Structure and evolution of an active region on the Sun

Hardi Peter

Sven Bingert Philippe Bourdin Feng Chen

Max-Planck-Institut für Sonnensystemforschung Katlenburg-Lindau Germany

http://www.mps.mpg.de/de/projekte/coronal-dynamics/peter@mps.mpg.de

The corona of the Sun

solar eclipse 13.11.2012

The Sun over two days **EUV (17.1 nm)** Fe⁸⁺ ca. 10⁶ K SDO / AIA SDO / HMI visible light: 4.14 solar surface with sunspots 25.-27. May 2013

Coronal structure: mostly coronal loops

11.Feb.2013 02:07:35 UT

Coronal structure: mostly coronal loops

Eruption and splash-down — "Arschbombe"

"Normal" variability of the corona

The driver at the surface I: magneto-convection

The driver at the surface II: flux emergence

model introduction

loops in a stable active region

loop formation in emerging active region

Concept for coronal heating

How to construct a corona in the box...

- ► take observed magnetogram:
 - \rightarrow surface magnetic field B_0

How to construct a corona in the box...

- take observed magnetogram:
 - \rightarrow surface magnetic field B_0
- extrapolate B₀ to fill box assume "1D" atmosphere
- surface convection: granulation drives magnetic field
- "fieldline braiding": currents induced in corona

$$\mathbf{j} = (\nabla \mathbf{x} \; \mathbf{B}) / \eta$$

How to construct a corona in the box...

- take observed magnetogram:
 - \rightarrow surface magnetic field B_0
- extrapolate B₀ to fill box assume "1D" atmosphere
- surface convection: granulation drives magnetic field
- "fieldline braiding": currents induced in corona

$$\mathbf{j} = (\nabla \mathbf{x} \; \mathbf{B}) / \eta$$

heating through Ohmic dissipation:

$$\eta j^2 \sim \exp(-z/H)$$

loop-structured 10⁶ K corona

Magnetohydrodynamics (MHD)

$$egin{aligned}
abla imes oldsymbol{B} & oldsymbol{
abla} \cdot oldsymbol{B} = oldsymbol{0} \
abla imes oldsymbol{E} & oldsymbol{
abla} \cdot oldsymbol{E} = oldsymbol{0} \
abla imes oldsymbol{E} & oldsymbol{
abla} \cdot oldsymbol{E} = oldsymbol{0} \
abla \cdot oldsymbol{E} & oldsymbol{
abla} \cdot oldsymbol{e} \
abla \cdot oldsymbol{B} & oldsymbol{
abla} \cdot oldsymbol{E} & oldsymbol{
abla} \cdot oldsymbol{B} & oldsymbol{
abla} \cdot oldsymbol{
abla}$$

$$\mathbf{j} \times \mathbf{B} = \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B}$$

induction eq.

$$\partial_t \boldsymbol{B} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \nabla \times (\eta \nabla \times \boldsymbol{B})$$

continuity eq.
$$\partial_t \rho + \nabla \cdot (\rho \, \boldsymbol{u}) = 0$$

mag. diffusivity
$$\eta = \frac{1}{\mu \, \sigma}$$

momentum eq.
$$ho \partial_t m{u} \ + \
ho (m{u} \cdot
abla) \, m{u} \ = \ - \,
abla p \ + \ m{j} imes m{B} \ + \
abla \cdot m{ au}$$

viscous stess tensor au:

$$\nabla \cdot \boldsymbol{\tau} = \rho \nu \left(\Delta \boldsymbol{u} + \frac{1}{3} \nabla \left(\nabla \cdot \boldsymbol{u} \right) \right)$$

energy eq.
$$\left(\partial_t + \boldsymbol{u}\cdot\nabla\right)e + \frac{5}{2}\,p\,\nabla\cdot\boldsymbol{u} = -\nabla\cdot\boldsymbol{q} - L_{\mathrm{rad}} + \eta\,\boldsymbol{j}^2 + Q_{\mathrm{visc}}$$

internal energy: $e = n \frac{3}{2} k_{\rm B} T$

 for coronal diagnostics it is essential to get energy equation right

Pencil code

Brandenburg & Dobler (2002) Comp. Phys. Comm., 147, 471

designed for compressible turbulent MHD flows wide range of applications

high-order explicit finite difference high-order Runge-Kutta time stepping non-equidistant grids

highly modular

extensions to standard MHD

- Spitzer heat conduction
- radiative losses / radiative transfer
- particles
- eight moment approximation

– ...

http://pencil-code.googlecode.com/

freely available
over 100 contributors world wide
tested on many platforms
large set of samples included
Tools for visualization
and data analysis
MPI parallelized
scales well

up to more than 80.000 cores

Model and observations

model introduction

loops in a stable active region

loop formation in emerging active region

A one-to-one active region model

Hinode/SOT magnetogram

- 14.Nov.2007, 12:15-18:00 UT

- time-series: 90 s cadence

Bourdin, Bingert, hp (2013)

EIS / Hinode raster scan

- covering similar FOV
- acquired during same time frame
- full spectral profile of many lines
 e.g. Fe XV (284 Å)

A one-to-one model of an "old" active region

3D MHD numerical model

- 235 x 235 x 156 Mm³ → full active region
- 1024 x 1024 x 256 grid points
- driven by observed velocities and observed photospheric magnetogram
- ran on Curie on typically 4000 cores
- ca. 8 M core hrs

post processing:

- synthesize emission
- spectral line synthesis
- field-line evolution

coronal loops

form above

well developed

active region

Model and observation: intensity & Doppler shift

Doppler velocity [km/s]

-10

- active region loops are in right places
- less clear agreement in Doppler shifts
- large loop does not show in full (more time would be needed)

Comparison to stereoscopic observations

position of *observed* loops determined by stereoscopic reconstruction

match central field line of loops in model!

model introduction

loops in a stable active region

loop formation in emerging active region

flux-emergence simulation

(Cheung et al. 2010, ApJ 720, 233)

- magnetic flux rope rises from bottom and breaks through surface
 - → formation of sunspot pair
 - → limited to interior and surface

coronal simulation:

- use photospheric layer (T, ρ, v, B) as time-dependent lower boundary
 - → magnetic field expands
 - → coronal loops form

3D MHD numerical model

- 1024 x 512 x 512 grid points
- temporal evolution over 10 hours
- runs on SuperMUC ~ 7 M core hrs
- using 4000 cores

post processing:

- synthetic coronal emission
- field-line tracing

Pencil

Chen, Bingert, hp, Schüssle Cameron, Cheung (2013)

synthesized coronal emission (1.5 10⁶ K)

- ► loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)
- loop fragments

34 min out of 10 hrs

- loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)
- loop fragments

EUV loops form through increased heating: higher Poynting flux @ loop feet

146 x 73 Mm²

Chen, Bingert, hp, Schüssler, Cameron, Cheung (2013)

- loops form at different places at different times
- loop footpoints are in sunspot periphery (penumbra)
- loop fragments

- **EUV** loops form through increased heating: higher Poynting flux @ loop feet
- loop footpoints where strongest stretching of B
- → field-line braiding flux-tube tectonics

146 x 73 Mm²

Chen, Bingert, hp. Schüssler, Cameron, Cheung (2013)

Fragmentation of coronal structures

Conclusions

- ▶ field line braiding provides proper spatial and temporal distribution to heat the corona and drive its dynamics
 - → matching structures in model and observations
 - → understanding loop formation
 - → and many more... (Doppler shifts, variability, ...)
- ► HPC is pivotal to capture spatial and temporal complexity
 - → numerical experiments to test model ideas
 - → reveals which processes are at work
- next steps
 - → more realistic match of individual structures
 - → investigate parameterization of heat input
 - → investigate different levels of activity (→ other stars)
- ▶ new opportunities for comparison to observations
 IRIS / NASA Solar Orbiter / ESA Solar-C / JAXA

Structure and evolution of an active region on the Sun

