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How to Address the
Exascale Challenges?

« Power consumption

* Resiliency

* Heterogeneity

* Huge levels of parallelism
* Programmability

« Scalability
« Exploding data requirements
» Algorithms and application readiness
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DEEP/-ER Way

Develop an Exascale architecture tailored to application
requirements

« Match HW characteristics with application scalability patterns
« Exploit benefits of processor heterogeneity
 Profit from new memory technologies

 In an overall energy efficient envelope
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Cluster-Booster Architecture

128 Xeon (Sandy Bridge) 384 Xeon Phi (KNC)
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DEEP Hardware
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Enhance DEEP Architecture
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Programming Environment
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OmpSs on top of MPI provides pragmas to ease the offload process
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Application Running On
DEEP / DEEP-ER

int main(int argc, char *argv[]){
Source code ARy
for(int i=0; i<3; i++){
#pragma target device (comm:size*rank+i) copy_deps
#pragma omp task input(..) output(..)
foo_mpi(i, ..);}}

Compiler OmpSs Compiler
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RU ntime ‘ OmpSs Runtime
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User Benefits

The DEEP/-ER systems offer:

Complete software stack based on standard components

Hiding underlying hardware complexity

A familiar programming environment

Tools to analyse and optimise application performance

I/O and resiliency capabilities for data-intensive apps

- Reducing the burden of the application developer
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DEEP + DEEP-ER applications

Goals

General Purpose Platform

Brain simulation (EPFL)

Space weather simulation (KULeuven)
Climate simulation (CYI)

Computational fluid engineering (CERFACS)
High temperature superconductivity (CINECA)
Seismic imaging (CGG)

Human exposure to electromagnetic fields (INRIA)
Geoscience (BADW-LRZ)

Radio astronomy (Astron)

Oil exploration (BSC)

Lattice QCD (UREG)

» Co-design and evaluation of DEEP architecture and its programmability
* Analysis of the I/O and resiliency requirements of HPC codes
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Why DEEP/-ER For You

* You want to improve the scalability of your code but a part of it is
only low/medium scalable and hinders the rest

* Your application simulates multi-physics, multi-scale phenomena
with differentiated scalability characteristics

* You could profit from them but need an efficient (high bandwidth,
low-latency) MPI communication between accelerators

* You want to test already a Xeon Phi cluster (for future KNL ones)

* You could profit from Xeon Phi but your code requires large memory
at the nodes - NVM on node in DEEP-ER

* You need an efficient parallel /O infrastructure on an hybrid system

* You worry about how to make your code resilient profiting from new
memory technologies
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Seismic Imaging

CGG: an integrated geoscience company
* Equipment
« Acquisition
» Geology, Geophysics, Reservoir

Seismic processing

« Imaging algorithms: RTM and others - - =

» But also many other algorithms: noise removal, multiples removal; velocity B ——
model building, ...

Two factors driving increase of computing resources

» Better seismic acquisition
— Denser acquisitions (more sensors per km?)
— Increased frequency content
» Better seismic processing algorithms
— lterative algorithms (FWI, LS-RTM)
— Better wave-equation approximations (elastic)
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Seismic Imaging
Applications

* Two seismic imaging applications:
SRMIP & RTM
— One-way vs two-way wave equation

— Image each shot independently then
stack

« Sketch of implementation
— Master-worker scheme in MPI

— Master
* 1/O from/to distributed storage
» Shot distribution & load balancing
« Fault tolerance /’ \\ .

— Workers 8 L
» Process shots as efficiently { <_.>e>
L V :

as possible \
P
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Mapping SRMIP & RTM
on the DEEP architecture

 Master-worker is a natural fit for DEEP
— MPI Master(s) on Cluster node(s)

— MPI Workers on Booster nodes 8/\—\

—
» Efficient worker implementation \F
— OpenMP parallel loops u

— Explicit vectorization with pragmas

Booster Nodes

Cluster Node

 Different from GPU offload

— Only kernels are offloaded to the GPU
VS

— Complete worker is ‘offloaded’ on the booster
« Performance evaluation: focus on memory bandwidth

— Most seismic kernels are limited by memory bandwidth
— SP flop/byte is between ~.5 and ~5
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Porting and Tuning SRMIP

_ o _ Speedup with SIMD
« Porting and optimization on KNC  *°
— Offload on KNC with MPI >
— Vectorization of kernels *
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(*) Profile obtained from Xeon Phi Core Events scaled with Xeon Phi Uncore Events following

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-2-
understanding
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Porting and Tuning RTM

» Porting the RTM code to the KNC
— CGG RTM code is written in C + CUDA
— Porting to the KNC in 5 steps

* Rewrite CUDA kernels in C + OpenMP

« Remove GPU allocations and data transfers
between CPU and GPU

* Validate results
* Optimize kernels for the KNC
* Validate results

» Focusing on the performance
of the modeling part

— Modeling is the most compute intensive
part of RTM (forward and backward wave
propagation)

— RTM has large I/O needs for checkpointing

the wavefields, keeping the I/Os would limit

performance on the DEEP prototype

— Full RTM performance can be extrapolated
from the modeling performance
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Ongoing work

« Benchmarking on the final hardware and comparing performance
with other architectures

— Regular GPU-accelerated cluster

— Regular Xeon Phi cluster
— DEEP architecture

« Seismic processing on DEEP

— MPI Master-Worker is easy to efficiently map to the DEEP architecture
thanks to Parastation Global MPI

— Availability of node-local NVM is a great addition for DEEP-ER

« Domain decomposition for the modelling
— Growing grid size (longer offsets, higher frequencies)
— Limited capacity of high bandwidth memory
- Will need efficient MPl communications between accelerators
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Combustion: An engineering science at the cross-road
between chemistry & fluid mechanics with strong technological/
industrial and societal implications

' [ . O
4 i - — | - N

Environment-& seélrit

Energy & Heavy
anufacturing

z

PRACEdays15 — European Exascale Satellite Event — May 26, 2015 18



Current Application &
Challenges

In the aeronautical context: ignition is of paramount importance
* Number of fuel injection systems which calibrate the effective cost and power of the engine
» Operability as well as security issue of the engine

Phase | Phase |l
deposit near flame on
one injector one injector

Phase lll
light-
around
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Computational Fluid
Dynamics

THE KIAI 5-INJECTOR BURNER THE KIAI 2-INJECTOR BURNER

[ime = 36.8 ms | [Ime = 36.8 ms

PRACEdays15 — European Exascale Satellite Event — May 26, 2015 20




Computational Fluid
Dynamics

» Faster and more affordable simulations using AVBP: “2013 awarded
one of the most innovative HPC application for Industry in Europe”
by PRACE.

* Increased computational efficiency
> Better performing architecture

* Increased parallelization
» More compact/powerful parallel architecture

« Decreased computational cost ( Flops/$ )
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Computational Fluid
Dynamics

MPI rank 1

MPI rank 0

MEMORY

duplicated nodes

updated through
MPI communications
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Computational Fluid
Dynamics

Increased Parallelism required to tackle 224 task chips instead of 16!

MEMORY
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Computational Fluid
Dynamics

The DEEP architecture allows for faster and more
scalable applications, a definite step forward on HPC

applied for industrial applications.
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Interested?

Contact us!

DEEP DEEP-ER
pmt@deep-project.eu pmt@deep-er.eu
LinkedIN Twitter

http://linkd.in/1KiBe3y @DEEPprojects &

The research leading to these results has received funding from the European
Community's Seventh Framework Programme (FP7/2007-2013) under Grant
Agreement n° 287530 and n°610476
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