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Swirl number around 1.2 is produced by 8 flat 
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Large Eddy Simulations (LES)4
Prerequisites: y+ = 1 and van Driest’s wall damping function
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Explicit LES equations are obtained by applying a low-pass filter with width  to the Navier Stokes equations
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The unknown sub-grid stress Tensor is predicted by the Smagorinsky model as a function of the strain tensor SA
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On ILES models, the filter width  is related to the mesh size i , then no subgrid model is applied. Since the 
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subgrid stress tensor has a dissipative nature, this role is played by the numerical error. 
The numerical error is controlled using different kind of limiters and schemes, such a TVD limited looking for 
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Selective Scale Discretization (SSD)
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Selective Scale Discretization (SSD)

The separation of the scales is performed using a high-pass filter. The laplacian filter has the expression:
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Results for Swirl no. 1 Averaged Axial Velocity with Diffusers 60º, 90º, 120º, 140º, 160º and no-Dif.
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VORTEX KERNELS

Strong swirl numbers produce larger IRZ and smaller ORZ than mild swirls. Diffusers prevent the formation of counter-
rotating vortex rings (Taylor-Couette instabilities) for mild swirls and the ORZ for strong swirls. 

VORTEX KERNELS

Criteria to visualize the vortex kernel may be lambda2 (λ2) lower than 0 or positive values Frequency Domain Analysis7Criteria to visualize the vortex kernel may be lambda2 (λ2) lower than 0 or positive values
of Q, both calculated from the strain and rotation tensors Energy spectrum Proper Orthogonal Decomposition
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Lambda2 is defined as the intermediate eigenvalue of the tensor S2+Ω2
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of frozen turbulence.
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Conclusions
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•LES was performed to model the interaction of swirling jets. SSD is a challenging approach to model flows. 
• Averaged fluid field was validated with experimental results provided by Roback and Johnson

Isosurfaces of Lambda2 equal to 
I f f Q l t 30000 Sli

• Averaged fluid field was validated with experimental results provided by Roback and Johnson. 
• The analysis on the frequency domain let identify energetic vortex structures using POD.
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minus 500000. Slices at axial positions 

z = 15mm and 25 mm with axial

Isosurfaces of Q equal to 30000. Slices 
at axial positions z = 17.5mm and 25 

•Strong swirl numbers produce larger IRZ and smaller ORZ than mild swirl numbers.
• Diffuser prevents or reduces the ORZz = 15mm and 25 mm with axial 

velocity ranging from -0.3 to 0.8 ms-1. 
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