PRACE Scientific Conference 2013

Leipzig, Sunday, Jun I 6th

A New DNA Structural Motif: the G-triplex

Vittorio Limongelli

Department of Pharmacy
University of Naples "Federico II" (ITA)
vittoriolimongelli@gmail.com

Chemical Background

Duplex

T-A base pair

C-G base pair

Triplex

T-A:T base pair

C-G:C+ base pair

G-Quadruplex

G-tetrad

Biological Background

Time Scale Problems

- Molecular Dynamics timestep ~ I fs (bond-stretching, bending,...)
- Most biologically relevant processes (docking/undocking process, protein/DNA folding, phase transitions,...) >~ I µs

DFG-IN/OUT transition in a MAP Kinase

movie by Anna Berteotti

MD vs. Metadynamics

movies by G. Bussi

- •V(s;t) disfavours the visited states (in the CVs space)
- •V(s;t) grows logarithmically with histogram N(s;t)
- •The error is progressively damped
- •V(s) converges to $-\Delta T/(T+\Delta T)F(s)$

V(s;t)

 $\dot{V}(s;t) = \omega e^{-\frac{\dot{V}(s;t)}{\Delta T}} \delta_{s,s(t)}$

initial rate

rate decreases as

Metadynamics Potential

 $\exp(-V/\Delta T)$

Laio and Parrinello, *PNAS* (2002)
Barducci, Bussi, Parrinello, *PRL* (2008)
http://www.multimedia.ethz.ch/speakers/cscs/cscsonscsscs/?doi=10.3930/ETHZ/AV-f9761e89-c38e-484b-9378-163dfe9a0efb&autostart=false

Thrombin Binding Aptamer (TBA)

TBA is a simple example of DNA G-quadruplex (15-mer)

5'-GGTTGGTGGTGG-3'

Methods

CVs Setting:

I.Radius of Gyration (Guanines O6)
$$R_{core} = \left(\frac{\sum_{i}^{n} |r_i - r_{com}|^2}{\sum_{i}^{n} m_i}\right)^{1/2}$$

2. Number of H-bonds between Guanines
$$H_{core} = \sum_{ij} \frac{1 - (\frac{d_{ij}}{r_0})^n}{1 - (\frac{d_{ij}}{r_0})^m}$$

G-tetrad

Metadynamics and Parallel Tempering-MetaD Simulations

PT-MetaD Setting:

- ✓ GROMACS4.5.3 + PLUMED + parmbsc0 FF*
- $\sqrt{256}$ replica = 4096 cores (T range 280-600 K)
- √ 100 ns per replica (~10000 waters)

3' end folding/unfolding

Angewandte

DOI: 10.1002/ange.201206522

The G-Triplex DNA**

Vittorio Limongelli, Stefano De Tito, Linda Cerofolini, Marco Fragai, Bruno Pagano, Roberta Trotta, Sandro Cosconati, Luciana Marinelli, Ettore Novellino, Ivano Bertini, Antonio Randazzo,* Claudio Luchinat,* and Michele Parrinello*

DNA Structures

3' end folding/unfolding

The movie

TBA Truncation

MD on 11 mer

G-Triad

Experimental Validation

G-triplex

Experimental Validation

NOESY NMR

Tm=307 K

DNA Structures

Duplex

T-A base pair

C-G base pair

Triplex

T-A:T base pair

C-G:C+ base pair

G-Quadruplex

G-tetrad

DNA Structures

Conclusions & Perspectives

- ✓ Sampling large time-scale biological events (e.g. DNA folding) requires the use of non-standard techniques and HPC resources
- √ Identification and characterization of a new DNA structure: the G-triplex
- √ Has the G-triplex a biological role?
- √ Are G-triplex structures present in the folding process of other DNA or RNA structures?
- ✓ Are G-triplex structures useful for the design of new aptamers?
- √ Is the G-triplex druggable? (VS campaign)

VS on G-Triplex

I. Chemical Libraries Selection

2. Filtering (Lipinski's role, ADME etc.)

3. Docking in the specific groove of the G-triplex

4. Identification of lead compounds able to bind the G-triplex

Biological Background

Protein/Ligand Binding Free Energy

$$\Delta G_b^0 = -\frac{1}{\beta} ln(C^0 K_b)$$

 C^0 = Standard Concentration (constant)

Poor convergence of the FES in the ligand unbound state

The Idea

Driving the ligand out of the protein using a funnel restraint potential

 $\Delta G_b^0 = \Delta G - \frac{1}{\beta} ln(\pi R_{cyl}^2 C^0)$

Free Energy difference between the bound and unbound state

potential of the

bound state

Su is equal to

 πR_{cyl}^2

^{*} Allen et al., PNAS (2004); Roux et al., J. Chem. Phys. (2008)

^{**} Limongelli, Bonomi and Parrinello, PNAS (2013)

Funnel-Metadynamics (FM)

 $\Delta G_b^0 = -8.5 \pm 0.7 \text{ kcal/mol (previous calculations } -5.5 \text{ to } -9.0 \text{ kcal/mol)}^*$

Funnel metadynamics as accurate binding free-energy method

Vittorio Limongelli^{a,1}, Massimiliano Bonomi^b, and Michele Parrinello^{c,d,1}

^aDepartment of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; ^bDepartment of Bioengineering and Therapeutic Sciences, and California Institute of Quantitative Biosciences, University of California, San Francisco, CA 94158; ^cDepartment of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), 8006 Zürich, Switzerland; and ^dFacoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana, CH 6000 Lugano Switzerland.

*Doudou et al., J. Chem. Theory Comput. (2009)

FM Movie

Acknowledgements

University of Naples

Ettore Novellino

Antonio Randazzo

Stefano De Tito

Bruno Pagano

Ivano Bertini

Michele Parrinello

Computational Resources

Massimiliano Bonomi

PhD and PostDoc positions available

<u>vittoriolimongelli@gmail.com</u>

Thank You

Experimental Validation

Ion Binding

How to compute $\Delta G_{binding}$

$$[L] + [P] \leftrightarrows [LP]$$

$$K_{eq} = \frac{[LP]}{[L] [P]}$$

 ΔG_{site} is equal to 0

$${}^*\!K_{eq} = e^{\beta \Delta G_{site}} \int_{site} dz$$

potential when the ligand is bound

Using a cylindric restrain

lated for K⁺, in good accord with experiment. The development above leading to Eq. (4) makes it clear why S_u is equal to πR^2 in Ref. 3; because R was purposely chosen to be much larger than the lateral fluctuations of the bound ion in the site, the restraining potential u is not felt by the ion in the binding site, which means that $\Delta G_{\text{site}} = 0$ identically. Bastug

potential when the ligand is unbound

$$\Delta G_{binding} = -K_bT \ln (K_{eq} C_0)$$

 C_0 = Standard Concentration (constant)

Funnel-Metadynamics (FM)

200

100

 $\Delta G_b^0 = -8.5 \pm 0.7$ kcal/mol (previous calculations -5.5 to -9.0 kcal/mol)

Funnel metadynamics as accurate binding free-energy method

Vittorio Limongelli^{a,1}, Massimiliano Bonomi^b, and Michele Parrinello^{c,d,1}

^aDepartment of Pharmacy, University of Naples Federico II, I-80131 Naples, Italy; ^bDepartment of Bioengineering and Therapeutic Sciences, and California Institute of Quantitative Biosciences, University of California, San Francisco, CA 94158; ^cDepartment of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule (ETH), 8006 Zürich, Switzerland; and ^dFacoltà di Informatica, Istituto di Scienze Computazionali, Università della Svizzera Italiana,

300

Waters Role

Convergence FM

