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Executive Summary 
 

In order to be a success, PRACE needs to understand the software requirements for future 
Pflop/s systems. This deliverable takes the key scientific and technical categories of 
applications, as conducted through a survey of most major European HPC systems and the 
applications that exploit these, carried out by task 6.1. It reports on the construction of a 
benchmark suite, to be used both within the current PRACE project and beyond, when actual 
Tier-0 systems will be purchased. Apart from the benchmark suite, this document reports on 
currently available performance analysis tools and synthetic benchmarks, as these are 
essential tools for monitoring scalability and optimisation of benchmark codes, and for 
analysing and comparing the basic components of HPC systems. 
 
This document takes its input from various sources. First, there is the list of applications and 
their requirements, as delivered by tasks 6.1 and 6.2. As these applications belong to the most 
frequently used on current European HPC platforms, they should form the basis of a PRACE 
benchmark suite. Secondly, there is the hardware architecture survey, as conducted by WP7 
and its consequences for prototype systems to be used within PRACE. As these prototype 
architectures are considered as important, it makes sense to use these as platforms for 
benchmark preparations on scalability (to be handled by task 6.4) and optimisation (task 6.5). 
A third aspect is the available combination of expertise on applications and expertise on 
architecture, for which it makes sense to be used as appropriate and efficient as possible. 
 
PRACE targets towards a European Research Infrastructure, ideally consisting of various 
hardware architectures. This implicitly means that some applications are more suited to 
certain architectures than others. This needs to be reflected in the final benchmark suite, with 
the idea that potentially subsets of the overall benchmark suite may be used for benchmarking 
different architectures.  
 
These aspects together lead to the output as described in this document, which consists of an 
initial benchmark suite, with applications ported (and to some extent analysed) to target 
architectures, including recommendations on further work and effort estimates for petascaling 
(task 6.4) and optimisation (task 6.5). Integration of the benchmark codes into a benchmark 
suite is an important subtask, as it ensures that other tasks and workpackages within PRACE 
can use the benchmark suite as their starting point. Identification and categorisation of 
performance analysis tools and synthetic benchmarks are included as well, to be used later in 
the project when tasks 5.4, 6.4 and 6.5 take off. We believe the document and the initial 
benchmark suite form a strong basis for this future work. 
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1 Introduction 

The Partnership for Advanced Computing in Europe (PRACE, [1]) has the overall objective 
to prepare for the creation of a persistent pan-European HPC service. PRACE is divided into a 
number of inter-linked work packages, and WP6 focuses on the software for petascale 
systems. 

The primary goal of PRACE WP6 is to identify and understand the software libraries, tools, 
benchmarks and skills required by users to ensure that their applications can use a Pflop/s 
system productively and efficiently. WP6 is the largest of the technical PRACE work 
packages and involves all of the PRACE partners. 

 
Task 6.3 is responsible for the creation of a benchmark suite, to be used not only within WP6 
but also in WP5, when testing and validating prototype systems. The benchmark suite should 
represent application areas from the potential user bases, and should take into account the 
available prototype architectures and available expertise within the PRACE project. This 
means that task 6.3 receives its input from tasks 6.1 and 6.2. With the application benchmark 
suite, task 5.4 will conduct its testing and analysing of the prototype systems, while tasks 6.4 
and 6.5 will be able to cover aspects of scalability to Pflop/s systems and optimisation of 
applications. Since these efforts can not be done without suitable software tools and thorough 
understanding of the underlying hardware, task 6.3 covers performance analysis tools and 
synthetic benchmarking as well. The synthetic benchmark suite will be used by tasks 5.2 and 
5.3. 
 
Including the performance analysis tools and synthetic benchmark survey, the audience for 
this document is not only within other PRACE tasks, but hopefully also a wider HPC 
audience, as it offers characteristics and analysis for deployment of specific, heavily used 
applications codes on future Pflop/s systems. 
 

1.1 Structure of the Report 

This document is structured as follows. In section 2, besides some important definitions, a 
refinement of objectives and the methodology to arrive at them, will be discussed. This 
includes the practical approach of splitting the full task into a number of subtasks, but also the 
approach to use human resources as efficiently as possible. Section 3 covers the actual 
assignment of applications to people and prototype architectures, the obtained results with 
respect to porting, and the forecast with respect to scalability to Pflop/s systems and 
optimisation. Section 4 covers the actual integration of benchmark codes into a benchmark 
suite. Sections 5 and 6 discuss available synthetic benchmarks and performance analysis 
tools, respectively. With respect to conclusions and future work, we have taken the approach 
to include these aspects as a subsection in each of the sections 3 to 6, as this fits more natural 
to the actual subjects in the individual sections. Many details on porting of the applications to 
the prototype architectures can be found in the Annex. 
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2 Definitions, Objectives and Methodology 

 

2.1 Definitions 

The purchase process of large HPC computer systems (either focussed on capacity or 
capability) is generally supported by the execution of a set of user applications on the systems 
under consideration. In this respect, we are talking of benchmarking the systems, leading to 
technical information which allows proper technical comparison of the systems, especially 
with respect to their performance on real applications. 
 
Technical information typically consists of actual performance details of the systems, which 
vary from the performance on component level to the performance of the system as a whole. 
This is reflected in the tests that are in use: tests on a component level (processor, caches, 
memory, interconnect, IO system) and obviously tests for the system as a whole. Tests on 
component levels are generally referred to as benchmark kernels or synthetic benchmarks, 
tests for the whole system as benchmark applications. 
 
In order to avoid confusion, it is important to define clearly what is meant with the relevant 
terminology. For that reason, throughout this document, the following definitions will be 
used: 
 
• A benchmark kernel is the collection of a small test program source code, run script, 

defined number of processors, possibly dataset and reference output, and is meant to test 
an individual component of the system; 

• A benchmark code is the collection of one application source code, run script, defined 
number of processors, dataset and reference output, and is meant to test the behaviour of 
the system as a whole; 

• A synthetic benchmark suite is the collection of benchmark kernels, to be run standalone; 
• A benchmark suite is the collection of benchmark codes, together with the schedule to run 

the individual benchmark codes (either standalone or in some defined form of 
throughput). To distinguish this from the synthetic benchmark suite, we may refer to this 
as application benchmark suite; 

• A performance analysis tool is a tool to use for getting performance information when 
running an application, in particular a benchmark kernel or benchmark code. 

 
Throughout this document, the concepts of porting, petascaling and optimisation will be used 
frequently. It makes sense to describe these concepts here as well: 
 
• Porting is the process of installation, compilation, linking and execution of an application 

source code on a specific hardware platform running specific software versions. 
Successfully ported (to distinguish from later optimisation and scaling efforts) means 
correct execution of the generated executable on the specific hardware platform running 
specific software versions, using representative input sets; 

• Petascaling is the performance scalability of benchmark codes (including IO aspects) to 
petascale level architectures, and is typically expressed in the amount of cores which can 
still be efficiently used for the execuation of the benchmark code. This is most likely 
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depending on actual input sets. Using ca. 10 Gflop/s per processor core, this means 
systems with a number of processor cores in the order of 100,000; 

• Optimisation is the improvement of typically single-CPU (or: single-core) (standalone) 
performance (including IO aspects) of a benchmark code, and is typically a combination 
of memory hierarchy management (“cache optimisation”) and CPU floating-point unit 
scheduling. In this context, source code optimization is meant, rather than external factors 
such as job scheduling. 

 
 

2.2 Objectives and Methodology 

This section discusses the approach we have taken to arrive at the objectives for task 6.3, 
including the methodology with respect to the efficient usage of both human and hardware 
resources. The two main objectives for task 6.3 are: 
 
• To create a benchmark suite which will serve as a starting point for tasks 5.4, 6.4 and 6.5 

(this deliverable D6.3.1); 
• To eventually create a benchmark suite which becomes the PRACE benchmark suite for 

Tier-0 procurement (D6.3.2 at the end of the PRACE project). 
 
Further refinement of these objectives, in order to design a detailed work plan for task 6.3, has 
been done in the following way: 
 
1. Definition of a representative set of benchmark codes, including representative datasets 

with respect to required size for petascaling; 

2. Porting of  benchmark codes to prototype hardware architectures, initial execution results, 
preparation for task 5.4 (benchmark evaluation on prototype systems), task 6.4 
(petascaling) and task 6.5 (optimisation), identification of potential performance and 
scalability bottlenecks (including licensing); 

3. Survey on integration of benchmark codes into a benchmark suite, and actual 
implementation as input for other WP/tasks in PRACE (in particular 5.4, 6.4 and 6.5) 

4. Survey on available performance analysis tools (structured testing on benchmark codes 
will be covered in D6.3.2, which may result in collaboration with vendors of these tools); 

5. Survey on synthetic benchmarks (not yet structured testing on platforms, nor adapting to 
cover petascale architectures, which is reserved for future work in 5.4 and 6.3). The 
results of the synthetic benchmark survey will be used by tasks 5.2 and 5.3. 

 

Objectives 3, 4 and 5 are basically independent of the actual benchmark codes they should 
work with. They are also independent of each other, which means that for each of these 
individual work plans can be designed. This has actually been done, leading to three so-called 
subtask leaders, each responsible for reaching one of the objectives 3 to 5. Sections 4 to 6 will 
cover the results obtained for these objectives. For objective 2, the situation is more complex. 
First, objective 2 takes objective 1 as input. This process will be described in section 3.1. 
Secondly, the actual technical work for objective 2 will be continued after deliverable D6.3.1 
and reported in D6.3.2, but also within tasks 6.4 and 6.5, which deal with petascaling and 
optimisation of the benchmark codes. For that reason, in agreement with tasks 6.4 and 6.5, we 
have chosen for a horizontal approach, which means the following: 
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• For the execution of tasks 6.3, 6.4 and 6.5, each benchmark code will be worked on under 
the responsibility of a so-called Benchmark Code Owner (BCO). The BCO is a person 
who in most cases belongs to the staff of one of the PRACE partners; 

• The BCO will steer the actual (porting, petascaling and optimisation) efforts, such that the 
benchmark code will run on each of the designated prototype hardware architectures. This 
includes the scheduling of work among the contributing PRACE partners to the 
benchmark code; 

• During the porting, optimisation and scaling process, the BCO communicates with the 
application owners on all aspects of the application: source code, dataset, output, etc. In 
particular, actual results will first be communicated to the application owner, and through 
the public status of the deliverable report also to hardware or software vendors, and the 
rest of the HPC community; 

• Reporting of the actual benchmark results (porting, petascaling, optimisation) must be 
within PRACE and the EU, without reporting constraints set by the application owner. In 
case the application owner does set such constraints on this, we will not transfer the 
application into a benchmark code within the PRACE benchmark suite; 

• In case licensing of the application is relevant, as a rule of thumb we have accepted 
licenses that allow free usage within PRACE as a minimum possibility. 

 

Apart from a lot of technical effort to the benchmark codes and subtasks, quite some 
organisational effort has been needed on a central level to cover the definition and distribution 
of benchmark codes, to monitor progress and to obtain results. Each BCO has had a similar 
organisational task on its benchmark code level, just as each of the subtask leaders for their 
assigned subtask. This has led to a tree-structure of communication, with its root at the level 
of WP6 management. The whole PRACE project may benefit from this structure. 

The concept of BCOs and contributors, the integration of individual benchmark codes into a 
benchmark suite and the future work within PRACE basically define a distributed working 
environment, in which various people contribute to shared entities. This means that, both 
within PRACE WP6 and later on also in other WPs, it is necessary to use software tools to 
support such a distributed working environment. For the moment, this has been done using 
the TRAC system, as used at CSC Finland. TRAC is a web-based software project 
management and bug/issue tracking system emphasizing ease of use and low ceremony. It 
provides an integrated Wiki, an interface to version control systems, and a number convenient 
ways to stay on top of events and changes within a project. For more details, we refer to [2]. 
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3 Benchmark Selection 

 

3.1 Relevance to PRACE 

Considering the goals of PRACE (HPC ecosystem, various Tier-0 systems, sustainability, 
facilitating science), a benchmark suite to technically support these goals will need to 
consider the following aspects: 

• coverage of relevant application areas; 

• representative applications within the covered application areas; 

• coverage of (the range of) hardware platforms (prototypes) which are relevant for 
PRACE; 

• opportunities to test system components with synthetic benchmarks; 

• petascaling opportunities of benchmark codes with relevant datasets; 

• optimisation opportunities of benchmark codes. 

These aspects have to be taken into account when designing both a synthetic benchmark suite 
as well as an application benchmark suite. This means that we will develop synthetic 
benchmark and application benchmark suites, which are both formal in approach and flexible 
in usage. After all, if the resulting HPC ecosystem is to support various Tier-0 architectures, 
we must be able to distinguish between these architectures with respect to the applications 
targeted for the Tier-0 systems, and hence in the ability to use subsets of the overall 
benchmark suites (synthetic and application). 
 

3.2 Selection Approach 

First, we have considered earlier work in WP6. Deliverable D6.1 has been working on the 
identification and categorisation of applications and initial benchmark suite. It has taken 
various angles to reach a list of so-called core applications, and a list of possible extensions. 
These are contained in tables 1 and 2. Note that the actual acronyms of the applications are 
explained in Annex 7.2. 

It is clear that as many as possible applications of the core list should be integrated in a 
PRACE benchmark suite, as they represent a significant user community of the systems at 
PRACE partners.  
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Application name Application area 
  
QCD Particle physics 
VASP Computational chemistry, condensed matter physics 
NAMD Computational chemistry, life sciences 
CPMD Computational chemistry, condensed matter physics 
Code_Saturne Computational fluid dynamics 
GADGET Astronomy and cosmology 
TORB Plasma physics 
ECHAM5 Atmospheric modelling 
NEMO Ocean modelling 
Table 1: The proposed list of core applications in D6.1. 
 

 

Application name Application area 
  
AVBP Computational fluid dynamics 
CP2K Computational chemistry, condensed matter physics 
GROMACS Computational chemistry 
HELIUM Computational physics 
SMMP Life sciences 
TRIPOLI4 Computational engineering 
PEPC Plasma physics 
RAMSES Astronomy and cosmology 
CACTUS Astronomy and cosmology 
N3D Computational fluid dynamics 
Table 2: Possible extensions to the core list of applications in D6.1. 
 
A second consideration is the actual choice of prototype architectures, as being consolidated 
by the Technical Board as an advice to the Management Board (MB) of the PRACE Project, 
and prepared by WP2 and WP7. This has led to a MB decision on the following prototype 
architectures, as (near-) production systems, in table 3. 

 

The third consideration to select the applications to be transferred into a benchmark code is a 
practical one. It basically consists of the combination of knowledge of the particular 
application, expertise with certain hardware platforms and access to prototype architectures. 
Typically, we have tried to identify PRACE partners which combine all three aspects as 
preferred BCO. For most applications, both from the core list as well from the extended list, 
this has been successful. Contributors to a benchmark code typically qualify if they satisfy at 
least one, and preferably two or even three of these aspects. 
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Architecture type Actual system Location 

   

MPP-BG IBM BlueGene/P FZJ, Germany 

MPP-Cray Cray XT5 CSC, Finland 

SMP-FatNode-pwr6 IBM p575 Power6 SARA, Netherlands 

SMP-ThinNode-x86 Bull – Intel Xeon/Nehalem 
cluster 

FZJ, Germany and CEA, 
France 

SMP-
ThinNode+Vector 

NEC SX-9 + x86 … HLRS, Germany 

SMP-FatNode+Cell IBM Power6 with Cell BSC, Spain 
Table 3: Actual prototype architectures in PRACE. 
 

Taking this approach, we have mapped both the applications of the core list and the 
applications of the extended list to the set of prototype architectures, with BCOs and 
contributors. This has led to table 4: 
Application BCO MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector Contributors

QCD FZJ X X X EPCC, CSC
VASP BSC X X X X NCF, GUP, HLRS, (PSNC)
NAMD EPSRC X X X maybe CSC, GRNET, GUP
CPMD BSC X X X X CSC, CINECA, SIGMA, HLRS, PSNC
Code_Saturne EPSRC X X X X maybe HLRS, BSC
GADGET LRZ X X X CINECA, DL, CSCS
TORB BSC X X X
ECHAM5 CSCS X X maybe X X CSC, HLRS
NEMO NCF X X X X DL, CSCS, SIGMA
CP2K CSC X X X EPCC, CINECA, CSCS, SIGMA
GROMACS CSC X X X SNIC, NCF, CSCS
N3D HLRS X X X X

AVBP GENCI X X X
HELIUM EPSRC X X X
TRIPOLI_4 GENCI X X
PEPC FZJ X X X
GPAW CSC X X X CINECA
ALYA BSC X
SIESTA PSNC X
BSIT BSC X  
Table 4: Application to benchmark translation, with BCO distribution. 
 
Table 4 shows that all applications from the core list have come back as benchmark codes, on 
at least 3 target prototype architectures, completed with 3 applications from the non-core list: 
CP2K, GROMACS and N3D. These are the first 12 (green) rows of the table. SMMP, 
RAMSES and CACTUS have disappeared from the extended (yellow) list, as it turned out to 
be that there was no PRACE partner that could volunteer as BCO. Instead, GPAW 
(computational chemistry), ALYA (computational mechanics and fluid dynamics), SIESTA 
(computational chemistry, molecular dynamics) and BSIT (computational geophysics) have 
joined the application set, mainly to make sure that enough coverage of the SMP-FN+Cell 
platform could be guaranteed (yellow rows). An additional advantage of this is that two other 
application areas are introduced: computational mechanics and computational geophysics. 
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After finalisation of table 4, each BCO and its contributors have started the work on the 
benchmark codes and hardware architectures. The qualitative results of these efforts will be 
discussed in the next section. 

 

3.3 Actual Results 

Technically, task 6.3 is preparing benchmark codes for further research on petascaling and 
optimisation. Keeping this in mind, task 6.3 is covering porting of the agreed set of 
applications to the agreed set of prototype architectures, preparing the scene for future work. 
This section therefore does not contain high detail on scalability and optimisation, but does 
contain porting statistics and to some extent porting details. It also considers details with 
respect to petascaling and optimisation potential, including effort estimates. 

Table 5 shows code characteristics with respect to programming languages, libraries, 
programming models and IO models. 

 
Benchmark code Languages Libraries Programming Model IO characteristics

QCD Fortran 90, C MPI no special
VASP Fortran 90 BLACS, SCALAPACK MPI (+ pthreads) no special
NAMD C++ Charm++, FFTW, TCL Charm++, MPI, master-slave no special
CPMD Fortran 77 BLAS, LAPACK MPI
Code_Saturne Fortran 77, C99, python BLAS MPI read at start, write periodically
GADGET C 89 FFTW, GSL, HDF5 MPI
TORB Fortran 90 PETSC, FFTW MPI read at start, write periodically
ECHAM5 Fortran 90 BLAS, LAPACK, NetCDF MPI/OpenMP read at start, write periodically
NEMO Fortran 90 NetCDF MPI read at start, write periodically
CP2K Fortran 95 FFTW, LAPCK, ACML MPI checkpoints and output, intense
GROMACS C, assembler FFTW, BLAS, LAPACK MPI read at start, write periodically, relaxed
N3D Fortran 90 EAS3, Netlib (FFT) MPI + NEC-microtasking read at start, write periodically

AVBP Fortran 90 Hdf5, szip, Metis MPI read at start, write periodically
HELIUM Fortran 90 MPI read at start, write periodically
TRIPOLI_4 C++ TCP/IP sockets read at start, write periodically
PEPC Fortran 90 MPI read at start, write periodically
GPAW Python, C LAPACK, BLAS MPI read at start, write at end
ALYA Fortran 90 Metis MPI/OpenMP read at start, write periodically
SIESTA Fortran 90 Metis, BLAS, SCALAPACK MPI read at start, write periodically
BSIT Fortran 95, C Compression lib MPI/OpenMP read at start, write periodically  
Table 5: Benchmark code characteristics. 
 

Table 5 does not show big surprises. By far the most common programming language is some 
instance of Fortran, while MPI is by far the most popular programming model. Pure OpenMP 
(shared memory parallel) codes are absent in this list, four of the codes (counting NEC 
microtasking for OpenMP) implement a combination of MPI and OpenMP. IO characteristics 
typically are a result of the time-dependent nature of the underlying physical model, which 
gives rise to time stepping through the computational domain, resulting in periodic output. 
From a future perspective, an interesting conclusion that may be derived from table 5 is that 
scaling application performance to petascale systems will have to deal, one way or another, 
with both Fortran and MPI. 

Figure 1 is the actual result of the porting activities. It shows the amount of assigned codes, as 
specified in table 4, and the amount of actually ported codes until now. This is typically work 
in progress, the most important reason being the fact that the full set of actual agreed 
prototype architectures is not yet available. We have been creative in using similar 
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architectures to cover as much porting work as possible, to be able to start the work already 
before the actual prototype systems became available. Another aspect we face here is the fact 
that people skills for working on SMP-FN+Cell in particular are scarce. 
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Figure 1: Overview hardware platform porting results. 
 

Figure 1 does not give any details on which codes have been ported to which prototype 
architectures. Table 6 shows these porting details. In fact, table 6 is comparable to table 4 in 
the sense that it has the exact same sparsity pattern as table 4. Green colors denote successful 
porting, yellow means that porting is in progress, and orange means that porting has not 
started yet (and only in one case that porting has been stopped because of technical problems 
– ECHAM5 on MPP-BG). 
Application MPP-BG MPP-Cray SMP-TN-x86 SMP-FN-pwr6 SMP-FN+Cell SMP-TN+vector

QCD Done In progress Done
VASP Done Done Yet to start Yet to start
NAMD Done Done Done Yet to start
CPMD Done Done In progress Yet to start
Code_Saturne Done Done Done Yet to start Done
GADGET Done Done Done
TORB Done Done Yet to start
ECHAM5 Stopped Done In progress Done Yet to start
NEMO Done Done Done In progress
CP2K Done Done Done
GROMACS Done Done Done
N3D Yet to start In progress Yet to start Done

AVBP Yet to start Done Done
HELIUM In progress Done Done
TRIPOLI_4 Yet to start Done
PEPC Done Done Done
GPAW Done Done Done
ALYA Done
SIESTA Done
BSIT Done  
Table 6: Summary on porting efforts for benchmark codes and prototype architectures. 
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Apart from porting efforts to the prototype architectures, initial insights in the potential for 
scaling to petascale systems and single-CPU optimisation have been obtained. Table 71 
contains the scalability potential of each of the benchmark codes, including an estimate on the 
amount of effort in person months (pm’s). We have defined the range none-low-medium-high 
with respect to scalability as follows, and have assumed one core to deliver a minimum of 10 
GFlop/s peak performance. 

None (red): No speed-up above 2500 cores; 
Low (orange): Speed-up obtained up to 5000 cores; 
Medium (yellow): Speed-up obtained up to 10000 cores; 
High (green): Speed-up obtained for more than 100000 cores. 

Speed-up at a certain number of cores is defined as still getting execution time improvement 
when comparing the execution time on that number of cores to the execution time on half the 
number of cores. 

From table 7, the following initial observations can be made: 

• Within the set of computational chemistry codes (VASP, NAMD, CPMD, CP2K, 
GROMACS, GPAW) the potential varies from low to high. At first sight, this may seem 
surprising, as they all cover the same (broad) application area, although individual codes 
may use different approaches. It will make sense to investigate how low-scalable codes 
may benefit from algorithms and implementations used in high-scalable codes; 

• The amount of effort estimated to improve scalability to medium or high seems to be 
reasonable: on average around 4 to 5 person months. This will be taken forward in task 
6.4 for selected promising applications in close collaboration with the code owners. 
Further work on task 6.4 will take this forward. 

Benchmark code Expected scalability Estimated effort Comments and areas of attention

QCD high 0-1 person months
VASP high Depends on FFT and BLAS implementations
NAMD medium-high 8-10 person monthsInvestigate master-slave (3 pm), investigate shared memory (7 pm)
CPMD high 2 person months Well parallelised already, some tuning needed
Code_Saturne medium 3 person months Preprocessing stage and IO
GADGET medium-high 2 person months Investigate potential OpenMP constructs and MPI implementation
TORB high 3-5 person months Adapt code internals (up to now 999 processes is max.)
ECHAM5 low-medium 2-8 person months OpenMP optimisation, data output mechanism
NEMO low 3 person months Domain decomposition load imbalance, solver implementation, MPI
CP2K low 5 person months Load imbalance needs to be solved
GROMACS medium 8 person months Optimise communication patterns
N3D low-medium 1-6 person months Very platform dependent - MPI AlltoAll implementation

AVBP medium-high 2 person months Focus on MPI implementation (AllReduce area)
HELIUM medium 3-4 person months Focus on MPI implementation (synchronisation constructs)
TRIPOLI_4 high 6 person months Independent particles, Monte-Carlo approach, IO to be modified
PEPC high 1 person month Data structure to be investigated
GPAW medium-high 3-6 person months Implement SCALAPACK usage, parallelise over electronic states
ALYA medium-high 2 person months Explicit solver ok, implicit solver requires effort, IO to be modified
SIESTA medium 2-3 person months Focus on MPI implementation
BSIT high 1 person month Embarassingly parallel, need to consider queue management system  
Table 7: Expected scalability potential and estimated effort for benchmark codes. 
 

A comparable exercise with respect to optimisation can be done. This leads to the results in 
table 8. This shows the effect that some codes have been optimised for single-CPU 
performance already quite extensively. Also, BCOs have focussed sofar on scalability 
potential rather than on optimisation potential. It is important to consider both effects, as 

                                                 
1 Not all cells in tables 7 and 8 have been filled yet, as initial analysis after porting is currently work in progress. 
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dramatic single-CPU optimisation has in general far-reaching consequences for scalability 
expectations. 
Benchmark code Expected optimisation Estimated effort Comments and areas of attention

QCD low 0-1 person months Collection of five kernels, well-defined
VASP
NAMD low Investigate simultaneous multi-threading
CPMD
Code_Saturne medium 3 person months Include library routines, cache optimisation, vector constructs
GADGET medium 3-6 person months Modify algorithm towards floating-point work
TORB medium Vectorisation of loops for Cell
ECHAM5 high 1 person month Investigate work done by hardware vendors
NEMO medium 1-2 person months Flat profile, cache optimisation
CP2K medium 2-3 person months Mostly cache optimisation
GROMACS low-medium 1 person month Mostly done through assembler routines already
N3D low-medium 1-4 person months Vectorisation done, include library routines, improve cache behaviour

AVBP low 1-2 person months Mostly done already
HELIUM medium 2-4 person months Few routines high in the profile, cache behaviour of long loops
TRIPOLI_4
PEPC medium 0-1 person months
GPAW low-medium 2-4 person months Already relying on BLAS, further cache utilisation improvement
ALYA medium 4 person months Prepare solvers for vectorisation on Cell
SIESTA high 2 person months Optimisation for Cell
BSIT medium 2 person months Explicit finite difference method optimised, fine-tuning possible  
Table 8: Expected optimisation potential and estimated effort for benchmark codes. 
 
In summary, the results presented here are only initial results, and should serve as a good 
starting point for many other tasks within the PRACE project. Since a massive amount of 
information on porting these applications to the prototype architectures is available, and 
which is very useful, we have included this information in Annex 7.2. 
 

3.4 Conclusions and Future Work 

As has been mentioned before, porting the applications to the target prototype architectures is 
work-in-progress. The BCOs and their contributors have been able to already port a 
significant part of the applications to many of the assigned prototype architectures, where 
each application has been ported to at least one platform. This means that already a significant 
part of the sparse matrix has been filled. This work will continue to complete the sparse 
matrix on applications and prototype architectures. 
 
Another aspect is the fact that already ported applications will enter the stadium of petascaling 
and optimisation, by tasks 6.4 and 6.5. Here we expect the concept of BCO to be very 
valuable, as work easily flows from task 6.3 into 6.4 and 6.5, and later backwards when 
integration of the scaled and optimised applications into the final benchmark suite for PRACE 
will need to be done. 
 
With respect to the future final benchmark suite for PRACE, there is the issue of usage and 
licensing. It is planned that the PRACE benchmark suite will be used after the PRACE 
project, when real Tier-0 systems will need to be benchmarked. Within task 6.3, this may be 
an activity which can become quite important to make sure that the actual heavily-used 
applications will remain part of the PRACE benchmark suite. 
 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 13

4 Integration in Benchmark Suite 

 

4.1 Introduction 

In order to facilitate usage within other tasks in WP6 and within other work packages within 
PRACE, the benchmark codes from WP6 need to be integrated into a suite as part of  task 6.3. 
Therefore, all applications that are part of tasks 6.3, 6.4 and 6.5, along with a series of 
synthetic benchmarks, are to form part of such an integrated benchmarking suite (PRACE 
Application Benchmark Suite – PABS) for use by the PRACE partners, in particular tasks 5.2, 
5.3 and 5.4. This chapter describes how this integration will be implemented. A specific 
example is included in Annex 7.3. 
 

4.2 Integration Framework 

 
The technology used will be JuBE (figure 2 and [3]) from Jülich Supercomputing Centre 
(FZJ), which is based on Perl and XML. JuBE creates a definition for each platform, 
application and result set and allows automated compilation, running, and comparison of 
results against expected standards and reporting of results, as required the definitions in 
section 2.1 of this document. JuBE is also used by DEISA and it is anticipated that PRACE 
can use parts of the benchmark suite already created for overlapping applications and 
platforms. This enables PRACE taking advantage of experience of effort across the two 
projects. 
 

 
Figure 2: Overview of the JuBE framework. 
 
The integration of the proposed benchmark codes requires that the BCO creates the definition 
files for each platform that the application is ported to. These definition files, along with the 
JuBE suite, are stored in the TRAC Subversion system [2]. Within the JuBE system for 
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PRACE there is a file documenting how to obtain the benchmark code and the datasets 
required. 
 
JuBE requires that a pre-defined folder layout is followed, as shown in figure 3. Each 
application in the benchmark suite is stored in a folder with the correct name in the 
“applications” folder. Inside this folder are the “src” folder which contains the source code 
(obtained according to the instructions in the “HowToGet.txt” file) for the application and the 
“run” folder which contains any scripts needed to complete the benchmark for that 
application. The other folder of note is the “platform” folder, which contains the platform.xml 
file which defines the software for each platform and a folder for each platform which 
contains necessary skeleton files (such as job submission scripts) for each platform. 

 
Figure 3: Folder layout for PABS. 
 
In the example in figure 3, the actual application is “Helium”, while a set of hardware 
platforms is used. The hardware platforms will need to include the PRACE prototype 
architectures. 
 
As mentioned, there are a number of XML files that need to be created for each application in 
the benchmark code. For the actual hardware platform description, there is: 

• Platform.xml – contains details particular to each platform, such as compilers, library 
locations and template job submission scripts. This is kept in the subdirectories of the 
“platform” folder (see figure 3). 

For the benchmark code (application), there are a number of relevant files: 

• bench.xml – this is the overarching XML file which details the benchmarks for each 
application code. There is one such file for each platform the application can be executed 
on; 

• compile.xml – tells JuBE how to compile the application, detailing flags, compilers, etc.; 

• prepare.xml – details how to set up a particular benchmark, such as altering an input file; 

• execute.xml – details how to execute the application (or submit the job to the batch 
system); 
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• verify.xml – details how to verify that a particular benchmark has been successfully 
executed. The verification is carried out by a Perl script (check_results.pl); 

• analyse.xml – details how to extract meaningful data, such as wall clock time, from the 
application output and builds a results table from this data. This makes use of the 
patterns.xml file. 

All the above are kept in the relevant applications folder (Helium in the example in figure 3). 
 
For the benchmark output, there is: 

• patterns.xml – details the patterns to search for in order to analyse the output for the 
required data. A different file can be sued for each benchmark. This is also kept in the 
relevant application folder, but the “skel” folder also contains some useful files for this 
(e.g. analysing HPM data). 

 

Actual execution of a benchmark code on a particular prototype architecture might comprise 
running the application over a number of processors. For example, NAMD, one of the core 
applications, runs a 2 million atom benchmark over 32, 64 and 128 processors. Running the 
benchmark will automatically compile the source code, submit the jobs to the scheduling 
system of the prototype, and once completed, will process and verify the output and produce a 
summary of the information. In the case of NAMD, the important summary statistic is the 
time taken per step, which JuBE can search for in the output and present the figures in a table, 
as shown in figure 4: 
 

 
Figure 4: Screen-grab of JuBE output for NAMD benchmark. 
 
The running of such a benchmark is done with a simple command from within the application 
directory: 
 
perl ../../bench/jube platform.xml 
 
platform.xml should be replaced with the correct bench.xml for the particular platform in 
question. This command compiles the code, copies the executable to the right place and 
submits the jobs to the backend of the system.  
 
Once the jobs have completed, the follwing command will analyse the data and present the 
results: 
 
perl ../../bench/jube –update –result ID 
 
again from the application directory. The ID is the ID number of the run (given in the output 
of the first command).  
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4.3 Conclusions and Future Work 

 
The JuBE framework presents a consistent and useful way of packaging the diverse 
application and synthetic benchmarks being used by PRACE. Although creating the 
infrastructure is perhaps more effort than simply creating a script for each code to compile the 
application, it will allow easy use of the benchmark by other PRACE work packages. In 
addition, because of the overlap with DEISA, we reduce the potential of duplicated work over 
two European projects. 
 
The initial task of integrating the benchmark suite is to add all synthetic and application 
benchmarks as defined in this document and required for other PRACE work packages. This 
work forms part of this deliverable. Future work will include adding more benchmark tests for 
each application in order to benchmark petascale systems as well as adding applications on 
the prototypes that come into service after the completion of this deliverable. With respect to 
JuBE, database integration is under development. 
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5 Synthetic Benchmarks 

 

5.1 Introduction 

This chapter gives an overview of synthetic benchmarks, their rationale, and their 
applicability.  In addition, we evaluate their merits and shortcomings in order to arrive at a 
well-designed set of synthetic benchmark programs (synthetic benchmark suite) that 
comprehensively measure key performance metrics. Ultimately, this should lead to the 
understanding of the strong and weak points of the computers thus assessed and from there a 
notion of what may be expected from the performance of applications executed on these 
machines. 
 

5.2 Synthetic Benchmarks: Overview 

Computer benchmarks are designed to provide insight in the performance of a computer with 
respect to a code (or: program) that is executed on it. The procedure of benchmarking is very 
simple: one executes the code and measures the wallclock time that is spent in the execution. 
Unfortunately, in this way we only learn about the performance of a particular code run on a 
particular computer. It tells us nothing about the performance of other codes on the same 
computer or the same code on another computer. Worse, when code A is faster on computer I 
than on computer II this is no guarantee that the same will be true for code B. It may depend 
on the type, amount, and variety of operations that codes A and B contain and of the 
architectures of computers I and II, respectively. In the following we will explain how to 
address this problem, what the possibilities are to gain consistent knowledge about the 
performance of computer systems, and what are the constraints of that knowledge. 

5.2.1 Synthetic benchmarks: the why 

A so-called synthetic benchmark consists of one or more programs that do not represent a real 
application but rather attempts to assess a particular property of a computer system in order to 
understand why it performs as it performs. Such a property may be, for instance, the speed of 
a combined floating-point multiply-add operation or the bandwidth from the main memory to 
a CPU core. In general, a synthetic benchmark must be simple enough to relate the content of 
the benchmark code directly to some hardware characteristic of the processor or, in case of 
parallel programs, the set of processors involved and the network that connects them.  
Because of the complicated nature of computer systems it is not possible, or at least highly 
impractical, to extract all the desired knowledge about the system from one program that 
covers all of its performance aspects.  The consequence is that one strives to put together a 
coherent set of programs that each address an aspect of the behaviour of a computer system. 
The complete set of programs together should provide insight about the strengths and 
weaknesses of a specific system. This makes it easier to compare it with other computers on 
these same points. The knowledge thus obtained will make it possible to make some 
predictions about the performance that we might expect with full applications beforehand. 
This, in turn, can have the effect that we can decide to include or exclude a computer system 
in the set of systems we want to consider in procurements and/or it may simplify the other 
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tests to be conducted on such candidate systems.  So, to summarise the main reasons why 
synthetic benchmarks exist: 
 
1. They enable us to discover the strong and weak points of a computer system (and 

sometimes even why this is so). 
2. They enable us to compare certain performance characteristics of computer systems and 

possibly their relative suitability for the tasks we want them to perform. 
3. They enable us to decide whether certain systems are of interest to us even without 

extensive testing with full applications. 
4. They enable us to discriminate between relevant and irrelevant properties of the systems 

we want to consider for the tasks we want them to perform. 
 
In all, synthetic benchmarking, when properly conducted, will provide us with general 
knowledge about computer systems and their (im)possibilities and it can give us a better 
founded decision with regard to systems we plan to select. Also, synthetic benchmarks can 
considerably reduce the time and money spent in computer procurements both on the side of 
the institution that wants to buy such a system as well as on the side of the candidate vendors. 
This aspect should not be underestimated as, especially for the smaller computer vendors, a 
complete procurement procedure including a large benchmark can be a huge investment that 
might discourage them to get involved, however good their product might be. 
 

5.2.2 Synthetic benchmarks: the what 

Having given a rationale for the existence of synthetic benchmarks, we need to define how to 
design the programs that measure the desired characteristics and what we expect to learn from 
them. Because we restrict ourselves to HPC in the technical/scientific arena we disregard the 
many benchmarks that have been designed to measure aspects like graphics performance or 
database queries. Rather we concentrate on those that provide information about the speed of 
basic operations and fundamental algorithms that are the computational basis for the 
applications that ultimately will be executed on the target systems: large HPC systems with a 
Theoretical Peak Performance around one Pflop/s or beyond. The Theoretical Peak 
Performance (TPP) is the upper bound of the performance of a system measured by the 
number of floating-point operations per second that can be attained by it. For a computer X it 
can be expressed as: 
 
TPPX  = F×Nfp×Nc×P 
 
where F is the clock frequency of the processor core, Nfp is the number of floating-point 
results/clock cycle that a core can deliver, Nc is the number of cores per processor, and P is 
the number of processors in the system. It is also known as the performance number the 
vendor will guarantee never to exceed. In practice the TPP of a system will never be attained. 
The main reasons for this are that the number of floating-point results/cycle will normally be 
considerably less than what is theoretically possible and, second, in systems where we have 
many processors, i.e, the type of systems we are concerned about here, there will generally be 
an appreciable communication overhead that degrades the overall performance. 
 
Synthetic benchmarks are directed at exposing the difference between the TPP of a system 
and the actual observed performance and especially at what causes this difference. The ratio 
between the TPP and the observed performance is called the efficiency of the system. 
Unfortunately, the efficiency is not constant for a given system but varies with the type of 
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computation being done. A good synthetic benchmark should therefore also be designed such 
that they show these differences in efficiency as clearly as possible. A direct consequence of 
this behaviour of computer systems is that there is not one performance number that totally 
characterises them but rather a spectrum of performance data resulting from the different 
computational tests in a benchmark. Another consequence is that ranking of the systems 
according to the benchmark results is never straightforward and sometimes not even possible. 
 
So, what should be in a synthetic benchmark to make it at all useful? First, we should try to 
design programs that make us understand why certain computations have the efficiency that 
we observe. Second, we can identify basic operations and algorithms that are the main 
constituents of full applications and therefore have a predictive value with regard to the 
applications they are part of. When a certain algorithm performs exceedingly well and it 
represents most of the time in the execution of an application it is evident that the application 
itself will do well on that system. A well-known example is the set of applications that are 
dominated by the solution of dense linear systems. The solution of a dense linear system is, in 
turn, dominated by the matrix-matrix multiplication algorithm. On almost all systems this 
algorithm can be performed with high efficiency, often close to 90% or even higher. It is 
therefore evident that all such applications will perform well on systems that have a high 
efficiency for the matrix-matrix multiplication. A good synthetic benchmark will try to cover 
the space of fundamental operations and algorithms that appear in all important application 
classes and thus may help in explaining, at least in part, what may be expected of the 
performance for these application classes. 
 
The basic loss of efficiency at the processor level stems from the huge mismatch between the 
speed of the functional units in the processor core and the speed of the memory. The memory 
is not capable of providing enough operands to the functional units to keep them constantly 
busy and therefore they are in many cases waiting for operands instead of producing results. 
To reduce the effect of the slow memory many well-known devices have been added, like 
various levels of caches and multi-threading capabilities that hide this so-called memory 
latency. This is the reason why it is not sufficient to measure the speed of an operation only 
for one fixed data length: adding the elements of two arrays of length N = 6,000 will result in 
a totally different speed than when the arrays have a length of 10,000,000 as can be seen in 
the following example in table 9: 
  

ci = ai + bi   
i = 1,...,N 

N = 6,000 
(Mflop/s) 

N = 10,000,000 
 (Mflop/s) 

IBM POWER6 767.26 204.76 
SiCortex 5832 201.21  96.126 

Table 9: Influence of problem size for two processor cores. 
 
For N = 6,000 all operands come from the cache, for N = 10,000,000 the operands must all be 
fetched from memory. Note that the performance penalty for the POWER6 processor is more 
than a factor 3.5, while it is just over a factor of 2 for the SiCortex (MIPS) processor. This is 
mainly due to the much higher clock frequency of the POWER6 processor: 4.7 GHz against 
500 MHz for the SiCortex with a corresponding mismatch between the speed of the memory 
and the processors. It is therefore evident that one should measure a range of lengths for such 
operations when one wants to assess what happens within an application. A single value will 
not do. 
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The influence of the relative speed of the memory and the various levels of cache memory can 
be measured in very much detail. A program that is only concerned with this metric is CPU-Z. 
It gives detailed bandwidth results for all memory levels as well as latencies, i.e., the time 
needed by the cache or memory to react to a memory request at all. A program that yields less 
detail but gives bandwidth results for various modes of reading from/writing to the caches is 
cachebench. The problem with both programs, however, is that the outcomes are very hard to 
relate to actual operations or algorithms. It is therefore preferable to use actually occurring 
operations and to measure the bandwidth for these operations directly. This is for instance 
done in the STREAMS benchmark [5] for a limited number of cases and in the EuroBen 
benchmark [6] for a larger set of operations. From these measurements one can infer in how 
far speed of the operations is limited by the bandwidth from the cache or memory. 
 
On the other hand, the benchmark programs must not be too complicated to trace the 
performance back to specific system components. Synthetic benchmarks that are problematic 
in this respect are the SPEC benchmarks [7] and PERFECT benchmark [8]. The latter is 
comprised of so-called “compact applications”, i.e., applications that are reduced to a 
minimum in terms of input sets and output sets. It is indicative of the problems of this 
benchmark that it has never properly been decided in the run rules when a program had 
normally terminated. For instance, in a proposal for the run rules a program was regarded to 
have (successfully) terminated execution when the output set was written to disk. The 
objection made at the time was that in large systems it might well be possible that the output 
set would reside in the disk cache and not on disk and it could depend on the size of the 
output set whether one would regard the program as finished or not. The main problem, 
however, with both the PERFECT and the SPEC benchmarks is that it is virtually impossible 
to understand why a particular component program performs as it does. In this respect we are 
in no better position than when one would measure the performance of ones own 
application(s): it does not add to our insight but yields performance numbers of which we 
cannot say how they will predict the behaviour of a system in other situations. Worse, in case 
of the SPEC benchmarks, often not even the individual outcomes are used, but the geometric 
mean of all programs in the set. This effectively erases all characteristic behaviour that might 
show up in the constituent programs and give us information about the (special) features of 
the system under consideration and make it stand out positively or negatively. 
 
There has always been a strong tendency to reduce the performance of a computer system to a 
single number. This is very understandable both from the side of the users as well as from the 
vendor's side: the users just have to rank the candidate systems according to this metric, while 
such a number can be an excellent selling argument for a vendor when it is better than that of  
his competitors. It will be clear by now that this type of ranking scheme does not 
acknowledge the multi-faceted nature of HPC systems. Despite this widely accepted fact, 
these types of single-metric rankings remain popular. Motivations for such a choice are that 
other benchmarks are more expensive and/or more complicated and are of limited relevance. 
The risk for ending up with a sub-optimal system, especially with HPC systems, is however 
very large and should be avoided. On the other hand one has to prove that a well-designed 
synthetic benchmark will have sufficient advantages over the simplistic approach to 
encourage the relevant parties to adopt it. This means that the synthetic benchmark should 
have, whenever possible, the following properties: 
 
1. The programs in the benchmark should not be too low level. 
2. The programs in the benchmark should not be too complicated. 
3. The programs should expose the properties of the machine in a context that is relevant for 

applications on HPC systems. 
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4. The programs should cover the space of basic operations and algorithms as used in 
scientific/technical applications on HPC systems.  

5. The installation and execution of the benchmark should be simple and system 
independent., i.e., portable. 

6. The runtime of the total benchmark set should not be excessive (many hours or days). 
7. The run rules and the benchmarking circumstances should be unequivocal. 

 
Property 7 includes the possibility to check in a simple way whether a program has executed 
correctly. With the aforementioned properties it is possible to define what, at minimum, 
should be incorporated in the set of benchmark programs to satisfy our needs. 
 

5.3 An Outline for a Synthetic Benchmark 

We are now in a position to be more concrete about what should appear in a synthetic 
benchmark set and how it might be organised. First, we need to identify what basic algorithms 
are used in what applications. Furthermore, we must include basic operations, both with 
respect to computation and communication to get a hold of the upper/lower bounds on the 
speed of these operations. This, in turn, will give us the opportunity to assess whether the 
operations that make up the basic algorithms indeed perform as expected, thus providing us 
with a consistency check. It should be noted here that we look at the hardware and the 
compiler (or library)  as a whole: it might well be that another compiler on the same systems 
would perform better or worse, dependent on the quality of the code generation. This is 
another reason to check both on the basic operations and basic algorithms built from them. So, 
let us make an attempt to define what concretely should at least appear in the synthetic 
benchmark set and why. 
 
Basic operations: • Constant copy: a(i) i=1,...,n = c,  

• Array copy: a(i) i=1,...,n = b(i) i=1,...,n,  
• Dyadic operations, like: c i=1,...,n = a i=1,...,n + b i=1,...,n,  
• Dot product  
• Vector update  
• 2-D rotation  
• 2nd difference operation  
• Low-order recursion  
• High-order polynomial evaluation  

Basic algorithms: • Matrix-vector multiplication (dense and sparse)  
• Solution of a linear system (dense and sparse, the sparse 

systems in both a regular and an irregular form)  
• Evaluation of eigenvalue problems (dense and sparse)  
• MD update kernel 
• Fast Fourier Transforms  
• Random Number Generation 
• Sorting. 
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Basic I/O patterns: • Data transfer performance 
o Variable block sizes 
o Access patterns: sequential, strided, random 
o Concurrency: shared, individual files 

• Metadata performance 
o File creation & deletion 

Basic communication 
patterns: 

• Communication latency and bandwidth 
o Point-to-point communication: synchronous, 

asynchronous, one-sided 
o Collective communication: Broadcast, reduce, alltoall 

etc. 
o Communication patterns: Halo, ring, bisection etc. 

• Overlap potential for communication and computation 
Table 10: Desirable components represented in a synthetic benchmark set. 
 
The number of basic operations and algorithms listed in table 10 is fairly large and one should 
realise that for a particular problem type more than one implementation might be needed. For 
instance, for regular, symmetric sparse linear systems stemming from a Finite Difference 
scheme a Conjugate Gradient algorithm can be used, however, for a irregular, non-symmetric 
system as occurs in Finite Element problems a Krylov method, like GMRES is required. 
These methods behave quite differently and should consequently both be present. Multigrid 
solvers again are very different from the two methods mentioned before and well might be 
included also. On the other hand, one should take care not to try to include each and every 
algorithm ever used in the complete HPC application range but rather concentrate on those 
that usually take the largest fraction of time in the applications one is interested in. 
 
Where possible, the programs that implement them should preferably be self-checking in 
order to see immediately whether they have run correctly or not. Furthermore, the programs 
should be run for a range of problem sizes to assess the influence of the caches for (semi-) 
numerical operations and algorithms, of buffer size and block size in I/O programs, and of 
different communication protocols in communication programs. 
 
To be a fair reflection of what is contained in application codes the synthetic programs should 
implement the basic algorithms according to best practices and, when new types of algorithms 
emerge, these should replace or extend the programs already in the benchmark. In other 
words, the benchmark set has to evolve according to new ways of problem solving in the HPC 
application field. In addition, when new languages like UPC, CAF, or other PGAS languages 
become main vehicles for implementing applications, one should also include relevant kernels 
coded in these languages. 
 
The use of best practices brings some problems with it: when applications are optimised for a 
certain HPC platform, it is quite probable that numerical library routines will be used because 
they can often be considerably faster than the equivalent code written in one of the standard 
high level languages, like Fortran or C(++). The programs in the benchmark therefore must be 
able to accommodate the use of such library routines with the consequence that slight 
variations of some standard benchmark codes may be required. For instance, programs 
implementing dense linear algebra algorithms will hardly be affected, or not at all, because 
the calling sequences of the relevant routines (BLAS, LAPACK) are accepted to such a 
degree that they are present for virtually any platform. Unfortunately, this is not true for FFTs 
and Random Number Generation for which there are no generally accepted routine interfaces 
that are identical across all existing HPC platforms. 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 23

 
Having stated the desirable properties of a good synthetic benchmark set, we are now in a 
position to review a number of synthetic benchmarks that exist at this moment and see 
whether they meet our requirements. 
 

5.4 Review of some Synthetic Benchmarks 

Presently, many synthetic benchmarks are around. Not all of these try to address all the areas 
that are of interest: computation, communication, and I/O. In fact, for this last area there are 
hardly any useful and/or well accepted synthetic benchmarks and this should be a main 
concern in this project. For communication on the other hand there are a few benchmarks 
around that show a considerable overlap. We will discuss some benchmarks below in order to 
assess whether they can be used as a starting point or a constituent for a joint synthetic 
benchmark set.  
 

5.4.1 Computationally oriented benchmarks 

The benchmarks in this subsection concentrate on the computational aspects. This is not to 
say that no communication is performed, but rather that it is not regarded as the topic to be 
benchmarked. In this context it is just a vehicle to enable the correct execution of the 
benchmark codes. 
  
• ASC Sequoia benchmarks [9] A very disparate set of benchmark codes. Mostly full, 

large applications. It contains codes in Fortran, C/C++, Python and a variety on 
communication mechanisms including OpenMP, MPI, hybrid OpenMP/MPI, and 
Pthreads. Not all codes seem to be reliably or optimally implemented. The majority of 
programs do not suit our purposes because of their complexity. 

• LINPACK (HPL) [10] Solves a dense linear equation of an arbitrary order. It is useful to 
obtain an upperbound on the performance of a system but not for anything else. In that 
sense it is very similar to the TPP of the system and the correlation between both values is 
generally over 95%. 

• NAS Parallel benchmarks (NPB) [11] These benchmarks  are primarily computationally 
oriented although they address parallel computers. NAS stands for Numerical 
Aerodynamic Simulation and the programs in the benchmark have therefore a strong 
relation to this field. There is an extensive description of the NPB that can serve as a 
paper-and-pencil version of the benchmark together with rules for allowable extensions 
and libaries. Also a reference implementation is available that can serve as a basis for 
running the benchmark. When reporting the results one should describe in detail what 
modifications have been applied. The benchmark consists of 5 so-called kernels, i.e., 
programs consisting only of an important part of an application, instead of a complete 
application and three types of linear solver programs. For each of the kernels and 
complete programs input sets of increasing size are prescribed named A, B and C. This 
corresponds to the requirement for a range of input sizes as formulated earlier as a 
necessary property for a synthetic benchmark. Recently the so-called multi-zone version 
of a subset of the NPB benchmarks has been published: the LU, BT and SP on collections 
of loosely coupled discretization meshes. Parallelisation over the meshes is implemented 
in MPI: parallelism within the meshes is implemented in OpenMP.  The number of 
meshes (and therefore the scalability of the MPI parallelism) is fixed for each dataset size. 
For two of the applications, all the meshes are the same size. For the third (BT), the 
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meshes are of different sizes, which results in a difficult load balancing problem. 
Unfortunately, the programs in the NPB are too complicated to relate them well to 
machine properties. They may have their use in a restricted part of the CFD application 
area but the mapping of the NPB results to actual CFD applications will generally be 
fairly speculative. It is therefore hardly fit to serve as a synthetic benchmark for our 
purposes. 

• PERFECT Set of 13 compact applications. Development is frozen. Not useful for our 
purposes as the interpretation of the results in relation to other applications is next to 
impossible. 

• SPEC There is a large variety of benchmarks from the SPEC organisation ranging from a 
Java benchmark to a database benchmark. For the HPC community the SPEC CFP 2006 
floating-point benchmark is the most relevant. The separate communication oriented 
SPEC MPI benchmark is discussed below. SPEC CFP 2006 consists of 17 codes in 
Fortran, C(++) or a combination of them. All are complete and sometimes quite large 
applications ranging from QCD to weather codes, each code with its own fixed input set. 
As such, this benchmark is not fit for our purposes: the codes are too complex to extract  
behaviour information from the programs that allows for general assertions about machine 
performance in other areas. Of course one or more of the programs may be in the 
application areas one is interested in but the fixed input sets will make predictions for 
one's own purposes difficult. 

• STREAM  This benchmark measures the bandwidth from (cache)memory to the CPU for 
four cases: vector copy, vector add, vector scale, and a linked triad ( ci = ai + s×bi , I = 
1,...,N). The benchmark supports OpenMP parallelisation, enabling aggregate memory 
bandwidth measurements on multicore systems. There is also a version that extends the 
tests to multiple processors by means of MPI. As such STREAM has been included in the 
HPCC benchmark (see section 5.4.3). Similar measurements are performed in the 
EuroBen benchmark, however, with a larger range of data lengths. A very useful test for 
obtaining bounds on the possible performance of basic operations. 

• STREAM2 [12] An extended version of the STREAM benchmark which evaluates 
memory bandwidth as a function of vector length providing information on performance 
on all levels of the memory hierarchy.  However STREAM2 lacks the OpenMP and MPI 
parallelisation support found in STREAM. 

• P-SNAP [13] A benchmark measuring operating system interference or noise. In very 
large scale parallel systems this jitter can have a cascade effect which decreases both the 
predictability of runtimes as well as the overall performance. The benchmark executes a 
calibrated spin loop in each MPI task and records the actual time taken to execute each 
iteration of the loop.  

• Selfish [14] Another OS Jitter measurement benchmark which measures the amount of 
interrupts detected over a time interval.  

5.4.2 Communication oriented benchmarks 

The benchmarks in this subsection focus on measuring the performance of the communication 
subsystem. The focus is on MPI benchmarks as it is by far the most popular parallelisation 
scheme in HPC today and will likely retain its position for years to come. However, as the 
number of cores per node is constantly increasing there is growing interest in the hybrid 
OpenMP+MPI programming model. Thus OpenMP performance should also be measured. 
 
• EPCC OpenMP Microbenchmarks [15] It measures the overheads associated with 

various OpenMP directives. It compares the execution time of a code fragment executed 
in parallel and compares this to a reference sequential execution time. Three classes of 
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overhead are measured: synchronisation, loop scheduling and creating/copying arrays. 
Fortran and C versions are available. The metric reported is overhead time associated with 
a directive. This benchmark can be very useful in interpreting the results of other basic 
benchmarks where OpenMP overhead is encountered. 

• Intel MPI Benchmark [16] Very extensive benchmark of essential MPI functions. Point-
to-point as well as collective operations and barrier synchronisation are assessed. Also a 
collection of MPI-IO functions are included. Very useful for obtaining bounds on the 
communication performance of a system. 

• SPEC MPI [17] The SPEC MPI2007 benchmark contains 13 applications over a large 
range of application areas. The same problems as for the SPECfp 2006 benchmark 
programs hold: the set of programs is too complicated to draw sensible conclusions from, 
except when an application from the benchmark matches particularly well with one of 
one's own applications. However, drawing general conclusions about a machine by means 
of this benchmark is not possible. 

• SKaMPI [18] A comprehensive set of MPI benchmarks, similar to the Intel MPI 
Benchmark suite. SKaMPI provides a scripting interface which can be used to extend its 
functionality by adding measurements for additional MPI routines and custom 
communication patterns. 

• Sandia SMB [19] A set of benchmarks evaluating message throughput and host processor 
overhead of high-performance network interfaces. Currently only the host processor 
overhead microbenchmark is available. The benchmark measures a system’s ability to 
concurrently perform communication and computation when using the asynchronous 
MPI_Isend and MPI_Irecv communication routines. This can affect significantly the 
performance of programs designed to exploit overlapping communication and 
computation.  

 

5.4.3 Combined benchmarks 

 
Combined benchmarks are collections of various subbenchmarks measuring different aspects 
of the system. They simplify comprehensive system evaluations by providing a uniform 
interface for compilation and  execution of the subbenchmarks as well as usually providing 
commonly formatted output.  
 
• EuroBen The EuroBen benchmark set contains three subsets addressing single-CPU, 

OpenMP, and MPI performance. The subsets themselves are divided in a “module 1” and 
“module 2”, respectively. Module one measures the performance of basic operations and 
intrinsic mathematical functions while module 2 measures the performance of basic 
algorithms, like the solution of dense and sparse linear systems, FFTs, random number 
generation, etc. Although not complete with respect to basic algorithms, it gives 
performance information about the building blocks of  a wide range of application areas. 
As such it would fit in the criteria for a good synthetic benchmark. The MPI subset 
contains measurements of basic MPI  communication functions, be it less extensive than 
the Sandia SMB. 

• HPCC [20] The HPCC benchmark was expressly put together for finding out important 
characteristics of large HPC systems. It includes other benchmarks already discussed: 
HPL and STREAM to assess the maximum attainable floating-point speed for dense linear 
systems, including the communication, and the processor-memory bandwidth, 
respectively. Furthermore, a matrix-matrix mulitiplication which correlates very highly 
HPL and therefore does not provide much extra information, an FFT program and a 
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parallel matrix transposition. The latter program is again strongly related to the FFT 
outcome as in a parallel FFT a matrix transposition is the most important factor in the 
interprocessor communication. An interesting feature of the FFT implementation is that it 
is hybrid: locally OpenMP can be used while the interprocessor communication is done 
with MPI. For instance, a parallel matrix transposition is included in both the FFT and the 
Wavelet Transformation programs in EuroBen. In addition, there is a program performing 
random memory updates to obtain information about the worst case memory bandwidth 
and a program that tests a variety of MPI communication patterns, similar but not identical 
to those in EuroBen and IMB. 

• PARKBENCH [21] In principle PARKBENCH adhered to the same ideas that are the 
basis of the EuroBen benchmark: it should be hierarchical, starting with basic operations 
and increase the complexity of the codes stepwise with basic algorithms and possibly 
beyond. In PARKBENCH the hierarchy consists of low-level benchmarks, kernels, and 
compact applications. The low-level and part of the kernel benchmark programs are very 
similar to a part of the EuroBen benchmarks, module 1 and 2, respectively. However, the 
programs not concerned with dense linear algebra are in fact the NPB kernels that address 
the topics PARKBENCH wants to cover: e.g., the  PARKBENCH FFT kernel benchmark 
is in fact the NPB FT code. As already remarked before, the NAS Parallel Benchmark 
codes are too complex to draw consistent conclusions from and are therefore of less 
interest when building a reliable synthetic benchmark. The same remarks apply to the 
Compact Application part of  PARKBENCH. It consists for the larger part of the CFD 
codes in the NPB and adds the shallow-water code PSTSWM which is also a component 
of the PERFECT benchmark (see above).  PARKBENCH, version 2.1 is still available 
from netlib but development and maintenance are frozen since 1996. 

 

5.4.4 IO Benchmarks 

IO Benchmarks measure the performance of the disk subsystem. The focus should be on 
measuring both the predominant POSIX and emerging MPI-IO interfaces separately as their 
performance does not necessarily correlate with each other. 
 
• IOR [22] The IOR benchmark is designed to measure the parallel read and write access 

performance of various parallel I/O interfaces in HPC systems. Access patterns 
(sequential vs. random), file size, block size, and concurrency (one file per process vs. 
shared file). Currently POSIX, MPI-IO and HDF5 interfaces are supported, enabling 
performance comparisons between different I/O interfaces on a specific platform. This is 
especially pertinent for evaluating the quality of MPI-IO -implementations, which seems 
to vary.  

• IOZone [23] The IOZone benchmark is a widely used tool for assessing a variety of 
POSIX file operations. IOZone is useful for assessing serial and parallel performance 
within a single SMP node using threads. However, the ssh/rsh-based multi-client mode for 
running in parallel on a distributed memory system is not as scalable and portable as MPI-
based parallelisation.  

• Bonnie++ [24] A filesystem benchmark similar to IOZone. In addition to bandwidth tests, 
it offers a set of tests to evaluate metadata operations such as file creation, deletion and 
file status (fstat) lookups.  

• B_eff_io [25] A benchmark which aims at producing a characteristic average number for 
the amount of the achievable I/O bandwidth on a system using a number of different 
access patterns found in parallel applications.  
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5.5 Interpretation of results 

To obtain results that are comparable across different systems, a set of run rules is required 
that regulates the way the benchmark codes should be executed.  Most of these rules are 
obvious but to forgo inconsistencies in the results we should explicitly state them. 
Furthermore, we cannot ignore the existence and increasing occurrence of computational 
accelerators. We may expect them to be present in some form in the Pflop/s-prototype 
systems that PRACE is targeting and it is to be expected that at least some of the codes in the 
set of synthetic benchmarks could be run on such accelerator hardware without excessive 
effort  to modify them for the particular accelerators at hand. This, however, also necessitates 
precise rules about what code modifications are acceptable. 
In the following section we assume that for all programs in the benchmark set, a generic 
program code is available, the collection of which we call the base implementation of the 
benchmark. 
 

5.5.1 Run rules 

Standard CPU configurations 
 
With regard to systems with general CPUs one should at least perform an “as-is” benchmark 
run. With “as-is” is meant that no modifications in the base implementation is allowed other 
than the minimum to obtain a correct result. When indeed such modifications are required, 
they should be reported. Furthermore, the following testing circumstances for each run should 
be provided: 
 
a) System type 
b) Number of processors, cores/processor, and processors/node (if applicable) 
c) Amount of memory/processor or memory/node (if applicable) 
d) Compiler version 
e) Compiler optimisation flags 
f) Libraries used 
g) Operating system version 
h) Date and time of  run 
 
Both compiler flags and libraries should be generally available to the HPC community, i.e., 
they may not be special flags/versions only used for the benchmark but be accessible to 
anyone who wishes to reproduce the benchmark run. It is, however, permitted to exchange 
benchmark code in the programs by calls to optimised libraries performing the same 
algorithms. Calling sequences and parameter types for the library versions should, however, 
be identical. 
 
In addition to an as-is run, optimised runs could be performed. Here the same rules as given 
above hold except for the fact that one may modify the code for higher performance. This 
does not extend to altering the algorithms that are used in the codes. Even when the 
computational result would be the same one should adhere to the original algorithm. For 
instance, it is not allowed to use Strassen's algorithm for matrix-matrix multiplication when 
the original code contains the usual O(n3) multiplication algorithm. Merely a more efficient 
implementation may be attempted. In case of an optimised run the same information as for as-
is runs should be provided. In addition, the code modifications should be detailed with respect 
to the base implementation. 
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Of course it is not allowed to take advantage of the knowledge of the outcome of a program, 
i.e. skip (part of) the computations if this would be possible. Although this is conceivably not 
the case in the as-is runs it might be possible in the optimised runs. 
 
For all programs that are executed the complete output should be available. If a program did 
not execute correctly or not at all, this should be reported. 
 
Accelerator-enhanced configurations 
 
It is highly probable that the computational accelerators in their host systems may not be able 
to run a full benchmark set. They are mostly added to accelerate a limited set of algorithms 
extremely well while they are not accommodated to or even unable to perform algorithms 
outside this set. It is also clear that in most cases it will not be possible to use the standard 
source code as given in the base implementation. Depending on the type of accelerator and 
the libraries that are available for it, it may be necessary to insert variable types and library 
calls that enable the execution of the algorithms of choice. For some accelerators BLAS, 
LAPACK, and FFT libraries are available and in this case the modifications need not be 
extensive. In other cases it may be necessary to include routine calls for the transportation of 
data to/from the accelerator from/to the host system perhaps with double- or multi-buffering 
for efficiency's sake.  As we can consider the execution of programs from the benchmark set 
on accelerators not as as-is runs but as optimised runs, this is in principle no problem as long 
as the program's semantics not are violated. So, the same rules as for optimised runs on 
standard-CPU systems are valid, be it that the description of code modifications and the 
supporting libraries will in general be much more extensive. 
 
As is remarked before, it is in the nature of the accelerators that not all programs in the 
benchmark set can be executed. Although it may be possible in principle to port some 
programs to an accelerator, it may demand  unreasonable efforts to do so. Still, whenever 
possible, it is highly commendable as it also can give us valuable information about the 
limitations of certain accelerators for the programs that have been ported. For instance, the 
lack of supporting hardware for reduction operations could give information about what 
algorithms not to implement on the accelerator that misses such a facility and it may help in 
identifying unrealistic claims from accelerator vendors. 
 

5.5.2 Benchmark results 

Benchmark output 
There are essentially three metrics that are useful for assessing the performance of a computer 
system: the wallclock time, the number of floating-point operations per second (flop/s) for 
computational-oriented programs, and bytes per second (B/s) for communication and I/O-
oriented programs. Of these three the wallclock time is the fundamental metric on which all 
other metrics depend. From the three metrics mentioned additional ones may be  derived: e.g.,  
instructions/cycle for code efficiency or bytes per flop (B/flop) for system balance. This 
means that the programs in the synthetic benchmark set at least should have wallclock time 
and flop/s or B/s as output, depending on the metric of interest. The output thus becomes a 
component of the performance profile for the system that is being benchmarked. The 
performance profile being the set of benchmark results that serve as a basis for the 
conclusions about the strong and weak points of a computer system. The results of the 
individual programs can be used for internal comparison, like the fraction of the theoretical 
peak performance that can be attained, or external, comparing it with the results from other 
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systems for the program at hand. A database with the results for the systems thus measured 
can be of great help in the interpretation because of trends for various types of architectures 
that might be discerned. The basic metrics in the database can be combined to obtain the 
derived metrics one might be interested in. 
 
Correctness checks 
The programs need to have internal correctness checks to be sure that the correct amount of 
data has been processed and has yielded the correct results. Obviously, only programs that 
produce correct results will be admissible to the database of results.  
 

5.6  Conclusions and Future Work 

From the previous sections it will be clear that a PRACE synthetic benchmark set (PRACE-
SBM) should consist of programs that targets four system properties: 
  
• Computation 
• Memory bandwidth 
• Interprocessor communication 
• I/O 
 
The PRACE-SBM can partly be composed from existing benchmarks that already suit our 
purpose of learning about the system properties and building the performance profile. 
However, not all issues required for a complete picture are addressed with equal quality or at 
all. To streamline compiling, execution and interpretation of the results, the benchmark 
components will be integrated into the PRACE benchmark suite. However the current version 
of the JuBE framework, which is the suite is based on, is designed mainly for running 
application benchmarks which generate a small number of metrics (usually just the wall clock 
run time is sufficient). On the other hand a synthetic benchmark such as Euroben may 
generate hundreds of individual results which should be processed and stored.  
 
This leads us to the following recommendations, which also defines a work program for 
components still missing and how to go about adaptability and maintainability of versions. 
 
1. Compose an initial PRACE-SBM from components from existing benchmarks with 

acceptable relevance and quality. 
2. Integrate the PRACE-SBM components into the PRACE benchmark framework (JuBE) in 

collaboration with the benchmark integration subtask. 
3. Collaborate with JuBE developers in improving the framework to better suit PRACE-

SBM. 
4. Fill in the blanks that have not yet have been addressed in the initial benchmark set. 
5. Monitor the application space in order to keep up with current/new algorithmic practices 

and develop new programs that implement them as kernels. This also means that obsolete 
kernels should be removed as the programs should reflect the state-of-the art in HPC 
computation, communication and I/O practices. 

 
For a first practical approximation for the PRACE-SBM we will start with merging (part of) 
the EuroBen and HPCC combined benchmarks, the EPCC OpenMP benchmark, the IOR and 
Bonnie++ I/O benchmarks, the STREAM2 and P-SNAP benchmarks, and the SKaMPI and 
SMB MPI benchmarks.  
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Future development of the PRACE-SBM benchmark components should focus on the 
following: 
• Computation 

o Implement sparse eigenvalue, multi-grid, and molecular dynamics kernel 
programs for single-CPU, OpenMP, and MPI versions.  

• Memory bandwidth 
o Implement a memory bandwidth benchmark combining the OpenMP 

parallelisation functionality of STREAM  and the support for variable vector 
length of STREAM2. 

• Interprocessor communication 
o Implement benchmarks for testing MPI+OpenMP hybrid programs. 

•  I/O  
o Implement an MPI-parallelised test for metadata performance. 

 
The result of this work will be reported in D6.3.2. 
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6 Performance Analysis Tools 

 

6.1 Introduction 

 
In High Performance Computing, application performance is the ultimate goal and test for the 
success of the combination of hardware architecture, system software and application code. In 
order to analyse performance, tools are used to identify and characterise performance 
bottlenecks encountered with existing and proposed algorithms. This section will build on our 
experience in the use of current tools on existing systems. It is unlikely that Performance 
Analysis Tools (PATs)  will scale without modification to ~10,000 or more processes, i.e. to 
be able to assess Pflop/s performance. 
 
For the remainder of this section, we will use the following descriptions for monitoring, 
profiling and tracing: 
 
• Monitoring: Performance data collection via hardware counters (the number of executed 

floating point instructions, the number of cache misses statistics on branch instructions, 
etc.). This also covers application memory usage and application I/O activity; 

• Profiling and tracing: Profiling collects aggregated information about certain events, 
whereas tracing records information about individual events. Events are function calls, 
communication or other activities. Profiling typically yields total runtime per function, 
number of calls and a call tree.Tracing allows one to investigate the dynamic behavior of a 
single function over many iterations. Profiling and tracing often require instrumentation 
(modification) of the target application. This can be done by using compiler flags, by 
either manual or automated source level modification, by directly instrumenting a binary 
executable or by using instrumented runtime libraries. 

Since Performance Analysis tools are very diverse by nature, there is no uniform way to 
describe or assess them. In the following sections we will describe a number of tools or 
toolkits. To exemplify the tools we standardize on the well-known Linpack benchmark (HPL) 
that is used for the TOP500 list. The rationale for choosing HPL is the portability to all 
platforms and its working is well understood. Since the main purpose is exemplification, we 
did not try to fully optimise or even scale the HPL run. 

This section does not intend to be an exhaustive market survey of all available PATs. Our 
selection approach has been to initially evaluate a mix of PATs: from hardware vendors, from 
software vendors and Open Source (typically developed at universities and/or research 
institutes). We have mapped these PATs to available hardware architectures and to available 
expertise, which has led to the set of investigated PATs in the following subsections. With 
respect to future work in this subtask of task 6.3, PATS will be heavily used in tasks 6.4 and 
6.5, leading to more details for 6.3 as well. Based on these experiences, we expect to be able 
to really feed into the development cycles of hardware and software vendors, and in the Open 
Source development of PATs. 
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6.2 Allinea Optimisation and Profiling Tool (OPT) 

 

6.2.1 Introduction 

Developer 
Allinea Software, more information in [26]. 
 

6.2.2 Availability 

Commercial product, license required, free 30 day trial available. 
 

6.2.3 Supported Platforms 

Allinea OPT is available for almost every flavour of Linux, for Itanium, Opteron, EM64T, 
Xeon, PowerPC and the IBM Cell BE. BlueGene/P support has recently been added. A 
complete list of the supported platforms is available from the website. 
 

6.2.4 Assessment Environment 

 
• IBM BG/P  

A one-rack (4096 cores) IBM BlueGene/P system at STFC Daresbury Laboratory (4096 
cores) has been used as the platform for the evaluation. 

• Allinea OPT v1.4.2  
Recent updates have added support for IBM BlueGene/P, SGI Altix and IBM Cell BE 
platforms.  

• Linpack 
The open-source package Linpack is a numerical solver for a dense system of linear 
equations. 

 
Description of the tool 
OPT is a development tool for improving the performance of MPI and scalar applications. It 
gathers profiling information by instrumenting the MPI communication layer. OPT is a grid-
enabled application that uses the web-service protocol SOAP to allow profiling users to 
access OPT remotely and securely with a minimal amount of communication bandwidth. 
OPT’s graphical interface uses remote (or local) OPT servers to launch applications, store 
performance data and analyse user applications.  
 
Design Features 
• Allinea OPT has been designed for use on large-scale parallel systems.  
• Supported languages: Fortran, C and C++. 
• Easy generation of different data formats. 
• Grid capable. This allows users to access remote profiling data almost as rapidly as a local 

server. 
• Multiple runs can be compared to assess code scalability. 
• Interoperable with other profiling tools e.g. PAPI hardware counters or gprof. 
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• Subsets of processors and time intervals of interest can easily be selected in order to keep 
levels of profiling data manageable. 

 
 
 
Profiling Methodology 
OPT consists of three components (which can reside on separate machines): 
 
1. A library that is linked to your application code and records performance data. 
2. A database component (the profiling server) to store trace data, and combines them into 

profiling data. This consists of a PostgreSQL Database.  
3. A graphical user interface that is able to interpret both the trace and the profiling data and 

displays it in user-specified formats. 
 
Once that the OPT server software and the OPT profiling library is installed on the system (an 
installation GUI is provided for this) there are three separate stages involved in profiling 
users’ application codes. Firstly, the application source code is instrumented by wrapping the 
existing MPI calls. Either the whole code can be profiled, in which case no changes to the 
source code are required, or the application can be edited to use the OPT APIs in order to 
undertake selective profiling or add profiling extra features. On the IBM BG/P platform the 
following additions to the compile/link line were required: 
 
• The OPT header-file include directory 
• The OPT static library directory, OPT and OPT-support libraries 
• The GNU C++ stdc++ library 
• The dynamic-linking library 
  
Instrumented executables can be run in exactly the same way as ‘normal’ executables, either 
interactively or in batch mode. Jobs can be launched either from the command line or the OPT 
GUI.  During execution profiling data is collected in the profiling database.  
 
Once the job has completed the MPI profiling data can be viewed in several different formats. 
A selection of these views are summarized briefly here:   
 
Timeline View  
This is a chronological display of the users program. The profiling information from each 
processor is listed as a separate line and within each line the coloured boxes represent MPI 
communications or other MPI function calls. Areas of interest in the timeline can be navigated 
via zoom and mouse drag or time intervals can be entered manually. Communication lines 
representing messages can also be toggled on/off. Individual message occurrences can also be 
highlighted and detailed performance data can be obtained (see figure 5). The timeline view 
can be useful for highlighting asynchronous behaviour or load imbalances between 
processors. The timeline is best when we consider only a small section of the actual run time 
of a program – so long as this section is representative of overall performance. 
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Figure 5: Screenshot of timeline view of OPT Linpack run on IBM BG/P. 
 
 
Figure 5 shows an occurrence of MPI_Send from process 4 to process 5, which has been 
highlighted for detailed analysis. 
 
Call Graph View 
This view allows users to determine how MPI functions were called and to discover the 
source of an MPI function call. This enables the user to track problems in balance, raw or 
cumulative resource usage. gprof data can also be viewed from this display. 
 
Histogram View 
This view arranges metric values from processes into buckets and gives a view of selected 
measurements by plotting a histogram (figure 6). By viewing the data in this format users can 
easily identify load imbalances between selected processors. 
 
Message Profile View 
The Message Profile view provides a summary view of point-to-point communications 
between different processors. The information is provided in the form of a grid (figure 7). 
Metrics such as bytes transferred, number of mpi calls and time spent in mpi communications 
can be selected. The number of bytes communicated between processors is the displayed 
metric. 
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Figure 6: Screenshot of histogram view of OPT Linpack run on IBM BG/P. 
 

 
 
Figure 7: Screenshot of Message Profile view of OPT Linpack on IBM BG/P. 
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Evaluation 
  
Advantages 
 

• A highly detailed analysis of communication can be obtained, right down to individual 
messages between processors; 

• Load imbalances between processors can be identified very easily; 
• The chronological timeline views allow users to focus on areas of interest; 
• Several options available in the user interface for filtering/selecting both 

communication routines and parameters of interest; 
• Jobs can be run, traced and viewed all from within a single graphical user interface; 
• The OPT function calls can be used to stop and start logging where required. This 

technique can mitigate some of the performance disadvantages listed below; 
• The documentation is very detailed and specifies installation procedures for several 

HPC platforms, including the IBM BG/P;  
• Allinea customer support was very responsive to queries. 

 
Disadvantages 
 

• Logging the communications can be slow and heavily impacted on the performance of 
the Linpack benchmark code. The reported speed of Linpack dropped from around 6 
Gflop/s to around 1 Gflop/s; 

• The GUI becomes less responsive when communications events increase (e.g. with 
larger processor sets); 

• The setup is relatively complicated. For example the user must install a PostgreSQL 
database server on the target platform. However this is usually bundled with the OPT 
software and installation on IBM BG/P was relatively straightforward; 

• The tracefiles can become very large and loading these into the GUI becomes time 
consuming. This even became a problem for 16 processors of the HPL benchmark 
lasting less than a minute; 

• There is no OpenMP or mixed-mode support; 
• OPT profiles only MPI communications routines, not computational routines. 

However the tool can be combined with gprof and PAPI to provide such information. 
 
Future work 
More details and experience need to be gained when scaling up to many cores. This will be 
done by applying Allinea OPT to the Helium benchmark code on IBM BG/P.  
 
 

6.3 CEPBA-Tools: Paraver & Dimemas 

 

6.3.1 Introduction 

The CEPBA-Tools environment for performance analysis is a set of tools being developed 
and maintained by BSC [27]. Two major tools constitute the core of the environment: Paraver 
and Dimemas. 
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Paraver is a flexible browser for traces. It can display timelines (with very scalable display 
mechanisms) of a wide variety of metrics (activity, hardware counter derived metrics, 
communication bandwidths,…). It also provides detailed statistics (averages, histograms) of 
those metrics for any desired interval of the trace. Paraver comes along with MPItrace, the 
instrumentation package that generates traces for MPI + OpenMP parallel programs. 
 
Dimemas is a coarse grain simulator to estimate the impact on the performance of MPI 
applications of parameters such as network latency, bandwidth, contention, processor speed, 
etc. It interoperates with Paraver (can make the prediction starting from a Paraver trace of a 
real run) and generates Paraver traces of what would be the behavior under the target system 
characteristics. 

6.3.2 Availability 

Paraver and Dimemas along with the trace generation and handling utilities are distributed in 
binary form. BSC is preparing an Open Source Distribution in a near future.  

6.3.3 Supported Platforms 

Versions of the instrumentation libraries to generate traces are available on the following 
platforms: Linux-x86/AMD/PPC clusters, AIX-PWR4/PWR5, Cell, BG/L, Altix, SX8, 
CRAY XT3/XT4. 
 
Paraver and Dimemas as such run on standard Unix/Linux machines. This includes servers 
and laptops. A typical way of operation is to obtain the trace on a parallel machine. A normal 
trace analysis with Paraver would require the machine to have at least 1GB of memory.  

6.3.4 Scalability 

The main limitation in the Paraver analysis is the trace size. Paraver can easily handle traces 
of up to 200MB on a standard laptop. Above this size, response times may get too large. 
Different techniques have been developed to summarize traces of tens of GB such that the 
resulting traces can be visualized with Paraver. 
 
Non linear rendering techniques included in Paraver result in the possibility to visualize traces 
with a large number of processors. 
 
As an example of the above techniques, figure 5 shows a timeline of 10,000 cores running 
Linpack for 1,700 seconds. The three views of the same region of the trace show the duration 
of the dgemms (left), their IPC (center) and their L1 misses (right). We can see the extreme 
precision of the analysis, showing for example differences in IPC of less than 3%. It is also 
possible to identify 4 processes (one node) out of the 10,000 that showed slightly higher L1 
misses than the rest. 
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Figure 8: Linpack@MareNostrum, 10k cores x 1700 seconds. 
 
 

6.3.5 Paraver Details 

Methodology 
A normal Paraver analysis consists of several phases: 

• Obtaining the original trace 
• Obtain representative subtraces to be visualized with Paraver. 
• Detailed analysis with paraver 
 

Tracing 
Paraver comes along with the MPItrace instrumentation package. The basic mechanism to 
inject probes relies on the LD_PRELOAD environment variable.  MPItrace handles pure MPI 
as well as MPI+OpenMP programs. Support for Pthreads is also available. 
 
Normal production binaries can thus be instrumented. In order to instrument a run it is only 
necessary to modify the mpirun invocation in the submission script by calling a trace script in 
front of the user application. The actual instrumentation is controlled by an xml file where the 
analyst can specify the hardware counters, level of detail in the tracing, how to handle the 
intermediate files, etc. Both the trace script and the control xml are provided with the 
distribution. 
 
MPITrace generates one .mpit file per process. A merger utility is provided to match and 
merge the different files into a single one. 
 
 
Subtraces 
When starting Paraver and trying to load a file larger than what it can properly handle for 
visualization Paraver will offer several possibilities to compute some preliminary statistics on 
the trace and manipulate it to reduce its size. This includes the possibility to filter it. 
Typically, the process consists of generating a summarized trace that spans all the duration of 
the original one but where only a subset of the records is included. An xml file is used to 

Dgemm  
 IPC 

2.95 
2.85 Dgemm  

L1 miss ratio 

0.8 
0.7 Dgemm  

duration 

11.8 s 
10 s 
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control how to perform the filtering. Typically one would discard all communication records 
and just keep computation records of sufficient duration. 
 
This summarized trace can be loaded with Paraver and its periodical structure identified. A 
utility lets the analyst specify on this trace which region of the original file seems to be a 
relevant section (i.e. a couple of periods) and thus generate a fully detailed trace but only for 
that interval. 
 
This process is typically performed with Paraver installed on the parallel machine where the 
trace was obtained. The summarized traces can then be copied to a laptop where the analysis 
can be done locally. 
 
 
Analysis 
Once a representative trace is obtained it is possible to perform extremely detailed analyses. 
These can be either visualization of how performance metrics (duration, IPC, bandwidth,….) 
evolve with time or the corresponding profiles (MPI calls, User functions) or histograms 
(duration, hardware counts, derived metrics,…). Each such view pops up when loading a 
configuration file previously saved by an expert. 
 
 
Assessment 
The tool is extremely powerful and in the hands of an expert can help identifying or 
pinpointing the performance problems in an application. The great flexibility in terms of 
generating the displayed metric offers the possibility to perform very precise measurements. 
The possibility to generate histograms of any such metric and to go from there to the timeline 
is a very powerful mechanism to identify regions of specific behaviour. Although the tool has 
a long learning curve, it proves very useful in cooperative analyses, where an expert analyst 
presents her observations to an application developer and jointly discuss on the observed 
behaviour. 
 
Although being possible to analyse very large runs on large configurations, the process of 
trace generation and initial handling is cumbersome. Traces of several tens of GB can be 
handled if the target machine is large and has storage enough, but the time spent in the 
merging and sub-trace selection process, can be a nuisance. 
 
Once the appropriate sub-trace is available, the initial views can help understand the general 
behaviour. A typical observation is that the GUI has too many windows and several clicks on 
different windows have to be done to achieve a given effect. On the other side, the possibility 
of loading several traces and copying time scales form one to another provides a very natural 
way to study the scalability of applications. 
 
Even if it is possible to dig down into possible causes of performance problems, there is no 
standard methodology for a novice user that just provides a basic general description of the 
behaviour. It is easy for a user to get lost with so many possible views and histograms. 
Sometimes the doubt arises of what is exactly measured by a configuration file. 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 40

 

6.3.6 Dimemas Details 

Methodology 
A normal Dimemas analysis would have the following steps: 
 
• Convert a Paraver trace to Dimemas trace 
• Validate the Dimemas simulation 
• Perform parametric studies 
 
Trace conversion 
The trace that we have been analysing in the previous Paraver session can be converted to a 
Dimemas trace with the prv2trf tool provided with the environment. It is also possible to 
directly obtain a Dimemas trace form an instrumented run of the application. 
 
 
Validation 
A Dimemas simulation is controlled by a .cfg file. The dimemas-java utility provides a GUI to 
create one such control file. It contains a description of the target machine, including number 
of processors per node, latency and bandwidth of the network, level of contention, etc. 
Paraver performs the simulation reporting the predicted execution time for the specified trace 
on the target architecture. It also can generate a Paraver trace with the detailed timing of the 
predicted behavior.  
 
A first recommended study is to simulate the converted trace on a target machine with the 
nominal parameters of the actual machine where the trace was obtained. This simulation will 
typically generate a trace quite similar to the original Paraver one. By loading them in Paraver 
we can compare them.  
 
 
Parametric sweep 
By performing different simulations varying latency, Bandwidth or contention level we can 
estimate their impact on the application execution time. By looking at the generated Paraver 
predictions we can identify the impact of those factors and whether it is uniform along the 
application or certain parts are more sensitive to one or the other. This type of analysis gives 
immediate answers to typical questions by developers such as “should I try to pack data and 
generate less but larger messages?”, or “should I use asynchronous communications?”, or 
“…...” 
 
 
Assessment 
The tool provides very good perception of the behavior of the application and how sensitive it 
is to communication. It is a great complement to the original analysis of Paraver in order to 
identify the main issues to address in the optimisation of a code. 
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6.3.7 Future Developments 

Current developments try to address some of the issues that should reduce the time spent by 
the user on analyses and to increase the semantic content of the information provided by the 
tools. On the Paraver side this includes: 
 
• Automatic analysis: algorithmic work has already been done in areas of time analysis and 

clustering techniques that should now be integrated in the tool. The time analysis will ease 
the process to generate representative subtraces by automatically identifying the periodic 
structure of the trace. To further identify structure in the trace we are applying clustering 
techniques to hardware counter information. These techniques can be used to extrapolate 
hardware counters and to apply CPI stack models that give a high level identification of 
the bottlenecks of the computation phases. 

• Integration of sampling techniques with tracing: Sampling techniques are used in standard 
profiles. Some tracing tools also use sampling, but we do believe that the potential of 
mixing both techniques is much higher than what it is currently done. We are developing 
techniques to obtain extremely detailed information of the behaviour of a program along 
time without having to incur very high overheads. 

• Methodology and training: we have to develop a set of configuration files to guide a 
novice user in the first analyses. These metrics and models should present an abstract view 
of the performance of an application. It should be possible for the automatic environment 
to directly present these views and statistics to the user. 

• Online analysis: the techniques we have developed for the offline trace analysis should be 
implementable in an online run time analysis. We are currently implementing preliminary 
prototypes of such functionality based on MRNet. 

 
Regarding Dimemas we are developing multiscale prediction techniques that allow us to 
consider detailed instruction simulator and other prediction techniques for precise estimation 
of the impact of processor architecture on the sequential computation burst between MPI calls 
 
Further, BSC is preparing an Open Source Distribution of the CEPBA-Tools environment. 
This should allow for users with specific needs to implement the features they require. Given 
the huge flexibility of the visualizer we envisage that the major usefulness would be at the 
level of tracing packages in order to emit the specific information into the tracefile. 
 
 

6.4 Cray Performance Analysis Tools 

 

6.4.1 Introduction 

In the 1970’s and 1980’s, Cray Research Inc. HPC systems (“supercomputers”) represented a 
very large market share. Engineers at Cray realised that designing and developing fast 
hardware was important, but also that the notion on how efficient this hardware was used, and 
consequently improving efficiency, was important. The originals of Cray Performance 
Analysis Tools (CrayPat) go back to this period. This section covers the current versions of 
these tools (v4.3), which we have assessed on the Cray XT5 system at CSC (which represents 
one of the prototype architectures within PRACE). CrayPat is owned and developed by Cray 
Inc. [28]. 
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6.4.2 CrayPat Details 

 
CrayPat provides access to a variety of experiments and reports that can indicate how a 
program is behaving during execution and where possible performance bottlenecks may lie. 
CrayPat consists of five major components, of which all but Apprentice2 are command line 
based: 
  
• pat_build -- used to instrument the program to be analysed.  
• pat_report -- a report generator, used to generate reports from the performance data 

captured during program execution and to export data for use in other programs.  
• Cray Apprentice2 -- an optional graphical analysis tool, used to visualize and explore the 

performance data captured during program execution. It can also be used off-line on 
Linux systems. 

• pat_hwpc -- an alternative to pat_build and pat_report, used specifically to perform 
simplified hardware counter analysis experiments and generate reports from the resulting 
data.  

• pat_help -- an online help system, which contains extensive usage information and 
examples. This help system can be accessed by entering pat_help at the command line.  

 
Features 
Because CrayPat is developed for the Cray supercomputers, it is by construction well suitable 
for these environments. It is versatile to use and is shown to be able to analyse parallel 
software running on several thousands of CPUs. Because of this scalability, and the highly 
controllable degree of invasiveness, CrayPat is well suited for analysis of large parallel 
programs.  
 
The recorded data can be aggregated or shown for different items separately. Data can be 
recorded from either each processing elements, or just from the given ones. Also the 
communication between processing elements can be recorded. This enables a very thorough 
analysis of the program and finding the possible performance bottlenecks.  
 
The estimated instrumentation overhead is also recorded and can be substracted from the 
results in order to get more realistic and accurate results.  
 
Moreover, CrayPat is able to analyse the I/O and memory usage of the software. 
 
 
Instrumentation 
The basic usage of CrayPat consists of a few general steps. The toolkit is initialized by 
loading a corresponding module, (usually) recompiling the program and instrumenting it 
using pat_build command.  
 
Instrumentation is done by using CrayPat's command line based tool, pat_build. The 
executable is re-linked but not recompiled. Thus no source code modification is required for 
the instrumentation, but the original object files must be available. CrayPat uses static binary 
instrumentation, and supports performance data collection in several ways: 
 
• Tracing: Record timestamps and arguments for all instrumented functions; 
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• Sampling: Samples hardware counters or callstack at fixed intervals; 
• Profiling: Performs a specific sampling experiment where user + system time are sampled 

for all functions in a program. 
 
Experiments are defined before program execution by using runtime environment variable. 
Tracing experiments can only be performed for the executables instrumented for tracing, 
sample-type experiments for all other executables.  
 
The instrumented program generated by pat_build is a stand-alone version, and the original 
binary is preserved. Thus the created instrumented executable can be run normally, and the 
run-time library for measurements is transparent to the user. Automatic instrumentation at 
group (function) level is provided for several groups, such as mpi, io, heap, math SW, etc. 
CrayPat also provides several environment variables that can be used to control the program.  
 
If the instrumentation methods provided by pat_build are not sufficient, further and more fine 
grained instrumentation can be performed using CrayPat Application Program Interface 
(API).  
 
By default, the resulting data files are written to the execution directory. This directory must 
reside on a file system that supports record locking, such as the Lustre file system. 
 
 
Hardware Counter Data 
CrayPat runtime environment variables enable one to collect a wide variety of performance 
analysis data using the same instrumented program. It can be set to collect different sets of 
hardware performance counter data, either by groups or by choosing individual hardware 
performance counters. These are usually presented as a combination of actual PAPI counter 
values and metrics derived from these.  
 
An alternative method is to use pat_hwpc command, which performs simplified hardware 
counter analysis and also automatically generates reports from the resulting data. pat_hwpc 
uses an uninstrumented version of the program, as is does the instrumentation by itself. It is 
usually the quickest way to acquire basic hardware performance information. 
 
 
OpenMP 
For programs that use the OpenMP programming model, CrayPat can measure the overhead 
incurred by entering and leaving parallel regions and work-sharing constructs within parallel 
regions, show per-thread timings and other data, and calculate the load balance across threads 
for such constructs.  

For programs that use both MPI and OpenMP, profiles by default compute load balance 
across all threads in all ranks, but you can also see load balances for each programming model 
separately.  
 
On Cray XT systems, the user is responsible for inserting API calls himself. There is a variety 
of C and Fortran functions that can be used to instrument OpenMP constructs for compilers 
that do not support automatic instrumentation.  
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Reporting the results 
The reporting tool, pat_report, performs data conversion and combines information from 
binary with raw performance data into text report of performance results. It also formats data 
for the graphical analysis tool Cray Apprentice2.  
 
The standard raw data .xf report files require the original instrumented executable to be 
available to provide mapping from addresses to function names and source line numbers, 
whereas Apprentice2, or .ap2 files are self-contained. Therefore, converting the results to .ap2 
files is recommended. By default, pat_report does this automatically, if an .xf file or a 
directory containing .xf files is specified.  
 
pat_report provides text reports of various formats, depending on the given parameters. Its 
main features include  
 
• Profile by groups  

o Threshold  
o Load balance information  
o Imbalance metrics  

• Function Profile  
o Flat profile  
o Call Tree view  
o Callers view  
o Hardware counters information  

• MPI Profiler  
o MPI Load balance  
o MPI Stats by bin  

• I/O Statistics  
o Read and Write Statistics  

• Heap Statistics  
o High water mark 
o Memory leaks 

 
In addition to the standard reports, pat_report can create highly customized reports tailored to 
specific needs. This is done by specifying the data to be included in the report, specifying how 
the data is to be aggregated and labeled, and specifying how the resulting information is to be 
displayed. Reports can be tailored for spreadsheets as well. 

Apprentice2 
Cray Apprentice2 is a post-processing performance data visualization tool. It is not a 
component of CrayPat, nor is it restricted to analysing data generated on any particular Cray 
system. Rather, it is a platform-independent post-processing data visualization tool. After the 
program is instrumented for a performance analysis experiment, executed and one or more 
performance analysis data files are generated, Apprentice2 can be used to explore the 
experiment data and generate a variety of interactive graphical reports. As a GUI tool it 
requires that the workstation support the X Window System.  
 
Apprentice2 can display a large amount and variety of data, but it is dependent on the options 
selected when the program was instrumented and on the runtime environment variables 
specified when it was executed. Environment variable PAT_RT_SUMMARY can be used to 
summarize and aggregate the data.  
 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 45

Apprentice2 provides various reports, including: 
 
• Overview Report  
• Load Balance Report  
• Traffic Report of various kinds  
• Activity Report  
• Call Graph  
• Function Report  
• I/O reports of various kinds  
• HW counter reports or various kinds  
 
 

6.5 DewizPat – Automatic Communication Pattern recognition 

 

6.5.1 Introduction 

Over the years GUP has developed its tools NOPE and ATEMPT for generating traces from 
running MPI programs and visualizing communication between processes based on events 
between them using a logical clock timescale. Therefore users can already better understand 
their codes or find bugs visually (e.g. receives without corresponding sends). 
 
The fact that applications run on thousands of cores at a time, makes it impossible to find 
those patterns through "simply having a look", there is ongoing work on automatically finding 
repeating or typical patterns within those traces and also linking them to source code lines. 
Recent research focuses especially on efficiently searching for inefficient use of 
communication. This section gives some detail on NOPE and ATEMPT. 
 

6.5.2 NOPE and ATEMPT: Details 

In figure 9, taken from the GUP Eclipse Traceviewer, we show a trace from a synthetic 
benchmark code that performs a scatter in an inefficient way, by just using MPI_SEND and 
MPI_RECEIVE. The x-axis counts logical clocks in the progress of the code and the y-axis 
shows the 8 processes involved. A red colored event shows a process doing a send to a blue 
colored event being the correct receiver of that communication. In the left part of the Image 
one can see different properties of the event being currently selected. 
 
The pattern recognition code is able to perform the following tasks: 
 
• analyse the whole program trace for repeating message patterns; 
• find inefficient ones (as the one from the screenshot); 
• find not only local patterns, but also find global (compact) ones, i.e. at first sight there 

might be only 2 processes communicating, but after a more thorough analysis you actually 
find out, that there is something bigger going on between more processes; 

• report the patterns being identified. 
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Currently, the output is only textual, because we care about actual automatic recognition. It 
delivers the patterns found and the processes involved and also which source code lines were 
involved in producing that patterns. Another remark that can be made is that the analysis is 
done very efficiently and has been tested on traces with several million events from the LLNL 
BG/L. But for simplicity the screenshot should give you a better idea, what it is about. 
 
 

 
 
Figure 9: Screenshot of a NOPE generated Trace using the Eclipse Traceviewer. 
 
This tool is still ongoing research and therefore only partly usable, because the NOPE tool for 
generating the traces can currently only deal with MPI_SEND, MPI_RECEIVE and 
broadcasts. 
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6.6 IBM HPCT: High Performance Computing Toolkit 

 

6.6.1 Introduction 

 
The IBM HPC toolkit is a versatile environment for performance analysis of sequential and 
parallel applications. It consists of a collection of performance data collection tools and 
graphical user interface peekperf. Its main features are: 
 
• It offers an integrated environment for simultaneous investigation of all aspects of 

performance (e.g. cpu, memory, threads, message passing). 
• No source code modifications are required. 
• Performance data information is presented in a manner that highlights the relation 

between the performance metrics and the source code statements and data structures. 
• Depending on the platform, the toolkit may contain only components that are available to 

the platform. 
 
Currently supported platforms are: PPC970, Power4, Power5, Power5+, Power6: AIX 5L or 
Linux, BG/L, BG/P: Linux. See also [29]. 
 

6.6.2 IBM HPCT Details 

This section covers details of the HPCT. Actual examples, obtained on the IBM PowerSeries 
575 POWER6 running Linux (SLES10 SP2) at SARA (which represents one of the prototype 
architectures within PRACE), are given in Annex 7.5. 
 
Hardware Performance Monitor (HPM) 
The HPM Toolkit consists of: 
 
• A utility hpmcount, which starts an application and provides at the end of execution, wall 

clock time, hardware performance counters information, derived hardware metrics, and 
resource utilization statistics like Mflop/s rates, cache misses at all levels of cache, 
number of load instructions resulting in TLB misses, and other measurements that that are 
supported by the hardware. Hpmcount is an inherently sequential program, looking only at 
the hardware performance counters of a single process (and its children). Using poe or 
mpirun one instance of hpmcount is running for each MPI task and it is either possible to 
create per task output files or aggregated output files. 

• An instrumentation library libhpm which enables a developer to selectively instrument 
interesting parts of his code using an API. 

• A utility hpmstat. Hpmstat is a simple system wide monitor based on hardware 
performance counters. The usage is very similar to the vmstat command. 

• A graphical user interface PeekPerf for visualization. 
 
On Linux the kernel has to be recompiled with the perfctr patch. In case of a CERT advisories 
with respect to kernel vulnerabilities this means that this patch has to be reapplied. On Power6 
there are 6 performance counter registers and 195 different event groups. On Linux it is not 
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possible yet to monitor multiple groups simultaneously (multiplexing). At present the Linux 
hpmstat does not work. An example is given in Annex 7.5.1. 
 
MPI Profiler 
In order to instrument the application, it has to be relinked with an additional instrumented 
MPI wrapper library: -lmpitrace –llicense. As for the HPM library, this library 
allows for selectively instrumenting interesting parts of the code by inserting calls to special 
configuration and utility functions provided by the tracing library API. The instrumented 
application also generates trace files that can be visualized using PeekPerf. An example is 
given in Annex 7.5.2. 
 
Xprofiler 
Xprofiler is a visualization tool for gmon.out profiling data created by applications 
compiled with the –pg flag. Xprofiler is a nice GUI that gives the information that is also 
provided by the well-known gprof command line tool for displaying call graph profile data. 
Xprofiler does not yet work for 64-bit executables, which is a pity on large memory nodes 
(the machine we used for the assessment has both 128 and 256 GB nodes). An example is 
given in Annex 7.5.3. 
 
PeekPerf 
The PeekPerf GUI is the control center of the HPC Toolkit, it allows for controling the 
instrumentation, execution, visualization and analysis of all collected performance data within 
the same user interface. The dimensions of performance data provided in the current 
framework are: 
 
• CPU (HPM) 
• Message Passing (MPI) 
• Threads (OpenMP) 
• Memory 
• IO 
 

6.6.3 Future Work and Developments 

Further investigation of the IBM HPC Toolkit has to be done, especially in the areas of POMP 
Profiler (OpenMP profiling), MIO (I/O profiling), SiGMA (Memory Simulation) and pSigma 
(Binary Instrumentation Facility). IBM is developing a new integrated version of the HPC 
Toolkit for the PERCS/HPCS Initiative. This is the HPCS Toolkit which will include a 
Bottleneck Detection Engine.  

6.7 IPM: Integrated Performance Monitoring 

 

6.7.1 Introduction 

Integrated Performance Monitoring (IPM) is an approach to performance analysis that is 
focused on ease of use, scalable lightweight profiling and portability. It is less of a 
performance “tool” and more of a profiling infrastructure. It serves the needs of users and 
managers of HPC resources and is available under an open source license. See also [30]. 
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• Developers: David Skinner team (NERSC), Open Source (LGPL) 
• Supported platform(s): IPM currently runs on IBM SPs and BlueGene, Cray XT (CLE), 

SGI Altix, NEC SX8, various Linux clusters and the Earth Simulator.  
• Platform used for the assessment : CRAY XT, IBM LinuxPWR5, see below 
• Description of the tool: A scalable lightweight portable open source (LGPL) profiling tool  
• Scalability: already tested on thousands of cores 

6.7.2 IPM Details 

Design goals 
 
• Easy to use  
• Parallel aware  
• High level performance profiles  
• Fixed memory footprint  
• Minimal CPU overhead  
• Portable 

 

Overview 
IPM is a portable profiling infrastructure developed at NERSC which outputs a report on the 
execution of parallel jobs. IPM reports MPI function timings, memory usage, and hardware 
counters data (where available). IPM provides a performance summary of the computation 
and communication in a parallel program. The amount of details reported is selectable at 
runtime via environment variables or through an MPI_Pcontrol interface. IPM has extremely 
low overhead, is scalable and easy to use requiring no source code modification.  

The monitors that IPM currently integrates are:  

• MPI: communication topology and statistics for each MPI call and buffer size.  
• HPM: PAPI (many) or PMAPI (AIX) performance events.  
• Memory: wall clock, user and system timings.  
• Switch: Communication volume and packet loss 

 

Ease of use 
Insofar as performance profiling is a cumbersome process, especially at scale, users and 
managers of HPC resources rely on performance data from experiments that may not reflect 
actual workloads or worse performance monitoring will simply not be done. Ease of use is 
paramount in providing quality profiles from in-situ workloads. Advanced user interfaces for 
HPC developers and researchers are available but not required. 

 

Scalable lightweight profiling 
IPM is lightweight introducing very little overhead to running codes. At application startup 
and termination IPM makes good use of parallel HPC resources to aggregate, process, and 
store application profiles. While the application runs IPM uses a fast hashing algorithm to 
build the profile with minimal impact on the application. IPM runs regularly on systems with 
tens of thousands of tasks. 

 

Profiling infrastructure 
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IPM is an approach to scalable HPC application profiling which serves both users and center 
managers. IPM brings together several types of information important to developers and users 
of parallel HPC codes. The information is gathered in a way the tries to minimize the impact 
on the running code, maintaining a small fixed memory footprint and using minimal amounts 
of CPU. When the profile is generated the data from individual tasks is aggregated in a 
scalable way.  

The 'integrated' in IPM is multi-faceted. It refers to binding the above information together 
through a common interface and also the integration of the records from all the parallel tasks 
into a single report. On some platforms IPM can be integrated into the execution environment 
of a parallel computer. In this way IPM profiling is available either automatically or with very 
little effort.  

The final level of integration is the collection of individual performance profiles into a 
database which synthesizes the performance reports via a web interface. This web interface 
can be used by all those concerned with parallel code performance, namely users, HPC 
consultants, and HPC center managers. Since profiles are stored centrally in a SQ L database 
they provide a performance track record to developers and a means of workload 
characterization to HPC managers. Both groups are well served by optimising 
application/architecture matches via in-situ performance monitoring. 

 

Portability 
IPM takes an approach to performance analysis that is focused on lightweight scalable 
profiling that is easy to use. IPM profiles use an XML format which allows comparison of 
profiles across runs and between platforms. IPM currently runs on IBM SPs, Cray XT, NEC 
SX, various Linux clusters and the Earth Simulator. IPM implementation is portable and is 
available under an Open Source software license (LGPL). 
 
Current status of IPM 
 
Type Site OS Comments 
    
IBM P6 SARA Linux Suse 10.2 Papi not installed on 

P6 yet; Needs to 
modify IPM in order 
to use IBM HPM 
counters 

IBM BG/P Juelich Linux Suse 10.1 Papi-c 3.9.0 
available, needs more 
testing 

NEC SX8 HLRS SUPERUX 15.1 Availability of papi 
for NEC ? 

Cray XT5 CSC CNL 2.1.27 HD Fully supported 
Cray XT4 CSCS CNL 2.1.26 Fully supported 
IBM P5 CSCS Linux Suse 10.2 Papi not installed on 

P5 yet; Needs to 
modify IPM in order 
to use IBM HPM 
counters 

Table 11: Availability of IPM. 
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6.8 Scalasca 

 

6.8.1 Introduction 

Scalasca has been designed for use on large-scale systems including IBM BlueGene/P, but is 
also well-suited for small- and medium-scale HPC platforms. For a complete list of the 
supported platforms the reader is referred to website of Scalasca [31]. Scalasca V1.0 has been 
released at June 18, 2008 by Forschungszentrum Jülich. Scalasca is open-source, and requires 
just a BSD license. 

6.8.2 Platforms used for assessment  

• IBM BlueGene/P  
At the University of Groningen a three-racks  IBM BlueGene/P system has been 
installed. For the evaluation of Scalasca on the BlueGene two racks (8192 cores with a 
peak performance of 28 Tflop/s) have been used. 

• Scalasca V1.0 released at June 18 2008 by Forschungszentrum Jülich (open-source - 
BSD license). 

• Linpack 
The open-source package Linpack is a numerical solver for a dense system of linear 
equations. It is accepted world-wide as a benchmark and as such part of this 
evaluation. The problem size can be chosen such that performance (flop/s) is best, e.g. 
n = 337919 for half a rack (2048 cores). 

6.8.3 Scalasca Details 

Scalasca is a toolset that can be used to analyse the performance behavior of parallel 
applications and to identify opportunities for optimisation. Scalasca supports an incremental 
performance-analysis procedure that integrates runtime summaries with in-depth studies of 
concurrent behavior via event tracing, adopting a strategy of successively refined 
measurement configurations. A distinctive feature is the ability to identify wait states that 
occur, for example, as a result of unevenly distributed workloads. Especially when trying to 
scale communication-intensive applications to large processor counts, such wait states can 
present severe challenges to achieving good performance. 
 
Design goals 
 
• Scalasca has been designed for use on large-scale systems. 
• Easy identification of wait states. 
• Support of OpenMP, MPI and hybrid.  
• Supported languages: Fortran, C and C++. 
• Easy generation summary reports with performance metrics for function call paths. 
• Traces record individual run time events. 
 
Usage 
The basic use of Scalasca is as follows. First the source code is instrumented with additional 
wrapper calls around each function call, including MPI and/or OpenMP calls. Next, the 
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instrumented source file is compiled with the standard compilers available on the system. The 
tool to create instrumented source files is called skin. Apart from automatic instrumentation 
by skin it is also possible to do manual instrumentation by means of an API. Instrumented 
executables are run in exactly the same way as ‘normal’ executables, however during 
execution they generate trace files and files with statistical metrics. Some of the metrics are: 
 
• number of visits of a function,  
• MPI statistics like synchronisations, communications and bytes transferred, 
• elapsed time, and, 
• optionally, hardware metrics (platform dependent). 

 
The tool to analyse these files is called scan. Scan produces so-called cube-files which can be 
examined with a tool called cube3. 
 
Cube3 is a GUI which allows visual examination of the collected metrics. There are three 
coupled tree browsers. Each node in the tree displays the severity of a bottleneck in color (for 
easy identification) as well as in value (for precise comparison). Each node can be expanded 
into subnodes to achieve a more detailed view. On each node one can right-click to get 
detailed information, such as the line number of the location in the source code. Figure 10 
shows an impression of the GUI. In this example the receive behavior of the function 
HPL_reduce is examined. 
   

 
 
Figure 10: Screenshot of cube3 running Linpack on a 2048 core partition of the IBM BG/P. 
 
Evaluation 
This evaluation is based on the assessment of Scalasca on an IBM BlueGene/P system, 
located at the University of Groningen in the Netherlands, running Linpack HPL. Two racks 
(8192 cores with a peak performance of 28 Tflop/s) have been used. 
 
 
• The program cube3 greatly provides immediate insight in hot spots of the code.  
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• Trace analysis is based on parallel replay: this enables scalability to tens of thousands of 
cores, however this is only suited for relatively short execution times. For long 
execution times the size of the trace files explodes and the analysis takes a long time 

• Tracing offers critical insight into the temporal behaviour of a program. 
• Scan automatically detects patterns of inefficient behaviour such as late senders. This is 

less error prone than manual inspection since it is guaranteed to cover the entire trace of 
the execution. 

• From an assessment with linpack it appears that the overhead introduced by Scalasca is 
negligible. 

• Scalability up to tens of thousands of cores appears to be possible however one may 
wonder whether it is acceptable to use as many cores for the analysis as for the actual 
execution of the program. 

 

6.8.4 Future Work 

The overall assessment is that Scalasca is a useful instrument to analyse the behaviour of 
massively parallel programs on large scale architectures.  
 
Areas of improvement are: 

• Update of documentation. Currently only a quick reference appears to be available. 
• Installation procedure is poorly documented: the prerequisites were only partly 

addressed. 
• For the visual inspection of trace files additional software (like Vampir) needs to be 

installed. As opposed to Scalasca his program, however, is not freely available.  

 

6.9 Vampir VNG 

 

6.9.1 Introduction 

Vampir 5.0 [32] is a front end for displaying trace files. The trace files are written using the 
Open Trace Format (OTF) and are obtained when an application is instrumented using the 
libraries and wrappers provided by the VampirTrace library. While Vampir VNG is a 
commercial application, the VampirTrace library as well as the OTF format is available under 
BSD license. Vampir is marketed by “Gesellschaft für Wissens- und Technologietransfer der 
TU Dresden GmbH”. 
 
Vampir is supported on Linux (IA32, x86_64, IA64, PPC/32, PPC/64), Sun Solaris 
(SPARC/32, SPARC/64, x86_64), IBM AIX (PPC), SGI IRIX (MIPS), Mac OS X. Soon MS-
Windows. 
 

6.9.2 Vampir Details 

The instrumentation supports MPI and OpenMP, alone or in hybrid mode. It also allows 
manual, automatic and binary instrumentation, in case the source code is not available. The 
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instrumentation can trace not only MPI events, but also hardware  counters (using the PAPI 
interface), memory allocation and I/O events. 
  
Vampir can be used as stand-alone application or as server-client application. Small trace files 
of some MB are recommended for stand-alone mode. However, larger trace files (several GB) 
need to be visualized using the server-client implementation. The server application 
distributes and processes the information on the host machine by using MPI while the client 
connects to it and is used for visualization. 
 

Usage 

Although Vampir offers several options, the standard instrumentation produces most 
information required. Once the code is compiled and linked against the VampirTrace library 
the application is executed as usual. One can, through environmental variables, modify the 
size of the output, the level of instrumentation, the hardware counters or memory usage 
among other options. This way tracing with VampirTrace is a very versatile operation. 

The Parallel Linpack benchmark (HPL) was used to test Vampir capabilities. We run a 64 
MPI tasks case with full instrumentation of functions and MPI-calls, memory tracing and 
several hardware counters. This produced 30GB of compressed information. A timeline view 
example is shown in figure 11. 
 
Vampir was designed for scalability and it was tested here as server-client application, as such 
for this test case was necessary to use a 128 MPI-task job with VampirServer to process this 
amount of information.  Its interface offers several options and is very intuitive.  The user can 
obtain a general view of how the application evolved. It can also trace single processes giving 
detailed information about specific function calls, MPI calls or hardware counters. An 
example is given in figure 12. In this example, a time-line view (zoom 1.92ms, call tree depth 
of level 8 (main has level 1), function name identification, with information of mem. 
allocation, L2 misses and load instructions) for process 7 is shown. 
 
The resolution can capture different events up to ms, identify functions symbols or define the 
depth of the call tree accurately.  The user has the choice of compacting all this information in 
suitable tables or report for further post processing. 
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 Figure 11: Timeline view of 64 MPI-tasks in HPL benchmark, VampirServer uses 128 MPI-Tasks.  
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Figure 12: Example of individual process timeline view.  
 

Future work  

The tracing process is in parallel, but the unification of results into suitable files for Vampir is 
still a serial operation. In future work, this characteristic may have to be improved upon. Also, 
some features present in the stand-alone version are to be implemented on the client interface, 
like source code navigation. An MS-Window version may be released. 
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6.10 VPA: Visual Performance Analyzer 

 

6.10.1 Introduction 

Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit. It 
is being developed by IBM, and is supported on Linux- x86, AIX-PPC, Cell and MS-
Windows (32 bit). See also [33] for more information and users’guides. 
 

6.10.2 VPA Details 

Visual Performance Analyzer (VPA) is an Eclipse-based performance visualization toolkit. It 
consists of six major components: Profile Analyzer, Code Analyzer, Pipeline Analyzer, 
Counter Analyzer, Trace Analyzer, and Control Flow Analyzer. VPA is a collection of 
performance data analysis tools that can be used to identify performance bottlenecks. VPA 
does not supply performance data collection tools. Instead, it relies on platform specific tools, 
such as AIX Tprof, to collect the performance data. 

• Profile Analyzer provides a powerful set of graphical and text-based views that allow 
users to narrow down performance problems to a particular process, thread, module, 
symbol, offset, instruction, or source line. Profile Analyzer supports time-based system 
profiles (Tprofs) collected from a number of IBM® platforms and the Linux® profile tool 
oprofile 0.9.3. 

• Code Analyzer examines executable files and displays detailed information about 
functions, basic blocks, and assembly instructions. It is built on top of FDPR-Pro 
(Feedback Directed Program Restructuring) technology and allows adding of FDPR-Pro 
and Tprof profile information. (The Linux version of FDPR-Pro is available here at 
alphaWorks.) Code Analyzer is able to show statistics; navigate disassembled instructions; 
and display performance comments, instruction grouping information, and map 
instructions back to source code. 

• Pipeline Analyzer is a port of the IBM Performance Simulator for Linux on POWER™, 
another alphaWorks technology. Pipeline joins the VPA toolkit to provide VPA users with 
the means of examining how code is executed on various IBM POWER processors. 
Pipeline Analyzer displays the pipeline execution of instruction traces generated by a 
POWER series processor. It does so by providing a scroll view and a resource view of the 
instruction execution. 

• Counter Analyzer accepts hardware performance data from collection tools such as CPC 
or HPMCOUNT. The data is provided as XML and is parsed by this plug-in in order to 
allow visualizing and analysis through CPI breakdown models. The data can be saved in 
the embedded database for later viewing, or it can be exported to a CSV file for inclusion 
in a spreadsheet. 

• Trace Analyzer visualizes Cell Broadband Engine™ traces containing information such 
as DMA communication, locking and unlocking activities, mailbox messages, etc. Trace 
Analyzer shows this data organized by core along a common timeline. Extra details are 
available for each kind of event: for example, lock identifier for lock operations, accessed 
address for DMA transfers, etc. 

• Control Flow Analyzer is a tool that analyses call trace data collected by tools such as 
Jprof, which is part of Performance Inspector. The call trace data contains information 
about each method call, such as how much time is spent in every invocation and who calls 
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whom. Control Flow Analyzer provides two major ways of visualizing the call trace data: 
a graph of the execution flow and and a set of tables displaying the calling tree. 

 
 

 
Figure 13: System architecture of Visual Performance Analyzer. 

 
 
How does it work? 
 
Profile Analyzer parses system profiles into an internal profiling data model that supports the 
profile hierarchy, offset locations, tick counts, CPU counter data, source line information, and 
disassembly. The plug-in then displays this data model, using various Eclipse views. The 
system profiles are those produced by Performance Inspector, AIX Tprof, and Linux oprofile. 
However, Visual Performance Analyzer can be extended to support almost any platform by 
converting a system profile to an XML schema that it understands.  
 
Why the tool is interesting? 
 
VPA can be very usefull when a programmer is trying to understand the complexity and 
performance of the particular code on the Cell/B.E. architecture. There are not many tools 
which enable controlling the PPU and SPU objects together with the DMA transfers between 
Main Memory and SPU Local Stores. VPA can be very useful for achieving powerful 
performance on Cell processors while it handles all the above functionalities and many more. 
Moreover VPA can be used remotly with a thin Java client working on a client machine and 
collecting the profile data from remote server.      
 
Scalability 
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For practical reasons, our first interest will be focused on the QS22 18 cores performance. 
Next, scalability issues accross Cell blades will be considered, as they become available in the 
prototype system. 
 

6.11 Considerations for Future Work 

The performance tools, as considered in the previous subsections, are one way or another 
based on traces. Trace based systems provide a way to perform very detailed analyses. Proper 
views can convey a lot of information about the behavior of the application. Future work will 
have the intent to focus more and more on the usability of these tools for analysis of 
scalability. Depending on the results, feedback into the actual developers of the tools may be 
appropriate. In that respect, as a summary, the following practicalities may need to be 
considered for future work: 
 
• The time to generate a sufficiently small trace with as much detail as possible should be 

minimized. This refers especially to the analyst time, but also if possible to the batch 
processing time.  

• A minimal set of configuration files that would let a user identify the major performance 
issues.  

• Automatic analysis functionalities. We would greatly appreciate some type of expert 
system that would automatically obtain metrics and models describing at a very high level 
the behaviour of the application.  

• It would be ideal if such automatic analysis could be performed online without even 
requiring to generate a trace (unless specifically required by the analyst).  

• File handling transparency: the original traces are generated at the parallel machine and 
they require a level of storage not available on many laptops. The analysis is nevertheless 
more conveniently done on a local laptop. It would thus be desirable to run the GUI 
locally and have it automatically access or remotely manipulate the large files at the 
parallel machine.  It should be possible to operate on them as if they were local, remotely 
perform the filtering and cutting functionalities and automatically transferring the 
summarized files to the laptop for a more convenient analysis. 

• The prototype architectures for PRACE in WP7 are known, and ready to be installed. 
Therefore, it will make sense to map the available tools on the available prototype 
architectures, just as done with the benchmark codes in chapter 3. 
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7 Annex 

 

7.1 Benchmark Report Template 

In order to prepare a uniform way of reporting benchmark progress, we have used a so-called 
benchmark report template, which covers details of the benchmark code, including porting 
details on the assigned hardware architectures. This enables some statistical analysis, as done 
in section 3.3, but also serves as a starting point for future work in tasks 5.4, 6.4 and 6.5. 

 
Benchmark reporting template for usage in PRACE WP6, task 3, for porting progress with 
benchmark codes on hardware architectures. 
 
GENERAL  
Name of Code, Abbreviation  
Application area(s) e.g. materials science, astronomy, … 
Key numerical method(s) e.g. fft’s, sparse solvers, dense matrices, …. 
Origin (developers, institute)  
Current developers  
Contactperson   
License policy  
Copyright  
Usage rules (within PRACE, 
outside PRACE, …) 

e.g. free within PRACE, not outside PRACE, … 

  
PRACE INFORMATION  
BCO: name, email, institute  
Contributors (PRACE partners)  
Targeted hardware platforms as in 
BCO list 

Choice of: MPP-BG, MPP-Cray, SMP-TN-x86, SMP-
FN-Pwr6, SMP-FN+Cell, SMP-TN-Vector 

  
CODE STATISTICS  
Programming language(s)  
Amount of source lines  
Libraries e.g. LAPACK, NAG, FFTW, vendor libraries, HDF, .. 
Parallellization method e.g. MPI, OpenMP, pthreads, hybrid, SHMEM, single-

sided MPI, … 
Development platform(s)  
IO characteristics e.g. none, read at start, write at end, each iteration, size, 

MPI IO, HDF, … 
  
PORTING REPORT For platform #1 (repeat for platform #2, #3, …) 
Porting platform e.g. MPP-BG, MPP-Cray, …… 
Details porting platform Hardware details, software details (OS version, compiler 

versions, libraries, …) 
Overall porting result Successful/not successful/partly successful 
General comments … free format … 
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Porting report on programming 
language constructs in general 

… free format … 

Porting report on libraries used … free format … 
Porting report on parallelisation 
method 

… free format … 

Porting report on IO … free format … 
  
PERFORMANCE RESULTS For platform #1 (repeat for platform #2, #3, …) 
Execution platform e.g. MPP-BG, MPP-Cray, …… 
Details execution platform If different from porting platform 
Performance details Name of input set, #cores, speed-up results, initial 

performance profile, … 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat 

for platform #2, #3, …) 
Expected potential for Petascaling Large/medium/small 
Expected effort to reach 
Petascaling potential 

Amount of pm’s, what should be done to the code, … 

Expected potential for 
Optimisation 

Large/medium/small 

Expected effort to reach 
Optimisation potential 

Amount of pm’s, what should be done to the code, … 

 
 
 

7.2 Benchmark Porting Details 

This section contains the actual filled benchmark report templates for each of the benchmark 
codes, as defined in section 3.2. Obviously, this is work in progress, and therefore should be 
recognised as a snapshot of the current situation.  

7.2.1 QCD 

Lukas Arnold 
FZJ 
 

GENERAL   
Name of Code, Abbreviation multi-kernel lattice QCD benchmark, QCD 
Application area(s) particle physics 
Key numerical method(s) multiple 
Origin (developers, institute) multiple, see README in PABS 
Current developers none 
Contactperson  multiple, see README in PABS 
License policy to be clarified 
Copyright to be clarified 
Usage rules (within PRACE, outside 
PRACE, …) 

free 

    
PRACE INFORMATION   
BCO: name, email, institute Lukas Arnold 
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l.arnold@fz-juelich.de 
FZJ 

Contributors (PRACE partners) EPCC, CSC 
Targeted hardware platforms as in BCO 
list 

MPP-BG/P, MPP-Cray, FatNode-Pwr6 

    
CODE STATISTICS   
Programming language(s) Fortran 90 and C 
Amount of source lines   
Libraries none 
Parallellization method MPI 
Development platform(s) various 
IO characteristics   
    
PORTING REPORT For huygens(SARA) 
Porting platform FatNode-Pwr6 
Details porting platform Hardware: 

−       104 SMP nodes with 32 SMT processors each (total 3328) 

−       Processortype: Power6 4.7 GHz  

−       Overall peak performance: 60 Teraflops  

−       Main memory: 83 x 128 Gbytes + 18 x 256 Gbytes 
(aggregate 15.2 TB)  

−       InfiniBand (MPI communication)  

−       Disk capacity: 700 TBytes  

  

Software: 

−       Operating system: Linux (SuSE) 

−       Operating mode: interactiv and batch  

−       Compiler versions: IBM AIX compiler (xlf 11.1; xlc 9.0) 
Overall porting result successful 
General comments The QCD benchmark is embedded in the PRACE benchmarking 

suite, which sets all compilation and execution parameter. The used 
(default) setting are: 
  
fortran: 
mpxlf90_r -q64 -qtune=pwr6 -qarch=pwr6 
  
C: 
mpcc_r -q64 -qtune=pwr6 -qarch=pwr6 
  
Further performance flags will be used as the kernel is ready for 
benchmarking. 

Porting report on programming 
language constructs in general 

Up to now (3 kernels), there have been no problems. 

Porting report on libraries used none used 
Porting report on parallelization method Using AIX MPI compiler wrapper. 
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Porting report on IO no data output is produced 
    
PERFORMANCE RESULTS For huygens 
Execution platform FatNode-Pwr6 
Details execution platform same with the porting platform 
Performance details none available, yet 
    
PORTING REPORT For jugene(FZJ) 
Porting platform FatNode-Pwr6 
Details porting platform Hardware: 

−       16384 compute nodes with 4-way SMT processors (total 
65536 processors)  

−       Processortype: PowerPC 450 850 MHz  

−       Overall peak performance: 223 Teraflops  

−       Linpack: 167 Teraflops  

−       Main memory: 2 Gbytes per node (aggregate 32 TB)  

−       Three-dimensonal torus (compute nodes) 

−       Global tree / Collective network (compute nodes, I/O 
nodes) 

−       10 Gigabit Ethernet (I/O)   

−       Disk capacity for system data: 4.5 TBytes  

−       Disk capacity for user data: 1.0 PBytes  

−       Migration storage for user data: 1.5 PBytes  

  

Software: 

−       Operating system: CNL  

−       Operating mode: interactive and batch  

−       Compiler versions: IBM AIX compiler (xlf 
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1) 

Overall porting result Successful 
General comments The QCD benchmark is embedded in the PRACE benchmarking 

suite, which sets all compilation and execution parameter. The used 
(default) setting are: 
  
fortran: 
mpxlf90_r -q64 -qtune=450 -qarch=450 
  
C: 
mpcc_r -q64 -qtune=450 -qarch=450 
  
Further performance flags will be used as the kernel is ready for 
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benchmarking. 
Porting report on programming 
language constructs in general 

Up to now (3 kernels), there have been no problems. 

Porting report on libraries used none used 
Porting report on parallelization method Using AIX MPI compiler wrapper. 
Porting report on IO no data output is produced 
    
PERFORMANCE RESULTS For jugene 
Execution platform FatNode-Pwr6 
Details execution platform same with the porting platform 
Performance details none available, yet 
    
PORTING REPORT For louhi (CSC) 
Porting platform MPP-Cray 
Details porting platform Hardware: 

−       CPU: 2.3 GHz AMD Opteron 64 bit quad-core processors  

−       Number of nodes: 1012 computing nodes  

−       Memory: 1 GB or 2 GB memory per core.  

−       Interconnect: Seastar 2+  

−       Set up physically in 11 cabinets.  

−       Architechture: MPP  

−       I/O subsystem: Lustre, 70 TB  

Software: 

−       Operating system: CNL 

−       Operating mode: interactiv and batch  

−       Compiler versions: PGI compiler version 7.2.4 

  
Overall porting result in process 
General comments   
Porting report on programming 
language constructs in general 

  

Porting report on libraries used   
Porting report on parallelization method   
Porting report on IO   
    
PERFORMANCE RESULTS For louhi 
Execution platform MPP-Cray 
Details execution platform same with the porting platform 
Performance details none available, yet 
    
RECOMMENDATIONS For Petascaling and optimization on all target platforms 
Expected potential for Petascaling High (all platforms) 
Expected effort to reach Petascaling 
potential 

All kernels should be able to scale to high number of processes. 
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0PM 
Expected potential for Optimization Low 
Expected effort to reach Optimization 
potential 

All kernels are already optimized. There exist highly optimized 
versions, but they can not be used in PABS, due to the usage 
policies. The effort to get this high optimization is very high.  

0PM 
 
 
  

7.2.2 VASP 

 
Miquel Català 
BSC-CNS 
 

GENERAL  
Name of Code, Abbreviation Vienna Ab-initio Package Simulation (VASP) 
Application area(s) ab-initio quantum-mechanical molecular dynamics 
Key numerical method(s)  
Origin (developers, institute) Mike Payne, MIT 
Current developers Dr. Doris Vogtenhuber 
Contact person  vasp.materialphysik@univie.ac.at  
License policy not public domain 
Copyright  
Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE, not outside PRACE 

  
PRACE INFORMATION  
BCO: name, email, institute Miquel Català i Coït <miquel.catala@bsc.es>  Barcelona 

Supercomputing Center 
Contributors (PRACE partners) NCF, GUP, HLRS 
Targeted hardware platforms as in BCO 
list 

MPP-BG, FatNode-Pwr6, Cell, Vector 

  
CODE STATISTICS  
Programming language(s) FORTRAN 90 
Amount of source lines 121776 lines 
Libraries vasp.lib (included with application) + scalapack + lapack + blacs + 

pthreads + MPI 
Parallellization method MPI 
Development platform(s) Pentium II, III, IV and Athlon based PC's under LINUX and DEC 

Alpha (TRUE 64 and Linux) 
IO characteristics No input parameters. Needed files on current directory. 
  
PORTING REPORT  
Porting platform IBM Blue Gene/P 
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384)  

• Compute node: 4-way SMP processor  
• Processortype: 32-bit PowerPC 450 core 850 MHz  
• Processors: 65536  
• Overall peak performance: 223 Teraflops  
• Linpack: 167 Teraflops  
• Main memory: 2 Gbytes per node (aggregate 32 TB)  
• I/O Nodes: 152  
• Networks:  

• Three-dimensonal torus (compute nodes)  
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• Global tree / Collective network (compute nodes, I/O 
nodes)  

• 10 Gigabit ethernet / Functional network (I/O Nodes)  

• Power Consumption: max.40 kW per rack  

2 Service nodes IBM p55A:  

• Total number of processors: 8  
• Processortype: Power5 1.6 GHz  
• Total amount of memory: 32 GB  
• Operating System: SuSE Linux Enterprise (SLES 10)  

2 Login nodes IBM p55A:  

− Total number of processors: 8  
− Processortype: Power5 1.6 GHz  
− Total amount of memory: 32 GB  
− Operating System: SuSE Linux Enterprise (SLES 10)  

− Internet address: jugene.zam.kfa-juelich.de 

Overall porting result Successfully 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used  
Porting report on parallelisation method VASP is well parallelised. No  specific development has to be done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform IBM Blue Gene/P (jugene.fz-juelich.de) 
Details execution platform This platforms allow executions in queue. 
Performance details The testcase achieves the best performance when 16 MPI tasks are 

launched. With more tasks performance drops. 
  
RECOMMENDATIONS  
Expected potential for Petascaling Good potential  
Expected effort to reach Petascaling 
potential 

Depends on BLAS and FFT performance 

Expected potential for Optimisation Good potential 
Expected effort to reach Optimisation 
potential 

Depends on BLAS and FFT performance 

  
 

PORTING REPORT  
Porting platform Power6 
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing) 

system.  

• 104 nodes 

• 16 dual core processors (IBM Power6, 4.7 GHz) per node 

• 128 GByte or 256 GByte of memory per node  

• 700 TByte of disk space  

• total peak performance is 60 Teraflop/sec 

• In total, the system has: 

• 1664 dual core processors = 3328 cores 

• 15.25 TByte of memory 

• 700 TByte of disk space 
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An IBM Power6 processor has the following 
characteristics:  

− Dual core running on 4.7 GHz  

− L1 cache: 128 KByte of L1 cache per core (64 KByte data 
cache + 64 KByte instruction cache)  

− L2 cache: 4 MByte per core (semi shared: the cache is 
assigned a specific core, but the other has a fast access to it) 

− L3 cache: 32 MByte per processor  

The nodes are interconnected with an Infiniband network providing 
an MPI bandwidth of 160 Gbit/sec between neighboring nodes  

Overall porting result Successfully 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used  
Porting report on parallelisation method VASP is well parallelitzed. No  specific development has to be done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform Power6 (huygens.sara.nl) 
Details execution platform Same above 
Performance details The testcase achieves the best performance when 32 MPI tasks are 

launched. With more tasks performance drops. 
  
RECOMMENDATIONS  
Expected potential for Petascaling Good potential 
Expected effort to reach Petascaling 
potential 

Depends on BLAS and FFT performance 

Expected potential for Optimisation Good potential 
Expected effort to reach Optimisation 
potential 

Depends on BLAS and FFT performance 

  
 
 

7.2.3 NAMD 

Dr. Joachim Hein 
EPCC, The University of Edinburgh 
 
 
GENERAL  
Name of Code, Abbreviation NAMD  
Code release 2.6 
Application area(s) (Bio)chemistry 
Key numerical method(s) Molecular dynamics 
Origin (developers, institute) K. Schulten, L. Kale, et. al., Beckman Institute, UIUC, US  
Current developers as above 
Contactperson  J. Phillips (UIUC), NAMD team email: namd@ks.uiuc.edu 
License policy Own license, see: http://www.ks.uiuc.edu/Research/namd/license.html 
Copyright The Board of Trustees of the University of Illinois 
Usage rules (within PRACE, outside 
PRACE, …) 

At present: Download source from UIUC website 

  
PRACE INFORMATION  
BCO: name, email, institute Joachim Hein, j.hein@epcc.ed.ac.uk, EPCC, The University of 
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Edinburgh 
Contributors (PRACE partners) Xu Guo (EPCC), Jon Hill (EPCC), Martin Polak (GUP), CSC, GRNET 
Targeted hardware platforms as in 
BCO list 

MPP-BG, MPP-Cray, FatNode-Pwr6 and maybe Cell 

  
CODE STATISTICS  
Programming language(s) C++ (using Charm++) 
Amount of source lines 62400 in .C-files and 17300 in .h-files plus Charm++ source 
Libraries Charm++, FFTW, TCL 
Parallellization method Charm++, which in most cases is build ontop of MPI, but could also be 

build ontop of e.g. Myrinet, Infiniband, Shmem, etc 
Development platform(s)  
IO characteristics appears to be master/worker model (nothing fancy) 
  
  
PORTING REPORT For platform #1 (repeat for platform #2, #3, …) 
Porting platform MPP-Cray 
Details porting platform HECToR (Cray XT4), dual core 2.8 GHz Opteron nodes, CLE (Cray 

Linux Environment, aka CNL) 
Overall porting result Successful (production executable) 
General comments  
Porting report on programming 
language constructs in general 

Build using gcc 
The CRAY XT using CNL is newer than code release, hence 
unsupported in NAMD2.6   
Architecture files for charm++ and NAMD developed during porting 

Porting report on libraries used For Cray XT, later version of Charm++ than 5.9, which is bundled with 
the NAMD source distribution is needed.  We used the nightly build 
version 03 July 2007. 
To build NAMD with gcc, FFTW2 build with gcc (only provided for the 
PGI compiler on the service) is needed 
TCL library needs building under gcc (not provided as part of service) 

Porting report on parallelisation 
method 

Build charm++ using MPI 

Porting report on IO Test benchmark didn’t stress I/O 
  
PORTING REPORT For platform #2 (repeat for platform #2, #3, …) 
Porting platform FatNode-Pwr5 
Details porting platform HPCx, UK 

IBM Pwr5 with AIX 
Overall porting result Successful (production executable) 
General comments  
Porting report on programming 
language constructs in general 

Build using IBM’s xlc 9.0, 32-bit addressing with large file support 
(>2GB) 
Changing the architecture specific flags: -qarch=pwr4 -qtune=pwr4 
(from com and pwr3 respectively) yields better performance 

Porting report on libraries used Build using a later version of charm++ than the one bundled with the 
NAMD 2.6 source.  Using nightly build 28 Nov 2005 (since release 
version 5.9 would not work on AIX 5.3). 
FFTW2 available on HPCx service 
Used TCL library which comes as part of  the NAMD 2.6 distribution 

Porting report on parallelisation 
method 

Build charm++ using MPI 

Porting report on IO The benchmarks used up till now do not stress I/O 
  
PORTING REPORT For platform #3 (repeat for platform #2, #3, …) 
Porting platform FatNode-Pwr6 
Details porting platform Huygens @ SARA, NL 

Pwr6 with Linux OS (not AIX)    
Overall porting result Several successful executables build, exploring further compiler 

optimizations desirable 
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General comments Fat node IBM Power architecture with Linux not (yet?) supported by 
NAMD developers (AIX is well supported).  Received support from 
SARA who made their configurations available 

Porting report on programming 
language constructs in general 

Optained executables using IBM’s xlc 9 and xlc 10 compilers. 
User 64bit addressing, hence large files (>2GB) should be naturally 
supported. 
 

Porting report on libraries used The charm++ version supplied with the NAMD 2.6 source works on the 
architecture.  Though since the architecture is not supported in the 
version of charm++ architecture configuration files are needed.  The 
support team of the service has provided such files which build a 
charm++ which passes the tests. 
Used the FFTW2 and TCL libraries which are provided as part of the 
service 

Porting report on parallelisation 
method 

Build charm++ using MPI 

Porting report on IO The benchmarks used up till now do not stress I/O 
  
PORTING REPORT For platform #4 
Porting platform MPP-BG 
Details porting platform JuGene @ FZJ in Germany 

IBM Blue Gene P system 
Overall porting result Successful NAMD executable 
General comments Code had already been built on site before, we used build procedures and 

executables supplied by FZJ. 
Porting report on programming 
language constructs in general 

Built using IBM bgxlC_r V9.0 compiler together with the architecture 
files provided by FZJ and optimization options “-O3 -qhot -arch=450d -
qtune=450” which should already deliver a decent performance and uses 
SIMD features of the BG's compute nodes. 

Porting report on libraries used The charm++ version supplied with the NAMD 2.6 source is not 
supported on this architecture, built using charm-6.0 sources from its 
official download site using a build script from FJZ with -qarch=450d 
(simd). Using fftw-2.1.5 which is part of the service, but can also be also 
built using different optimisation and different precision switches using 
the FJZ build scripts. Using tcl-8.4.19 not available on site, which can be 
built using supplied build-scripts: needs the "bgxlC_r" compiler and 
patching of the configure scripts  

Porting report on parallelisation 
method 

Build charm++ using MPI 

Porting report on IO The benchmarks used up till now do not stress I/O 
  
PORTING REPORT For platform #5 
Porting platform MPP-CRAY 
Details porting platform Louhi @ CSC in Finland 

Cray XT4 and XT5, quad core opteron nodes 
Overall porting result Successful 
General comments Need access to larger partitions of the machine to properly assess e.g. 

XT4 vs XT5 differences on scalability 
Porting report on programming 
language constructs in general 

Build using gcc 
The CRAY XT using CNL is newer than code release, hence 
unsupported in NAMD2.6   
Architecture files for charm++ and NAMD developed during porting 

Porting report on libraries used For Cray XT, later version of Charm++ than 5.9, which is bundled with 
the NAMD source distribution is needed.  We used the nightly build 
version 03 July 2007. 
To build NAMD with gcc, FFTW2 build with gcc (only provided for the 
PGI compiler on the service) is needed 
TCL library needs building under gcc (not provided as part of service) 

Porting report on parallelisation 
method 

Build charm++ using MPI 
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Porting report on IO Test benchmark didn’t stress I/O 
  
  
PERFORMANCE RESULTS For platform #1 
Execution platform MPP-Cray 
Details execution platform HECToR 
Performance details • Initial performance results part of D6.2.2 

• Managed to run benchmarks with 1 and 2 million atoms but (so 
far) failed to get a 9 million atom benchmark going.  2 million 
atom benchmark shows good scalability on up to 8192 cores.  
This dataset is not expected to be large enough for the code @ 
Petascale 

• We have a 9 million atom benchmark system.  So far no success 
in getting this running. 

  
PERFORMANCE RESULTS For platform #2 
Execution platform FatNode-Pwr5 
Details execution platform HPCx 
Performance details • Code benefits from SMT (simultaneous multi threading) 

• Initial performance results part of D6.2.2 
  
PERFORMANCE RESULTS For platform #3 
Execution platform FatNode-Pwr6 
Details execution platform Huygens @ SARA 
Performance details • Initial tests show the code can benefit greatly from SMT 

(simultaneous multi threading), potentially greater benefit than 
Pwr5 system.  Though SMT runs are extremely noise (wide 
fluctuations in runtime between repeat runs). When using large 
number of nodes the benefit is completely lost (in contrast to the 
experience we have with the Pwr5 system)  

• Managed to run benchmarks with 1 and 2 million atoms but (so 
far) failed to get a 9 million atom benchmark going.  2 million 
atom benchmark shows good scalability on up to 1024 cores.  
For 2048 cores the performance drops dramatically.  This data 
set is not expected to be large enough for the code @ Petascale 

• We have a 9 million atom benchmark system.  So far no success 
in getting this running. 

  
PERFORMANCE RESULTS For platform #4 
Execution platform MPP-BG 
Details execution platform JuGene @ FZJ 
Performance details • Successful running of the 1 and 2 million atom benchmarks 

• Very good scalability up to 8192 cores 
• Due to memory limitations (2GB per quad core processor 

installed) the 1 million atom benchmark can use at most 2 
compute task on a quad core processor (-mode=dual), the 2 
million atom benchmark can only place 1 task per quad core 
processor (-mode=smp) 

  
PERFORMANCE RESULTS For platform #5 
Execution platform MPP-Cray 
Details execution platform Louhi @ CSC 
Performance details • Managed to get the 1 and 2 Million atom benchmarks running.   

• Getting the 2 Million atom benchmark running requires fine 
tuning of the buffer space assigned to the MPI library.  The 
small 1 GB/core of memory is clearly restrictive here.  

• Initial performance assessment shows the machine to be 
comparable in performance to HECToR, if the difference in 
clock rates is considered  
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RECOMMENDATIONS For Petascaling and optimisation on platform #1 (HECToR) 
Expected potential for Petascaling Medium reached, further improvement might be possible 
Expected effort to reach Petascaling 
potential  

Not a PRACE prototype but related to the Louhi system 
 

• Using a 2 Million atom benchmark we can use 4096 cores with 
better than 50% efficiency (related to 128 cores) 

• For a Peta-scale system using this (or similar e.g. Louhi) 
technology a larger benchmark is needed 

• So far no success in using the larger 9 Million atom benchmark 
available to us 

o Might be a matter of not having found the right 
environment settings 

o Might be a shortcoming in the architecture of the 
application, e.g. due to Master/Worker components 

o Might be caused by memory consumption 
o Needs further investigation 

• NAMD 2.6 is several years old.  The problems might have been 
addressed in a more recent (development version), we will try to 
liaise with the developers to clarify 

• If such work is to be carried out under PRACE effort levels 
can’t be determined at this point. 

Anticipated effort: 3 person month, shared on all prototypes 
• Investigate feasibility of converting NAMD into a hybrid (MPI 

+ OpenMP) which could be more efficient if the memory is a 
main obstacle to run peta-scale Benchmark. 

• This should benefit all multi-core systems 
Anticipated effort: 7 person month, shared on all prototypes 

Expected potential for Optimisation Low 
Expected effort to reach 
Optimisation potential 

 

  
RECOMMENDATIONS For Petascaling and optimisation on platform #2 (HPCx) 
Expected potential for Petascaling Not a PRACE prototype 
Expected effort to reach Petascaling 
potential 

Not a PRACE prototype 

Expected potential for Optimisation Not a PRACE prototype 
Expected effort to reach 
Optimisation potential 

Not a PRACE prototype 

  
RECOMMENDATIONS For Petascaling and optimisation on platform #3 (Huygens) 
Expected potential for Petascaling Medium or better 
Expected effort to reach Petascaling 
potential  

• Using a 2 Million atom benchmark we can use 1024 cores with 
88% efficiency (related to 128 cores) 

• The same benchmark (2 M atom) shows extremely poor 
performance when used on 2048 cores.  Since this performs 
reasonable on the Cray XT4 and BlueGene/P up to 8192 cores, 
this appears a machine specific issue.  The reasons need 
understanding and fixing for the architecture underlying 
Huygens to be a viable candidate for a Peta-scale system. 

• For a Peta-scale system using this technology a larger 
benchmark is needed.  So far no success in using the larger 9 
Million atom benchmark available to us 

o Might be a matter of not having found the right 
environment settings 

o Might be a shortcoming in the architecture of the 
application, e.g. due to Master/Worker components 

o Might be caused by memory consumption 
o Needs further investigation 
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• NAMD 2.6 is several years old.  The problems might have been 
addressed in a more recent (development version), we will try to 
liaise with the developers to clarify 

• If such work is to be carried out under PRACE effort levels 
can’t be determined at this point. 

Anticipated effort: 3 person month, shared on all prototypes 
• Investigate feasibility of converting NAMD into a hybrid (MPI 

+ OpenMP) which could be more efficient if the memory is a 
main obstacle to run peta-scale benchmark. 

Anticipated effort: 7 person month, shared on all prototypes 
Expected potential for Optimisation Low 
Expected effort to reach 
Optimisation potential 

• Initial performance assessment shows the application to benefit 
substantially from SMT (simultaneous multi threading). 
However: 

o These runs suffer from bad noise 
o Benefits are lost  at large task count 

• Tuning of poe (IBM’s MPI library) or the machine might 
overcome the issue. 

  
RECOMMENDATIONS For Petascaling and optimisation on platform #4 (JuGene) 
Expected potential for Petascaling Medium reached, further improvement might be possible 
Expected effort to reach Petascaling 
potential 

• For a Peta-scale system using this technology a larger 
benchmark is needed.  So far no success in using the larger 9 
Million atom benchmark available to us 

o Might be a matter of not having found the right 
environment settings 

o Might be a shortcoming in the architecture of the 
application, e.g. due to Master/Worker components 

o Might be caused by memory consumption 
o Needs further investigation 

Anticipated effort: 3 person month, shared on all prototypes 
• Due to memory demands for the large multi-million atom 

benchmarks, the quad core processors have to be under-
populated (fewer than 4 compute tasks per processor).  This 
leaves computing power unused.  Converting into a hybrid (MPI 
+ OpenMP) could provide a possible mitigation strategy 

Anticipated effort: 7 person month, shared on all prototypes 
Expected potential for Optimisation Low 
Expected effort to reach 
Optimisation potential 

 

  
RECOMMENDATIONS For Petascaling and optimisation on platform #5 (Louhi) 
Expected potential for Petascaling Present system to small for assessment.  Based on HECToR experience, 

Medium should be easily achievable if a larger system was available, 
further improvement might be possible 

Expected effort to reach Petascaling 
potential  

• So far no success in using the larger 9 Million atom benchmark 
available to us 

o Might be a matter of not having found the right 
environment settings 

o Might be a shortcoming in the architecture of the 
application, e.g. due to Master/Worker components 

o Might be caused by memory consumption 
o Needs further investigation 

• NAMD 2.6 is several years old.  The problems might have been 
addressed in a more recent (development version), we will try to 
liaise with the developers to clarify 

• If such work is to be carried out under PRACE effort levels 
can’t be determined at this point. 

• The comments made on HECToR should apply in a similar 
fashion, though experience with smaller benchmarks indicate 
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that scalability might be slightly worse, most likely due to higher 
core to network access point ratio.  Needs further investigation. 

Anticipated effort: 3 person month, shared on all prototypes 
• Investigate feasibility of converting NAMD into a hybrid (MPI 

+ OpenMP) which could be more efficient if the memory is a 
main obstacle to run peta-scale benchmark 

Anticipated effort: 7 person month, shared on all prototypes 
Expected potential for Optimisation Low 
Expected effort to reach 
Optimisation potential 

 

 
 

7.2.4 CPMD 

Albert Farrés 
BSC-CNS 
 
GENERAL  
Name of Code, Abbreviation CPMD 
Application area(s) ab-initio molecular dynamics 
Key numerical method(s) fft’s, dense matrices 
Origin (developers, institute) R. Car, International School for Advanced Studies, Trieste, Italy. 

M. Parrinello, Dipartimento di Fisica Teorica, Università di Trieste, 
Trieste, Italy, and International School for Advanced Studies, 
Trieste, Italy.  

Current developers CPMD consortium, coordinated by Prof. Michele Parrinello (Chair 
of Computational Science, ETH Zurich) and Dr. Wanda Andreoni 
(Program Manager of Deep Computing Applications at IBM Zurich 
Research Laboratory) 

Contact person  Alessandro Curioni <cur@zurich.ibm.com> 
License policy http://www.cpmd.org/cpmd_licence.html 
Copyright IBM Corp. and Max Planck Institute, Stuttgart 
Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE, not outside PRACE 

  
PRACE INFORMATION  
BCO: name, email, institute Albert Farres <albert.farres@bsc.es> 

BSC-CNS, (Spain) 
Contributors (PRACE partners) CSC, CINECA, SIGMA, HLRS 
Targeted hardware platforms as in BCO 
list 

MPP-BG, FatNode-Pwr6, Cell, Vector 

  
CODE STATISTICS  
Programming language(s) FORTRAN  77 
Amount of source lines ~ 174047 
Libraries BLAS, LAPACK 
Parallellization method MPI 
Development platform(s) See source code. More than 100 different configurations for several 

platforms 
IO characteristics unknown 
  
PORTING REPORT JUGENE 
Porting platform IBM Blue Gene/P 
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384)  

• Compute node: 4-way SMP processor  
• Processortype: 32-bit PowerPC 450 core 850 MHz  
• Processors: 65536  
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• Overall peak performance: 223 Teraflops  
• Linpack: 167 Teraflops  
• Main memory: 2 Gbytes per node (aggregate 32 TB)  
• I/O Nodes: 152  
• Networks:  

o Three-dimensonal torus (compute nodes)  
o Global tree / Collective network (compute nodes, 

I/O nodes)  
o 10 Gigabit ethernet / Functional network (I/O 

Nodes)  

• Power Consumption: max.40 kW per rack  

2 Service nodes IBM p55A:  

• Total number of processors: 8  
• Processortype: Power5 1.6 GHz  
• Total amount of memory: 32 GB  
• Operating System: SuSE Linux Enterprise (SLES 10)  

2 Login nodes IBM p55A:  

− Total number of processors: 8  
− Processortype: Power5 1.6 GHz  
− Total amount of memory: 32 GB  
− Operating System: SuSE Linux Enterprise (SLES 10)  

− Internet address: jugene.zam.kfa-juelich.de 

 
Overall porting result Successfully 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used All the libraries needed by CPMD are avalaible on JUGENE system. 
Porting report on parallelisation method CPMD is well parallelitzed. No  specific development has to be 

done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform IBM Blue Gene/P 
Details execution platform Same above 
Performance details With 128 cores it goes 1.15 times faster than it does in Marenostrum. 

With 256 it goes 1.1 times faster. 
  
RECOMMENDATIONS  
Expected potential for Petascaling Optimal 
Expected effort to reach Petascaling 
potential 

 

Expected potential for Optimisation  
Expected effort to reach Optimisation 
potential 

 

PORTING REPORT SARA 
Porting platform Power6 
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing) 

system.  

− 104 nodes 

− 16 dual core processors (IBM Power6, 4.7 GHz) per node 

− 128 GByte or 256 GByte of memory per node  

− 700 TByte of disk space  
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− total peak performance is 60 Teraflop/sec 

In total, the system has: 

− 1664 dual core processors = 3328 cores 

− 15.25 TByte of memory 

− 700 TByte of disk space 

An IBM Power6 processor has the following characteristics:  

• Dual core running on 4.7 GHz  

• L1 cache: 128 KByte of L1 cache per core (64 KByte data cache 
+ 64 KByte instruction cache)  

• L2 cache: 4 MByte per core (semi shared: the cache is assigned 
a specific core, but the other has a fast access to it) 

• L3 cache: 32 MByte per processor  

The nodes are interconnected with an Infiniband network providing 
an MPI bandwidth of 160 Gbit/sec between neighboring nodes 

Overall porting result Successfully 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used All the libraries needed by CPMD are avalaible on SARA system 
Porting report on parallelisation method CPMD is well parallelitzed. No  specific development has to be 

done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform Power6 
Details execution platform Same above 
Performance details With 128 cores it goes 2.2 times faster than it does in Marenostrum. 

With 256 it goes 2.5 times faster. 
  
RECOMMENDATIONS  
Expected potential for Petascaling Optimal 
Expected effort to reach Petascaling 
potential 

 

Expected potential for Optimisation  
Expected effort to reach Optimisation 
potential 

 

 

7.2.5 Code_Saturne 

Andrew Sunderland, Charles Moulinec 

STFC Daresbury Laboratory 

 

 

 

GENERAL   
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Name of Code, Abbreviation  Code_Saturne  

Application area(s)  CFD, heat transfer, turbulence  

Key numerical method(s)  Finite Volume & Sparse Linear Algebra 

Origin (developers, institute)  EDF-R&D  

Current developers  EDF-R&D  

Contactperson  marc.sakiz@edf.fr, c.moulinec@stfc.ac.uk, 
a.g.sunderland@stfc.ac.uk 

License policy  GPL  

Copyright  EDF's copyright  

Usage rules (within PRACE, outside 
PRACE, …)  

Free  

  

PRACE INFORMATION   

BCO: name, email, institute  Andrew Sunderland, andrew.sunderland@stfc.ac.uk, STFC 
Daresbury Laboratory, UK 

Contributors (PRACE partners)  BSC Barcelona, HLRS Stuttgart, SARA 

Targeted hardware platforms as in BCO list  BGP, Cray XT4/5, Pwr5, FatNode-Pwr6, Cell, Vector  

  

CODE STATISTICS   

Programming language(s)  49% Fortran 77, 41% C99, 10% Python  

Amount of source lines  500,000 lines  
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Libraries  BLAS, if activated  

Parallellization method  MPI  

Development platform(s)  Clusters, BG/L, BG/P.  

IO characteristics  read at start, write at end, every x iteration if required  

  

PORTING REPORT   

Porting platform  MPP-BG/P (at STFC) 

Details porting platform  Hardware details:  

 

• Model: IBM Blue Gene / P 
• Proc Type: PowerPC 450 850 MHz 

o double precision, dual pipe floating point 
acceleration on each core (3.4 GFlops) 

• Clock rate: 850 MHz 
• Total Cores: 4096  
• Cores Per Chip: 4  
• Chips per Compute Card (Node): 1 
•  Memory per core: 512MB.  
• Total Memory: 2048 Gbytes  
• Caches: 

o Private 32 KB per core L1 cache  
o Private 14 stream prefetching per core L2 

cache  
o Shared 8MB L3 cache   

• Interconnect: Proprietary 3D Torus 
• 32 I/O nodes ~4 Tbytes disk 

 
Software Details 

• OS Version: Linux 2.6.16.46-0.12-ppc64  
• Fortran Compilers:  

o  IBM XLF v11.1  
o GNU 4.1.2 

• C Compilers:  
o IBM XLC v9.0  
o GNU GCC v4.1.2 

• Libraries: Essl, Blas 
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Overall porting result  Successful 

General comments  Porting to BG/P was carried out by cross-compilation. 
Compilation flags used are 
-O3 -qarch=450d -qtune=450d 
No special settings are required in the batch scripts. 
The 3 modes, SMP, CO, VN can be used. 

Porting report on programming language 
constructs in general  

Fully compliant with XLF & XLC compilers 

Porting report on libraries used  No external libraries used 

Porting report on parallelisation method  Use  bgxlf & bgxlc to link all mpi routines & config files. 

Porting report on IO  No special requirements 

  

Porting Platform IBM p575 Server (HPCx at STFC) 

Details Porting Platform 

Hardware: 
•    Model: eServer 575 cluster 
•    Proc Type: Power5 
•    Clock rate: 1.5 GHz 
•    Total Cores: 2560 
•    Cores Per Chip: 2 
•    Cores Per Node: 16 
•    Memory per core: 2GB 
•    Total Memory: 5120 Gbytes 
•    Cache: Each core has a 32 Kbyte data cache and a 64 Kbyte 
instruction cache. The level 1 data cache has 128-byte lines, is 
2-way set associative and write-through. The level 2 cache is 
on-chip, shared between the cores. It is a 1.9 Mbyte combined 
data and instruction cache, with 128 byte lines and is 10-way 
set associative and write-back. The level 3 cache is 36 Mbytes, 
off-chip and is shared between the 2 cores. It has 256 byte 
lines, and is 12-way set associative and write-back. 
•    Interconnect: IBM High Performance Switch (HPS). Each 
eServer node has two network adapters and there are two links 
per adapter, making a total of four links between each of the 
frames and the switch network. 
•    I/O: 72 Tbytes of disk running GPFS. Connected to 
computes nodes via HPS 
 
Software details: 
•    OS version: AIX 5.3 
•    Compiler versions: IBM XL Fortran compiler 
10.01.0000.0007 

Overall Porting Result Successful 

General Comments The PWR5 is an established platform and porting was 
straightforward. 
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compilation flags used for initial port are: 
f90: -q64 -O1 
c: -q64 -funsigned-char -qhot -qarch=pwr5 
for performance optimisation suggested flags are: 
f90: -O3 -qarch=pwr5 -qtune=pwr5 
c: -q64 -funsigned-char -O3 -qhot -qarch=pwr5 -qtune=pwr5 
No special settings are required in the batch scripts. 

Porting report on programming language 
constructs in general  Code is fully compliant with XLF and XLC compilers. 

Porting report on libraries used  None 

Porting report on parallelisation method  Using mpixlf95_r and mpixlc_r compiler variants links mpi 
libraries and config files automatically 

Porting report on IO  No special requirements 

  

Porting Platform Cray XT4 (HECToR) 

Details Porting Platform 

Model: Cray XT4 
•    Proc Type: AMD Opteron Dual Core 
•    Clock rate: 2.8 GHz 
•    Total Cores: 11328 
•    Cores Per Chip: 2 
•    Cores Per Node: 2 
•    Memory per core: 3GB. 
•    Total Memory: 33984 Gbytes 
•    Cache: Separate level 1 caches for data and instructions of 
64 kB each. The L1 data cache is 2-way set associative. There 
is a combined data and instruction L2 cache of 1 MB for each 
core, which is 16-way associative. The L1 data and the L2 
cache use 64 byte cache lines. The L2 cache acts as a victim 
cache for the L1 cache. Data evicted from the L1 cache gets 
established on the L2 cache. 
•    Interconnect: Cray SeaStar2 3D torus 
•    I/O: 12 I/O nodes connected to 576 TB of RAID disks 
running Lustre 
 
Software details: 
•    OS version: UNICOS/lc version 2.0.53 
•    Compiler versions: PGI compilers, version 7.1.4 

General Comments 

Porting was not problematic for the XT4 
 
Compilation using the GNU compiler: 
module swap PrgEnv-pgi PrgEnv-gnu 
cc  -O or -O2 depending on the source file 
ftn -O1, -O2, -O3 
 

Porting report on programming language 
constructs in general  

Code is fully compliant with GNU compiler. 
Currently testing with PGI and Pathscale 

Porting report on libraries used  None 

Porting report on parallelisation method  Use of ftn command (pathscale) links in mpi libraries and 
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config files automatically 

Porting report on IO  No special requirements 

  

Porting Platform NEC SX-8 Cluster (HLRS) 

Details Porting Platform 

Model: NEC SX-8 Distributed-memory multi-vector processor
•    Proc Type: dedicated vector CPUs 
•    Clock rate: 2 GHz 
•    Total Cores: 72 * 8 CPUs  
•    Cores Per Chip: N/A 
•    Cores Per Node: N/A 
•    Total Memory: 9.2 TB. 
•    Cache: None 
•    Interconnect: IXZ 16 GB/s per node 
•    I/O: 160 TB shared disk, 72 * 140 GB local 
 
Software details: 
•    Batch system: NQSII 
•  OS version: TX7: SUSE SLES9, SX8: SUPER-UX 15.1 
•    Compiler versions:  

General Comments 

Long compilation times was the only problem 
Code_Saturne has been awarded a Gold Capability Incentive 
Award for Scalability on HPCx: 
http://www.hpcx.ac.uk/services/policies/capability.html 

Porting report on programming language 
constructs in general  Code_Saturne contains several vectorizable loops 

Porting report on libraries used  None 

Porting report on parallelization method  MPI 

Porting report on IO  No special requirements 

  

PERFORMANCE RESULTS   

Execution platform  IBM Blue Gene/L (Note – pre-runner architecture to 
targeted IBM BG/P listed above)  

Details execution platform  IBM PowerPC 440 800 MHz with IBM interconnect 

Performance details  100M Cell Mixer_Grid (Prace Benchmark) 

Inclusive of I/O (200 iterations) 

Speed-up is relative to 512 core performance 

Cores Speed-up Speed-up 
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Mode CO Mode VN 

512 1  

1024 2.01 1.68 

2048 3.39 2.99 

4096 N/A 5.79 

 

 

Execution platform IBM Pwr5 Cluster (HPCx) 

Details execution platform   As IBM Pwr5 listed above 

Performance Details 78M Cell Benchmark. N.B. This is a much simpler 
computational problem than the official Prace benchmark 
dataset. The run involves 50 iterations excusive of I/O.  

Cores Time (s) 

512 1132.7 

1024 614.5 

 

 

Execution platform Cray XT4 (HECToR) 

Details Execution platform As listed above 

Performance Details 100M Cell Mixer Grid (Prace Benchmark) 

5 iterations, with and without I/O 

Cores Time (s)  

Inclusive of I/O 

Time (s) 

Exclusive of I/O 

256 2235.3 2014.5 

512 1176.8 979.0 
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1024 658.2 476.1 

2048 559.1 252.1 

4096 520.0 123.4 

8192 660.5 71.4 

 

  

RECOMMENDATIONS  All Platforms 

Expected potential for Petascaling  Medium: expect to be able to reach 10k cores with still speed-
up over 5k cores 

Expected effort to reach Petascaling potential − I/O needs optimising for petascale architectures 
− Preprocessing stage needs improved scaling 
− Anticipated manpower required: 3 pms.   

Expected potential for Optimisation  Medium  

Expected effort to reach Optimisation 
potential  

− Incorporation of high-performance numerical library 
routines  

− Loop optimisation e.g. on vector  
− Cache optimisation of finite volume scheme on scalar 

architectures  
− Anticipated manpower required: 3 pms.  

 

7.2.6 GADGET 

Orlando Rivera  
LRZ - Leibniz Rechenzentrum  
 
GENERAL  
Name of Code, Abbreviation GADGET   
Application area(s) Cosmology, Cosmological structure formation 
Key numerical method(s) PDE, Space filling curves 
Origin (developers, institute) Dr.  V.  Springel,  Max-Planck-Institute for Astrophysics 
Current developers Dr.  V.  Springel,  Max-Planck-Institute for Astrophysics 
Contact person  Dr.  V.  Springel <volker@MPA-Garching.MPG.DE> 
License policy General Public License  GPL 
Copyright  Volker  Springel 
Usage rules (within PRACE, outside 
PRACE, …) 

Free inside and outside of  PRACE 

  
PRACE INFORMATION  
BCO: name, email, institute Orlando Rivera, rivera@lrz.de  , LRZ 
Contributors (PRACE partners)  
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Targeted hardware platforms as in BCO 
list 

 MPP-BG,  ThinNode-x86, FatNode-Pwr6 

  
CODE STATISTICS  
Programming language(s) Ansi C89 
Amount of source lines 30932 
Libraries FFTW  2.1.5, GSL 1.11, HDF5 (optional) 
Parallellization method  Pure MPI   1.0 
Development platform(s) Altix 4700,  LINUX Workstation  
IO characteristics By specifying write once every several time steps or at the end. 

Binary data written,endian dependent 
  
PORTING REPORT LRZ/HLRB2 
Porting platform SGI Altix 4700 
Details porting platform • Hardware: 

Model: SGI Altix 4700 
CPUs:  Intel Itanium2 Montecito Dual Core  @ 1.6GHz 
N-cores: 9728 
PEAK Performance: 62.3 Tflops 
Memory: 8.5GB shared memory among 2 or 4 processors (low or 
high density) 
Total Memory :  39 TByte 

 Cache: 
 L1 Data Cache: integer data only , 16kByte,  

                          cacheline: 64bytes,  4-way associative. 
  
 L2 Data Cache:  256kBytes, cacheline 128 Bytes 
             8-way associativity, Float and integer . 
 L3 Cache Data and Instruction: 6MB, cacheline 128Bytes 

12-way , associative   
 
Interconnection: NUMAlink 4 
IO: 39 Tbyte  @ 20 GB/sec. 
 
• Software: 

 OS: SLED 10 SP1 (GNU/Linux  2.6.16.54 ) 
 intel C compiler 10.1  
 SGI native MPI , MPT 
 gsdl 1.11, fftw  2.1.5 with mpi support 

 
Overall porting result Successful 
General comments • Because of the large input data set needed ,  an external mpi 

program with 32 mpi-tasks was used to generate and 
distributed. 

• Compilation straightforward, 
• Profiling with VampirTrace , intel trace analyser,  and mpiP.  

VampirTrace and Intel trace analyser may produce very large 
data (> 200GB) 

• Hdw counter used PAPI and pfmon.  Some minor difficulties , 
but ARCH dependent  
 

Porting report on programming language 
constructs in general 

• Ansi C89  supported by gcc  and intel icc,  
• -O3, -falias , -ipo  were useds 

Porting report on libraries used • Most libraries straightforward. FFTW 2.1.5 is an old version 
because  its old interface is needed  

Porting report on parallelisation method • Pure MPI ver 1.2 used.  Specific linkage needed when profiling 
tools used  

Porting report on IO • Large data Set  read/write. Optional with HDF5.  Endianness  
need to be specified 
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PORTING REPORT JUGENE 
Porting platform Blue Gene/P 
Details porting platform • Hardware: 

Model: IBM Blue Gene P  
 CPUs:32-bit PowerPC 450 core @ 850 MHz  
 N-cores: 65536 
 Peak Performance: 223 Tflops 
 Memory: 2 Gbytes per node  
 Total Memory: 32 TByte 
  
Interconnect: Three-dimensonal torus 
• Software: 
GNU/Linux  2.6.16.54-0.2.5 

 ibm c compiler  ver 9.0   
 ibm MPI (mpich-based ) 
 gsdl 1.11, fftw  2.1.5 with mpi support 

 
Overall porting result Successful 
General comments − Mostly same as Altix 

− Compilation straightforward, with xlc_r or mpcc 
− Profiling with mpiP.  
− PAPI couldn't  be build, PAPI bug   

 
Porting report on programming language 
constructs in general 

− Ansi C89  supported by xlc_r,  
− -05 -qstrict  were used  

Porting report on libraries used − Most libraries straightforward, need to build from scratch . 
Shared libraries were not build   

Porting report on parallelisation method − Pure MPI ver 1.2 used.  Linkage against static libraries 
Porting report on IO − Large data Set  read/write. Optional with HDF5.  Endianness  

need to be specified  
PORTING REPORT SARA Huygens 
Porting platform IBM pSeries 575 
Details porting platform • Hardware: 

Model: IBM pSeries 575  
 CPUs: 104 nodes, 16 dual core processors (IBM Power6, 4.7 GHz)   
 N-cores: 3328 
 Peak Performance: 60 Tflops 
 Memory: 4 Gbytes per node  
  L1 cache: 128 KByte of L1 cache per core (64 KByte data 
                   cache + 64 KByte instruction cache)  

 L2 cache: 4 MByte per core (semi shared: the cache is 
                  assigned a specific core, but the other has a 
                  fast access to it)  
L3 cache: 32 MByte per processor  

  
Interconnect: Infiniband network,  max MPI bandwidth  
                    160 Gbit/sec 
• Software: 
GNU/Linux  2.6.16.60 

 ibm c compiler  ver 9.0   
 ibm MPI shared lib 
 gsdl 1.11, fftw  2.1.5 with mpi support,  

 
Overall porting result Successful 
General comments − Mostly same as JUGENE 

− Compilation straightforward, with xlc_r or mpcc   
 
 

Porting report on programming language 
constructs in general 

− Ansi C89  supported by xlc_r,  
− -05 -qstrict  were used  
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Porting report on libraries used − Most libraries straightforward, need to build from scratch . 
Shared libraries were not build   

Porting report on parallelisation method − Pure MPI ver 1.2 used.  Linkage against shared libraries 
Porting report on IO − Large data Set  read/write. Optional with HDF5.  Endianness  

need to be specified  
PERFORMANCE RESULTS  
Execution platform Altix 4700  
Details execution platform Altix 4700 
Performance details See Attachement “altix_6.2.2.doc” 

additional timings runs:1024 cpus: 297 sec                         
PERFORMANCE RESULTS  
Execution platform Blue Gene P 
Details execution platform Blue Gene P 
Performance details Same input   as Altix, use it  as baseline  

               512 cpus: 1593 sec. 
             1024 cpus: 773 sec. 
             2048 cpus: 406 sec 

PERFORMANCE RESULTS  
Execution platform IBM pSeries 575  SARA 
Details execution platform IBM pSeries 575 
Performance details Same input   as Altix, use it  as baseline  

               512 cpus: 496 sec. 
             1024 cpus: 276 sec. 

RECOMMENDATIONS For Petascaling and optimisation on LRZ altix 4700 
Expected potential for Petascaling medium 
Expected effort to reach Petascaling 
potential 

Hybrid MPI-OPENMP could increase the performance on particular 
sections of the code. 
 
Larger Segments of data should be prefered to about communication 
overhead  
 
Intrusive tracing  reduced performance in a factor of 2 
1 pm 

Expected potential for Optimisation Medium 
 

Expected effort to reach Optimisation 
potential 

Some sections do not perform FP operations, change algorithms. 

RECOMMENDATIONS For Petascaling and optimisation on JUGENE BG/P 
Expected potential for Petascaling High  
Expected effort to reach Petascaling 
potential 

With a larger data set a ver large number of processors can be 
requested  
Some Sections produce a barrier,  send_all and all_reduce ,  whose 
effects  in this platform  are more notorius, as long as all memory 
can be used per core,  its  potential is high 
Data Tracing is  needed to investigate  MPI overhead on this 
platform  
2 pm 

Expected potential for Optimisation Medium 
 

Expected effort to reach Optimisation 
potential 

Some sections do not perform FP operations, change algorithms. 
 

RECOMMENDATIONS For Petascaling and optimisation on SARA  
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

Very fast execution times,   However for a large number of cores 
more data need to be analysed  
 
The large amount of memory reduces the MPI overhead ,  it accepts 
even larger data set, the application  can reach petascaling if enough  
ncpus are allowed,  for this test we reach the max allowed by the 
system (1024 cpu) 
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1 pm 

Expected potential for Optimisation Medium 
 

Expected effort to reach Optimisation 
potential 

Some sections do not perform FP operations, change algorithms. 

 

7.2.7 TORB 

Xavier Saez 
BSC-CNS 
 
GENERAL  
Name of Code, Abbreviation TORB / EUTERPE 
Application area(s) Fusion plasma 
Key numerical method(s) fft’s, sparse solvers 
Origin (developers, institute) T.M. Tran, K. Appert, M. Fivaz, G. Jost, 

 J. Vaclavik and L. Villard 
. Centre de Recherches en Physique des Plasmas, Lausanne 
, Switzerland 

Current developers R. Kleiber, R. Hatzky, and V. Kornilov 
. Max-Planck Institut fuer Plasmaphysik 
, Germany 

Contact person   
License policy Not Public Domain 
Copyright  
Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE, not outside PRACE 

  
PRACE INFORMATION  
BCO: name, email, institute Xavier Sáez Pous <xavier.saez@bsc.es> and Guillaume Houzeaux 

<guillaume.houzeaux@bsc.es>, Barcelona Supercomputing Center 
Contributors (PRACE partners) None 
Targeted hardware platforms as in BCO 
list 

MPP-BG, FatNode-Pwr6, Cell 

  
CODE STATISTICS  
Programming language(s) FORTRAN 90 
Amount of source lines 22.000 
Libraries PETSC and FFTW 
Parallellization method MPI 
Development platform(s) Intel, IBM, AIX, Fujitsu 
IO characteristics read at start, write periodically  
  
PORTING REPORT JUGENE 
Porting platform IBM Blue Gene/P 
Details porting platform 16 Racks with 32 nodecards x 32 compute nodes (total 16384) 

• Compute node: 4-way SMP processor  
• Processortype: 32-bit PowerPC 450 core 850 MHz  
• Processors: 65536  
• Overall peak performance: 223 Teraflops  
• Linpack: 167 Teraflops  
• Main memory: 2 Gbytes per node (aggregate 32 TB)  
• I/O Nodes: 152  
• Networks:  

• Three-dimensonal torus (compute nodes)  
• Global tree / Collective network (compute nodes, I/O 
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nodes)  
• 10 Gigabit ethernet / Functional network (I/O Nodes)  

• Power Consumption: max.40 kW per rack  
 

2 Service nodes IBM p55A:  

• Total number of processors: 8  
• Processortype: Power5 1.6 GHz  
• Total amount of memory: 32 GB  
• Operating System: SuSE Linux Enterprise (SLES 10)  

2 Login nodes IBM p55A:   

• Total number of processors: 8  
• Processortype: Power5 1.6 GHz  
• Total amount of memory: 32 GB  
• Operating System: SuSE Linux Enterprise (SLES 10)  
Internet address: jugene.zam.kfa-juelich.de 
 

Overall porting result Successfully 
General comments Compilation flags: -O3 -qarch=450d -qautodbl=dbl4 -qmaxmem=-1 
Porting report on programming language 
constructs in general 

 

Porting report on libraries used All the libraries needed by TORB are avalaible on JUGENE system. 
Porting report on parallelisation method TORB is well parallelised. No  specific development has to be done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform IBM Blue Gene/P 
Details execution platform Same above 
Performance details The execution of 512 cores takes about half of the execution of 256 

cores, so the program scales correctly. 
  
RECOMMENDATIONS  
Expected potential for Petascaling Expected scaling to tens of thousand of cores 
Expected effort to reach Petascaling 
potential 

Medium effort. The current code only allows executions until 999 
cores. 

Expected potential for Optimisation Good potential 
Expected effort to reach Optimisation 
potential 

Great effort. Improve the communication scheduling.  Simdization 
(the SIMD vectorization) of the loops. 

  
PORTING REPORT SARA 
Porting platform Power6 
Details porting platform IBM pSeries 575, a clustered SMP (Symmetric Multiprocessing) 

system.  

− 104 nodes 

− 16 dual core processors (IBM Power6, 4.7 GHz) per node 

− 128 GByte or 256 GByte of memory per node 

− 700 TByte of disk space  

− total peak performance is 60 Teraflop/sec 

In total, the system has: 

• 1664 dual core processors = 3328 cores 

• 15.25 TByte of memory 

• 700 TByte of disk space 

An IBM Power6 processor has the following characteristics:  
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− Dual core running on 4.7 GHz  

− cd .L1 cache: 128 KByte of L1 cache per core (64 KByte 
data cache + 64 KByte instruction cache)  

− L2 cache: 4 MByte per core (semi shared: the cache is 
assigned a specific core, but the other has a fast access to it) 

− L3 cache: 32 MByte per processor  

The nodes are interconnected with an Infiniband network providing 
an MPI bandwidth of 160 Gbit/sec between neighboring nodes 

Overall porting result Successfully 
General comments Compilation flags: -O3 -q64 -qarch=auto -qautodbl=dbl4 -

qmaxmem=-1 
Porting report on programming language 
constructs in general 

 

Porting report on libraries used The FFTW library is avalaible on SARA system, but the PETSc 
library is not installed. 

Porting report on parallelisation method CPMD is well parallelized. No  specific development has to be done. 
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform Power6 
Details execution platform Same above 
Performance details The executions with 256 and 512 cores go 2 times faster than the 

executions of Marenostrum.  
  
RECOMMENDATIONS  
Expected potential for Petascaling Expected scaling to tens of thousand of cores 
Expected effort to reach Petascaling 
potential 

Medium effort. The current code only allows executions until 999 
cores. 

Expected potential for Optimisation Good Potential 
Expected effort to reach Optimisation 
potential 

Great effort. Improve the communication scheduling.  Simdization 
(the SIMD vectorization) of the loops. 

  
 
 

7.2.8 ECHAM5 

Mark Cheeseman  
CSCS 
 
GENERAL  
Name of Code, Abbreviation ECHAM5-HAM 
Application area(s) Earth & Atmospheric Sciences 
Key numerical method(s) Spectral code, FFTs 
Origin (developers, institute) Luis Kornblueh, Erik Roeckner 

Max Planck Institute for Meteorology 
Current developers Luis Kornblueh, Uwe Scholuzweida 

Max Planck Institute for Meteorology 
Ulrike Lohmann 

ETH-Zurich 
Contact person  Luis Kornblueh <luis.kornblueh@zmaw.de> 
License policy Code is freely accessible after site/researcher agrees to MPI’s 

Software License Agreement.  Licensing is managed by Ms. Sonja 
Kempe at MPI  <kempe@dkrz.de>. 

Copyright Max Planck Institute for Meteorology 
Usage rules (within PRACE, outside Free within PRACE. No disclosure/No propagation of the source 
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PRACE, …) code. 
  
PRACE INFORMATION  
BCO: name, email, institute Mark Cheeseman <mpch@cscs.ch> 

CSCS 
Contributors (PRACE partners) Juha Lento <Juha.Lento@csc.fi> 

CSC
Harald Klimach <klimach@hrls.de> 

HRLS 
Targeted hardware platforms as in BCO 
list 

MPP-Cray, FatNode-Pwr6, Vector-SX9 

  
CODE STATISTICS  
Programming language(s) F90 
Amount of source lines ~50000 
Libraries BLAS, LAPACK, NetCDF 
Parallellization method MPI and OpenMP 
Development platform(s) NEC SX6 

Cray XT3 
IO characteristics Output frequency specified by user via a namelist.  Usually, restart 

files generated every model month, diagnostic output generated 
every 6 model hours. 

  
PORTING REPORT For XT platforms at CSCS 
Porting platform Cray XT3 
Details porting platform Hardware: 

• Model: Cray XT3 
• Proc Type: AMD Opteron Dual Core  
• Clock rate: 2.6 GHz  
• Total Cores:  3328 
• Cores Per Chip: 2  
• Cores Per Node: 2  
• Memory per core: 1GB. 
• Total Memory: 3328 Gbytes  
• Cache: Separate level 1 caches for data and instructions of 

64 kB each. The L1 data cache is 2-way set associative. 
There is a combined data and instruction L2 cache of 1 
MB for each core, which is 16-way associative. The L1 
data and the L2 cache use 64 byte cache lines. The L2 
cache acts as a victim cache for the L1 cache. Data evicted 
from the L1 cache gets established on the L2 cache.  

• Interconnect: Cray SeaStar 3D torus  
• I/O: 12 I/O nodes connected to 31 TB of RAID disks 

running Lustre 
 
Software details: 

• OS version: UNICOS/lc version 1.5.47 
• Compiler versions: PGI compilers, version 7.2.4 

Overall porting result Successful 
General comments ECHAM5-HAM was already running on all Cray XT platforms at 

CSCS.  No porting was required. 
 
Changing the number of cores used per test is easy as only a 
namelist needs to be modified –i.e. no re-compiling needed. 
 
Makefiles were already available for the XT platform and both the 
PGI and PathScale compilers.  The principal compiler optimisations 
used were: 
 
PGI: –O3 –fast –tp amd64 
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PATHSCALE: -O3 –m3dnow –align64 –
march=opteron 
 
NOTE: 
# of cores used is dependent on the spectral resolution used. T106 
allows a maximum of ~640 cores. 

Porting report on programming language 
constructs in general 

FORTRAN 90 code 

Porting report on libraries used Libraries used: 
• NetCDF Version 3.6.2 
• ACML Version 4.0.1a 

Porting report on parallelisation method MPI-only parallelisation was used.  OpenMP not currently 
supported on CSCS’ XT platforms. 

Porting report on IO IO characteristics of benchmark: 
• Restart files generated at end of job 
• Diagnostic output datafiles generated hourly 
• Benchmark runs for 4 model days 
• Output frequency specified via a namelist 
 

IO is 2nd most time-consuming process.  ECHAM5 developers 
extremely interested in IO optimisation. 

  
PORTING REPORT For CSCS 
Porting platform IBM Power5 
Details porting platform Hardware: 

• Model: eServer 575 cluster  
• Proc Type: Power5  
• Clock rate: 1.5 GHz  
• Total Cores: 768  
• Cores Per Chip: 2  
• Cores Per Node: 16  
• Memory per core: 2GB 
• Total Memory: 1784 Gbytes  
• Cache: Each core has a 32 Kbyte data cache and a 64 

Kbyte instruction cache. The level 1 data cache has 128-
byte lines, is 2-way set associative and write-through. The 
level 2 cache is on-chip, shared between the cores. It is a 
1.9 Mbyte combined data and instruction cache, with 128 
byte lines and is 10-way set associative and write-back. 
The level 3 cache is 36 Mbytes, off-chip and is shared 
between the 2 cores. It has 256 byte lines, and is 12-way 
set associative and write-back.  

• Interconnect: Infiniband.  
• I/O: 30 Tbytes of disk running GPFS. Connected to 

computes nodes via Infiniband 
 

Software details: 
• OS version: SLES 9 
• Compiler versions: IBM XL Fortran compiler 9 

Overall porting result Successful 
General comments Porting ECHAM5-HAM was straight-forward as IBM PowerX 

configuration files already existed.  
 
The principal compiler optimisations used were: 
-q64 –O2 -qarch=pwr5 -qtune=pwr5 -qessl  
NOTES: 

1> -O2 was the highest level of optimisation that could be 
safely used. 

2> 1.7GB of physical memory alloted per MPI task.  This 
allowed all 16 CPUs per node to be used. 
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3> # of required CPUs can be selected by the user via a 
namelist.  It is also dependent on the spectral resolution 
used.  T106 allows a maximum of ~640 CPUs to be used. 

Porting report on programming language 
constructs in general 

FORTRAN 90 code 

Porting report on libraries used Libraries used: 
• MPICH (PrgEnv default version) 
• ESSL (OS default version)   
• LaPACK 3.1.l (built by user)  
• NetCDF Version 4.0.0 

Porting report on parallelisation method MPI-only and hybrid (MPI-OpenMP) parallelisation runs 
performed. 

Porting report on IO IO characteristics of benchmark: 
• Restart files generated at end of job 
• Diagnostic output datafiles generated hourly 
• Benchmark runs for 4 model days 
• Output frequency specified via a namelist 
 

IO is 2nd most time-consuming process.  ECHAM5 developers 
extremely interested in IO optimisation. 

  
PERFORMANCE RESULTS For CSCS 
Execution platform Cray XT3 
Details execution platform Same with the porting platform 
Performance details Please find the detailed results in the attached results report 

echam5_xt3_cscs.xls. 
  
PERFORMANCE RESULTS For CSCS 
Execution platform IBM Power5 
Details execution platform Same with the porting platform 
Performance details Please find the detailed results in the attached results report 

echam5_pwr5_cscs.xls. 
  
RECOMMENDATIONS For Petascaling and optimisation on Cray XT4 (CSC) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

With the T106L31 input datasets, ECHAM5-HAM scales well to 
320 cores.  A larger dataset (T159L95) is under construction and 
should allow greater scalability without any optimisation.   
 
OpenMP directives need to be added to the HAM submodel.  Once 
completed, the hybrid MPI-OpenMP version should scale quite well 
to even higher core counts. 

Amount of pm’s: 2pm 
 
Data output mechanism in ECHAM5-HAM creates significant load 
imbalance.  This imbalance should hopefully be lessened with the 
inclusion of multiple IO nodes and MPI-2 directives.  Rewriting the 
IO modules in ECHAM5-HAM will be extremely beneficial in 
increasing its scalability.   

Amount of pm’s: 6pm 
 

Expected potential for Optimisation High 
Expected effort to reach Optimisation 
potential 

XT-optimised version of ECHAM5 exists and has been received 
from Cray.  Optimisations are currently being evaluated so that the 
most beneficial ones can be added to the benchmark. 

Amount of pm’s: 0.5pms 
  
RECOMMENDATIONS For Petascaling and optimisation at CSCS(IBM Power5) 
Expected potential for Petascaling Low-Medium 
Expected effort to reach Petascaling Global communication calls (such as MPI_Allreduce and 
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potential MPI_Bcast) create a significant performance obstacle.  Reducing 
these calls will improve scalability.  Currently, the T106L31 
configuration of ECHAM5-HAM scales well to 128 processors. 

Amount of pm’s: 0.5pm 
 
An acute shortage of proper profiling tools on the Linux-on-Power 
platform made a performance investigation difficult.  ECHAM5-
HAM has internal counters that can sometimes be unreliable.  
However, the most recent OS version has allowed a new HPC 
Performance Toolkit to be available.  Testing has started evaluating 
the usefulness of this utility. 

Amount of pm’s: 4pm 
 
IO and OpenMP optimisation activities performed for the Cray XT 
platform are expected to be beneficial for the Linux-On-Power5 
platform as well. 

Expected potential for Optimisation High 
Expected effort to reach Optimisation 
potential 

An IBM-optimised version of ECHAM5 exists and has been 
received.  Optimisations are currently being evaluated so that the 
most beneficial ones can be added to the benchmark. 

Amount of pm’s: 0.5pms 
Further Porting Notes IBM Blue Gene:  

Previous attempts to scale ECHAM5 on this architecture by DKRZ 
(Hamburg) and IBM failed.  It is the opinion of the code developers 
(and IBM) that porting/optimisation efforts be ceased. 
x86 thin-node: 
No real barriers exist in porting ECHAM5-HAM to this platform as 
it already runs on a variety of linux-based clusters.  CSC was able 
to port and run the benchmark on their HP cluster.  It is expected 
that optimisations performed for the Cray XT and IBM Linux-On-
Power architectures will be beneficial for the x86 thin-node 
architecture as well. 
 
Optimisation Notes: 
Preliminary work deliverables were drafted and assigned during the 
ECHAM5 Workshop on September 15.  The first deliverables are 
due on October 17.  These deliverables include the following: 

 A benchmark configuration (reduced walltime 
requirement, higher resolution) - CSCS 

 Input datasets for the new benchmark configuration – 
DKRZ,ETHZ 

 Preliminary inclusion of OpenMP into the HAM module – 
HRLS 

 Analysis of vendor-optimised ECHAM5 benchmarks used 
in the recent DKRZ procurement – CSCS 

 Inclusion of additional instrumentation calls/functions – 
CSCS 

 Preliminary analysis of the IO infrastructure – CSC 
 

Other Notes: 
A new version of ECHAM was released in October 2008.  CSCS, 
DKRZ and ETHZ are currently evaluating this version to determine 
whether it can be used in the benchmark. 
 

 
 

7.2.9 NEMO 

Dr. John Donners 
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SARA 
 
GENERAL  
Name of Code, Abbreviation Nucleus for European Modelling of the Ocean, NEMO 
Application area(s) oceanography, climate science 
Key numerical method(s)  
Origin (developers, institute) Gurvan Madec et al, IPSL 
Current developers NEMO team, IPSL 
Contactperson  Rachid Benshila 
License policy CeCiLL 
Copyright  
Usage rules (within PRACE, outside 
PRACE, …) 

GYRE configuration is free to use, DRAKKAR is only free to use 
within PRACE. 

  
PRACE INFORMATION  
BCO: name, email, institute John Donners, SARA 
Contributors (PRACE partners)  
Targeted hardware platforms as in BCO 
list 

MPP-Cray, Pwr6, MPP-BG, (vector) 

  
CODE STATISTICS  
Programming language(s) Fortran 90 
Amount of source lines 82.000 
Libraries NetCDF 
Parallellization method MPI 
Development platform(s)  
IO characteristics read at start, write at end, each iteration (depends on configuration) 
  
PORTING REPORT For platform #1 (repeat for platform #2, #3, …) 
Porting platform Pwr6 
Details porting platform The huygens system at SARA consists of 104 nodes, each with 16 

IBM Power6 (4.7GHz) dual-core processors and 128 or 256 
gigabyte of internal memory. 
 

− L2 cache: 4 MByte per core  
− L3 cache: 32 Mbyte per core  
− Infiniband network: MPI bandwidth of 160 gigabit/second 

between neighbouring nodes. 
− SUSE Linux Enterprise Server 10  
− IBM XL C/C++ 9.0, XL Fortran 11.1 Fortran  
− NetCDF 3.6.2  
− Parallel Operation Environment, version 4.3.2.2-s002a  

Overall porting result Successful 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used  
Porting report on parallelisation method  
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform Pwr6 
Details execution platform same as porting platform 
Performance details find the performance details and results on 

 https://trac.csc.fi/pracewp6-nemo/wiki 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat for platform 

#2, #3, …) 
Expected potential for Petascaling scaling is different for both configurations: the GYRE configuration 
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scales well and has petascaling potential; the DRAKKAR 
configuration seems much less scalable at the moment. 

Expected effort to reach Petascaling 
potential 

− Extremely thin or wide regions for every task may be 
advantageous, because the cpu may be able to reuse cache 
data from a previous column or row. 

 Amount of pm's:0.5 
• The NEMO model uses exactly the same region size for 

every task, and land regions are also divided over tasks. If 
less tasks are given than the multiple of the nr. of tasks in 
both directions, the model will first remove tasks with only 
land points. There is a minimum nr. of tasks for every 
decomposition, where every task has some ocean points to 
calculate. The practically usable nr. of tasks therefore 
increases in steps which are not powers of 2. Possibly 
implement variable column widths or row heights to 
account for resulting imbalance? Amount of pm's: 1 

• different solvers. Most of the communication is in the 
solver for the free surface. Different solvers can have 
different scaling characteristics. Amount of pm's: 0.5 

• Try to interleave communication and calculation with 
Isend/Irecv before calculation and Waits after. Amount of 
pm's:0.5 

Expected potential for Optimisation medium 
Expected effort to reach Optimisation 
potential 

• Use different compiler flags and see what is the impact on 
performance. Compiler flags are platform and compiler 
dependent, so these will be different and hard-to-compare 
experiments on every platform. Some options possibly 
improve cache blocking, see e.g. Cray XT4 benchmark 
results. Amount of pm's: 0.2 

• 'Cache blocking': Rewrite loops to improve cache reuse. 
Most important issue is how to keep code 
readable/maintainable. cpu time is equally spread over 
many routines. Single routine optimisations can therefore 
not be very effective. Advice on how to write such code is 
better than just changing the code. Amount of pm's: 1 
 

 
DRAKKAR: Disk reads the same amount per node, independent of 
#tasks? Disk writes per node increase with #tasks? Large variety in 
FP stores and L2 misses? 
 

PORTING REPORT For platform #2  
Porting platform Cray XT4 
Details porting platform − AMD Opteron quad-core (2.3 GHz) processors 

− Cray SeaStar2 3D-torus High Speed Network 
− Cache (per core): 

− Two 64 KB L1 caches (instruction and data) 
−  1 MB L2 cache 

− 1 GB or 2 GB of memory per core. Peak transfer rate  
of 5.3 GB/s 

− Lustre parallel file system 
Overall porting result Successful 
General comments added --fastsse 
Porting report on programming language 
constructs in general 

No large efforts needed. The default small memory model for the 
PGI compilers resulted initially in an error when linking the model. 
Widening the domain decomposition, i.e. increasing the number of 
processes, reduces the memory per process and will fix the problem. 

Porting report on libraries used NETCDF-3.6.2 
Porting report on parallelisation method  
Porting report on IO  
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PERFORMANCE RESULTS  
Execution platform Cray XT4 
Details execution platform  
Performance details find the performance details and results on 

 https://trac.csc.fi/pracewp6-nemo/wiki 
NOTE that the benchmark differs on some minor points:300 
timesteps,  I/O needed to be done to separate files per task. 

  
RECOMMENDATIONS For Petascaling and optimisation on platform #2 
Expected potential for Petascaling Communication uses 50% of the wallclocktime at 512 tasks. 
Expected effort to reach Petascaling 
potential 

It is expected that optimisation on Pwr6, XT4 and BG is very 
similar. 

Expected potential for Optimisation medium 
Expected effort to reach Optimisation 
potential 

  
 

  
PORTING 
REPORT 

For platform #3 

Porting 
platform 

IBM BlueGene 

Details 
porting 
platform 

− P450 PowerPC chip, quad-core, 850 Mhz 
− Each core has own dedicated L1 cache 
− 2 GB RAM/node => 512 MB/core (fully occupied) 
− Nodes can be fully-, half- or singly-occupied 
− Bespoke high-performance interconnect with separate network for global operations 
− xlf2003 compiler, mpich MPI library, load-leveler scheduler 

Overall 
porting 
result 

Successful 

General 
comments 

i) Some care needed to get pre-processing working correctly. F2003 has signed zero which 
must be turned off for NEMO. Edit util/AA_make.gdef to add compiler definitions for 
BG/P: 

 
#-Q- bgp      #- Global definitions for IBM BlueGene P (MPP) 
#-Q- bgp      M_K = gmake 
#-Q- bgp  MPIDIR=/bgsys/drivers/V1R2M0_200_2008-080513P/ppc/comm 
#-Q- bgp      P_C = /lib/cpp 
#-Q- bgp  P_O = -P -traditional-cpp -C $(P_P) -I$(MPIDIR)/include 
#-Q- bgp      F_C = mpixlf2003 -c 
#-Q- bgp      F_P = -qxlf90=nosignedzero -qrealsize=8 -qstrict 
#-Q- bgp  w_w = $(F_P) -O3 -qarch=450d -qtune=450  -qsuffix=f=f90 
#-Q- bgp F_O = -O3 -qarch=450d -qtune=450 -qfree=f90 $(F_D) $(F_P) -I$(MODDIR) -
I$(MODDIR)/oce -qmoddir=$(MODDIR)/oce -I$(NCDF_INC) 
#-Q- bgp      F_L = mpixlf2003 
#-Q- bgp      L_O = $(F_P) $(NCDF_LIB) 
#-Q- bgp      A_C = ar -r 
#-Q- bgp      A_G = ar -x 
#-Q- bgp      C_C = mpixlc -c 
#-Q- bgp      C_O = 
#-Q- bgp      C_L = mpixlc 
#-Q- bgp      prefix = "-WF,-D" 
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#-Q- bgp      #- 
#-Q- bgp      NCDF_INC = $(HOME)/netcdf-3.6.2/include 
#-Q- bgp      NCDF_LIB = -L$(HOME)/netcdf-3.6.2/lib -lnetcdf 
#-Q- bgp      #- 
 
In particular, 'prefix' is set to the correct incantation for setting compiler-defined 
constants. 
 
EdiGet to link stage: 

../../../lib/oce/libopa.a(in_out_manager.o): In function 
`__in_out_manager_NMOD_ctl_stop': 
in_out_manager.F90:(.text+0x804): undefined reference to `flush' 
 
From http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp discovered 
that 
'flush' in F2003 is a  _statement_ and therefore is _not_ CALL'd. 
 
I decided to change the code but have since realised that I could have added 
"FLUSH=FLUSH_" to 
the 'keys' in the build system. 

t ins_make file to add bgp as valid machine type. 

Porting 
report on 
programmin
g language 
constructs 
in general 

 

Porting 
report on 
libraries 
used 

 

Porting 
report on 
parallelisati
on method 

 

Porting 
report on IO 

 

  
PERFORM
ANCE 
RESULTS 

 

Execution 
platform 

IBM BlueGene 

Details 
execution 
platform 

“scalasca” tool used for profiling on Jugene 

Performanc find the performance details and results on  https://trac.csc.fi/pracewp6-nemo/wiki 
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e details NOTE that the benchmark differs on some minor points:300 timesteps,  I/O needed to be done to 
separate files per task. 

  
RECOMME
NDATION
S 

For Petascaling and optimisation on platform #2 

Expected 
potential for 
Petascaling 

− Some filesystems (Lustre) cannot cope with a 
program opening ~100s of files in one go. =>  

− Parallel-IO - NetCDF4? 
 

Expected 
effort to 
reach 
Petascaling 
potential 

See Power6 

Expected 
potential for 
Optimisatio
n 

medium 

Expected 
effort to 
reach 
Optimisatio
n potential 

See Power6 

 
 
 

7.2.10 CP2K 

Pekka Manninen 
CSC Finland 
 
 
GENERAL  
Name of Code, Abbreviation CP2K 
Application area(s) Computational chemistry 
Key numerical method(s) FFT, dense matrix algebra 
Origin (developers, institute) University of Zürich 
Current developers Axel Kohlmeyer, Christopher J. Mundy, Fawzi Mohamed, Florian 

Schiffmann, Gloria Tabacchi, Harald Forbert, William Kuo, Jürg 
Hutter, Matthias Krack, Marcella Iannuzzi, Matthew McGrath, 
Manuel Guidon, Thomas D. Kuehne, Teodoro Laino, Joost 
VandeVondele, Valery Weber 

Contactperson  Jürg Hutter 
License policy GPL 
Copyright  
Usage rules (within PRACE, outside 
PRACE, …) 

Free Software 

  
PRACE INFORMATION  
BCO: name, email, institute Pekka Manninen, pekka.manninen@csc.fi, CSC Finland 
Contributors (PRACE partners) Vegard Eige / Sigma Norway 
Targeted hardware platforms as in BCO 
list 

MPP-BG, MPP-Cray, FN-Pwr6 

  
CODE STATISTICS  
Programming language(s) Fortran 95 
Amount of source lines 553,043 
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Libraries LAPACK, SCALAPACK, FFT (FFTW, ACML, ESSL supported) 
Parallellization method MPI 
Development platform(s)  
IO characteristics Checkpoints and output 
  
 
 
PORTING REPORT  
Porting platform IBM Blue Gene / P (MPP-BG prototype) 
Details porting platform Power-PC 450 cores; Proprietary intereconnect; memory  512 MB 

per core   
Overall porting result Successful 
General comments No large efforts needed; but optimisation must be kept at a 

conservative level 
Porting report on programming  Well written, standards-conforming Fortran 95 
Porting report on libraries used FFT interface to IBM ESSL library buggy, FFTW 3.1.5 works fine 
Porting report on parallelisation method Unable to take full advantage out of the BG interconnect 
Porting report on IO Not an issue 
  
PERFORMANCE RESULTS  
Execution platform Same as porting platform 
Details execution platform Same as porting platform 
Performance details Quickstep DFT dynamics of 512 water molecules 

3 fs simulation, wall-time in secs 
Using the in-build FFT library (FFTSG) with and without the 
improved halo-exchange routines of the development version 
 
#Cores  Original w/ improved routines   
256     1755.93  1486.43  
512     1499.06  1245.63   
1024    1268.44  950.56  
2048    1573.73  1080.18  

  
RECOMMENDATIONS Load imbalance and the amount of communication is the blockade 

for scaling. Not very good code for Blue Gene/P due to modest 
scalability and intense CPU and memory demands. 

Expected potential for Petascaling Not likely - low 
Expected effort to reach Petascaling 
potential 

?, load balance to be improved in general 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

1 man-months, some inefficiencies in cache utilization; the 
utilization of the second FP element of BG/P cores should be 
investigated 

 
 
PORTING REPORT  
Porting platform Cray XT5 (MPP-Cray prototype) 
Details porting platform AMD 2.3 GHz Barcelona quad-core CPUs; Proprietary 

intereconnect; memory 1-2 GB per core  
Overall porting result Successful 
General comments No large efforts needed 
Porting report on programming  Well written, standards-conforming Fortran 95; numerics do not 

break down even with heavy optimisation 
Porting report on libraries used FFT interface to ACML library buggy, FFTW 3.1.5 works fine 
Porting report on parallelisation method  
Porting report on IO Fast I/O on Cray 
  
PERFORMANCE RESULTS  
Execution platform Same as porting platform 
Details execution platform Same as porting platform 
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Performance details Quickstep DFT dynamics of 512 water molecules 
3 fs simulation, wall-time in secs 
Using the in-build FFT library (FFTSG) with and without the 
improved halo-exchange routines of the development version 
 
#Cores  Original w/ improved routines   
64      1271.86  1223.14  
128     845.50   818.14  
256     585.96   544.95   
512     527.94   500.07   

  
RECOMMENDATIONS Load imbalance and the amount of communication is the blockade 

for scaling  
Expected potential for Petascaling Not likely - low 
Expected effort to reach Petascaling 
potential 

?, load balance to be improved in general 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

2, for optimal cache utilization and vectorization 

 
 
PORTING REPORT  
Porting platform IBM Power 6 cluster (FN-Pwr6 prototype) 
Details porting platform 4.7 GHz Power-PC CPUs, Infiniband, 4-8 GB/core 
Overall porting result Successful 
General comments No large efforts needed 
Porting report on programming  Well written, standards-conforming Fortran 95 
Porting report on libraries used ESSL 4.3.1,  FFTW 3.1.2  works fine 
Porting report on parallelisation method  
Porting report on IO  
  
PERFORMANCE RESULTS  
Execution platform Same as porting platform 
Details execution platform Same as porting platform 
Performance details Quickstep DFT dynamics of 512 water molecules 

3 fs simulation, wall-time in secs 
#Cores    w/ improved routines 
  64      1164 
 128       722  
 256       556 
 512       512 

  
RECOMMENDATIONS Load imbalance and the amount of communication is the blockade 

for scaling 
Expected potential for Petascaling  
Expected effort to reach Petascaling 
potential 

 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

Cache utilization 

 

7.2.11 GROMACS 

Sebastian von Alfthan 
CSC Finland 
 
 
GENERAL  
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Name of Code, Abbreviation Gromacs 4.0 
Application area(s) Life sciences, Computational chemistry 
Key numerical method(s) Particle methods, Spectral methods(FFT) 
Origin (developers, institute) Herman Berendsens group, department of Biophysical Chemistry of 

Groningen University.  
Current developers Head Authors & project leaders: 

• Erik Lindahl  (Stockholm Center for Biomembrane Research, 
SE) 

• David van der Spoel (Biomedical Centre, Uppsala, SE) 
• Berk Hess (Max Planck Institute for Polymer Research, Mainz, 

DE) 
Contactperson  Erik Lindahl 
License policy GPL 
Copyright Authors have copyright to their code 
Usage rules (within PRACE, outside 
PRACE, …) 

Free inside & outside PRACE. Any changes should be contributed 
back to the original code 

 
PRACE INFORMATION  
BCO: name, email, institute Sebastian von Alfthan, alfthan@csc.fi, CSC 
Contributors (PRACE partners) PDC,CSCS,NCF 
Targeted hardware platforms as in 
BCO list 

MPP-Cray,  FatNode-Pwr6,MPP-BG, 

 
 
CODE STATISTICS  
Programming language(s) C, assembler  
Amount of source lines ~1.4M lines of code. ~340k lines of c, ~ 85k lines in header files, ~1M lines 

of assembler.  
Libraries FFTW,BLAS,LAPACK 
Parallellization method MPI 
Development platform(s)  
IO characteristics With most systems not very demanding. read at start, write at end, write 

each n iterations. Automatic snapshoting ability with restarting. 
 
 
PORTING REPORT For platform #1  
Porting platform MPP-CRAY 
Details porting platform Current louhi: 

XT5 with 800MHZ DDR2 memory. 
 OS2.1, GCC 4.2.0 (patched for QC support)  
 FFTW 3.1.1, ACML 4.1.0 

Overall porting result Successful 
General comments Did not encounter any specific problems. 
Porting report on programming 
language constructs in general 

Uses assembler routines for short-ranged forces. 

Porting report on libraries used Used FFTW 3.1.1 and ACML 4.1.0 that were installed as modules. 
Porting report on parallelisation 
method 

No issues. 

Porting report on IO No issues 
 
 
PORTING REPORT For platform #2 
Porting platform PWR6 
Details porting platform Current Huygens: 

Kernel: 2.6.16.60-0.2501-ppc64  

IBM XL Fortran for Linux, V12.1 Version: 12.01.0000.0000  

IBM XL C/C++ for Linux, V10.1 Version: 10.01.0000.0000  
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FFTW 3.1.2  

 
Overall porting result Successful 
General comments  
Porting report on programming 
language constructs in general 

Uses assembler routines for short-ranged forces. 

Porting report on libraries used Used precompiled libraries available on BG/P.  
Porting report on parallelisation 
method 

No issues 

Porting report on IO No issues 
 
 
PORTING REPORT For platform #3 
Porting platform MPP-BG/P 
Details porting platform Current Jugene: 

 FFTW 3.1.2 
IBM XL C/C++  

Overall porting result Successful 
General comments Ported successfully based on  instructions from FZJ. 
Porting report on programming 
language constructs in general 

Gromacs has  assembler routines developed for the BG/P for calculating 
short-ranged forces. 

Porting report on libraries used Used precompiled libraries available on BG/P.  
Porting report on parallelisation 
method 

No issues 

Porting report on IO No issues 
  
PERFORMANCE RESULTS For platform #1  

 
Execution platform MPP_CRAY 
Details execution platform Louhi – see  porting platform  

Performance details  
Algorithms 
Long-ranged forces are calculated using the smooth particle-mesh Ewald 
(SPME) scheme. This scheme divides the calculation of long-ranged 
forces in two parts, a short-ranged calculation in real-space and a Fourier-
space part where  the charges are assigned to a grid.  The Fourier part 
requires two 3D-FFT calculations, to Fourier space and back. As  3D-
FFT:s require all-to-all communication, Gromacs assigns a certain set of 
MPI processes to only calculate the Fourier-space part of PME (PME 
processes), while the others calculate normal short-ranged interactions 
(real-space processes). This enables the code to extract better performance  
from the interconnect on a machine with multiple cores per node.   In 
Gromacs the 3D-FFT is currently only parallelised in one dimension, this 
unfortunately sets a great deal of restrictions on the number of processes 
one can effectively use with PME. Generally one should aim at having 25-
33% of the processes assigned to long ranged forces.   It also limits the 
scalability as the communication requirements are higher due to the 1D 
implementation. 
 
Alternatively one can also use coarser approximations such as the reaction 
field (RF) approximation where the long-ranged Coulomb forces are 
approximated via short-ranged interactions. This algorithm removes most 
all-to-all communication and should scale much further. 
 
Testcase 
 
The testcase  comprised two vesicles in water with 1752 POPC lipids and 
334489 water molecules giving in total 1094681 atoms. The system was 
provided by Erik Lindahl, a  Gromacs developers. Long-ranged forces 
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were calcuated with either PME or RF.  For PME the grid-dimension of 
the test-case in the parallelised direction was 176.  The number of 
iterations was five times greater for the RF simulation, due to its better 
performance. 
 
PME-results 
 
PME/real-space load-balance 
Getting the load balance correct between  processes calculating PME and 
processes calculating short-ranged forces is of crucial importance to get 
maximum performance:  
 
N       N(PME)/N   PME/RS load   time(s)        
132     0.33       1.15         772 
176     0.25       1.45         645 
176     0.5        1.01         610 
264     0.33       1.56         456 
352     0.25       1.89         418 
352     0.5        1.70         502 
528     0.33       2.52         382 
704     0.25       3.04         339 
 
On the XT5 maximum performance is not always achieved when the load 
balance is the best possible one. For the case of 352 cores the best 
performance is achieved when the load balance suggests that there are far 
too few PME nodes. The reason is that with fewer PME processes per 
node, the performance of all-to-all operations is significantly increased. 
The Cray MPI library doesn't appear to do any message aggregation and 
thus the all-to-all algorithm works best if only one process per node is 
involved in it. 
 
Node performance 
The node-performance is excellent due to the built in X86-64 assembler 
routines for short ranged forces.  An 88-core simulation achieves a 
performance of 2.4 Gflops/core according to Gromacs built-in counters. 
 
Scalability 
 
The scalability  for a PME process fraction of 0.25 or 0.5 is: 
 
cores  time(s) speedup GFlops   
176    610              347.2 
352    418      1.46    457.1 
704    339      1.23    563.9     
 
The scalability  for a PME process fraction of 0.33 is: 
 
cores  time(s) speedup GFlops   
132    772              267.4 
264    456     1.69     430.5   
528    382     1.18     513.9  
 
The scalability is limited by the calculation of long ranged forces; the all-
to-all communication this requires does not scale. This is evident in the 
fact that for 352 cores optimal performance was obtained for a case with a 
greater degree of load imbalance. 
 
RF-results 
 
Scalability 
The scalability for the RF test-case is: 
 
cores  time(s) speedup GFlops   
512       447          1515.6 
1024      264   1.69   2567.1 
2048      166   1.59   4085.2 
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With the RF approximation Gromacs scales extremely well. It also 
achieves an impressive flops count of almost 3 Gflops/core for the 512 
core simulation.  Note that the number of iterations is five times larger 
than for the PME runs, thus the execution times cannot be directly 
compared. 
 
I/O 
 
For this testcase and many other MD simulations, I/O is not very 
demanding. Time spent writing out results is close to 0%. 
 

  
 
 
RECOMMENDATIONS For Petascaling and optimisation on platform #1  
Expected potential for Petascaling For PME-simulations the scalability can be improved to one or several 

thousands of cores 
 
For RF-simulations the scalability will probably extend to ten thousand 
cores, with large enough systems. 
 

• With 2D or 3D-PME the major scalability bottleneck for PME can 
be alleviated.  

• Optimised communication patterns (all-to-all) with aggregated 
messages could help on the Cray-XT5 high-bandwidth medium-
latency network.  

• Gromacs doesn't overlap communication with computation. This 
could potentially improve scalability as communication costs 
could be hidden.  This could also help with the scalability of RF 
calculations 

• Gromacs 4 has a brand new parallelisation and thus we expect that 
there will also be additional things that can be tuned. 

Expected effort to reach 
Petascaling potential 

 8 pm (petascaling on all platforms) 

Expected potential for 
Optimisation 

Small.  
• Most processor intensive parts of the code are written in well 

optimised assembler and accounts for 70% of all floating point 
operations.  

 
Expected effort to reach 
Optimisation potential 

1 pm (optimisation on all platforms) 
We will spend some effort to verify that the code  is well tuned and that 
there are no obvious problems. 
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PERFORMANCE RESULTS For platform #2 

 
Execution platform Fatnode-PWR6 
Details execution platform Huygens – see  porting platform  

Performance details  
PME-results 
 
PME/real-space load-balance 
Getting the load balance correct is of crucial importance to get maximum 
performance:  
 
N       N(PME)/N   PME/RS load   time(s) 
132     0.33       0.937         866 
176     0.25       1.361         774 
264     0.33       1.015         465 
352     0.25       1.426         431 
528     0.33       1.185         281 
 
 
On the PWR6 the best performance is achieved when one third of the 
processes is assigned to PME. This is also what the Gromacs 
preprocessing tool grompp suggests. 
 
Node performance 
The node-performance is good, but not quite as good as on the Cray XT5; 
the wall time of smaller runs with 132, 176 and 264 processes is larger. 
The reason for this is unclear; we suspect that the hand-tuned assembler 
routines have not been specifically tuned for the new Power 6 processors.  
 
Scalability 
The scalability for the test-case is much better than on the Cray XT5. The 
larger runs with 428 processes executes faster than on the XT5 platform. 
The scalability for a PME process fraction of 0.33 is: 
 
cores  time(s) speedup GFlops   
132     866             226.6 
264     465     1.86    422.1 
528     281     1.65    698.6 
 
RF-results 
 
Scalability 
The scalability for the RF test-case is: 
 
cores  time(s) speedup GFlops   
256       906          747.5 
512       503   1.80  1346.8 
1024      281   1.79  2411.3 
 
When one uses the RF approximation Gromacs scales extremely well. 
The scalability is  better than on the XT5 platform, but the performance 
remains lower even for 1024 cores. It achieves a flops count of  2.6 
Gflops/core with 512 cores. 
 
 

 
RECOMMENDATIONS For Petascaling and optimisation on platform #2  
Expected potential for Petascaling For PME-simulations the scalability can be improved to one or several 

thousands of cores 
 
For RF-simulations the scalability will probably extend to ten thousand 
cores, with large enough systems. 
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• With 2D- or 3D-PME larger number of PME nodes can be used, 
enabling larger simulations 

• Gromacs doesn't overlap communication with computation. Doing this 
could potentially improve scalability as communication costs could be 
hidden.  

• Gromacs 4 has a brand new parallelisation and thus we expect that 
there will also be additional things that can be tuned. 

Expected effort to reach 
Petascaling potential 

 8 pm (petascaling on all platforms) 

Expected potential for 
Optimisation 

Small; the most processor intensive parts of the code are written in well 
optimised assembler.  
 

Expected effort to reach 
Optimisation potential 

1 pm (optimisation on all platforms) 
We will spend some effort to verify that the code is well tuned and that 
there are no obvious problems. 

  
PERFORMANCE RESULTS For platform #3 

 
Execution platform BG/P 
Details execution platform Jugene – see  porting platform  

Performance details  
PME-results 
 
As there is a runtime limit for small queues with 512 cores the number of 
iterations was reduced by half. . 
 
PME/real-space load-balance 
 
N       N(PME)/N   PME/RS load   time(s) 
512     0.18       0.835         852 
1024    0.18       1.002         462 
 
On the BG/P one can use a much smaller PME fraction while still having 
good load balance. This is fortunate, as it allows larger simulations to be 
performed. 
 
Node performance 
There are assembler routines for the BG/P architecture that have been 
enabled at compile time. These are able to extract  good  performance 
from the processors. The low clock frequency of the processors is evident 
as much larger simulations have to be run to achieve comparable 
performance to the one on the Cray XT5 machine. 
 
Scalability 
The scalability  the test-case is as follows: 
 
cores  time(s) speedup GFlops   
512     852             110.3 
1024    462     1.84    203.5 
 
Unfortunately one cannot calculate with a larger number of processors as 
the parallel algorithm (PME) does not scale any further.  Thus 
performance is lower than on either the PWR6 or the XT5.  
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RECOMMENDATIONS For Petascaling and optimisation on platform #3  
Expected potential for Petascaling For PME-simulations the scalability can be improved to several thousands 

of cores 
 
For RF-simulations the scalability will probably extend to several tens of 
thousands of cores, with large enough systems. 
 
• With 2D or 3D-PME larger number of PME nodes can be used, 

enabling larger simulations 
• Investigating how the torus network of BG/P can be directly mapped to 

the domain decomposition used by Gromacs 
• Gromacs 4 has a brand new parallelisation and thus we expect that 

there will also be additional things that can be tuned. 
Expected effort to reach 
Petascaling potential 

 8 pm (petascaling on all platforms) 

Expected potential for 
Optimisation 

Small; the most processor intensive parts of the code are written in well 
optimised assembler.  

 
Expected effort to reach 
Optimisation potential 

1pm (optimisation on all platforms) 
We will spend some effort to verify that the code is well tuned and that 
there are no obvious problems. 

 
 

7.2.12 N3D 

Harald Klimach 
HLRS 
 
GENERAL  
Name of Code, Abbreviation N3D 
Application area(s) CFD 
Key numerical method(s) FFT, sparse linear solver on structured grids 
Origin (developers, institute) Ulrich Rist, IAG, University of Stuttgart 
Current developers IAG, University of Stuttgart 
Contact person  Tillman Friederich <friederich@iag.uni-stuttgart.de> 
License policy This code has access restrictions: permission for use must be 

obtained from Tillman Friederich <friederich@iag.uni-stuttgart.de>. 
Copyright IAG, University of Stuttgart 
Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE. No disclosure/No propagation of the source 
code. 

  
PRACE INFORMATION  
BCO: name, email, institute Harald Klimach <klimach@hlrs.de> 

HLRS 
Contributors (PRACE partners)  
Targeted hardware platforms as in BCO 
list 

MPP-Cray, ThinNode-x86, FatNode-Pwr6, Vector 

  
CODE STATISTICS  
Programming language(s) F90 
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Amount of source lines 16088 
Libraries EAS3, Netlib (FFT) 
Parallellization method MPI, NEC-MicroTasks 
Development platform(s) NEC-SX8 (a1.hww.de), Linux Workstations 
IO characteristics Read at start and write at end and on restart points (typically around 

every 200 iterations, can be specified in the parameter file) 
  
PORTING REPORT For a1.hww.de NEC-SX8 
Porting platform NEC-SX8 
Details porting platform Hww NEC-SX8 is described in Deliverable 6.1 
Overall porting result Successful 
General comments As this platform is the main development platform for this 

application, there are no issues. The only thing, that needs special 
care and may cause conflicts with libraries or instrumentation is the 
usage of the global -ew compiler flag for the sxf90 compiler, which 
enforces 4 byte integers and reals. 

Porting report on programming language 
constructs in general 

N3D code is written in Fortran 90 and can be compiled using the 
provided Makefiles.  

Porting report on libraries used Libraries need to be available in the double precision compiled 
version compatible to the application itself (compiled with compiler 
option -ew), but the required libraries are available for the SX8. 

Porting report on parallelisation method Special shared memory parallelisation for this platform available: 
NEC-MicroTasking. Just compiling with the systems Fortran 90 
compiler is sufficient to gain full parallelisation possibilities. 

Porting report on IO IO uses the EAS3 library, which needs to be compiled with a 
compatible dataformat (-ew option).  No further actions needed to 
be taken on IO. 

  
PORTING REPORT For bwGrid 
Porting platform x86-TN 
Details porting platform Harpertown-Cluster with 8 Cores and 16 GB RAM per node. Nodes 

connected over Infiniband interconnect. 
Overall porting result In progress. 
General comments Propably major adaptions necessary. 
Porting report on programming language 
constructs in general 

N3D code is written in F90 and is fairly portable, however the 
problemsize is hard coded during compile time into the executable, 
and compilers give up on this due to memory issues with static data 
as it seems. Also one of the files is not compilable by the Intel 
compiler, but is by the PGI. 

Porting report on libraries used Libraries need to be available in the double precision compiled 
version compatible to the application itself (compiled with compiler 
options -i8 -r8), but the required libraries are available for the 
platform. 

Porting report on parallelisation method Special shared memory parallelisation is used in N3D: NEC-
MicroTasking. This is not available on the x86 platform and needs 
to be replaced (with OpenMP). There is some OpenMP 
parallelisation in the code but it seems to be unrelated to the 
parallelisation used on the SX. It is unclear if the current MPI-
Implementation, which is relying on Microtasking in tandem, is 
suitable at all with that OpenMP parallelisation. 

Porting report on IO IO uses the EAS3 library, which needs to be compiled with a 
compatible dataformat (-i8 -r8 option).  No further actions needed to 
be taken on IO. 

  
PERFORMANCE RESULTS For hww NEC-SX8 
Execution platform Hww NEC-SX8 
Details execution platform See Deliverable 6.1 
Performance details Please find the detailed results in the attached results report 

N3D_SX8.xls. 
  



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 108

RECOMMENDATIONS For Petascaling and optimisation on NEC-SX8 (hww-NEC-SX8) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

Porting  N3D is very straightforward and the code is developed on 
that platform. It scales up to the complete available machine, so 
there is a possibility that it can reach Petascaling potential. 
It should be noticed the MPI communication is using mainly 
AllToAll routines. Reducing this part would be helpful to improve 
the scaling.   
 
Amount of pm’s: 1pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

Most of the computational time spent in the selected testcase is 
spent in the FFT calls to the Netlib implementation. Changing 
theses to more platform specific implementations should help to 
increase the sustained performance on the platform. 
Other parts of the application already gain a high sustained 
performance. 
 
Amount of pm’s: 1pm 

  
RECOMMENDATIONS For Petascaling and optimisation on x86-TN 
Expected potential for Petascaling low 
Expected effort to reach Petascaling 
potential 

High, the used algorithms do not allow distribution on more than a 
limited number of processes (depending on the dataset). 

Expected potential for Optimisation Medium, the code is not yet optimised for this platform, and there 
are features of the architecture that might be better exploited. 

Expected effort to reach Optimisation 
potential 

High: 
The algorithms are not designed to fit the needs of thin node x86 
platforms, it can be expected to be a lot of work and require some 
redesigns to gain optimal performance for this platform. 
 
Amount of pm's: 4pm 

 

7.2.13 AVBP 

Bertrand Cirou (also with Francois Rue’s effort) 
CINES 
 
GENERAL  
Name of Code, Abbreviation AVBP 
Application area(s) Turbulent Combustion + CFD 
Key numerical method(s) Large Eddy Simulation 
Origin (developers, institute)  
Current developers Gabriel Staffelbach, CERFACS (Toulouse, FRANCE) 
Contact person  gabriel.staffelbach@cerfacs.fr 
License policy This code has access restrictions: permission for use must be 

obtained from gabriel.staffelbach@cerfacs.fr 
Copyright CERFACS 
Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE. No disclosure/No propagation of the source 
code. 

  
PRACE INFORMATION  
BCO: name, email, institute Bertrand Cirou, cirou@cines.fr, CINES 
Contributors (PRACE partners)  
Targeted hardware platforms as in BCO 
list 

MPP-BG/P, Thin-Node x86, FatNode-Pwr6 

  
CODE STATISTICS  
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Programming language(s) F90 
Amount of source lines 239578 
Libraries Hdf5, szip, Metis 
Parallellization method MPI 
Development platform(s) SGI ORIGIN 3800, Power 5,  generic x86_64, Bull itanium, Cray  

XT3/XT4  
IO characteristics Write once every several time steps. The output frequency needs to 

be specified in the source code by assign a particular parameter.  
  
PORTING REPORT For jade.cines.fr 
Porting platform SGI ICE EX 8200 
Details porting platform Hardware: 

• Model: Cray XT4 
• Proc Type: Xeon Harpertown E5472 
• Clock rate:  3GHz  
• Total Cores: 12288 
• Cores Per Chip: 4 
• Cores Per Node: 8  
• Memory per core: 4GB. 
• Total Memory: 49152 Gbytes  
• Cache : primary 32-kB instruction cache and 
• 32-kB write-back data cache in each core and 12 MB (2 x 

6MB) Level 2 cache with Intel Advanced Smart Cache 
architecture. The processors’ Data Prefetch Logic 

• speculatively fetches data to the L2 cache before an L1 cache 
requests occurs, resulting in reduced effective bus latency and 
improved performance. The 1600 MHz Front Side Bus (FSB) is 
a quadpumped bus running off a 400 MHz system clock 
making 12.80 GBytes per second data transfer rates possible 

 
• Interconnect: two planes of infiniband 4x DDR with ConnectX 

Mellanox (hypercube network) 
• I/O: 20 I/O nodes connected to 640 TB of RAID6 with LSI 

controllers, disks running Lustre 
 
Software details: 
• OS version: SLES 10 patch 1+SGI ProPack 5SP5 
• Compiler versions: Intel 10.1.017 

Overall porting result Successful 
General comments It was very straightforward to port AVBP to jade.cines.fr 

 
Makefiles are provided for all architectures 
 

Porting report on programming language 
constructs in general 

AVBP code is written in FORTRAN 90 and can be compiled using 
the intel ifort compiler directly.  

Porting report on libraries used  
Porting report on parallelisation method Using Intel ifort compiler and no other special requirements for the 

MPI code porting. 
Porting report on IO  
 
PORTING REPORT For vargas.idris.fr 
Porting platform IBM Power6 
Details porting platform Hardware: 

− Model: IBM eServer SMP p575 IH POWER6 cluster  
− Proc Type: Power6 
− Clock rate: 4.7 GHz  
− Total Cores: 3584 
− Cores Per Chip: 2  
− Cores Per Node: 32  
− Memory per core: 8GB  



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 110

− Total Memory: 16500 Gbytes  
− Cache: Each core has a 64 Kbyte data cache and a 64 

Kbyte instruction cache. The level 2 cache is on-chip, 
shared between the cores. It is a 4 Mbyte combined data 
and instruction cache. The level 3 cache is 32 Mbytes. 

− Interconnect: Infiniband 4x DDR 
− I/O: 400 Tbytes of disk running GPFS.  
 

Software details: 
− OS version: AIX 5.3 
− Compiler versions: IBM XL Fortran compiler 11.1.0.3 

Overall porting result Successful 
General comments Porting AVBP to vargas.idris.fr is straightforward. Some minor 

issues on compiler flags usage had to be solved. 
 
 

Porting report on programming language 
constructs in general 

AVBP code is written in FORTRAN 90 and can be compiled using 
the IBM XL MPI Fortran compiler.  

Porting report on libraries used AVBP needed to be linked with a specific HDF5 library on 
vargas.idris.fr to avoid a GPL License problem with libz. 

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.  
Porting report on IO  
  
 
PERFORMANCE RESULTS For vargas.cines.fr 
Execution platform IBM eServer SMP p575 IH POWER6 cluster  
Details execution platform Same with the porting platform 
Performance details No results. Only one node was available at this time. 
 
PERFORMANCE RESULTS For jade.cines.fr 
Execution platform SGI ICE 8200 EX 
Details execution platform Same with the porting platform 
Performance details Optimal scalability on 4096 cores 

10 % below optimal on 8192 cores 
RECOMMENDATIONS For Petascaling and optimisation on x86_64 + infiniband 
Expected potential for Petascaling Good 
Expected effort to reach Petascaling 
potential 

Numerical stability on allreduce 
Amount of pm’s: 2pm 

Expected potential for Optimisation Low, AVBP code is already written with performances in mind 
Expected effort to reach Optimisation 
potential 

Amount of pm’s: 6pm 

  
 

7.2.14 HELIUM 

Xu Guo (also with the effort from Jon Hill and Andrew Sunderland 
EPCC 
 
GENERAL  
Name of Code, Abbreviation HELIUM 
Application area(s) Atomic Physics 
Key numerical method(s) Sparse linear algebra 
Origin (developers, institute) Jonathan Parker, Ken Taylor, Queen's University Belfast 
Current developers Queen's University Belfast 
Contact person  Ken Taylor <k.taylor@qub.ac.uk> 
License policy This code has access restrictions: permission for use must be 

obtained from Ken Taylor <k.taylor@qub.ac.uk>. 
Copyright Queen's University Belfast 
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Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE. No disclosure/No propagation of the source 
code. 

  
PRACE INFORMATION  
BCO: name, email, institute Xu Guo <xguo@epcc.ed.ac.uk> 

EPCC, The University of Edinburgh 
Contributors (PRACE partners) Jon Hill <jon@epcc.ed.ac.uk> 

EPCC, The University of Edinburgh 
 
Andrew Sunderland <a.g.sunderland@dl.ac.uk> 
STFC Daresbury 

Targeted hardware platforms as in BCO 
list 

MPP-BG, MPP-Cray, FatNode-Pwr6 

  
CODE STATISTICS  
Programming language(s) FORTRAN 90 
Amount of source lines 14569 (in one file) 
Libraries  
Parallellization method MPI 
Development platform(s) HPCx (IBM Power 5), SGI ORIGIN 3000, INTEL 64 bit 

PENTIUM machines , DELL (maybe on ITANIUMS) , Cray  
(AMD opterons) , Honeywell Bull , NEWTON, LINUX WORK 
STATIONS 

IO characteristics Write once every several time steps. The output frequency needs to 
be specified in the source code by assign a particular parameter.  

  
PORTING REPORT For Louhi @ CSC 
Porting platform Cray XT4 / XT5 (MPP-Cray) 
Details porting platform Hardware: 

• Model: Cray XT4/XT5 
• Proc Type: AMD Opteron Quad Core 
• Clock rate: 2.3 GHz  
• Cores Per Chip: 4  
• Cores Per Node: 4 cores for XT4 (i.e. 1 processor per 

node), 8 cores for XT5 (i.e. 2 processors per node) 
• Memory per core: mostly 1 GB/core, except one XT4 

cabinet having 2GB/core and one XT5 cabinet having 
2GB/core. 

• Interconnect: Cray SeaStar2+ 3D torus 
• I/O: Lustre 

 
Software details: 

• OS: UNICOS/lc 
• Compiler versions: PGI compilers, version 7.2.4; 

PathScale compilers, version 3.1;  
Overall porting result Successful 
General comments 1. Problem size and cores number 

The cores number and memory size required for the code execution 
are related to the parameters value in the source code, so not all the 
cores number or problem size can be selected for the benchmark 
tests. 
 
On Cray XT4 part, the problem size 770 and 1540 were 
benchmarked with (66, 105), 253, (406), 630, 990, 1540 cores. 
 
On Cray XT5 part, the problem size 770 and 1540 were 
benchmarked with (66, 105), 253, (406) cores. 
 
2. Compiling 
No Makefile is provided along with the source code. On the Cray 
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XT4/XT5 system, the HELIUM code can be compiled using either 
PGI FROTRAN90 compiler or  PathScale FORTRAN90 compiler, 
as below: 
 
With the module PrgEnv-pgi loaded:  
ftn -fast -Mipa=fast,inline helium.f90 -o helium 
 
With the module PrgEnv-pathscale loaded: 
ftn –O3 –OPT:Ofast helium.f90 -o helium 
 
The HELIUM source code can be compiled directly by the PGI 
compiler, but it should be noticed that using the PGI compiler may 
encounter a reallocation limit compiling problem if some 
parameters in the source code has a large value.  

 
If using the PathScale compiler, the current version code then needs 
some minor modifications because of the FORTRAN 90 syntax 
checking. Note that one module can not be used in both the routine 
and its subroutines which are defined inside the routine body. 
 
3. Memory limit 
HELIUM code consume memory a lot, so even with a successfully 
build, the execution may failed due to the memory size limitation. 

Porting report on programming language 
constructs in general 

HELIUM code is written in FORTRAN 90 and can be compiled 
using the Fortran 90 compiler.  

Porting report on libraries used  
Porting report on parallelisation method Using PGI f90 compiler or PathScale f90 compiler for the MPI 

code compiling. 
Porting report on IO The IO frequency was specified in the test cases’ source code. It 

will define how many times the output will be written out during 
the execution. In the benchmarks on the Cray XT4/XT5 prototype, 
the total time steps was defined as 80 and the output was written out 
once every 20 time steps. 

  
PORTING REPORT For HECToR  
Porting platform Cray XT4 (dual core MPP-Cray) 

(This platform is not a prototype, but related to the prototype Louhi 
Cray XT4/XT5.) 

Details porting platform Hardware: 
• Model: Cray XT4 (dual core) 
• Proc Type: AMD Opteron Dual Core  
• Clock rate: 2.8 GHz  
• Total Cores: 11328  
• Cores Per Chip: 2  
• Cores Per Node: 2  
• Memory per core: 3GB/core. 
• Total Memory: 33984 Gbytes  
• Cache: Separate level 1 caches for data and instructions of 

64 kB each. The L1 data cache is 2-way set associative. 
There is a combined data and instruction L2 cache of 1 
MB for each core, which is 16-way associative. The L1 
data and the L2 cache use 64 byte cache lines. The L2 
cache acts as a victim cache for the L1 cache. Data evicted 
from the L1 cache gets established on the L2 cache.  

• Interconnect: Cray SeaStar2 3D torus  
• I/O: 12 I/O nodes connected to 576 TB of RAID disks 

running Lustre 
 
Software details: 

• OS: UNICOS/lc  
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• Compiler versions: PGI compilers, version 7.1.4; 
PathScale compilers, version 3.0. 

Overall porting result Successful 
General comments See the comments above for Louhi Cray XT4/XT5.  

 
Problem size 1540 scaling with 66, 105, 253, 406, 630, 990, 1540 
cores are benchmarked on Hector Cray XT4 (dual core). Problem 
size 682 and 1364 scaling with 253 and 496 cores are also 
benchmarked for D6.2.2. 

Porting report on programming language 
constructs in general 

HELIUM code is written in FORTRAN 90 and can be compiled 
using the Fortran 90 compiler. 

Porting report on libraries used  
Porting report on parallelisation method Using PGI f90 compiler or PathScale f90 compiler for the MPI 

code compiling. 
Porting report on IO The IO frenquency was specified in the test cases’ source code: for 

the benchmark tests with 40 time steps, the output was written out 
once every 10 time steps; for the benchmark tests with 80 time 
steps, the output was written out once every 20 time steps. 

  
PORTING REPORT For Huygens @ SARA 
Porting platform IBM Power6 (FatNode-Pwr6) 
Details porting platform Hardware: 

• Model: IBM eServer pSeries 575  
• Proc Type: Power 6 
• Clock rate: 4.7 GHz  
• Total Cores: 3328 
• Cores Per Chip: 2  
• Cores Per Node: 32  
• Total Memory: 15.25 TByte 
• Cache: L1 (per core) – 128KB; L2 (per core, semi shared: 

the cache is assigned a specific core, but the other has a 
fast access to it) – 4MB; L3 (per processor) – 32MB; 

• Interconnect: The nodes are interconnected with an 
Infiniband network providing an MPI bandwidth of 160 
Gbit/sec between neighboring nodes. 

 
Software details: 

• OS: SuSE Linux SLES10 SP2 
• Compiler versions: IBM XL Fortran compiler version 12.1 

Overall porting result Successful 
General comments 1. Problem size and cores numbers 

Problem size 1540 and cores numbers 253, 406, 630, 990, 1540 are 
selected for the benchmarking for the prototype Huygens Pwr6. 
 
2. Compiling 
The code was compiled by the command line as below: 
mpfort -qfree=f90 –O3 -qessl helium.f90 -o helium 
 
To compile the Fortran 90 code on Huygens Pwr6, the flag -
qfree=f90 must be used for the mpfort. 
 
The Flag –qessl is not necessary for the compiling, but could 
improve the execution performance as the ESSL will replace the 
Lapack for the matrix calculation. 
 
3. Running 
Not all the cores number can be selected for the benchmarking, so 
there is a big possibility of not fully allocating tasks on nodes. 
Therefore in the job script, the total tasks number and total node 
number should be required separately, for example: 
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  #@ total_tasks = 253 
  #@ node = 8 
Otherwise the total tasks number will be set as the node number 
multiply by 32 by default. 

Porting report on programming language 
constructs in general 

HELIUM code is written in FORTRAN 90 and can be compiled 
using the IBM XL MPI Fortran compiler.  

Porting report on libraries used HELIUM can be linked with the ESSL scientific routine library on 
Huygens which will make a performance improvement. 

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.  
Porting report on IO The IO frenquency was specified in the test cases’ source code: for 

the benchmark tests on Huygens the total time steps was set as 80 
and the output was written out once every 20 time steps. 

  
PORTING REPORT For HPCx  
Porting platform IBM Power5 (Fatnode-Pwr5) 

(This platform is not a prototype, but related to the prototype 
Huygens Pwr6) 

Details porting platform Hardware: 
• Model: IBM eServer 575 cluster  
• Proc Type: Power5  
• Clock rate: 1.5 GHz  
• Total Cores: 2560  
• Cores Per Chip: 2  
• Cores Per Node: 16  
• Memory per core: 2GB 
• Total Memory: 5120 Gbytes  
• Cache: Each core has a 32 Kbyte data cache and a 64 

Kbyte instruction cache. The level 1 data cache has 128-
byte lines, is 2-way set associative and write-through. The 
level 2 cache is on-chip, shared between the cores. It is a 
1.9 Mbyte combined data and instruction cache, with 128 
byte lines and is 10-way set associative and write-back. 
The level 3 cache is 36 Mbytes, off-chip and is shared 
between the 2 cores. It has 256 byte lines, and is 12-way 
set associative and write-back.  

• Interconnect: IBM High Performance Switch (HPS). Each 
eServer node has two network adapters and there are two 
links per adapter, making a total of four links between 
each of the frames and the switch network.  

• I/O: 72 Tbytes of disk running GPFS. Connected to 
computes nodes via HPS 

 
Software details: 

• OS: AIX 5.3 
• Compiler versions: IBM XL Fortran compiler 

10.01.0000.0007 
Overall porting result Successful 
General comments 1. Problem size and cores number 

Problem size 682 and 1364 scaling with 253 and 496 cores were 
benchmarked for D6.2.2. 
 
2. Compiling 
The compiling command is suggested inside the HELIUM source 
code as below:  
mpxlf90_r -qlanglvl=extended -qfree=f90 -q64 -qrealsize=8 -O4 -
qarch=pwr5 -qtune=pwr5  
-qessl -qsuffix=f=f90 helium.f90 -o helium 
 
Note that never use –O5.  
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3. Running 
On HPCx, when running the helium, the max stack limit is 400MB. 
 
When the problem size is very large, the default memory size per 
core (i.e. 2GB) may not be enough and therefore cause the job 
running failed. Specify less number of tasks per node by adding the 
following line in the job script:  
#@ tasks_per_node = <n> 
where <n> is the tasks number assigned to each node that is less 
than 16, e.g. 10. In that case, the total cores number used is the 
same, but the memory size per core is increased. 

Porting report on programming language 
constructs in general 

HELIUM code is written in FORTRAN 90 and can be compiled 
using the IBM XL MPI Fortran compiler.  

Porting report on libraries used HELIUM can be linked with the ESSL scientific routine library on 
HPCx. 

Porting report on parallelisation method Using IBM XL Fortran MPI compiler.  
Porting report on IO The IO frenquency was specified in the test cases’ source code: for 

the benchmark tests with 40 time steps, the output was writen out 
once every 10 time steps; for the benchmark tests with 80 time 
steps, the output was writen out once every 20 time steps. 

  
PORTING REPORT For BlueGene/P @ STFC  
Porting platform IBM BlueGene/P (MPP-BG/P) 

(This platform is not a prototype, but related to the prototype 
JeGene BlueGene/P.) 

Details porting platform Hardware details:  

• Model: IBM Blue Gene / P 
• Proc Type: PowerPC 450 850 MHz 

o double precision, dual pipe floating point 
acceleration on each core (3.4 GFlops) 

• Clock rate: 850 MHz 
• Total Cores: 4096  
• Cores Per Chip: 4  
• Chips per Compute Card (Node): 1 
•  Memory per core: 512MB.  
• Total Memory: 2048 Gbytes  
• Caches: 

o Private 32 KB per core L1 cache  
o Private 14 stream prefetching per core L2 cache  
o Shared 8MB L3 cache   

• Interconnect: Proprietary 3D Torus 
• 32 I/O nodes ~4 Tbytes disk 

 
Software Details 

• OS Version: Linux 2.6.16.46-0.12-ppc64  
• Fortran Compilers:  

o  IBM XLF v11.1 (mpixlf90) 
o GNU 4.1.2 

• C Compilers:  
o IBM XLC v9.0  
o GNU GCC v4.1.2 

Libraries: Essl, Blas 

Overall porting result Successful 

General comments Porting to BG/P was carried out by cross-compilation. 
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Basic Compilation flags used are 
-qlanglvl=extended -qfree=f90    -qrealsize=8 -qsuffix=f=f90      
–qessl 
 
For optimised performance add the options 
-O3 -qarch=450d -qtune=450 
 
 Notes 
1. Compiling with -qessl gives improved performance over linking 
explicitly to the Essl library  
2. Loadleveler batch jobs require the setting 
#@ stack_limit = 200MB 
 
Helium benchmarks with large local memory overheads may fail in 
VN mode, due to lack of available memory per core. 

Porting report on programming language 
constructs in general 

The HELIUM code is written in FORTRAN 90 and can be 
compiled using the IBM XL MPI Fortran compiler (with  
-qlanglvl=extended). 

Porting report on libraries used Engineering and Scientific Subroutine Library (ESSL) (see note in 
General comments above) 

Porting report on parallelisation method The code uses MPI. The mpixlf90 compiler configuration script 
automatically links in the appropriate mpi libraries and header files. 

Porting report on IO The IO/time step frequency can be specified in the test cases’ source 
code. For all benchmark tests, the frequency was set to write output 
every 20 time steps for a total of 80 time steps. 

  
PORTING REPORT For Hector X2  
Porting platform Cray X2 (Vector) 

(This platform is not a prototype, but related to the prototype Cray 
XT4 and vector NEC SX9.) 

Details porting platform Hardware: 
• Model: Cray X2 (vector) 
• Proc Type: X2 vector processors  
• Clock rate: 1.6GHz 
• Proc per node: 4 
• Total cores: 112 
• Vector pipes per processing unit: 8  
• Memory per processing unit: 7.5 GB/processing unit 
• Interconnect: Black Widow interconnection network  

 
Software details: 

• Compiler version: Cray compilers 6.0.0.5 
Overall porting result Successfully 
General comments 1. Problem size and cores number 

The problem size 308, 770 and 1540 were benchmarked with (28), 
66, 105 cores. 
 
2. Compiling 
Only the Cray compiler can be used for the compiling on X2: 
 
To use modules for X2: 
module purge 
module use /opt/ctl/modulefiles 
module add PrgEnv-x2 
module add pbs 
 
With the module PrgEnv-x2 loaded:  
ftn –O 3 helium.f90 -o helium 
 
The current version code then needs some minor modifications 
because of the FORTRAN 90 syntax checking. Note that one 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 117

module can not be used in both the routine and its subroutines 
which are defined inside the routine body. 
 
3. Running 
To run the job using X2, the job script must contains: 
#PBS -q vector 
#PBS -A z01-X2 
And add -a x2 in the aprun command. 

Porting report on programming language 
constructs in general 

HELIUM code is written in FORTRAN 90 and can be compiled 
using the Fortran 90 compiler. 

Porting report on libraries used  
Porting report on parallelisation method Using Cray f90 compiler for the MPI code compiling. 
Porting report on IO The IO frequency was specified in the test cases’ source code. On 

X2, the total time step was set as 80 and the output was written out 
once every 20 time steps. 

  
PERFORMANCE RESULTS For Louhi @ CSC 
Execution platform Cray XT4/XT5 
Details execution platform Same with the porting platform 
Performance details On the Cray XT4 part, HELIUM scales well up to 1540 cores.  

 
1GB/core memory is enough for most of the running with problem 
size 770 and 1540. For the running requires more memory size per 
core, use the cores with 2GB/core memory instead but will have a 
very poor performance. Some executions were not available due to 
that. 
 
The performance on XT4 and XT5 are similar. Using the PGI 
compiler and PathScale compiler (with the general optimisation 
flags used, see above of porting) have roughly similar performance. 
  
Please find the detailed results data in the attached results report 
helium_cray.xls. 

  
PERFORMANCE RESULTS For HECToR XT4 
Execution platform Cray XT4 (dual core) 
Details execution platform Same with the porting platform 
Performance details Scale well up to 1540 cores. Performance results are similar to the 

results on Louhi Cray XT4. 
 
For the running requires more memory size per core, place 1 task 
per core rather than fully allocation on the node, but performance 
was very poor. 
 
Using PathScale compiler can have a better performance compared 
with using PGI compiler (with the general optimisation flags used, 
see above of porting). The final results reported are those using 
PathScale compiler. 
 
Please find the detailed results data in the attached results report 
helium_hector.xls and helium_cray.xls. 

  
PERFORMANCE RESULTS For Huygens @ SARA 
Execution platform IBM Power6 
Details execution platform Same with the porting platform 
Performance details Code scale well up to 1540 cores and can have a roughly 85% 

efficiency with 1540 cores (related to 630 cores). 
 
Link with the ESSL lib will improve the code performance. 
 
Please find the detailed results data in the attached results report 



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 118

helium_pwr6.xls.  
  
PERFORMANCE RESULTS For HPCx 
Execution platform IBM Power5 
Details execution platform Same with the porting platform 
Performance details Please refer to D6.2.2 and find the detailed results data in the 

attached results report helium_hpcx.xls. 
  
PERFORMANCE RESULTS For BG/P @ STFC 
Execution platform IBM BG/P 
Details execution platform Same with the porting platform 
Performance details Please find the detailed results in the attached results report 

helium_bgp.xls. 
  
PERFORMANCE RESULTS For Hector X2 
Execution platform Cray X2 (vector) 
Details execution platform Same with the porting platform 
Performance details Code scale up to 105. 

 
Performance is OK but not as good as expected. The expected 
results should be around 5 times faster than the Hector XT4 but 
actually is only around 3 times.  
 
Please find the detailed results data in the attached results report 
helium_cray.xls. 

  
RECOMMENDATIONS For Petascaling and optimisation on Cray XT4/XT5 (Louhi) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

Porting HELIUM is straightforward and the code scale well to 1540 
cores on Louhi, so there is a possibility that it can reach Petascaling 
potential. 
 
However, the memory size per core could be a big bottleneck and 
therefore need to select suitable parameters values for a required 
problem size and cores number.  
 
Currently Louhi seems not allow user to half populate the node or 
quarter populate the node. If this is allowed by the system, it may 
be helpful for the scaling. 
 
Amount of pm’s: 4pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

There are a number of subroutines having long loops that can be 
further optimised. 
 
Further compiler optimisation, i.e. using special flags or linking 
with special libs, may improve the performance. 
 
Some performance profiling may help to find out the further 
bottleneck or potential problem for scaling. 
  
Amount of pm’s: 4~6pm 

  
RECOMMENDATIONS For Petascaling and optimisation on Cray XT4 (HECToR) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

The code scale well to 1540 cores on HECToR, so there is a 
possibility that it can reach Petascaling potential.  
 
See other more comments for Cray XT4/XT5 (Louhi). 
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It should be noticed from the MPI profiling results (from the 
D6.2.2) that some synchronisation time is quite expensive. 
Reducing this part will be helpful for the scaling improvement.   
 
Amount of pm’s: 4pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

There are a number of subroutines having long loops. For example, 
the most expensive user routine Incr_Result_w_1_Over_R12_terms 
of module Local_Ham_Matrix is mainly a loop. These routines can 
be further optimised. 
 
Further compiler optimisation, i.e. using special flags or linking 
with special libs, may improve the performance. 
 
Amount of pm’s: 6pm 

  
RECOMMENDATIONS For Petascaling and optimisation on IBM Power6 (Huygens @ 

SARA) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

HELIUM is easy porting and scales well up to 1540 cores. The 
parallel performance scaling speed tailed off with the increasing 
cores number but is acceptable when cores number up to 1540, so 
there is a possibility that it can reach Petascaling potential. 
 
Amount of pm’s: 3pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

Using proper compiler flags to build the HELIUM code for 
optimisations or linking with selected libraries could be quite useful 
for improving the scaling and performance, but need more 
investigation for the compilers used for each platform. 
 
Do some performance profiling, e.g. MPI Trace and user routine 
execution time profiling, to help find out the bottleneck for the 
scaling performance. Then some focused effort will be required for 
those bottlenecks. 
 
Amount of pm’s: 4~6pm.  

  
RECOMMENDATIONS For Petascaling and optimisation on IBM Power5 (HPCx) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

MPI_Barrier appears to be a main cause of slow performance and 
occupies as much time as some of the heavily used subroutines. It 
may be possible to reduce these calls. The code currently scales 
well to 496 processors and with a reduction of MPI_Barrier calls, 
this code improve further.  
 
It should be noticed that when using 496 cores for the problem size 
1364 test case benchmarking, the pure running (without any 
profiling) of HELIUM succeed, but the MPI profiling results had no 
output. Not clear about the reason, but can not avoid a potential 
problem of running HELIUM using large number cores for large 
problem size. This should be investigated more. 
 
Amount of pm’s: 4pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

The majority of time is spent in 4-6 routines, so a focused effort is 
possible.  
 
Amount of pm’s: 6pm.  

  
RECOMMENDATIONS For Petascaling and optimisation on IBM BG/P (BlueGene @ 
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STFC) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

Performance scales well up to 990 cores so the code has Petascaling 
potential. 
 
Profiling Tools are not currently available on STFC’s BG/P. Further 
insight will be gained from runs on Jugene BG/P, were detailed 
performance analysis tools can be applied. 
 
Amount of pm’s: 3pm 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

Helium outputs large amounts of temporary data and hardware 
parallel I/O performance on BG/P is relatively limited. There may 
be software changes that can be made to improve this. 
 
Profiling Tools are not currently available on STFC’s BG/P. Further 
insight will be gained from runs on the Jugene BG/P, where 
detailed performance analysis tools can be applied. 
 
Amount of pm’s: 3pm 

  
RECOMMENDATIONS For Petascaling and optimisation on Cray X2 (Hector) 
Expected potential for Petascaling Unknown 
Expected effort to reach Petascaling 
potential 

Only 112 cores are available on the current Hector X2, so it still 
unknown whether X2 has the petascaling potential. Benchmarking 
on more cores is necessary. 
 
Amount of pm’s: unknown 

Expected potential for Optimisation Medium 
Expected effort to reach Optimisation 
potential 

The current performance is not quite ideal. Can using profiling tool, 
e.g. CrayPat, to find out the bottleneck. 
 
Amount of pm’s: 4~6pm 

 
 

7.2.15 TRIPOLI4 

Jean-Christophe Trama 
CEA 
 
GENERAL  
Name of Code, Abbreviation TRIPOLI® 
Application area(s) Nuclear energy : core physics, radiation protection, criticality 
Key numerical method(s) Monte Carlo 
Origin (developers, institute) CEA Saclay SERMA R&D unit 
Current developers CEA Saclay SERMA R&D unit 
Contact person  Jean-Christophe Trama, jean-christophe.trama@cea.fr 
License policy code available from the NEA databank (www.nea.fr) and RSICC 

(www-rsicc.ornl.gov)  
TRIPOLI-4 version 3 is available for all use 
TRIPOLI-4 version 4 is available for R&D and teaching only 
 

Copyright TRIPOLI® is a registered trade mark of CEA 
Usage rules (within PRACE, outside 
PRACE, …) 

cf NEA and RSICC licences, the code may also be used under 
specific licences granted by CEA 

  
PRACE INFORMATION  
BCO: name, email, institute Jean-Christophe Trama, jean-christophe.trama@cea.fr, CEA Saclay 
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Contributors (PRACE partners) GENCI  
Targeted hardware platforms as in BCO 
list 

Thin nodes, BLG 

  
CODE STATISTICS  
Programming language(s) C++ 
Amount of source lines 400000 
Libraries no external lib.  
Parallellization method native (TCP/IP sockets) 
Development platform(s) Linux, Unix (DEC/OSF1, SUN/SOLARIS, IBM/AIX) 
IO characteristics write once every several time steps. The output frequency needs to 

be specified in the input deck.  
  
PORTING REPORT For CEA CCRT Platine 
Porting platform BULL Novascale 3045 (Thin node) 
Details porting platform Hardware details: 

• 932 computational nodes – 26 I/O nodes 
• Each node; ItaniumII, Montecito (double core – 1.6Ghz) – 

24 Go RAM 
• Interconnect: Infiniband 
• Storage: 420 TB- Lustre 

Software details  
• BULL Advanced Server 4  
• Intel 10.1 – g++ v4 

Overall porting result Successful 
General comments A production run of TRIPOLI has been successfully launched on 

CEA CCRT Platine. A whole nuclear reactor core has been 
calculated on 1000 processors with a very good scaling factor (up to 
80 %) with a reasonable amount of effort.  

Porting report on programming language 
constructs in general 

g++ compiler is okay, first test show good results for the intel 
native compiler.  

Porting report on libraries used no external lib.  
Porting report on parallelisation method embarrassingly parallel ! (Monte Carlo method, sets of independent 

particules) 
Porting report on IO standard 
  
PERFORMANCE RESULTS CEA CCRT Platine 
Execution platform same as porting platform 
Details execution platform  
Performance details The input set is describing a whole nuclear core, 1000 cores, linear 

speed up up to 1000 core, 80 % efficiency.  
  
RECOMMENDATIONS  
Expected potential for Petascaling high 
Expected effort to reach Petascaling 
potential 

around 6 pm to modify the information exchange architecture to run 
more than 1000 proc.  
Specific effort may be needed on IO for very large number of 
results.  

Expected potential for Optimisation The code is already very optimised for parallel operation (direct 
parallelisation of sets of independent particles, intrinsic to the 
Monte Carlo method) 

Expected effort to reach Optimisation 
potential 

low.  

 

7.2.16 PEPC 

Lukas Arnold 
FZJ 
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GENERAL    
Name of Code, Abbreviation Pretty Efficient Parallel Coulomb solver, PEPC 
Application area(s) Plasma physics 
Key numerical method(s) Tree-code for rapid computation of long-range Coulomb forces in 

N-body particle systems 
Origin (developers, institute) Paul Gibbon, FZJ 
Current developers Paul Gibbon 
Contactperson  Paul Gibbon  
License policy freely available 
Copyright Forschungszentrum Jülich GmbH 
Usage rules (within PRACE, outside 
PRACE, …) 

to be clarified 

    
PRACE INFORMATION   
BCO: name, email, institute Lukas Arnold 

l.arnold@fz-juelich.de 
FZJ 

Contributors (PRACE partners) none 
Targeted hardware platforms as in BCO 
list 

MPP-BG/P, MPP-Cray, FatNode-Pwr6 

    
CODE STATISTICS   
Programming language(s) Fortran 90 
Amount of source lines 24500 
Libraries none 
Parallellization method MPI 
Development platform(s) PWR6-JuMP 
IO characteristics read at start, the output frequency can be choosen in the parameter 

file (run.h); no output is performed in the benchmarks included in 
this report 

    
PORTING REPORT For JuMP(FZJ) 
Porting platform FatNode-Pwr6 
Details porting platform Hardware: 

−       14 SMP nodes with 32 SMT processors each (total 448)  

−       Processortype: Power6 4.7 GHz  

−       Overall peak performance: 8.4 Teraflops  

−       Linpack: 5.4 Teraflops  

−       Main memory: 14 x 128 Gbytes (aggregate 1.8 TB)  

−       InfiniBand (MPI communication)  

−       10 Gigabit Ethernet (I/O)  

−       1 Gigabit Ethernet (cluster management)  

−       Disk capacity for system data: 4.5 TBytes  
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−       Disk capacity for user data: 1.0 PBytes  

−       Migration storage for user data: 1.5 PBytes  

  

Software: 

−       Operating system: AIX 5.3  

−       Operating mode: interactiv and batch  

−       Compiler versions: IBM AIX compiler (xlf 
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1) 

Overall porting result Successful 
General comments Porting PEPC to JuMP is basic, because JuMP is a development 

platform. JuBE is used for the benchmarking. 

  

The platform dependent settings need to be set in makefile.defs, 
which result in the following compilation command on JuMP: 

  

mpxlf90_r -q64 -qtune=pwr6 -qarch=pwr6 -O3 

  
This settings are set by JuBE. 
  
The main makefile calls the makefiles in the directories lpepcsrc 
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed. 
  
The problem size, i.e. the number of particles, can be set in the 
configuration file run.h, which needs to be in the executing 
directory. This nuber is set by JuBE. 
  
Nothing in the PEPC code/config needs to be set to choose the 
nuber of MPI processes. PEPC distributes the computation on all 
available processes automatically. 

Porting report on programming 
language constructs in general 

PEPC compiles directly with the IBM AIX fortran compiler. 

Porting report on libraries used none used 
Porting report on parallelization method Using AIX MPI compiler wrapper. 
Porting report on IO The output is switched off (idump parameter in run.h). 
    
PORTING REPORT huygens(SARA) 
Porting platform FatNode-Pwr6 
Details porting platform Hardware: 

−       104 SMP nodes with 32 SMT processors each (total 3328) 

−       Processortype: Power6 4.7 GHz  

−       Overall peak performance: 60 Teraflops  

−       Main memory: 83 x 128 Gbytes + 18 x 256 Gbytes 
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(aggregate 15.2 TB)  

−       InfiniBand (MPI communication)  

−       Disk capacity: 700 TBytes  

  

Software: 

−       Operating system: Linux (SuSE) 

−       Operating mode: interactiv and batch  

−       Compiler versions: IBM AIX compiler (xlf 11.1; xlc 9.0) 
Overall porting result Successful 
General comments Porting PEPC to huygens is basic, because it is very similar to 

JuMP. 

  

The platform dependent settings need to be set in makefile.defs, 
which result in the following compilation command on JuMP: 

  

mpfort -qfree=f90 -q64 -qtune=pwr6 -
qarch=pwr6 -O3 

  
This settings are set by JuBE. 
  
The main makefile calls the makefiles in the directories lpepcsrc 
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed. 
  
The problem size, i.e. the number of particles, can be set in the 
configuration file run.h, which needs to be in the executing 
directory. This nuber is set by JuBE. 
  
Nothing in the PEPC code/config needs to be set to choose the 
nuber of MPI processes. PEPC distributes the computation on all 
available processes automatically. 

Porting report on programming 
language constructs in general 

PEPC compiles directly with the IBM AIX fortran compiler. 

Porting report on libraries used none used 
Porting report on parallelization method Using AIX MPI compiler wrapper. 
Porting report on IO The output is switched off (idump parameter in run.h). 
    
PORTING REPORT For JUGENE 
Porting platform MPP-BG/P 
Details porting platform Hardware: 

−       16384 compute nodes with 4-way SMT processors (total 
65536 processors)  

−       Processortype: PowerPC 450 850 MHz  



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 125

−       Overall peak performance: 223 Teraflops  

−       Linpack: 167 Teraflops  

−       Main memory: 2 Gbytes per node (aggregate 32 TB)  

−       Three-dimensonal torus (compute nodes) 

−       Global tree / Collective network (compute nodes, I/O 
nodes) 

−       10 Gigabit Ethernet (I/O)   

−       Disk capacity for system data: 4.5 TBytes  

−       Disk capacity for user data: 1.0 PBytes  

−       Migration storage for user data: 1.5 PBytes  

  

Software: 

−       Operating system: CNL  

−       Operating mode: interactive and batch  

−       Compiler versions: IBM AIX compiler (xlf 
9.1/10.1/11.1/12.1; xlc 7.0/8.0/9.0/10.1) 

Overall porting result successful  
General comments All settings are set by PABS. 
Porting report on programming 
language constructs in general 

  

Porting report on libraries used   
Porting report on parallelization method   
Porting report on IO   
    
PORTING REPORT For louhi 
Porting platform MPP-Cray 
Details porting platform Hardware: 

−       CPU: 2.3 GHz AMD Opteron 64 bit quad-core processors  

−       Number of nodes: 1012 computing nodes  

−       Memory: 1 GB or 2 GB memory per core.  

−       Interconnect: Seastar 2+  

−       Set up physically in 11 cabinets.  

−       Architechture: MPP  

−       I/O subsystem: Lustre, 70 TB  

Software: 
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−       Operating system: CNL 

−       Operating mode: interactiv and batch  

−       Compiler versions: PGI compiler version 7.2.4 

  
Overall porting result successful 
General comments Porting PEPC to louhi is streight forward. 

  

The platform dependent settings need to be set in makefile.defs, 
which result in the following compilation command on louhi: 

  

ftn -O3 

  
The architecture options are set by default; this settings are set by 
JuBE. 
  
The main makefile calls the makefiles in the directories lpepcsrc 
and pepc-b. The compiled objects and a small wrapper (JuBE-
PEPC.c) are linked together, no additional libraries are needed. 
  
The problem size, i.e. the number of particles, can be set in the 
configuration file run.h, which needs to be in the executing 
directory. This nuber is set by JuBE. 
  

Nothing in the PEPC code/config needs to be set to choose the 
nuber of MPI processes. PEPC distributes the computation on all 
available processes automatically. 

Porting report on programming 
language constructs in general 

PEPC compiles directly with the PGI fortran compiler. 

Porting report on libraries used none used 
Porting report on parallelization method Using PGI MPI compiler wrapper. 
Porting report on IO The output is switched off (idump parameter in run.h). 
    
PERFORMANCE RESULTS For JuMP 
Execution platform FatNode-Pwr6 
Details execution platform Same with the porting platform 
Performance details   
    
PERFORMANCE RESULTS For huygens 
Execution platform FatNode-Pwr6 
Details execution platform Same with the porting platform 
Performance details   
    
PERFORMANCE RESULTS For platform JUGENE 
Execution platform MPP-BG/P 
Details execution platform Same with the porting platform 
Performance details   
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PERFORMANCE RESULTS For platform louhi 
Execution platform MPP-Cray 
Details execution platform Same with the porting platform 
Performance details   
    
RECOMMENDATIONS For Petascaling and optimization on all platforms 
Expected potential for Petascaling High (all platforms) 
Expected effort to reach Petascaling 
potential 

the scalability of PEPC is in the moment limited to up to 4k - 8k 
processes due to the used memory structure, i.e. the memory 
requirements grow with the number of processes. The developer 
are working on this urgent problem, whereas the developement 
time scales are large. 

0PM 
Expected potential for Optimization Medium 
Expected effort to reach Optimization 
potential 

0PM 

 
 

7.2.17 GPAW 

Jussi Enkovaara 
CSC Finland 
 
GENERAL  
Name of Code, Abbreviation GPAW 
Application area(s) Nanoscience, materials science 
Key numerical method(s) finite differences, sparse solvers 
Origin (developers, institute) J. J. Mortensen, Technical Univ. Denmark 
Current developers Several developers in CSC and in universities in Finland, Denmark, 

Sweden and Germany. 
Contactperson  J. J. Mortensen, Technical Univ. Denmark 
License policy GPL 
Copyright GPL 
Usage rules (within PRACE, outside 
PRACE, …) 

 

  
PRACE INFORMATION  
BCO: name, email, institute Jussi Enkovaara, jussi.enkovaara@csc.fi, CSC 
Contributors (PRACE partners) CINECA 
Targeted hardware platforms as in BCO 
list 

MPP-BG, MPP-Cray, FatNode-Pwr6 

  
CODE STATISTICS  
Programming language(s) Python, C 
Amount of source lines 42000 + 10000 
Libraries LAPACK, BLAS 
Parallellization method MPI 
Development platform(s)  
IO characteristics typically write at end… 
  
PORTING REPORT For platform #1 
Porting platform MPP-Cray 
Details porting platform Cray XT4 2.1 GHz Quad-core opteron, PGI 7.2.2, ACML 4.1.0, xt-

MPT 3.0.1 
Overall porting result Successful 
General comments  



D6.3.1  Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark 

PRACE - RI-211528  24/11/2008 128

Porting report on programming language 
constructs in general 

Static build of python required 

Porting report on libraries used  
Porting report on parallelisation method  
Porting report on IO  
PERFORMANCE RESULTS For platform #1  
Execution platform MPP-Cray 
Details execution platform  
Performance details See https://trac.csc.fi/pracewp6-gpaw/wiki/Deliverable_6.2.2%3A 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #1 
Expected potential for Petascaling medium/high 
Expected effort to reach Petascaling 
potential 

small 

Expected potential for Optimisation medium 
Expected effort to reach Optimisation 
potential 

medium 

  
PORTING REPORT For platform #2 
Porting platform MPP-BG 
Details porting platform Blue Gene/P 32-bit PowerPC 450 core 850 MHz 
Overall porting result Succesfull 
General comments There were some small problems due to features/bugs in 

BlueGene’s math-library. For example, with certain input the pow 
function took huge amount of time, and these problems required 
workarounds in the source code. Cross-compilation in Blue Gene 
was challenging especially as by accident it was possible to use 
wrong libraries (i.e. libraries not build for the compute nodes) 
without clear problems. With certain input code behaved correctly, 
while other input resulted in undefined behavior. 

Porting report on programming language 
constructs in general 

Python itself was not a major problem after all, but problems were 
related just to C-code and C-libraries 

Porting report on libraries used  
Porting report on parallelisation method  
Porting report on IO  
  
PERFORMANCE RESULTS For platform #2  
Execution platform MPP-BG 
Details execution platform  
Performance details Only initial tests have been run 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #2 
Expected potential for Petascaling  
Expected effort to reach Petascaling 
potential 

 

Expected potential for Optimisation  
Expected effort to reach Optimisation 
potential 

 

  
PORTING REPORT For platform #3 
Porting platform FatNode-Pwr6 
Details porting platform IBM dual-core Power6, 4.7 GHz  
Overall porting result Successful 
General comments  
Porting report on programming language 
constructs in general 

 

Porting report on libraries used  
Porting report on parallelisation method  
Porting report on IO  
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PERFORMANCE RESULTS For platform #3 
Execution platform FatNode-Pwr6 
Details execution platform  
Performance details Only initial tests have been run 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #3 
Expected potential for Petascaling  
Expected effort to reach Petascaling 
potential 

 

Expected potential for Optimisation  
Expected effort to reach Optimisation 
potential 

 

 

7.2.18 ALYA 

Guillaume Houzeaux and Raúl de la Cruz 
BSC-CNS 
 
GENERAL  

Name of Code, Abbreviation ALYA 

Application area(s) Computational Mechanics 

Key numerical method(s) Sparse linear algebra, Unstructured mesh 

Origin (developers, institute) G. Houzeaux, M. Vázquez, BSC-CNS (Spain) 

Current developers G. Houzeaux, M. Vázquez 

Contact person  <guillaume.houzeaux@bsc.es>, <mariano.vazquez@bsc.es>, 
<josem.cela@bsc.es> 

License policy This code has access restrictions: permission for use must be obtained 
from Contact persons. 

Copyright BSC-CNS 

Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE. No disclosure/No propagation of the source 
code. 

  

PRACE INFORMATION  

BCO: name, email, institute Raúl de la Cruz <raul.delacruz@bsc.es> 
BSC-CNS, (Spain) 

Contributors (PRACE partners)  

Targeted hardware platforms as in BCO 
list 

Cell 

  

CODE STATISTICS  

Programming language(s) F90 

Amount of source lines 200000 

Libraries Metis 

Parallellization method MPI/OpenMP 
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Development platform(s) Marenostrum (Power PC970), Windows, BlueGene L/P, Linux 
clusters 

IO characteristics Write once every several time steps. The output frequency needs to be 
specified in the source code by assign a particular parameter.  

  

PORTING REPORT CELL 

Porting platform Maricel 

Details porting platform Hardware: 
• Model: IBM Cell/B.E. cluster 
• Proc Type: Cell/B.E.  
• Clock rate: 3.2 GHz  
• Total Cores: 72  
• Cores Per Chip: 1 PPU + 8 SPU's 
• Cores Per Node: 2 PPU's + 2x8 SPU's  
• Memory per core: 4 GB 
• Total Memory: 4 GB  
• Cache: L1 (32 KB)/L2 (2 MB) associated to PPU. Local store 

associated to SPU'S. 
• Interconnect: InfiniBand 
• I/O: Hypernode 
 
Software details: 
• OS version: Redhat 5.2, Fedora 7 
• Compiler versions: ppu-gcc, spu-gcc (SDK3.1) 

Overall porting result Basic porting: code is running on PPE. Porting to one SPE almost 
done. Full porting (use all SPE's) is in progress.   

General comments Missing wrappers for some libraries of the f90 compiler 

Porting report on programming language 
constructs in general 

 

Porting report on libraries used METIS: no specific problem 

Porting report on parallelisation method Porting has been carried out on only one node and one SPE’s 
Vectorization still to be done. Full prototype will be available in 
december. 

Porting report on IO  

  

PERFORMANCE RESULTS  

Execution platform  

Details execution platform  

Performance details  

  

RECOMMENDATIONS  

Expected potential for Petascaling Medium to high 
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Expected effort to reach Petascaling 
potential 

Alya is already running on thousands of processors. Explicit solver: 
perfect speedup up to 5000 CPU's on MareNostrum and BG/L.  
Implicit solver: speedup between 40% and 95% efficiency depending 
on the test case. IO strategy must be specially designed for 
petascaling: NETCDF format may be chosen.  
 
Amount of pm’s: 2pm 

Expected potential for Optimisation Medium 

Expected effort to reach Optimisation 
potential 

Element loops have been rewritten to prepare the code for 
vectorization. More work must be done. Relation memory 
access/computing still too high.  
For explicit solver, work concentrate on 2 subroutines: 2 element 
loops. For implicit solver, work should concentrate on 4 subroutines 
(2 element loops+2 algebraic solvers): divide elements loops. For 
solvers: Cell version of some iterative and direct algebraic solvers  
have already been ported to Cell (Linpack).  
 
Amount of pm’s: 4pm. 

 

7.2.19 SIESTA 

M.Cytowski, M. Filocha, M.Szpindler 
PCSS Poland 
 
GENERAL  
Name of Code, Abbreviation SIESTA 
Application area(s) Ab initio molecular dynamics simulations of molecules and solids. 
Key numerical method(s) Dense matrices, FFTs, .. 
Origin (developers, institute) Departamento de Fisica de la Materia Condensada, Universidad 

Autonoma de Madrid 
Jose M. Soler 

Current developers • Emilio Artacho (Department of Earth Sciences, University 
of Cambridge) 

• Julian Gale (Nanochemistry Research Institute, 
Department of Applied Chemistry, Curtin University of 
Technology) 

• Alberto Garcia (Institut de Ciencia de Materials, CSIC - 
Universidad Autónoma de Barcelona) 

• Javier Junquera (Departamento de Ciencias de la Tierra y 
Física de la Materia Condensada, Universidad de 
Cantabria) 

• Richard M. Martin (Department of Physics, University of 
Illinois at Urbana-Champaign) 

• Pablo Ordejon (Institut de Ciencia de Materials, CSIC - 
Universidad Autónoma de Barcelona) 

• Daniel Sanchez-Portal (Unidad de Física de Materiales, 
Universidad del País Vasco) 

• Jose M. Soler (Departamento de Física de la Materia 
Condensada, Universidad Autónoma de Madrid) 
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Contact person  siesta@uam.es 
License policy Tree kinds of licenses: 

• Academic License for Individuals (register required; code 
modification allowed) 

• Academic License for Computing Centers (register 
required; only licensed and registers users; unlimited 
number of workstations; code modifications allowed) 

• Non academic – commercial use through Nanotec 
Electronica (http://www.nanotec.es) 

Copyright The Copyright-Holder is The Fundacion General de la Universidad 
Autonoma de Madrid (FGUAM – http://ewan.fg.uam.es) 

Usage rules (within PRACE, outside 
PRACE, …) 

Free within PRACE, not free outside PRACE 

  
PRACE INFORMATION  
BCO: name, email, institute M. Filocha, m.filocha@icm.edu.pl, PCSS, Poland  
Contributors (PRACE partners)  
Targeted hardware platforms as in BCO 
list 

Cell 

  
CODE STATISTICS  
Programming language(s) Fortran 90 
Amount of source lines More than 105 000 
Libraries Metis, BLAS, SCALAPACK 
Parallellization method MPI 
Development platform(s) Prepared compiling directions for following architectures: Cray 

XT-3, Cray T3e, Itanium Cluster, Altix, IBM SP2 with PPC3, 
MacOS X, JS21 (Marenostrum) and other 

IO characteristics Read at start, write periodically  
  
PORTING REPORT For platform #1 (repeat for platform #2, #3, …) 
Porting platform Cell 
Details porting platform 3 IBM blades located in BladeCenter H chasis: 

• 2xQS21 
• 1xLS21 

 
Hardware configuration of the target platform: 

• Model: IBM QS21 blades 
• CPU Type: Cell BE 
• Clock rate: 3.2 GHz 
• Total Cores: 36 
• Cores per Chip: 9 
• Cores per Node: 18  
• Memory per Node: 2 GB 
• Total Memory: 4 GB 
• Infiniband 

 
Software details: 

• OS: Fedora 8 
• Compiler version: IBM XLF for Cell 11.1 

 
Overall porting result Successful 
General comments We defined the porting step to be a process of compiling Siesta 

code on PPE with the use of IBM XLF compiler. In this 
terminology we see the usage of SPEs and vectorization to be an 
optimisation step. This is currently work in progress. 
 
One compiler bug has been found. The code was modified in order 
to prevent compiler from crash. The bug reason was segmented out 
of the code and will be reported to IBM developer groups. 
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Porting report on programming language 
constructs in general 

Siesta is written in Fortran 90. Dynamic memory allocation is used. 
Cell XLFortran PPU compiler crashed on some of the specific 
Fortran 90 constructs (to be reported elsewhere). 

Porting report on libraries used Till now the following libraries where used: 
• Metis v. 4.0.1 – downloaded from 

http://glaros.dtc.umn.edu/gkhome/metis/metis/download 
and compiled with the use of GCC on PPU 

• LAPACK – standard Fedora package was used (this will 
be probably exchanged with specific Cell Lapack 
implementation) 

• BLAS – standard Fedora package was used (this will be 
probably exchanged with specific Cell Blas 
implementation) 

The main problem we encountered during the PPU porting step was 
that specific Cell Lapack library is not a full Lapack 
implementation. The complex functions are still missing. These will 
have to be specially linked from other source. 

Porting report on parallelisation method The parallelisation method used in Siesta is MPI. 
Porting report on IO  
  
PERFORMANCE RESULTS For platform #1 (repeat for platform #2, #3, …) 
Execution platform Cell 
Details execution platform  
Performance details The standard Siesta benchmark suite is used (Tests/ directory).  

 
  
RECOMMENDATIONS For Petascaling and optimisation on platform #1 (repeat for 

platform #2, #3, …) 
Expected potential for Petascaling Medium 
Expected effort to reach Petascaling 
potential 

Approximately 2 or 3 pm’s. The parallel version should be tested 
across few QS21 blades. QS22 blades should be also taken into 
consideration/tests. 

Expected potential for Optimisation Large 
Expected effort to reach Optimisation 
potential 

Approximately 2 pm’s. The code should be implemented on the 
whole Cell BE architecture (PPE + 8 SPEs). Some of the library 
calls could be taken to SPE side. It is highly possible that some 
parts of the code will have to be rewritten to C (for SPE 
compatibility) and called from within Fortran code. 

 

7.2.20 BSIT 

Mauricio Araya 
BSC-CNS 
 
GENERAL  

Name of Code, Abbreviation BSIT 

Application area(s) Computational Geophysics 

Key numerical method(s) Explicit finite difference scheme, Structured mesh 

Origin (developers, institute) M. Araya, M. Hanzich, F. Rubio, A.C. Lesage BSC-CNS (Spain) 

Current developers M. Araya, M. Hanzich, F. Rubio, A.C. Lesage BSC-CNS (Spain) 

Contact person  <mauricio.araya@bsc.es>, <mauricio.hanzich@bsc.es>, 
<josem.cela@bsc.es> 
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License policy This code has access restrictions: no permission for use. 

Copyright Repsol YPF and BSC-CNS 

Usage rules (within PRACE, outside 
PRACE, …) 

No disclosure/No propagation of the source code. 

  

PRACE INFORMATION  

BCO: name, email, institute Mauricio Araya <mauricio.araya@bsc.es> 
BSC-CNS, (Spain) 

Contributors (PRACE partners)  

Targeted hardware platforms as in BCO 
list 

Cell/B.E. 

  

CODE STATISTICS  

Programming language(s) C and F90 

Amount of source lines 40000 

Libraries Librt 

Parallellization method MPI 

Development platform(s) Maricel Cell/B.E. 

IO characteristics Write once every several time steps. The output frequency needs to be 
specified in the source code by assign a particular parameter.  

  

PORTING REPORT CELL 

Porting platform Maricel 

Details porting platform Hardware: 
• Model: IBM Cell/B.E. cluster 
• Proc Type: Cell/B.E.  
• Clock rate: 3.2 GHz  
• Total Cores: 72  
• Cores Per Chip: 1 PPU + 8 SPU's 
• Cores Per Node: 2 PPU's + 2x8 SPU's  
• Memory per core: 4 GB 
• Total Memory: 4 GB  
• Cache: L1 (32 KB)/L2 (2 MB) associated to PPU. Local store 

associated to SPU'S. 
• Interconnect: InfiniBand 
• I/O: Hypernode 
 
Software details: 
• OS version: Redhat 5.2, Fedora 7 
• Compiler versions: ppu-gcc, spu-gcc (SDK3.1) 

Overall porting result Full porting done 
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General comments Performance analysis underway 

Porting report on programming language 
constructs in general 

 

Porting report on libraries used General purpose library utilization 

Porting report on parallelisation method MPI not thoroughly tested 

Porting report on IO Good expected results 

  

PERFORMANCE RESULTS  

Execution platform QS20 blades 

Details execution platform  

Performance details 30% of the machine peak performance achieved 

  

RECOMMENDATIONS  

Expected potential for Petascaling High 

Expected effort to reach Petascaling 
potential 

Developments in the queue management system for the 
embarrassingly parallel character of the external layer of BSIT. 
 
Amount of pm’s: 1pm 

Expected potential for Optimisation Medium 

Expected effort to reach Optimisation 
potential 

Optimisation has reached a good performance for this kind of 
algorithm (explicit finite difference). Further optimisation can be 
expected but in an marginal range. 
 
Amount of pm’s: 2pm. 
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7.3 Example of Code Integration into JuBE 

 
 
 
The following is an example of setting up a benchmark application for a single platform 
(EPSRC/EPCC’s HPCx, an IBM Power5 system). The benchmark is a small scaling example 
(using two processor counts) of HELIUM.  
The first step was to create add HPCx to the platform.xml file: 

1 <platform name="IBM-SP5-HPCx"> 
2     <params  
3         make        = "make" 
4         rm          = "rm -f" 
5         ar          = "ar" 
6         arflags     = "-rs" 
7         ranlib      = "/usr/bin/ranlib" 
8         cpp         = "/usr/bin/cpp" 
9         cppflags    = "-P"                 
10         f77         = "xlf_r" 
11         f77flags    = "-qtune=pwr5 -qarch=pwr5"                     
12         f90         = "xlf90_r" 
13         f90flags    = "-qtune=pwr5 -qarch=pwr5"                       
14         cc          = "xlc_r" 
15         cflags      = "-qtune=pwr5 -qarch=pwr5"                    
16         cxx         = "xlC_r" 
17         cxxflags    = "-qtune=pwr5 -qarch=pwr5"                   
18         mpi_f90     = "mpxlf90_r" 
19         mpi_f77     = "mpxlf_r" 
20         mpi_cc      = "mpcc_r" 
21         mpi_cxx     = "mpCC_r"                 
22         ldflags     = "-qtune=pwr5 -qarch=pwr5"                  
23         mpi_dir     = "" 
24         mpi_lib     = "" 
25         mpi_inc     = "" 
26         mpi_bin     = ""                   
27         blas_dir    = "" 
28         blas_lib    = "-lessl"                  
29         lapack_dir  = "-L/usr/local/lib" 
30         lapack_lib  = "-lessl -llapack"                      
31         fftw3_dir   = "-L/usr/local/packages/fftw/lib" 
32         fftw3_lib   = "-ldfftw -lm" 
33         fftw3_inc   = "-I/usr/local/packages/fftw/include"                     
34         fftw2_dir   = "" 
35         fftw2_lib   = "" 
36         fftw2_inc   = ""                        
37         netcdf3_dir = "" 
38         netcdf3_lib = "" 
39         netcdf3_inc = "" 
40         hdf5_dir    = "-L/usr/local/packages/hdf5/lib -

L/usr/local/packages/hdf5/zlib/lib" 
41         hdf5_lib    = "-lhdf5_fortran -lhdf5 -lgpfs -lz" 
42         hdf5_inc    = "-I/usr/local/packages/hdf5/include" 
43         module_cmd  = "" 
44    /> 
45 </platform> 
46  

This creates several variables that can be used in later XML files. Step two was to create the 
XML files needed for HELIUM. These are: 

• bench-platform.xml 

• compile.xml 

• prepare.xml 

• execute.xml 
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• verify.xml  

• analyse.xml 

 

7.3.1 bench-platform.xml 

1 <!-- 
2     PRACE Benchmark Suite 
3  
4     JUBE benchmark configuration schema for: HELIUM 
5  
6     Contact: jon@epcc.ed.ac.uk 
7 --> 
8 <bench name    = "HELIUM" platform= "IBM-SP5-HPCx" > 
9  
10 <!-- ********************************************************** --> 
11  
12 <benchmark name="strong" active="1"> 
13     <compile     cname="$platform" version="new"  
14                  nblocks="`(-1+sqrt(8*$tasks+1))/2`"  
15                  xlast="`1364/((-1+sqrt(8*$tasks+1))/2)`" /> 
16     <tasks       threadspertask="1" taskspernode="16" nodes="15.8125,31" /> 
17     <prepare     cname="standard" /> 
18     <execution   cname="$platform" iteration="1" /> 
19     <verify      cname="standard" /> 
20     <analyse     cname="standard" /> 
21 </benchmark> 
22  
23 <!-- ********************************************************** --> 
24  
25 </bench> 

The above benchmark consists of two runs; one of 253 processors and one of 496 processors 
on the platform labelled IBM-SP5-HPCx and defined above. A code can have several 
benchmarks, which are kept in the same bench.xml file. Each platform has a separate 
bench.xml file. These should be named with the platform name, e.g. bench-IBM-SP5-
HPCx.xml, bench-Cray-XT4-Louhi.xml, etc. 
HELIUM requires that the size of a “block” (nblocks) be fixed for a certain number of 
processors and that ‘xlast’ (xlast) is related to the problem size and processor count. HPCx 
(the platform for this test) has 16 processors per node, therefore the two processor counts 
needed require 15.8125 and 31 nodes respectively. JuBE will multiply threadspertask (1), 
taskspernode (16), and nodes to work out the number of tasks for each run (line 15). This 
number is available as a variable, $tasks. As HELIUM requires that nblocks be set 
according to the number of processors in the source code, this number is set up as a variable 
$nblock on line 14. In order to keep a fixed problem size, $xlast is also altered.This will be 
available in later XML files. 

7.3.2 compile.xml 

For each platform that the benchmark code is to be run on, an XML definition is required. All 
platforms are kept in the same file. 

26 <compilation> 
27  
28 <!-- predefined vars: 
29    $outdir -> output directory for temporary compile files 
30    $id     -> identifier of this benchmark run 
31 --> 
32  
33 <compile cname="IBM-SP5-HPCx"> 
34     <!-- Specification of source files to copy into temporary build 
35          directory --> 
36     <src directory="./src" files="*.f90.in Makefile.in Makefile.defs.in" /> 
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37  
38     <substitute infile="helium.f90.in" outfile="helium.f90"> 
39         <sub from="#NBLOCKS#"         to="$nblocks" /> 
40         <sub from="#X_LAST#"          to="$xlast" /> 
41     </substitute> 
42      
43     <!-- Create Makefile and substitute parameters --> 
44     <substitute infile="Makefile.in" outfile="Makefile"> 
45         <sub from="#EXECNAME#"      to="$execname" /> 
46         <sub from="#OUTDIR#"        to="$outdir" /> 
47     </substitute> 
48      
49     <substitute infile="Makefile.defs.in" outfile="Makefile.var">     
50         <sub from="#MAKE#"          to="$make" /> 
51         <sub from="#RM#"            to="$rm" /> 
52         <sub from="#AR#"            to="$ar" /> 
53         <sub from="#ARFLAGS#"       to="$arflags" /> 
54         <sub from="#RANLIB#"        to="$ranlib" /> 
55         <sub from="#CPP#"           to="$cpp" /> 
56         <sub from="#CPPFLAGS#"      to="$cppflags" /> 
57         <sub from="#F77#"           to="$f77" /> 
58         <sub from="#FFLAGS#"        to="-q64 $f77flags" /> 
59         <sub from="#F90#"           to="$f90" /> 
60         <sub from="#F90FLAGS#"      to="-q64 $f90flags -O3 -qsuffix=cpp=F90" /> 
61         <sub from="#MYFLAGS#"      to="-qlanglvl=extended -qfree=f90 -q64 -qrealsize=8 

-O4 -qarch=pwr5 -qtune=pwr5 -qessl -qsuffix=f=f90" /> 
62         <sub from="#CC#"            to="$cc" /> 
63         <sub from="#CFLAGS#"        to="-q64 $cflags" /> 
64         <sub from="#CXX#"           to="$cxx" /> 
65         <sub from="#CXXFLAGS#"      to="-q64 $cxxflags" /> 
66         <sub from="#MPI_F90#"       to="$mpi_f90" /> 
67         <sub from="#MPI_F77#"       to="$mpi_f77" /> 
68         <sub from="#MPI_CC#"        to="$mpi_cc" /> 
69         <sub from="#MPI_CXX#"       to="$mpi_cxx" /> 
70         <sub from="#LD#"            to="$mpi_f90" /> 
71         <sub from="#LDFLAGS#"       to="-q64 $ldflags -O3" /> 
72         <sub from="#MPI_DIR#"       to="$mpi_dir" /> 
73         <sub from="#MPI_LIB#"       to="$mpi_lib" /> 
74         <sub from="#MPI_INC#"       to="$mpi_inc" /> 
75         <sub from="#MPI_BIN#"       to="$mpi_bin" /> 
76         <sub from="#BLAS_DIR#"      to="" /> 
77         <sub from="#BLAS_LIB#"      to="" /> 
78         <sub from="#LAPACK_DIR#"    to="" /> 
79         <sub from="#LAPACK_LIB#"    to="" /> 
80         <sub from="#FFTW_DIR#"      to="" /> 
81         <sub from="#FFTW_LIB#"      to="" /> 
82         <sub from="#FFTW_INC#"      to="" /> 
83         <sub from="#MODULE_CMD#"     to="$module_cmd" /> 
84         <sub from="#MODULE_FILES#"   to="" /> 
85     </substitute> 
86     
87  
88     <!-- issue build command --> 
89     <command>make -f Makefile</command> 
90 </compile> 
91  
92 </compilation> 

The compile.xml file carries out two tasks: substitution of platform-related variables, such as 
compiler and compile flags; and the command to compile the code. For HELIUM three files 
requires substitution: the Helium source code file, which requires the $nblocks and $xlast 
variables to be set appropriately; the makefile which needs the executable name (which is 
benchmark dependant) and the makefile.var file, which is where the compiler and flags are 
set. Most of the platform specific tools are set in the platform.xml file and the variable used 
appropriately (see line 29 for example, where the C++ compiler is set). However, particular 
variables can be overridden, such as the compile flags. If the platform.xml specifies, say, -
fast, but this does not work on a particular code, this can be overridden here.  
Substitution is done by specifying a keyword in the file (e.g. #LD#) which JuBE searches for 
and replaces with the variable specified in the XML file. A variable not specified in the XML 
file is not substituted. A variable specified in the XML file, but is not in the input file, is 
ignored. 
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Finally, the command tag is used to issue the command to build the application. This can point 
to a makefile, configure script, or bash script, for example. 

7.3.3 prepare.xml 

This file carries out any steps required before the application is executed. 
93 <preparation> 
94  
95 <!-- *********************************************************************** --> 
96  
97 <prepare cname="standard"> 
98  
99     <mkdir directory="graph" /> 
100     <mkdir directory="ground" /> 
101     <mkdir directory="state" /> 
102     <mkdir directory="data" /> 
103     <command>(cd $rundir;chmod u+x ./src/make_file.sh;./src/make_file.sh)</command> 
104  
105 </prepare> 
106  
107 <!-- *********************************************************************** --> 
108  
109 </preparation> 

For HELIUM this requires four directories are created as defined above, whilst the script 
creates the necessary input/output files. 

7.3.4 execute.xml 

This file contains steps to execute the application. Like the compile.xml file this comprises of 
substitutions to the platform’s skeleton job submission script and the submit command. 
Multilpe platforms can be contained in the same file. 

110 <execution> 
111 <!-- ************************************************************************ --> 
112 <execute cname="IBM-SP5-HPCx"> 
113     <input files="../../platform/IBM-SP5-HPCx/ibm_llsubmit.job.in" /> 
114  
115     <substitute infile="ibm_llsubmit.job.in" outfile="ibm_llsubmit.job"> 
116         <sub from="#OUTDIR#"            to="$outdir" /> 
117         <sub from="#STDOUTLOGFILE#"     to="$stdoutlogfile" /> 
118         <sub from="#STDERRLOGFILE#"     to="$stderrlogfile" /> 
119         <sub from="#BENCHNAME#"         to="$benchname $subid" /> 
120         <sub from="#NODEUSAGE#"         to="not_shared" /> 
121         <sub from="#TOTALTASKS#"        to="$tasks" /> 
122         <sub from="#TIME_LIMIT#"        to="02:00:00" /> 
123         <sub from="#NODES#"             to="$nodes" /> 
124         <sub from="#TASKSPERNODE#"      to="$taskspernode" /> 
125         <sub from="#NOTIFICATION#"      to="never" /> 
126         <sub from="#THREADSPERTASK#"    to="$threadspertask" /> 
127         <sub from="#STACK#"             to="400mb" /> 
128         <sub from="#EXECUTABLE#"        to="$executable" /> 
129         <sub from="#ENV#"               to="$env" /> 
130         <sub from="#PREPROCESS#"        to="" /> 
131         <sub from="#POSTPROCESS#"       to="" /> 
132         <sub from="#STARTER#"           to="poe" /> 
133         <sub from="#ARGS_STARTER#"      to="" /> 
134         <sub from="#MEASUREMENT#"       to="time /usr/local/bin/hpmcount" /> 
135         <sub from="#ARGS_EXECUTABLE#"    to="" /> 
136     </substitute> 
137    
138     <environment> 
139         <env var="MP_LABELIO" value="yes" /> 
140         <env var="MP_INFOLEVEL" value="2" /> 
141         <env var="MP_SHARED_MEMORY" value="yes" /> 
142         <env var="MP_TASK_AFFINITY" value="MCM" /> 
143         <env var="MP_EAGER_LIMIT"  value="65536" /> 
144         <env var="MEMORY_AFFINITY"  value="MCM" /> 
145         <env var="OMP_NUM_THREADS"  value="$threadspertask" /> 
146         <env var="TRACE_TEXTONLY"  value="1" /> 
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147     </environment> 
148    
149     <command>llsubmit ibm_llsubmit.job</command> 
150 </execute> 
151  
152 </execution> 

Line 113 points to the skeleton job submission script for the platform in question. Variables in 
that file are substituted as per the compile.xml file. The environment tag allows environment 
variables to be set and are placed in the job submission script. Finally, the command tag 
contains the command to submit the job to the batch system. 

7.3.5 verify.xml 

Checks that the run has completed successfully. 
153 <verification> 
154  
155 <!-- ************************************************************************ --> 
156 <!-- predefined vars: 
157      $subdir      -> execution dir of benchmark run 
158      $stdoutfile  -> $stdout file of benchmark run 
159      $stderrfile  -> $stderr file of benchmark run 
160      $...         -> params from benchmark specification in toplevel dir      
161 --> 
162  
163 <verify cname="HELIUM"> 
164   <command>run/check_results_helium.pl $subdir/verify.xml $stdoutfile $stderrfile 

$subdir $totaltasks</command> 
165 </verify> 
166  
167 <!-- ************************************************************************ --> 
168  
169 </verification> 

The verification for HELIUM requires that the Total Population variable is equal to 1. 
This is done in a Perl script kept in the run directory. The script also checks the correct 
number of cores were used. 

170 #!/usr/bin/perl -w 
171  
172 use strict; 
173 use Carp; 
174  
175 my $patint="([\\+\\-\\d]+)";    # Pattern for Integer number 
176 my $patfp ="([\\+\\-\\d.Ee]+)"; # Pattern for Floating Point number 
177 my $patwrd="([\^\\s]+)";        # Pattern for Work (all noblank characters) 
178 my $patnint="[\\+\\-\\d]+";     # Pattern for Integer number, no ()  
179 my $patnfp ="[\\+\\-\\d.Ee]+";  # Pattern for Floating Point number, no ()  
180 my $patnwrd="[\^\\s]+";         # Pattern for Work (all noblank characters), no ()  
181 my $patbl ="\\s+";              # Pattern for blank space (variable length) 
182  
183 if(scalar(@ARGV) != 5) { 
184     printf(STDERR "incorrect number of parameters(%d) of $0 (5 required)\n", 
185      scalar @ARGV); 
186     exit(-1); 
187 } 
188  
189 my $xmloutfile = $ARGV[0]; 
190 my $stdoutfile = $ARGV[1]; 
191 my $stderrfile = $ARGV[2]; 
192 my $subdir     = $ARGV[3]; 
193 my $totcores   = $ARGV[4]; 
194 my $vcheck=0; 
195 my $vcomment="not tested"; 
196 my $vval1=0; 
197 my $vval2=0; 
198 my $vval3=0; 
199 my $vvalref1=0; 
200 my $vvalref2=0; 
201 my $vvalref3=0; 
202 my $limit=1.e-15; 
203 my $outptfile="$subdir/hstat.prace"; 
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204 print "$outptfile"; 
205  
206 if(-f $outptfile) { 
207     open(OUT,"$outptfile") || die "$outptfile not found!"; 
208     $vcheck = 1; 
209     $vcomment = "Result verified"; 
210     while($vcheck) { 
211  my $outline = <OUT>; 
212  if (m/Number of PEs/) { 
213      my @cores = split(/=/,$outline); 
214      if ($cores[1] != $totcores) { 
215          $vcheck=0; 
216          $vcomment="Verification failed: Number of cores was not as expected"; 
217          $vval1 = $outline; 
218          $vvalref1 = $totcores; 
219          last; 
220      } 
221     }          
222     close(OUT); 
223 } else { 
224     $vcheck=0; $vcomment="no output file found"; 
225 } 
226  
227 $outputfile="$subdir/$stdoutfile"; 
228 print "$outptfile"; 
229 if(-f $outptfile) { 
230     open(OUT,"$outptfile") || die "$outptfile not found!"; 
231     $vcheck = 1; 
232     $vcomment = "Result verified"; 
233     while($vcheck) { 
234  my $outline = <OUT>; 
235  if (m/Total Population/) { 
236      my @answer = split(/=/,$outline); 
237      if ($answer[1] < 0.999999 || $answer[1] > 1.00001) { 
238          $vcheck=0; 
239          $vcomment="Verification failed: Incorrect answer"; 
240          $vval2 = $outline; 
241          $vvalref2 = "1"; 
242          last; 
243      } 
244     }          
245     close(OUT); 
246 } else { 
247     $vcheck=0; $vcomment="no output file found"; 
248 } 
249  
250 open(XMLOUT,"> $xmloutfile") || die "cannot open file $xmloutfile"; 
251 print XMLOUT "<verify>\n"; 
252 print XMLOUT " <parm name=\"vcheck\" value=\"$vcheck\" type=\"bool\" unit=\"\" />\n"; 
253 print XMLOUT " <parm name=\"vcomment\" value=\"$vcomment\" type=\"string\" 

unit=\"\"/>\n"; 
254 print XMLOUT " <parm name=\"vval1\" value=\"$vval1\" type=\"float\" unit=\"\"/>\n"; 
255 print XMLOUT " <parm name=\"vvalref1\" value=\"$vvalref1\" type=\"float\" 

unit=\"\"/>\n"; 
256 print XMLOUT " <parm name=\"vval2\" value=\"$vval2\" type=\"float\" unit=\"\"/>\n"; 
257 print XMLOUT " <parm name=\"vvalref2\" value=\"$vvalref2\" type=\"float\" 

unit=\"\"/>\n"; 
258 print XMLOUT "</verify>\n"; 
259 print XMLOUT "\n"; 
260 close(XMLOUT); 
261  
262  
263 exit(0); 

7.3.6 analyse.xml 

This file contains instructions on how to scan the output to extract the maingful data. Each 
platform has a separate entry in this file. 

264 <analyzer> 
265  
266 <!-- ************************************************************************ --> 
267 <!-- Input is stdout and stderr of benchmark run --> 
268 <!-- Standard result parameter: 
269      - walltime --> 
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270 <!-- ************************************************************************ --> 
271  
272 <analyse cname="IBM-SP5-HPCx"> 
273     <includepattern file="./analyse-pattern-helium.xml" />  
274     <includepattern file="../../skel/hpm3patterns.xml" />  
275 </analyse> 
276  
277 <!-- ************************************************************************ --> 
278  
279  
280 </analyzer> 

The actual work is done using the analyse-pattern-app.xml file. 
281 <patterns> 
282  
283 <!-- ************************************************************************* --> 
284 <!-- *   application specific patterns for analyse of HELIUM results         * --> 
285 <!-- ************************************************************************* --> 
286  
287 <parm name="walltime" unit="s" mode="line,last" type="float"> 
288 WallClock Time.*=  $patfp 
289 </parm> 
290 <!-- ************************************************************************* --> 
291  
292 </patterns> 

The above contains a search for the wallclock time using Perl regular expressions.  
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7.4 CrayPat Case study: High-Performance Linpack Benchmark (HPL)  

 
To showcase some Craypat features the High-Performance Linpack Benchmark (HPL) was 
run on a Cray XT5. The order of the coefficient matrix was 20000, the partitioning blocking 
factor was 80 and the  number of process rows and columns were 4 and 8.   The tools are very 
versatile and only a few reports and results can be shown here. In all examples the program 
was instrumented to produce tracing experiments, sampling was not used.  
 
The first example shows load balance across processes by function group. The group USER 
show how much time (absolute time and percentage value from the TOTAL time) the 
numerical calculations took (89.2%)  and the group MPI show same information for the MPI 
communication (10.8%). The rows that ends up with character string “pe.number” will show 
three processes having the maximum, median, and minimum times for each task. 
 

 
Table 12: MPI-profile. 
 
The second example shows a profile of the time spent in the USER group, comprising user 
defined functions. 
 

Time %  |      Time |   Calls |Group
100.0%  | 29.569722 | 3803836 |Total 
  89.2% | 26.365399 |       2 |USER 
   3.0% | 28.014343 |       1 |pe.1 
   2.8% | 26.134757 |       1 |pe.16 
   2.7% | 25.571915 |       1 |pe.18 
  10.8% |  3.204323 | 3803834 |MPI 
   5.4% |  1.582981 |     649 |MPI_Recv 
   0.2% |  1.950585 |     637 |pe.18 
   0.2% |  1.747239 |     641 |pe.15 
   0.1% |  0.935157 |     654 |pe.1 
   3.5% |  1.030649 |    6387 |MPI_Send 
   0.1% |  1.146458 |    6321 |pe.7 
   0.1% |  1.032805 |    6310 |pe.26 
   0.1% |  0.954339 |    6502 |pe.25 
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Table 13: Function profile. 
 
There are four functions that are called over 25 million times in the initialization stage; even a 
small error in the estimation of the measurement overhead will skew the results. By excluding 
these functions we get the following more accurate profile. 
 

 
Table 14: Function profile, less complex. 
 
The next example shows statistics for sent messages. One can stufy the statistics for the whole 
program, but also to look at statistics for a certain process. 
  

  Time %  |      Time |Imb. Time |   Imb. |     Calls |Group 
         |           |          | Time % |           | Function 
         |           |          |        |           |  PE='HIDE' 
 
  100.0% | 53.691687 |       -- |     -- | 104950799 |Total 
|--------------------------------------------------------------- 
| 100.0% | 53.691683 |       -- |     -- | 104950797 |USER 
||-------------------------------------------------------------- 
||  40.1% | 21.556808 | 0.631945 |   2.9% |      2684 |HPL_dgemm 
||  23.7% | 12.725938 | 0.469476 |   3.7% |  25318835 |HPL_setran 
||  10.7% |  5.751859 | 0.234090 |   4.0% |         2 |HPL_pdmatgen 
||   8.1% |  4.359664 | 0.303725 |   6.7% |  25001250 |HPL_rand 
||   5.3% |  2.868864 | 1.915342 |  41.3% |        14 |HPL_broadcast 
||   2.1% |  1.113295 | 0.078952 |   6.8% |   1752595 |HPL_bcast_1ring 
||   1.7% |  0.928316 | 0.105795 |  10.6% |       920 |HPL_spreadT 
||   1.3% |  0.702743 | 0.058028 |   7.9% |       246 |HPL_rollT 
||   1.2% |  0.639501 | 0.024283 |   3.8% |  25403473 |HPL_lmul 
||   1.0% |  0.534679 | 0.020632 |   3.8% |  25361158 |HPL_ladd 

 

  Time % |      Time |Imb. Time |   Imb. |   Calls |Group
         |           |          | Time % |         | Function 
         |           |          |        |         |  PE='HIDE' 
 
  100.0% | 29.225464 |       -- |     -- | 3667922 |Total 
|------------------------------------------------------------- 
| 100.0% | 29.225458 |       -- |     -- | 3667920 |USER 
||------------------------------------------------------------ 
||  73.8% | 21.556087 | 0.630827 |   2.9% |    2684 |HPL_dgemm 
||   8.1% |  2.355882 | 0.079908 |   3.4% |       2 |HPL_pdmatgen 
||   3.7% |  1.075673 | 0.115775 |  10.0% | 1653514 |HPL_bcast_1ring 
||   3.2% |  0.939993 | 0.076457 |   7.8% |     920 |HPL_spreadT 
||   2.5% |  0.744454 | 0.061003 |   7.8% |     246 |HPL_rollT 
||   1.8% |  0.516974 | 0.315525 |  39.1% |      14 |HPL_broadcast 
||   1.4% |  0.410194 | 0.087556 |  18.2% |       1 |HPL_pdgesv0 
||   1.4% |  0.405300 | 0.015176 |   3.7% |    2684 |HPL_dtrsm 

Function-profile where HPL_setran, HPL_rand, HPL_lmul and HPL_ladd have been 
excluded 
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Table 15: Program totals. 
 

 
Table 16: All sent message statistics from process number 9. 
 
 

 
Table 17: Sent message statistics from process 9 to 2. 
 
The third example shows hardware performance counter (HWPC) statistics. Here the default 
experiment is shown. It includes an overview of the most important counters. The counters 
are: 
 
• PAPI_FP_OPS (Floating point operations) 
• PAPI_L1_DCA (L1 data cache accesses) 
• PAPI_L1_DCM (L1 data cache misses) 
• PAPI_TLB_DM (Data translation lookaside buffer misses) 

 
The example shows statistics gathered for the whole program, but one can also extract such 
data on a function or block level. 
 

Sent Msg Total Bytes       580424824
Sent Msg Count                  6538 
MsgSz <16B Bytes                  32 
256B<= MsgSz <4KB Bytes      6784640 
4KB<= MsgSz <64KB Bytes      9840008 
64KB<= MsgSz <1MB Bytes    237865496 
1MB<= MsgSz <16MB Bytes    325934648 

 

Sent Msg Total Bytes       457665112
Sent Msg Count                  3283 
256B<= MsgSz <4KB Bytes      3371520 
4KB<= MsgSz <64KB Bytes      4359688 
64KB<= MsgSz <1MB Bytes    123999256 
1MB<= MsgSz <16MB Bytes    325934648 

 

Totals for program
Sent Msg Total Bytes       568112259 
Sent Msg Count                  6387 
MsgSz <16B Bytes                 128 
16B<= MsgSz <256B Bytes          129 
256B<= MsgSz <4KB Bytes      4638316 
4KB<= MsgSz <64KB Bytes      9352709 
64KB<= MsgSz <1MB Bytes    231788537 
1MB<= MsgSz <16MB Bytes    322332441 
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Table 18: Performance results with the default HWPC experiment. 
 
The fourth example shows some screenshots from the graphical Apprentice2 tool. Only 
summarized data was collected when running HPL, thus traffic-data and other analysis modes 
that show the behaviour of the program on a time-line are not available. 
 
The pie chart in figure 14 on the left shows functions in the xhpl program, sorted by the 
number of times the  functions were invoked. The pie chart on the right the data is sorted by 
the amount of time spent performing the functions. The icons in the toolbar show the analysis 
modes that are available for this data. 
 

 
Figure 14: Pie chart example. 

PAPI L1 DCM               37.450M/sec    1135703222 misses 
PAPI_TLB_DM                0.375M/sec      11378421 misses 
PAPI_L1_DCA             2035.276M/sec   61721014271 refs 
PAPI_FP_OPS             5626.109M/sec  170615261610 ops 
  User time (approx)        30.326 secs   69748937500 cycles 
  Average Time per Call                      0.076976 sec/call 
  Overhead / Time                                0.0% 
  Cycles                    30.326 secs   69748937500 cycles 
  User time (approx)        30.326 secs   69748937500 cycles 
  Utilization rate                              97.5% 
  HW FP Ops / Cycles                             2.45 ops/cycle 
  HW FP Ops / User time   5626.109M/sec  170615261610 ops 61.2%peak(DP)
  HW FP Ops / WCT         5486.302M/sec 
  Computation intensity                          2.76 ops/ref 
  MFLOPS (aggregate)     180035.48M/sec 
  LD & ST per TLB miss                        5424.39 refs/miss 
  LD & ST per D1 miss                           54.35 refs/miss 
  D1 cache hit ratio                            98.2% 
  % TLB misses / cycle                           0.0% 
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Figure 15: Load balance example of HLP_dgemm. 
 
 
Figure 15 shows load balance of  the HPL_dgemm (matrix multiply) routine. On the left hand 
side one can see the process numbers. 
 

7.5 IBM HPCT Assessment 

 

7.5.1 Hardware Performance Monitor (HPM) 

The default output of HPM looks like: 
 
hpmcount v3.2.2 (IHPCT v2.2.0) summary 
 
########  Resource Usage Statistics  ########   
 
Total amount of time in user mode            : 3.333841 seconds 
Total amount of time in system mode          : 0.729397 seconds 
Maximum resident set size                    : n/a 
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Average shared memory use in text segment    : n/a 
Average unshared memory use in data segment  : n/a 
Number of page faults without I/O activity   : 83016 
Number of page faults with I/O activity      : 0 
Number of times process was swapped out      : 0 
Number of times file system performed INPUT  : n/a 
Number of times file system performed OUTPUT : n/a 
Number of IPC messages sent                  : n/a 
Number of IPC messages received              : n/a 
Number of signals delivered                  : n/a 
Number of voluntary context switches         : n/a 
Number of involuntary context switches       : n/a 
 
#######  End of Resource Statistics  ######## 
 
Execution time (wall clock time)     : 6.53337597846985 seconds 
 
PM_FPU_1FLOP (FPU executed one flop instruction )                :        42233432 
PM_FPU_FMA (FPU executed multiply-add instruction)               :     11040495281 
PM_FPU_FSQRT_FDIV (FPU executed FSQRT or FDIV instruction)       :           79074 
PM_FPU_FLOP (FPU executed 1FLOP, FMA, FSQRT or FDIV instruction) :     11082807787 
PM_RUN_INST_CMPL (Run instructions completed)                    :     10414883074 
PM_RUN_CYC (Run cycles)                                          :      6273057293 
 
Utilization rate                               :          20.411 % 
Instructions per run cycle                     :           1.660  
Total floating point operations                :       22123.303 M 
Flop rate (flops / WCT)                        :        3386.198 Mflop/s 
Flops / user time                              :       16589.681 Mflop/s 
Algebraic floating point operations            :       22123.224 M 
Algebraic flop rate (flops / WCT)              :        3386.186 Mflop/s 
Algebraic flops / user time                    :       16589.621 Mflop/s 
FMA percentage                                 :          99.809 % 
% of peak performance                          :          88.168 % 

 
 

7.5.2 MPI Profiler 

 
The instrumented application creates MPI profiles files like: 
 
----------------------------------------------------------------- 
MPI Routine                  #calls     avg. bytes      time(sec) 
----------------------------------------------------------------- 
MPI_Comm_size                    32            0.0          0.000 
MPI_Comm_rank                    32            0.0          0.000 
MPI_Send                       1119         2269.4          0.006 
MPI_Recv                        376         4007.9          0.936 
MPI_Irecv                       739         1383.3          0.002 
MPI_Iprobe                 20906040            0.0         21.923 
MPI_Wait                        739            0.0         18.627 
----------------------------------------------------------------- 
total communication time = 41.494 seconds. 
total elapsed time       = 50.675 seconds. 
 
----------------------------------------------------------------- 
Message size distributions: 
 
MPI_Send                  #calls    avg. bytes      time(sec) 
                               4           4.0          0.000 
                              16           8.0          0.000 
                               2          12.0          0.000 
                             126          32.0          0.000 
                               4          52.0          0.000 
                             503          96.0          0.002 
                               2         164.0          0.000 
                              12         366.7          0.000 
                              25         738.2          0.000 
                              63        1542.1          0.000 
                             119        3100.7          0.001 
                             146        6057.4          0.001 
                              97       11475.1          0.002 
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MPI_Recv                  #calls    avg. bytes      time(sec) 
                               2           4.0          0.354 
                              10           8.0          0.070 
                               2          12.0          0.000 
                             126          32.0          0.002 
                               1         168.0          0.000 
                               2         360.0          0.000 
                              11         735.3          0.000 
                              24        1518.3          0.000 
                              57        3185.8          0.507 
                              70        6092.2          0.000 
                              71       11962.9          0.003 
 
MPI_Irecv                 #calls    avg. bytes      time(sec) 
                             501          64.0          0.001 
                               1          96.0          0.000 
                               5         198.4          0.000 
                               5         380.8          0.000 
                              14         750.3          0.000 
                              46        1570.4          0.000 
                              73        3039.7          0.000 
                              69        6209.4          0.000 
                              25       10164.8          0.000 
 
----------------------------------------------------------------- 
 
Communication summary for all tasks: 
 
  minimum communication time = 41.494 sec for task 0 
  median  communication time = 42.109 sec for task 1 
  maximum communication time = 42.390 sec for task 2 
 

The instrumented application also generates trace files that can be visualized using PeekPerf 
in figure 16: 
 

 
Figure 16: Peekperf visualisation of trace files. 
 
By inspecting the communication patterns, these visualizations allow for detection of 
communication bottlenecks. 
 

7.5.3 Xprofiler 

 
Xprofiler is a visualization tool for gmon.out profiling data created by applications 
compiled with the –pg flag. Xprofiler is a nice GUI that gives the information that is also 
provided by the well-known gprof command line tool for displaying call graph profile data. 
Xprofiler does not yet work for 64-bit executables, which is a pity on large memory nodes 
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(the machine we used for the assessment has both 128 and 256 GB nodes). An example is 
shown in figure 17. 
 
 

 
 
Figure 17: Xprofiler example. 
 

7.6 IPM Assessment 

We used the implementation of the High-Performance Linpack benchmark for IBM QS22 
systems with two PowerXCell 8i processors available in [34]. 
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7.6.1 MPI subs 

 
 
Figure 18: IPM pie charts. 
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7.6.2 MPI topology 

 
 
Figure 19: IPM MPI topology overview. 
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7.6.3 MPI message sizes 

 
 
Figure 20: IPM message sizes graphs. 

7.6.4 MPI load balance 

 
 
Figure 21: IPM MPI load balance information. 
 


