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Abstract 

Airinnova is a start-up company with a key competency in the automation of high-fidelity computational fluid 
dynamics (CFD) analysis. Following on from our previous PRACE SHAPE project, we have continued 
collaborating with the PDC Center for High Performance Computing at the KTH Royal Institute of Technology 
(KTH-PDC), to investigate the performance analysis of the open source CFD code SU2 and further develop the 
automation process for the field of aerodynamic optimization and design.  
 

1. Introduction 
Airinnova AB is a start-up company that provides and develops advanced computational solutions for cutting-
edge preliminary designs for aircraft, including computational aerodynamics, and multi-disciplinary optimization. 
High fidelity CFD analysis is a vital tool in modern aircraft design and optimization, and the computational 
capability is a limiting factor. High fidelity CFD requires special skills to generate suitable meshes for modelling 
aircraft and to execute the analysis code, which constrains the use of CFD analysis for aircraft design to a limited 
number of people who already have those skills. 
 
Airinnova is working on establishing methods to perform CFD analysis automatically, and thus make it possible 
for CFD to be used far more widely in aircraft design, as researchers and designers without the necessary CFD 
skills would be able to use the automatic procedures. To achieve this, Airinnova is developing an automated 
procedure to carry out Reynolds-Averaged Naiver-Stokes (RANS) based CFD analysis, either using watertight 
aircraft geometries defined by Computer-Aided Design (CAD) files, or using Common Parametric Aircraft 
Configuration Schema (CPACS) files. Figure 1 illustrates the flow of data for the automated CFD process that 
Airinnova provides. It starts from a watertight aircraft geometry (left), and then the mesh to represent the aircraft 
is automatically generated (middle) for CFD analysis to be performance with the selected turbulent models (right).   
 

 
Figure 1: Data flow of the automation CFD prototype that Airinnova provides 

 

* Corresponding author. E-mail address: mengmeng.zhang@airinnova.se 
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The automation of CFD analysis can be applied to many fields within the aviation design industry. Some typical 
examples of the application of CFD analysis are as follows:  
 
1. Aerodynamic shape optimization: 

Set up design parameters for a wing to facilitate the optimization work:  
a. using the Free Formal Deformation box control points around a wing, and 
b. using the standard shape parameters of an aircraft planform, as well as the twist, camber, and 

thickness for a wing. 
2. Compilation of aero-data for flight simulation: 

Execute computations for a set of flight states and collect the aero-coefficients in a table/matrix in .csv 
format (post-processing part).  

 
Both of these applications require high fidelity CFD simulations, such as RANS solvers with turbulence models 
and/or LES solvers. The computational time (that is, how it takes to run the simulations) is a limiting factor that 
determines whether it is possible to carry out the simulations on the available computational resources in real time. 
In order to make it is possible to actually perform such computationally intensive work, the simulations must be 
parallelized - thus the total run-time can be reduced to make the simulations feasible when run on high performance 
computing (HPC) resources. Within the PRACE SHAPE project, the CFD computations have been speeded-up 
using HPC resources; the test cases that were used were the NASA Common Research Model (CRM) [1,2] and a 
regional jet-liner (A320-alike). The solutions that were obtained are shown for each application respectively. This 
demonstrated that the automation of CFD analysis for aircraft design is both viable and valuable. 
 
2. Background  
 
The compressible Navier-Stokes equations can be written in conservative form as [3] 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝛁𝛁 ∙ (𝜕𝜕𝐮𝐮) = 0, 
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with suitable initial and boundary conditions, where 𝜕𝜕 is the density, 𝒖𝒖 = (𝑢𝑢, 𝑣𝑣,𝑤𝑤) is the velocity, 𝜕𝜕 is the total 
energy per unit mass, and 𝑝𝑝 is the static pressure. For the case of constant viscosity coefficient 𝜇𝜇, the shear stress 
tensor 𝝉𝝉 for a Newtonian fluid is 

𝝉𝝉 = 𝜇𝜇[𝛁𝛁𝒖𝒖 + (𝛁𝛁𝒖𝒖)𝑻𝑻] − 2
3
µ(𝛁𝛁 ∙ 𝐮𝐮)𝑰𝑰                                                                         (2) 

By applying the relations in (2), Equations (1) can be rewritten in vector notation as RANS (Reynolds-averaged 
Navier-Stokes) equations 
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where the conservative variables, the convective fluxes, and viscous fluxes tensor are given by,  
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where 𝑐𝑐𝑝𝑝 is the specific heat at constant pressure, and 𝑇𝑇 is the temperature. Assuming a perfect gas with a ratio of 
specific heats 𝛾𝛾 and gas constant 𝑅𝑅, one can determine the pressure from 𝑝𝑝 = (𝛾𝛾 − 1), the temperature is given by 
𝑇𝑇 = 𝑝𝑝/(𝜕𝜕𝑅𝑅), and 𝑐𝑐𝑝𝑝 = 𝛾𝛾𝑅𝑅/(𝛾𝛾 − 1). 

The open source code, SU2 [4] for CFD simulation and shape optimization has been investigated in our previous 
project. SU2 is a computational analysis and design package that has been developed to solve multi-physics 
analysis and optimization tasks using unstructured mesh topologies [5-7]. In SU2, the standard edge-based finite 
volume method is used to discretize the governing equations (3). The computational domain consists of non-
overlapping elements and the variables are stored at the nodes of the mesh. For each node, the control volume that 
constitutes the dual grid is defined as a polygon with its vertices at the centers of gravity of the surrounding 
elements and at the midpoints of the sides, see [5]. 

By employing the integral form of Equation (3), we obtain  
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∫ 𝜕𝜕𝑼𝑼
𝜕𝜕𝜕𝜕

d𝑉𝑉 + ∫ 𝑭𝑭𝒄𝒄(𝐔𝐔) ∙ 𝐧𝐧d𝐴𝐴 − ∫ 𝑭𝑭𝒗𝒗(𝐔𝐔) ∙ 𝐧𝐧d𝐴𝐴 = 0𝜕𝜕Ω𝜕𝜕ΩΩ ,                                                              (4) 

and the implicit form of the semi-discrete system becomes 
𝑑𝑑
d𝜕𝜕

(|Ω𝑖𝑖|𝑈𝑈𝑖𝑖) + 𝑅𝑅𝑖𝑖(𝑈𝑈) = 0,                                                                             (5) 

where the numerical residual 𝑅𝑅𝑖𝑖(𝑈𝑈) at each vertex is evaluated with each nonlinear iteration using a sequence of 
loops over the edges and vertices, for details see [6]. Since the discretization in time is independent of that in space, 
the semi-discrete system in Equation (5) can be calculated using the standard numerical methods (e.g., implicit 
Euler method) for ordinary differential equations, see [7]. 

 

3. Profiling and performance analysis 
CrayPat is a profiling analysis tool for the Cray XC platform provided by Cray [8]. In principal, there are two 
methods of collecting code performance data, namely sampling and tracing. In order to reduce the overhead and 
capture the MPI features, we use sampling data which provides basic performance analysis information by 
sampling the program counter (PC) at a particular time interval (1 millisecond by default). Firstly the CrayPat 
command pat_build is used to generate a new executable, which will have suffix +pat, and then run the executable 
on the computer nodes. A performance data file will be created when the analysis is finished. The command 
pat_report prints an ASCII text report with detailed profiling data. CrayPat also provides an application program 
interface (API). By using this API, we can focus on analyzing the performance of the solution section of the code 
and skip the initialization section. In this profiling analysis, The CrayPat API is introduced in the main function 
SU2_CFD.cpp as follows. 
                   #ifdef CRAYPAT       

                   istatpat = PAT_record(PAT_STATE_ON); // Set PAT_STATE on 

                   #endif 

                   Driver->StartSolver();               // Launch the solver 

                   #ifdef CRAYPAT 

                   istatpat = PAT_record(PAT_STATE_OFF); // Set PAT_STATE off 

                   #endif 

As an example, the profile by function with 96 MPI-rank on ARCHER system is shown in Table 1. 
    Samp% |      Samp |     Imb. |  Imb. | Group 
          |           |     Samp | Samp% |  Function 
   100.0% | 512,491.2 |       -- |    -- | Total 
|----------------------------------------------------------------------------- 
|  64.9%  | 332,820.2 |       -- |    -- | USER 
||---------------------------------------------------------------------------- 
||   9.2% |  47,372.9 | 20,609.1 | 30.6% | CEulerSolver::SetPrimitive_Limiter 
||   4.8% |  24,495.9 |  9,369.1 | 28.0% | CSysMatrix::ProdBlockVector 
||   4.1% |  20,829.4 |  9,433.6 | 31.5% | CEulerSolver::SetPrimitive_Gradient_GG 
||   3.9% |  20,106.4 | 11,017.6 | 35.8% | CSysMatrix::MatrixVectorProduct 
||   3.0% |  15,138.4 |  8,359.6 | 36.0% | CUpwRoe_Flow::ComputeResidual 
||   2.7% |  14,024.7 |    894.3 |  6.1% | CSysMatrix::Gauss_Elimination 
||   2.6% |  13,433.5 |  8,984.5 | 40.5% | CSysMatrix::AddBlock 
||   2.5% |  12,821.7 |  8,827.3 | 41.2% | CSysMatrix::SubtractBlock 
||   2.2% |  11,429.7 | 11,241.3 | 50.1% | CNSSolver::Preprocessing 
||   2.1% |  10,954.9 |  5,562.1 | 34.0% | CEulerSolver::Upwind_Residual 
||   1.8% |   9,229.9 |  2,120.1 | 18.9% | CEulerVariable::GetPrimitive 
||   1.6% |   8,380.0 |  3,666.0 | 30.8% | CAvgGradCorrected_Flow::ComputeResidual 
||   1.5% |   7,854.2 |  4,304.8 | 35.8% | CNumerics::GetPMatrix_inv 
||   1.0% |   5,352.5 |  2,787.5 | 34.6% | CEulerVariable::SubtractGradient_Primitive 
||   1.0% |   5,265.0 |  2,176.0 | 29.6% | CNSSolver::SetTime_Step 
||============================================================================ 
|  32.4% | 166,061.1 |       -- |    -- | MPI 
||---------------------------------------------------------------------------- 
||  20.6% | 105,486.0 | 80,681.0 | 43.8% | MPI_Allreduce 
||   9.7% |  49,905.7 | 54,535.3 | 52.8% | MPI_Sendrecv 
||============================================================================ 
 

Table 2: The profile by function with 96 MPI-rank on ARCHER using the CrayPat  

ARM MAP is another parallel profiler with a simple graphical user interface [9]. After completing the run, MAP 
displays the collected performance data using GUI. A screenshot for the profiling results with 96 MPI-rank is 
shown in Figure 2. 
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Figure 2: The screenshot of profiling results of 96 MPI-rank on Archer using ARM MAP 

ARM MAP provides various viewpoints to present collected performance data in different sections. In Figure 2, 
the top section displays the “Metrics view” with MPI groups such as “MPI call duration”, “MPI point-to-point” etc. The 
“Functions View” in the bottom displays the profiles of the functions in the SU2 code. The exclusive time or the time 
spent in the function itself is shown in self.  The value in the Total column is for the time in the function itself and 
all its calltrees or inclusive time while the one in the Child column shows the time spent in the calltrees only. To 
improve the scalability at large scale, it would be important to conduct identity analysis and eliminate the MPI 
collection communications (e.g., MPI_Allreduce()) just for verbose information. From Table 1 and Figure 2, we find 
that the MPI communications take around 30% of the total execution time.    

The benchmarking tests were performed on the ARCHER system at EPCC, UK [10]. ARCHER is a Cray XC30 
system supercomputer based on Intel Ivy Bridge processors. It has a total of 4920 computer nodes (118,080 cores). 
The local Cray XC40 system, Beskow at PDC [12], was also used for debugging and tests. Beskow is based on 
Intel Haswell processors and Cray Aries interconnect technology. It consists of 2060 compute nodes, each of which 
consists of 32 Intel Xeon E5-2698v3 cores respectively 36 Intel Xeon E5-2695v4 cores. 

The scalability tests for two cases were carried out on ARCHER.  One case consisted of mesh with 7.0M grid 
points and the other had 8.5M grid points. Firstly, we compare with the base-line using the SU2 v6.0.0 and Cray 
GNU environment mode PrgEnv-gnu. The average execution time per step with different MPICH environment 
variables is shown in Table 2. 
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Flags Time/Step (s) 

“-O2” 0.620737 

“-O2” + MPICH_USE_DMAPP_COLL=1 0.625222 

“-O2” + MPICH_RMA_OVER_DMAPP=1 0.615493 

“-O2” + craype-hugepages16M 0.595895 

“-O2” + MPICH_RANK_ORDER 0.611220 

“-O2” + “-j2 -d2” (hyperthreading) 0.692701 

 
Table 2 The average executive time per step using different MPICH environment variables 

Figure 3(a) shows the performance results for the mesh consisting of 7.0 million points on ARCHER. The 
benchmarking tests ran for 1000 iterations. The strong scaling performance measured in total execution time in 
seconds is presented in this figure. The parallel efficiency 𝜂𝜂(%)  at maximum used cores is defined as [13]:  

𝜂𝜂(%) =
𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚 ∙ 𝑁𝑁𝑚𝑚𝑖𝑖𝑚𝑚
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

∙ 100 

where 𝑇𝑇min is the total execution time for the minimum number of cores 𝑁𝑁min, while 𝑇𝑇max is the total execution 
time using the maximum number of cores 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 . 

A parallel efficiency 𝜂𝜂 = 54.1% can be achieved for up to 1536 cores compared with 96 cores.  Figure 3(b) shows 
the performance results for a mesh of baseline with 8.5 million mesh points on ARCHER. A parallel efficiency 
𝜂𝜂 = 54.7% of can be obtained for 1536 cores compared with 96 cores. As the MPI-rank increases, the parallel 
efficiency drops down to 50.0%. The MPI communication time dominates the execution time in comparison to the 
computation time.  

  
(a) Case 1                                                                              (b) Case 2    

Figure 3: Performance results on ARCHER. 

4. Results 
 

4.1 Automation work flow within wing shape optimization 
An automation workflow for wing shape optimization, which includes the CFD automation process, has been 
developed. The key idea is to make a loosely-coupled system with all the necessary tools, including a flow solver, 
grid generation and a CAD modeller, see Figure 4. The optimization is carried out using an external optimizer in 
Python/Matlab. All the modules are linked by scripting in Matlab, Python and Bash shell. Details can be found in 
[1]. The gradient for the adjoint method of optimization is computed by finite differences using embarrassingly 
parallel.  
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Figure 4: The automation work flow within the wing shape optimization scope. 

 
4.2 CRM wing optimization results 
The CRM wing optimization task follows the requirements given in AIAA ADODG (Aerodynamic Design 
Optimization Discussion Group), namely, the drag is optimized at Mach = 0.85, CL=0.85 and with chord Reynolds 
number 5,000,000, with the thickness constraints that the thicknesses of the optimized wing must not be thinner 
than the baseline. The turbulence model that is used is the Spalart-Allmaras (S-A) model and the mesh size is 28 
million cells.  

Figure 5 shows the streamlines, sectional pressure contours and wakes of the simulated baseline wing. Figure 6 
shows the wing shape comparison (front view) and the Mach contours between the baseline and the optimized 
wing. It can be seen that the baseline wing has a stronger shock and the optimized wing has double reduced shocks. 
Note that the lambda shock raises on the leading edge of the optimized wing, which is favourable from the 
aerodynamic point of view. However, as the thickness of the optimized wing is increased, the likelihood of the 
formation of the shockwaves grows. The optimized wing has a drag count reduction of 20 compared to the baseline 
wing. 

 

 
Figure 5: Streamlines, sectional pressure contours and wakes of the CRM baseline wing, SU2 S-A model, CL=0.5, Mach 

=0.85, chord Reynolds number 5,000,000. 
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Figure 6: Shape and Mach contour comparison between the CRM baseline wing and the optimized wing, SU2 S-A model, 

CL=0.5, Mach =0.85, chord Reynolds number 5,000,000 
 
4.3 A320-alike: Design, Simulation and Aero-Data Generation 
The A320-alike aircraft is a prototype regional jet-liner without any existing experimental data as yet. It is being 
designed “virtually” and the aero-data is being generated by computer simulations in order to “fly” in flight 
simulation software. The initial design is only a wing, a fuselage and tails, without any engine.  

The flight conditions that are simulated with the cruise conditions: Mach 0.78, lift coefficient 0.47, and Reynolds 
number 3.7 million. The simulation was performed on Beskow using the SU2 S-A turbulence model.  

The image on the left in Figure 7 shows the RANS mesh of the A320-alike (without any engine) with automatical 
mesh generation algorithm using SUMO. A more realistic design was made by shifting towards a complete 
configuration through adding pylons and nacelles. The net thrust is given as 10800 Newton per engine. Such a 
mesh was made by Pointwise with the same gridding density as in SUMO, with a mesh size of 18 million cells, 
see the image on the right in Figure 7. 

 

  

Figure 7: RANS mesh of the A320-alike aircraft, Left: without engine, generated by SUMO via automatic meshing scripts. 
Right: with engine nacelles modelled, generated by Pointwise via automatic meshing scripts. 

Figure 8 shows the jet flow visualization and turbulence wake around the A320-alike aircraft. The surface of the 
complete aircraft configuration is contoured by the Pressure Coefficient (CP). Note that a shock is formed around 
the 75% chord of the main wing, as well as the nacelle inlet. This results in wave drag, which is one of the most 
important components of drag that designers aim to reduce when developing new aircraft profiles.  
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Figure 8: Visualized turbulence wake 

 

4. Conclusions and further work  
In the project, we have developed an automation process to run high-fidelity CFD analysis by starting from given 
geometry format. An abstract regarding this project was submitted to a conference, and additional computing time 
on the local PRACE Tier-1 resource Beskow at PDC-KTH was granted. Airinnova will subsequently apply for a 
PRACE Access Type-A project, which follows up on the work that was undertaken during this project and take 
advantage of both the optimization results that were produced and the existing scripts. Together with the main 
developers of SU2, we will investigate the non-block or one-side MPI communication for point-to-point 
communication, which is the main bottleneck for large scale simulations in the current version of the code. The 
ultimate technical goal of this ongoing research is to develop a flexible and smooth integration of the whole 
automation process into an MDO (Multi-Disciplinary Optimization) design environment.  
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