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Motivation

Phase diagram of QCD in T − µ plane

I At extremely high temperatures, quarks and gluons become
deconfined −→ quark–gluon plasma (QGP)

I Chiral symmetry restoration: quarks become nearly massless
I The QGP is created and studied in heavy ion collisions at

CERN and Brookhaven
I Precise understanding of spectral and transport properties

as well as thermodynamics required to interpret experiments

A central Pb–Pb collision in the ALICE detector

Methods
Path integral in euclidean space:

〈O〉 =
1

Z

∫
D[Φ]O[Φ]e−S[Φ]

I Discretise space-time −→ Lattice QCD
I Generate gauge configurations U with probability weight

e−S[U ] = detM [U ]e−SG[U ]

using Markov Chain Monte Carlo
I Temperature T = 1

Lτ
= (Nτaτ )−1

I Anisotropic lattices: as = ξaτ � aτ −→ non-trivial tuning [1, 2]
I Chroma [3] with BAGEL [4] optimisation for BlueGene

Real-time quantities encoded in spectral function ρ(ω;T )

GE(τ ;T ) =

∫ ∞
0

dωK(ω, τ ;T )ρ(ω;T )

Maximum Entropy Method to determine ρ(ω;T ) given GE(τ ;T )

Deconfinement transition
The transition to the QGP is characterised by a rapid increase in
the Polyakov loop L = e−Fq/T and the baryon number
susceptibility χB, as well as a peak in the chiral susceptibility.

Left: Polyakov loop L and chiral susceptibility χc. The peak in dL/dT gives
the deconfinement temperature Tc.

Right: Electric charge, isospin and baryon number susceptibility [5].

Charm and beauty

I J/ψ suppression — a probe of the quark–gluon plasma?
I c and b quarks created in primordial collisions, hard probes?
I b quarks cleaner probes than c?
I Sequential suppression observed at CMS
I Use non-relativistic QCD (NRQCD) for b quarks:
X No temperature-dependent kernel, G(τ ) =

∫
ρ(ω)e−ωτ dω2π

X Longer euclidean time range
X Appropriate for probes not in thermal equilibrium
× Does not incorporate transport properties
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Left: Experimental results from CMS [6]: at high temperature (bottom) the Υ
(2S) and (3S) states are suppressed relative to pp collisions (top).
Right: Spectral functions from FASTSUM [7]: above Tc, Υ (2S) melts, but the
ground state remains robust.

Spectral functions in
the χb1 channel [7]:
P-wave states melt
above Tc

Charmonium potential:

Schrödinger equation for charmonium wavefunctions ψj(r):[
− 1

2µ

∂2

∂r2
+ VΓ(r)

]
ψj(r) = Ejψ(r), µ =

mc

2
≈
MJ/ψ

4

Potential extracted from point-split correlators C(r, τ )

∂CΓ(r, τ )

∂τ
=

(
1

2µ

∂2

∂r2
− VΓ(r)

)
CΓ(r, τ ).

Central (left) and spin-dependent (right) potential between two charm
quarks [8], compared with the free energy of a static QQ̄ pair from [9].

Nucleons
If chiral symmetry is restored, the nucleon and its parity partner
are degenerate. We find that as the temperature increases, this
degeneracy emerges.

Nucleon correlators at different temperatures [10]. The forward and backward
propagating parts are positive and negative parity states.

Conductivity and charge diffusion

Conductivity σ and diffusion coefficient DQ are both determined
from the electromagnetic (vector) current correlator

Gemij (τ,−→p ) =

∫
d3xei

−→p ·−→x 〈jemi (τ,−→x )jemj (0,
−→
0 )〉

Kubo relation σ = lim
ω→0

ρemii (ω)

6ω
; DQ =

σ

χQT

Electric current spectral function [11]

Conductivity (left) and charge diffusion coefficient (right) as function of
temperature [5].

Outlook
I Very high precision (sub-permille) and fine temporal

resolution required to determine spectral information
I Anisotropic lattice QCD is in a position to achieve this,

thanks to improved algorithms and HPC resources
I Promising results for heavy quarkonium and conductivity
I “Third generation” ensembles with twice the temporal

resolution are in progress
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