Listening to black holes with supercomputers
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General Relativity: when heavy stars run out of fuel, nothing can halt
their gravitational collapse to a black hole.

Our aim: understand observational signatures of merging BH binaries,
required to identify such events in gravitational wave observations.

S. Husa, Universitat de les llles Balears
PRACEdays15, 26.5. 2015
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he Dark Universe

+ Black holes have taken center stage Iin
astrophysics & fundamental physics.

- Extraordinarily clean systems,
described by their mass M and spin X —

 Allow precision astrophysics and
fundamental physics:

' Fermi two-year all-sk
° ||fe CyC|e Of stars ermi two-year all-sky map
« supermassive black holes in galaxy cores

- testing general relativity - find new physics?

« direct observation?

* Electromagnetic waves taught us what we know about the S e,

universe. Superposition of waves from many particles R
- —> image of the source. AR R R %
G g et e R S B e S -
+ Electromagnetic spectrum is blind to some of the most ™ =& . = S

violent and exotic objects in the universe. CESEser e D



Gravitational Waves

- Spacetime in general relativity is a deformable entity, ripples in spacetime travel at
the speed of light and carry with the information on their source.

 Close binary systems of BH/NS are most efficient sources of gravitational waves.
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- GW signal carries information about the bulk motion of objects:
analogous to hearing sound.

« “soundtrack of the universe”

- GW signal encodes masses, spins, eccentricity of binary & possibly new physics -

needs to be decoded. )



Gravitational wave detectors and data analysis
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- Since first LIGO science run in 2002 upper limits have been set, but no direct
detection, LIGO-Virgo Scientific collaboration has grown to ~ 1000 scientists.

- Computational challenge 1: Searches for BH merger events are based on “matched
filtering” with template waveforms.

- Computational challenge 2: “template banks” need to be computed in general
relativity - Inaccurate templates: lose events & incorrectly identify them (masses &
spins of a binary, identification as BH or NS).
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- Since first LIGO science run in 2002 upper limits have been set, but no direct
detection, LIGO-Virgo Scientific collaboration has grown to ~ 1000 scientists.

- Computational challenge 1: Searches for BH merger events are based on “matched
f|lter|ng W|th template waveforms

= = g - = . et s = - g .
S 4 2 g- o S ccale, o N T e

£ Computatlonal challenge 2 | “template banks need to be computed in general
relativity - Inaccurate templates: lose events & incorrectly identify them (masses &
% _Spins of a binary, identification as BH or NS).
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Gravitational wave detectors and data analysis
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- Since first LIGO science run in 2002 upper limits have been set, but no direct
detection, LIGO-Virgo Scientific collaboration has grown to ~ 1000 scientists.

- Computational challenge 1: Searches for BH merger events are based on “matched
f|lter|ng W|th template waveforms

. e a ° - 4 N = = 2
. _ o a - =~ L b= ‘ e = s
S>> » S O BT =22 NoT 3 5 B i A e o Loz —

£ Computatlonal challenge o “template banks” need to be computed in general
relativity - Inaccurate templates: lose events & incorrectly identify them (masses &

% _Spins of a binary, identification as BH or NS). 7D parameter Space, i

Ay _O¢ b ey
=~ : -



Anatomy of BH mergers
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Inspiral Merger Ringdown

post-Newtonian (PN) theory no analyt. model perturbation theory

Effective one body (EOB)

Numerical Relativity (NR)

- Inspiral: energy loss to GWs leads to adiabatic inspiral,
well described by post-Newtonian perturbation theory.

- Late inspiral & merger. post-Newtonian expansion breaks

» solve full Einstein equations numerically as PDEs,
“match” to post-Newtonian inspiral.

- Most of the energy released (< 12 % of the mass).

- Ringdown: superposition of damped harmonics,
frequencies known from perturbation theory.
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post-Newtonian (PN) theory no analyt. model perturbation theory
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* Inspiral: energy loss to GWs leads to adiabatic inspiral, 0.02 R
well described by post-Newtonian perturbation theory.
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- Late inspiral & merger: post-Newtonian expansion breaks -
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- solve full Einstein equations numerically as PDEs, t[M]
“match” to post-Newtonian inspiral.

- Most of the energy released (< 12 % of the mass).

* Ringdown: superposition of damped harmonics,
frequencies known from perturbation theory. 3
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Anatomy of BH mergers
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Anatomy of BH mergers
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Solving the Einstein equations

 Einstein equations describe geometry of spacetime, not fields on a fixed
spacetime -> technical problems took 4 decades to solve for 2-body problem.

- EE can be viewed as 10 coupled nonlinear wave equations (hyperbolic) plus
elliptic constraint equations (solved initially, then just monitored).

- We evolve BSSNOK version: 24 evolution equations + monitor 9 constraints.

- 1000s of terms, hard to optimize for compiler. , |
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» Einstein equations form singularities hidden inside BHs, not shocks -> use 6-8th
oder finite differencing. More efficient, but less robust: spectral. 7



Scales and mesh refinement
e BH binaries have several length & time scales:

¢ individual BHs (most compact objects)

e resolution around BHs determines
accuracy of tracking orbital phase

* “recipe” to configure box sizes

e orbital scale: typically start at separations =
> 15 km M/Msun

e \wave scale frequency increases ~ factor of 10

e 1/distance" background falloff

. ; : e 017 1372.,
e ambiguity in boundary conditions:
e causally isolate boundaries

e > 1000s of km M/Msun
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- phenomenological waveform program:
analytical waveform models in the frequency domain

- make use of degeneracies and hierarchy in 7D parameter space
* robust finite difference code to explore parameter space
« 43 publications
* 16.7 + 37 million hours in PRACE 3+5, waiting for current evaluation

* need hundreds of cases @ 104 - 10° CPU hours to ensure detection and
parameter estimation ~100s of million of CPU hours.

 High throughput for many independent simulations at hundreds of cores.
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Code infrastructure

e Use 2 codes, use MPI| and OpenMP domain decomposition parallelization:

e BAM (developed originally at Uni Jena, C) - used for most production runs

¢ Einstein toolkit (open source, C, C++, FO0) - very active development

e performance & scaling very similar

e Use explicit Runge-Kutta time-stepping: time step limited by Courant condition

e Use ghost-point based variant of Berger-Oliger to refine temporal and spatial

resolution.

e Quter grids dominate
memory requirements,
Innermost grids speed.

e Checkpointing: longest

simulation ran ~ 4 months.

e Run on the minimal
number of cores for the
problem, use available
memory/core.

time per RHS evalutation [us]

16
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Figure 2. Results from weak scaling tests evolving the Einstein equati%ls on
refinement grid structure with nine levels. This shows the time requlred per grld p01r
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Code infrastructure

e Use 2 codes, use MPI| and OpenMP domain decomposition parallelization:

e BAM (developed originally at Uni Jena, C) - used for most production runs
¢ Einstein toolkit (open source, C, C++, FO0) - very active development
e performance & scaling very similar

e Use explicit Runge-Kutta time-stepping: time step limited by Courant condition

e Use ghost-point based variant of Berger-Oliger to refine temporal and spatial

resolution.
4 120
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Simulations performed & Job-bundling strategy

e PRACE-5: calibrate non-precessing model up to mass ratio 18, 37 million hours
e 12 high mass ratio cases: most expensive BH-simulations we are aware of > 10° hours.
¢ Prepare large scale precessing study.

e Bundle several cases into bigger jobs, possibly reconfigure after each checkpoint.
¢ Monitor throughput, queue times, manage job chaining etc. with cron.

¢ | RZ provided workaround for bug in IBM parallel environment:

e https://www.lrz.de/services/compute/supermuc/loadleveler/special/index.html#subjobs-intel
e Used > 20 million hours during last ~4 months of allocation.

average cores running/queued/total=8 862/1 495/23 457 jOb SIZES: © mMean e max
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https://www.lrz.de/services/compute/supermuc/loadleveler/special/index.html#subjobs-intel

The Challenge of Precession

g

7

Nno

lel to orbital angular momentum

® Spins para

y
7 7
\\W\\\\\\\\\\\\\\\

77
7

7
77

\\\\\\\\\\\\\

7

\\\\\
77
\\\\v\ 77N

1101101111017,

orbital plane preserved.

precession,

)

v\

7

fi
7

-

/wn

tal angular momentum and individual spins

slowly precess around total angular

momentum.

e Orbi



A path toward understanding precession

® |n a co-rotating frame the phasing and radiated angular momentum are
essentially unaffected by precession - “simple standard form” of a precessing

WHE: align z-axis with principal axis of the radiation quadrupole moment
[Schmidt+ PRD 2011]

e Spherical harmonic mode structure in standard frame corresponds to non-
precessing case -> “twisting up” accurate aligned spin model with “post-
Newtonian” Euler angles works well [Schmidt+ PRD 2012, Hannam+ PRL 2013]
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-itting factors: Models vs. PN-NR-hybrids

-F ~ detection efficiency:  0.97 standard detection limit

2 hi(f) h3(f)

hi,hs) = max 4R d
< 1 2> boto f Sn(f) f
® PhenomC: nonprecessing model ® PhenomP: PhenomC twisted up with PN

3.0¢ 3.0

2.0/ 200
15 © 15
1.0 1.o§

05 0.5,

0.0! 0.0!

e Future: need to calibrate merger/ringdown to actual precessing NR waveforms.



Understanding the significance of subdominant modes

« Learned how to systematically glue post-Newtonian and numerical
relativity data for general spherical harmonic modes.

« Understand where in parameter space higher modes are important when
neglecting spin, starting to analyze general spinning case.

q
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Understanding the significance of subdominant modes

« Learned how to systematically glue post-Newtonian and numerical

relativity data for general spherical harmonic modes.

- Understand where in parameter space higher modes are important when
neglecting spin, starting to analyze general spinning case.
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X eff

PhenomD - Phenom re-imagined

e Currently used in GW data analysis: PhenomA/B/C/P

e calibrated to m1/m2=4, moderate spins
e want |spins| ~ 1, m1/m2 ~ 100

e good for detection, parameter estimation “toy models”

Mass—Ratio: q
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simulations up to
g=18.

16



Raw data for modelling
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Phenomenological parameter fits
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Phenomenological parameter fits
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How well does this work: waveforms
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Matches vs. hybrids & between models

Nitz+ Phys. Rev. D 88, 124039 (2013)

1.0

1.0
0.9
0.8

0.5

o

B = 0-7
C% - 0.6
5 .
:E.’ 0.0 - 0.5
4 — 0.4
Pt

7 0.3

I
=
Ut

0.2
0.1
0.0

-1.0

4 6 8 10 12 14
Mass Ratio

FIG. 16. The match TaylorF2 and TaylorT4 approximants, w
3.5PN spin-orbit and 3.0PN spin-orbit tail corrections includ
a function of the spin of the black hole and the mass ratio
system. The approximants include only the nown spin terms
2.5PN. Matches are calculated using a 30Hz lower frequency
to approximate the sensitivity of the early alLIGO detector. Ir

PhenD vs. SEOBNRvZ2

Match

X1=X2

1.000[ --------------------------------------------------------------------------------------
0590 alLIGO early
«(1,-0.95, -0.95)
§0.100[ \ .(1,0.8,0.8)
= 0.050 hN— .(2,0.75,0.75)
= / \ \\ . (4,075,0.75)
= e . (8,-0.85, —0.85)
0.010¢ e 1 .(8,085,085)
0.005 — —1 .@18,-08,0)
0.001 100 150 200
M[Msol]

10°

Ll

77 20



Conclusions

+ Systematic study of highest mass ratio spinning BH mergers to date.
» Calibrated most accurate dominant mode non-precessing model to date.

» Model accuracy drops significantly when BHs have large positive spins,
astrophysical likely & “louder”.

- —> further need for refinement

« Developed a plan to conquer precessing spin space.

- supported by ERC Consolidating grant to Mark Hannam.
 Technically ready to run 100s of precessing cases.

- Advanced GW detectors ready for first observing run 09/2015,
6-month run in 2016.

 Follow up simulations in 20177
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