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A historical perspective

2 In the last 40 years, commercial aviation industry has achieved:

Noise Level

" Turbojets
. * 1st Generation Turbofans

* 2nd Generation Turbofans

(0 More than 20dB improvement
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SWithin Airbus, we have played a key role in reducing
the environmental impact from aviation
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Simulation and HPC in the A380 Design

May 2015

© The first Airbus aircraft to have exploited aerodynamics simulation & HPC

A380 Bigger & Quieter
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Quieter.

m

A340-300 A340-600 A380-800

Twice as many passengers flown
for the same noise level

Cleaner.

km

© Less than 3 litres of fuel per pax per 100

© Less than 759 of CO2 per pax per km
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Pushing the Boundaries through the A350

© An evolution of the aerodynamics design: Heavy use of simulation and
HPC — around 5000 data sets

© Cryogenic Wind Tunnel Testing replicating flight conditions

el

| Flight Re Testing =

240 % less test than
in A380

Advanced CFD \
Optimisation

Before Not A350 Distribution

& Optimised aircraft design,
finest aerodynamics and
lowest fuel burn

Wave Drag
—
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Airbus HPC patterns

* Simulation frameworks
* Higher process level (e.g. D.O.E./sensitivity analysis, optimization, trade-off studies...)

* Massive data production in single process (e.g. aero-data direct production geometry
using HPC)

* Complex processes (e.g. multi-level, multi-disciplinary optimization) =» Advanced
execution & data management
* Grid services / LSF profiles

* Virtualization of HPC resources (e.g. separate & global optimization of HPC activities )
* Meta-scheduling =» global virtualization of HPC resources through grid, local
gueues management through LSF
* FlowSimulator / Open-PALM

* FlowSimulator modular approach

(e.g. share mesh parallel services , coupling strategies parallel scripted at solver time loop
level)

* Capability to use FlowSimulator brick as a server being one of the component of a
distributed simulation

@ AIRBUS
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AIRBUS Cloud & Grid Architecture

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.
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GRID SERVICE

~ AIRBUS Helicopter

"t GRID SERVICE

@
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o Private HPC Cloud

& Green Computing : PUE < 1.2
» World Grid-Computing :
Europe, America and India

& LSF Platform-Computing(IBM)

and SynfinyWay (Fujitsu)

» HP POD - Cluster Platform
& Interconnect - Infiniband

@ AIRBUS



AIRBUS HPC4 - Key Characteristics

> Location:  Toulouse, Hamburg
& Containers : 3 POD's

o Servers: 2 320

& Cores . 55 680

» RMAX : 1 to 2 Pflops (lvy
Bridge, Broadwell)

& Memory : 270 TB
& Local Storage: 1500TB

& Shared Midterm
Storage : /50 TB

& Shared Computing
Storage : 1800 TB

o Outsourced service
o Energy Efficiency (PUE < 1.2)

o Access / Scheduler
Resource Management : LSF /
Synfiniway

& Interconnect : Infiniband
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Flight Physics current major HPC customer

Flight-Physics

Computational Fluid Dynamics
* Design & Optimize External Aircraft Shapes
* Design Sensitivities & Trades
* High Speed an Low Speed Performance
* Unsteady Aerodynamic/Aeroelastic Effects
e Structural Flexibility Effects
* Aircraft Data Model for the whole Envelope
* Loads and Aeroelastic Data
* Multiphysics : Aeroacoustics, Aerothermics...

Loads & Aeroelastics

S herocynames —
800

of HPC Capacity

2013
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Systems, Structure, PowerPlant future big customers

Major Component Optimisation

* Box sizing (covers)

e Composite fuselage preliminary sizing
(covers thickness)

e Hundreds of variables and thousands of
constraints

Powerplant
Noise prediction

* Integration of noise constraints in the A/C
design process

* Robustness of noise assessment along
development cycle

Propellers / contra propellers noise

» Assessment of noise radiated by SRP and
CRP.

» Optimisation of engines installations (MDO)

o Extensive use of coupled CFD/CAA
numerical tools

\ \Eg
Systems
Safety & Certification contribution
% » Electromagnetic compatibility in nominal

Virtual testing - Non Linear FE

 Generalization of NLFE models with
contact and complex material

Strength analysis

and hazardous conditions (EMH)
of HPC Capacity

Fuel Tanks: thermal fluid modelling

e Thermal fluid modelling for Fuel tanks is
used throughout the whole A/C
20 13 development lifecycle
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Progress in Flight Physics Simulation Capability

CFD — computational Fluid Dynamics

- Complete physical modelling
- Laminar-Turbulent Transition
- Multidisciplinary Optimisation

3D simulation of installed engine - =
CFD-based Aero Data -
Optimisation on Engine integration -
Low speed High-Lift -

- Support to Flight-Tests
- Unsteady Aerodynamics
- Thermal Aircraft

- High fidelity Aerodynamics Simulation
- Reducing standard wind tunnel testing
- Flexible Aircraft Representation

- High speed CFD-based scaling
- Simplified geometry

N Capability — Flight Envelope Coverage

P\ Physical Complexity
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Simulation Envelope
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Aerodynamic Flow Predictions vs. Flight Envelope

* Maximum lift borders are
determined by onset of
massive separation
causing total lift loss

Buffet bound%
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flow is physically yery
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* Beyond buffet boundary
flow tends to become
more and more separated

..from.the aircraft surface

» Unsteady eifects start to

become dominant

e Transonic flow
effects (shocks)

olutions

24
G
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e
iy

P

get stronger with

increasing Mach

number and load
: * Interaction of
........ physical effects

5 (shock flow,

boundary layer
flow) start to
dominate

Q
>

e Local low Mach number /
low compressibility flow
only weakly coupled to
main flow
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* Low g flow tends to
separate on the lower
side of the aircraft
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Aerodynamic Flow Predictions vs. Flight Envelope
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Exascale Vision

© Exascale computing key enabling technology for future aircraft design
© Fully multi-disciplinary development and optimization process
© Wide use of integrated MDA/MDO capabilities

© Real-time/interactive way of working fostering innovation
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Multidisciplinary Design Capability

© Multi-disciplinary analysis and design, supported by affordable CFD-based
aerodynamic and aero elastic data prediction will be a significant change of

paradigm in aeronautics industry.

Twist / Camber

Parametric Geometry / hickness

Shape Generation

Finite Element
Model
Generation

Mesh
Generation /
Deformation

-Step 1
-Step 2

-Initial
Geom.

CFD Loads

Flow Solver
Aerodynamic
Coefficients

Deformation
Structural

Forces

Full Flight
Envelope

Design Space
Mapping
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Exascale Challenges: Fly the Virtual Aircraft

© Real-time Simulation of Manoeuvre Flight of a Complete Aircraft

Full Unsteady aerodynamics Full Finite Element
simulation and Multi-disciplinary Modelling of the
interactions Airplane

Full Simulation of

& Loads and Stress for the Manoeuvre Flight
Airplane in the Whole
Envelope

Performance” and “Handling”
Prior to First Flight
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RANS to LES

© Move from RANS to unsteady Navier-Stokes simulation, (ranging from
current RANS-LES to full LES) and/or Lattice Boltzmann method

© Significantly improve predictions of complex flow phenomena around full
aircraft configurations with advanced physical modelling.

>
>

Computational cost / degrees of freedom
Increasing model influence

Relative importance of numerics

S, LBM)
no model :
T Tmodel T T T T AT T TNT Exascale
Hybrid RANS/LES
Limit = DNS _ (DES, 545, .. Petascale
LmitzDNS 4 ---_—-L_If
evel o
unsteady UnSteadv RANS modeling/readiness

— e s s M . RSN B B . . -

steady

From Sagaut P, Deck S., Terracol, M. (2006) Multiscale and Multiresolution Approaches in Turbulence.
Imperial College Press, UK, 356 pp
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Complex high lift case: RANS-LES vs LBM

[M020 alpha 5 beta 5 Re Flight MLG 55°
Mesh data

* 46.8 M nodes
* 131 Mcells
®72.5 M prisms
* 58.5 M tetras
* 37 prism layers

Nose Landing Gear wake interacting
with Main Landing Gear & cavities

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document. z
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Petaflops to Exaflops Challenges

Capacity VET ]S
# of Overnight

Computational
Loads cases run Unsteady " Capacity (Flops/s)
RANS . 5 A

106 == : ' 1 Zeta (10"

10° == RANS Low
Speed

1 Exa (10")

g

0 Rans High 1 Peta (10) x10°
Speed
105 L “Smart” use of HPC power: 1 Tera (107)
 Algorithms
0 » Big Data
« Knowledge 1 Giga (10)

,, Real time
/ CFD-based ACTD ’ CFD-based ¢
FulMDO X' noise S ik

/ simulation/ iirr:“zlligtf;(t) /

ICapability Achieved during one night batch
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Exaflops Challenges

© Hardware challenges: Physical tests
* Billion of components e
* Energy consumption
* Size of system memory
e System resilience Cost
* Energy Efficiency
e System resilience

© Software Co-design challenges:
* Extreme Parallelism
* Compute, I/O & Storage Performance Balance
* Simple rule of thumb design 1990 2000
* Middleware aware of failure resilience

© Optimize trade-off among
* Supporting new workloads, e.g. Big Data
* New HPC Delivery models, e.g. Cloud
* applied mathematics, algorithms, computing challenges

© Educational challenge

1998 : Cross-over
between S/W - H/IW

' 2018-2020 - CFD
New Generation

@ AIRBUS
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CFD Technology Roadmap : NASA Vision 2030 CFD Code

TRL M Low
MEDIUM
B HicH

HPC

CFD on Massively Parallel Systems
PETASCALE

CFD on Revolutionary Systems
(Quantum, Bio, etc.)

representative model problem v <13

=============:==+====--== e

> Technolqgy Milestone * Technology Demonstration 5, Decision Gate

Demonstrate efficiently scaled 30 exaF LOPS, unsteady,

CFD simulation capability on an maneuvering flight, full engine

exascale system simulation (with combustion)
(@)

EXASCALE

YES YES

Improved RST modeis
RANS in CFFD codes

Highly accurate RST modeils for flow separation
an

. Unsteady, complex geometry, separatedflow at
-2l Modeli Hybrid RANSALES ¥ NO 4 flight Reynolds number (e.g., high ift)
PhySIca MO € Ing LES rediction WMLES/WRLES for complex 3D flows at ap propriate Re
)
. =yl Unsteady, 3D geometry, separated flow
Chemicalkinetics : 2 = a .
e Fastchemical (e.g., rotating turbomachinery with reactions)
Combustion calculation speedup kinetics inLES
Grid convergence fora WMUE-regime . Production scalable
conGiste fi p turbulen ce-chemistry
Convergence/Rotistness . Automated robustsolvers mplete configuration Inleraciion model entropy-stable soivers

>

Algorithms -

Uncertainty Quanfffication (UQ)

Characterizatiorfjof UQ in aerospace

Scalable optimal solvers
Large scale stochastic capabilitiesin CFD

- O O
Reliable errorestimates in CFD codes Uncertainty propagation
Large scale parallel capabilitiesin CFD PP T ——
mesh generation

with adaptive control

Production AMR in CFD codes

Creation of real-time multi-fidelity database: 1000 unsteady CFD
simulations plus test data with complete UQ of all data sources

v v

|

Geometry and Grid Fixed Grid ighter CAD coupling
Generaﬁon Adaptive Grid
Simplified d.ata

Integrated Databafjes representation
Knowledge Extraction

Visualization

Define standar{] for coupling

MDAO

High fidelity coupling
chniques/frameworks

On demand analysis/visualization of a
10B point unsteady CFD simulation

On demand analysis/visualization of a
100B point unsteady CFD simulation

Incorporation of UQ forMDAO v I

Ll §

UQ-Enabled MDAO

Robust CFD for
complex MDAs

MDAO simulation of an entire
aircraft (e.g., aero-acoustics)
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High Fidelity CFD Strategy

Converge the current solutions

Standard CFD Converged CFD HyperFlex CFD

e..-2014 e 2013 - 2019 e 2018 - ...

e State-of-the-art solvers, e Fully complex configurations e Locally best fitting physical models
meshing & post-processing « Locally best fitting meshing e Higherorder discretisations & mesh
tools approaches e Mesh/order adapted solutions

¢ Processing & handling for ¢ State-of-the-art turbulence & o Fully modularsoftware architecture

more complex configurations  transition models o Flexible adaptation to latest
e Shortterm customerneeds .« Unsteady & coupled CFD solutions  hardware tech nology
on operations, maintenance , pesh adapted solutions « Overall CFD capability system
& support « Widely automatic CFD processing
e Robust & efficient computations

@ AIRBUS
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Evolution of CFD towards Exascale

Multi-Disciplinary / Multiphysics: Parametric Shape, Adjoint-based Optimisation —
Coupling Validation & Verification — MDA/MDO

> Knowledge & Visualization: POD RACER GappyPOD — Unsteady Data extract.

%

> Process Automation: CFD Manager, FlowSimulator — Rapid CFD for MDO

>

Mesh Generation & Adaptation: MB, Hybrid — Chimera, AMR — Automatic Hyperflex,
Uncertainty

%

Solver Algorithms: RANS 2" Order — // effectiveness > Uncertainty
— High-Order (DG, SDM, IGA), LBM ; massively //

%

> Physical Modelling: RANS (SA, SST — RSM) — Unsteady RANS-LES, LBM — LES

%

%

> Hardware: TeraFlop/s 2004 — PetaFlop/s 2014 — ExaFlop/s 2024
/| — parallel computing LBM — Lattice Boltzmann Method POD — Proper Orthogonal Decomposition SST — Shear Stress Transport turbulence
AMR — Automatic Mesh Refinement LES — Large-Eddy Simulation RANS —Reynolds Averaged Navier-Stokes ~ model
CFD — Computational Fluid Dynamics MB — Multi-Block RSM — Reynolds Stress turbulence Model
DG — Discontinuous Galerkin method MDA/MDO — Multi-Disciplinary Analysis / SA — Spalart-Almarass turbulence model
IGA — Iso-Geometric Analysis Optimisation SDM - Spectral Difference Method

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.
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Challenge #1 — Visualization/ldentification of aircraft shape in flight

* Design of Experiment of CFD-CSM computations
* POD of surface pressure
* Visualization of sensitivity to flight conditions

CFD — Computational Fluid Dynamics

CSM — Computational Structural Mechanics
DOE - Design of Experiments

POD - Proper Orthogonal Decomposition

Vector-valued output

/)

input —_—y

U out = f(in)
Design of Proper Orthogonal Non-Linear
Experiments Decomposition Interpolation

@ AIRBUS
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Challenge #2 — From Automated Chimera to Immersed CAD LES

* Derivative A/C design
* Minimum change in geometry vs legacy
* Capturing the flow physics (jet, ice shape...)

* New A/C design
* Immersed boundary in LES

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.
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Challenge #3 — Multidisciplinary Design Optimization

Adjoint-based Aero Optimization VDO
Direct Chain Adjoint Chain
&_ . Rever_se. "DA A.m'smmr.
parameterisation
e Xs. Xy, Z A
[cro disc;ete adjoini | T c Y .)
Post-Processing R 9 Post- = T >
o o] | Precessng ———
& Cons Update | Gradients of Obj. & , v
t————\ | design Cons.
w S ) Adjoint Aero-Structure
Workflow lent / xl' xl' z

Post-Optimal
sensitivities or RSMs

V4
8¥stom Z+AZ
Optimisation / Z X+AX

Awareness of design change effect on other disciplines
- Adjoint-based flexible shape Optimization

- Sensitivity of Aero design on Structure Reserve Factor

@ AIRBUS
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Challenge #4 — Flow control to reduce noise and vibration

Constrained design Direct Noise Computation

C%%

RANS/LES - 7x107 cells - HPC 100 CPUcores — 15days LES - 2x10° cells - HPC 8000 CPUcores — 20days

RANS —Reynolds Averaged Navier-Stokes LES — Large-Eddy Simulation

@ AIRBUS
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Conclusion

© Exascale computing is seen as a key enabling technology for future aircraft
design to be developed and optimised in a fully multi-disciplinary way,
making a wide use of design systems that provide integrated analysis and
optimisation capabilities which allow for a real-time/interactive way of
working.

© The move from RANS to unsteady Navier-Stokes simulation, (ranging from
current RANS-LES to full LES) and/or Lattice Boltzmann method will
significantly improve predictions of complex flow phenomena around full
aircraft configurations with advanced physical modelling.

© For instance moving LES capability from Petascale to Exascale computing
will accelerate the understanding of noise generation mechanisms and will
enable the elaboration of flow control strategy for noise reduction.

© Multi-disciplinary analysis and design, and real time simulation of aircraft
manoeuver, supported by affordable CFD-based aerodynamic and aero
elastic data prediction will be a significant change of paradigm in
aeronautics industry.
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