Fossils, Physics and Fast Computers

Unlocking a Virtual Past

Bill Sellers
University of Manchester
wis@mac.com

www.animalsimulation.org

Fascination with Fossils

Dinosaurs were 'invented' by Richard Owen in 1842

However interest in fossils dates back to antiquity

Jurassic Park (1993): Possibly the most famous fossil locomotor reconstruction. But did dinosaurs really move like this? And how do we know?

19th Century Horses

John Herring 1839

Edward Muybridge 1887

Ostrich ≠ Tyrannosaurus

Cannot just use a modern analogue

Physics

acceleration

Isaac Newton (1687) Principia Mathematica: Force applied to a mass produces a proportional

(rough translation from Latin)

Montgomery Scott (1966) The Naked Time I cannae change the laws of physics!

[12]

AXIOMATA SIVE LEGES MOTUS

Lex. L

Corpus owne perfeverare in featu fuo quiefecude vel movembe uniformiter in directum, nifi quatenus a viribus impressis cogstur statum illum mutere.

Projectilu perseverant in motibus suis nissi quatenus a resistentia aeris retardantur & vi gravitatis impelluntur deorsum.

Trochus, cujus partes colurendo perpetuo retrahunt sesa motibus resisiineis, non cessa rotari nisi quaternus ab aere retardatur. Majora autem Planetarum & Cometarum corpora motus suos & progressivos & circulares in spatiis minus resistentibus sacconcervant durius.

Lex. II.

Mutationem motus proportionalem esse vis untrici impressa, & fieri secundum lineam restam qua vis illa imprimitur.

Si vis abqua motum quemvis generet, dupla duplum, tripla triplum generabis, five fimul & femel, five gradatim & fuoceffive impreffa fuerit. Et hic motus quoniam in candem femper plagam cumvi generatrice determinatur, fi corpusantea movebatur, motui ejus vel conspiranti additur, vel contratio subducitur, vel colliquo oblique adjicitur, & cum co secundum utriusqui determinationem componitur.

How do you measure the living mass of a fossil?

(1) Find a dinosaur

Badlands (Hell Creek Formation), South Dakota, USA: 65 mya

(2) Excavate it

Working on a hadrosaur femur (2011)

(3) Get it back to the lab

Carrying the field jacket - approx. 100kg

(4) Reconstruct the skeleton

All these stages require a great deal of skill

For large fossils they are hard work

But because of these efforts we do know what these animals looked like

How do you weigh a dinosaur?

Argentinosaurus, 37m long, Museo Municipal Carmen Funes

Convex Hulling

The LiDAR scan produces a point cloud model in the computer

We calculate the Convex Hull (the smallest convex shape that encloses all the points) for the major body segments

Using estimated body density we calculate the convex hull volume

How do you measure the forces in a fossil?

Muscle Mass

Muscle distribution seems relatively conserved across mammals

But currently we don't know very much about non-mammals

Putting it all together

Multibody Dynamics using GaitSym

www.animalsimulation.org

Reconstructing <u>Argentinosaurus</u>

Rig muscles onto the skeleton

Skin the skeleton to calculate the mass (83 tonnes)

Delft Carillon

Evolutionary

Robotics

History of Evolutionary Algorithms

Evolutionary Search 1960s

Code problem as genome

Simulated evolution where fitness is the solution quality

Fittest genomes represent good solutions

Implementation

Asynchronous Genetic Algorithm

Maintain a single population and allow continuous selection, mutation and crossover

Uses MPI with population on one node and the fitness assessments (slow) are carried out on individual compute nodes

Allows the communication load to be spread out

Scaling

T. rex faster than Bex???

Other Animals

2001 (1968)

Human Bipedalism?

Ape-like Bipedalism

Early Hominin Gait

Bent Hip Bent Knee

Laetoli Footprints

Upright & Groucho Walking

Future Plans

Upscale from 10,000 cores to 1,000,000 cores by implementing a multipopulation approach (or find a new optimisation strategy - help!)

Add an FEA solver for dynamic strain calculation

Non-steady state locomotion

Thanks!

- Charlotte Brassey, Karl Bates, Victoria Egerton, Peter Falkingham, Jacob Hepworth-Bell who put in a lot of work
- Phil Manning, Lee Margetts, Paul Mummery for a lot of technical advice and assistance
- Cliff Addison, Martin Baker, Rudolpho Coria for HPC access, CT scanning and access to specimens
- NERC, BBSRC, EPSRC, Leverhulme Trust, National Geographic for money
- Any Questions? Find me in the bar or email wis@mac.com

www.animalsimulation.org

