Main Memory in HPC: Do We Need More, or Could We Live with Less?

Darko Zivanovic1,*, Petar Radojković1, Eduard Ayguadé2,*

1Barcelona Supercomputing Center - Centro Nacional de Supercomputación, Barcelona, Spain
2Département d’Arquitectura de Computadors, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain

MEMORY IN CURRENT HPC SYSTEMS
* Current HPC systems are dominated by x86 architectures coupled with 2-3GB of main memory per core
* 3D memory provides better performance and energy efficiency but lower capacities compared to conventional DIMMs
* Important to analyze memory requirements of HPC benchmarks and production HPC applications for the adoption of 3D memories

HIGH-PERFORMANCE LINPACK (HPL)
* HPL is CPU bound, and almost reaches theoretical peak FLOP/s
* HPL performance depends on memory capacity per core:
 - Performance first increases, then reaches saturation point
 - Saturation point is proportional to the number of processes
 - Saturation point moves towards larger capacities when increasing the number of processes

CONCLUSION
* For HPC system with tens or hundreds of cores, reaching HPL saturation point requires approx. 2GB of memory per core

HIGH-PERFORMANCE CONJUGATE GRADIENTS (HPCG)
* HPCG performance depends on available memory bandwidth
* HPCG performance depends on memory capacity per core:
 - Performance first increases, then reaches saturation point
 - Saturation point is proportional to the number of processes
 - Saturation point remains constant, roughly 512MB per process

CONCLUSION
* Reaching HPCG saturation point requires roughly 512MB per process and does not increase with the number of processes

PRODUCTION HPC APPLICATIONS

EXPERIMENTAL SETUP
* Unified European Application Benchmarks Suite on MareNostrum:
 ALYA, BQCD, CP2K, GADGET, GENE, GROMACS, NAMD, NEMO, QE, SPECFEM3D

ANALYSIS
* Per-process memory footprints change with the number of processes
* Select representative number of processes:
 1. HPC category:
 - Capacity computing [job throughput]
 - Capability computing [execution time]
 - Application scalability
 2. Metrics of interest:
 1. Execution time
 2. Cost [CPU hours]
 3. Energy consumption

CONCLUSION
* We detect bimodal distribution of memory requirements:
 1. Most applications have per-core footprints of hundreds of MB, use cases that could be a success story for 3D memory chiplets
 2. We detect applications that require gigabytes of memory per-core that could be provided with hybrid (3D + DIMMs) memories

FURTHER READING

Darko Zivanovic, Milan Radulovic, Germain Lloret, David Zaragoza, Janko Straznuk, Paul M Carpenter, Petar Radojkovic, Eduard Ayguadé.
Main Memory in HPC: Do We Need More, or Could We Live with Less?, ACM TACO, Volume 16 Issue 1, Article No. 3, April 2017.
Darko Zivanovic, Milan Radulovic, Hyunsung Shin, Jonggi Son, Sally A. McKee, Paul M. Carpenter, Petar Radojkovic, Eduard Ayguadé.