SOCC

AMOEBA and HPC

Parallelising Polarisable Force Fields

Weronika Filinger (w.filinger@epcc.ed.ac.uk)
EPCC, The University of Edinburgh

Why we want to use polarisable force fields

The accuracy of bio-molecular simulations can be seriously limited by the use of
traditional treatment of electrostatics from empirically-derived force fields. Non-
polarisable models typically approximate electrostatic interactions by only using fixed,
usually atom-centred, charges, so that the charges in atoms are limited in their ability
to adapt to changes in their local environment. Real physical systems, however, do
adapt and undergo polarisation, e.g. the orientation of atom bonds will distort when
placed in poorly conducting mediums such as water, changing the geometry, energy
and the way the system interacts. Polarisation is thus a necessary and important
intermolecular interaction required to accurately model chemical reactions in
biological molecules and water-based systems, which are of great interest in fields such
as chemistry, biochemistry and material science.

Much effort has been put into developing mutually polarisable models, which enhance
fixed charge models by incorporating the polarisation of atoms and molecules in the
dynamics of such systems. These polarisable models are more accurate and more
complex hence they tend to be much more computationally demanding. Therefore
there is a strong requirement for the software packages that implement polarisable
force fields to be capable of exploiting current and emerging HPC architectures to
make modelling ever more complex systems viable.

AMOEBA

AMOEBA [1] (Atomic Multipole Optimised Energies
for Biomolecular Applications) is a polarisable force
field that has been implemented and is used in
codes such as TINKER [2] and AMBER [3]. AMOEBA
replaces fixed partial charges with atomic
multipoles, including an explicit dipole polarisation
that allows atoms to respond to the polarisation
changes in their molecular environment.

Amoeba proteus
Image taken from http://www.microscopy-uk.org.uk/mag/
imgsep01/amoebaproteus450.jpg

AMOEBA has been shown to give more accurate structural and thermodynamic
properties of various simulated systems [4]. However, the time required to calculate
the effect of the induced dipoles alone is 15-20 times larger than the cost of one time
step for a fixed charge model. If this computational time could be reduced then the
AMOEBA force field could, for example, model a much broader range of protein-ligand
systems than is currently possible or provide a means of refining the analysis of X-ray
crystallography data to cope with large and challenging data sets, such as for ribosome
crystals. The larger computational costs associated with the polarisation calculations
needs to be mitigated by improving the parallelisation of codes such as TINKER.

TINKER

TINKER is a software package capable of
molecular mechanics and dynamics, with
some special features for biopolymers, written
by Jay Ponder (Washington University in St.
Louis). TINKER consists of a collection of
programs offering different functionalities and
supports customised force fields parameter
sets for proteins, organic molecules, inorganic

systems, etc., including the AMOEBA force
field TINKER’s logo taken from TINKER’s website[2]

TINKER is written in Fortran and has been

parallelised using OpenMP directives. Nearly

95% of the dynamic program included in the

Tinker distribution, which can be used to

generate a stochastic dynamic trajectory or

compute a molecular dynamics trajectory in a

chosen ensemble, can be executed in parallel.

However, the scalability of dynamic has been

found to be limited. Hence further

parallelisation efforts have been undertaken

DHER in water used in JAC benchmark by EPCC as part of the Advanced Potential
Image taken from http://www.gromacs.org/@api/deki/files/ Energy Surfaces (APES) project, a NSF-EPSRC

130/=dhfr_water.png funded US-UK collaboration.

OpenMP Performance

The performance of dynamic on the Joint AMBER-CHARMM (JAC) benchmark [5] run
on the UK ARCHER supercomputing service is shown in Figure 1. Each ARCHER node
has 24 cores so the program can be run on up to 24 OpenMP threads. The JAC system
consists of 2489 atoms of dihydrofolate reductase (dhfr) in a bath of 7023 water
molecules, giving a total of 23,558 atoms. The simulation run 100 MD steps in a
canonical ensemble (NVT - constant number of atoms, volume and temperature) at a
temperature of 298 Kelvins. The length of a time step was set to 1.0 femtoseconds.

From the performance and scalability

analysis we can note that: —eal

e The application scales up for to 20 e
OpenMP threads but a parallel efficiency
above 50% is only observed for up to 12
threads;
Slightly better performance and scalability
are observed for larger systems, but
memory usage restricts the maximum size
of the system that can be run;
An attempt to improve the performance

through OpenMP optimisations were not The ideal speedup is the speedup that
very successful; small performance would be obtained if the whole code
improvements were compiler and was parallelised with maximal
architecture dependant; efficiency, and the theoretical speedup
The difference between the observed and js the speedup calculated using
theoretical speedups suggests that Amdahl’s law [6] with the serial
without increased parallel coverage the component (i.e. the fraction of the

OpenMP optimisation will not improve code that is executed serially) of 5%.
the performance significantly;

W

6 8 10 12 14 16 18 20 22 24
Number of OpenMP threads

Figure 1. Speedups for different number of
OpenMP threads for JAC benchmark on ARCHER.

The next step is to create a hybrid MPI and OpenMP implementation to make use of the
shared memory within a node via OpenMP and to use MPI for the internode
communications.

MPI Parallelisation

An MPI parallelisation effort is under way. Due S
to the time constraints of the APES project processes
and the complexity of the Tinker code EPCC’s
efforts have been focused on a replicated data Parallel

. Efficiency
strategy. This should enable performance
improvements within the time frame of the
project.

Speedup

Table 1. Speedup and parallel efficiency for
different number of MPI processes for JAC
benchmark.

Micro-benchmarks of the most time consuming subroutines parallelised with MPI
together with scaling profiles indicate that using both MPI and OpenMP over the
same regions will not give satisfactory scaling (table 1). There is not enough
computation to compensate for the MPI communication costs in most subroutines.
Currently, work is being done to increase parallel coverage as much as possible while

keeping communication and synchronisation between MPI processes to a minimum.

Difficulties
During both stages of the parallelisation of TINKER, a number of issues that affect the
performance and the effectiveness of the parallelisation have been observed:
 The fine-grained structure of the code, i.e. many small subroutines that are called
many times, make it hard to parallelise;
Memory issues: large memory usage and indirect memory addressing, produce bad
memory locality and lead to memory trashing with a degradation in the overall
performance;
Large numbers of global variables, makes it hard to identify dependencies between
different variables and subroutines.

References

[1] J. W. Ponder et al., J Phys .Chem. B, 2010, 114(8), 2549-2564.
[2] J. W. Ponder and F M Richards J. Comput. Chem. 1987, 8, 1016-1024.
website : http://dasher.wustl.edu/tinker/
[3] D.A. Case, et al. (2014), AMBER 14, University of California, San Francisco.
website : http://ambermd.org
[4] O. Demerdash, E-H Yap and T. Head-Gordon, Annu.Rev. Phys. Chem. 2014(65): 149-74.
[5] http://ambermd.org/amber10.benchl1.html#jac, last visited on 9t April 2015.
[6] G.M. Amdahl, AFIPS Conf. Proc., 1967 (30): 483-485.




