low-medium 2-8 person months OpenMP optimisation, data output mechanism
NEMO low 3 person months Domain decomposition load imbalance, solver implementation, MPI
CP2K low 5 person months Load imbalance needs to be solved
GROMACS medium 8 person months Optimise communication patterns
N3D low-medium 1-6 person months Very platform dependent - MPI AlltoAll implementation

AVBP medium-high 2 person months Focus on MPI implementation (AllReduce area)
HELIUM medium 3-4 person months Focus on MPI implementation (synchronisation constructs)
TRIPOLI_4 high 6 person months Independent particles, Monte-Carlo approach, IO to be modified
PEPC high 1 person month Data structure to be investigated
GPAW medium-high 3-6 person months Implement SCALAPACK usage, parallelise over electronic states
ALYA medium-high 2 person months Explicit solver ok, implicit solver requires effort, IO to be modified
SIESTA medium 2-3 person months Focus on MPI implementation
BSIT high 1 person month Embarassingly parallel, need to consider queue management system
Table 7: Expected scalability potential and estimated effort for benchmark codes.

A comparable exercise with respect to optimisation can be done. This leads to the results in
table 8. This shows the effect that some codes have been optimised for single-CPU
performance already quite extensively. Also, BCOs have focussed sofar on scalability
potential rather than on optimisation potential. It is important to consider both effects, as

1 Not all cells in tables 7 and 8 have been filled yet, as initial analysis after porting is currently work in progress.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 12

dramatic single-CPU optimisation has in general far-reaching consequences for scalability
expectations.
Benchmark code Expected optimisation Estimated effort Comments and areas of attention

QCD low 0-1 person months Collection of five kernels, well-defined
VASP
NAMD low Investigate simultaneous multi-threading
CPMD
Code_Saturne medium 3 person months Include library routines, cache optimisation, vector constructs
GADGET medium 3-6 person months Modify algorithm towards floating-point work
TORB medium Vectorisation of loops for Cell
ECHAM5 high 1 person month Investigate work done by hardware vendors
NEMO medium 1-2 person months Flat profile, cache optimisation
CP2K medium 2-3 person months Mostly cache optimisation
GROMACS low-medium 1 person month Mostly done through assembler routines already
N3D low-medium 1-4 person months Vectorisation done, include library routines, improve cache behaviour

AVBP low 1-2 person months Mostly done already
HELIUM medium 2-4 person months Few routines high in the profile, cache behaviour of long loops
TRIPOLI_4
PEPC medium 0-1 person months
GPAW low-medium 2-4 person months Already relying on BLAS, further cache utilisation improvement
ALYA medium 4 person months Prepare solvers for vectorisation on Cell
SIESTA high 2 person months Optimisation for Cell
BSIT medium 2 person months Explicit finite difference method optimised, fine-tuning possible
Table 8: Expected optimisation potential and estimated effort for benchmark codes.

In summary, the results presented here are only initial results, and should serve as a good
starting point for many other tasks within the PRACE project. Since a massive amount of
information on porting these applications to the prototype architectures is available, and
which is very useful, we have included this information in Annex 7.2.

3.4 Conclusions and Future Work

As has been mentioned before, porting the applications to the target prototype architectures is
work-in-progress. The BCOs and their contributors have been able to already port a
significant part of the applications to many of the assigned prototype architectures, where
each application has been ported to at least one platform. This means that already a significant
part of the sparse matrix has been filled. This work will continue to complete the sparse
matrix on applications and prototype architectures.

Another aspect is the fact that already ported applications will enter the stadium of petascaling
and optimisation, by tasks 6.4 and 6.5. Here we expect the concept of BCO to be very
valuable, as work easily flows from task 6.3 into 6.4 and 6.5, and later backwards when
integration of the scaled and optimised applications into the final benchmark suite for PRACE
will need to be done.

With respect to the future final benchmark suite for PRACE, there is the issue of usage and
licensing. It is planned that the PRACE benchmark suite will be used after the PRACE
project, when real Tier-0 systems will need to be benchmarked. Within task 6.3, this may be
an activity which can become quite important to make sure that the actual heavily-used
applications will remain part of the PRACE benchmark suite.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 13

4 Integration in Benchmark Suite

4.1 Introduction

In order to facilitate usage within other tasks in WP6 and within other work packages within
PRACE, the benchmark codes from WP6 need to be integrated into a suite as part of task 6.3.
Therefore, all applications that are part of tasks 6.3, 6.4 and 6.5, along with a series of
synthetic benchmarks, are to form part of such an integrated benchmarking suite (PRACE
Application Benchmark Suite – PABS) for use by the PRACE partners, in particular tasks 5.2,
5.3 and 5.4. This chapter describes how this integration will be implemented. A specific
example is included in Annex 7.3.

4.2 Integration Framework

The technology used will be JuBE (figure 2 and [3]) from Jülich Supercomputing Centre
(FZJ), which is based on Perl and XML. JuBE creates a definition for each platform,
application and result set and allows automated compilation, running, and comparison of
results against expected standards and reporting of results, as required the definitions in
section 2.1 of this document. JuBE is also used by DEISA and it is anticipated that PRACE
can use parts of the benchmark suite already created for overlapping applications and
platforms. This enables PRACE taking advantage of experience of effort across the two
projects.

Figure 2: Overview of the JuBE framework.

The integration of the proposed benchmark codes requires that the BCO creates the definition
files for each platform that the application is ported to. These definition files, along with the
JuBE suite, are stored in the TRAC Subversion system [2]. Within the JuBE system for

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 14

PRACE there is a file documenting how to obtain the benchmark code and the datasets
required.

JuBE requires that a pre-defined folder layout is followed, as shown in figure 3. Each
application in the benchmark suite is stored in a folder with the correct name in the
“applications” folder. Inside this folder are the “src” folder which contains the source code
(obtained according to the instructions in the “HowToGet.txt” file) for the application and the
“run” folder which contains any scripts needed to complete the benchmark for that
application. The other folder of note is the “platform” folder, which contains the platform.xml
file which defines the software for each platform and a folder for each platform which
contains necessary skeleton files (such as job submission scripts) for each platform.

Figure 3: Folder layout for PABS.

In the example in figure 3, the actual application is “Helium”, while a set of hardware
platforms is used. The hardware platforms will need to include the PRACE prototype
architectures.

As mentioned, there are a number of XML files that need to be created for each application in
the benchmark code. For the actual hardware platform description, there is:

• Platform.xml – contains details particular to each platform, such as compilers, library
locations and template job submission scripts. This is kept in the subdirectories of the
“platform” folder (see figure 3).

For the benchmark code (application), there are a number of relevant files:

• bench.xml – this is the overarching XML file which details the benchmarks for each
application code. There is one such file for each platform the application can be executed
on;

• compile.xml – tells JuBE how to compile the application, detailing flags, compilers, etc.;

• prepare.xml – details how to set up a particular benchmark, such as altering an input file;

• execute.xml – details how to execute the application (or submit the job to the batch
system);

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 15

• verify.xml – details how to verify that a particular benchmark has been successfully
executed. The verification is carried out by a Perl script (check_results.pl);

• analyse.xml – details how to extract meaningful data, such as wall clock time, from the
application output and builds a results table from this data. This makes use of the
patterns.xml file.

All the above are kept in the relevant applications folder (Helium in the example in figure 3).

For the benchmark output, there is:

• patterns.xml – details the patterns to search for in order to analyse the output for the
required data. A different file can be sued for each benchmark. This is also kept in the
relevant application folder, but the “skel” folder also contains some useful files for this
(e.g. analysing HPM data).

Actual execution of a benchmark code on a particular prototype architecture might comprise
running the application over a number of processors. For example, NAMD, one of the core
applications, runs a 2 million atom benchmark over 32, 64 and 128 processors. Running the
benchmark will automatically compile the source code, submit the jobs to the scheduling
system of the prototype, and once completed, will process and verify the output and produce a
summary of the information. In the case of NAMD, the important summary statistic is the
time taken per step, which JuBE can search for in the output and present the figures in a table,
as shown in figure 4:

Figure 4: Screen-grab of JuBE output for NAMD benchmark.

The running of such a benchmark is done with a simple command from within the application
directory:

perl ../../bench/jube platform.xml

platform.xml should be replaced with the correct bench.xml for the particular platform in
question. This command compiles the code, copies the executable to the right place and
submits the jobs to the backend of the system.

Once the jobs have completed, the follwing command will analyse the data and present the
results:

perl ../../bench/jube –update –result ID

again from the application directory. The ID is the ID number of the run (given in the output
of the first command).

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 16

4.3 Conclusions and Future Work

The JuBE framework presents a consistent and useful way of packaging the diverse
application and synthetic benchmarks being used by PRACE. Although creating the
infrastructure is perhaps more effort than simply creating a script for each code to compile the
application, it will allow easy use of the benchmark by other PRACE work packages. In
addition, because of the overlap with DEISA, we reduce the potential of duplicated work over
two European projects.

The initial task of integrating the benchmark suite is to add all synthetic and application
benchmarks as defined in this document and required for other PRACE work packages. This
work forms part of this deliverable. Future work will include adding more benchmark tests for
each application in order to benchmark petascale systems as well as adding applications on
the prototypes that come into service after the completion of this deliverable. With respect to
JuBE, database integration is under development.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 17

5 Synthetic Benchmarks

5.1 Introduction

This chapter gives an overview of synthetic benchmarks, their rationale, and their
applicability. In addition, we evaluate their merits and shortcomings in order to arrive at a
well-designed set of synthetic benchmark programs (synthetic benchmark suite) that
comprehensively measure key performance metrics. Ultimately, this should lead to the
understanding of the strong and weak points of the computers thus assessed and from there a
notion of what may be expected from the performance of applications executed on these
machines.

5.2 Synthetic Benchmarks: Overview

Computer benchmarks are designed to provide insight in the performance of a computer with
respect to a code (or: program) that is executed on it. The procedure of benchmarking is very
simple: one executes the code and measures the wallclock time that is spent in the execution.
Unfortunately, in this way we only learn about the performance of a particular code run on a
particular computer. It tells us nothing about the performance of other codes on the same
computer or the same code on another computer. Worse, when code A is faster on computer I
than on computer II this is no guarantee that the same will be true for code B. It may depend
on the type, amount, and variety of operations that codes A and B contain and of the
architectures of computers I and II, respectively. In the following we will explain how to
address this problem, what the possibilities are to gain consistent knowledge about the
performance of computer systems, and what are the constraints of that knowledge.

5.2.1 Synthetic benchmarks: the why

A so-called synthetic benchmark consists of one or more programs that do not represent a real
application but rather attempts to assess a particular property of a computer system in order to
understand why it performs as it performs. Such a property may be, for instance, the speed of
a combined floating-point multiply-add operation or the bandwidth from the main memory to
a CPU core. In general, a synthetic benchmark must be simple enough to relate the content of
the benchmark code directly to some hardware characteristic of the processor or, in case of
parallel programs, the set of processors involved and the network that connects them.
Because of the complicated nature of computer systems it is not possible, or at least highly
impractical, to extract all the desired knowledge about the system from one program that
covers all of its performance aspects. The consequence is that one strives to put together a
coherent set of programs that each address an aspect of the behaviour of a computer system.
The complete set of programs together should provide insight about the strengths and
weaknesses of a specific system. This makes it easier to compare it with other computers on
these same points. The knowledge thus obtained will make it possible to make some
predictions about the performance that we might expect with full applications beforehand.
This, in turn, can have the effect that we can decide to include or exclude a computer system
in the set of systems we want to consider in procurements and/or it may simplify the other

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 18

tests to be conducted on such candidate systems. So, to summarise the main reasons why
synthetic benchmarks exist:

1. They enable us to discover the strong and weak points of a computer system (and

sometimes even why this is so).
2. They enable us to compare certain performance characteristics of computer systems and

possibly their relative suitability for the tasks we want them to perform.
3. They enable us to decide whether certain systems are of interest to us even without

extensive testing with full applications.
4. They enable us to discriminate between relevant and irrelevant properties of the systems

we want to consider for the tasks we want them to perform.

In all, synthetic benchmarking, when properly conducted, will provide us with general
knowledge about computer systems and their (im)possibilities and it can give us a better
founded decision with regard to systems we plan to select. Also, synthetic benchmarks can
considerably reduce the time and money spent in computer procurements both on the side of
the institution that wants to buy such a system as well as on the side of the candidate vendors.
This aspect should not be underestimated as, especially for the smaller computer vendors, a
complete procurement procedure including a large benchmark can be a huge investment that
might discourage them to get involved, however good their product might be.

5.2.2 Synthetic benchmarks: the what

Having given a rationale for the existence of synthetic benchmarks, we need to define how to
design the programs that measure the desired characteristics and what we expect to learn from
them. Because we restrict ourselves to HPC in the technical/scientific arena we disregard the
many benchmarks that have been designed to measure aspects like graphics performance or
database queries. Rather we concentrate on those that provide information about the speed of
basic operations and fundamental algorithms that are the computational basis for the
applications that ultimately will be executed on the target systems: large HPC systems with a
Theoretical Peak Performance around one Pflop/s or beyond. The Theoretical Peak
Performance (TPP) is the upper bound of the performance of a system measured by the
number of floating-point operations per second that can be attained by it. For a computer X it
can be expressed as:

TPPX = F×Nfp×Nc×P

where F is the clock frequency of the processor core, Nfp is the number of floating-point
results/clock cycle that a core can deliver, Nc is the number of cores per processor, and P is
the number of processors in the system. It is also known as the performance number the
vendor will guarantee never to exceed. In practice the TPP of a system will never be attained.
The main reasons for this are that the number of floating-point results/cycle will normally be
considerably less than what is theoretically possible and, second, in systems where we have
many processors, i.e, the type of systems we are concerned about here, there will generally be
an appreciable communication overhead that degrades the overall performance.

Synthetic benchmarks are directed at exposing the difference between the TPP of a system
and the actual observed performance and especially at what causes this difference. The ratio
between the TPP and the observed performance is called the efficiency of the system.
Unfortunately, the efficiency is not constant for a given system but varies with the type of

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 19

computation being done. A good synthetic benchmark should therefore also be designed such
that they show these differences in efficiency as clearly as possible. A direct consequence of
this behaviour of computer systems is that there is not one performance number that totally
characterises them but rather a spectrum of performance data resulting from the different
computational tests in a benchmark. Another consequence is that ranking of the systems
according to the benchmark results is never straightforward and sometimes not even possible.

So, what should be in a synthetic benchmark to make it at all useful? First, we should try to
design programs that make us understand why certain computations have the efficiency that
we observe. Second, we can identify basic operations and algorithms that are the main
constituents of full applications and therefore have a predictive value with regard to the
applications they are part of. When a certain algorithm performs exceedingly well and it
represents most of the time in the execution of an application it is evident that the application
itself will do well on that system. A well-known example is the set of applications that are
dominated by the solution of dense linear systems. The solution of a dense linear system is, in
turn, dominated by the matrix-matrix multiplication algorithm. On almost all systems this
algorithm can be performed with high efficiency, often close to 90% or even higher. It is
therefore evident that all such applications will perform well on systems that have a high
efficiency for the matrix-matrix multiplication. A good synthetic benchmark will try to cover
the space of fundamental operations and algorithms that appear in all important application
classes and thus may help in explaining, at least in part, what may be expected of the
performance for these application classes.

The basic loss of efficiency at the processor level stems from the huge mismatch between the
speed of the functional units in the processor core and the speed of the memory. The memory
is not capable of providing enough operands to the functional units to keep them constantly
busy and therefore they are in many cases waiting for operands instead of producing results.
To reduce the effect of the slow memory many well-known devices have been added, like
various levels of caches and multi-threading capabilities that hide this so-called memory
latency. This is the reason why it is not sufficient to measure the speed of an operation only
for one fixed data length: adding the elements of two arrays of length N = 6,000 will result in
a totally different speed than when the arrays have a length of 10,000,000 as can be seen in
the following example in table 9:

ci = ai + bi
i = 1,...,N

N = 6,000
(Mflop/s)

N = 10,000,000
 (Mflop/s)

IBM POWER6 767.26 204.76
SiCortex 5832 201.21 96.126

Table 9: Influence of problem size for two processor cores.

For N = 6,000 all operands come from the cache, for N = 10,000,000 the operands must all be
fetched from memory. Note that the performance penalty for the POWER6 processor is more
than a factor 3.5, while it is just over a factor of 2 for the SiCortex (MIPS) processor. This is
mainly due to the much higher clock frequency of the POWER6 processor: 4.7 GHz against
500 MHz for the SiCortex with a corresponding mismatch between the speed of the memory
and the processors. It is therefore evident that one should measure a range of lengths for such
operations when one wants to assess what happens within an application. A single value will
not do.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 20

The influence of the relative speed of the memory and the various levels of cache memory can
be measured in very much detail. A program that is only concerned with this metric is CPU-Z.
It gives detailed bandwidth results for all memory levels as well as latencies, i.e., the time
needed by the cache or memory to react to a memory request at all. A program that yields less
detail but gives bandwidth results for various modes of reading from/writing to the caches is
cachebench. The problem with both programs, however, is that the outcomes are very hard to
relate to actual operations or algorithms. It is therefore preferable to use actually occurring
operations and to measure the bandwidth for these operations directly. This is for instance
done in the STREAMS benchmark [5] for a limited number of cases and in the EuroBen
benchmark [6] for a larger set of operations. From these measurements one can infer in how
far speed of the operations is limited by the bandwidth from the cache or memory.

On the other hand, the benchmark programs must not be too complicated to trace the
performance back to specific system components. Synthetic benchmarks that are problematic
in this respect are the SPEC benchmarks [7] and PERFECT benchmark [8]. The latter is
comprised of so-called “compact applications”, i.e., applications that are reduced to a
minimum in terms of input sets and output sets. It is indicative of the problems of this
benchmark that it has never properly been decided in the run rules when a program had
normally terminated. For instance, in a proposal for the run rules a program was regarded to
have (successfully) terminated execution when the output set was written to disk. The
objection made at the time was that in large systems it might well be possible that the output
set would reside in the disk cache and not on disk and it could depend on the size of the
output set whether one would regard the program as finished or not. The main problem,
however, with both the PERFECT and the SPEC benchmarks is that it is virtually impossible
to understand why a particular component program performs as it does. In this respect we are
in no better position than when one would measure the performance of ones own
application(s): it does not add to our insight but yields performance numbers of which we
cannot say how they will predict the behaviour of a system in other situations. Worse, in case
of the SPEC benchmarks, often not even the individual outcomes are used, but the geometric
mean of all programs in the set. This effectively erases all characteristic behaviour that might
show up in the constituent programs and give us information about the (special) features of
the system under consideration and make it stand out positively or negatively.

There has always been a strong tendency to reduce the performance of a computer system to a
single number. This is very understandable both from the side of the users as well as from the
vendor's side: the users just have to rank the candidate systems according to this metric, while
such a number can be an excellent selling argument for a vendor when it is better than that of
his competitors. It will be clear by now that this type of ranking scheme does not
acknowledge the multi-faceted nature of HPC systems. Despite this widely accepted fact,
these types of single-metric rankings remain popular. Motivations for such a choice are that
other benchmarks are more expensive and/or more complicated and are of limited relevance.
The risk for ending up with a sub-optimal system, especially with HPC systems, is however
very large and should be avoided. On the other hand one has to prove that a well-designed
synthetic benchmark will have sufficient advantages over the simplistic approach to
encourage the relevant parties to adopt it. This means that the synthetic benchmark should
have, whenever possible, the following properties:

1. The programs in the benchmark should not be too low level.
2. The programs in the benchmark should not be too complicated.
3. The programs should expose the properties of the machine in a context that is relevant for

applications on HPC systems.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 21

4. The programs should cover the space of basic operations and algorithms as used in
scientific/technical applications on HPC systems.

5. The installation and execution of the benchmark should be simple and system
independent., i.e., portable.

6. The runtime of the total benchmark set should not be excessive (many hours or days).
7. The run rules and the benchmarking circumstances should be unequivocal.

Property 7 includes the possibility to check in a simple way whether a program has executed
correctly. With the aforementioned properties it is possible to define what, at minimum,
should be incorporated in the set of benchmark programs to satisfy our needs.

5.3 An Outline for a Synthetic Benchmark

We are now in a position to be more concrete about what should appear in a synthetic
benchmark set and how it might be organised. First, we need to identify what basic algorithms
are used in what applications. Furthermore, we must include basic operations, both with
respect to computation and communication to get a hold of the upper/lower bounds on the
speed of these operations. This, in turn, will give us the opportunity to assess whether the
operations that make up the basic algorithms indeed perform as expected, thus providing us
with a consistency check. It should be noted here that we look at the hardware and the
compiler (or library) as a whole: it might well be that another compiler on the same systems
would perform better or worse, dependent on the quality of the code generation. This is
another reason to check both on the basic operations and basic algorithms built from them. So,
let us make an attempt to define what concretely should at least appear in the synthetic
benchmark set and why.

Basic operations: • Constant copy: a(i) i=1,...,n = c,

• Array copy: a(i) i=1,...,n = b(i) i=1,...,n,
• Dyadic operations, like: c i=1,...,n = a i=1,...,n + b i=1,...,n,
• Dot product
• Vector update
• 2-D rotation
• 2nd difference operation
• Low-order recursion
• High-order polynomial evaluation

Basic algorithms: • Matrix-vector multiplication (dense and sparse)
• Solution of a linear system (dense and sparse, the sparse

systems in both a regular and an irregular form)
• Evaluation of eigenvalue problems (dense and sparse)
• MD update kernel
• Fast Fourier Transforms
• Random Number Generation
• Sorting.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 22

Basic I/O patterns: • Data transfer performance
o Variable block sizes
o Access patterns: sequential, strided, random
o Concurrency: shared, individual files

• Metadata performance
o File creation & deletion

Basic communication
patterns:

• Communication latency and bandwidth
o Point-to-point communication: synchronous,

asynchronous, one-sided
o Collective communication: Broadcast, reduce, alltoall

etc.
o Communication patterns: Halo, ring, bisection etc.

• Overlap potential for communication and computation
Table 10: Desirable components represented in a synthetic benchmark set.

The number of basic operations and algorithms listed in table 10 is fairly large and one should
realise that for a particular problem type more than one implementation might be needed. For
instance, for regular, symmetric sparse linear systems stemming from a Finite Difference
scheme a Conjugate Gradient algorithm can be used, however, for a irregular, non-symmetric
system as occurs in Finite Element problems a Krylov method, like GMRES is required.
These methods behave quite differently and should consequently both be present. Multigrid
solvers again are very different from the two methods mentioned before and well might be
included also. On the other hand, one should take care not to try to include each and every
algorithm ever used in the complete HPC application range but rather concentrate on those
that usually take the largest fraction of time in the applications one is interested in.

Where possible, the programs that implement them should preferably be self-checking in
order to see immediately whether they have run correctly or not. Furthermore, the programs
should be run for a range of problem sizes to assess the influence of the caches for (semi-)
numerical operations and algorithms, of buffer size and block size in I/O programs, and of
different communication protocols in communication programs.

To be a fair reflection of what is contained in application codes the synthetic programs should
implement the basic algorithms according to best practices and, when new types of algorithms
emerge, these should replace or extend the programs already in the benchmark. In other
words, the benchmark set has to evolve according to new ways of problem solving in the HPC
application field. In addition, when new languages like UPC, CAF, or other PGAS languages
become main vehicles for implementing applications, one should also include relevant kernels
coded in these languages.

The use of best practices brings some problems with it: when applications are optimised for a
certain HPC platform, it is quite probable that numerical library routines will be used because
they can often be considerably faster than the equivalent code written in one of the standard
high level languages, like Fortran or C(++). The programs in the benchmark therefore must be
able to accommodate the use of such library routines with the consequence that slight
variations of some standard benchmark codes may be required. For instance, programs
implementing dense linear algebra algorithms will hardly be affected, or not at all, because
the calling sequences of the relevant routines (BLAS, LAPACK) are accepted to such a
degree that they are present for virtually any platform. Unfortunately, this is not true for FFTs
and Random Number Generation for which there are no generally accepted routine interfaces
that are identical across all existing HPC platforms.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 23

Having stated the desirable properties of a good synthetic benchmark set, we are now in a
position to review a number of synthetic benchmarks that exist at this moment and see
whether they meet our requirements.

5.4 Review of some Synthetic Benchmarks

Presently, many synthetic benchmarks are around. Not all of these try to address all the areas
that are of interest: computation, communication, and I/O. In fact, for this last area there are
hardly any useful and/or well accepted synthetic benchmarks and this should be a main
concern in this project. For communication on the other hand there are a few benchmarks
around that show a considerable overlap. We will discuss some benchmarks below in order to
assess whether they can be used as a starting point or a constituent for a joint synthetic
benchmark set.

5.4.1 Computationally oriented benchmarks

The benchmarks in this subsection concentrate on the computational aspects. This is not to
say that no communication is performed, but rather that it is not regarded as the topic to be
benchmarked. In this context it is just a vehicle to enable the correct execution of the
benchmark codes.

• ASC Sequoia benchmarks [9] A very disparate set of benchmark codes. Mostly full,

large applications. It contains codes in Fortran, C/C++, Python and a variety on
communication mechanisms including OpenMP, MPI, hybrid OpenMP/MPI, and
Pthreads. Not all codes seem to be reliably or optimally implemented. The majority of
programs do not suit our purposes because of their complexity.

• LINPACK (HPL) [10] Solves a dense linear equation of an arbitrary order. It is useful to
obtain an upperbound on the performance of a system but not for anything else. In that
sense it is very similar to the TPP of the system and the correlation between both values is
generally over 95%.

• NAS Parallel benchmarks (NPB) [11] These benchmarks are primarily computationally
oriented although they address parallel computers. NAS stands for Numerical
Aerodynamic Simulation and the programs in the benchmark have therefore a strong
relation to this field. There is an extensive description of the NPB that can serve as a
paper-and-pencil version of the benchmark together with rules for allowable extensions
and libaries. Also a reference implementation is available that can serve as a basis for
running the benchmark. When reporting the results one should describe in detail what
modifications have been applied. The benchmark consists of 5 so-called kernels, i.e.,
programs consisting only of an important part of an application, instead of a complete
application and three types of linear solver programs. For each of the kernels and
complete programs input sets of increasing size are prescribed named A, B and C. This
corresponds to the requirement for a range of input sizes as formulated earlier as a
necessary property for a synthetic benchmark. Recently the so-called multi-zone version
of a subset of the NPB benchmarks has been published: the LU, BT and SP on collections
of loosely coupled discretization meshes. Parallelisation over the meshes is implemented
in MPI: parallelism within the meshes is implemented in OpenMP. The number of
meshes (and therefore the scalability of the MPI parallelism) is fixed for each dataset size.
For two of the applications, all the meshes are the same size. For the third (BT), the

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 24

meshes are of different sizes, which results in a difficult load balancing problem.
Unfortunately, the programs in the NPB are too complicated to relate them well to
machine properties. They may have their use in a restricted part of the CFD application
area but the mapping of the NPB results to actual CFD applications will generally be
fairly speculative. It is therefore hardly fit to serve as a synthetic benchmark for our
purposes.

• PERFECT Set of 13 compact applications. Development is frozen. Not useful for our
purposes as the interpretation of the results in relation to other applications is next to
impossible.

• SPEC There is a large variety of benchmarks from the SPEC organisation ranging from a
Java benchmark to a database benchmark. For the HPC community the SPEC CFP 2006
floating-point benchmark is the most relevant. The separate communication oriented
SPEC MPI benchmark is discussed below. SPEC CFP 2006 consists of 17 codes in
Fortran, C(++) or a combination of them. All are complete and sometimes quite large
applications ranging from QCD to weather codes, each code with its own fixed input set.
As such, this benchmark is not fit for our purposes: the codes are too complex to extract
behaviour information from the programs that allows for general assertions about machine
performance in other areas. Of course one or more of the programs may be in the
application areas one is interested in but the fixed input sets will make predictions for
one's own purposes difficult.

• STREAM This benchmark measures the bandwidth from (cache)memory to the CPU for
four cases: vector copy, vector add, vector scale, and a linked triad (ci = ai + s×bi , I =
1,...,N). The benchmark supports OpenMP parallelisation, enabling aggregate memory
bandwidth measurements on multicore systems. There is also a version that extends the
tests to multiple processors by means of MPI. As such STREAM has been included in the
HPCC benchmark (see section 5.4.3). Similar measurements are performed in the
EuroBen benchmark, however, with a larger range of data lengths. A very useful test for
obtaining bounds on the possible performance of basic operations.

• STREAM2 [12] An extended version of the STREAM benchmark which evaluates
memory bandwidth as a function of vector length providing information on performance
on all levels of the memory hierarchy. However STREAM2 lacks the OpenMP and MPI
parallelisation support found in STREAM.

• P-SNAP [13] A benchmark measuring operating system interference or noise. In very
large scale parallel systems this jitter can have a cascade effect which decreases both the
predictability of runtimes as well as the overall performance. The benchmark executes a
calibrated spin loop in each MPI task and records the actual time taken to execute each
iteration of the loop.

• Selfish [14] Another OS Jitter measurement benchmark which measures the amount of
interrupts detected over a time interval.

5.4.2 Communication oriented benchmarks

The benchmarks in this subsection focus on measuring the performance of the communication
subsystem. The focus is on MPI benchmarks as it is by far the most popular parallelisation
scheme in HPC today and will likely retain its position for years to come. However, as the
number of cores per node is constantly increasing there is growing interest in the hybrid
OpenMP+MPI programming model. Thus OpenMP performance should also be measured.

• EPCC OpenMP Microbenchmarks [15] It measures the overheads associated with

various OpenMP directives. It compares the execution time of a code fragment executed
in parallel and compares this to a reference sequential execution time. Three classes of

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 25

overhead are measured: synchronisation, loop scheduling and creating/copying arrays.
Fortran and C versions are available. The metric reported is overhead time associated with
a directive. This benchmark can be very useful in interpreting the results of other basic
benchmarks where OpenMP overhead is encountered.

• Intel MPI Benchmark [16] Very extensive benchmark of essential MPI functions. Point-
to-point as well as collective operations and barrier synchronisation are assessed. Also a
collection of MPI-IO functions are included. Very useful for obtaining bounds on the
communication performance of a system.

• SPEC MPI [17] The SPEC MPI2007 benchmark contains 13 applications over a large
range of application areas. The same problems as for the SPECfp 2006 benchmark
programs hold: the set of programs is too complicated to draw sensible conclusions from,
except when an application from the benchmark matches particularly well with one of
one's own applications. However, drawing general conclusions about a machine by means
of this benchmark is not possible.

• SKaMPI [18] A comprehensive set of MPI benchmarks, similar to the Intel MPI
Benchmark suite. SKaMPI provides a scripting interface which can be used to extend its
functionality by adding measurements for additional MPI routines and custom
communication patterns.

• Sandia SMB [19] A set of benchmarks evaluating message throughput and host processor
overhead of high-performance network interfaces. Currently only the host processor
overhead microbenchmark is available. The benchmark measures a system’s ability to
concurrently perform communication and computation when using the asynchronous
MPI_Isend and MPI_Irecv communication routines. This can affect significantly the
performance of programs designed to exploit overlapping communication and
computation.

5.4.3 Combined benchmarks

Combined benchmarks are collections of various subbenchmarks measuring different aspects
of the system. They simplify comprehensive system evaluations by providing a uniform
interface for compilation and execution of the subbenchmarks as well as usually providing
commonly formatted output.

• EuroBen The EuroBen benchmark set contains three subsets addressing single-CPU,

OpenMP, and MPI performance. The subsets themselves are divided in a “module 1” and
“module 2”, respectively. Module one measures the performance of basic operations and
intrinsic mathematical functions while module 2 measures the performance of basic
algorithms, like the solution of dense and sparse linear systems, FFTs, random number
generation, etc. Although not complete with respect to basic algorithms, it gives
performance information about the building blocks of a wide range of application areas.
As such it would fit in the criteria for a good synthetic benchmark. The MPI subset
contains measurements of basic MPI communication functions, be it less extensive than
the Sandia SMB.

• HPCC [20] The HPCC benchmark was expressly put together for finding out important
characteristics of large HPC systems. It includes other benchmarks already discussed:
HPL and STREAM to assess the maximum attainable floating-point speed for dense linear
systems, including the communication, and the processor-memory bandwidth,
respectively. Furthermore, a matrix-matrix mulitiplication which correlates very highly
HPL and therefore does not provide much extra information, an FFT program and a

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 26

parallel matrix transposition. The latter program is again strongly related to the FFT
outcome as in a parallel FFT a matrix transposition is the most important factor in the
interprocessor communication. An interesting feature of the FFT implementation is that it
is hybrid: locally OpenMP can be used while the interprocessor communication is done
with MPI. For instance, a parallel matrix transposition is included in both the FFT and the
Wavelet Transformation programs in EuroBen. In addition, there is a program performing
random memory updates to obtain information about the worst case memory bandwidth
and a program that tests a variety of MPI communication patterns, similar but not identical
to those in EuroBen and IMB.

• PARKBENCH [21] In principle PARKBENCH adhered to the same ideas that are the
basis of the EuroBen benchmark: it should be hierarchical, starting with basic operations
and increase the complexity of the codes stepwise with basic algorithms and possibly
beyond. In PARKBENCH the hierarchy consists of low-level benchmarks, kernels, and
compact applications. The low-level and part of the kernel benchmark programs are very
similar to a part of the EuroBen benchmarks, module 1 and 2, respectively. However, the
programs not concerned with dense linear algebra are in fact the NPB kernels that address
the topics PARKBENCH wants to cover: e.g., the PARKBENCH FFT kernel benchmark
is in fact the NPB FT code. As already remarked before, the NAS Parallel Benchmark
codes are too complex to draw consistent conclusions from and are therefore of less
interest when building a reliable synthetic benchmark. The same remarks apply to the
Compact Application part of PARKBENCH. It consists for the larger part of the CFD
codes in the NPB and adds the shallow-water code PSTSWM which is also a component
of the PERFECT benchmark (see above). PARKBENCH, version 2.1 is still available
from netlib but development and maintenance are frozen since 1996.

5.4.4 IO Benchmarks

IO Benchmarks measure the performance of the disk subsystem. The focus should be on
measuring both the predominant POSIX and emerging MPI-IO interfaces separately as their
performance does not necessarily correlate with each other.

• IOR [22] The IOR benchmark is designed to measure the parallel read and write access

performance of various parallel I/O interfaces in HPC systems. Access patterns
(sequential vs. random), file size, block size, and concurrency (one file per process vs.
shared file). Currently POSIX, MPI-IO and HDF5 interfaces are supported, enabling
performance comparisons between different I/O interfaces on a specific platform. This is
especially pertinent for evaluating the quality of MPI-IO -implementations, which seems
to vary.

• IOZone [23] The IOZone benchmark is a widely used tool for assessing a variety of
POSIX file operations. IOZone is useful for assessing serial and parallel performance
within a single SMP node using threads. However, the ssh/rsh-based multi-client mode for
running in parallel on a distributed memory system is not as scalable and portable as MPI-
based parallelisation.

• Bonnie++ [24] A filesystem benchmark similar to IOZone. In addition to bandwidth tests,
it offers a set of tests to evaluate metadata operations such as file creation, deletion and
file status (fstat) lookups.

• B_eff_io [25] A benchmark which aims at producing a characteristic average number for
the amount of the achievable I/O bandwidth on a system using a number of different
access patterns found in parallel applications.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 27

5.5 Interpretation of results

To obtain results that are comparable across different systems, a set of run rules is required
that regulates the way the benchmark codes should be executed. Most of these rules are
obvious but to forgo inconsistencies in the results we should explicitly state them.
Furthermore, we cannot ignore the existence and increasing occurrence of computational
accelerators. We may expect them to be present in some form in the Pflop/s-prototype
systems that PRACE is targeting and it is to be expected that at least some of the codes in the
set of synthetic benchmarks could be run on such accelerator hardware without excessive
effort to modify them for the particular accelerators at hand. This, however, also necessitates
precise rules about what code modifications are acceptable.
In the following section we assume that for all programs in the benchmark set, a generic
program code is available, the collection of which we call the base implementation of the
benchmark.

5.5.1 Run rules

Standard CPU configurations

With regard to systems with general CPUs one should at least perform an “as-is” benchmark
run. With “as-is” is meant that no modifications in the base implementation is allowed other
than the minimum to obtain a correct result. When indeed such modifications are required,
they should be reported. Furthermore, the following testing circumstances for each run should
be provided:

a) System type
b) Number of processors, cores/processor, and processors/node (if applicable)
c) Amount of memory/processor or memory/node (if applicable)
d) Compiler version
e) Compiler optimisation flags
f) Libraries used
g) Operating system version
h) Date and time of run

Both compiler flags and libraries should be generally available to the HPC community, i.e.,
they may not be special flags/versions only used for the benchmark but be accessible to
anyone who wishes to reproduce the benchmark run. It is, however, permitted to exchange
benchmark code in the programs by calls to optimised libraries performing the same
algorithms. Calling sequences and parameter types for the library versions should, however,
be identical.

In addition to an as-is run, optimised runs could be performed. Here the same rules as given
above hold except for the fact that one may modify the code for higher performance. This
does not extend to altering the algorithms that are used in the codes. Even when the
computational result would be the same one should adhere to the original algorithm. For
instance, it is not allowed to use Strassen's algorithm for matrix-matrix multiplication when
the original code contains the usual O(n3) multiplication algorithm. Merely a more efficient
implementation may be attempted. In case of an optimised run the same information as for as-
is runs should be provided. In addition, the code modifications should be detailed with respect
to the base implementation.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 28

Of course it is not allowed to take advantage of the knowledge of the outcome of a program,
i.e. skip (part of) the computations if this would be possible. Although this is conceivably not
the case in the as-is runs it might be possible in the optimised runs.

For all programs that are executed the complete output should be available. If a program did
not execute correctly or not at all, this should be reported.

Accelerator-enhanced configurations

It is highly probable that the computational accelerators in their host systems may not be able
to run a full benchmark set. They are mostly added to accelerate a limited set of algorithms
extremely well while they are not accommodated to or even unable to perform algorithms
outside this set. It is also clear that in most cases it will not be possible to use the standard
source code as given in the base implementation. Depending on the type of accelerator and
the libraries that are available for it, it may be necessary to insert variable types and library
calls that enable the execution of the algorithms of choice. For some accelerators BLAS,
LAPACK, and FFT libraries are available and in this case the modifications need not be
extensive. In other cases it may be necessary to include routine calls for the transportation of
data to/from the accelerator from/to the host system perhaps with double- or multi-buffering
for efficiency's sake. As we can consider the execution of programs from the benchmark set
on accelerators not as as-is runs but as optimised runs, this is in principle no problem as long
as the program's semantics not are violated. So, the same rules as for optimised runs on
standard-CPU systems are valid, be it that the description of code modifications and the
supporting libraries will in general be much more extensive.

As is remarked before, it is in the nature of the accelerators that not all programs in the
benchmark set can be executed. Although it may be possible in principle to port some
programs to an accelerator, it may demand unreasonable efforts to do so. Still, whenever
possible, it is highly commendable as it also can give us valuable information about the
limitations of certain accelerators for the programs that have been ported. For instance, the
lack of supporting hardware for reduction operations could give information about what
algorithms not to implement on the accelerator that misses such a facility and it may help in
identifying unrealistic claims from accelerator vendors.

5.5.2 Benchmark results

Benchmark output
There are essentially three metrics that are useful for assessing the performance of a computer
system: the wallclock time, the number of floating-point operations per second (flop/s) for
computational-oriented programs, and bytes per second (B/s) for communication and I/O-
oriented programs. Of these three the wallclock time is the fundamental metric on which all
other metrics depend. From the three metrics mentioned additional ones may be derived: e.g.,
instructions/cycle for code efficiency or bytes per flop (B/flop) for system balance. This
means that the programs in the synthetic benchmark set at least should have wallclock time
and flop/s or B/s as output, depending on the metric of interest. The output thus becomes a
component of the performance profile for the system that is being benchmarked. The
performance profile being the set of benchmark results that serve as a basis for the
conclusions about the strong and weak points of a computer system. The results of the
individual programs can be used for internal comparison, like the fraction of the theoretical
peak performance that can be attained, or external, comparing it with the results from other

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 29

systems for the program at hand. A database with the results for the systems thus measured
can be of great help in the interpretation because of trends for various types of architectures
that might be discerned. The basic metrics in the database can be combined to obtain the
derived metrics one might be interested in.

Correctness checks
The programs need to have internal correctness checks to be sure that the correct amount of
data has been processed and has yielded the correct results. Obviously, only programs that
produce correct results will be admissible to the database of results.

5.6 Conclusions and Future Work

From the previous sections it will be clear that a PRACE synthetic benchmark set (PRACE-
SBM) should consist of programs that targets four system properties:

• Computation
• Memory bandwidth
• Interprocessor communication
• I/O

The PRACE-SBM can partly be composed from existing benchmarks that already suit our
purpose of learning about the system properties and building the performance profile.
However, not all issues required for a complete picture are addressed with equal quality or at
all. To streamline compiling, execution and interpretation of the results, the benchmark
components will be integrated into the PRACE benchmark suite. However the current version
of the JuBE framework, which is the suite is based on, is designed mainly for running
application benchmarks which generate a small number of metrics (usually just the wall clock
run time is sufficient). On the other hand a synthetic benchmark such as Euroben may
generate hundreds of individual results which should be processed and stored.

This leads us to the following recommendations, which also defines a work program for
components still missing and how to go about adaptability and maintainability of versions.

1. Compose an initial PRACE-SBM from components from existing benchmarks with

acceptable relevance and quality.
2. Integrate the PRACE-SBM components into the PRACE benchmark framework (JuBE) in

collaboration with the benchmark integration subtask.
3. Collaborate with JuBE developers in improving the framework to better suit PRACE-

SBM.
4. Fill in the blanks that have not yet have been addressed in the initial benchmark set.
5. Monitor the application space in order to keep up with current/new algorithmic practices

and develop new programs that implement them as kernels. This also means that obsolete
kernels should be removed as the programs should reflect the state-of-the art in HPC
computation, communication and I/O practices.

For a first practical approximation for the PRACE-SBM we will start with merging (part of)
the EuroBen and HPCC combined benchmarks, the EPCC OpenMP benchmark, the IOR and
Bonnie++ I/O benchmarks, the STREAM2 and P-SNAP benchmarks, and the SKaMPI and
SMB MPI benchmarks.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 30

Future development of the PRACE-SBM benchmark components should focus on the
following:
• Computation

o Implement sparse eigenvalue, multi-grid, and molecular dynamics kernel
programs for single-CPU, OpenMP, and MPI versions.

• Memory bandwidth
o Implement a memory bandwidth benchmark combining the OpenMP

parallelisation functionality of STREAM and the support for variable vector
length of STREAM2.

• Interprocessor communication
o Implement benchmarks for testing MPI+OpenMP hybrid programs.

• I/O
o Implement an MPI-parallelised test for metadata performance.

The result of this work will be reported in D6.3.2.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 31

6 Performance Analysis Tools

6.1 Introduction

In High Performance Computing, application performance is the ultimate goal and test for the
success of the combination of hardware architecture, system software and application code. In
order to analyse performance, tools are used to identify and characterise performance
bottlenecks encountered with existing and proposed algorithms. This section will build on our
experience in the use of current tools on existing systems. It is unlikely that Performance
Analysis Tools (PATs) will scale without modification to ~10,000 or more processes, i.e. to
be able to assess Pflop/s performance.

For the remainder of this section, we will use the following descriptions for monitoring,
profiling and tracing:

• Monitoring: Performance data collection via hardware counters (the number of executed

floating point instructions, the number of cache misses statistics on branch instructions,
etc.). This also covers application memory usage and application I/O activity;

• Profiling and tracing: Profiling collects aggregated information about certain events,
whereas tracing records information about individual events. Events are function calls,
communication or other activities. Profiling typically yields total runtime per function,
number of calls and a call tree.Tracing allows one to investigate the dynamic behavior of a
single function over many iterations. Profiling and tracing often require instrumentation
(modification) of the target application. This can be done by using compiler flags, by
either manual or automated source level modification, by directly instrumenting a binary
executable or by using instrumented runtime libraries.

Since Performance Analysis tools are very diverse by nature, there is no uniform way to
describe or assess them. In the following sections we will describe a number of tools or
toolkits. To exemplify the tools we standardize on the well-known Linpack benchmark (HPL)
that is used for the TOP500 list. The rationale for choosing HPL is the portability to all
platforms and its working is well understood. Since the main purpose is exemplification, we
did not try to fully optimise or even scale the HPL run.

This section does not intend to be an exhaustive market survey of all available PATs. Our
selection approach has been to initially evaluate a mix of PATs: from hardware vendors, from
software vendors and Open Source (typically developed at universities and/or research
institutes). We have mapped these PATs to available hardware architectures and to available
expertise, which has led to the set of investigated PATs in the following subsections. With
respect to future work in this subtask of task 6.3, PATS will be heavily used in tasks 6.4 and
6.5, leading to more details for 6.3 as well. Based on these experiences, we expect to be able
to really feed into the development cycles of hardware and software vendors, and in the Open
Source development of PATs.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 32

6.2 Allinea Optimisation and Profiling Tool (OPT)

6.2.1 Introduction

Developer
Allinea Software, more information in [26].

6.2.2 Availability

Commercial product, license required, free 30 day trial available.

6.2.3 Supported Platforms

Allinea OPT is available for almost every flavour of Linux, for Itanium, Opteron, EM64T,
Xeon, PowerPC and the IBM Cell BE. BlueGene/P support has recently been added. A
complete list of the supported platforms is available from the website.

6.2.4 Assessment Environment

• IBM BG/P

A one-rack (4096 cores) IBM BlueGene/P system at STFC Daresbury Laboratory (4096
cores) has been used as the platform for the evaluation.

• Allinea OPT v1.4.2
Recent updates have added support for IBM BlueGene/P, SGI Altix and IBM Cell BE
platforms.

• Linpack
The open-source package Linpack is a numerical solver for a dense system of linear
equations.

Description of the tool
OPT is a development tool for improving the performance of MPI and scalar applications. It
gathers profiling information by instrumenting the MPI communication layer. OPT is a grid-
enabled application that uses the web-service protocol SOAP to allow profiling users to
access OPT remotely and securely with a minimal amount of communication bandwidth.
OPT’s graphical interface uses remote (or local) OPT servers to launch applications, store
performance data and analyse user applications.

Design Features
• Allinea OPT has been designed for use on large-scale parallel systems.
• Supported languages: Fortran, C and C++.
• Easy generation of different data formats.
• Grid capable. This allows users to access remote profiling data almost as rapidly as a local

server.
• Multiple runs can be compared to assess code scalability.
• Interoperable with other profiling tools e.g. PAPI hardware counters or gprof.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 33

• Subsets of processors and time intervals of interest can easily be selected in order to keep
levels of profiling data manageable.

Profiling Methodology
OPT consists of three components (which can reside on separate machines):

1. A library that is linked to your application code and records performance data.
2. A database component (the profiling server) to store trace data, and combines them into

profiling data. This consists of a PostgreSQL Database.
3. A graphical user interface that is able to interpret both the trace and the profiling data and

displays it in user-specified formats.

Once that the OPT server software and the OPT profiling library is installed on the system (an
installation GUI is provided for this) there are three separate stages involved in profiling
users’ application codes. Firstly, the application source code is instrumented by wrapping the
existing MPI calls. Either the whole code can be profiled, in which case no changes to the
source code are required, or the application can be edited to use the OPT APIs in order to
undertake selective profiling or add profiling extra features. On the IBM BG/P platform the
following additions to the compile/link line were required:

• The OPT header-file include directory
• The OPT static library directory, OPT and OPT-support libraries
• The GNU C++ stdc++ library
• The dynamic-linking library

Instrumented executables can be run in exactly the same way as ‘normal’ executables, either
interactively or in batch mode. Jobs can be launched either from the command line or the OPT
GUI. During execution profiling data is collected in the profiling database.

Once the job has completed the MPI profiling data can be viewed in several different formats.
A selection of these views are summarized briefly here:

Timeline View
This is a chronological display of the users program. The profiling information from each
processor is listed as a separate line and within each line the coloured boxes represent MPI
communications or other MPI function calls. Areas of interest in the timeline can be navigated
via zoom and mouse drag or time intervals can be entered manually. Communication lines
representing messages can also be toggled on/off. Individual message occurrences can also be
highlighted and detailed performance data can be obtained (see figure 5). The timeline view
can be useful for highlighting asynchronous behaviour or load imbalances between
processors. The timeline is best when we consider only a small section of the actual run time
of a program – so long as this section is representative of overall performance.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 34

Figure 5: Screenshot of timeline view of OPT Linpack run on IBM BG/P.

Figure 5 shows an occurrence of MPI_Send from process 4 to process 5, which has been
highlighted for detailed analysis.

Call Graph View
This view allows users to determine how MPI functions were called and to discover the
source of an MPI function call. This enables the user to track problems in balance, raw or
cumulative resource usage. gprof data can also be viewed from this display.

Histogram View
This view arranges metric values from processes into buckets and gives a view of selected
measurements by plotting a histogram (figure 6). By viewing the data in this format users can
easily identify load imbalances between selected processors.

Message Profile View
The Message Profile view provides a summary view of point-to-point communications
between different processors. The information is provided in the form of a grid (figure 7).
Metrics such as bytes transferred, number of mpi calls and time spent in mpi communications
can be selected. The number of bytes communicated between processors is the displayed
metric.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 35

Figure 6: Screenshot of histogram view of OPT Linpack run on IBM BG/P.

Figure 7: Screenshot of Message Profile view of OPT Linpack on IBM BG/P.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 36

Evaluation

Advantages

• A highly detailed analysis of communication can be obtained, right down to individual
messages between processors;

• Load imbalances between processors can be identified very easily;
• The chronological timeline views allow users to focus on areas of interest;
• Several options available in the user interface for filtering/selecting both

communication routines and parameters of interest;
• Jobs can be run, traced and viewed all from within a single graphical user interface;
• The OPT function calls can be used to stop and start logging where required. This

technique can mitigate some of the performance disadvantages listed below;
• The documentation is very detailed and specifies installation procedures for several

HPC platforms, including the IBM BG/P;
• Allinea customer support was very responsive to queries.

Disadvantages

• Logging the communications can be slow and heavily impacted on the performance of
the Linpack benchmark code. The reported speed of Linpack dropped from around 6
Gflop/s to around 1 Gflop/s;

• The GUI becomes less responsive when communications events increase (e.g. with
larger processor sets);

• The setup is relatively complicated. For example the user must install a PostgreSQL
database server on the target platform. However this is usually bundled with the OPT
software and installation on IBM BG/P was relatively straightforward;

• The tracefiles can become very large and loading these into the GUI becomes time
consuming. This even became a problem for 16 processors of the HPL benchmark
lasting less than a minute;

• There is no OpenMP or mixed-mode support;
• OPT profiles only MPI communications routines, not computational routines.

However the tool can be combined with gprof and PAPI to provide such information.

Future work
More details and experience need to be gained when scaling up to many cores. This will be
done by applying Allinea OPT to the Helium benchmark code on IBM BG/P.

6.3 CEPBA-Tools: Paraver & Dimemas

6.3.1 Introduction

The CEPBA-Tools environment for performance analysis is a set of tools being developed
and maintained by BSC [27]. Two major tools constitute the core of the environment: Paraver
and Dimemas.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 37

Paraver is a flexible browser for traces. It can display timelines (with very scalable display
mechanisms) of a wide variety of metrics (activity, hardware counter derived metrics,
communication bandwidths,…). It also provides detailed statistics (averages, histograms) of
those metrics for any desired interval of the trace. Paraver comes along with MPItrace, the
instrumentation package that generates traces for MPI + OpenMP parallel programs.

Dimemas is a coarse grain simulator to estimate the impact on the performance of MPI
applications of parameters such as network latency, bandwidth, contention, processor speed,
etc. It interoperates with Paraver (can make the prediction starting from a Paraver trace of a
real run) and generates Paraver traces of what would be the behavior under the target system
characteristics.

6.3.2 Availability

Paraver and Dimemas along with the trace generation and handling utilities are distributed in
binary form. BSC is preparing an Open Source Distribution in a near future.

6.3.3 Supported Platforms

Versions of the instrumentation libraries to generate traces are available on the following
platforms: Linux-x86/AMD/PPC clusters, AIX-PWR4/PWR5, Cell, BG/L, Altix, SX8,
CRAY XT3/XT4.

Paraver and Dimemas as such run on standard Unix/Linux machines. This includes servers
and laptops. A typical way of operation is to obtain the trace on a parallel machine. A normal
trace analysis with Paraver would require the machine to have at least 1GB of memory.

6.3.4 Scalability

The main limitation in the Paraver analysis is the trace size. Paraver can easily handle traces
of up to 200MB on a standard laptop. Above this size, response times may get too large.
Different techniques have been developed to summarize traces of tens of GB such that the
resulting traces can be visualized with Paraver.

Non linear rendering techniques included in Paraver result in the possibility to visualize traces
with a large number of processors.

As an example of the above techniques, figure 5 shows a timeline of 10,000 cores running
Linpack for 1,700 seconds. The three views of the same region of the trace show the duration
of the dgemms (left), their IPC (center) and their L1 misses (right). We can see the extreme
precision of the analysis, showing for example differences in IPC of less than 3%. It is also
possible to identify 4 processes (one node) out of the 10,000 that showed slightly higher L1
misses than the rest.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 38

Figure 8: Linpack@MareNostrum, 10k cores x 1700 seconds.

6.3.5 Paraver Details

Methodology
A normal Paraver analysis consists of several phases:

• Obtaining the original trace
• Obtain representative subtraces to be visualized with Paraver.
• Detailed analysis with paraver

Tracing
Paraver comes along with the MPItrace instrumentation package. The basic mechanism to
inject probes relies on the LD_PRELOAD environment variable. MPItrace handles pure MPI
as well as MPI+OpenMP programs. Support for Pthreads is also available.

Normal production binaries can thus be instrumented. In order to instrument a run it is only
necessary to modify the mpirun invocation in the submission script by calling a trace script in
front of the user application. The actual instrumentation is controlled by an xml file where the
analyst can specify the hardware counters, level of detail in the tracing, how to handle the
intermediate files, etc. Both the trace script and the control xml are provided with the
distribution.

MPITrace generates one .mpit file per process. A merger utility is provided to match and
merge the different files into a single one.

Subtraces
When starting Paraver and trying to load a file larger than what it can properly handle for
visualization Paraver will offer several possibilities to compute some preliminary statistics on
the trace and manipulate it to reduce its size. This includes the possibility to filter it.
Typically, the process consists of generating a summarized trace that spans all the duration of
the original one but where only a subset of the records is included. An xml file is used to

Dgemm
 IPC

2.95
2.85 Dgemm

L1 miss ratio

0.8
0.7 Dgemm

duration

11.8 s
10 s

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 39

control how to perform the filtering. Typically one would discard all communication records
and just keep computation records of sufficient duration.

This summarized trace can be loaded with Paraver and its periodical structure identified. A
utility lets the analyst specify on this trace which region of the original file seems to be a
relevant section (i.e. a couple of periods) and thus generate a fully detailed trace but only for
that interval.

This process is typically performed with Paraver installed on the parallel machine where the
trace was obtained. The summarized traces can then be copied to a laptop where the analysis
can be done locally.

Analysis
Once a representative trace is obtained it is possible to perform extremely detailed analyses.
These can be either visualization of how performance metrics (duration, IPC, bandwidth,….)
evolve with time or the corresponding profiles (MPI calls, User functions) or histograms
(duration, hardware counts, derived metrics,…). Each such view pops up when loading a
configuration file previously saved by an expert.

Assessment
The tool is extremely powerful and in the hands of an expert can help identifying or
pinpointing the performance problems in an application. The great flexibility in terms of
generating the displayed metric offers the possibility to perform very precise measurements.
The possibility to generate histograms of any such metric and to go from there to the timeline
is a very powerful mechanism to identify regions of specific behaviour. Although the tool has
a long learning curve, it proves very useful in cooperative analyses, where an expert analyst
presents her observations to an application developer and jointly discuss on the observed
behaviour.

Although being possible to analyse very large runs on large configurations, the process of
trace generation and initial handling is cumbersome. Traces of several tens of GB can be
handled if the target machine is large and has storage enough, but the time spent in the
merging and sub-trace selection process, can be a nuisance.

Once the appropriate sub-trace is available, the initial views can help understand the general
behaviour. A typical observation is that the GUI has too many windows and several clicks on
different windows have to be done to achieve a given effect. On the other side, the possibility
of loading several traces and copying time scales form one to another provides a very natural
way to study the scalability of applications.

Even if it is possible to dig down into possible causes of performance problems, there is no
standard methodology for a novice user that just provides a basic general description of the
behaviour. It is easy for a user to get lost with so many possible views and histograms.
Sometimes the doubt arises of what is exactly measured by a configuration file.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 40

6.3.6 Dimemas Details

Methodology
A normal Dimemas analysis would have the following steps:

• Convert a Paraver trace to Dimemas trace
• Validate the Dimemas simulation
• Perform parametric studies

Trace conversion
The trace that we have been analysing in the previous Paraver session can be converted to a
Dimemas trace with the prv2trf tool provided with the environment. It is also possible to
directly obtain a Dimemas trace form an instrumented run of the application.

Validation
A Dimemas simulation is controlled by a .cfg file. The dimemas-java utility provides a GUI to
create one such control file. It contains a description of the target machine, including number
of processors per node, latency and bandwidth of the network, level of contention, etc.
Paraver performs the simulation reporting the predicted execution time for the specified trace
on the target architecture. It also can generate a Paraver trace with the detailed timing of the
predicted behavior.

A first recommended study is to simulate the converted trace on a target machine with the
nominal parameters of the actual machine where the trace was obtained. This simulation will
typically generate a trace quite similar to the original Paraver one. By loading them in Paraver
we can compare them.

Parametric sweep
By performing different simulations varying latency, Bandwidth or contention level we can
estimate their impact on the application execution time. By looking at the generated Paraver
predictions we can identify the impact of those factors and whether it is uniform along the
application or certain parts are more sensitive to one or the other. This type of analysis gives
immediate answers to typical questions by developers such as “should I try to pack data and
generate less but larger messages?”, or “should I use asynchronous communications?”, or
“…...”

Assessment
The tool provides very good perception of the behavior of the application and how sensitive it
is to communication. It is a great complement to the original analysis of Paraver in order to
identify the main issues to address in the optimisation of a code.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 41

6.3.7 Future Developments

Current developments try to address some of the issues that should reduce the time spent by
the user on analyses and to increase the semantic content of the information provided by the
tools. On the Paraver side this includes:

• Automatic analysis: algorithmic work has already been done in areas of time analysis and

clustering techniques that should now be integrated in the tool. The time analysis will ease
the process to generate representative subtraces by automatically identifying the periodic
structure of the trace. To further identify structure in the trace we are applying clustering
techniques to hardware counter information. These techniques can be used to extrapolate
hardware counters and to apply CPI stack models that give a high level identification of
the bottlenecks of the computation phases.

• Integration of sampling techniques with tracing: Sampling techniques are used in standard
profiles. Some tracing tools also use sampling, but we do believe that the potential of
mixing both techniques is much higher than what it is currently done. We are developing
techniques to obtain extremely detailed information of the behaviour of a program along
time without having to incur very high overheads.

• Methodology and training: we have to develop a set of configuration files to guide a
novice user in the first analyses. These metrics and models should present an abstract view
of the performance of an application. It should be possible for the automatic environment
to directly present these views and statistics to the user.

• Online analysis: the techniques we have developed for the offline trace analysis should be
implementable in an online run time analysis. We are currently implementing preliminary
prototypes of such functionality based on MRNet.

Regarding Dimemas we are developing multiscale prediction techniques that allow us to
consider detailed instruction simulator and other prediction techniques for precise estimation
of the impact of processor architecture on the sequential computation burst between MPI calls

Further, BSC is preparing an Open Source Distribution of the CEPBA-Tools environment.
This should allow for users with specific needs to implement the features they require. Given
the huge flexibility of the visualizer we envisage that the major usefulness would be at the
level of tracing packages in order to emit the specific information into the tracefile.

6.4 Cray Performance Analysis Tools

6.4.1 Introduction

In the 1970’s and 1980’s, Cray Research Inc. HPC systems (“supercomputers”) represented a
very large market share. Engineers at Cray realised that designing and developing fast
hardware was important, but also that the notion on how efficient this hardware was used, and
consequently improving efficiency, was important. The originals of Cray Performance
Analysis Tools (CrayPat) go back to this period. This section covers the current versions of
these tools (v4.3), which we have assessed on the Cray XT5 system at CSC (which represents
one of the prototype architectures within PRACE). CrayPat is owned and developed by Cray
Inc. [28].

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 42

6.4.2 CrayPat Details

CrayPat provides access to a variety of experiments and reports that can indicate how a
program is behaving during execution and where possible performance bottlenecks may lie.
CrayPat consists of five major components, of which all but Apprentice2 are command line
based:

• pat_build -- used to instrument the program to be analysed.
• pat_report -- a report generator, used to generate reports from the performance data

captured during program execution and to export data for use in other programs.
• Cray Apprentice2 -- an optional graphical analysis tool, used to visualize and explore the

performance data captured during program execution. It can also be used off-line on
Linux systems.

• pat_hwpc -- an alternative to pat_build and pat_report, used specifically to perform
simplified hardware counter analysis experiments and generate reports from the resulting
data.

• pat_help -- an online help system, which contains extensive usage information and
examples. This help system can be accessed by entering pat_help at the command line.

Features
Because CrayPat is developed for the Cray supercomputers, it is by construction well suitable
for these environments. It is versatile to use and is shown to be able to analyse parallel
software running on several thousands of CPUs. Because of this scalability, and the highly
controllable degree of invasiveness, CrayPat is well suited for analysis of large parallel
programs.

The recorded data can be aggregated or shown for different items separately. Data can be
recorded from either each processing elements, or just from the given ones. Also the
communication between processing elements can be recorded. This enables a very thorough
analysis of the program and finding the possible performance bottlenecks.

The estimated instrumentation overhead is also recorded and can be substracted from the
results in order to get more realistic and accurate results.

Moreover, CrayPat is able to analyse the I/O and memory usage of the software.

Instrumentation
The basic usage of CrayPat consists of a few general steps. The toolkit is initialized by
loading a corresponding module, (usually) recompiling the program and instrumenting it
using pat_build command.

Instrumentation is done by using CrayPat's command line based tool, pat_build. The
executable is re-linked but not recompiled. Thus no source code modification is required for
the instrumentation, but the original object files must be available. CrayPat uses static binary
instrumentation, and supports performance data collection in several ways:

• Tracing: Record timestamps and arguments for all instrumented functions;

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 43

• Sampling: Samples hardware counters or callstack at fixed intervals;
• Profiling: Performs a specific sampling experiment where user + system time are sampled

for all functions in a program.

Experiments are defined before program execution by using runtime environment variable.
Tracing experiments can only be performed for the executables instrumented for tracing,
sample-type experiments for all other executables.

The instrumented program generated by pat_build is a stand-alone version, and the original
binary is preserved. Thus the created instrumented executable can be run normally, and the
run-time library for measurements is transparent to the user. Automatic instrumentation at
group (function) level is provided for several groups, such as mpi, io, heap, math SW, etc.
CrayPat also provides several environment variables that can be used to control the program.

If the instrumentation methods provided by pat_build are not sufficient, further and more fine
grained instrumentation can be performed using CrayPat Application Program Interface
(API).

By default, the resulting data files are written to the execution directory. This directory must
reside on a file system that supports record locking, such as the Lustre file system.

Hardware Counter Data
CrayPat runtime environment variables enable one to collect a wide variety of performance
analysis data using the same instrumented program. It can be set to collect different sets of
hardware performance counter data, either by groups or by choosing individual hardware
performance counters. These are usually presented as a combination of actual PAPI counter
values and metrics derived from these.

An alternative method is to use pat_hwpc command, which performs simplified hardware
counter analysis and also automatically generates reports from the resulting data. pat_hwpc
uses an uninstrumented version of the program, as is does the instrumentation by itself. It is
usually the quickest way to acquire basic hardware performance information.

OpenMP
For programs that use the OpenMP programming model, CrayPat can measure the overhead
incurred by entering and leaving parallel regions and work-sharing constructs within parallel
regions, show per-thread timings and other data, and calculate the load balance across threads
for such constructs.

For programs that use both MPI and OpenMP, profiles by default compute load balance
across all threads in all ranks, but you can also see load balances for each programming model
separately.

On Cray XT systems, the user is responsible for inserting API calls himself. There is a variety
of C and Fortran functions that can be used to instrument OpenMP constructs for compilers
that do not support automatic instrumentation.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 44

Reporting the results
The reporting tool, pat_report, performs data conversion and combines information from
binary with raw performance data into text report of performance results. It also formats data
for the graphical analysis tool Cray Apprentice2.

The standard raw data .xf report files require the original instrumented executable to be
available to provide mapping from addresses to function names and source line numbers,
whereas Apprentice2, or .ap2 files are self-contained. Therefore, converting the results to .ap2
files is recommended. By default, pat_report does this automatically, if an .xf file or a
directory containing .xf files is specified.

pat_report provides text reports of various formats, depending on the given parameters. Its
main features include

• Profile by groups

o Threshold
o Load balance information
o Imbalance metrics

• Function Profile
o Flat profile
o Call Tree view
o Callers view
o Hardware counters information

• MPI Profiler
o MPI Load balance
o MPI Stats by bin

• I/O Statistics
o Read and Write Statistics

• Heap Statistics
o High water mark
o Memory leaks

In addition to the standard reports, pat_report can create highly customized reports tailored to
specific needs. This is done by specifying the data to be included in the report, specifying how
the data is to be aggregated and labeled, and specifying how the resulting information is to be
displayed. Reports can be tailored for spreadsheets as well.

Apprentice2
Cray Apprentice2 is a post-processing performance data visualization tool. It is not a
component of CrayPat, nor is it restricted to analysing data generated on any particular Cray
system. Rather, it is a platform-independent post-processing data visualization tool. After the
program is instrumented for a performance analysis experiment, executed and one or more
performance analysis data files are generated, Apprentice2 can be used to explore the
experiment data and generate a variety of interactive graphical reports. As a GUI tool it
requires that the workstation support the X Window System.

Apprentice2 can display a large amount and variety of data, but it is dependent on the options
selected when the program was instrumented and on the runtime environment variables
specified when it was executed. Environment variable PAT_RT_SUMMARY can be used to
summarize and aggregate the data.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 45

Apprentice2 provides various reports, including:

• Overview Report
• Load Balance Report
• Traffic Report of various kinds
• Activity Report
• Call Graph
• Function Report
• I/O reports of various kinds
• HW counter reports or various kinds

6.5 DewizPat – Automatic Communication Pattern recognition

6.5.1 Introduction

Over the years GUP has developed its tools NOPE and ATEMPT for generating traces from
running MPI programs and visualizing communication between processes based on events
between them using a logical clock timescale. Therefore users can already better understand
their codes or find bugs visually (e.g. receives without corresponding sends).

The fact that applications run on thousands of cores at a time, makes it impossible to find
those patterns through "simply having a look", there is ongoing work on automatically finding
repeating or typical patterns within those traces and also linking them to source code lines.
Recent research focuses especially on efficiently searching for inefficient use of
communication. This section gives some detail on NOPE and ATEMPT.

6.5.2 NOPE and ATEMPT: Details

In figure 9, taken from the GUP Eclipse Traceviewer, we show a trace from a synthetic
benchmark code that performs a scatter in an inefficient way, by just using MPI_SEND and
MPI_RECEIVE. The x-axis counts logical clocks in the progress of the code and the y-axis
shows the 8 processes involved. A red colored event shows a process doing a send to a blue
colored event being the correct receiver of that communication. In the left part of the Image
one can see different properties of the event being currently selected.

The pattern recognition code is able to perform the following tasks:

• analyse the whole program trace for repeating message patterns;
• find inefficient ones (as the one from the screenshot);
• find not only local patterns, but also find global (compact) ones, i.e. at first sight there

might be only 2 processes communicating, but after a more thorough analysis you actually
find out, that there is something bigger going on between more processes;

• report the patterns being identified.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 46

Currently, the output is only textual, because we care about actual automatic recognition. It
delivers the patterns found and the processes involved and also which source code lines were
involved in producing that patterns. Another remark that can be made is that the analysis is
done very efficiently and has been tested on traces with several million events from the LLNL
BG/L. But for simplicity the screenshot should give you a better idea, what it is about.

Figure 9: Screenshot of a NOPE generated Trace using the Eclipse Traceviewer.

This tool is still ongoing research and therefore only partly usable, because the NOPE tool for
generating the traces can currently only deal with MPI_SEND, MPI_RECEIVE and
broadcasts.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 47

6.6 IBM HPCT: High Performance Computing Toolkit

6.6.1 Introduction

The IBM HPC toolkit is a versatile environment for performance analysis of sequential and
parallel applications. It consists of a collection of performance data collection tools and
graphical user interface peekperf. Its main features are:

• It offers an integrated environment for simultaneous investigation of all aspects of

performance (e.g. cpu, memory, threads, message passing).
• No source code modifications are required.
• Performance data information is presented in a manner that highlights the relation

between the performance metrics and the source code statements and data structures.
• Depending on the platform, the toolkit may contain only components that are available to

the platform.

Currently supported platforms are: PPC970, Power4, Power5, Power5+, Power6: AIX 5L or
Linux, BG/L, BG/P: Linux. See also [29].

6.6.2 IBM HPCT Details

This section covers details of the HPCT. Actual examples, obtained on the IBM PowerSeries
575 POWER6 running Linux (SLES10 SP2) at SARA (which represents one of the prototype
architectures within PRACE), are given in Annex 7.5.

Hardware Performance Monitor (HPM)
The HPM Toolkit consists of:

• A utility hpmcount, which starts an application and provides at the end of execution, wall

clock time, hardware performance counters information, derived hardware metrics, and
resource utilization statistics like Mflop/s rates, cache misses at all levels of cache,
number of load instructions resulting in TLB misses, and other measurements that that are
supported by the hardware. Hpmcount is an inherently sequential program, looking only at
the hardware performance counters of a single process (and its children). Using poe or
mpirun one instance of hpmcount is running for each MPI task and it is either possible to
create per task output files or aggregated output files.

• An instrumentation library libhpm which enables a developer to selectively instrument
interesting parts of his code using an API.

• A utility hpmstat. Hpmstat is a simple system wide monitor based on hardware
performance counters. The usage is very similar to the vmstat command.

• A graphical user interface PeekPerf for visualization.

On Linux the kernel has to be recompiled with the perfctr patch. In case of a CERT advisories
with respect to kernel vulnerabilities this means that this patch has to be reapplied. On Power6
there are 6 performance counter registers and 195 different event groups. On Linux it is not

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 48

possible yet to monitor multiple groups simultaneously (multiplexing). At present the Linux
hpmstat does not work. An example is given in Annex 7.5.1.

MPI Profiler
In order to instrument the application, it has to be relinked with an additional instrumented
MPI wrapper library: -lmpitrace –llicense. As for the HPM library, this library
allows for selectively instrumenting interesting parts of the code by inserting calls to special
configuration and utility functions provided by the tracing library API. The instrumented
application also generates trace files that can be visualized using PeekPerf. An example is
given in Annex 7.5.2.

Xprofiler
Xprofiler is a visualization tool for gmon.out profiling data created by applications
compiled with the –pg flag. Xprofiler is a nice GUI that gives the information that is also
provided by the well-known gprof command line tool for displaying call graph profile data.
Xprofiler does not yet work for 64-bit executables, which is a pity on large memory nodes
(the machine we used for the assessment has both 128 and 256 GB nodes). An example is
given in Annex 7.5.3.

PeekPerf
The PeekPerf GUI is the control center of the HPC Toolkit, it allows for controling the
instrumentation, execution, visualization and analysis of all collected performance data within
the same user interface. The dimensions of performance data provided in the current
framework are:

• CPU (HPM)
• Message Passing (MPI)
• Threads (OpenMP)
• Memory
• IO

6.6.3 Future Work and Developments

Further investigation of the IBM HPC Toolkit has to be done, especially in the areas of POMP
Profiler (OpenMP profiling), MIO (I/O profiling), SiGMA (Memory Simulation) and pSigma
(Binary Instrumentation Facility). IBM is developing a new integrated version of the HPC
Toolkit for the PERCS/HPCS Initiative. This is the HPCS Toolkit which will include a
Bottleneck Detection Engine.

6.7 IPM: Integrated Performance Monitoring

6.7.1 Introduction

Integrated Performance Monitoring (IPM) is an approach to performance analysis that is
focused on ease of use, scalable lightweight profiling and portability. It is less of a
performance “tool” and more of a profiling infrastructure. It serves the needs of users and
managers of HPC resources and is available under an open source license. See also [30].

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 49

• Developers: David Skinner team (NERSC), Open Source (LGPL)
• Supported platform(s): IPM currently runs on IBM SPs and BlueGene, Cray XT (CLE),

SGI Altix, NEC SX8, various Linux clusters and the Earth Simulator.
• Platform used for the assessment : CRAY XT, IBM LinuxPWR5, see below
• Description of the tool: A scalable lightweight portable open source (LGPL) profiling tool
• Scalability: already tested on thousands of cores

6.7.2 IPM Details

Design goals

• Easy to use
• Parallel aware
• High level performance profiles
• Fixed memory footprint
• Minimal CPU overhead
• Portable

Overview
IPM is a portable profiling infrastructure developed at NERSC which outputs a report on the
execution of parallel jobs. IPM reports MPI function timings, memory usage, and hardware
counters data (where available). IPM provides a performance summary of the computation
and communication in a parallel program. The amount of details reported is selectable at
runtime via environment variables or through an MPI_Pcontrol interface. IPM has extremely
low overhead, is scalable and easy to use requiring no source code modification.

The monitors that IPM currently integrates are:

• MPI: communication topology and statistics for each MPI call and buffer size.
• HPM: PAPI (many) or PMAPI (AIX) performance events.
• Memory: wall clock, user and system timings.
• Switch: Communication volume and packet loss

Ease of use
Insofar as performance profiling is a cumbersome process, especially at scale, users and
managers of HPC resources rely on performance data from experiments that may not reflect
actual workloads or worse performance monitoring will simply not be done. Ease of use is
paramount in providing quality profiles from in-situ workloads. Advanced user interfaces for
HPC developers and researchers are available but not required.

Scalable lightweight profiling
IPM is lightweight introducing very little overhead to running codes. At application startup
and termination IPM makes good use of parallel HPC resources to aggregate, process, and
store application profiles. While the application runs IPM uses a fast hashing algorithm to
build the profile with minimal impact on the application. IPM runs regularly on systems with
tens of thousands of tasks.

Profiling infrastructure

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 50

IPM is an approach to scalable HPC application profiling which serves both users and center
managers. IPM brings together several types of information important to developers and users
of parallel HPC codes. The information is gathered in a way the tries to minimize the impact
on the running code, maintaining a small fixed memory footprint and using minimal amounts
of CPU. When the profile is generated the data from individual tasks is aggregated in a
scalable way.

The 'integrated' in IPM is multi-faceted. It refers to binding the above information together
through a common interface and also the integration of the records from all the parallel tasks
into a single report. On some platforms IPM can be integrated into the execution environment
of a parallel computer. In this way IPM profiling is available either automatically or with very
little effort.

The final level of integration is the collection of individual performance profiles into a
database which synthesizes the performance reports via a web interface. This web interface
can be used by all those concerned with parallel code performance, namely users, HPC
consultants, and HPC center managers. Since profiles are stored centrally in a SQ L database
they provide a performance track record to developers and a means of workload
characterization to HPC managers. Both groups are well served by optimising
application/architecture matches via in-situ performance monitoring.

Portability
IPM takes an approach to performance analysis that is focused on lightweight scalable
profiling that is easy to use. IPM profiles use an XML format which allows comparison of
profiles across runs and between platforms. IPM currently runs on IBM SPs, Cray XT, NEC
SX, various Linux clusters and the Earth Simulator. IPM implementation is portable and is
available under an Open Source software license (LGPL).

Current status of IPM

Type Site OS Comments

IBM P6 SARA Linux Suse 10.2 Papi not installed on

P6 yet; Needs to
modify IPM in order
to use IBM HPM
counters

IBM BG/P Juelich Linux Suse 10.1 Papi-c 3.9.0
available, needs more
testing

NEC SX8 HLRS SUPERUX 15.1 Availability of papi
for NEC ?

Cray XT5 CSC CNL 2.1.27 HD Fully supported
Cray XT4 CSCS CNL 2.1.26 Fully supported
IBM P5 CSCS Linux Suse 10.2 Papi not installed on

P5 yet; Needs to
modify IPM in order
to use IBM HPM
counters

Table 11: Availability of IPM.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 51

6.8 Scalasca

6.8.1 Introduction

Scalasca has been designed for use on large-scale systems including IBM BlueGene/P, but is
also well-suited for small- and medium-scale HPC platforms. For a complete list of the
supported platforms the reader is referred to website of Scalasca [31]. Scalasca V1.0 has been
released at June 18, 2008 by Forschungszentrum Jülich. Scalasca is open-source, and requires
just a BSD license.

6.8.2 Platforms used for assessment

• IBM BlueGene/P
At the University of Groningen a three-racks IBM BlueGene/P system has been
installed. For the evaluation of Scalasca on the BlueGene two racks (8192 cores with a
peak performance of 28 Tflop/s) have been used.

• Scalasca V1.0 released at June 18 2008 by Forschungszentrum Jülich (open-source -
BSD license).

• Linpack
The open-source package Linpack is a numerical solver for a dense system of linear
equations. It is accepted world-wide as a benchmark and as such part of this
evaluation. The problem size can be chosen such that performance (flop/s) is best, e.g.
n = 337919 for half a rack (2048 cores).

6.8.3 Scalasca Details

Scalasca is a toolset that can be used to analyse the performance behavior of parallel
applications and to identify opportunities for optimisation. Scalasca supports an incremental
performance-analysis procedure that integrates runtime summaries with in-depth studies of
concurrent behavior via event tracing, adopting a strategy of successively refined
measurement configurations. A distinctive feature is the ability to identify wait states that
occur, for example, as a result of unevenly distributed workloads. Especially when trying to
scale communication-intensive applications to large processor counts, such wait states can
present severe challenges to achieving good performance.

Design goals

• Scalasca has been designed for use on large-scale systems.
• Easy identification of wait states.
• Support of OpenMP, MPI and hybrid.
• Supported languages: Fortran, C and C++.
• Easy generation summary reports with performance metrics for function call paths.
• Traces record individual run time events.

Usage
The basic use of Scalasca is as follows. First the source code is instrumented with additional
wrapper calls around each function call, including MPI and/or OpenMP calls. Next, the

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 52

instrumented source file is compiled with the standard compilers available on the system. The
tool to create instrumented source files is called skin. Apart from automatic instrumentation
by skin it is also possible to do manual instrumentation by means of an API. Instrumented
executables are run in exactly the same way as ‘normal’ executables, however during
execution they generate trace files and files with statistical metrics. Some of the metrics are:

• number of visits of a function,
• MPI statistics like synchronisations, communications and bytes transferred,
• elapsed time, and,
• optionally, hardware metrics (platform dependent).

The tool to analyse these files is called scan. Scan produces so-called cube-files which can be
examined with a tool called cube3.

Cube3 is a GUI which allows visual examination of the collected metrics. There are three
coupled tree browsers. Each node in the tree displays the severity of a bottleneck in color (for
easy identification) as well as in value (for precise comparison). Each node can be expanded
into subnodes to achieve a more detailed view. On each node one can right-click to get
detailed information, such as the line number of the location in the source code. Figure 10
shows an impression of the GUI. In this example the receive behavior of the function
HPL_reduce is examined.

Figure 10: Screenshot of cube3 running Linpack on a 2048 core partition of the IBM BG/P.

Evaluation
This evaluation is based on the assessment of Scalasca on an IBM BlueGene/P system,
located at the University of Groningen in the Netherlands, running Linpack HPL. Two racks
(8192 cores with a peak performance of 28 Tflop/s) have been used.

• The program cube3 greatly provides immediate insight in hot spots of the code.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 53

• Trace analysis is based on parallel replay: this enables scalability to tens of thousands of
cores, however this is only suited for relatively short execution times. For long
execution times the size of the trace files explodes and the analysis takes a long time

• Tracing offers critical insight into the temporal behaviour of a program.
• Scan automatically detects patterns of inefficient behaviour such as late senders. This is

less error prone than manual inspection since it is guaranteed to cover the entire trace of
the execution.

• From an assessment with linpack it appears that the overhead introduced by Scalasca is
negligible.

• Scalability up to tens of thousands of cores appears to be possible however one may
wonder whether it is acceptable to use as many cores for the analysis as for the actual
execution of the program.

6.8.4 Future Work

The overall assessment is that Scalasca is a useful instrument to analyse the behaviour of
massively parallel programs on large scale architectures.

Areas of improvement are:

• Update of documentation. Currently only a quick reference appears to be available.
• Installation procedure is poorly documented: the prerequisites were only partly

addressed.
• For the visual inspection of trace files additional software (like Vampir) needs to be

installed. As opposed to Scalasca his program, however, is not freely available.

6.9 Vampir VNG

6.9.1 Introduction

Vampir 5.0 [32] is a front end for displaying trace files. The trace files are written using the
Open Trace Format (OTF) and are obtained when an application is instrumented using the
libraries and wrappers provided by the VampirTrace library. While Vampir VNG is a
commercial application, the VampirTrace library as well as the OTF format is available under
BSD license. Vampir is marketed by “Gesellschaft für Wissens- und Technologietransfer der
TU Dresden GmbH”.

Vampir is supported on Linux (IA32, x86_64, IA64, PPC/32, PPC/64), Sun Solaris
(SPARC/32, SPARC/64, x86_64), IBM AIX (PPC), SGI IRIX (MIPS), Mac OS X. Soon MS-
Windows.

6.9.2 Vampir Details

The instrumentation supports MPI and OpenMP, alone or in hybrid mode. It also allows
manual, automatic and binary instrumentation, in case the source code is not available. The

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 54

instrumentation can trace not only MPI events, but also hardware counters (using the PAPI
interface), memory allocation and I/O events.

Vampir can be used as stand-alone application or as server-client application. Small trace files
of some MB are recommended for stand-alone mode. However, larger trace files (several GB)
need to be visualized using the server-client implementation. The server application
distributes and processes the information on the host machine by using MPI while the client
connects to it and is used for visualization.

Usage

Although Vampir offers several options, the standard instrumentation produces most
information required. Once the code is compiled and linked against the VampirTrace library
the application is executed as usual. One can, through environmental variables, modify the
size of the output, the level of instrumentation, the hardware counters or memory usage
among other options. This way tracing with VampirTrace is a very versatile operation.

The Parallel Linpack benchmark (HPL) was used to test Vampir capabilities. We run a 64
MPI tasks case with full instrumentation of functions and MPI-calls, memory tracing and
several hardware counters. This produced 30GB of compressed information. A timeline view
example is shown in figure 11.

Vampir was designed for scalability and it was tested here as server-client application, as such
for this test case was necessary to use a 128 MPI-task job with VampirServer to process this
amount of information. Its interface offers several options and is very intuitive. The user can
obtain a general view of how the application evolved. It can also trace single processes giving
detailed information about specific function calls, MPI calls or hardware counters. An
example is given in figure 12. In this example, a time-line view (zoom 1.92ms, call tree depth
of level 8 (main has level 1), function name identification, with information of mem.
allocation, L2 misses and load instructions) for process 7 is shown.

The resolution can capture different events up to ms, identify functions symbols or define the
depth of the call tree accurately. The user has the choice of compacting all this information in
suitable tables or report for further post processing.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 55

 Figure 11: Timeline view of 64 MPI-tasks in HPL benchmark, VampirServer uses 128 MPI-Tasks.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 56

Figure 12: Example of individual process timeline view.

Future work

The tracing process is in parallel, but the unification of results into suitable files for Vampir is
still a serial operation. In future work, this characteristic may have to be improved upon. Also,
some features present in the stand-alone version are to be implemented on the client interface,
like source code navigation. An MS-Window version may be released.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 57

6.10 VPA: Visual Performance Analyzer

6.10.1 Introduction

Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit. It
is being developed by IBM, and is supported on Linux- x86, AIX-PPC, Cell and MS-
Windows (32 bit). See also [33] for more information and users’guides.

6.10.2 VPA Details

Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit. It
consists of six major components: Profile Analyzer, Code Analyzer, Pipeline Analyzer,
Counter Analyzer, Trace Analyzer, and Control Flow Analyzer. VPA is a collection of
performance data analysis tools that can be used to identify performance bottlenecks. VPA
does not supply performance data collection tools. Instead, it relies on platform specific tools,
such as AIX Tprof, to collect the performance data.

• Profile Analyzer provides a powerful set of graphical and text-based views that allow
users to narrow down performance problems to a particular process, thread, module,
symbol, offset, instruction, or source line. Profile Analyzer supports time-based system
profiles (Tprofs) collected from a number of IBM® platforms and the Linux® profile tool
oprofile 0.9.3.

• Code Analyzer examines executable files and displays detailed information about
functions, basic blocks, and assembly instructions. It is built on top of FDPR-Pro
(Feedback Directed Program Restructuring) technology and allows adding of FDPR-Pro
and Tprof profile information. (The Linux version of FDPR-Pro is available here at
alphaWorks.) Code Analyzer is able to show statistics; navigate disassembled instructions;
and display performance comments, instruction grouping information, and map
instructions back to source code.

• Pipeline Analyzer is a port of the IBM Performance Simulator for Linux on POWER™,
another alphaWorks technology. Pipeline joins the VPA toolkit to provide VPA users with
the means of examining how code is executed on various IBM POWER processors.
Pipeline Analyzer displays the pipeline execution of instruction traces generated by a
POWER series processor. It does so by providing a scroll view and a resource view of the
instruction execution.

• Counter Analyzer accepts hardware performance data from collection tools such as CPC
or HPMCOUNT. The data is provided as XML and is parsed by this plug-in in order to
allow visualizing and analysis through CPI breakdown models. The data can be saved in
the embedded database for later viewing, or it can be exported to a CSV file for inclusion
in a spreadsheet.

• Trace Analyzer visualizes Cell Broadband Engine™ traces containing information such
as DMA communication, locking and unlocking activities, mailbox messages, etc. Trace
Analyzer shows this data organized by core along a common timeline. Extra details are
available for each kind of event: for example, lock identifier for lock operations, accessed
address for DMA transfers, etc.

• Control Flow Analyzer is a tool that analyses call trace data collected by tools such as
Jprof, which is part of Performance Inspector. The call trace data contains information
about each method call, such as how much time is spent in every invocation and who calls

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 58

whom. Control Flow Analyzer provides two major ways of visualizing the call trace data:
a graph of the execution flow and and a set of tables displaying the calling tree.

Figure 13: System architecture of Visual Performance Analyzer.

How does it work?

Profile Analyzer parses system profiles into an internal profiling data model that supports the
profile hierarchy, offset locations, tick counts, CPU counter data, source line information, and
disassembly. The plug-in then displays this data model, using various Eclipse views. The
system profiles are those produced by Performance Inspector, AIX Tprof, and Linux oprofile.
However, Visual Performance Analyzer can be extended to support almost any platform by
converting a system profile to an XML schema that it understands.

Why the tool is interesting?

VPA can be very usefull when a programmer is trying to understand the complexity and
performance of the particular code on the Cell/B.E. architecture. There are not many tools
which enable controlling the PPU and SPU objects together with the DMA transfers between
Main Memory and SPU Local Stores. VPA can be very useful for achieving powerful
performance on Cell processors while it handles all the above functionalities and many more.
Moreover VPA can be used remotly with a thin Java client working on a client machine and
collecting the profile data from remote server.

Scalability

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 59

For practical reasons, our first interest will be focused on the QS22 18 cores performance.
Next, scalability issues accross Cell blades will be considered, as they become available in the
prototype system.

6.11 Considerations for Future Work

The performance tools, as considered in the previous subsections, are one way or another
based on traces. Trace based systems provide a way to perform very detailed analyses. Proper
views can convey a lot of information about the behavior of the application. Future work will
have the intent to focus more and more on the usability of these tools for analysis of
scalability. Depending on the results, feedback into the actual developers of the tools may be
appropriate. In that respect, as a summary, the following practicalities may need to be
considered for future work:

• The time to generate a sufficiently small trace with as much detail as possible should be

minimized. This refers especially to the analyst time, but also if possible to the batch
processing time.

• A minimal set of configuration files that would let a user identify the major performance
issues.

• Automatic analysis functionalities. We would greatly appreciate some type of expert
system that would automatically obtain metrics and models describing at a very high level
the behaviour of the application.

• It would be ideal if such automatic analysis could be performed online without even
requiring to generate a trace (unless specifically required by the analyst).

• File handling transparency: the original traces are generated at the parallel machine and
they require a level of storage not available on many laptops. The analysis is nevertheless
more conveniently done on a local laptop. It would thus be desirable to run the GUI
locally and have it automatically access or remotely manipulate the large files at the
parallel machine. It should be possible to operate on them as if they were local, remotely
perform the filtering and cutting functionalities and automatically transferring the
summarized files to the laptop for a more convenient analysis.

• The prototype architectures for PRACE in WP7 are known, and ready to be installed.
Therefore, it will make sense to map the available tools on the available prototype
architectures, just as done with the benchmark codes in chapter 3.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 60

7 Annex

7.1 Benchmark Report Template

In order to prepare a uniform way of reporting benchmark progress, we have used a so-called
benchmark report template, which covers details of the benchmark code, including porting
details on the assigned hardware architectures. This enables some statistical analysis, as done
in section 3.3, but also serves as a starting point for future work in tasks 5.4, 6.4 and 6.5.

Benchmark reporting template for usage in PRACE WP6, task 3, for porting progress with
benchmark codes on hardware architectures.

GENERAL
Name of Code, Abbreviation
Application area(s) e.g. materials science, astronomy, …
Key numerical method(s) e.g. fft’s, sparse solvers, dense matrices, ….
Origin (developers, institute)
Current developers
Contactperson
License policy
Copyright
Usage rules (within PRACE,
outside PRACE, …)

e.g. free within PRACE, not outside PRACE, …

PRACE INFORMATION
BCO: name, email, institute
Contributors (PRACE partners)
Targeted hardware platforms as in
BCO list

Choice of: MPP-BG, MPP-Cray, SMP-TN-x86, SMP-
FN-Pwr6, SMP-FN+Cell, SMP-TN-Vector

CODE STATISTICS
Programming language(s)
Amount of source lines
Libraries e.g. LAPACK, NAG, FFTW, vendor libraries, HDF, ..
Parallellization method e.g. MPI, OpenMP, pthreads, hybrid, SHMEM, single-

sided MPI, …
Development platform(s)
IO characteristics e.g. none, read at start, write at end, each iteration, size,

MPI IO, HDF, …

PORTING REPORT For platform #1 (repeat for platform #2, #3, …)
Porting platform e.g. MPP-BG, MPP-Cray, ……
Details porting platform Hardware details, software details (OS version, compiler

versions, libraries, …)
Overall porting result Successful/not successful/partly successful
General comments … free format …

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 61

Porting report on programming
language constructs in general

… free format …

Porting report on libraries used … free format …
Porting report on parallelisation
method

… free format …

Porting report on IO … free format …

PERFORMANCE RESULTS For platform #1 (repeat for platform #2, #3, …)
Execution platform e.g. MPP-BG, MPP-Cray, ……
Details execution platform If different from porting platform
Performance details Name of input set, #cores, speed-up results, initial

performance profile, …

RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat

for platform #2, #3, …)
Expected potential for Petascaling Large/medium/small
Expected effort to reach
Petascaling potential

Amount of pm’s, what should be done to the code, …

Expected potential for
Optimisation

Large/medium/small

Expected effort to reach
Optimisation potential

Amount of pm’s, what should be done to the code, …

7.2 Benchmark Porting Details

This section contains the actual filled benchmark report templates for each of the benchmark
codes, as defined in section 3.2. Obviously, this is work in progress, and therefore should be
recognised as a snapshot of the current situation.

7.2.1 QCD

Lukas Arnold
FZJ

GENERAL
Name of Code, Abbreviation multi-kernel lattice QCD benchmark, QCD
Application area(s) particle physics
Key numerical method(s) multiple
Origin (developers, institute) multiple, see README in PABS
Current developers none
Contactperson multiple, see README in PABS
License policy to be clarified
Copyright to be clarified
Usage rules (within PRACE, outside
PRACE, …)

free

PRACE INFORMATION
BCO: name, email, institute Lukas Arnold

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 62

l.arnold@fz-juelich.de
FZJ

Contributors (PRACE partners) EPCC, CSC
Targeted hardware platforms as in BCO
list

MPP-BG/P, MPP-Cray, FatNode-Pwr6

CODE STATISTICS
Programming language(s) Fortran 90 and C
Amount of source lines
Libraries none
Parallellization method MPI
Development platform(s) various
IO characteristics

PORTING REPORT For huygens(SARA)
Porting platform FatNode-Pwr6
Details porting platform Hardware:

− 104 SMP nodes with 32 SMT processors each (total 3328)

− Processortype: Power6 4.7 GHz

− Overall peak performance: 60 Teraflops

− Main memory: 83 x 128 Gbytes + 18 x 256 Gbytes
(aggregate 15.2 TB)

− InfiniBand (MPI communication)

− Disk capacity: 700 TBytes

Software:

− Operating system: Linux (SuSE)

− Operating mode: interactiv and batch

− Compiler versions: IBM AIX compiler (xlf 11.1; xlc 9.0)
Overall porting result successful
General comments The QCD benchmark is embedded in the PRACE benchmarking

suite, which sets all compilation and execution parameter. The used
(default) setting are:

fortran:
mpxlf90_r -q64 -qtune=pwr6 -qarch=pwr6

C:
mpcc_r -q64 -qtune=pwr6 -qarch=pwr6

Further performance flags will be used as the kernel is ready for
benchmarking.

Porting report on programming
language constructs in general

Up to now (3 kernels), there have been no problems.

Porting report on libraries used none used
Porting report on parallelization method Using AIX MPI compiler wrapper.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 63

Porting report on IO no data output is produced

PERFORMANCE RESULTS For huygens
Execution platform FatNode-Pwr6
Details execution platform same with the porting platform
Performance details none available, yet

PORTING REPORT For jugene(FZJ)
Porting platform FatNode-Pwr6
Details porting platform Hardware:

− 16384 compute nodes with 4-way SMT processors (total
65536 processors)

− Processortype: PowerPC 450 850 MHz

− Overall peak performance: 223 Teraflops

− Linpack: 167 Teraflops

− Main memory: 2 Gbytes per node (aggregate 32 TB)

− Three-dimensonal torus (compute nodes)

− Global tree / Collective network (compute nodes, I/O
nodes)

− 10 Gigabit Ethernet (I/O)

− Disk capacity for system data: 4.5 TBytes

− Disk capacity for user data: 1.0 PBytes

− Migration storage for user data: 1.5 PBytes

Software:

− Operating system: CNL

− Operating mode: interactive and batch

− Compiler versions: IBM AIX compiler (xlf
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1)

Overall porting result Successful
General comments The QCD benchmark is embedded in the PRACE benchmarking

suite, which sets all compilation and execution parameter. The used
(default) setting are:

fortran:
mpxlf90_r -q64 -qtune=450 -qarch=450

C:
mpcc_r -q64 -qtune=450 -qarch=450

Further performance flags will be used as the kernel is ready for

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 64

benchmarking.
Porting report on programming
language constructs in general

Up to now (3 kernels), there have been no problems.

Porting report on libraries used none used
Porting report on parallelization method Using AIX MPI compiler wrapper.
Porting report on IO no data output is produced

PERFORMANCE RESULTS For jugene
Execution platform FatNode-Pwr6
Details execution platform same with the porting platform
Performance details none available, yet

PORTING REPORT For louhi (CSC)
Porting platform MPP-Cray
Details porting platform Hardware:

− CPU: 2.3 GHz AMD Opteron 64 bit quad-core processors

− Number of nodes: 1012 computing nodes

− Memory: 1 GB or 2 GB memory per core.

− Interconnect: Seastar 2+

− Set up physically in 11 cabinets.

− Architechture: MPP

− I/O subsystem: Lustre, 70 TB

Software:

− Operating system: CNL

− Operating mode: interactiv and batch

− Compiler versions: PGI compiler version 7.2.4

Overall porting result in process
General comments
Porting report on programming
language constructs in general

Porting report on libraries used
Porting report on parallelization method
Porting report on IO

PERFORMANCE RESULTS For louhi
Execution platform MPP-Cray
Details execution platform same with the porting platform
Performance details none available, yet

RECOMMENDATIONS For Petascaling and optimization on all target platforms
Expected potential for Petascaling High (all platforms)
Expected effort to reach Petascaling
potential

All kernels should be able to scale to high number of processes.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 65

0PM
Expected potential for Optimization Low
Expected effort to reach Optimization
potential

All kernels are already optimized. There exist highly optimized
versions, but they can not be used in PABS, due to the usage
policies. The effort to get this high optimization is very high.

0PM

7.2.2 VASP

Miquel Català
BSC-CNS

GENERAL
Name of Code, Abbreviation Vienna Ab-initio Package Simulation (VASP)
Application area(s) ab-initio quantum-mechanical molecular dynamics
Key numerical method(s)
Origin (developers, institute) Mike Payne, MIT
Current developers Dr. Doris Vogtenhuber
Contact person vasp.materialphysik@univie.ac.at
License policy not public domain
Copyright
Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE, not outside PRACE

PRACE INFORMATION
BCO: name, email, institute Miquel Català i Coït <miquel.catala@bsc.es> Barcelona

Supercomputing Center
Contributors (PRACE partners) NCF, GUP, HLRS
Targeted hardware platforms as in BCO
list

MPP-BG, FatNode-Pwr6, Cell, Vector

CODE STATISTICS
Programming language(s) FORTRAN 90
Amount of source lines 121776 lines
Libraries vasp.lib (included with application) + scalapack + lapack + blacs +

pthreads + MPI
Parallellization method MPI
Development platform(s) Pentium II, III, IV and Athlon based PC's under LINUX and DEC

Alpha (TRUE 64 and Linux)
IO characteristics No input parameters. Needed files on current directory.

PORTING REPORT
Porting platform IBM Blue Gene/P
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384)

• Compute node: 4-way SMP processor
• Processortype: 32-bit PowerPC 450 core 850 MHz
• Processors: 65536
• Overall peak performance: 223 Teraflops
• Linpack: 167 Teraflops
• Main memory: 2 Gbytes per node (aggregate 32 TB)
• I/O Nodes: 152
• Networks:

• Three-dimensonal torus (compute nodes)

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 66

• Global tree / Collective network (compute nodes, I/O
nodes)

• 10 Gigabit ethernet / Functional network (I/O Nodes)

• Power Consumption: max.40 kW per rack

2 Service nodes IBM p55A:

• Total number of processors: 8
• Processortype: Power5 1.6 GHz
• Total amount of memory: 32 GB
• Operating System: SuSE Linux Enterprise (SLES 10)

2 Login nodes IBM p55A:

− Total number of processors: 8
− Processortype: Power5 1.6 GHz
− Total amount of memory: 32 GB
− Operating System: SuSE Linux Enterprise (SLES 10)

− Internet address: jugene.zam.kfa-juelich.de

Overall porting result Successfully
General comments
Porting report on programming language
constructs in general

Porting report on libraries used
Porting report on parallelisation method VASP is well parallelised. No specific development has to be done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform IBM Blue Gene/P (jugene.fz-juelich.de)
Details execution platform This platforms allow executions in queue.
Performance details The testcase achieves the best performance when 16 MPI tasks are

launched. With more tasks performance drops.

RECOMMENDATIONS
Expected potential for Petascaling Good potential
Expected effort to reach Petascaling
potential

Depends on BLAS and FFT performance

Expected potential for Optimisation Good potential
Expected effort to reach Optimisation
potential

Depends on BLAS and FFT performance

PORTING REPORT
Porting platform Power6
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing)

system.

• 104 nodes

• 16 dual core processors (IBM Power6, 4.7 GHz) per node

• 128 GByte or 256 GByte of memory per node

• 700 TByte of disk space

• total peak performance is 60 Teraflop/sec

• In total, the system has:

• 1664 dual core processors = 3328 cores

• 15.25 TByte of memory

• 700 TByte of disk space

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 67

An IBM Power6 processor has the following
characteristics:

− Dual core running on 4.7 GHz

− L1 cache: 128 KByte of L1 cache per core (64 KByte data
cache + 64 KByte instruction cache)

− L2 cache: 4 MByte per core (semi shared: the cache is
assigned a specific core, but the other has a fast access to it)

− L3 cache: 32 MByte per processor

The nodes are interconnected with an Infiniband network providing
an MPI bandwidth of 160 Gbit/sec between neighboring nodes

Overall porting result Successfully
General comments
Porting report on programming language
constructs in general

Porting report on libraries used
Porting report on parallelisation method VASP is well parallelitzed. No specific development has to be done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform Power6 (huygens.sara.nl)
Details execution platform Same above
Performance details The testcase achieves the best performance when 32 MPI tasks are

launched. With more tasks performance drops.

RECOMMENDATIONS
Expected potential for Petascaling Good potential
Expected effort to reach Petascaling
potential

Depends on BLAS and FFT performance

Expected potential for Optimisation Good potential
Expected effort to reach Optimisation
potential

Depends on BLAS and FFT performance

7.2.3 NAMD

Dr. Joachim Hein
EPCC, The University of Edinburgh

GENERAL
Name of Code, Abbreviation NAMD
Code release 2.6
Application area(s) (Bio)chemistry
Key numerical method(s) Molecular dynamics
Origin (developers, institute) K. Schulten, L. Kale, et. al., Beckman Institute, UIUC, US
Current developers as above
Contactperson J. Phillips (UIUC), NAMD team email: namd@ks.uiuc.edu
License policy Own license, see: http://www.ks.uiuc.edu/Research/namd/license.html
Copyright The Board of Trustees of the University of Illinois
Usage rules (within PRACE, outside
PRACE, …)

At present: Download source from UIUC website

PRACE INFORMATION
BCO: name, email, institute Joachim Hein, j.hein@epcc.ed.ac.uk, EPCC, The University of

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 68

Edinburgh
Contributors (PRACE partners) Xu Guo (EPCC), Jon Hill (EPCC), Martin Polak (GUP), CSC, GRNET
Targeted hardware platforms as in
BCO list

MPP-BG, MPP-Cray, FatNode-Pwr6 and maybe Cell

CODE STATISTICS
Programming language(s) C++ (using Charm++)
Amount of source lines 62400 in .C-files and 17300 in .h-files plus Charm++ source
Libraries Charm++, FFTW, TCL
Parallellization method Charm++, which in most cases is build ontop of MPI, but could also be

build ontop of e.g. Myrinet, Infiniband, Shmem, etc
Development platform(s)
IO characteristics appears to be master/worker model (nothing fancy)

PORTING REPORT For platform #1 (repeat for platform #2, #3, …)
Porting platform MPP-Cray
Details porting platform HECToR (Cray XT4), dual core 2.8 GHz Opteron nodes, CLE (Cray

Linux Environment, aka CNL)
Overall porting result Successful (production executable)
General comments
Porting report on programming
language constructs in general

Build using gcc
The CRAY XT using CNL is newer than code release, hence
unsupported in NAMD2.6
Architecture files for charm++ and NAMD developed during porting

Porting report on libraries used For Cray XT, later version of Charm++ than 5.9, which is bundled with
the NAMD source distribution is needed. We used the nightly build
version 03 July 2007.
To build NAMD with gcc, FFTW2 build with gcc (only provided for the
PGI compiler on the service) is needed
TCL library needs building under gcc (not provided as part of service)

Porting report on parallelisation
method

Build charm++ using MPI

Porting report on IO Test benchmark didn’t stress I/O

PORTING REPORT For platform #2 (repeat for platform #2, #3, …)
Porting platform FatNode-Pwr5
Details porting platform HPCx, UK

IBM Pwr5 with AIX
Overall porting result Successful (production executable)
General comments
Porting report on programming
language constructs in general

Build using IBM’s xlc 9.0, 32-bit addressing with large file support
(>2GB)
Changing the architecture specific flags: -qarch=pwr4 -qtune=pwr4
(from com and pwr3 respectively) yields better performance

Porting report on libraries used Build using a later version of charm++ than the one bundled with the
NAMD 2.6 source. Using nightly build 28 Nov 2005 (since release
version 5.9 would not work on AIX 5.3).
FFTW2 available on HPCx service
Used TCL library which comes as part of the NAMD 2.6 distribution

Porting report on parallelisation
method

Build charm++ using MPI

Porting report on IO The benchmarks used up till now do not stress I/O

PORTING REPORT For platform #3 (repeat for platform #2, #3, …)
Porting platform FatNode-Pwr6
Details porting platform Huygens @ SARA, NL

Pwr6 with Linux OS (not AIX)
Overall porting result Several successful executables build, exploring further compiler

optimizations desirable

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 69

General comments Fat node IBM Power architecture with Linux not (yet?) supported by
NAMD developers (AIX is well supported). Received support from
SARA who made their configurations available

Porting report on programming
language constructs in general

Optained executables using IBM’s xlc 9 and xlc 10 compilers.
User 64bit addressing, hence large files (>2GB) should be naturally
supported.

Porting report on libraries used The charm++ version supplied with the NAMD 2.6 source works on the
architecture. Though since the architecture is not supported in the
version of charm++ architecture configuration files are needed. The
support team of the service has provided such files which build a
charm++ which passes the tests.
Used the FFTW2 and TCL libraries which are provided as part of the
service

Porting report on parallelisation
method

Build charm++ using MPI

Porting report on IO The benchmarks used up till now do not stress I/O

PORTING REPORT For platform #4
Porting platform MPP-BG
Details porting platform JuGene @ FZJ in Germany

IBM Blue Gene P system
Overall porting result Successful NAMD executable
General comments Code had already been built on site before, we used build procedures and

executables supplied by FZJ.
Porting report on programming
language constructs in general

Built using IBM bgxlC_r V9.0 compiler together with the architecture
files provided by FZJ and optimization options “-O3 -qhot -arch=450d -
qtune=450” which should already deliver a decent performance and uses
SIMD features of the BG's compute nodes.

Porting report on libraries used The charm++ version supplied with the NAMD 2.6 source is not
supported on this architecture, built using charm-6.0 sources from its
official download site using a build script from FJZ with -qarch=450d
(simd). Using fftw-2.1.5 which is part of the service, but can also be also
built using different optimisation and different precision switches using
the FJZ build scripts. Using tcl-8.4.19 not available on site, which can be
built using supplied build-scripts: needs the "bgxlC_r" compiler and
patching of the configure scripts

Porting report on parallelisation
method

Build charm++ using MPI

Porting report on IO The benchmarks used up till now do not stress I/O

PORTING REPORT For platform #5
Porting platform MPP-CRAY
Details porting platform Louhi @ CSC in Finland

Cray XT4 and XT5, quad core opteron nodes
Overall porting result Successful
General comments Need access to larger partitions of the machine to properly assess e.g.

XT4 vs XT5 differences on scalability
Porting report on programming
language constructs in general

Build using gcc
The CRAY XT using CNL is newer than code release, hence
unsupported in NAMD2.6
Architecture files for charm++ and NAMD developed during porting

Porting report on libraries used For Cray XT, later version of Charm++ than 5.9, which is bundled with
the NAMD source distribution is needed. We used the nightly build
version 03 July 2007.
To build NAMD with gcc, FFTW2 build with gcc (only provided for the
PGI compiler on the service) is needed
TCL library needs building under gcc (not provided as part of service)

Porting report on parallelisation
method

Build charm++ using MPI

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 70

Porting report on IO Test benchmark didn’t stress I/O

PERFORMANCE RESULTS For platform #1
Execution platform MPP-Cray
Details execution platform HECToR
Performance details • Initial performance results part of D6.2.2

• Managed to run benchmarks with 1 and 2 million atoms but (so
far) failed to get a 9 million atom benchmark going. 2 million
atom benchmark shows good scalability on up to 8192 cores.
This dataset is not expected to be large enough for the code @
Petascale

• We have a 9 million atom benchmark system. So far no success
in getting this running.

PERFORMANCE RESULTS For platform #2
Execution platform FatNode-Pwr5
Details execution platform HPCx
Performance details • Code benefits from SMT (simultaneous multi threading)

• Initial performance results part of D6.2.2

PERFORMANCE RESULTS For platform #3
Execution platform FatNode-Pwr6
Details execution platform Huygens @ SARA
Performance details • Initial tests show the code can benefit greatly from SMT

(simultaneous multi threading), potentially greater benefit than
Pwr5 system. Though SMT runs are extremely noise (wide
fluctuations in runtime between repeat runs). When using large
number of nodes the benefit is completely lost (in contrast to the
experience we have with the Pwr5 system)

• Managed to run benchmarks with 1 and 2 million atoms but (so
far) failed to get a 9 million atom benchmark going. 2 million
atom benchmark shows good scalability on up to 1024 cores.
For 2048 cores the performance drops dramatically. This data
set is not expected to be large enough for the code @ Petascale

• We have a 9 million atom benchmark system. So far no success
in getting this running.

PERFORMANCE RESULTS For platform #4
Execution platform MPP-BG
Details execution platform JuGene @ FZJ
Performance details • Successful running of the 1 and 2 million atom benchmarks

• Very good scalability up to 8192 cores
• Due to memory limitations (2GB per quad core processor

installed) the 1 million atom benchmark can use at most 2
compute task on a quad core processor (-mode=dual), the 2
million atom benchmark can only place 1 task per quad core
processor (-mode=smp)

PERFORMANCE RESULTS For platform #5
Execution platform MPP-Cray
Details execution platform Louhi @ CSC
Performance details • Managed to get the 1 and 2 Million atom benchmarks running.

• Getting the 2 Million atom benchmark running requires fine
tuning of the buffer space assigned to the MPI library. The
small 1 GB/core of memory is clearly restrictive here.

• Initial performance assessment shows the machine to be
comparable in performance to HECToR, if the difference in
clock rates is considered

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 71

RECOMMENDATIONS For Petascaling and optimisation on platform #1 (HECToR)
Expected potential for Petascaling Medium reached, further improvement might be possible
Expected effort to reach Petascaling
potential

Not a PRACE prototype but related to the Louhi system

• Using a 2 Million atom benchmark we can use 4096 cores with
better than 50% efficiency (related to 128 cores)

• For a Peta-scale system using this (or similar e.g. Louhi)
technology a larger benchmark is needed

• So far no success in using the larger 9 Million atom benchmark
available to us

o Might be a matter of not having found the right
environment settings

o Might be a shortcoming in the architecture of the
application, e.g. due to Master/Worker components

o Might be caused by memory consumption
o Needs further investigation

• NAMD 2.6 is several years old. The problems might have been
addressed in a more recent (development version), we will try to
liaise with the developers to clarify

• If such work is to be carried out under PRACE effort levels
can’t be determined at this point.

Anticipated effort: 3 person month, shared on all prototypes
• Investigate feasibility of converting NAMD into a hybrid (MPI

+ OpenMP) which could be more efficient if the memory is a
main obstacle to run peta-scale Benchmark.

• This should benefit all multi-core systems
Anticipated effort: 7 person month, shared on all prototypes

Expected potential for Optimisation Low
Expected effort to reach
Optimisation potential

RECOMMENDATIONS For Petascaling and optimisation on platform #2 (HPCx)
Expected potential for Petascaling Not a PRACE prototype
Expected effort to reach Petascaling
potential

Not a PRACE prototype

Expected potential for Optimisation Not a PRACE prototype
Expected effort to reach
Optimisation potential

Not a PRACE prototype

RECOMMENDATIONS For Petascaling and optimisation on platform #3 (Huygens)
Expected potential for Petascaling Medium or better
Expected effort to reach Petascaling
potential

• Using a 2 Million atom benchmark we can use 1024 cores with
88% efficiency (related to 128 cores)

• The same benchmark (2 M atom) shows extremely poor
performance when used on 2048 cores. Since this performs
reasonable on the Cray XT4 and BlueGene/P up to 8192 cores,
this appears a machine specific issue. The reasons need
understanding and fixing for the architecture underlying
Huygens to be a viable candidate for a Peta-scale system.

• For a Peta-scale system using this technology a larger
benchmark is needed. So far no success in using the larger 9
Million atom benchmark available to us

o Might be a matter of not having found the right
environment settings

o Might be a shortcoming in the architecture of the
application, e.g. due to Master/Worker components

o Might be caused by memory consumption
o Needs further investigation

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 72

• NAMD 2.6 is several years old. The problems might have been
addressed in a more recent (development version), we will try to
liaise with the developers to clarify

• If such work is to be carried out under PRACE effort levels
can’t be determined at this point.

Anticipated effort: 3 person month, shared on all prototypes
• Investigate feasibility of converting NAMD into a hybrid (MPI

+ OpenMP) which could be more efficient if the memory is a
main obstacle to run peta-scale benchmark.

Anticipated effort: 7 person month, shared on all prototypes
Expected potential for Optimisation Low
Expected effort to reach
Optimisation potential

• Initial performance assessment shows the application to benefit
substantially from SMT (simultaneous multi threading).
However:

o These runs suffer from bad noise
o Benefits are lost at large task count

• Tuning of poe (IBM’s MPI library) or the machine might
overcome the issue.

RECOMMENDATIONS For Petascaling and optimisation on platform #4 (JuGene)
Expected potential for Petascaling Medium reached, further improvement might be possible
Expected effort to reach Petascaling
potential

• For a Peta-scale system using this technology a larger
benchmark is needed. So far no success in using the larger 9
Million atom benchmark available to us

o Might be a matter of not having found the right
environment settings

o Might be a shortcoming in the architecture of the
application, e.g. due to Master/Worker components

o Might be caused by memory consumption
o Needs further investigation

Anticipated effort: 3 person month, shared on all prototypes
• Due to memory demands for the large multi-million atom

benchmarks, the quad core processors have to be under-
populated (fewer than 4 compute tasks per processor). This
leaves computing power unused. Converting into a hybrid (MPI
+ OpenMP) could provide a possible mitigation strategy

Anticipated effort: 7 person month, shared on all prototypes
Expected potential for Optimisation Low
Expected effort to reach
Optimisation potential

RECOMMENDATIONS For Petascaling and optimisation on platform #5 (Louhi)
Expected potential for Petascaling Present system to small for assessment. Based on HECToR experience,

Medium should be easily achievable if a larger system was available,
further improvement might be possible

Expected effort to reach Petascaling
potential

• So far no success in using the larger 9 Million atom benchmark
available to us

o Might be a matter of not having found the right
environment settings

o Might be a shortcoming in the architecture of the
application, e.g. due to Master/Worker components

o Might be caused by memory consumption
o Needs further investigation

• NAMD 2.6 is several years old. The problems might have been
addressed in a more recent (development version), we will try to
liaise with the developers to clarify

• If such work is to be carried out under PRACE effort levels
can’t be determined at this point.

• The comments made on HECToR should apply in a similar
fashion, though experience with smaller benchmarks indicate

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 73

that scalability might be slightly worse, most likely due to higher
core to network access point ratio. Needs further investigation.

Anticipated effort: 3 person month, shared on all prototypes
• Investigate feasibility of converting NAMD into a hybrid (MPI

+ OpenMP) which could be more efficient if the memory is a
main obstacle to run peta-scale benchmark

Anticipated effort: 7 person month, shared on all prototypes
Expected potential for Optimisation Low
Expected effort to reach
Optimisation potential

7.2.4 CPMD

Albert Farrés
BSC-CNS

GENERAL
Name of Code, Abbreviation CPMD
Application area(s) ab-initio molecular dynamics
Key numerical method(s) fft’s, dense matrices
Origin (developers, institute) R. Car, International School for Advanced Studies, Trieste, Italy.

M. Parrinello, Dipartimento di Fisica Teorica, Università di Trieste,
Trieste, Italy, and International School for Advanced Studies,
Trieste, Italy.

Current developers CPMD consortium, coordinated by Prof. Michele Parrinello (Chair
of Computational Science, ETH Zurich) and Dr. Wanda Andreoni
(Program Manager of Deep Computing Applications at IBM Zurich
Research Laboratory)

Contact person Alessandro Curioni <cur@zurich.ibm.com>
License policy http://www.cpmd.org/cpmd_licence.html
Copyright IBM Corp. and Max Planck Institute, Stuttgart
Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE, not outside PRACE

PRACE INFORMATION
BCO: name, email, institute Albert Farres <albert.farres@bsc.es>

BSC-CNS, (Spain)
Contributors (PRACE partners) CSC, CINECA, SIGMA, HLRS
Targeted hardware platforms as in BCO
list

MPP-BG, FatNode-Pwr6, Cell, Vector

CODE STATISTICS
Programming language(s) FORTRAN 77
Amount of source lines ~ 174047
Libraries BLAS, LAPACK
Parallellization method MPI
Development platform(s) See source code. More than 100 different configurations for several

platforms
IO characteristics unknown

PORTING REPORT JUGENE
Porting platform IBM Blue Gene/P
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384)

• Compute node: 4-way SMP processor
• Processortype: 32-bit PowerPC 450 core 850 MHz
• Processors: 65536

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 74

• Overall peak performance: 223 Teraflops
• Linpack: 167 Teraflops
• Main memory: 2 Gbytes per node (aggregate 32 TB)
• I/O Nodes: 152
• Networks:

o Three-dimensonal torus (compute nodes)
o Global tree / Collective network (compute nodes,

I/O nodes)
o 10 Gigabit ethernet / Functional network (I/O

Nodes)

• Power Consumption: max.40 kW per rack

2 Service nodes IBM p55A:

• Total number of processors: 8
• Processortype: Power5 1.6 GHz
• Total amount of memory: 32 GB
• Operating System: SuSE Linux Enterprise (SLES 10)

2 Login nodes IBM p55A:

− Total number of processors: 8
− Processortype: Power5 1.6 GHz
− Total amount of memory: 32 GB
− Operating System: SuSE Linux Enterprise (SLES 10)

− Internet address: jugene.zam.kfa-juelich.de

Overall porting result Successfully
General comments
Porting report on programming language
constructs in general

Porting report on libraries used All the libraries needed by CPMD are avalaible on JUGENE system.
Porting report on parallelisation method CPMD is well parallelitzed. No specific development has to be

done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform IBM Blue Gene/P
Details execution platform Same above
Performance details With 128 cores it goes 1.15 times faster than it does in Marenostrum.

With 256 it goes 1.1 times faster.

RECOMMENDATIONS
Expected potential for Petascaling Optimal
Expected effort to reach Petascaling
potential

Expected potential for Optimisation
Expected effort to reach Optimisation
potential

PORTING REPORT SARA
Porting platform Power6
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing)

system.

− 104 nodes

− 16 dual core processors (IBM Power6, 4.7 GHz) per node

− 128 GByte or 256 GByte of memory per node

− 700 TByte of disk space

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 75

− total peak performance is 60 Teraflop/sec

In total, the system has:

− 1664 dual core processors = 3328 cores

− 15.25 TByte of memory

− 700 TByte of disk space

An IBM Power6 processor has the following characteristics:

• Dual core running on 4.7 GHz

• L1 cache: 128 KByte of L1 cache per core (64 KByte data cache
+ 64 KByte instruction cache)

• L2 cache: 4 MByte per core (semi shared: the cache is assigned
a specific core, but the other has a fast access to it)

• L3 cache: 32 MByte per processor

The nodes are interconnected with an Infiniband network providing
an MPI bandwidth of 160 Gbit/sec between neighboring nodes

Overall porting result Successfully
General comments
Porting report on programming language
constructs in general

Porting report on libraries used All the libraries needed by CPMD are avalaible on SARA system
Porting report on parallelisation method CPMD is well parallelitzed. No specific development has to be

done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform Power6
Details execution platform Same above
Performance details With 128 cores it goes 2.2 times faster than it does in Marenostrum.

With 256 it goes 2.5 times faster.

RECOMMENDATIONS
Expected potential for Petascaling Optimal
Expected effort to reach Petascaling
potential

Expected potential for Optimisation
Expected effort to reach Optimisation
potential

7.2.5 Code_Saturne

Andrew Sunderland, Charles Moulinec

STFC Daresbury Laboratory

GENERAL

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 76

Name of Code, Abbreviation Code_Saturne

Application area(s) CFD, heat transfer, turbulence

Key numerical method(s) Finite Volume & Sparse Linear Algebra

Origin (developers, institute) EDF-R&D

Current developers EDF-R&D

Contactperson marc.sakiz@edf.fr, c.moulinec@stfc.ac.uk,
a.g.sunderland@stfc.ac.uk

License policy GPL

Copyright EDF's copyright

Usage rules (within PRACE, outside
PRACE, …)

Free

PRACE INFORMATION

BCO: name, email, institute Andrew Sunderland, andrew.sunderland@stfc.ac.uk, STFC
Daresbury Laboratory, UK

Contributors (PRACE partners) BSC Barcelona, HLRS Stuttgart, SARA

Targeted hardware platforms as in BCO list BGP, Cray XT4/5, Pwr5, FatNode-Pwr6, Cell, Vector

CODE STATISTICS

Programming language(s) 49% Fortran 77, 41% C99, 10% Python

Amount of source lines 500,000 lines

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 77

Libraries BLAS, if activated

Parallellization method MPI

Development platform(s) Clusters, BG/L, BG/P.

IO characteristics read at start, write at end, every x iteration if required

PORTING REPORT

Porting platform MPP-BG/P (at STFC)

Details porting platform Hardware details:

• Model: IBM Blue Gene / P
• Proc Type: PowerPC 450 850 MHz

o double precision, dual pipe floating point
acceleration on each core (3.4 GFlops)

• Clock rate: 850 MHz
• Total Cores: 4096
• Cores Per Chip: 4
• Chips per Compute Card (Node): 1
• Memory per core: 512MB.
• Total Memory: 2048 Gbytes
• Caches:

o Private 32 KB per core L1 cache
o Private 14 stream prefetching per core L2

cache
o Shared 8MB L3 cache

• Interconnect: Proprietary 3D Torus
• 32 I/O nodes ~4 Tbytes disk

Software Details

• OS Version: Linux 2.6.16.46-0.12-ppc64
• Fortran Compilers:

o IBM XLF v11.1
o GNU 4.1.2

• C Compilers:
o IBM XLC v9.0
o GNU GCC v4.1.2

• Libraries: Essl, Blas

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 78

Overall porting result Successful

General comments Porting to BG/P was carried out by cross-compilation.
Compilation flags used are
-O3 -qarch=450d -qtune=450d
No special settings are required in the batch scripts.
The 3 modes, SMP, CO, VN can be used.

Porting report on programming language
constructs in general

Fully compliant with XLF & XLC compilers

Porting report on libraries used No external libraries used

Porting report on parallelisation method Use bgxlf & bgxlc to link all mpi routines & config files.

Porting report on IO No special requirements

Porting Platform IBM p575 Server (HPCx at STFC)

Details Porting Platform

Hardware:
• Model: eServer 575 cluster
• Proc Type: Power5
• Clock rate: 1.5 GHz
• Total Cores: 2560
• Cores Per Chip: 2
• Cores Per Node: 16
• Memory per core: 2GB
• Total Memory: 5120 Gbytes
• Cache: Each core has a 32 Kbyte data cache and a 64 Kbyte
instruction cache. The level 1 data cache has 128-byte lines, is
2-way set associative and write-through. The level 2 cache is
on-chip, shared between the cores. It is a 1.9 Mbyte combined
data and instruction cache, with 128 byte lines and is 10-way
set associative and write-back. The level 3 cache is 36 Mbytes,
off-chip and is shared between the 2 cores. It has 256 byte
lines, and is 12-way set associative and write-back.
• Interconnect: IBM High Performance Switch (HPS). Each
eServer node has two network adapters and there are two links
per adapter, making a total of four links between each of the
frames and the switch network.
• I/O: 72 Tbytes of disk running GPFS. Connected to
computes nodes via HPS

Software details:
• OS version: AIX 5.3
• Compiler versions: IBM XL Fortran compiler
10.01.0000.0007

Overall Porting Result Successful

General Comments The PWR5 is an established platform and porting was
straightforward.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 79

compilation flags used for initial port are:
f90: -q64 -O1
c: -q64 -funsigned-char -qhot -qarch=pwr5
for performance optimisation suggested flags are:
f90: -O3 -qarch=pwr5 -qtune=pwr5
c: -q64 -funsigned-char -O3 -qhot -qarch=pwr5 -qtune=pwr5
No special settings are required in the batch scripts.

Porting report on programming language
constructs in general Code is fully compliant with XLF and XLC compilers.

Porting report on libraries used None

Porting report on parallelisation method Using mpixlf95_r and mpixlc_r compiler variants links mpi
libraries and config files automatically

Porting report on IO No special requirements

Porting Platform Cray XT4 (HECToR)

Details Porting Platform

Model: Cray XT4
• Proc Type: AMD Opteron Dual Core
• Clock rate: 2.8 GHz
• Total Cores: 11328
• Cores Per Chip: 2
• Cores Per Node: 2
• Memory per core: 3GB.
• Total Memory: 33984 Gbytes
• Cache: Separate level 1 caches for data and instructions of
64 kB each. The L1 data cache is 2-way set associative. There
is a combined data and instruction L2 cache of 1 MB for each
core, which is 16-way associative. The L1 data and the L2
cache use 64 byte cache lines. The L2 cache acts as a victim
cache for the L1 cache. Data evicted from the L1 cache gets
established on the L2 cache.
• Interconnect: Cray SeaStar2 3D torus
• I/O: 12 I/O nodes connected to 576 TB of RAID disks
running Lustre

Software details:
• OS version: UNICOS/lc version 2.0.53
• Compiler versions: PGI compilers, version 7.1.4

General Comments

Porting was not problematic for the XT4

Compilation using the GNU compiler:
module swap PrgEnv-pgi PrgEnv-gnu
cc -O or -O2 depending on the source file
ftn -O1, -O2, -O3

Porting report on programming language
constructs in general

Code is fully compliant with GNU compiler.
Currently testing with PGI and Pathscale

Porting report on libraries used None

Porting report on parallelisation method Use of ftn command (pathscale) links in mpi libraries and

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 80

config files automatically

Porting report on IO No special requirements

Porting Platform NEC SX-8 Cluster (HLRS)

Details Porting Platform

Model: NEC SX-8 Distributed-memory multi-vector processor
• Proc Type: dedicated vector CPUs
• Clock rate: 2 GHz
• Total Cores: 72 * 8 CPUs
• Cores Per Chip: N/A
• Cores Per Node: N/A
• Total Memory: 9.2 TB.
• Cache: None
• Interconnect: IXZ 16 GB/s per node
• I/O: 160 TB shared disk, 72 * 140 GB local

Software details:
• Batch system: NQSII
• OS version: TX7: SUSE SLES9, SX8: SUPER-UX 15.1
• Compiler versions:

General Comments

Long compilation times was the only problem
Code_Saturne has been awarded a Gold Capability Incentive
Award for Scalability on HPCx:
http://www.hpcx.ac.uk/services/policies/capability.html

Porting report on programming language
constructs in general Code_Saturne contains several vectorizable loops

Porting report on libraries used None

Porting report on parallelization method MPI

Porting report on IO No special requirements

PERFORMANCE RESULTS

Execution platform IBM Blue Gene/L (Note – pre-runner architecture to
targeted IBM BG/P listed above)

Details execution platform IBM PowerPC 440 800 MHz with IBM interconnect

Performance details 100M Cell Mixer_Grid (Prace Benchmark)

Inclusive of I/O (200 iterations)

Speed-up is relative to 512 core performance

Cores Speed-up Speed-up

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 81

Mode CO Mode VN

512 1

1024 2.01 1.68

2048 3.39 2.99

4096 N/A 5.79

Execution platform IBM Pwr5 Cluster (HPCx)

Details execution platform As IBM Pwr5 listed above

Performance Details 78M Cell Benchmark. N.B. This is a much simpler
computational problem than the official Prace benchmark
dataset. The run involves 50 iterations excusive of I/O.

Cores Time (s)

512 1132.7

1024 614.5

Execution platform Cray XT4 (HECToR)

Details Execution platform As listed above

Performance Details 100M Cell Mixer Grid (Prace Benchmark)

5 iterations, with and without I/O

Cores Time (s)

Inclusive of I/O

Time (s)

Exclusive of I/O

256 2235.3 2014.5

512 1176.8 979.0

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 82

1024 658.2 476.1

2048 559.1 252.1

4096 520.0 123.4

8192 660.5 71.4

RECOMMENDATIONS All Platforms

Expected potential for Petascaling Medium: expect to be able to reach 10k cores with still speed-
up over 5k cores

Expected effort to reach Petascaling potential − I/O needs optimising for petascale architectures
− Preprocessing stage needs improved scaling
− Anticipated manpower required: 3 pms.

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

− Incorporation of high-performance numerical library
routines

− Loop optimisation e.g. on vector
− Cache optimisation of finite volume scheme on scalar

architectures
− Anticipated manpower required: 3 pms.

7.2.6 GADGET

Orlando Rivera
LRZ - Leibniz Rechenzentrum

GENERAL
Name of Code, Abbreviation GADGET
Application area(s) Cosmology, Cosmological structure formation
Key numerical method(s) PDE, Space filling curves
Origin (developers, institute) Dr. V. Springel, Max-Planck-Institute for Astrophysics
Current developers Dr. V. Springel, Max-Planck-Institute for Astrophysics
Contact person Dr. V. Springel <volker@MPA-Garching.MPG.DE>
License policy General Public License GPL
Copyright Volker Springel
Usage rules (within PRACE, outside
PRACE, …)

Free inside and outside of PRACE

PRACE INFORMATION
BCO: name, email, institute Orlando Rivera, rivera@lrz.de , LRZ
Contributors (PRACE partners)

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 83

Targeted hardware platforms as in BCO
list

 MPP-BG, ThinNode-x86, FatNode-Pwr6

CODE STATISTICS
Programming language(s) Ansi C89
Amount of source lines 30932
Libraries FFTW 2.1.5, GSL 1.11, HDF5 (optional)
Parallellization method Pure MPI 1.0
Development platform(s) Altix 4700, LINUX Workstation
IO characteristics By specifying write once every several time steps or at the end.

Binary data written,endian dependent

PORTING REPORT LRZ/HLRB2
Porting platform SGI Altix 4700
Details porting platform • Hardware:

Model: SGI Altix 4700
CPUs: Intel Itanium2 Montecito Dual Core @ 1.6GHz
N-cores: 9728
PEAK Performance: 62.3 Tflops
Memory: 8.5GB shared memory among 2 or 4 processors (low or
high density)
Total Memory : 39 TByte

 Cache:
 L1 Data Cache: integer data only , 16kByte,

 cacheline: 64bytes, 4-way associative.

 L2 Data Cache: 256kBytes, cacheline 128 Bytes
 8-way associativity, Float and integer .
 L3 Cache Data and Instruction: 6MB, cacheline 128Bytes

12-way , associative

Interconnection: NUMAlink 4
IO: 39 Tbyte @ 20 GB/sec.

• Software:

 OS: SLED 10 SP1 (GNU/Linux 2.6.16.54)
 intel C compiler 10.1
 SGI native MPI , MPT
 gsdl 1.11, fftw 2.1.5 with mpi support

Overall porting result Successful
General comments • Because of the large input data set needed , an external mpi

program with 32 mpi-tasks was used to generate and
distributed.

• Compilation straightforward,
• Profiling with VampirTrace , intel trace analyser, and mpiP.

VampirTrace and Intel trace analyser may produce very large
data (> 200GB)

• Hdw counter used PAPI and pfmon. Some minor difficulties ,
but ARCH dependent

Porting report on programming language
constructs in general

• Ansi C89 supported by gcc and intel icc,
• -O3, -falias , -ipo were useds

Porting report on libraries used • Most libraries straightforward. FFTW 2.1.5 is an old version
because its old interface is needed

Porting report on parallelisation method • Pure MPI ver 1.2 used. Specific linkage needed when profiling
tools used

Porting report on IO • Large data Set read/write. Optional with HDF5. Endianness
need to be specified

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 84

PORTING REPORT JUGENE
Porting platform Blue Gene/P
Details porting platform • Hardware:

Model: IBM Blue Gene P
 CPUs:32-bit PowerPC 450 core @ 850 MHz
 N-cores: 65536
 Peak Performance: 223 Tflops
 Memory: 2 Gbytes per node
 Total Memory: 32 TByte

Interconnect: Three-dimensonal torus
• Software:
GNU/Linux 2.6.16.54-0.2.5

 ibm c compiler ver 9.0
 ibm MPI (mpich-based)
 gsdl 1.11, fftw 2.1.5 with mpi support

Overall porting result Successful
General comments − Mostly same as Altix

− Compilation straightforward, with xlc_r or mpcc
− Profiling with mpiP.
− PAPI couldn't be build, PAPI bug

Porting report on programming language
constructs in general

− Ansi C89 supported by xlc_r,
− -05 -qstrict were used

Porting report on libraries used − Most libraries straightforward, need to build from scratch .
Shared libraries were not build

Porting report on parallelisation method − Pure MPI ver 1.2 used. Linkage against static libraries
Porting report on IO − Large data Set read/write. Optional with HDF5. Endianness

need to be specified
PORTING REPORT SARA Huygens
Porting platform IBM pSeries 575
Details porting platform • Hardware:

Model: IBM pSeries 575
 CPUs: 104 nodes, 16 dual core processors (IBM Power6, 4.7 GHz)
 N-cores: 3328
 Peak Performance: 60 Tflops
 Memory: 4 Gbytes per node
 L1 cache: 128 KByte of L1 cache per core (64 KByte data
 cache + 64 KByte instruction cache)

 L2 cache: 4 MByte per core (semi shared: the cache is
 assigned a specific core, but the other has a
 fast access to it)
L3 cache: 32 MByte per processor

Interconnect: Infiniband network, max MPI bandwidth
 160 Gbit/sec
• Software:
GNU/Linux 2.6.16.60

 ibm c compiler ver 9.0
 ibm MPI shared lib
 gsdl 1.11, fftw 2.1.5 with mpi support,

Overall porting result Successful
General comments − Mostly same as JUGENE

− Compilation straightforward, with xlc_r or mpcc

Porting report on programming language
constructs in general

− Ansi C89 supported by xlc_r,
− -05 -qstrict were used

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 85

Porting report on libraries used − Most libraries straightforward, need to build from scratch .
Shared libraries were not build

Porting report on parallelisation method − Pure MPI ver 1.2 used. Linkage against shared libraries
Porting report on IO − Large data Set read/write. Optional with HDF5. Endianness

need to be specified
PERFORMANCE RESULTS
Execution platform Altix 4700
Details execution platform Altix 4700
Performance details See Attachement “altix_6.2.2.doc”

additional timings runs:1024 cpus: 297 sec
PERFORMANCE RESULTS
Execution platform Blue Gene P
Details execution platform Blue Gene P
Performance details Same input as Altix, use it as baseline

 512 cpus: 1593 sec.
 1024 cpus: 773 sec.
 2048 cpus: 406 sec

PERFORMANCE RESULTS
Execution platform IBM pSeries 575 SARA
Details execution platform IBM pSeries 575
Performance details Same input as Altix, use it as baseline

 512 cpus: 496 sec.
 1024 cpus: 276 sec.

RECOMMENDATIONS For Petascaling and optimisation on LRZ altix 4700
Expected potential for Petascaling medium
Expected effort to reach Petascaling
potential

Hybrid MPI-OPENMP could increase the performance on particular
sections of the code.

Larger Segments of data should be prefered to about communication
overhead

Intrusive tracing reduced performance in a factor of 2
1 pm

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

Some sections do not perform FP operations, change algorithms.

RECOMMENDATIONS For Petascaling and optimisation on JUGENE BG/P
Expected potential for Petascaling High
Expected effort to reach Petascaling
potential

With a larger data set a ver large number of processors can be
requested
Some Sections produce a barrier, send_all and all_reduce , whose
effects in this platform are more notorius, as long as all memory
can be used per core, its potential is high
Data Tracing is needed to investigate MPI overhead on this
platform
2 pm

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

Some sections do not perform FP operations, change algorithms.

RECOMMENDATIONS For Petascaling and optimisation on SARA
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

Very fast execution times, However for a large number of cores
more data need to be analysed

The large amount of memory reduces the MPI overhead , it accepts
even larger data set, the application can reach petascaling if enough
ncpus are allowed, for this test we reach the max allowed by the
system (1024 cpu)

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 86

1 pm

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

Some sections do not perform FP operations, change algorithms.

7.2.7 TORB

Xavier Saez
BSC-CNS

GENERAL
Name of Code, Abbreviation TORB / EUTERPE
Application area(s) Fusion plasma
Key numerical method(s) fft’s, sparse solvers
Origin (developers, institute) T.M. Tran, K. Appert, M. Fivaz, G. Jost,

 J. Vaclavik and L. Villard
. Centre de Recherches en Physique des Plasmas, Lausanne
, Switzerland

Current developers R. Kleiber, R. Hatzky, and V. Kornilov
. Max-Planck Institut fuer Plasmaphysik
, Germany

Contact person
License policy Not Public Domain
Copyright
Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE, not outside PRACE

PRACE INFORMATION
BCO: name, email, institute Xavier Sáez Pous <xavier.saez@bsc.es> and Guillaume Houzeaux

<guillaume.houzeaux@bsc.es>, Barcelona Supercomputing Center
Contributors (PRACE partners) None
Targeted hardware platforms as in BCO
list

MPP-BG, FatNode-Pwr6, Cell

CODE STATISTICS
Programming language(s) FORTRAN 90
Amount of source lines 22.000
Libraries PETSC and FFTW
Parallellization method MPI
Development platform(s) Intel, IBM, AIX, Fujitsu
IO characteristics read at start, write periodically

PORTING REPORT JUGENE
Porting platform IBM Blue Gene/P
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384)

• Compute node: 4-way SMP processor
• Processortype: 32-bit PowerPC 450 core 850 MHz
• Processors: 65536
• Overall peak performance: 223 Teraflops
• Linpack: 167 Teraflops
• Main memory: 2 Gbytes per node (aggregate 32 TB)
• I/O Nodes: 152
• Networks:

• Three-dimensonal torus (compute nodes)
• Global tree / Collective network (compute nodes, I/O

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 87

nodes)
• 10 Gigabit ethernet / Functional network (I/O Nodes)

• Power Consumption: max.40 kW per rack

2 Service nodes IBM p55A:

• Total number of processors: 8
• Processortype: Power5 1.6 GHz
• Total amount of memory: 32 GB
• Operating System: SuSE Linux Enterprise (SLES 10)

2 Login nodes IBM p55A:

• Total number of processors: 8
• Processortype: Power5 1.6 GHz
• Total amount of memory: 32 GB
• Operating System: SuSE Linux Enterprise (SLES 10)
Internet address: jugene.zam.kfa-juelich.de

Overall porting result Successfully
General comments Compilation flags: -O3 -qarch=450d -qautodbl=dbl4 -qmaxmem=-1
Porting report on programming language
constructs in general

Porting report on libraries used All the libraries needed by TORB are avalaible on JUGENE system.
Porting report on parallelisation method TORB is well parallelised. No specific development has to be done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform IBM Blue Gene/P
Details execution platform Same above
Performance details The execution of 512 cores takes about half of the execution of 256

cores, so the program scales correctly.

RECOMMENDATIONS
Expected potential for Petascaling Expected scaling to tens of thousand of cores
Expected effort to reach Petascaling
potential

Medium effort. The current code only allows executions until 999
cores.

Expected potential for Optimisation Good potential
Expected effort to reach Optimisation
potential

Great effort. Improve the communication scheduling. Simdization
(the SIMD vectorization) of the loops.

PORTING REPORT SARA
Porting platform Power6
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing)

system.

− 104 nodes

− 16 dual core processors (IBM Power6, 4.7 GHz) per node

− 128 GByte or 256 GByte of memory per node

− 700 TByte of disk space

− total peak performance is 60 Teraflop/sec

In total, the system has:

• 1664 dual core processors = 3328 cores

• 15.25 TByte of memory

• 700 TByte of disk space

An IBM Power6 processor has the following characteristics:

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 88

− Dual core running on 4.7 GHz

− cd .L1 cache: 128 KByte of L1 cache per core (64 KByte
data cache + 64 KByte instruction cache)

− L2 cache: 4 MByte per core (semi shared: the cache is
assigned a specific core, but the other has a fast access to it)

− L3 cache: 32 MByte per processor

The nodes are interconnected with an Infiniband network providing
an MPI bandwidth of 160 Gbit/sec between neighboring nodes

Overall porting result Successfully
General comments Compilation flags: -O3 -q64 -qarch=auto -qautodbl=dbl4 -

qmaxmem=-1
Porting report on programming language
constructs in general

Porting report on libraries used The FFTW library is avalaible on SARA system, but the PETSc
library is not installed.

Porting report on parallelisation method CPMD is well parallelized. No specific development has to be done.
Porting report on IO

PERFORMANCE RESULTS
Execution platform Power6
Details execution platform Same above
Performance details The executions with 256 and 512 cores go 2 times faster than the

executions of Marenostrum.

RECOMMENDATIONS
Expected potential for Petascaling Expected scaling to tens of thousand of cores
Expected effort to reach Petascaling
potential

Medium effort. The current code only allows executions until 999
cores.

Expected potential for Optimisation Good Potential
Expected effort to reach Optimisation
potential

Great effort. Improve the communication scheduling. Simdization
(the SIMD vectorization) of the loops.

7.2.8 ECHAM5

Mark Cheeseman
CSCS

GENERAL
Name of Code, Abbreviation ECHAM5-HAM
Application area(s) Earth & Atmospheric Sciences
Key numerical method(s) Spectral code, FFTs
Origin (developers, institute) Luis Kornblueh, Erik Roeckner

Max Planck Institute for Meteorology
Current developers Luis Kornblueh, Uwe Scholuzweida

Max Planck Institute for Meteorology
Ulrike Lohmann

ETH-Zurich
Contact person Luis Kornblueh <luis.kornblueh@zmaw.de>
License policy Code is freely accessible after site/researcher agrees to MPI’s

Software License Agreement. Licensing is managed by Ms. Sonja
Kempe at MPI <kempe@dkrz.de>.

Copyright Max Planck Institute for Meteorology
Usage rules (within PRACE, outside Free within PRACE. No disclosure/No propagation of the source

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 89

PRACE, …) code.

PRACE INFORMATION
BCO: name, email, institute Mark Cheeseman <mpch@cscs.ch>

CSCS
Contributors (PRACE partners) Juha Lento <Juha.Lento@csc.fi>

CSC
Harald Klimach <klimach@hrls.de>

HRLS
Targeted hardware platforms as in BCO
list

MPP-Cray, FatNode-Pwr6, Vector-SX9

CODE STATISTICS
Programming language(s) F90
Amount of source lines ~50000
Libraries BLAS, LAPACK, NetCDF
Parallellization method MPI and OpenMP
Development platform(s) NEC SX6

Cray XT3
IO characteristics Output frequency specified by user via a namelist. Usually, restart

files generated every model month, diagnostic output generated
every 6 model hours.

PORTING REPORT For XT platforms at CSCS
Porting platform Cray XT3
Details porting platform Hardware:

• Model: Cray XT3
• Proc Type: AMD Opteron Dual Core
• Clock rate: 2.6 GHz
• Total Cores: 3328
• Cores Per Chip: 2
• Cores Per Node: 2
• Memory per core: 1GB.
• Total Memory: 3328 Gbytes
• Cache: Separate level 1 caches for data and instructions of

64 kB each. The L1 data cache is 2-way set associative.
There is a combined data and instruction L2 cache of 1
MB for each core, which is 16-way associative. The L1
data and the L2 cache use 64 byte cache lines. The L2
cache acts as a victim cache for the L1 cache. Data evicted
from the L1 cache gets established on the L2 cache.

• Interconnect: Cray SeaStar 3D torus
• I/O: 12 I/O nodes connected to 31 TB of RAID disks

running Lustre

Software details:

• OS version: UNICOS/lc version 1.5.47
• Compiler versions: PGI compilers, version 7.2.4

Overall porting result Successful
General comments ECHAM5-HAM was already running on all Cray XT platforms at

CSCS. No porting was required.

Changing the number of cores used per test is easy as only a
namelist needs to be modified –i.e. no re-compiling needed.

Makefiles were already available for the XT platform and both the
PGI and PathScale compilers. The principal compiler optimisations
used were:

PGI: –O3 –fast –tp amd64

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 90

PATHSCALE: -O3 –m3dnow –align64 –
march=opteron

NOTE:
of cores used is dependent on the spectral resolution used. T106
allows a maximum of ~640 cores.

Porting report on programming language
constructs in general

FORTRAN 90 code

Porting report on libraries used Libraries used:
• NetCDF Version 3.6.2
• ACML Version 4.0.1a

Porting report on parallelisation method MPI-only parallelisation was used. OpenMP not currently
supported on CSCS’ XT platforms.

Porting report on IO IO characteristics of benchmark:
• Restart files generated at end of job
• Diagnostic output datafiles generated hourly
• Benchmark runs for 4 model days
• Output frequency specified via a namelist

IO is 2nd most time-consuming process. ECHAM5 developers
extremely interested in IO optimisation.

PORTING REPORT For CSCS
Porting platform IBM Power5
Details porting platform Hardware:

• Model: eServer 575 cluster
• Proc Type: Power5
• Clock rate: 1.5 GHz
• Total Cores: 768
• Cores Per Chip: 2
• Cores Per Node: 16
• Memory per core: 2GB
• Total Memory: 1784 Gbytes
• Cache: Each core has a 32 Kbyte data cache and a 64

Kbyte instruction cache. The level 1 data cache has 128-
byte lines, is 2-way set associative and write-through. The
level 2 cache is on-chip, shared between the cores. It is a
1.9 Mbyte combined data and instruction cache, with 128
byte lines and is 10-way set associative and write-back.
The level 3 cache is 36 Mbytes, off-chip and is shared
between the 2 cores. It has 256 byte lines, and is 12-way
set associative and write-back.

• Interconnect: Infiniband.
• I/O: 30 Tbytes of disk running GPFS. Connected to

computes nodes via Infiniband

Software details:
• OS version: SLES 9
• Compiler versions: IBM XL Fortran compiler 9

Overall porting result Successful
General comments Porting ECHAM5-HAM was straight-forward as IBM PowerX

configuration files already existed.

The principal compiler optimisations used were:
-q64 –O2 -qarch=pwr5 -qtune=pwr5 -qessl
NOTES:

1> -O2 was the highest level of optimisation that could be
safely used.

2> 1.7GB of physical memory alloted per MPI task. This
allowed all 16 CPUs per node to be used.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 91

3> # of required CPUs can be selected by the user via a
namelist. It is also dependent on the spectral resolution
used. T106 allows a maximum of ~640 CPUs to be used.

Porting report on programming language
constructs in general

FORTRAN 90 code

Porting report on libraries used Libraries used:
• MPICH (PrgEnv default version)
• ESSL (OS default version)
• LaPACK 3.1.l (built by user)
• NetCDF Version 4.0.0

Porting report on parallelisation method MPI-only and hybrid (MPI-OpenMP) parallelisation runs
performed.

Porting report on IO IO characteristics of benchmark:
• Restart files generated at end of job
• Diagnostic output datafiles generated hourly
• Benchmark runs for 4 model days
• Output frequency specified via a namelist

IO is 2nd most time-consuming process. ECHAM5 developers
extremely interested in IO optimisation.

PERFORMANCE RESULTS For CSCS
Execution platform Cray XT3
Details execution platform Same with the porting platform
Performance details Please find the detailed results in the attached results report

echam5_xt3_cscs.xls.

PERFORMANCE RESULTS For CSCS
Execution platform IBM Power5
Details execution platform Same with the porting platform
Performance details Please find the detailed results in the attached results report

echam5_pwr5_cscs.xls.

RECOMMENDATIONS For Petascaling and optimisation on Cray XT4 (CSC)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

With the T106L31 input datasets, ECHAM5-HAM scales well to
320 cores. A larger dataset (T159L95) is under construction and
should allow greater scalability without any optimisation.

OpenMP directives need to be added to the HAM submodel. Once
completed, the hybrid MPI-OpenMP version should scale quite well
to even higher core counts.

Amount of pm’s: 2pm

Data output mechanism in ECHAM5-HAM creates significant load
imbalance. This imbalance should hopefully be lessened with the
inclusion of multiple IO nodes and MPI-2 directives. Rewriting the
IO modules in ECHAM5-HAM will be extremely beneficial in
increasing its scalability.

Amount of pm’s: 6pm

Expected potential for Optimisation High
Expected effort to reach Optimisation
potential

XT-optimised version of ECHAM5 exists and has been received
from Cray. Optimisations are currently being evaluated so that the
most beneficial ones can be added to the benchmark.

Amount of pm’s: 0.5pms

RECOMMENDATIONS For Petascaling and optimisation at CSCS(IBM Power5)
Expected potential for Petascaling Low-Medium
Expected effort to reach Petascaling Global communication calls (such as MPI_Allreduce and

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 92

potential MPI_Bcast) create a significant performance obstacle. Reducing
these calls will improve scalability. Currently, the T106L31
configuration of ECHAM5-HAM scales well to 128 processors.

Amount of pm’s: 0.5pm

An acute shortage of proper profiling tools on the Linux-on-Power
platform made a performance investigation difficult. ECHAM5-
HAM has internal counters that can sometimes be unreliable.
However, the most recent OS version has allowed a new HPC
Performance Toolkit to be available. Testing has started evaluating
the usefulness of this utility.

Amount of pm’s: 4pm

IO and OpenMP optimisation activities performed for the Cray XT
platform are expected to be beneficial for the Linux-On-Power5
platform as well.

Expected potential for Optimisation High
Expected effort to reach Optimisation
potential

An IBM-optimised version of ECHAM5 exists and has been
received. Optimisations are currently being evaluated so that the
most beneficial ones can be added to the benchmark.

Amount of pm’s: 0.5pms
Further Porting Notes IBM Blue Gene:

Previous attempts to scale ECHAM5 on this architecture by DKRZ
(Hamburg) and IBM failed. It is the opinion of the code developers
(and IBM) that porting/optimisation efforts be ceased.
x86 thin-node:
No real barriers exist in porting ECHAM5-HAM to this platform as
it already runs on a variety of linux-based clusters. CSC was able
to port and run the benchmark on their HP cluster. It is expected
that optimisations performed for the Cray XT and IBM Linux-On-
Power architectures will be beneficial for the x86 thin-node
architecture as well.

Optimisation Notes:
Preliminary work deliverables were drafted and assigned during the
ECHAM5 Workshop on September 15. The first deliverables are
due on October 17. These deliverables include the following:

 A benchmark configuration (reduced walltime
requirement, higher resolution) - CSCS

 Input datasets for the new benchmark configuration –
DKRZ,ETHZ

 Preliminary inclusion of OpenMP into the HAM module –
HRLS

 Analysis of vendor-optimised ECHAM5 benchmarks used
in the recent DKRZ procurement – CSCS

 Inclusion of additional instrumentation calls/functions –
CSCS

 Preliminary analysis of the IO infrastructure – CSC

Other Notes:
A new version of ECHAM was released in October 2008. CSCS,
DKRZ and ETHZ are currently evaluating this version to determine
whether it can be used in the benchmark.

7.2.9 NEMO

Dr. John Donners

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 93

SARA

GENERAL
Name of Code, Abbreviation Nucleus for European Modelling of the Ocean, NEMO
Application area(s) oceanography, climate science
Key numerical method(s)
Origin (developers, institute) Gurvan Madec et al, IPSL
Current developers NEMO team, IPSL
Contactperson Rachid Benshila
License policy CeCiLL
Copyright
Usage rules (within PRACE, outside
PRACE, …)

GYRE configuration is free to use, DRAKKAR is only free to use
within PRACE.

PRACE INFORMATION
BCO: name, email, institute John Donners, SARA
Contributors (PRACE partners)
Targeted hardware platforms as in BCO
list

MPP-Cray, Pwr6, MPP-BG, (vector)

CODE STATISTICS
Programming language(s) Fortran 90
Amount of source lines 82.000
Libraries NetCDF
Parallellization method MPI
Development platform(s)
IO characteristics read at start, write at end, each iteration (depends on configuration)

PORTING REPORT For platform #1 (repeat for platform #2, #3, …)
Porting platform Pwr6
Details porting platform The huygens system at SARA consists of 104 nodes, each with 16

IBM Power6 (4.7GHz) dual-core processors and 128 or 256
gigabyte of internal memory.

− L2 cache: 4 MByte per core
− L3 cache: 32 Mbyte per core
− Infiniband network: MPI bandwidth of 160 gigabit/second

between neighbouring nodes.
− SUSE Linux Enterprise Server 10
− IBM XL C/C++ 9.0, XL Fortran 11.1 Fortran
− NetCDF 3.6.2
− Parallel Operation Environment, version 4.3.2.2-s002a

Overall porting result Successful
General comments
Porting report on programming language
constructs in general

Porting report on libraries used
Porting report on parallelisation method
Porting report on IO

PERFORMANCE RESULTS
Execution platform Pwr6
Details execution platform same as porting platform
Performance details find the performance details and results on

 https://trac.csc.fi/pracewp6-nemo/wiki

RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat for platform

#2, #3, …)
Expected potential for Petascaling scaling is different for both configurations: the GYRE configuration

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 94

scales well and has petascaling potential; the DRAKKAR
configuration seems much less scalable at the moment.

Expected effort to reach Petascaling
potential

− Extremely thin or wide regions for every task may be
advantageous, because the cpu may be able to reuse cache
data from a previous column or row.

 Amount of pm's:0.5
• The NEMO model uses exactly the same region size for

every task, and land regions are also divided over tasks. If
less tasks are given than the multiple of the nr. of tasks in
both directions, the model will first remove tasks with only
land points. There is a minimum nr. of tasks for every
decomposition, where every task has some ocean points to
calculate. The practically usable nr. of tasks therefore
increases in steps which are not powers of 2. Possibly
implement variable column widths or row heights to
account for resulting imbalance? Amount of pm's: 1

• different solvers. Most of the communication is in the
solver for the free surface. Different solvers can have
different scaling characteristics. Amount of pm's: 0.5

• Try to interleave communication and calculation with
Isend/Irecv before calculation and Waits after. Amount of
pm's:0.5

Expected potential for Optimisation medium
Expected effort to reach Optimisation
potential

• Use different compiler flags and see what is the impact on
performance. Compiler flags are platform and compiler
dependent, so these will be different and hard-to-compare
experiments on every platform. Some options possibly
improve cache blocking, see e.g. Cray XT4 benchmark
results. Amount of pm's: 0.2

• 'Cache blocking': Rewrite loops to improve cache reuse.
Most important issue is how to keep code
readable/maintainable. cpu time is equally spread over
many routines. Single routine optimisations can therefore
not be very effective. Advice on how to write such code is
better than just changing the code. Amount of pm's: 1

DRAKKAR: Disk reads the same amount per node, independent of
#tasks? Disk writes per node increase with #tasks? Large variety in
FP stores and L2 misses?

PORTING REPORT For platform #2
Porting platform Cray XT4
Details porting platform − AMD Opteron quad-core (2.3 GHz) processors

− Cray SeaStar2 3D-torus High Speed Network
− Cache (per core):

− Two 64 KB L1 caches (instruction and data)
− 1 MB L2 cache

− 1 GB or 2 GB of memory per core. Peak transfer rate
of 5.3 GB/s

− Lustre parallel file system
Overall porting result Successful
General comments added --fastsse
Porting report on programming language
constructs in general

No large efforts needed. The default small memory model for the
PGI compilers resulted initially in an error when linking the model.
Widening the domain decomposition, i.e. increasing the number of
processes, reduces the memory per process and will fix the problem.

Porting report on libraries used NETCDF-3.6.2
Porting report on parallelisation method
Porting report on IO

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 95

PERFORMANCE RESULTS
Execution platform Cray XT4
Details execution platform
Performance details find the performance details and results on

 https://trac.csc.fi/pracewp6-nemo/wiki
NOTE that the benchmark differs on some minor points:300
timesteps, I/O needed to be done to separate files per task.

RECOMMENDATIONS For Petascaling and optimisation on platform #2
Expected potential for Petascaling Communication uses 50% of the wallclocktime at 512 tasks.
Expected effort to reach Petascaling
potential

It is expected that optimisation on Pwr6, XT4 and BG is very
similar.

Expected potential for Optimisation medium
Expected effort to reach Optimisation
potential

PORTING
REPORT

For platform #3

Porting
platform

IBM BlueGene

Details
porting
platform

− P450 PowerPC chip, quad-core, 850 Mhz
− Each core has own dedicated L1 cache
− 2 GB RAM/node => 512 MB/core (fully occupied)
− Nodes can be fully-, half- or singly-occupied
− Bespoke high-performance interconnect with separate network for global operations
− xlf2003 compiler, mpich MPI library, load-leveler scheduler

Overall
porting
result

Successful

General
comments

i) Some care needed to get pre-processing working correctly. F2003 has signed zero which
must be turned off for NEMO. Edit util/AA_make.gdef to add compiler definitions for
BG/P:

#-Q- bgp #- Global definitions for IBM BlueGene P (MPP)
#-Q- bgp M_K = gmake
#-Q- bgp MPIDIR=/bgsys/drivers/V1R2M0_200_2008-080513P/ppc/comm
#-Q- bgp P_C = /lib/cpp
#-Q- bgp P_O = -P -traditional-cpp -C $(P_P) -I$(MPIDIR)/include
#-Q- bgp F_C = mpixlf2003 -c
#-Q- bgp F_P = -qxlf90=nosignedzero -qrealsize=8 -qstrict
#-Q- bgp w_w = $(F_P) -O3 -qarch=450d -qtune=450 -qsuffix=f=f90
#-Q- bgp F_O = -O3 -qarch=450d -qtune=450 -qfree=f90 $(F_D) $(F_P) -I$(MODDIR) -
I$(MODDIR)/oce -qmoddir=$(MODDIR)/oce -I$(NCDF_INC)
#-Q- bgp F_L = mpixlf2003
#-Q- bgp L_O = $(F_P) $(NCDF_LIB)
#-Q- bgp A_C = ar -r
#-Q- bgp A_G = ar -x
#-Q- bgp C_C = mpixlc -c
#-Q- bgp C_O =
#-Q- bgp C_L = mpixlc
#-Q- bgp prefix = "-WF,-D"

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 96

#-Q- bgp #-
#-Q- bgp NCDF_INC = $(HOME)/netcdf-3.6.2/include
#-Q- bgp NCDF_LIB = -L$(HOME)/netcdf-3.6.2/lib -lnetcdf
#-Q- bgp #-

In particular, 'prefix' is set to the correct incantation for setting compiler-defined
constants.

EdiGet to link stage:

../../../lib/oce/libopa.a(in_out_manager.o): In function
`__in_out_manager_NMOD_ctl_stop':
in_out_manager.F90:(.text+0x804): undefined reference to `flush'

From http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp discovered
that
'flush' in F2003 is a _statement_ and therefore is _not_ CALL'd.

I decided to change the code but have since realised that I could have added
"FLUSH=FLUSH_" to
the 'keys' in the build system.

t ins_make file to add bgp as valid machine type.

Porting
report on
programmin
g language
constructs
in general

Porting
report on
libraries
used

Porting
report on
parallelisati
on method

Porting
report on IO

PERFORM
ANCE
RESULTS

Execution
platform

IBM BlueGene

Details
execution
platform

“scalasca” tool used for profiling on Jugene

Performanc find the performance details and results on https://trac.csc.fi/pracewp6-nemo/wiki

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 97

e details NOTE that the benchmark differs on some minor points:300 timesteps, I/O needed to be done to
separate files per task.

RECOMME
NDATION
S

For Petascaling and optimisation on platform #2

Expected
potential for
Petascaling

− Some filesystems (Lustre) cannot cope with a
program opening ~100s of files in one go. =>

− Parallel-IO - NetCDF4?

Expected
effort to
reach
Petascaling
potential

See Power6

Expected
potential for
Optimisatio
n

medium

Expected
effort to
reach
Optimisatio
n potential

See Power6

7.2.10 CP2K

Pekka Manninen
CSC Finland

GENERAL
Name of Code, Abbreviation CP2K
Application area(s) Computational chemistry
Key numerical method(s) FFT, dense matrix algebra
Origin (developers, institute) University of Zürich
Current developers Axel Kohlmeyer, Christopher J. Mundy, Fawzi Mohamed, Florian

Schiffmann, Gloria Tabacchi, Harald Forbert, William Kuo, Jürg
Hutter, Matthias Krack, Marcella Iannuzzi, Matthew McGrath,
Manuel Guidon, Thomas D. Kuehne, Teodoro Laino, Joost
VandeVondele, Valery Weber

Contactperson Jürg Hutter
License policy GPL
Copyright
Usage rules (within PRACE, outside
PRACE, …)

Free Software

PRACE INFORMATION
BCO: name, email, institute Pekka Manninen, pekka.manninen@csc.fi, CSC Finland
Contributors (PRACE partners) Vegard Eige / Sigma Norway
Targeted hardware platforms as in BCO
list

MPP-BG, MPP-Cray, FN-Pwr6

CODE STATISTICS
Programming language(s) Fortran 95
Amount of source lines 553,043

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 98

Libraries LAPACK, SCALAPACK, FFT (FFTW, ACML, ESSL supported)
Parallellization method MPI
Development platform(s)
IO characteristics Checkpoints and output

PORTING REPORT
Porting platform IBM Blue Gene / P (MPP-BG prototype)
Details porting platform Power-PC 450 cores; Proprietary intereconnect; memory 512 MB

per core
Overall porting result Successful
General comments No large efforts needed; but optimisation must be kept at a

conservative level
Porting report on programming Well written, standards-conforming Fortran 95
Porting report on libraries used FFT interface to IBM ESSL library buggy, FFTW 3.1.5 works fine
Porting report on parallelisation method Unable to take full advantage out of the BG interconnect
Porting report on IO Not an issue

PERFORMANCE RESULTS
Execution platform Same as porting platform
Details execution platform Same as porting platform
Performance details Quickstep DFT dynamics of 512 water molecules

3 fs simulation, wall-time in secs
Using the in-build FFT library (FFTSG) with and without the
improved halo-exchange routines of the development version

#Cores Original w/ improved routines
256 1755.93 1486.43
512 1499.06 1245.63
1024 1268.44 950.56
2048 1573.73 1080.18

RECOMMENDATIONS Load imbalance and the amount of communication is the blockade

for scaling. Not very good code for Blue Gene/P due to modest
scalability and intense CPU and memory demands.

Expected potential for Petascaling Not likely - low
Expected effort to reach Petascaling
potential

?, load balance to be improved in general

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

1 man-months, some inefficiencies in cache utilization; the
utilization of the second FP element of BG/P cores should be
investigated

PORTING REPORT
Porting platform Cray XT5 (MPP-Cray prototype)
Details porting platform AMD 2.3 GHz Barcelona quad-core CPUs; Proprietary

intereconnect; memory 1-2 GB per core
Overall porting result Successful
General comments No large efforts needed
Porting report on programming Well written, standards-conforming Fortran 95; numerics do not

break down even with heavy optimisation
Porting report on libraries used FFT interface to ACML library buggy, FFTW 3.1.5 works fine
Porting report on parallelisation method
Porting report on IO Fast I/O on Cray

PERFORMANCE RESULTS
Execution platform Same as porting platform
Details execution platform Same as porting platform

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 99

Performance details Quickstep DFT dynamics of 512 water molecules
3 fs simulation, wall-time in secs
Using the in-build FFT library (FFTSG) with and without the
improved halo-exchange routines of the development version

#Cores Original w/ improved routines
64 1271.86 1223.14
128 845.50 818.14
256 585.96 544.95
512 527.94 500.07

RECOMMENDATIONS Load imbalance and the amount of communication is the blockade

for scaling
Expected potential for Petascaling Not likely - low
Expected effort to reach Petascaling
potential

?, load balance to be improved in general

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

2, for optimal cache utilization and vectorization

PORTING REPORT
Porting platform IBM Power 6 cluster (FN-Pwr6 prototype)
Details porting platform 4.7 GHz Power-PC CPUs, Infiniband, 4-8 GB/core
Overall porting result Successful
General comments No large efforts needed
Porting report on programming Well written, standards-conforming Fortran 95
Porting report on libraries used ESSL 4.3.1, FFTW 3.1.2 works fine
Porting report on parallelisation method
Porting report on IO

PERFORMANCE RESULTS
Execution platform Same as porting platform
Details execution platform Same as porting platform
Performance details Quickstep DFT dynamics of 512 water molecules

3 fs simulation, wall-time in secs
#Cores w/ improved routines
 64 1164
 128 722
 256 556
 512 512

RECOMMENDATIONS Load imbalance and the amount of communication is the blockade

for scaling
Expected potential for Petascaling
Expected effort to reach Petascaling
potential

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

Cache utilization

7.2.11 GROMACS

Sebastian von Alfthan
CSC Finland

GENERAL

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 100

Name of Code, Abbreviation Gromacs 4.0
Application area(s) Life sciences, Computational chemistry
Key numerical method(s) Particle methods, Spectral methods(FFT)
Origin (developers, institute) Herman Berendsens group, department of Biophysical Chemistry of

Groningen University.
Current developers Head Authors & project leaders:

• Erik Lindahl (Stockholm Center for Biomembrane Research,
SE)

• David van der Spoel (Biomedical Centre, Uppsala, SE)
• Berk Hess (Max Planck Institute for Polymer Research, Mainz,

DE)
Contactperson Erik Lindahl
License policy GPL
Copyright Authors have copyright to their code
Usage rules (within PRACE, outside
PRACE, …)

Free inside & outside PRACE. Any changes should be contributed
back to the original code

PRACE INFORMATION
BCO: name, email, institute Sebastian von Alfthan, alfthan@csc.fi, CSC
Contributors (PRACE partners) PDC,CSCS,NCF
Targeted hardware platforms as in
BCO list

MPP-Cray, FatNode-Pwr6,MPP-BG,

CODE STATISTICS
Programming language(s) C, assembler
Amount of source lines ~1.4M lines of code. ~340k lines of c, ~ 85k lines in header files, ~1M lines

of assembler.
Libraries FFTW,BLAS,LAPACK
Parallellization method MPI
Development platform(s)
IO characteristics With most systems not very demanding. read at start, write at end, write

each n iterations. Automatic snapshoting ability with restarting.

PORTING REPORT For platform #1
Porting platform MPP-CRAY
Details porting platform Current louhi:

XT5 with 800MHZ DDR2 memory.
 OS2.1, GCC 4.2.0 (patched for QC support)
 FFTW 3.1.1, ACML 4.1.0

Overall porting result Successful
General comments Did not encounter any specific problems.
Porting report on programming
language constructs in general

Uses assembler routines for short-ranged forces.

Porting report on libraries used Used FFTW 3.1.1 and ACML 4.1.0 that were installed as modules.
Porting report on parallelisation
method

No issues.

Porting report on IO No issues

PORTING REPORT For platform #2
Porting platform PWR6
Details porting platform Current Huygens:

Kernel: 2.6.16.60-0.2501-ppc64

IBM XL Fortran for Linux, V12.1 Version: 12.01.0000.0000

IBM XL C/C++ for Linux, V10.1 Version: 10.01.0000.0000

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 101

FFTW 3.1.2

Overall porting result Successful
General comments
Porting report on programming
language constructs in general

Uses assembler routines for short-ranged forces.

Porting report on libraries used Used precompiled libraries available on BG/P.
Porting report on parallelisation
method

No issues

Porting report on IO No issues

PORTING REPORT For platform #3
Porting platform MPP-BG/P
Details porting platform Current Jugene:

 FFTW 3.1.2
IBM XL C/C++

Overall porting result Successful
General comments Ported successfully based on instructions from FZJ.
Porting report on programming
language constructs in general

Gromacs has assembler routines developed for the BG/P for calculating
short-ranged forces.

Porting report on libraries used Used precompiled libraries available on BG/P.
Porting report on parallelisation
method

No issues

Porting report on IO No issues

PERFORMANCE RESULTS For platform #1

Execution platform MPP_CRAY
Details execution platform Louhi – see porting platform

Performance details
Algorithms
Long-ranged forces are calculated using the smooth particle-mesh Ewald
(SPME) scheme. This scheme divides the calculation of long-ranged
forces in two parts, a short-ranged calculation in real-space and a Fourier-
space part where the charges are assigned to a grid. The Fourier part
requires two 3D-FFT calculations, to Fourier space and back. As 3D-
FFT:s require all-to-all communication, Gromacs assigns a certain set of
MPI processes to only calculate the Fourier-space part of PME (PME
processes), while the others calculate normal short-ranged interactions
(real-space processes). This enables the code to extract better performance
from the interconnect on a machine with multiple cores per node. In
Gromacs the 3D-FFT is currently only parallelised in one dimension, this
unfortunately sets a great deal of restrictions on the number of processes
one can effectively use with PME. Generally one should aim at having 25-
33% of the processes assigned to long ranged forces. It also limits the
scalability as the communication requirements are higher due to the 1D
implementation.

Alternatively one can also use coarser approximations such as the reaction
field (RF) approximation where the long-ranged Coulomb forces are
approximated via short-ranged interactions. This algorithm removes most
all-to-all communication and should scale much further.

Testcase

The testcase comprised two vesicles in water with 1752 POPC lipids and
334489 water molecules giving in total 1094681 atoms. The system was
provided by Erik Lindahl, a Gromacs developers. Long-ranged forces

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 102

were calcuated with either PME or RF. For PME the grid-dimension of
the test-case in the parallelised direction was 176. The number of
iterations was five times greater for the RF simulation, due to its better
performance.

PME-results

PME/real-space load-balance
Getting the load balance correct between processes calculating PME and
processes calculating short-ranged forces is of crucial importance to get
maximum performance:

N N(PME)/N PME/RS load time(s)
132 0.33 1.15 772
176 0.25 1.45 645
176 0.5 1.01 610
264 0.33 1.56 456
352 0.25 1.89 418
352 0.5 1.70 502
528 0.33 2.52 382
704 0.25 3.04 339

On the XT5 maximum performance is not always achieved when the load
balance is the best possible one. For the case of 352 cores the best
performance is achieved when the load balance suggests that there are far
too few PME nodes. The reason is that with fewer PME processes per
node, the performance of all-to-all operations is significantly increased.
The Cray MPI library doesn't appear to do any message aggregation and
thus the all-to-all algorithm works best if only one process per node is
involved in it.

Node performance
The node-performance is excellent due to the built in X86-64 assembler
routines for short ranged forces. An 88-core simulation achieves a
performance of 2.4 Gflops/core according to Gromacs built-in counters.

Scalability

The scalability for a PME process fraction of 0.25 or 0.5 is:

cores time(s) speedup GFlops
176 610 347.2
352 418 1.46 457.1
704 339 1.23 563.9

The scalability for a PME process fraction of 0.33 is:

cores time(s) speedup GFlops
132 772 267.4
264 456 1.69 430.5
528 382 1.18 513.9

The scalability is limited by the calculation of long ranged forces; the all-
to-all communication this requires does not scale. This is evident in the
fact that for 352 cores optimal performance was obtained for a case with a
greater degree of load imbalance.

RF-results

Scalability
The scalability for the RF test-case is:

cores time(s) speedup GFlops
512 447 1515.6
1024 264 1.69 2567.1
2048 166 1.59 4085.2

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 103

With the RF approximation Gromacs scales extremely well. It also
achieves an impressive flops count of almost 3 Gflops/core for the 512
core simulation. Note that the number of iterations is five times larger
than for the PME runs, thus the execution times cannot be directly
compared.

I/O

For this testcase and many other MD simulations, I/O is not very
demanding. Time spent writing out results is close to 0%.

RECOMMENDATIONS For Petascaling and optimisation on platform #1
Expected potential for Petascaling For PME-simulations the scalability can be improved to one or several

thousands of cores

For RF-simulations the scalability will probably extend to ten thousand
cores, with large enough systems.

• With 2D or 3D-PME the major scalability bottleneck for PME can
be alleviated.

• Optimised communication patterns (all-to-all) with aggregated
messages could help on the Cray-XT5 high-bandwidth medium-
latency network.

• Gromacs doesn't overlap communication with computation. This
could potentially improve scalability as communication costs
could be hidden. This could also help with the scalability of RF
calculations

• Gromacs 4 has a brand new parallelisation and thus we expect that
there will also be additional things that can be tuned.

Expected effort to reach
Petascaling potential

 8 pm (petascaling on all platforms)

Expected potential for
Optimisation

Small.
• Most processor intensive parts of the code are written in well

optimised assembler and accounts for 70% of all floating point
operations.

Expected effort to reach
Optimisation potential

1 pm (optimisation on all platforms)
We will spend some effort to verify that the code is well tuned and that
there are no obvious problems.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 104

PERFORMANCE RESULTS For platform #2

Execution platform Fatnode-PWR6
Details execution platform Huygens – see porting platform

Performance details
PME-results

PME/real-space load-balance
Getting the load balance correct is of crucial importance to get maximum
performance:

N N(PME)/N PME/RS load time(s)
132 0.33 0.937 866
176 0.25 1.361 774
264 0.33 1.015 465
352 0.25 1.426 431
528 0.33 1.185 281

On the PWR6 the best performance is achieved when one third of the
processes is assigned to PME. This is also what the Gromacs
preprocessing tool grompp suggests.

Node performance
The node-performance is good, but not quite as good as on the Cray XT5;
the wall time of smaller runs with 132, 176 and 264 processes is larger.
The reason for this is unclear; we suspect that the hand-tuned assembler
routines have not been specifically tuned for the new Power 6 processors.

Scalability
The scalability for the test-case is much better than on the Cray XT5. The
larger runs with 428 processes executes faster than on the XT5 platform.
The scalability for a PME process fraction of 0.33 is:

cores time(s) speedup GFlops
132 866 226.6
264 465 1.86 422.1
528 281 1.65 698.6

RF-results

Scalability
The scalability for the RF test-case is:

cores time(s) speedup GFlops
256 906 747.5
512 503 1.80 1346.8
1024 281 1.79 2411.3

When one uses the RF approximation Gromacs scales extremely well.
The scalability is better than on the XT5 platform, but the performance
remains lower even for 1024 cores. It achieves a flops count of 2.6
Gflops/core with 512 cores.

RECOMMENDATIONS For Petascaling and optimisation on platform #2
Expected potential for Petascaling For PME-simulations the scalability can be improved to one or several

thousands of cores

For RF-simulations the scalability will probably extend to ten thousand
cores, with large enough systems.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 105

• With 2D- or 3D-PME larger number of PME nodes can be used,
enabling larger simulations

• Gromacs doesn't overlap communication with computation. Doing this
could potentially improve scalability as communication costs could be
hidden.

• Gromacs 4 has a brand new parallelisation and thus we expect that
there will also be additional things that can be tuned.

Expected effort to reach
Petascaling potential

 8 pm (petascaling on all platforms)

Expected potential for
Optimisation

Small; the most processor intensive parts of the code are written in well
optimised assembler.

Expected effort to reach
Optimisation potential

1 pm (optimisation on all platforms)
We will spend some effort to verify that the code is well tuned and that
there are no obvious problems.

PERFORMANCE RESULTS For platform #3

Execution platform BG/P
Details execution platform Jugene – see porting platform

Performance details
PME-results

As there is a runtime limit for small queues with 512 cores the number of
iterations was reduced by half. .

PME/real-space load-balance

N N(PME)/N PME/RS load time(s)
512 0.18 0.835 852
1024 0.18 1.002 462

On the BG/P one can use a much smaller PME fraction while still having
good load balance. This is fortunate, as it allows larger simulations to be
performed.

Node performance
There are assembler routines for the BG/P architecture that have been
enabled at compile time. These are able to extract good performance
from the processors. The low clock frequency of the processors is evident
as much larger simulations have to be run to achieve comparable
performance to the one on the Cray XT5 machine.

Scalability
The scalability the test-case is as follows:

cores time(s) speedup GFlops
512 852 110.3
1024 462 1.84 203.5

Unfortunately one cannot calculate with a larger number of processors as
the parallel algorithm (PME) does not scale any further. Thus
performance is lower than on either the PWR6 or the XT5.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 106

RECOMMENDATIONS For Petascaling and optimisation on platform #3
Expected potential for Petascaling For PME-simulations the scalability can be improved to several thousands

of cores

For RF-simulations the scalability will probably extend to several tens of
thousands of cores, with large enough systems.

• With 2D or 3D-PME larger number of PME nodes can be used,

enabling larger simulations
• Investigating how the torus network of BG/P can be directly mapped to

the domain decomposition used by Gromacs
• Gromacs 4 has a brand new parallelisation and thus we expect that

there will also be additional things that can be tuned.
Expected effort to reach
Petascaling potential

 8 pm (petascaling on all platforms)

Expected potential for
Optimisation

Small; the most processor intensive parts of the code are written in well
optimised assembler.

Expected effort to reach
Optimisation potential

1pm (optimisation on all platforms)
We will spend some effort to verify that the code is well tuned and that
there are no obvious problems.

7.2.12 N3D

Harald Klimach
HLRS

GENERAL
Name of Code, Abbreviation N3D
Application area(s) CFD
Key numerical method(s) FFT, sparse linear solver on structured grids
Origin (developers, institute) Ulrich Rist, IAG, University of Stuttgart
Current developers IAG, University of Stuttgart
Contact person Tillman Friederich <friederich@iag.uni-stuttgart.de>
License policy This code has access restrictions: permission for use must be

obtained from Tillman Friederich <friederich@iag.uni-stuttgart.de>.
Copyright IAG, University of Stuttgart
Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE. No disclosure/No propagation of the source
code.

PRACE INFORMATION
BCO: name, email, institute Harald Klimach <klimach@hlrs.de>

HLRS
Contributors (PRACE partners)
Targeted hardware platforms as in BCO
list

MPP-Cray, ThinNode-x86, FatNode-Pwr6, Vector

CODE STATISTICS
Programming language(s) F90

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 107

Amount of source lines 16088
Libraries EAS3, Netlib (FFT)
Parallellization method MPI, NEC-MicroTasks
Development platform(s) NEC-SX8 (a1.hww.de), Linux Workstations
IO characteristics Read at start and write at end and on restart points (typically around

every 200 iterations, can be specified in the parameter file)

PORTING REPORT For a1.hww.de NEC-SX8
Porting platform NEC-SX8
Details porting platform Hww NEC-SX8 is described in Deliverable 6.1
Overall porting result Successful
General comments As this platform is the main development platform for this

application, there are no issues. The only thing, that needs special
care and may cause conflicts with libraries or instrumentation is the
usage of the global -ew compiler flag for the sxf90 compiler, which
enforces 4 byte integers and reals.

Porting report on programming language
constructs in general

N3D code is written in Fortran 90 and can be compiled using the
provided Makefiles.

Porting report on libraries used Libraries need to be available in the double precision compiled
version compatible to the application itself (compiled with compiler
option -ew), but the required libraries are available for the SX8.

Porting report on parallelisation method Special shared memory parallelisation for this platform available:
NEC-MicroTasking. Just compiling with the systems Fortran 90
compiler is sufficient to gain full parallelisation possibilities.

Porting report on IO IO uses the EAS3 library, which needs to be compiled with a
compatible dataformat (-ew option). No further actions needed to
be taken on IO.

PORTING REPORT For bwGrid
Porting platform x86-TN
Details porting platform Harpertown-Cluster with 8 Cores and 16 GB RAM per node. Nodes

connected over Infiniband interconnect.
Overall porting result In progress.
General comments Propably major adaptions necessary.
Porting report on programming language
constructs in general

N3D code is written in F90 and is fairly portable, however the
problemsize is hard coded during compile time into the executable,
and compilers give up on this due to memory issues with static data
as it seems. Also one of the files is not compilable by the Intel
compiler, but is by the PGI.

Porting report on libraries used Libraries need to be available in the double precision compiled
version compatible to the application itself (compiled with compiler
options -i8 -r8), but the required libraries are available for the
platform.

Porting report on parallelisation method Special shared memory parallelisation is used in N3D: NEC-
MicroTasking. This is not available on the x86 platform and needs
to be replaced (with OpenMP). There is some OpenMP
parallelisation in the code but it seems to be unrelated to the
parallelisation used on the SX. It is unclear if the current MPI-
Implementation, which is relying on Microtasking in tandem, is
suitable at all with that OpenMP parallelisation.

Porting report on IO IO uses the EAS3 library, which needs to be compiled with a
compatible dataformat (-i8 -r8 option). No further actions needed to
be taken on IO.

PERFORMANCE RESULTS For hww NEC-SX8
Execution platform Hww NEC-SX8
Details execution platform See Deliverable 6.1
Performance details Please find the detailed results in the attached results report

N3D_SX8.xls.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 108

RECOMMENDATIONS For Petascaling and optimisation on NEC-SX8 (hww-NEC-SX8)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

Porting N3D is very straightforward and the code is developed on
that platform. It scales up to the complete available machine, so
there is a possibility that it can reach Petascaling potential.
It should be noticed the MPI communication is using mainly
AllToAll routines. Reducing this part would be helpful to improve
the scaling.

Amount of pm’s: 1pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

Most of the computational time spent in the selected testcase is
spent in the FFT calls to the Netlib implementation. Changing
theses to more platform specific implementations should help to
increase the sustained performance on the platform.
Other parts of the application already gain a high sustained
performance.

Amount of pm’s: 1pm

RECOMMENDATIONS For Petascaling and optimisation on x86-TN
Expected potential for Petascaling low
Expected effort to reach Petascaling
potential

High, the used algorithms do not allow distribution on more than a
limited number of processes (depending on the dataset).

Expected potential for Optimisation Medium, the code is not yet optimised for this platform, and there
are features of the architecture that might be better exploited.

Expected effort to reach Optimisation
potential

High:
The algorithms are not designed to fit the needs of thin node x86
platforms, it can be expected to be a lot of work and require some
redesigns to gain optimal performance for this platform.

Amount of pm's: 4pm

7.2.13 AVBP

Bertrand Cirou (also with Francois Rue’s effort)
CINES

GENERAL
Name of Code, Abbreviation AVBP
Application area(s) Turbulent Combustion + CFD
Key numerical method(s) Large Eddy Simulation
Origin (developers, institute)
Current developers Gabriel Staffelbach, CERFACS (Toulouse, FRANCE)
Contact person gabriel.staffelbach@cerfacs.fr
License policy This code has access restrictions: permission for use must be

obtained from gabriel.staffelbach@cerfacs.fr
Copyright CERFACS
Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE. No disclosure/No propagation of the source
code.

PRACE INFORMATION
BCO: name, email, institute Bertrand Cirou, cirou@cines.fr, CINES
Contributors (PRACE partners)
Targeted hardware platforms as in BCO
list

MPP-BG/P, Thin-Node x86, FatNode-Pwr6

CODE STATISTICS

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 109

Programming language(s) F90
Amount of source lines 239578
Libraries Hdf5, szip, Metis
Parallellization method MPI
Development platform(s) SGI ORIGIN 3800, Power 5, generic x86_64, Bull itanium, Cray

XT3/XT4
IO characteristics Write once every several time steps. The output frequency needs to

be specified in the source code by assign a particular parameter.

PORTING REPORT For jade.cines.fr
Porting platform SGI ICE EX 8200
Details porting platform Hardware:

• Model: Cray XT4
• Proc Type: Xeon Harpertown E5472
• Clock rate: 3GHz
• Total Cores: 12288
• Cores Per Chip: 4
• Cores Per Node: 8
• Memory per core: 4GB.
• Total Memory: 49152 Gbytes
• Cache : primary 32-kB instruction cache and
• 32-kB write-back data cache in each core and 12 MB (2 x

6MB) Level 2 cache with Intel Advanced Smart Cache
architecture. The processors’ Data Prefetch Logic

• speculatively fetches data to the L2 cache before an L1 cache
requests occurs, resulting in reduced effective bus latency and
improved performance. The 1600 MHz Front Side Bus (FSB) is
a quadpumped bus running off a 400 MHz system clock
making 12.80 GBytes per second data transfer rates possible

• Interconnect: two planes of infiniband 4x DDR with ConnectX

Mellanox (hypercube network)
• I/O: 20 I/O nodes connected to 640 TB of RAID6 with LSI

controllers, disks running Lustre

Software details:
• OS version: SLES 10 patch 1+SGI ProPack 5SP5
• Compiler versions: Intel 10.1.017

Overall porting result Successful
General comments It was very straightforward to port AVBP to jade.cines.fr

Makefiles are provided for all architectures

Porting report on programming language
constructs in general

AVBP code is written in FORTRAN 90 and can be compiled using
the intel ifort compiler directly.

Porting report on libraries used
Porting report on parallelisation method Using Intel ifort compiler and no other special requirements for the

MPI code porting.
Porting report on IO

PORTING REPORT For vargas.idris.fr
Porting platform IBM Power6
Details porting platform Hardware:

− Model: IBM eServer SMP p575 IH POWER6 cluster
− Proc Type: Power6
− Clock rate: 4.7 GHz
− Total Cores: 3584
− Cores Per Chip: 2
− Cores Per Node: 32
− Memory per core: 8GB

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 110

− Total Memory: 16500 Gbytes
− Cache: Each core has a 64 Kbyte data cache and a 64

Kbyte instruction cache. The level 2 cache is on-chip,
shared between the cores. It is a 4 Mbyte combined data
and instruction cache. The level 3 cache is 32 Mbytes.

− Interconnect: Infiniband 4x DDR
− I/O: 400 Tbytes of disk running GPFS.

Software details:
− OS version: AIX 5.3
− Compiler versions: IBM XL Fortran compiler 11.1.0.3

Overall porting result Successful
General comments Porting AVBP to vargas.idris.fr is straightforward. Some minor

issues on compiler flags usage had to be solved.

Porting report on programming language
constructs in general

AVBP code is written in FORTRAN 90 and can be compiled using
the IBM XL MPI Fortran compiler.

Porting report on libraries used AVBP needed to be linked with a specific HDF5 library on
vargas.idris.fr to avoid a GPL License problem with libz.

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.
Porting report on IO

PERFORMANCE RESULTS For vargas.cines.fr
Execution platform IBM eServer SMP p575 IH POWER6 cluster
Details execution platform Same with the porting platform
Performance details No results. Only one node was available at this time.

PERFORMANCE RESULTS For jade.cines.fr
Execution platform SGI ICE 8200 EX
Details execution platform Same with the porting platform
Performance details Optimal scalability on 4096 cores

10 % below optimal on 8192 cores
RECOMMENDATIONS For Petascaling and optimisation on x86_64 + infiniband
Expected potential for Petascaling Good
Expected effort to reach Petascaling
potential

Numerical stability on allreduce
Amount of pm’s: 2pm

Expected potential for Optimisation Low, AVBP code is already written with performances in mind
Expected effort to reach Optimisation
potential

Amount of pm’s: 6pm

7.2.14 HELIUM

Xu Guo (also with the effort from Jon Hill and Andrew Sunderland
EPCC

GENERAL
Name of Code, Abbreviation HELIUM
Application area(s) Atomic Physics
Key numerical method(s) Sparse linear algebra
Origin (developers, institute) Jonathan Parker, Ken Taylor, Queen's University Belfast
Current developers Queen's University Belfast
Contact person Ken Taylor <k.taylor@qub.ac.uk>
License policy This code has access restrictions: permission for use must be

obtained from Ken Taylor <k.taylor@qub.ac.uk>.
Copyright Queen's University Belfast

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 111

Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE. No disclosure/No propagation of the source
code.

PRACE INFORMATION
BCO: name, email, institute Xu Guo <xguo@epcc.ed.ac.uk>

EPCC, The University of Edinburgh
Contributors (PRACE partners) Jon Hill <jon@epcc.ed.ac.uk>

EPCC, The University of Edinburgh

Andrew Sunderland <a.g.sunderland@dl.ac.uk>
STFC Daresbury

Targeted hardware platforms as in BCO
list

MPP-BG, MPP-Cray, FatNode-Pwr6

CODE STATISTICS
Programming language(s) FORTRAN 90
Amount of source lines 14569 (in one file)
Libraries
Parallellization method MPI
Development platform(s) HPCx (IBM Power 5), SGI ORIGIN 3000, INTEL 64 bit

PENTIUM machines , DELL (maybe on ITANIUMS) , Cray
(AMD opterons) , Honeywell Bull , NEWTON, LINUX WORK
STATIONS

IO characteristics Write once every several time steps. The output frequency needs to
be specified in the source code by assign a particular parameter.

PORTING REPORT For Louhi @ CSC
Porting platform Cray XT4 / XT5 (MPP-Cray)
Details porting platform Hardware:

• Model: Cray XT4/XT5
• Proc Type: AMD Opteron Quad Core
• Clock rate: 2.3 GHz
• Cores Per Chip: 4
• Cores Per Node: 4 cores for XT4 (i.e. 1 processor per

node), 8 cores for XT5 (i.e. 2 processors per node)
• Memory per core: mostly 1 GB/core, except one XT4

cabinet having 2GB/core and one XT5 cabinet having
2GB/core.

• Interconnect: Cray SeaStar2+ 3D torus
• I/O: Lustre

Software details:

• OS: UNICOS/lc
• Compiler versions: PGI compilers, version 7.2.4;

PathScale compilers, version 3.1;
Overall porting result Successful
General comments 1. Problem size and cores number

The cores number and memory size required for the code execution
are related to the parameters value in the source code, so not all the
cores number or problem size can be selected for the benchmark
tests.

On Cray XT4 part, the problem size 770 and 1540 were
benchmarked with (66, 105), 253, (406), 630, 990, 1540 cores.

On Cray XT5 part, the problem size 770 and 1540 were
benchmarked with (66, 105), 253, (406) cores.

2. Compiling
No Makefile is provided along with the source code. On the Cray

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 112

XT4/XT5 system, the HELIUM code can be compiled using either
PGI FROTRAN90 compiler or PathScale FORTRAN90 compiler,
as below:

With the module PrgEnv-pgi loaded:
ftn -fast -Mipa=fast,inline helium.f90 -o helium

With the module PrgEnv-pathscale loaded:
ftn –O3 –OPT:Ofast helium.f90 -o helium

The HELIUM source code can be compiled directly by the PGI
compiler, but it should be noticed that using the PGI compiler may
encounter a reallocation limit compiling problem if some
parameters in the source code has a large value.

If using the PathScale compiler, the current version code then needs
some minor modifications because of the FORTRAN 90 syntax
checking. Note that one module can not be used in both the routine
and its subroutines which are defined inside the routine body.

3. Memory limit
HELIUM code consume memory a lot, so even with a successfully
build, the execution may failed due to the memory size limitation.

Porting report on programming language
constructs in general

HELIUM code is written in FORTRAN 90 and can be compiled
using the Fortran 90 compiler.

Porting report on libraries used
Porting report on parallelisation method Using PGI f90 compiler or PathScale f90 compiler for the MPI

code compiling.
Porting report on IO The IO frequency was specified in the test cases’ source code. It

will define how many times the output will be written out during
the execution. In the benchmarks on the Cray XT4/XT5 prototype,
the total time steps was defined as 80 and the output was written out
once every 20 time steps.

PORTING REPORT For HECToR
Porting platform Cray XT4 (dual core MPP-Cray)

(This platform is not a prototype, but related to the prototype Louhi
Cray XT4/XT5.)

Details porting platform Hardware:
• Model: Cray XT4 (dual core)
• Proc Type: AMD Opteron Dual Core
• Clock rate: 2.8 GHz
• Total Cores: 11328
• Cores Per Chip: 2
• Cores Per Node: 2
• Memory per core: 3GB/core.
• Total Memory: 33984 Gbytes
• Cache: Separate level 1 caches for data and instructions of

64 kB each. The L1 data cache is 2-way set associative.
There is a combined data and instruction L2 cache of 1
MB for each core, which is 16-way associative. The L1
data and the L2 cache use 64 byte cache lines. The L2
cache acts as a victim cache for the L1 cache. Data evicted
from the L1 cache gets established on the L2 cache.

• Interconnect: Cray SeaStar2 3D torus
• I/O: 12 I/O nodes connected to 576 TB of RAID disks

running Lustre

Software details:

• OS: UNICOS/lc

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 113

• Compiler versions: PGI compilers, version 7.1.4;
PathScale compilers, version 3.0.

Overall porting result Successful
General comments See the comments above for Louhi Cray XT4/XT5.

Problem size 1540 scaling with 66, 105, 253, 406, 630, 990, 1540
cores are benchmarked on Hector Cray XT4 (dual core). Problem
size 682 and 1364 scaling with 253 and 496 cores are also
benchmarked for D6.2.2.

Porting report on programming language
constructs in general

HELIUM code is written in FORTRAN 90 and can be compiled
using the Fortran 90 compiler.

Porting report on libraries used
Porting report on parallelisation method Using PGI f90 compiler or PathScale f90 compiler for the MPI

code compiling.
Porting report on IO The IO frenquency was specified in the test cases’ source code: for

the benchmark tests with 40 time steps, the output was written out
once every 10 time steps; for the benchmark tests with 80 time
steps, the output was written out once every 20 time steps.

PORTING REPORT For Huygens @ SARA
Porting platform IBM Power6 (FatNode-Pwr6)
Details porting platform Hardware:

• Model: IBM eServer pSeries 575
• Proc Type: Power 6
• Clock rate: 4.7 GHz
• Total Cores: 3328
• Cores Per Chip: 2
• Cores Per Node: 32
• Total Memory: 15.25 TByte
• Cache: L1 (per core) – 128KB; L2 (per core, semi shared:

the cache is assigned a specific core, but the other has a
fast access to it) – 4MB; L3 (per processor) – 32MB;

• Interconnect: The nodes are interconnected with an
Infiniband network providing an MPI bandwidth of 160
Gbit/sec between neighboring nodes.

Software details:

• OS: SuSE Linux SLES10 SP2
• Compiler versions: IBM XL Fortran compiler version 12.1

Overall porting result Successful
General comments 1. Problem size and cores numbers

Problem size 1540 and cores numbers 253, 406, 630, 990, 1540 are
selected for the benchmarking for the prototype Huygens Pwr6.

2. Compiling
The code was compiled by the command line as below:
mpfort -qfree=f90 –O3 -qessl helium.f90 -o helium

To compile the Fortran 90 code on Huygens Pwr6, the flag -
qfree=f90 must be used for the mpfort.

The Flag –qessl is not necessary for the compiling, but could
improve the execution performance as the ESSL will replace the
Lapack for the matrix calculation.

3. Running
Not all the cores number can be selected for the benchmarking, so
there is a big possibility of not fully allocating tasks on nodes.
Therefore in the job script, the total tasks number and total node
number should be required separately, for example:

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 114

 #@ total_tasks = 253
 #@ node = 8
Otherwise the total tasks number will be set as the node number
multiply by 32 by default.

Porting report on programming language
constructs in general

HELIUM code is written in FORTRAN 90 and can be compiled
using the IBM XL MPI Fortran compiler.

Porting report on libraries used HELIUM can be linked with the ESSL scientific routine library on
Huygens which will make a performance improvement.

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.
Porting report on IO The IO frenquency was specified in the test cases’ source code: for

the benchmark tests on Huygens the total time steps was set as 80
and the output was written out once every 20 time steps.

PORTING REPORT For HPCx
Porting platform IBM Power5 (Fatnode-Pwr5)

(This platform is not a prototype, but related to the prototype
Huygens Pwr6)

Details porting platform Hardware:
• Model: IBM eServer 575 cluster
• Proc Type: Power5
• Clock rate: 1.5 GHz
• Total Cores: 2560
• Cores Per Chip: 2
• Cores Per Node: 16
• Memory per core: 2GB
• Total Memory: 5120 Gbytes
• Cache: Each core has a 32 Kbyte data cache and a 64

Kbyte instruction cache. The level 1 data cache has 128-
byte lines, is 2-way set associative and write-through. The
level 2 cache is on-chip, shared between the cores. It is a
1.9 Mbyte combined data and instruction cache, with 128
byte lines and is 10-way set associative and write-back.
The level 3 cache is 36 Mbytes, off-chip and is shared
between the 2 cores. It has 256 byte lines, and is 12-way
set associative and write-back.

• Interconnect: IBM High Performance Switch (HPS). Each
eServer node has two network adapters and there are two
links per adapter, making a total of four links between
each of the frames and the switch network.

• I/O: 72 Tbytes of disk running GPFS. Connected to
computes nodes via HPS

Software details:

• OS: AIX 5.3
• Compiler versions: IBM XL Fortran compiler

10.01.0000.0007
Overall porting result Successful
General comments 1. Problem size and cores number

Problem size 682 and 1364 scaling with 253 and 496 cores were
benchmarked for D6.2.2.

2. Compiling
The compiling command is suggested inside the HELIUM source
code as below:
mpxlf90_r -qlanglvl=extended -qfree=f90 -q64 -qrealsize=8 -O4 -
qarch=pwr5 -qtune=pwr5
-qessl -qsuffix=f=f90 helium.f90 -o helium

Note that never use –O5.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 115

3. Running
On HPCx, when running the helium, the max stack limit is 400MB.

When the problem size is very large, the default memory size per
core (i.e. 2GB) may not be enough and therefore cause the job
running failed. Specify less number of tasks per node by adding the
following line in the job script:
#@ tasks_per_node = <n>
where <n> is the tasks number assigned to each node that is less
than 16, e.g. 10. In that case, the total cores number used is the
same, but the memory size per core is increased.

Porting report on programming language
constructs in general

HELIUM code is written in FORTRAN 90 and can be compiled
using the IBM XL MPI Fortran compiler.

Porting report on libraries used HELIUM can be linked with the ESSL scientific routine library on
HPCx.

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.
Porting report on IO The IO frenquency was specified in the test cases’ source code: for

the benchmark tests with 40 time steps, the output was writen out
once every 10 time steps; for the benchmark tests with 80 time
steps, the output was writen out once every 20 time steps.

PORTING REPORT For BlueGene/P @ STFC
Porting platform IBM BlueGene/P (MPP-BG/P)

(This platform is not a prototype, but related to the prototype
JeGene BlueGene/P.)

Details porting platform Hardware details:

• Model: IBM Blue Gene / P
• Proc Type: PowerPC 450 850 MHz

o double precision, dual pipe floating point
acceleration on each core (3.4 GFlops)

• Clock rate: 850 MHz
• Total Cores: 4096
• Cores Per Chip: 4
• Chips per Compute Card (Node): 1
• Memory per core: 512MB.
• Total Memory: 2048 Gbytes
• Caches:

o Private 32 KB per core L1 cache
o Private 14 stream prefetching per core L2 cache
o Shared 8MB L3 cache

• Interconnect: Proprietary 3D Torus
• 32 I/O nodes ~4 Tbytes disk

Software Details

• OS Version: Linux 2.6.16.46-0.12-ppc64
• Fortran Compilers:

o IBM XLF v11.1 (mpixlf90)
o GNU 4.1.2

• C Compilers:
o IBM XLC v9.0
o GNU GCC v4.1.2

Libraries: Essl, Blas

Overall porting result Successful

General comments Porting to BG/P was carried out by cross-compilation.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 116

Basic Compilation flags used are
-qlanglvl=extended -qfree=f90 -qrealsize=8 -qsuffix=f=f90
–qessl

For optimised performance add the options
-O3 -qarch=450d -qtune=450

 Notes
1. Compiling with -qessl gives improved performance over linking
explicitly to the Essl library
2. Loadleveler batch jobs require the setting
#@ stack_limit = 200MB

Helium benchmarks with large local memory overheads may fail in
VN mode, due to lack of available memory per core.

Porting report on programming language
constructs in general

The HELIUM code is written in FORTRAN 90 and can be
compiled using the IBM XL MPI Fortran compiler (with
-qlanglvl=extended).

Porting report on libraries used Engineering and Scientific Subroutine Library (ESSL) (see note in
General comments above)

Porting report on parallelisation method The code uses MPI. The mpixlf90 compiler configuration script
automatically links in the appropriate mpi libraries and header files.

Porting report on IO The IO/time step frequency can be specified in the test cases’ source
code. For all benchmark tests, the frequency was set to write output
every 20 time steps for a total of 80 time steps.

PORTING REPORT For Hector X2
Porting platform Cray X2 (Vector)

(This platform is not a prototype, but related to the prototype Cray
XT4 and vector NEC SX9.)

Details porting platform Hardware:
• Model: Cray X2 (vector)
• Proc Type: X2 vector processors
• Clock rate: 1.6GHz
• Proc per node: 4
• Total cores: 112
• Vector pipes per processing unit: 8
• Memory per processing unit: 7.5 GB/processing unit
• Interconnect: Black Widow interconnection network

Software details:

• Compiler version: Cray compilers 6.0.0.5
Overall porting result Successfully
General comments 1. Problem size and cores number

The problem size 308, 770 and 1540 were benchmarked with (28),
66, 105 cores.

2. Compiling
Only the Cray compiler can be used for the compiling on X2:

To use modules for X2:
module purge
module use /opt/ctl/modulefiles
module add PrgEnv-x2
module add pbs

With the module PrgEnv-x2 loaded:
ftn –O 3 helium.f90 -o helium

The current version code then needs some minor modifications
because of the FORTRAN 90 syntax checking. Note that one

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 117

module can not be used in both the routine and its subroutines
which are defined inside the routine body.

3. Running
To run the job using X2, the job script must contains:
#PBS -q vector
#PBS -A z01-X2
And add -a x2 in the aprun command.

Porting report on programming language
constructs in general

HELIUM code is written in FORTRAN 90 and can be compiled
using the Fortran 90 compiler.

Porting report on libraries used
Porting report on parallelisation method Using Cray f90 compiler for the MPI code compiling.
Porting report on IO The IO frequency was specified in the test cases’ source code. On

X2, the total time step was set as 80 and the output was written out
once every 20 time steps.

PERFORMANCE RESULTS For Louhi @ CSC
Execution platform Cray XT4/XT5
Details execution platform Same with the porting platform
Performance details On the Cray XT4 part, HELIUM scales well up to 1540 cores.

1GB/core memory is enough for most of the running with problem
size 770 and 1540. For the running requires more memory size per
core, use the cores with 2GB/core memory instead but will have a
very poor performance. Some executions were not available due to
that.

The performance on XT4 and XT5 are similar. Using the PGI
compiler and PathScale compiler (with the general optimisation
flags used, see above of porting) have roughly similar performance.

Please find the detailed results data in the attached results report
helium_cray.xls.

PERFORMANCE RESULTS For HECToR XT4
Execution platform Cray XT4 (dual core)
Details execution platform Same with the porting platform
Performance details Scale well up to 1540 cores. Performance results are similar to the

results on Louhi Cray XT4.

For the running requires more memory size per core, place 1 task
per core rather than fully allocation on the node, but performance
was very poor.

Using PathScale compiler can have a better performance compared
with using PGI compiler (with the general optimisation flags used,
see above of porting). The final results reported are those using
PathScale compiler.

Please find the detailed results data in the attached results report
helium_hector.xls and helium_cray.xls.

PERFORMANCE RESULTS For Huygens @ SARA
Execution platform IBM Power6
Details execution platform Same with the porting platform
Performance details Code scale well up to 1540 cores and can have a roughly 85%

efficiency with 1540 cores (related to 630 cores).

Link with the ESSL lib will improve the code performance.

Please find the detailed results data in the attached results report

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 118

helium_pwr6.xls.

PERFORMANCE RESULTS For HPCx
Execution platform IBM Power5
Details execution platform Same with the porting platform
Performance details Please refer to D6.2.2 and find the detailed results data in the

attached results report helium_hpcx.xls.

PERFORMANCE RESULTS For BG/P @ STFC
Execution platform IBM BG/P
Details execution platform Same with the porting platform
Performance details Please find the detailed results in the attached results report

helium_bgp.xls.

PERFORMANCE RESULTS For Hector X2
Execution platform Cray X2 (vector)
Details execution platform Same with the porting platform
Performance details Code scale up to 105.

Performance is OK but not as good as expected. The expected
results should be around 5 times faster than the Hector XT4 but
actually is only around 3 times.

Please find the detailed results data in the attached results report
helium_cray.xls.

RECOMMENDATIONS For Petascaling and optimisation on Cray XT4/XT5 (Louhi)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

Porting HELIUM is straightforward and the code scale well to 1540
cores on Louhi, so there is a possibility that it can reach Petascaling
potential.

However, the memory size per core could be a big bottleneck and
therefore need to select suitable parameters values for a required
problem size and cores number.

Currently Louhi seems not allow user to half populate the node or
quarter populate the node. If this is allowed by the system, it may
be helpful for the scaling.

Amount of pm’s: 4pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

There are a number of subroutines having long loops that can be
further optimised.

Further compiler optimisation, i.e. using special flags or linking
with special libs, may improve the performance.

Some performance profiling may help to find out the further
bottleneck or potential problem for scaling.

Amount of pm’s: 4~6pm

RECOMMENDATIONS For Petascaling and optimisation on Cray XT4 (HECToR)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

The code scale well to 1540 cores on HECToR, so there is a
possibility that it can reach Petascaling potential.

See other more comments for Cray XT4/XT5 (Louhi).

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 119

It should be noticed from the MPI profiling results (from the
D6.2.2) that some synchronisation time is quite expensive.
Reducing this part will be helpful for the scaling improvement.

Amount of pm’s: 4pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

There are a number of subroutines having long loops. For example,
the most expensive user routine Incr_Result_w_1_Over_R12_terms
of module Local_Ham_Matrix is mainly a loop. These routines can
be further optimised.

Further compiler optimisation, i.e. using special flags or linking
with special libs, may improve the performance.

Amount of pm’s: 6pm

RECOMMENDATIONS For Petascaling and optimisation on IBM Power6 (Huygens @

SARA)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

HELIUM is easy porting and scales well up to 1540 cores. The
parallel performance scaling speed tailed off with the increasing
cores number but is acceptable when cores number up to 1540, so
there is a possibility that it can reach Petascaling potential.

Amount of pm’s: 3pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

Using proper compiler flags to build the HELIUM code for
optimisations or linking with selected libraries could be quite useful
for improving the scaling and performance, but need more
investigation for the compilers used for each platform.

Do some performance profiling, e.g. MPI Trace and user routine
execution time profiling, to help find out the bottleneck for the
scaling performance. Then some focused effort will be required for
those bottlenecks.

Amount of pm’s: 4~6pm.

RECOMMENDATIONS For Petascaling and optimisation on IBM Power5 (HPCx)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

MPI_Barrier appears to be a main cause of slow performance and
occupies as much time as some of the heavily used subroutines. It
may be possible to reduce these calls. The code currently scales
well to 496 processors and with a reduction of MPI_Barrier calls,
this code improve further.

It should be noticed that when using 496 cores for the problem size
1364 test case benchmarking, the pure running (without any
profiling) of HELIUM succeed, but the MPI profiling results had no
output. Not clear about the reason, but can not avoid a potential
problem of running HELIUM using large number cores for large
problem size. This should be investigated more.

Amount of pm’s: 4pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

The majority of time is spent in 4-6 routines, so a focused effort is
possible.

Amount of pm’s: 6pm.

RECOMMENDATIONS For Petascaling and optimisation on IBM BG/P (BlueGene @

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 120

STFC)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

Performance scales well up to 990 cores so the code has Petascaling
potential.

Profiling Tools are not currently available on STFC’s BG/P. Further
insight will be gained from runs on Jugene BG/P, were detailed
performance analysis tools can be applied.

Amount of pm’s: 3pm

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

Helium outputs large amounts of temporary data and hardware
parallel I/O performance on BG/P is relatively limited. There may
be software changes that can be made to improve this.

Profiling Tools are not currently available on STFC’s BG/P. Further
insight will be gained from runs on the Jugene BG/P, where
detailed performance analysis tools can be applied.

Amount of pm’s: 3pm

RECOMMENDATIONS For Petascaling and optimisation on Cray X2 (Hector)
Expected potential for Petascaling Unknown
Expected effort to reach Petascaling
potential

Only 112 cores are available on the current Hector X2, so it still
unknown whether X2 has the petascaling potential. Benchmarking
on more cores is necessary.

Amount of pm’s: unknown

Expected potential for Optimisation Medium
Expected effort to reach Optimisation
potential

The current performance is not quite ideal. Can using profiling tool,
e.g. CrayPat, to find out the bottleneck.

Amount of pm’s: 4~6pm

7.2.15 TRIPOLI4

Jean-Christophe Trama
CEA

GENERAL
Name of Code, Abbreviation TRIPOLI®
Application area(s) Nuclear energy : core physics, radiation protection, criticality
Key numerical method(s) Monte Carlo
Origin (developers, institute) CEA Saclay SERMA R&D unit
Current developers CEA Saclay SERMA R&D unit
Contact person Jean-Christophe Trama, jean-christophe.trama@cea.fr
License policy code available from the NEA databank (www.nea.fr) and RSICC

(www-rsicc.ornl.gov)
TRIPOLI-4 version 3 is available for all use
TRIPOLI-4 version 4 is available for R&D and teaching only

Copyright TRIPOLI® is a registered trade mark of CEA
Usage rules (within PRACE, outside
PRACE, …)

cf NEA and RSICC licences, the code may also be used under
specific licences granted by CEA

PRACE INFORMATION
BCO: name, email, institute Jean-Christophe Trama, jean-christophe.trama@cea.fr, CEA Saclay

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 121

Contributors (PRACE partners) GENCI
Targeted hardware platforms as in BCO
list

Thin nodes, BLG

CODE STATISTICS
Programming language(s) C++
Amount of source lines 400000
Libraries no external lib.
Parallellization method native (TCP/IP sockets)
Development platform(s) Linux, Unix (DEC/OSF1, SUN/SOLARIS, IBM/AIX)
IO characteristics write once every several time steps. The output frequency needs to

be specified in the input deck.

PORTING REPORT For CEA CCRT Platine
Porting platform BULL Novascale 3045 (Thin node)
Details porting platform Hardware details:

• 932 computational nodes – 26 I/O nodes
• Each node; ItaniumII, Montecito (double core – 1.6Ghz) –

24 Go RAM
• Interconnect: Infiniband
• Storage: 420 TB- Lustre

Software details
• BULL Advanced Server 4
• Intel 10.1 – g++ v4

Overall porting result Successful
General comments A production run of TRIPOLI has been successfully launched on

CEA CCRT Platine. A whole nuclear reactor core has been
calculated on 1000 processors with a very good scaling factor (up to
80 %) with a reasonable amount of effort.

Porting report on programming language
constructs in general

g++ compiler is okay, first test show good results for the intel
native compiler.

Porting report on libraries used no external lib.
Porting report on parallelisation method embarrassingly parallel ! (Monte Carlo method, sets of independent

particules)
Porting report on IO standard

PERFORMANCE RESULTS CEA CCRT Platine
Execution platform same as porting platform
Details execution platform
Performance details The input set is describing a whole nuclear core, 1000 cores, linear

speed up up to 1000 core, 80 % efficiency.

RECOMMENDATIONS
Expected potential for Petascaling high
Expected effort to reach Petascaling
potential

around 6 pm to modify the information exchange architecture to run
more than 1000 proc.
Specific effort may be needed on IO for very large number of
results.

Expected potential for Optimisation The code is already very optimised for parallel operation (direct
parallelisation of sets of independent particles, intrinsic to the
Monte Carlo method)

Expected effort to reach Optimisation
potential

low.

7.2.16 PEPC

Lukas Arnold
FZJ

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 122

GENERAL
Name of Code, Abbreviation Pretty Efficient Parallel Coulomb solver, PEPC
Application area(s) Plasma physics
Key numerical method(s) Tree-code for rapid computation of long-range Coulomb forces in

N-body particle systems
Origin (developers, institute) Paul Gibbon, FZJ
Current developers Paul Gibbon
Contactperson Paul Gibbon
License policy freely available
Copyright Forschungszentrum Jülich GmbH
Usage rules (within PRACE, outside
PRACE, …)

to be clarified

PRACE INFORMATION
BCO: name, email, institute Lukas Arnold

l.arnold@fz-juelich.de
FZJ

Contributors (PRACE partners) none
Targeted hardware platforms as in BCO
list

MPP-BG/P, MPP-Cray, FatNode-Pwr6

CODE STATISTICS
Programming language(s) Fortran 90
Amount of source lines 24500
Libraries none
Parallellization method MPI
Development platform(s) PWR6-JuMP
IO characteristics read at start, the output frequency can be choosen in the parameter

file (run.h); no output is performed in the benchmarks included in
this report

PORTING REPORT For JuMP(FZJ)
Porting platform FatNode-Pwr6
Details porting platform Hardware:

− 14 SMP nodes with 32 SMT processors each (total 448)

− Processortype: Power6 4.7 GHz

− Overall peak performance: 8.4 Teraflops

− Linpack: 5.4 Teraflops

− Main memory: 14 x 128 Gbytes (aggregate 1.8 TB)

− InfiniBand (MPI communication)

− 10 Gigabit Ethernet (I/O)

− 1 Gigabit Ethernet (cluster management)

− Disk capacity for system data: 4.5 TBytes

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 123

− Disk capacity for user data: 1.0 PBytes

− Migration storage for user data: 1.5 PBytes

Software:

− Operating system: AIX 5.3

− Operating mode: interactiv and batch

− Compiler versions: IBM AIX compiler (xlf
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1)

Overall porting result Successful
General comments Porting PEPC to JuMP is basic, because JuMP is a development

platform. JuBE is used for the benchmarking.

The platform dependent settings need to be set in makefile.defs,
which result in the following compilation command on JuMP:

mpxlf90_r -q64 -qtune=pwr6 -qarch=pwr6 -O3

This settings are set by JuBE.

The main makefile calls the makefiles in the directories lpepcsrc
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed.

The problem size, i.e. the number of particles, can be set in the
configuration file run.h, which needs to be in the executing
directory. This nuber is set by JuBE.

Nothing in the PEPC code/config needs to be set to choose the
nuber of MPI processes. PEPC distributes the computation on all
available processes automatically.

Porting report on programming
language constructs in general

PEPC compiles directly with the IBM AIX fortran compiler.

Porting report on libraries used none used
Porting report on parallelization method Using AIX MPI compiler wrapper.
Porting report on IO The output is switched off (idump parameter in run.h).

PORTING REPORT huygens(SARA)
Porting platform FatNode-Pwr6
Details porting platform Hardware:

− 104 SMP nodes with 32 SMT processors each (total 3328)

− Processortype: Power6 4.7 GHz

− Overall peak performance: 60 Teraflops

− Main memory: 83 x 128 Gbytes + 18 x 256 Gbytes

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 124

(aggregate 15.2 TB)

− InfiniBand (MPI communication)

− Disk capacity: 700 TBytes

Software:

− Operating system: Linux (SuSE)

− Operating mode: interactiv and batch

− Compiler versions: IBM AIX compiler (xlf 11.1; xlc 9.0)
Overall porting result Successful
General comments Porting PEPC to huygens is basic, because it is very similar to

JuMP.

The platform dependent settings need to be set in makefile.defs,
which result in the following compilation command on JuMP:

mpfort -qfree=f90 -q64 -qtune=pwr6 -
qarch=pwr6 -O3

This settings are set by JuBE.

The main makefile calls the makefiles in the directories lpepcsrc
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed.

The problem size, i.e. the number of particles, can be set in the
configuration file run.h, which needs to be in the executing
directory. This nuber is set by JuBE.

Nothing in the PEPC code/config needs to be set to choose the
nuber of MPI processes. PEPC distributes the computation on all
available processes automatically.

Porting report on programming
language constructs in general

PEPC compiles directly with the IBM AIX fortran compiler.

Porting report on libraries used none used
Porting report on parallelization method Using AIX MPI compiler wrapper.
Porting report on IO The output is switched off (idump parameter in run.h).

PORTING REPORT For JUGENE
Porting platform MPP-BG/P
Details porting platform Hardware:

− 16384 compute nodes with 4-way SMT processors (total
65536 processors)

− Processortype: PowerPC 450 850 MHz

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 125

− Overall peak performance: 223 Teraflops

− Linpack: 167 Teraflops

− Main memory: 2 Gbytes per node (aggregate 32 TB)

− Three-dimensonal torus (compute nodes)

− Global tree / Collective network (compute nodes, I/O
nodes)

− 10 Gigabit Ethernet (I/O)

− Disk capacity for system data: 4.5 TBytes

− Disk capacity for user data: 1.0 PBytes

− Migration storage for user data: 1.5 PBytes

Software:

− Operating system: CNL

− Operating mode: interactive and batch

− Compiler versions: IBM AIX compiler (xlf
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1)

Overall porting result successful
General comments All settings are set by PABS.
Porting report on programming
language constructs in general

Porting report on libraries used
Porting report on parallelization method
Porting report on IO

PORTING REPORT For louhi
Porting platform MPP-Cray
Details porting platform Hardware:

− CPU: 2.3 GHz AMD Opteron 64 bit quad-core processors

− Number of nodes: 1012 computing nodes

− Memory: 1 GB or 2 GB memory per core.

− Interconnect: Seastar 2+

− Set up physically in 11 cabinets.

− Architechture: MPP

− I/O subsystem: Lustre, 70 TB

Software:

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 126

− Operating system: CNL

− Operating mode: interactiv and batch

− Compiler versions: PGI compiler version 7.2.4

Overall porting result successful
General comments Porting PEPC to louhi is streight forward.

The platform dependent settings need to be set in makefile.defs,
which result in the following compilation command on louhi:

ftn -O3

The architecture options are set by default; this settings are set by
JuBE.

The main makefile calls the makefiles in the directories lpepcsrc
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed.

The problem size, i.e. the number of particles, can be set in the
configuration file run.h, which needs to be in the executing
directory. This nuber is set by JuBE.

Nothing in the PEPC code/config needs to be set to choose the
nuber of MPI processes. PEPC distributes the computation on all
available processes automatically.

Porting report on programming
language constructs in general

PEPC compiles directly with the PGI fortran compiler.

Porting report on libraries used none used
Porting report on parallelization method Using PGI MPI compiler wrapper.
Porting report on IO The output is switched off (idump parameter in run.h).

PERFORMANCE RESULTS For JuMP
Execution platform FatNode-Pwr6
Details execution platform Same with the porting platform
Performance details

PERFORMANCE RESULTS For huygens
Execution platform FatNode-Pwr6
Details execution platform Same with the porting platform
Performance details

PERFORMANCE RESULTS For platform JUGENE
Execution platform MPP-BG/P
Details execution platform Same with the porting platform
Performance details

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 127

PERFORMANCE RESULTS For platform louhi
Execution platform MPP-Cray
Details execution platform Same with the porting platform
Performance details

RECOMMENDATIONS For Petascaling and optimization on all platforms
Expected potential for Petascaling High (all platforms)
Expected effort to reach Petascaling
potential

the scalability of PEPC is in the moment limited to up to 4k - 8k
processes due to the used memory structure, i.e. the memory
requirements grow with the number of processes. The developer
are working on this urgent problem, whereas the developement
time scales are large.

0PM
Expected potential for Optimization Medium
Expected effort to reach Optimization
potential

0PM

7.2.17 GPAW

Jussi Enkovaara
CSC Finland

GENERAL
Name of Code, Abbreviation GPAW
Application area(s) Nanoscience, materials science
Key numerical method(s) finite differences, sparse solvers
Origin (developers, institute) J. J. Mortensen, Technical Univ. Denmark
Current developers Several developers in CSC and in universities in Finland, Denmark,

Sweden and Germany.
Contactperson J. J. Mortensen, Technical Univ. Denmark
License policy GPL
Copyright GPL
Usage rules (within PRACE, outside
PRACE, …)

PRACE INFORMATION
BCO: name, email, institute Jussi Enkovaara, jussi.enkovaara@csc.fi, CSC
Contributors (PRACE partners) CINECA
Targeted hardware platforms as in BCO
list

MPP-BG, MPP-Cray, FatNode-Pwr6

CODE STATISTICS
Programming language(s) Python, C
Amount of source lines 42000 + 10000
Libraries LAPACK, BLAS
Parallellization method MPI
Development platform(s)
IO characteristics typically write at end…

PORTING REPORT For platform #1
Porting platform MPP-Cray
Details porting platform Cray XT4 2.1 GHz Quad-core opteron, PGI 7.2.2, ACML 4.1.0, xt-

MPT 3.0.1
Overall porting result Successful
General comments

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 128

Porting report on programming language
constructs in general

Static build of python required

Porting report on libraries used
Porting report on parallelisation method
Porting report on IO
PERFORMANCE RESULTS For platform #1
Execution platform MPP-Cray
Details execution platform
Performance details See https://trac.csc.fi/pracewp6-gpaw/wiki/Deliverable_6.2.2%3A

RECOMMENDATIONS For Petascaling and optimisation on platform #1
Expected potential for Petascaling medium/high
Expected effort to reach Petascaling
potential

small

Expected potential for Optimisation medium
Expected effort to reach Optimisation
potential

medium

PORTING REPORT For platform #2
Porting platform MPP-BG
Details porting platform Blue Gene/P 32-bit PowerPC 450 core 850 MHz
Overall porting result Succesfull
General comments There were some small problems due to features/bugs in

BlueGene’s math-library. For example, with certain input the pow
function took huge amount of time, and these problems required
workarounds in the source code. Cross-compilation in Blue Gene
was challenging especially as by accident it was possible to use
wrong libraries (i.e. libraries not build for the compute nodes)
without clear problems. With certain input code behaved correctly,
while other input resulted in undefined behavior.

Porting report on programming language
constructs in general

Python itself was not a major problem after all, but problems were
related just to C-code and C-libraries

Porting report on libraries used
Porting report on parallelisation method
Porting report on IO

PERFORMANCE RESULTS For platform #2
Execution platform MPP-BG
Details execution platform
Performance details Only initial tests have been run

RECOMMENDATIONS For Petascaling and optimisation on platform #2
Expected potential for Petascaling
Expected effort to reach Petascaling
potential

Expected potential for Optimisation
Expected effort to reach Optimisation
potential

PORTING REPORT For platform #3
Porting platform FatNode-Pwr6
Details porting platform IBM dual-core Power6, 4.7 GHz
Overall porting result Successful
General comments
Porting report on programming language
constructs in general

Porting report on libraries used
Porting report on parallelisation method
Porting report on IO

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 129

PERFORMANCE RESULTS For platform #3
Execution platform FatNode-Pwr6
Details execution platform
Performance details Only initial tests have been run

RECOMMENDATIONS For Petascaling and optimisation on platform #3
Expected potential for Petascaling
Expected effort to reach Petascaling
potential

Expected potential for Optimisation
Expected effort to reach Optimisation
potential

7.2.18 ALYA

Guillaume Houzeaux and Raúl de la Cruz
BSC-CNS

GENERAL

Name of Code, Abbreviation ALYA

Application area(s) Computational Mechanics

Key numerical method(s) Sparse linear algebra, Unstructured mesh

Origin (developers, institute) G. Houzeaux, M. Vázquez, BSC-CNS (Spain)

Current developers G. Houzeaux, M. Vázquez

Contact person <guillaume.houzeaux@bsc.es>, <mariano.vazquez@bsc.es>,
<josem.cela@bsc.es>

License policy This code has access restrictions: permission for use must be obtained
from Contact persons.

Copyright BSC-CNS

Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE. No disclosure/No propagation of the source
code.

PRACE INFORMATION

BCO: name, email, institute Raúl de la Cruz <raul.delacruz@bsc.es>
BSC-CNS, (Spain)

Contributors (PRACE partners)

Targeted hardware platforms as in BCO
list

Cell

CODE STATISTICS

Programming language(s) F90

Amount of source lines 200000

Libraries Metis

Parallellization method MPI/OpenMP

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 130

Development platform(s) Marenostrum (Power PC970), Windows, BlueGene L/P, Linux
clusters

IO characteristics Write once every several time steps. The output frequency needs to be
specified in the source code by assign a particular parameter.

PORTING REPORT CELL

Porting platform Maricel

Details porting platform Hardware:
• Model: IBM Cell/B.E. cluster
• Proc Type: Cell/B.E.
• Clock rate: 3.2 GHz
• Total Cores: 72
• Cores Per Chip: 1 PPU + 8 SPU's
• Cores Per Node: 2 PPU's + 2x8 SPU's
• Memory per core: 4 GB
• Total Memory: 4 GB
• Cache: L1 (32 KB)/L2 (2 MB) associated to PPU. Local store

associated to SPU'S.
• Interconnect: InfiniBand
• I/O: Hypernode

Software details:
• OS version: Redhat 5.2, Fedora 7
• Compiler versions: ppu-gcc, spu-gcc (SDK3.1)

Overall porting result Basic porting: code is running on PPE. Porting to one SPE almost
done. Full porting (use all SPE's) is in progress.

General comments Missing wrappers for some libraries of the f90 compiler

Porting report on programming language
constructs in general

Porting report on libraries used METIS: no specific problem

Porting report on parallelisation method Porting has been carried out on only one node and one SPE’s
Vectorization still to be done. Full prototype will be available in
december.

Porting report on IO

PERFORMANCE RESULTS

Execution platform

Details execution platform

Performance details

RECOMMENDATIONS

Expected potential for Petascaling Medium to high

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 131

Expected effort to reach Petascaling
potential

Alya is already running on thousands of processors. Explicit solver:
perfect speedup up to 5000 CPU's on MareNostrum and BG/L.
Implicit solver: speedup between 40% and 95% efficiency depending
on the test case. IO strategy must be specially designed for
petascaling: NETCDF format may be chosen.

Amount of pm’s: 2pm

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

Element loops have been rewritten to prepare the code for
vectorization. More work must be done. Relation memory
access/computing still too high.
For explicit solver, work concentrate on 2 subroutines: 2 element
loops. For implicit solver, work should concentrate on 4 subroutines
(2 element loops+2 algebraic solvers): divide elements loops. For
solvers: Cell version of some iterative and direct algebraic solvers
have already been ported to Cell (Linpack).

Amount of pm’s: 4pm.

7.2.19 SIESTA

M.Cytowski, M. Filocha, M.Szpindler
PCSS Poland

GENERAL
Name of Code, Abbreviation SIESTA
Application area(s) Ab initio molecular dynamics simulations of molecules and solids.
Key numerical method(s) Dense matrices, FFTs, ..
Origin (developers, institute) Departamento de Fisica de la Materia Condensada, Universidad

Autonoma de Madrid
Jose M. Soler

Current developers • Emilio Artacho (Department of Earth Sciences, University
of Cambridge)

• Julian Gale (Nanochemistry Research Institute,
Department of Applied Chemistry, Curtin University of
Technology)

• Alberto Garcia (Institut de Ciencia de Materials, CSIC -
Universidad Autónoma de Barcelona)

• Javier Junquera (Departamento de Ciencias de la Tierra y
Física de la Materia Condensada, Universidad de
Cantabria)

• Richard M. Martin (Department of Physics, University of
Illinois at Urbana-Champaign)

• Pablo Ordejon (Institut de Ciencia de Materials, CSIC -
Universidad Autónoma de Barcelona)

• Daniel Sanchez-Portal (Unidad de Física de Materiales,
Universidad del País Vasco)

• Jose M. Soler (Departamento de Física de la Materia
Condensada, Universidad Autónoma de Madrid)

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 132

Contact person siesta@uam.es
License policy Tree kinds of licenses:

• Academic License for Individuals (register required; code
modification allowed)

• Academic License for Computing Centers (register
required; only licensed and registers users; unlimited
number of workstations; code modifications allowed)

• Non academic – commercial use through Nanotec
Electronica (http://www.nanotec.es)

Copyright The Copyright-Holder is The Fundacion General de la Universidad
Autonoma de Madrid (FGUAM – http://ewan.fg.uam.es)

Usage rules (within PRACE, outside
PRACE, …)

Free within PRACE, not free outside PRACE

PRACE INFORMATION
BCO: name, email, institute M. Filocha, m.filocha@icm.edu.pl, PCSS, Poland
Contributors (PRACE partners)
Targeted hardware platforms as in BCO
list

Cell

CODE STATISTICS
Programming language(s) Fortran 90
Amount of source lines More than 105 000
Libraries Metis, BLAS, SCALAPACK
Parallellization method MPI
Development platform(s) Prepared compiling directions for following architectures: Cray

XT-3, Cray T3e, Itanium Cluster, Altix, IBM SP2 with PPC3,
MacOS X, JS21 (Marenostrum) and other

IO characteristics Read at start, write periodically

PORTING REPORT For platform #1 (repeat for platform #2, #3, …)
Porting platform Cell
Details porting platform 3 IBM blades located in BladeCenter H chasis:

• 2xQS21
• 1xLS21

Hardware configuration of the target platform:

• Model: IBM QS21 blades
• CPU Type: Cell BE
• Clock rate: 3.2 GHz
• Total Cores: 36
• Cores per Chip: 9
• Cores per Node: 18
• Memory per Node: 2 GB
• Total Memory: 4 GB
• Infiniband

Software details:

• OS: Fedora 8
• Compiler version: IBM XLF for Cell 11.1

Overall porting result Successful
General comments We defined the porting step to be a process of compiling Siesta

code on PPE with the use of IBM XLF compiler. In this
terminology we see the usage of SPEs and vectorization to be an
optimisation step. This is currently work in progress.

One compiler bug has been found. The code was modified in order
to prevent compiler from crash. The bug reason was segmented out
of the code and will be reported to IBM developer groups.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 133

Porting report on programming language
constructs in general

Siesta is written in Fortran 90. Dynamic memory allocation is used.
Cell XLFortran PPU compiler crashed on some of the specific
Fortran 90 constructs (to be reported elsewhere).

Porting report on libraries used Till now the following libraries where used:
• Metis v. 4.0.1 – downloaded from

http://glaros.dtc.umn.edu/gkhome/metis/metis/download
and compiled with the use of GCC on PPU

• LAPACK – standard Fedora package was used (this will
be probably exchanged with specific Cell Lapack
implementation)

• BLAS – standard Fedora package was used (this will be
probably exchanged with specific Cell Blas
implementation)

The main problem we encountered during the PPU porting step was
that specific Cell Lapack library is not a full Lapack
implementation. The complex functions are still missing. These will
have to be specially linked from other source.

Porting report on parallelisation method The parallelisation method used in Siesta is MPI.
Porting report on IO

PERFORMANCE RESULTS For platform #1 (repeat for platform #2, #3, …)
Execution platform Cell
Details execution platform
Performance details The standard Siesta benchmark suite is used (Tests/ directory).

RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat for

platform #2, #3, …)
Expected potential for Petascaling Medium
Expected effort to reach Petascaling
potential

Approximately 2 or 3 pm’s. The parallel version should be tested
across few QS21 blades. QS22 blades should be also taken into
consideration/tests.

Expected potential for Optimisation Large
Expected effort to reach Optimisation
potential

Approximately 2 pm’s. The code should be implemented on the
whole Cell BE architecture (PPE + 8 SPEs). Some of the library
calls could be taken to SPE side. It is highly possible that some
parts of the code will have to be rewritten to C (for SPE
compatibility) and called from within Fortran code.

7.2.20 BSIT

Mauricio Araya
BSC-CNS

GENERAL

Name of Code, Abbreviation BSIT

Application area(s) Computational Geophysics

Key numerical method(s) Explicit finite difference scheme, Structured mesh

Origin (developers, institute) M. Araya, M. Hanzich, F. Rubio, A.C. Lesage BSC-CNS (Spain)

Current developers M. Araya, M. Hanzich, F. Rubio, A.C. Lesage BSC-CNS (Spain)

Contact person <mauricio.araya@bsc.es>, <mauricio.hanzich@bsc.es>,
<josem.cela@bsc.es>

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 134

License policy This code has access restrictions: no permission for use.

Copyright Repsol YPF and BSC-CNS

Usage rules (within PRACE, outside
PRACE, …)

No disclosure/No propagation of the source code.

PRACE INFORMATION

BCO: name, email, institute Mauricio Araya <mauricio.araya@bsc.es>
BSC-CNS, (Spain)

Contributors (PRACE partners)

Targeted hardware platforms as in BCO
list

Cell/B.E.

CODE STATISTICS

Programming language(s) C and F90

Amount of source lines 40000

Libraries Librt

Parallellization method MPI

Development platform(s) Maricel Cell/B.E.

IO characteristics Write once every several time steps. The output frequency needs to be
specified in the source code by assign a particular parameter.

PORTING REPORT CELL

Porting platform Maricel

Details porting platform Hardware:
• Model: IBM Cell/B.E. cluster
• Proc Type: Cell/B.E.
• Clock rate: 3.2 GHz
• Total Cores: 72
• Cores Per Chip: 1 PPU + 8 SPU's
• Cores Per Node: 2 PPU's + 2x8 SPU's
• Memory per core: 4 GB
• Total Memory: 4 GB
• Cache: L1 (32 KB)/L2 (2 MB) associated to PPU. Local store

associated to SPU'S.
• Interconnect: InfiniBand
• I/O: Hypernode

Software details:
• OS version: Redhat 5.2, Fedora 7
• Compiler versions: ppu-gcc, spu-gcc (SDK3.1)

Overall porting result Full porting done

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 135

General comments Performance analysis underway

Porting report on programming language
constructs in general

Porting report on libraries used General purpose library utilization

Porting report on parallelisation method MPI not thoroughly tested

Porting report on IO Good expected results

PERFORMANCE RESULTS

Execution platform QS20 blades

Details execution platform

Performance details 30% of the machine peak performance achieved

RECOMMENDATIONS

Expected potential for Petascaling High

Expected effort to reach Petascaling
potential

Developments in the queue management system for the
embarrassingly parallel character of the external layer of BSIT.

Amount of pm’s: 1pm

Expected potential for Optimisation Medium

Expected effort to reach Optimisation
potential

Optimisation has reached a good performance for this kind of
algorithm (explicit finite difference). Further optimisation can be
expected but in an marginal range.

Amount of pm’s: 2pm.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 136

7.3 Example of Code Integration into JuBE

The following is an example of setting up a benchmark application for a single platform
(EPSRC/EPCC’s HPCx, an IBM Power5 system). The benchmark is a small scaling example
(using two processor counts) of HELIUM.
The first step was to create add HPCx to the platform.xml file:

1 <platform name="IBM-SP5-HPCx">
2 <params
3 make = "make"
4 rm = "rm -f"
5 ar = "ar"
6 arflags = "-rs"
7 ranlib = "/usr/bin/ranlib"
8 cpp = "/usr/bin/cpp"
9 cppflags = "-P"
10 f77 = "xlf_r"
11 f77flags = "-qtune=pwr5 -qarch=pwr5"
12 f90 = "xlf90_r"
13 f90flags = "-qtune=pwr5 -qarch=pwr5"
14 cc = "xlc_r"
15 cflags = "-qtune=pwr5 -qarch=pwr5"
16 cxx = "xlC_r"
17 cxxflags = "-qtune=pwr5 -qarch=pwr5"
18 mpi_f90 = "mpxlf90_r"
19 mpi_f77 = "mpxlf_r"
20 mpi_cc = "mpcc_r"
21 mpi_cxx = "mpCC_r"
22 ldflags = "-qtune=pwr5 -qarch=pwr5"
23 mpi_dir = ""
24 mpi_lib = ""
25 mpi_inc = ""
26 mpi_bin = ""
27 blas_dir = ""
28 blas_lib = "-lessl"
29 lapack_dir = "-L/usr/local/lib"
30 lapack_lib = "-lessl -llapack"
31 fftw3_dir = "-L/usr/local/packages/fftw/lib"
32 fftw3_lib = "-ldfftw -lm"
33 fftw3_inc = "-I/usr/local/packages/fftw/include"
34 fftw2_dir = ""
35 fftw2_lib = ""
36 fftw2_inc = ""
37 netcdf3_dir = ""
38 netcdf3_lib = ""
39 netcdf3_inc = ""
40 hdf5_dir = "-L/usr/local/packages/hdf5/lib -

L/usr/local/packages/hdf5/zlib/lib"
41 hdf5_lib = "-lhdf5_fortran -lhdf5 -lgpfs -lz"
42 hdf5_inc = "-I/usr/local/packages/hdf5/include"
43 module_cmd = ""
44 />
45 </platform>
46

This creates several variables that can be used in later XML files. Step two was to create the
XML files needed for HELIUM. These are:

• bench-platform.xml

• compile.xml

• prepare.xml

• execute.xml

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 137

• verify.xml

• analyse.xml

7.3.1 bench-platform.xml

1 <!--
2 PRACE Benchmark Suite
3
4 JUBE benchmark configuration schema for: HELIUM
5
6 Contact: jon@epcc.ed.ac.uk
7 -->
8 <bench name = "HELIUM" platform= "IBM-SP5-HPCx" >
9
10 <!-- ** -->
11
12 <benchmark name="strong" active="1">
13 <compile cname="$platform" version="new"
14 nblocks="`(-1+sqrt(8*$tasks+1))/2`"
15 xlast="`1364/((-1+sqrt(8*$tasks+1))/2)`" />
16 <tasks threadspertask="1" taskspernode="16" nodes="15.8125,31" />
17 <prepare cname="standard" />
18 <execution cname="$platform" iteration="1" />
19 <verify cname="standard" />
20 <analyse cname="standard" />
21 </benchmark>
22
23 <!-- ** -->
24
25 </bench>

The above benchmark consists of two runs; one of 253 processors and one of 496 processors
on the platform labelled IBM-SP5-HPCx and defined above. A code can have several
benchmarks, which are kept in the same bench.xml file. Each platform has a separate
bench.xml file. These should be named with the platform name, e.g. bench-IBM-SP5-
HPCx.xml, bench-Cray-XT4-Louhi.xml, etc.
HELIUM requires that the size of a “block” (nblocks) be fixed for a certain number of
processors and that ‘xlast’ (xlast) is related to the problem size and processor count. HPCx
(the platform for this test) has 16 processors per node, therefore the two processor counts
needed require 15.8125 and 31 nodes respectively. JuBE will multiply threadspertask (1),
taskspernode (16), and nodes to work out the number of tasks for each run (line 15). This
number is available as a variable, $tasks. As HELIUM requires that nblocks be set
according to the number of processors in the source code, this number is set up as a variable
$nblock on line 14. In order to keep a fixed problem size, $xlast is also altered.This will be
available in later XML files.

7.3.2 compile.xml

For each platform that the benchmark code is to be run on, an XML definition is required. All
platforms are kept in the same file.

26 <compilation>
27
28 <!-- predefined vars:
29 $outdir -> output directory for temporary compile files
30 $id -> identifier of this benchmark run
31 -->
32
33 <compile cname="IBM-SP5-HPCx">
34 <!-- Specification of source files to copy into temporary build
35 directory -->
36 <src directory="./src" files="*.f90.in Makefile.in Makefile.defs.in" />

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 138

37
38 <substitute infile="helium.f90.in" outfile="helium.f90">
39 <sub from="#NBLOCKS#" to="$nblocks" />
40 <sub from="#X_LAST#" to="$xlast" />
41 </substitute>
42
43 <!-- Create Makefile and substitute parameters -->
44 <substitute infile="Makefile.in" outfile="Makefile">
45 <sub from="#EXECNAME#" to="$execname" />
46 <sub from="#OUTDIR#" to="$outdir" />
47 </substitute>
48
49 <substitute infile="Makefile.defs.in" outfile="Makefile.var">
50 <sub from="#MAKE#" to="$make" />
51 <sub from="#RM#" to="$rm" />
52 <sub from="#AR#" to="$ar" />
53 <sub from="#ARFLAGS#" to="$arflags" />
54 <sub from="#RANLIB#" to="$ranlib" />
55 <sub from="#CPP#" to="$cpp" />
56 <sub from="#CPPFLAGS#" to="$cppflags" />
57 <sub from="#F77#" to="$f77" />
58 <sub from="#FFLAGS#" to="-q64 $f77flags" />
59 <sub from="#F90#" to="$f90" />
60 <sub from="#F90FLAGS#" to="-q64 $f90flags -O3 -qsuffix=cpp=F90" />
61 <sub from="#MYFLAGS#" to="-qlanglvl=extended -qfree=f90 -q64 -qrealsize=8

-O4 -qarch=pwr5 -qtune=pwr5 -qessl -qsuffix=f=f90" />
62 <sub from="#CC#" to="$cc" />
63 <sub from="#CFLAGS#" to="-q64 $cflags" />
64 <sub from="#CXX#" to="$cxx" />
65 <sub from="#CXXFLAGS#" to="-q64 $cxxflags" />
66 <sub from="#MPI_F90#" to="$mpi_f90" />
67 <sub from="#MPI_F77#" to="$mpi_f77" />
68 <sub from="#MPI_CC#" to="$mpi_cc" />
69 <sub from="#MPI_CXX#" to="$mpi_cxx" />
70 <sub from="#LD#" to="$mpi_f90" />
71 <sub from="#LDFLAGS#" to="-q64 $ldflags -O3" />
72 <sub from="#MPI_DIR#" to="$mpi_dir" />
73 <sub from="#MPI_LIB#" to="$mpi_lib" />
74 <sub from="#MPI_INC#" to="$mpi_inc" />
75 <sub from="#MPI_BIN#" to="$mpi_bin" />
76 <sub from="#BLAS_DIR#" to="" />
77 <sub from="#BLAS_LIB#" to="" />
78 <sub from="#LAPACK_DIR#" to="" />
79 <sub from="#LAPACK_LIB#" to="" />
80 <sub from="#FFTW_DIR#" to="" />
81 <sub from="#FFTW_LIB#" to="" />
82 <sub from="#FFTW_INC#" to="" />
83 <sub from="#MODULE_CMD#" to="$module_cmd" />
84 <sub from="#MODULE_FILES#" to="" />
85 </substitute>
86
87
88 <!-- issue build command -->
89 <command>make -f Makefile</command>
90 </compile>
91
92 </compilation>

The compile.xml file carries out two tasks: substitution of platform-related variables, such as
compiler and compile flags; and the command to compile the code. For HELIUM three files
requires substitution: the Helium source code file, which requires the $nblocks and $xlast
variables to be set appropriately; the makefile which needs the executable name (which is
benchmark dependant) and the makefile.var file, which is where the compiler and flags are
set. Most of the platform specific tools are set in the platform.xml file and the variable used
appropriately (see line 29 for example, where the C++ compiler is set). However, particular
variables can be overridden, such as the compile flags. If the platform.xml specifies, say, -
fast, but this does not work on a particular code, this can be overridden here.
Substitution is done by specifying a keyword in the file (e.g. #LD#) which JuBE searches for
and replaces with the variable specified in the XML file. A variable not specified in the XML
file is not substituted. A variable specified in the XML file, but is not in the input file, is
ignored.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 139

Finally, the command tag is used to issue the command to build the application. This can point
to a makefile, configure script, or bash script, for example.

7.3.3 prepare.xml

This file carries out any steps required before the application is executed.
93 <preparation>
94
95 <!-- *** -->
96
97 <prepare cname="standard">
98
99 <mkdir directory="graph" />
100 <mkdir directory="ground" />
101 <mkdir directory="state" />
102 <mkdir directory="data" />
103 <command>(cd $rundir;chmod u+x ./src/make_file.sh;./src/make_file.sh)</command>
104
105 </prepare>
106
107 <!-- *** -->
108
109 </preparation>

For HELIUM this requires four directories are created as defined above, whilst the script
creates the necessary input/output files.

7.3.4 execute.xml

This file contains steps to execute the application. Like the compile.xml file this comprises of
substitutions to the platform’s skeleton job submission script and the submit command.
Multilpe platforms can be contained in the same file.

110 <execution>
111 <!-- ** -->
112 <execute cname="IBM-SP5-HPCx">
113 <input files="../../platform/IBM-SP5-HPCx/ibm_llsubmit.job.in" />
114
115 <substitute infile="ibm_llsubmit.job.in" outfile="ibm_llsubmit.job">
116 <sub from="#OUTDIR#" to="$outdir" />
117 <sub from="#STDOUTLOGFILE#" to="$stdoutlogfile" />
118 <sub from="#STDERRLOGFILE#" to="$stderrlogfile" />
119 <sub from="#BENCHNAME#" to="$benchname $subid" />
120 <sub from="#NODEUSAGE#" to="not_shared" />
121 <sub from="#TOTALTASKS#" to="$tasks" />
122 <sub from="#TIME_LIMIT#" to="02:00:00" />
123 <sub from="#NODES#" to="$nodes" />
124 <sub from="#TASKSPERNODE#" to="$taskspernode" />
125 <sub from="#NOTIFICATION#" to="never" />
126 <sub from="#THREADSPERTASK#" to="$threadspertask" />
127 <sub from="#STACK#" to="400mb" />
128 <sub from="#EXECUTABLE#" to="$executable" />
129 <sub from="#ENV#" to="$env" />
130 <sub from="#PREPROCESS#" to="" />
131 <sub from="#POSTPROCESS#" to="" />
132 <sub from="#STARTER#" to="poe" />
133 <sub from="#ARGS_STARTER#" to="" />
134 <sub from="#MEASUREMENT#" to="time /usr/local/bin/hpmcount" />
135 <sub from="#ARGS_EXECUTABLE#" to="" />
136 </substitute>
137
138 <environment>
139 <env var="MP_LABELIO" value="yes" />
140 <env var="MP_INFOLEVEL" value="2" />
141 <env var="MP_SHARED_MEMORY" value="yes" />
142 <env var="MP_TASK_AFFINITY" value="MCM" />
143 <env var="MP_EAGER_LIMIT" value="65536" />
144 <env var="MEMORY_AFFINITY" value="MCM" />
145 <env var="OMP_NUM_THREADS" value="$threadspertask" />
146 <env var="TRACE_TEXTONLY" value="1" />

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 140

147 </environment>
148
149 <command>llsubmit ibm_llsubmit.job</command>
150 </execute>
151
152 </execution>

Line 113 points to the skeleton job submission script for the platform in question. Variables in
that file are substituted as per the compile.xml file. The environment tag allows environment
variables to be set and are placed in the job submission script. Finally, the command tag
contains the command to submit the job to the batch system.

7.3.5 verify.xml

Checks that the run has completed successfully.
153 <verification>
154
155 <!-- ** -->
156 <!-- predefined vars:
157 $subdir -> execution dir of benchmark run
158 $stdoutfile -> $stdout file of benchmark run
159 $stderrfile -> $stderr file of benchmark run
160 $... -> params from benchmark specification in toplevel dir
161 -->
162
163 <verify cname="HELIUM">
164 <command>run/check_results_helium.pl $subdir/verify.xml $stdoutfile $stderrfile

$subdir $totaltasks</command>
165 </verify>
166
167 <!-- ** -->
168
169 </verification>

The verification for HELIUM requires that the Total Population variable is equal to 1.
This is done in a Perl script kept in the run directory. The script also checks the correct
number of cores were used.

170 #!/usr/bin/perl -w
171
172 use strict;
173 use Carp;
174
175 my $patint="([\\+\\-\\d]+)"; # Pattern for Integer number
176 my $patfp ="([\\+\\-\\d.Ee]+)"; # Pattern for Floating Point number
177 my $patwrd="([\^\\s]+)"; # Pattern for Work (all noblank characters)
178 my $patnint="[\\+\\-\\d]+"; # Pattern for Integer number, no ()
179 my $patnfp ="[\\+\\-\\d.Ee]+"; # Pattern for Floating Point number, no ()
180 my $patnwrd="[\^\\s]+"; # Pattern for Work (all noblank characters), no ()
181 my $patbl ="\\s+"; # Pattern for blank space (variable length)
182
183 if(scalar(@ARGV) != 5) {
184 printf(STDERR "incorrect number of parameters(%d) of $0 (5 required)\n",
185 scalar @ARGV);
186 exit(-1);
187 }
188
189 my $xmloutfile = $ARGV[0];
190 my $stdoutfile = $ARGV[1];
191 my $stderrfile = $ARGV[2];
192 my $subdir = $ARGV[3];
193 my $totcores = $ARGV[4];
194 my $vcheck=0;
195 my $vcomment="not tested";
196 my $vval1=0;
197 my $vval2=0;
198 my $vval3=0;
199 my $vvalref1=0;
200 my $vvalref2=0;
201 my $vvalref3=0;
202 my $limit=1.e-15;
203 my $outptfile="$subdir/hstat.prace";

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 141

204 print "$outptfile";
205
206 if(-f $outptfile) {
207 open(OUT,"$outptfile") || die "$outptfile not found!";
208 $vcheck = 1;
209 $vcomment = "Result verified";
210 while($vcheck) {
211 my $outline = <OUT>;
212 if (m/Number of PEs/) {
213 my @cores = split(/=/,$outline);
214 if ($cores[1] != $totcores) {
215 $vcheck=0;
216 $vcomment="Verification failed: Number of cores was not as expected";
217 $vval1 = $outline;
218 $vvalref1 = $totcores;
219 last;
220 }
221 }
222 close(OUT);
223 } else {
224 $vcheck=0; $vcomment="no output file found";
225 }
226
227 $outputfile="$subdir/$stdoutfile";
228 print "$outptfile";
229 if(-f $outptfile) {
230 open(OUT,"$outptfile") || die "$outptfile not found!";
231 $vcheck = 1;
232 $vcomment = "Result verified";
233 while($vcheck) {
234 my $outline = <OUT>;
235 if (m/Total Population/) {
236 my @answer = split(/=/,$outline);
237 if ($answer[1] < 0.999999 || $answer[1] > 1.00001) {
238 $vcheck=0;
239 $vcomment="Verification failed: Incorrect answer";
240 $vval2 = $outline;
241 $vvalref2 = "1";
242 last;
243 }
244 }
245 close(OUT);
246 } else {
247 $vcheck=0; $vcomment="no output file found";
248 }
249
250 open(XMLOUT,"> $xmloutfile") || die "cannot open file $xmloutfile";
251 print XMLOUT "<verify>\n";
252 print XMLOUT " <parm name=\"vcheck\" value=\"$vcheck\" type=\"bool\" unit=\"\" />\n";
253 print XMLOUT " <parm name=\"vcomment\" value=\"$vcomment\" type=\"string\"

unit=\"\"/>\n";
254 print XMLOUT " <parm name=\"vval1\" value=\"$vval1\" type=\"float\" unit=\"\"/>\n";
255 print XMLOUT " <parm name=\"vvalref1\" value=\"$vvalref1\" type=\"float\"

unit=\"\"/>\n";
256 print XMLOUT " <parm name=\"vval2\" value=\"$vval2\" type=\"float\" unit=\"\"/>\n";
257 print XMLOUT " <parm name=\"vvalref2\" value=\"$vvalref2\" type=\"float\"

unit=\"\"/>\n";
258 print XMLOUT "</verify>\n";
259 print XMLOUT "\n";
260 close(XMLOUT);
261
262
263 exit(0);

7.3.6 analyse.xml

This file contains instructions on how to scan the output to extract the maingful data. Each
platform has a separate entry in this file.

264 <analyzer>
265
266 <!-- ** -->
267 <!-- Input is stdout and stderr of benchmark run -->
268 <!-- Standard result parameter:
269 - walltime -->

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 142

270 <!-- ** -->
271
272 <analyse cname="IBM-SP5-HPCx">
273 <includepattern file="./analyse-pattern-helium.xml" />
274 <includepattern file="../../skel/hpm3patterns.xml" />
275 </analyse>
276
277 <!-- ** -->
278
279
280 </analyzer>

The actual work is done using the analyse-pattern-app.xml file.
281 <patterns>
282
283 <!-- *** -->
284 <!-- * application specific patterns for analyse of HELIUM results * -->
285 <!-- *** -->
286
287 <parm name="walltime" unit="s" mode="line,last" type="float">
288 WallClock Time.*= $patfp
289 </parm>
290 <!-- *** -->
291
292 </patterns>

The above contains a search for the wallclock time using Perl regular expressions.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 143

7.4 CrayPat Case study: High-Performance Linpack Benchmark (HPL)

To showcase some Craypat features the High-Performance Linpack Benchmark (HPL) was
run on a Cray XT5. The order of the coefficient matrix was 20000, the partitioning blocking
factor was 80 and the number of process rows and columns were 4 and 8. The tools are very
versatile and only a few reports and results can be shown here. In all examples the program
was instrumented to produce tracing experiments, sampling was not used.

The first example shows load balance across processes by function group. The group USER
show how much time (absolute time and percentage value from the TOTAL time) the
numerical calculations took (89.2%) and the group MPI show same information for the MPI
communication (10.8%). The rows that ends up with character string “pe.number” will show
three processes having the maximum, median, and minimum times for each task.

Table 12: MPI-profile.

The second example shows a profile of the time spent in the USER group, comprising user
defined functions.

Time % | Time | Calls |Group
100.0% | 29.569722 | 3803836 |Total
 89.2% | 26.365399 | 2 |USER
 3.0% | 28.014343 | 1 |pe.1
 2.8% | 26.134757 | 1 |pe.16
 2.7% | 25.571915 | 1 |pe.18
 10.8% | 3.204323 | 3803834 |MPI
 5.4% | 1.582981 | 649 |MPI_Recv
 0.2% | 1.950585 | 637 |pe.18
 0.2% | 1.747239 | 641 |pe.15
 0.1% | 0.935157 | 654 |pe.1
 3.5% | 1.030649 | 6387 |MPI_Send
 0.1% | 1.146458 | 6321 |pe.7
 0.1% | 1.032805 | 6310 |pe.26
 0.1% | 0.954339 | 6502 |pe.25

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 144

Table 13: Function profile.

There are four functions that are called over 25 million times in the initialization stage; even a
small error in the estimation of the measurement overhead will skew the results. By excluding
these functions we get the following more accurate profile.

Table 14: Function profile, less complex.

The next example shows statistics for sent messages. One can stufy the statistics for the whole
program, but also to look at statistics for a certain process.

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 53.691687 | -- | -- | 104950799 |Total
|---
| 100.0% | 53.691683 | -- | -- | 104950797 |USER
||--
|| 40.1% | 21.556808 | 0.631945 | 2.9% | 2684 |HPL_dgemm
|| 23.7% | 12.725938 | 0.469476 | 3.7% | 25318835 |HPL_setran
|| 10.7% | 5.751859 | 0.234090 | 4.0% | 2 |HPL_pdmatgen
|| 8.1% | 4.359664 | 0.303725 | 6.7% | 25001250 |HPL_rand
|| 5.3% | 2.868864 | 1.915342 | 41.3% | 14 |HPL_broadcast
|| 2.1% | 1.113295 | 0.078952 | 6.8% | 1752595 |HPL_bcast_1ring
|| 1.7% | 0.928316 | 0.105795 | 10.6% | 920 |HPL_spreadT
|| 1.3% | 0.702743 | 0.058028 | 7.9% | 246 |HPL_rollT
|| 1.2% | 0.639501 | 0.024283 | 3.8% | 25403473 |HPL_lmul
|| 1.0% | 0.534679 | 0.020632 | 3.8% | 25361158 |HPL_ladd

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 29.225464 | -- | -- | 3667922 |Total
|---
| 100.0% | 29.225458 | -- | -- | 3667920 |USER
||--
|| 73.8% | 21.556087 | 0.630827 | 2.9% | 2684 |HPL_dgemm
|| 8.1% | 2.355882 | 0.079908 | 3.4% | 2 |HPL_pdmatgen
|| 3.7% | 1.075673 | 0.115775 | 10.0% | 1653514 |HPL_bcast_1ring
|| 3.2% | 0.939993 | 0.076457 | 7.8% | 920 |HPL_spreadT
|| 2.5% | 0.744454 | 0.061003 | 7.8% | 246 |HPL_rollT
|| 1.8% | 0.516974 | 0.315525 | 39.1% | 14 |HPL_broadcast
|| 1.4% | 0.410194 | 0.087556 | 18.2% | 1 |HPL_pdgesv0
|| 1.4% | 0.405300 | 0.015176 | 3.7% | 2684 |HPL_dtrsm

Function-profile where HPL_setran, HPL_rand, HPL_lmul and HPL_ladd have been
excluded

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 145

Table 15: Program totals.

Table 16: All sent message statistics from process number 9.

Table 17: Sent message statistics from process 9 to 2.

The third example shows hardware performance counter (HWPC) statistics. Here the default
experiment is shown. It includes an overview of the most important counters. The counters
are:

• PAPI_FP_OPS (Floating point operations)
• PAPI_L1_DCA (L1 data cache accesses)
• PAPI_L1_DCM (L1 data cache misses)
• PAPI_TLB_DM (Data translation lookaside buffer misses)

The example shows statistics gathered for the whole program, but one can also extract such
data on a function or block level.

Sent Msg Total Bytes 580424824
Sent Msg Count 6538
MsgSz <16B Bytes 32
256B<= MsgSz <4KB Bytes 6784640
4KB<= MsgSz <64KB Bytes 9840008
64KB<= MsgSz <1MB Bytes 237865496
1MB<= MsgSz <16MB Bytes 325934648

Sent Msg Total Bytes 457665112
Sent Msg Count 3283
256B<= MsgSz <4KB Bytes 3371520
4KB<= MsgSz <64KB Bytes 4359688
64KB<= MsgSz <1MB Bytes 123999256
1MB<= MsgSz <16MB Bytes 325934648

Totals for program
Sent Msg Total Bytes 568112259
Sent Msg Count 6387
MsgSz <16B Bytes 128
16B<= MsgSz <256B Bytes 129
256B<= MsgSz <4KB Bytes 4638316
4KB<= MsgSz <64KB Bytes 9352709
64KB<= MsgSz <1MB Bytes 231788537
1MB<= MsgSz <16MB Bytes 322332441

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 146

Table 18: Performance results with the default HWPC experiment.

The fourth example shows some screenshots from the graphical Apprentice2 tool. Only
summarized data was collected when running HPL, thus traffic-data and other analysis modes
that show the behaviour of the program on a time-line are not available.

The pie chart in figure 14 on the left shows functions in the xhpl program, sorted by the
number of times the functions were invoked. The pie chart on the right the data is sorted by
the amount of time spent performing the functions. The icons in the toolbar show the analysis
modes that are available for this data.

Figure 14: Pie chart example.

PAPI L1 DCM 37.450M/sec 1135703222 misses
PAPI_TLB_DM 0.375M/sec 11378421 misses
PAPI_L1_DCA 2035.276M/sec 61721014271 refs
PAPI_FP_OPS 5626.109M/sec 170615261610 ops
 User time (approx) 30.326 secs 69748937500 cycles
 Average Time per Call 0.076976 sec/call
 Overhead / Time 0.0%
 Cycles 30.326 secs 69748937500 cycles
 User time (approx) 30.326 secs 69748937500 cycles
 Utilization rate 97.5%
 HW FP Ops / Cycles 2.45 ops/cycle
 HW FP Ops / User time 5626.109M/sec 170615261610 ops 61.2%peak(DP)
 HW FP Ops / WCT 5486.302M/sec
 Computation intensity 2.76 ops/ref
 MFLOPS (aggregate) 180035.48M/sec
 LD & ST per TLB miss 5424.39 refs/miss
 LD & ST per D1 miss 54.35 refs/miss
 D1 cache hit ratio 98.2%
 % TLB misses / cycle 0.0%

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 147

Figure 15: Load balance example of HLP_dgemm.

Figure 15 shows load balance of the HPL_dgemm (matrix multiply) routine. On the left hand
side one can see the process numbers.

7.5 IBM HPCT Assessment

7.5.1 Hardware Performance Monitor (HPM)

The default output of HPM looks like:

hpmcount v3.2.2 (IHPCT v2.2.0) summary

######## Resource Usage Statistics ########

Total amount of time in user mode : 3.333841 seconds
Total amount of time in system mode : 0.729397 seconds
Maximum resident set size : n/a

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 148

Average shared memory use in text segment : n/a
Average unshared memory use in data segment : n/a
Number of page faults without I/O activity : 83016
Number of page faults with I/O activity : 0
Number of times process was swapped out : 0
Number of times file system performed INPUT : n/a
Number of times file system performed OUTPUT : n/a
Number of IPC messages sent : n/a
Number of IPC messages received : n/a
Number of signals delivered : n/a
Number of voluntary context switches : n/a
Number of involuntary context switches : n/a

####### End of Resource Statistics ########

Execution time (wall clock time) : 6.53337597846985 seconds

PM_FPU_1FLOP (FPU executed one flop instruction) : 42233432
PM_FPU_FMA (FPU executed multiply-add instruction) : 11040495281
PM_FPU_FSQRT_FDIV (FPU executed FSQRT or FDIV instruction) : 79074
PM_FPU_FLOP (FPU executed 1FLOP, FMA, FSQRT or FDIV instruction) : 11082807787
PM_RUN_INST_CMPL (Run instructions completed) : 10414883074
PM_RUN_CYC (Run cycles) : 6273057293

Utilization rate : 20.411 %
Instructions per run cycle : 1.660
Total floating point operations : 22123.303 M
Flop rate (flops / WCT) : 3386.198 Mflop/s
Flops / user time : 16589.681 Mflop/s
Algebraic floating point operations : 22123.224 M
Algebraic flop rate (flops / WCT) : 3386.186 Mflop/s
Algebraic flops / user time : 16589.621 Mflop/s
FMA percentage : 99.809 %
% of peak performance : 88.168 %

7.5.2 MPI Profiler

The instrumented application creates MPI profiles files like:

MPI Routine #calls avg. bytes time(sec)

MPI_Comm_size 32 0.0 0.000
MPI_Comm_rank 32 0.0 0.000
MPI_Send 1119 2269.4 0.006
MPI_Recv 376 4007.9 0.936
MPI_Irecv 739 1383.3 0.002
MPI_Iprobe 20906040 0.0 21.923
MPI_Wait 739 0.0 18.627

total communication time = 41.494 seconds.
total elapsed time = 50.675 seconds.

Message size distributions:

MPI_Send #calls avg. bytes time(sec)
 4 4.0 0.000
 16 8.0 0.000
 2 12.0 0.000
 126 32.0 0.000
 4 52.0 0.000
 503 96.0 0.002
 2 164.0 0.000
 12 366.7 0.000
 25 738.2 0.000
 63 1542.1 0.000
 119 3100.7 0.001
 146 6057.4 0.001
 97 11475.1 0.002

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 149

MPI_Recv #calls avg. bytes time(sec)
 2 4.0 0.354
 10 8.0 0.070
 2 12.0 0.000
 126 32.0 0.002
 1 168.0 0.000
 2 360.0 0.000
 11 735.3 0.000
 24 1518.3 0.000
 57 3185.8 0.507
 70 6092.2 0.000
 71 11962.9 0.003

MPI_Irecv #calls avg. bytes time(sec)
 501 64.0 0.001
 1 96.0 0.000
 5 198.4 0.000
 5 380.8 0.000
 14 750.3 0.000
 46 1570.4 0.000
 73 3039.7 0.000
 69 6209.4 0.000
 25 10164.8 0.000

Communication summary for all tasks:

 minimum communication time = 41.494 sec for task 0
 median communication time = 42.109 sec for task 1
 maximum communication time = 42.390 sec for task 2

The instrumented application also generates trace files that can be visualized using PeekPerf
in figure 16:

Figure 16: Peekperf visualisation of trace files.

By inspecting the communication patterns, these visualizations allow for detection of
communication bottlenecks.

7.5.3 Xprofiler

Xprofiler is a visualization tool for gmon.out profiling data created by applications
compiled with the –pg flag. Xprofiler is a nice GUI that gives the information that is also
provided by the well-known gprof command line tool for displaying call graph profile data.
Xprofiler does not yet work for 64-bit executables, which is a pity on large memory nodes

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 150

(the machine we used for the assessment has both 128 and 256 GB nodes). An example is
shown in figure 17.

Figure 17: Xprofiler example.

7.6 IPM Assessment

We used the implementation of the High-Performance Linpack benchmark for IBM QS22
systems with two PowerXCell 8i processors available in [34].

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 151

7.6.1 MPI subs

Figure 18: IPM pie charts.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 152

7.6.2 MPI topology

Figure 19: IPM MPI topology overview.

D6.3.1 Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark

PRACE - RI-211528 24/11/2008 153

7.6.3 MPI message sizes

Figure 20: IPM message sizes graphs.

7.6.4 MPI load balance

Figure 21: IPM MPI load balance information.

