Towards a quantitative understanding of the quark-gluon plasma

Jon-Ivar Skullerud¹, for the FASTSUM collaboration

Gert Aarts², Chris Allton², Simon Hands², Maria-Paola Lombardo³, Seyong Kim⁴, Sinéad Ryan⁵, JIS

¹Department of Mathematical Physics, Maynooth University, Ireland; ²Department of Physics, Swansea University, UK; ³INFN – Laboratori Nazionali di Frascati, Italy; ⁴Department of Physics, Sejong University, Korea; ⁵School of Mathematics, Trinity College Dublin, Ireland

Motivation

Phase diagram of QCD in $T-\mu$ plane

- At extremely high temperatures, quarks and gluons become deconfined → quark-gluon plasma (QGP)
- Chiral symmetry restoration: quarks become nearly massless
- ► The QGP is created and studied in heavy ion collisions at CERN and Brookhaven
- Precise understanding of spectral and transport properties as well as thermodynamics required to interpret experiments

A central Pb–Pb collision in the ALICE detector

Methods

Path integral in euclidean space:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[\Phi] \mathcal{O}[\Phi] e^{-S[\Phi]}$$

- ▶ Discretise space-time → Lattice QCD
- $\,\blacktriangleright\,$ Generate gauge configurations U with probability weight

$$e^{-S[U]} = \det M[U]e^{-S_G[U]}$$

- using Markov Chain Monte Carlo
- ► Temperature $T = \frac{1}{L_{\tau}} = (N_{\tau}a_{\tau})^{-1}$ ► Anisotropic lattices: $a_{s} = \xi a_{\tau} \gg a_{\tau} \longrightarrow$ non-trivial tuning [1, 2]
- Chroma [3] with BAGEL [4] optimisation for BlueGene

Real-time quantities encoded in spectral function $\rho(\omega;T)$

$$G_E(\tau;T) = \int_0^\infty d\omega K(\omega,\tau;T) \rho(\omega;T)$$

Maximum Entropy Method to determine $\rho(\omega;T)$ given $G_E(\tau;T)$

Deconfinement transition

The transition to the QGP is characterised by a rapid increase in the Polyakov loop $L=e^{-F_q/T}$ and the baryon number susceptibility χ_B , as well as a peak in the chiral susceptibility.

Left: Polyakov loop L and chiral susceptibility χ_c . The peak in dL/dT gives the deconfinement temperature T_c . **Right:** Electric charge, isospin and baryon number susceptibility [5].

Charm and beauty

- ▶ J/ψ suppression a probe of the quark—gluon plasma?
- c and b quarks created in primordial collisions, hard probes?
- b quarks cleaner probes than c?
- Sequential suppression observed at CMS
- Use non-relativistic QCD (NRQCD) for b quarks:
- ✓ No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$ ✓ Longer euclidean time range
- Appropriate for probes not in thermal equilibrium
- Does not incorporate transport properties

Left: Experimental results from CMS [6]: at high temperature (bottom) the Υ (2S) and (3S) states are suppressed relative to pp collisions (top). **Right:** Spectral functions from FASTSUM [7]: above T_c , Υ (2S) melts, but the ground state remains robust.

Charmonium potential:

Schrödinger equation for charmonium wavefunctions $\psi_j(\mathbf{r})$:

$$\left[-\frac{1}{2\mu} \frac{\partial^2}{\partial r^2} + V_{\Gamma}(r) \right] \psi_j(r) = E_j \psi(r), \qquad \mu = \frac{m_c}{2} \approx \frac{M_{J/\psi}}{4}$$

Potential extracted from point-split correlators $C(r, \tau)$

$$\frac{\partial C_{\Gamma}(r,\tau)}{\partial \tau} = \left(\frac{1}{2\mu} \frac{\partial^2}{\partial r^2} - V_{\Gamma}(r)\right) C_{\Gamma}(r,\tau).$$

Central (left) and spin-dependent (right) potential between two charm quarks [8], compared with the free energy of a static $Q\bar{Q}$ pair from [9].

Nucleons

If chiral symmetry is restored, the nucleon and its parity partner are degenerate. We find that as the temperature increases, this degeneracy emerges.

Nucleon correlators at different temperatures [10]. The forward and backward propagating parts are positive and negative parity states.

Conductivity and charge diffusion

Conductivity σ and diffusion coefficient D_Q are both determined from the electromagnetic (vector) current correlator

$$G_{ij}^{em}(\tau,\overrightarrow{p}) = \int d^3x e^{i\overrightarrow{p}\cdot\overrightarrow{x}} \langle j_i^{em}(\tau,\overrightarrow{x}) j_j^{em}(0,\overrightarrow{0}) \rangle$$
 Kubo relation
$$\sigma = \lim_{\omega \to 0} \frac{\rho_{ii}^{em}(\omega)}{6\omega}; \qquad D_Q = \frac{\sigma}{\chi_Q T}$$

Electric current spectral function [11]

Conductivity (left) and charge diffusion coefficient (right) as function of temperature [5].

Outlook

- Very high precision (sub-permille) and fine temporal resolution required to determine spectral information
- Anisotropic lattice QCD is in a position to achieve this, thanks to improved algorithms and HPC resources
- Promising results for heavy quarkonium and conductivity
- "Third generation" ensembles with twice the temporal resolution are in progress

References

- [1] R. Morrin, A. Ó Cais, M. Peardon, S. M. Ryan and J.-I. Skullerud, Phys. Rev. **D74**, 014505 (2006), [hep-lat/0604021].
- [2] R. G. Edwards, B. Joó and H.-W. Lin, Phys.Rev. **D78**, 054501 (2008), [arXiv:0803.3960].
- [3] R. G. Edwards and B. Joó, Nucl.Phys.Proc.Suppl. **140**, 832 (2005), [arXiv:hep-lat/0409003].
- [4] P. A. Boyle, Comput. Phys. Commun. **180**, 2739 (2009).
- [5] G. Aarts *et al.*, JHEP **1502**, 186 (2015), [arXiv:1412.6411].
- [6] CMS Collaboration, S. Chatrchyan *et al.*, Phys.Rev.Lett. **109**, 222301 (2012), [arXiv:1208.2826].
- [7] G. Aarts et al., JHEP **1407**, 097 (2014), [arXiv:1402.6210].
- [8] W. Evans, C. Allton, P. Giudice and J.-I. Skullerud,
- The charmonium potential at non-zero temperature, in preparation.

 [9] O. Kaczmarek, PoS **CPOD07**, 043 (2007), [arXiv:0710.0498].
- [10] G. Aarts *et al.*, arXiv:1502.03603.
- [11] A. Amato *et al.*, Phys.Rev.Lett. **111**, 172001 (2013), [arXiv:1307.6763].

Acknowledgments

This work has been supported by PRACE Call 3 and Call 5 awards, as well as a UK STFC DiRAC award and Irish Centre for High-End Computing Class A and B awards.

