

Use of Graphics Cards (GPU) to Simulate Atoms, Molecules and Nucleus.

Alcaraz-Pelegrina, J.M. and Sarsa, A.

Department of Physics. University of Córdoba. Spain

complexes.

Monte Carlo Techniques

Quantum Monte Carlo (QMC) methods solve the Schrödinger Equation by casting it as an integral and evaluating it through stocastic sampling.

$$\hat{H} \psi = E \psi$$

isolated or confined inside of molecular

Paralellism

Quantum Monte Carlo:

- Computationally expensive
- Well suited to paralellization (Higher sampling implies higher statistic)

Paralellization in CPU or in GPU?

GPU vs CPU

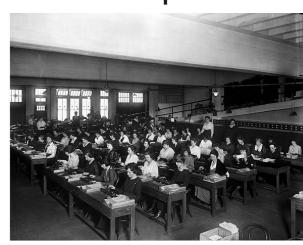
Application of QMC

Description of the physical properties of the

microscopic systems with a finite number of

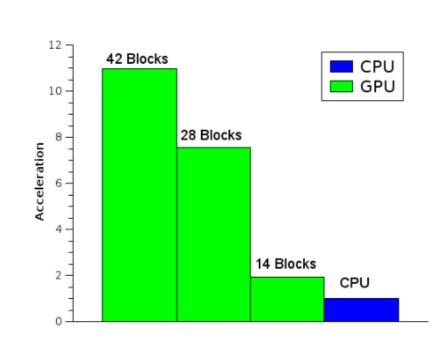
particles: nuclei, atoms and molecules,

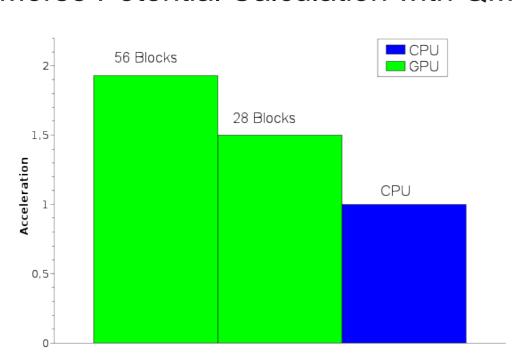
-CPU:


- Up to 8 processors
- Optimized for sequential serial processing

CIRCSE Research Centre, Università Cattolica del Sacro Cuore, Milan, Italy. Creative-Commons-CC-BY-NC

-GPU:


- Up to hundreds of light processors
- Specialized for highly parallel computation


Library of Congress, Prints & Photographs Division, photograph by Harris & Ewing, [reproduction number, LC-H25- 91219-KG]

Some Examples

H atom Ground State Calculation with QMC Variational

Morse Potential Calculation with QMC Path Integral

GPU= Nvidia®
GeForce GTX 470
CPU= Intel® Core™
i3-530

 $Acceleration = \frac{Exec. Time}{Free Time CPII}$

Future Work:

- QMC Variational for Many electrons atoms
- Diffusion Monte Carlo (DMC) for fermionic systems

Acknowledgements

The authors acknowledge partial financial support by the Spanish Dirección General de Investigación Científica y Técnica (DGICYT) under Contract FIS2012-39617-C02-0 and the University of Córdoba under the "Programa de Fortalecimiento de las Capacidades en I+D+I"

References

Quantum Confinement of the Covalent Bond beyond the Born-Oppenheimer Approximation.(2013) A. Sarsa. J. M. Alcaraz-Pelegrina, C. Le Sech, and S. A. Cruz.J. Phys. Chem. B, 117, 7270-7276

Fast quantum Monte Carlo on a GPU.(2015).Y. Lutsyshyn. Computer Physics Communications 187, 162–174