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Executive Summary 
The Unified European Application Benchmark Suite (UEABS) provides a publicly available 
benchmark suite. One of the key results of this activity is the re-unification of the UEABS and the 
accelerator benchmark suite so that the UEABS lives up to its Unified name again. This new release 
is migrated to the PRACE GitLab server (next to the CodeVault repository). We present benchmark 
results and performance analyses on PRACE Tier-0 systems, on two PRACE PCP prototypes, on 
a DEEP-ER prototype, and on a Mont-Blanc 3 prototype. (If you want to select the optimal 
system/architecture for a given UEABS application, please have a look at these results.) 
Furthermore, we compare the energy efficiency from an application point of view of systems where 
energy measurements at job level are possible. Finally, we conclude with a high-level comparison 
of the benchmark systems: starting with the ubiquitous LINPACK performance; followed by both 
application performance (time to solution, or speed) as well as energy efficiency (energy to 
solution). For this we combine all benchmark results and derive a comparison of the overall 
performance of the systems, and a comparison of the energy efficiency for the systems where we 
obtained energy measurements. 

The energy efficiency of the two benchmarked PCP prototypes strongly depends on the application 
benchmark / data set / problem size / node count. Overall, the GPU based system (DAVIDE) is 
somewhat more energy efficient than the KNL system (Frioul). If we add the GPU based Piz Daint 
system to the comparison, then Piz Daint clearly is the most energy efficient system. 

As expected, the optimal system/architecture also strongly depends on the application benchmark 
/ data set / problem size / node count. Overall the most recent Intel Skylake systems are the most 
performant, JUWELS being the fastest. For applications that can exploit GPUs, Piz Daint is most 
performant. On the other end of the spectrum, the systems based on the discontinued Knights 
Landing in general are least performant. The conclusion might be that LINPACK performance still 
is a reasonable indicator for application performance, but most people – including the LINPACK 
originators themselves – will disagree. 

1 Introduction 

The Unified European Application Benchmark Suite (UEABS) [12] is a set of currently 13 
application codes taken from the pre-existing DEISA Benchmark Suite [9], the PRACE 
Application Benchmark suite (PABS) [15], and the PRACE Accelerator Benchmark Suite [20]. 
The objective is providing a single benchmark suite of scalable, currently relevant and publicly 
available application codes and datasets, of a size which can realistically be run on large systems, 
and maintained in the future. 

1.1 UEABS History and Previous Work 

The PRACE benchmarking activity was started during the PRACE-PP project [13][14][15] and the 
benchmark activities continued in PRACE-1IP [16]. The UEABS itself was only publicly released 
(Version 1.0) by the PRACE-2IP project [17]. Benchmarking activities continued in PRACE-3IP 
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resulting in a new release (Version 1.1) and a benchmark report [18]. In PRACE-4IP the UEABS 
was updated twice (Version 1.2 and 1.3) and a separate activity on the PRACE Accelerator 
Benchmark Suite was started. The Accelerator Benchmark Suite [19] was based on a subset of the 
UEABS Version 1.2, where some applications were removed because of lack of accelerator 
potential; and one application and a synthetic benchmark have been added. The Accelerator 
Benchmark Suite was published as GitLab repository [11] and a benchmark report targeting GPUs 
and Xeon Phi has been produced [20]. Finally, in the PRACE-4IP extension, a benchmark report 
targeting the PCP prototypes has been produced [21]. 

1.2 Work Described in this Report 

In the PRACE-5IP DoA we committed the following: “This task will also update and maintain the 
Unified European Applications Benchmark Suite (UEABS), so that it can be used in future 
procurements and to help European researchers choose systems that are appropriate for their 
computational requirements. The accelerator versions of the benchmarks developed under PRACE-
4IP will be re-integrated, and we will investigate putting the benchmark suite into CodeVault1. We 
will evaluate the results on PRACE systems from the standard benchmarks to the accelerated 
benchmarks, compare where both are available, and will strive to identify reasons for, and patterns 
in, the performance.” The original benchmark scope has been extended by including two PRACE-
3IP PCP [46] prototype systems: DAVIDE and Frioul; the Mont-Blanc 3 prototype system Dibona; 
and the DEEP-ER prototype system SDV. 

In May 2018, we released UEABS version 2.0: an integrated version of the accelerated and non-
accelerated version and published it on the PRACE git repository (where also CodeVault can be 
found but in a separate repository). For this we reconstructed a versioned git repository from a 
“flat” website representation and merged back the (UEABS Version 1.2 based) Accelerator 
Benchmark Suite. In April 2019 we will release UEABS version 2.1, an updated version that 
reflects the applications and datasets as used in this report. 

1.3 Outline 

Section 2 describes the application benchmarks, the test problems and data sets. Section 3 provides 
descriptions of the benchmark systems. Section 4 presents the benchmark results per application. 
Finally, in Section 5 – based on the benchmark results – a comparison is presented on the relative 
performance of the benchmark systems. 

1.4 Intended Audience 

The UEABS can be used as one of the benchmarks in future procurements and it can help European 
researchers chose systems that are appropriate for their computational requirements. 

                                                 
1 PRACE CodeVault [52] is an open repository containing various high-performance computing code samples. The 
project aims to support self-learning of HPC programming and will be used as an Open platform for the HPC 
community to share example code snippets, proof-of-concept codes and so forth. 
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2 Application Benchmarks 

Currently, the UEABS is a set of 13 application codes. In the sections below, we describe the 
benchmark applications, the benchmark problems and the datasets. 

2.1 Alya 

2.1.1 Code Description 

The Alya System [8] is a Computational Mechanics code capable of solving different types of 
physics, each one with its own modelisation characteristics, in a coupled way. Among the problems 
it solves are: convection-diffusion reactions, incompressible flows, compressible flows, turbulence, 
bi-phasic flows and free surface, excitable media, acoustics, thermal flow, quantum mechanics 
(DFT) and solid mechanics (large strain). 

From scratch, Alya was specially designed for massively parallel supercomputers, and the 
parallelisation embraces four levels of the computer hierarchy. A substructuring technique with 
MPI as the message passing library is used for distributed memory supercomputers. At the node 
level, both loop and task parallelisms are considered using OpenMP as an alternative to MPI. 
Dynamic load balance techniques have been introduced as well to better exploit computational 
resources at the node level. At the CPU level, some kernels are also designed to enable 
vectorisation. Finally, accelerators like GPU are also exploited through OpenACC pragmas or with 
CUDA to further enhance the performance of the code on heterogeneous computers. 

2.1.2 Test Cases 

• Test Case A: A 132 million element mesh representing the flow around a sphere. It is 
expected to scale up to 1500 MPI tasks. 

• Test Case B: A 1056 million element mesh representing the flow around a sphere. It is 
expected to scale up to 12000 MPI tasks. 

• Test Case C: A 68.8 million element mesh representing the flow around a sphere. It is 
expected to scale up to 750 MPI tasks. 

2.2 Code_Saturne 

2.2.1 Code Description 

Code_Saturne [51] is open-source multi-purpose CFD software, primarily developed by EDF R&D 
and maintained by them. It relies on the Finite Volume method and a collocated arrangement of 
unknowns to solve the Navier-Stokes equations, for incompressible or compressible flows, laminar 
or turbulent flows and non-Newtonian and Newtonian fluids. A highly parallel coupling library 
(Parallel Locator Exchange - PLE) is also available in the distribution to account for other physics, 
such as conjugate heat transfer and structure mechanics. For the incompressible solver, the pressure 
is solved using an integrated Algebraic Multi-Grid algorithm and the scalars are computed by 
conjugate gradient methods or Gauss-Seidel/Jacobi. 
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The original version of the code is written in C for pre-postprocessing, IO handling, parallelisation 
handling, linear solvers and gradient computation, and Fortran 95 for most of the physics 
implementation. MPI is used on distributed memory machines and OpenMP pragmas have been 
added to the most costly parts of the code to handle potential shared memory. The version used in 
this work (also freely available) relies also on CUDA to take advantage of potential GPU 
acceleration. 

The equations are solved iteratively using time-marching algorithms, and most of the time spent 
during a time step is usually due to the computation of the velocity-pressure coupling, for simple 
physics. For this reason, the two test cases chosen for the benchmark suite have been designed to 
assess the velocity-pressure coupling computation, and rely on the same configuration, with a mesh 
8 times larger for Test Case B than for Test Case A, the time step being halved to ensure a correct 
Courant number. 

2.2.2 Test Cases 

Two test cases are dealt with, where only the mesh size has been changed. Depending on the 
architecture run on and the type of physics investigated, it is expected that 10,000 (IBM 
BlueGene/Q) to 25,000 cells (classical CPU-based machine) per MPI task are required to keep 
good performance. 

• Test Case A: A 13 million tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-
driven cavity. This case is supposed to scale up to 1,300 (resp. 520) MPI tasks for 10,000 
(resp. 25,000) cells per MPI task, depending on the machine. 

• Test Case B: A 111 million tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-
driven cavity. This case is supposed to scale up to 11,100 (resp. 4,440) MPI tasks for 5,000 
(resp. 25,000) cells per MPI task, depending on the machine. 

2.3 CP2K 

2.3.1 Code Description 

CP2K is a quantum chemistry and solid-state physics software package that can perform atomistic 
simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. 
CP2K provides a general framework for different modelling methods such as DFT using the mixed 
Gaussian and plane waves approaches GPW and GAPW. Supported theory levels include DFTB, 
LDA, GGA, MP2, RPA, semi-empirical methods (AM1, PM3, PM6, RM1, MNDO, ...), and 
classical force fields (AMBER, CHARMM, ...). CP2K can do simulations of molecular dynamics, 
metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, 
energy minimisation, and transition state optimisation using NEB or dimer method. 

CP2K is written in Fortran 2008 and can be run in parallel using a combination of multi-threading, 
MPI, and CUDA. All of CP2K is MPI parallelised, with some additional loops also being OpenMP 
parallelised. It is therefore most important to take advantage of MPI parallelisation, however 
running one MPI rank per CPU core often leads to memory shortage. At this point OpenMP threads 
can be used to utilise all CPU cores without suffering an overly large memory footprint. The 
optimal ratio between MPI ranks and OpenMP threads depends on the type of simulation and the 
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system in question. CP2K supports CUDA, allowing it to offload some linear algebra operations 
including sparse matrix multiplications to the GPU through its DBCSR acceleration layer. FFTs 
can optionally also be offloaded to the GPU. Benefits of GPU offloading may yield improved 
performance depending on the type of simulation and the system in question. 

CP2K strictly requires BLAS, LAPACK and ScaLAPACK and benefits strongly from FFTW. The 
application can furthermore make use of a number of further performance-enhancing and 
functionality-extending libraries. For the purpose of performing the benchmarks reported here on 
a range of systems CP2K was linked to libint and libxc in addition to the abovementioned strictly 
required libraries and FFTW. 

2.3.2 Test Cases 

This section details the CP2K benchmark test cases that were run. None of the test cases make use 
of large input data, so initialisation cost is minimal. Inputs consist of CP2K-format input files and 
potential and basis set input files. 

Test Case A: H2O-512 

Ab-initio molecular dynamics simulation of liquid water using the Born-Oppenheimer approach, 
via Quickstep DFT. Production quality settings for the basis sets (TZV2P) and the planewave cutoff 
(280 Ry) are chosen, and the Local Density Approximation (LDA) is used for the calculation of 
the Exchange-Correlation energy. The configurations were generated by classical equilibration, 
and the initial guess of the electronic density is made based on Atomic Orbitals. The system 
contains 512 water molecules (1536 atoms, 4096 electrons) in a 12.4 Å3 cell and MD is run for 10 
steps. 

Test Case B: LiH-HFX 

This is a single-point energy calculation using Quickstep GAPW (Gaussian and Augmented Plane-
Waves) with hybrid Hartree-Fock exchange. It consists of a 216 atom Lithium Hydride crystal with 
432 electrons in a 12.3 Å3 cell. These types of calculations are generally around one hundred times 
the computational cost of a standard local DFT calculation, although this can be reduced using the 
Auxiliary Density Matrix Method (ADMM). Using OpenMP is likely to be of benefit here as the 
HFX implementation requires a large amount of memory to store partial integrals. By using several 
threads, fewer MPI processes share the available memory on the node and thus enough memory is 
available to avoid recomputing any integrals on-the-fly, improving performance. 

Test Case C: H2O-DFT-LS 

This is a single-point energy calculation using linear-scaling DFT. It consists of 6144 atoms in a 
39 Å3 box (2048 water molecules in total). An LDA functional is used with a DZVP MOLOPT 
basis set and a 300 Ry cut-off. For large systems the linear-scaling approach for solving Self-
Consistent-Field equations will be much cheaper computationally than using standard DFT and 
allows scaling up to 1 million atoms for simple systems. The linear scaling cost results from the 
fact that the algorithm is based on an iteration on the density matrix. The cubically-scaling 
orthogonalisation step of standard Quickstep DFT using OT is avoided and the key operation is 
sparse matrix-matrix multiplications, which have a number of non-zero entries that scale linearly 
with system size. These are implemented efficiently in the CP2K-internal DBCSR library. 
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2.4 GADGET 

2.4.1 Code Description 

GADGET [38] is a cosmological, parallelised N-body and Smoothed Particle Hydrodynamics 
(SPH) code [40][41] that is tailored to solve a wide range of astrophysical problems, e.g., large-
scale structure formation (formation of galaxies in the Universe), colliding and merging galaxies, 
studying the dynamics of the gaseous intergalactic medium, formation of the stars and its 
regulation, tidal disruption events by massive black holes. In all these types of simulations, 
GADGET follows the evolution of a self-gravitating collisionless N-body system, and solves the 
Euler equations by means of SPH. 

The code major components are the time integration model, the tree-code module (hierarchical tree 
algorithm, optionally in combination with a particle-mesh scheme for long-range gravitational 
forces) to compute gravitational forces, the communication scheme for gravitational and SPH 
forces, a domain decomposition strategy based on orthogonal bisection, the entropy-based 
formulation of SPH (conserving energy and entropy in regions free of dissipation, while allowing 
for fully adaptive smoothing length), and the TreePM functionality. Both the force computation 
and the time stepping of GADGET are fully adaptive, with a dynamic range which is, in principle, 
unlimited. 

The code uses an explicit communication model and is parallelised with MPI. The domain 
decomposition scheme ensures that the results of forces depend on the number of used 
processors/cores, which is usually obtained by using orthogonal bisection in domain 
decomposition. The scheme uses a Peano-Hilbert spatial filling fractal curve to become a three-
dimensional space in the one-dimensional curve. This is then simply divided into parts that define 
the different domains. This scheme has several advantages, such as the fact that points that are 
close in the one-dimensional curve usually are close in the three-dimensional space. For some code 
parts, GADGET-3 can also use either Pthreads or OpenMP for a hybrid MPI/shared-memory 
parallelisation. 

The latter is important to overcome the slowdown the overall performance of the code in 
calculations that put a great stress on the domain decomposition, e.g., the case of extreme high 
particle velocities in the vicinity of black holes (see, e.g., [39]). After a few iterations, particle 
properties need to be communicated to other domains, which could reside on non-local CPUs. This 
strongly increased need for communication slows down the overall performance. The hybrid 
OpenMP-MPI implementation in GADGET helps to overcome this problem by reducing the 
number of MPI tasks to the number of physical CPUs on each compute node and for every MPI 
task spawning additional OpenMP tasks corresponding to the number of cores on each of the CPUs. 
With this approach, a larger number of particles can be processed locally without the need of MPI 
communication. This can have an effect up to a factor of 4 in performance over the standard MPI 
implementation [39]. 

The code can in principle be started using an arbitrary number of processors, but the 
communication algorithms will be most efficient for powers of 2. It is also possible to use a single 
processor only, in which case the code behaves like a serial code, except that GADGET will still 
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go through some of the overhead induced by the parallelisation algorithms, so the code will not 
quite reach the same performance as an optimal serial solution in this case. 

GADGET, as well as the included initial conditions generator N-GENIC (after the initial conditions 
are generated they are folded into GADGET), is written in C and requires the open-source GSL 
(GNU Scientific Library, which is needed for a few cosmological integrations at start-up, and for 
random-number generation), FFTW (Fastest Fourier Transform in the West; It is only needed for 
simulations that use the TreePM algorithm. Note that the MPI-capable version 2.x of FFTW is 
required, and that FFTW needs to be explicitly compiled with parallel support enabled), and HDF5 
(Hierarchical Data Format ver. 5; GADGET can be compiled without this library, but then the 
HDF5 format is not supported) libraries. 

The code originally developed by Volker Springel was first publicly released in 2000 (GADGET-1 
and GADGET-1.1, the latter corrected a bug in the forcetree.c file) was followed by GADGET-2 
(2005), and later GADGET-3. Version 4 is expected to be released during 2019. 

2.4.2 Test Cases 

Three test cases are considered in order to determine weak and strong scaling of the GADGET 
code by using a simulation of a cosmological structure formation in a periodic box with adiabatic 
gas physics. The cosmological density field is modelled with dark matter and gas. The initial 
conditions of the simulations are generated by the N-GenIC code running in parallel using 8, 128, 
and 1024 cores for the test cases A, B, and C, respectively. 

Test Case A: Small size problem with 2×1283 particles calculated with 1 through 256 cores. The 
initial conditions for the same number of particles have a total size of 65 MB, and the total peak 
memory needed is ~2.2 GB. 

Test Case B: Medium size problem with 2×5123 particles calculated with 64 through 2048 cores. 
The initial conditions (with 2×5123 particles) have a total size of 4.1 GB, and the total peak memory 
need is ~140 GB. 

Test Case C: Large size problem with 2×20483 particles calculated with 64 through 2048 cores. 
The initial conditions (with 2×5123 particles) have a total size of 257 GB, and the total peak 
memory needed is ~8.8 TB. 

2.5 GPAW 

2.5.1 Code Description 

GPAW [1] is a density-functional theory (DFT) program for ab initio electronic structure 
calculations using the projector augmented wave method. It uses a uniform real-space grid 
representation of the electronic wave functions that allows for excellent computational scalability 
and systematic converge properties. 

GPAW is written mostly in Python, but includes also computational kernels written in C as well as 
leveraging external libraries such as NumPy, BLAS and ScaLAPACK. Parallelisation is based on 
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message-passing using MPI with no support for multithreading. Development branches for 
GPGPUs and MICs include support for offloading to accelerators using either CUDA or 
pyMIC/libxsteam, respectively. GPAW is freely available under the GPL license. 

2.5.2 Test Cases 

Case S: Carbon nanotube 

A ground state calculation for a carbon nanotube in vacuum. By default, uses a 6-6-10 nanotube 
with 240 atoms (freely adjustable) and serial LAPACK with an option to use ScaLAPACK. 
Expected to scale up to 10 nodes and/or 100 MPI tasks. 

Case M: Copper filament 

A ground state calculation for a copper filament in vacuum. By default, uses a 2×2×3 FCC lattice 
with 71 atoms (freely adjustable) and ScaLAPACK for parallelisation. Expected to scale up to 100 
nodes and/or 1000 MPI tasks. 

Case L: Silicon cluster 

A ground state calculation for a silicon cluster in vacuum. By default, the cluster has a radius of 
15Å (freely adjustable) and consists of 702 atoms, and ScaLAPACK is used for parallelisation. 
Expected to scale up to 1000 nodes and/or 10000 MPI tasks. 

2.6 GROMACS 

2.6.1 Code Description 

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian 
equations of motion for systems with hundreds to millions of particles. It is primarily designed for 
biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded 
interactions, but since GROMACS is extremely fast at calculating the non-bonded interactions (that 
usually dominate simulations) many groups are also using it for research on non-biological 
systems, e.g. polymers. GROMACS supports all the usual algorithms you expect from a modern 
molecular dynamics implementation, but there are also quite a few features that make it stand out 
from the competition. 

GROMACS provides extremely high performance compared to all other programs. A lot of 
algorithmic optimisations have been introduced in the code. In recent versions of GROMACS, on 
almost all common computing platforms, the innermost loops are written in C using intrinsic 
functions that the compiler transforms to SIMD machine instructions, to utilise the available 
instruction-level parallelism. These kernels are available in either single or double precision, and 
in support all the different kinds of SIMD support found in x86-family (and other) processors. It is 
capable of hybrid parallelisation i.e. both MPI and OpenMP and supports offloading to accelerators 
using CUDA. 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 9 18.04.2019 

GROMACS is Free Software, available under the GNU Lesser General Public License (LGPL), 
version 2.1. 

2.6.2 Test Cases 

• Test Case A: GluCl Ion Channel 
The ion channel system is the membrane protein GluCl, which is a pentameric chloride 
channel embedded in a lipid bilayer. The GluCl ion channel was embedded in a DOPC 
membrane and solvated in TIP3P water. This system contains 142k atoms, and is a quite 
challenging parallelisation case due to the small size. However, it is likely one of the most 
wanted target sizes for biomolecular simulations due to the importance of these proteins for 
pharmaceutical applications. It is particularly challenging due to a highly inhomogeneous 
and anisotropic environment in the membrane, which poses hard challenges for load 
balancing with domain decomposition. This test case was used as the “Small” test case in 
previous PRACE-2IP-4IP projects. It is reported to scale efficiently up to 1000+ cores on 
x86 based systems. 

• Test Case B: Lignocellulose 
A model of cellulose and lignocellulosic biomass in an aqueous solution. This system of 
3.3 million atoms is inhomogeneous. This system uses reaction-field electrostatics instead 
of PME and therefore scales well on x86. This test case was used as the “Large” test case 
in previous PRACE-2IP-4IP projects. It is reported in previous PRACE projects to scale 
efficiently up to 10000+ x86 cores. 

2.7 NAMD 

2.7.1 Code Description 

NAMD is a widely used molecular dynamics application designed to simulate bio-molecular 
systems on a wide variety of compute platforms. NAMD is developed by the “Theoretical and 
Computational Biophysics Group” at the University of Illinois at Urbana Champaign. In the design 
of NAMD particular emphasis has been placed on scalability when utilising a large number of 
processors. The application can read a wide variety of different file formats, for example force 
fields, protein structures, which are commonly used in bio-molecular science. A NAMD license 
can be applied for on the developer’s website free of charge. Once the license has been obtained, 
binaries for a number of platforms and the source can be downloaded from the website. 
Deployment areas of NAMD include pharmaceutical research by academic and industrial users. 
NAMD is particularly suitable when the interaction between a number of proteins or between 
proteins and other chemical substances is of interest. Typical examples are vaccine research and 
transport processes through cell membrane proteins. NAMD is written in C++ and parallelised 
using Charm++ parallel objects, which are implemented on top of MPI, supporting both pure MPI 
and hybrid parallelisation. Offloading for accelerators is implemented for both GPU and MIC (Intel 
Xeon Phi). 
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2.7.2 Test Cases 

The datasets are based on the original “Satellite Tobacco Mosaic Virus (STMV)” dataset from the 
official NAMD site. The memory optimised build of the package and data sets are used in 
benchmarking. Data are converted to the appropriate binary format used by the memory optimised 
build. 

• Test Case A: STMV.8M 

This is a 2×2×2 replication of the original STMV dataset from the official NAMD site. The 
system contains roughly 8 million atoms. This data set scales efficiently up to 1000 x86 
cores. 

• Test Case B: STMV.28M 

This is a 3×3×3 replication of the original STMV dataset from the official NAMD site, 
created during PRACE-2IP project. The system contains roughly 28 million atoms and is 
expected to scale efficiently up to few tens of thousands x86 cores. 

2.8 NEMO 

2.8.1 Code Description 

NEMO (Nucleus for European Modelling of the Ocean) [22] is a mathematical modelling 
framework for research activities and prediction services in ocean and climate sciences developed 
by a European consortium. It is intended to be a tool for studying the ocean and its interaction with 
the other components of the earth climate system over a large number of space and time scales. It 
comprises of the core engines namely OPA (ocean dynamics and thermodynamics), SI3 (sea ice 
dynamics and thermodynamics), TOP (oceanic tracers) and PISCES (biogeochemical process). 

Prognostic variables in NEMO are the three-dimensional velocity field, a linear or non-linear sea 
surface height, the temperature and the salinity. In the horizontal direction, the model uses a 
curvilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or s-
coordinate, or a mixture of the two. The distribution of variables is a three-dimensional Arakawa 
C-type grid for most of the cases. 

The model is implemented in Fortran 90, with pre-processing (C-pre-processor). It is optimised for 
vector computers and parallelised by domain decomposition with MPI. It supports modern C/C++ 
and Fortran compilers. All input and output is done with third party software called XIOS with a 
dependency on NetCDF (Network Common Data Format) and HDF5. It is highly scalable and a 
perfect application for measuring supercomputing performances in terms of compute capacity, 
memory subsystem, I/O and interconnect performance. 
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2.8.2 Test Cases 

The GYRE configuration has been built to model the seasonal cycle of the double gyre box model. 
It consists of an idealised domain over which a seasonal forcing is applied. This allows for studying 
a large number of interactions and their combined contribution to large scale circulation. 

The domain geometry is rectangular bounded by vertical walls and flat bottom. The configuration 
is meant to represent the idealised North Atlantic or North Pacific basin. The circulation is forced 
by analytical profiles of wind and buoyancy fluxes. The wind stress is zonal and its curl changes 
sign at 22 and 36. It forces a subpolar gyre in the north, a subtropical gyre in the wider part of the 
domain and a small recirculation gyre in the southern corner. The net heat flux takes the form of a 
restoring toward a zonal apparent air temperature profile. 

A portion of the net heat flux which comes from the solar radiation is allowed to penetrate within 
the water column. The fresh water flux is also prescribed and varies zonally. It is determined such 
that, at each time step, the basin-integrated flux is zero. 

The basin is initialised at rest with vertical profiles of temperature and salinity uniformity applied 
to the whole domain. The GYRE configuration is set through the namelist_cfg file. The horizontal 
resolution is determined by setting jp_cfg as follows: 

Jpiglo = 30 × jp_cfg + 2 

Jpjglo = 20 × jp_cfg + 2 

In this configuration, we use a default value of 30 ocean levels, depicted by jpk=31. The GYRE 
configuration is an ideal case for benchmark tests as it is very simple to increase the resolution and 
perform both weak and strong scalability experiment using the same input files. We use two 
configurations as follows: 

Test Case A: 

• jp_cfg = 128 suitable up to 1000 cores 
• Number of Days: 20 
• Number of Time steps: 1440 
• Time step size: 20 mins 
• Number of seconds per time step: 1200 

We performed scalability test on 512 cores and 1024 cores for test case A. 

Test Case B: 

• jp_cfg = 256 suitable up to 20,000 cores. 
• Number of Days (real): 80 
• Number of time step: 4320 
• Time step size(real): 20 mins 
• Number of seconds per time step: 1200 

We performed scalability test for 4096 cores, 8192 cores and 16384 cores for test case B. 
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Both these test cases can give us quite good understanding of node performance and interconnect 
behaviour. We switch off the generation of mesh files by setting the flag nn_mesh = 0 in the 
namelist_ref file. Also using_server = false is defined in io_server file. 

We report the performance in step time which is the total computational time averaged over the 
number of time steps for different test cases. This helps us to compare systems in a standard manner 
across all combinations of system architectures. The other main reason for reporting time per 
computational time step is to make sure that results are more reproducible and comparable. 

Since NEMO supports both weak and strong scalability, test case A and test case B both can be 
scaled down to run on smaller number of processors while keeping the memory per processor 
constant achieving similar results for step time. To measure the step time, we inserted a patch which 
includes the MPI_wtime() functional call in nemogcn.f90 file for each step which also cumulatively 
adds the step time until the second last step. We then divide the total cumulative time by the number 
of time steps to average out any overhead. 

2.9 PFARM 

2.9.1 Code Description 

PFARM is part of a suite of programs based on the ‘R-matrix’ ab-initio approach to the variational 
solution of the many-electron Schrödinger equation for electron-atom and electron-ion scattering 
[45]. The package has been used to calculate electron collision data for astrophysical applications 
(such as: the interstellar medium, planetary atmospheres) with, for example, various ions of Fe and 
Ni and neutral O, plus other applications such as plasma modelling and fusion reactor impurities. 
The code has recently been adapted to form a compatible interface with the UKRmol suite of codes 
for electron (positron) molecule collisions thus enabling large-scale parallel outer-region 
calculations for molecular systems as well as atomic systems. 

In the R-matrix approach, configuration space is partitioned into Internal, External and Asymptotic 
regions and the calculation is adapted accordingly for each region (Figure 1). Inner region 
calculations use a separate program. In order to enable efficient computation, the External Region 
calculation takes place in two distinct stages, named EXDIG and EXAS, with intermediate files 
linking the two. 

EXDIG is dominated by the assembly of sector Hamiltonian matrices and their subsequent 
eigensolutions, with full sets of both eigenvalues and eigenvectors required. The properties of the 
sector Hamiltonian matrices are dense, real, and symmetric. For electron-atom or electron-ion 
calculations (e.g. Test Case 1), a very fine energy mesh is required at the lower end of the energy 
range in order to resolve clustered Rydberg resonances converging to all thresholds. This 
necessitates a large number of Legendre basis functions in the sector Hamiltonian leading to 
relatively large matrix sizes with closely-coupled eigenvalues. However, this level of accuracy is 
computationally wasteful for scattering energies at the mid-to-higher end of the energy range. To 
resolve this problem the external region is configured twice within EXDIG, firstly for the FINE 
mesh (fewer, larger matrices) and then a COARSE mesh (more, smaller matrices). Therefore, two 
series of sector calculations take place within the same run. Matrix sizes are constant with each 
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mesh. Electron-molecule calculations (e.g. Test Case 2) do not produce such fine resonances and 
therefore require only a single mesh. 

EXAS propagates scattering energies across the external region configuration space and uses a 
combined functional/domain decomposition approach where good load-balancing is essential to 
maintain efficient parallel performance. Each of the main stages in the calculation is written in 
Fortran 2003, is parallelised using MPI and is designed to take advantage of highly optimised, 
numerical library routines. Hybrid MPI / OpenMP parallelisation has also been introduced into the 
code via shared memory enabled numerical library kernels. Given the high computation, memory 
and storage load, EXDIG is chosen here as the PFARM benchmark application code. 

The MPI/OpenMP version of EXDIG employs a high-level MPI parallelisation, which assigns the 
complete calculation of each sector (or sub-region) to an MPI task – a ‘sector MPI task’. The sector 
matrix assembly and eigensolution is undertaken by each individual sector MPI task. Highly 
optimised platform-specific numerical libraries employing parallel threads, such as Intel MKL, 
Cray Libsci and ARM Performance Libraries are used to optimise the eigensolutions of the sector 
Hamiltonian matrices. Given the required full set of closely-coupled eigenpairs the eigensolver 
routine DSYEVD is favoured, which employs a divide-and-conquer algorithm. In this model, the 
maximum number of MPI tasks is equivalent to the number of sectors defined. With 1 MPI task 
per node, the number of OpenMP threads is usually set to the number of cores in a node. 

Accelerator-based implementations have been implemented for EXDIG. The GPU-enabled version 
of EXDIG uses the MAGMA numerical library routine MAGMA_DSYEVD to employ multiple 
GPUs per node for the eigensolution. The Xeon Phi-enabled version of EXDIG uses a machine-
optimised version of Intel MKL, akin to the CPU version. 

A fully distributed-data version using MPI with ScaLAPACK/ELPA routines is also available 
(though not benchmarked here). This version is suitable for very large cases, where memory within 
a node is insufficient. 

Given that the overall runtime is dominated by calls to Dense Linear Algebra routines, PFARM 
performance usually attains a relatively high fraction of the peak performance of the architecture. 

 

 
Figure 1: Partitioning of Configuration Space in PFARM 
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2.9.2 Test Cases 

External region R-matrix propagations take place over the outer partition of configuration space, 
including the region where long-range potentials remain important. The length of this region is 
determined from the user input and the program decides upon the best strategy for dividing this 
space into multiple sub-regions (or sectors). Generally, a choice of larger sector lengths requires 
the application of larger numbers of Legendre basis functions (and therefore larger Hamiltonian 
matrices) in order to maintain accuracy across the sector and vice-versa. Memory limits on the 
target hardware are also an input parameter that is used for determining a preferred configuration. 

Test Case 1 (Atomic) 

This dataset is an electron-atom scattering case with 1181 channels calculating electron scattering 
with FeIII. A very fine energy mesh is required at the lower end of the energy range in order to 
resolve multiple Rydberg resonances. The relevant computational characteristics for this problem 
are: 

• FINE mesh calculation: 16 sectors are defined with 22 Legendre functions in the sector 
Hamiltonian assembly, leading to sector matrices of dimension 25982. 

• COARSE mesh calculation: 16 sectors are defined with 10 Legendre functions in the sector 
Hamiltonian assembly, leading to sector matrices of dimension 11810. 

Test Case 2 (Molecular) 

This dataset is an electron-molecule scattering case with 1361 channels calculating electron 
scattering with Methane. No fine mesh is required, so a single mesh is defined. The relevant 
computational characteristics of this problem are: 

• SINGLE mesh calculation: 64 sectors are defined with 10 Legendre functions in the sector 
Hamiltonian assembly, leading to sector matrices of dimension 13610. 

Due to the greater number of sectors in Test Case 2, this dataset will scale to a higher number of 
nodes. 

2.10 QCD 

2.10.1 Code Description 

The QCD benchmark is, unlike the other benchmarks in the PRACE application benchmark suite, 
not a full application but a set of 5 kernels which are representative of some of the most compute-
intensive parts of QCD calculations. 

The benchmark kernels of the QCD UEABS are based on codes widely used by the lattice QCD 
community. Namely, the 5 different QCD kernels in UEABS, taken from software packages of 
major European QCD collaborations, were extended in the PRACE-4IP project to include kernels 
capable of using accelerators. In this deliverable, we report on performance results obtained from 
“Kernel E” of the non-accelerated QCD UEABS kernels, which we will denote here as “part 1”, as 
well as the accelerated kernels added during PRACE-4IP, which we will denote as “part 2”. Kernel 
E is extracted from the MILC code suite (cf. [4]). The performance-portable targetDP model has 
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been used to allow the benchmark to utilise NVIDIA GPUs, Intel Xeon Phi manycore CPUs, and 
traditional multi-core CPUs. The use of MPI (in conjunction with targetDP) allows multiple nodes 
to be used in parallel (cf. [5]). Part 2 includes kernels from the library QPhiX[2], optimised for 
Intel architectures such as Skylake and KNL Xeon Phi cards, and QUDA[3], for NVIDIA GPUs. 
In addition, we use the software package GRID[42][43] for obtaining performance result on the 
Mont-Blanc 3 system Dibona, making use of its ARM optimised kernel. 

In all cases, the benchmark kernels repeatedly apply the so-called Wilson Dirac operator on an 
iteratively updated vector. For all cases, with the exception of GRID, these repeated operator 
applications are carried out within a conjugate gradient (CG) method implemented in double 
precision, i.e. an iterative Krylov subspace solver, which apart from the operator application 
includes BLAS-like linear algebra operations and global reductions. For the case of GRID, the 
benchmark kernel used includes only the operator application, i.e. the other linear algebra 
operations and reductions are not included. The Wilson Dirac operator represents a discrete, 4-
dimensional covariant derivative, defined on a regular 4-dimensional Cartesian grid. In a parallel 
implementation, the lattice volume is decomposed into 4-dimensional sub-domains, using one MPI 
process per sub-domain. As in any parallel implementation of such stencil operations, the 
application of the operator on grid-points of the sub-domain boundary requires information from 
the nearest neighbouring processes. This nearest-neighbour communication, along with a global 
reduction for the residual required in iterative solvers, is the most frequent communication required 
in any lattice QCD application, which is of the order of once every millisecond. 

2.10.2 Test Cases 
We perform strong scaling tests of the benchmark kernels using small to moderate problem sizes, 
namely V=8×64×64×64 grid points for part 1 and V=96×32×32×32 and V=128×64×64×64 grid 
points for part 2. The former two fit on typical small HPC systems, while the later problem size is 
representative of current state-of-the-art lattice simulations and can be scaled up to O(1000) of 
nodes. 

2.11 Quantum Espresso 

2.11.1 Code Description 

Quantum Espresso (QE) is an integrated suite of open-source computer codes for electronic-
structure calculations and materials modelling at the nanoscale. It is based on density-functional 
theory, plane waves, and pseudopotentials. For the benchmarking activity we opted to test the most 
commonly used package in the suite, PWscf, which performs plane wave self-consistent field 
calculations (e.g. for calculating the ground state energy or structure optimisations). 

The program has been written mainly in Fortran 90, and parallelised with both MPI and OpenMP 
in a sophisticated multiple communicator scheme. The result is a highly optimised application 
where the performance is strongly dictated by the linear algebra implementation. Memory 
requirements are directly related to the input size while the I/O load is usually negligible. 

For the CPU-based calculations we used versions 6.x, with x=1–3, depending on availability on 
the host architecture. The differences between these minor versions are mainly functional 
improvements or bugfixes so we do not expect significant performance variations. For the GPU 
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architectures, we used the 6.3 CUDA Fortran version recently developed by F. Spiga. For those 
systems where QE was not available, or not present at a sufficiently high version, the package was 
compiled from the source code. 

2.11.2 Test Cases 

Small 

The small dataset is based on a standard benchmark called AUSURF and consists of the 
optimisation of a surface composed of 112 gold atoms. The optimisation threshold is set such that 
convergence is normally achieved in exactly 21 iterations. On most x86 systems the benchmark 
scales up to about 200 MPI tasks. Notice that since the structure presents 2 k-points the QE -npool 
parameter should be set to 2. We did not use OpenMP threads for this input, except for the GPU 
runs. 

Large 

The large benchmark is based on a structure of tantalum oxide and is labelled as TA2O5. Like 
AUSURF this also performs a geometry optimisation but CPU and memory requirements are much 
higher. For this reason, we also used OpenMP threads. The system exhibits 26 k-points so the -
npool parameter should be 13 or 26 or multiples thereof. 

2.12 SHOC 

2.12.1 Code Description 

The Benchmark Suite also includes a series of synthetic benchmarks. For this purpose, we choose 
the Scalable HeterOgeneous Computing (SHOC) benchmark suite, augmented with a series of 
benchmark examples developed internally. SHOC is a collection of benchmark programs testing 
the performance and stability of systems using computing devices with non-traditional 
architectures for general purpose computing. Its initial focus is on systems containing GPU and 
multi-core processors, and on the OpenCL programming standard, but CUDA and OpenACC 
versions were added. Moreover, a subset of the benchmarks is optimised for the Intel Xeon Phi 
coprocessor. 

The SHOC benchmark suite currently contains benchmark programs categorised by complexity. 
Some measure low-level ‘feeds and speeds’ behaviour (Level 0), some measure the performance 
of a higher-level operation such as a Fast Fourier Transform (FFT) (Level 1), and the others 
measure real application kernels (Level 2). 

The SHOC benchmark suite has been selected to evaluate the performance of accelerators (GPUs) 
on synthetic benchmarks, mostly because SHOC provides CUDA/OpenCL/Offload/OpenACC 
variants of the benchmarks. This allowed us to evaluate NVIDIA GPUs (with 
CUDA/OpenCL/OpenACC) and Intel Xeon Phi KNC (with both Offload and OpenCL). However, 
on the latest Xeon Phi processor (codenamed KNL) none of these 4 models is supported. Thus, 
benchmarks on the KNL architecture cannot be run at this point, and there isn't any news of Intel 
supporting OpenCL on the KNL. 
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Code implementation description 

Offloading for accelerators is implemented through CUDA and OpenCL for GPU and through 
OpenMP for MIC (Intel Xeon Phi). For selected benchmarks OpenACC implementations are 
provided for GPU. 

SHOC is written in C++ and is open-source and freely available. 

2.12.2 Test Cases 

The benchmarks contained in SHOC currently feature 4 different sizes for increasingly large 
systems. The size convention is as follows: 

1. CPU / debugging 

2. Mobile/integrated GPU 

3. Discrete GPU (e.g. GeForce or Radeon series) 

4. HPC-focused or large memory GPU (e.g. Tesla or FireStream Series) 

2.13 SPECFEM3D 

2.13.1 Code Description 

The software package SPECFEM3D_GLOBE [7] simulates three-dimensional global and regional 
seismic wave propagation and performs full waveform imaging (FWI) or adjoint tomography based 
upon the spectral-element method (SEM). The SEM is a continuous Galerkin technique, which can 
easily be made discontinuous; it is then close to a particular case of the discontinuous Galerkin 
technique, with optimised efficiency because of its tensorised basis functions. In particular, it can 
accurately handle very distorted mesh elements. Effects due to lateral variations in compressional-
wave speed, shear-wave speed, density, a 3D crustal model, ellipticity, topography and bathymetry, 
the oceans, rotation, and self-gravitation are included. The package can accommodate full 21-
parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and finite-
frequency kernel simulations are also included. 
 
It has very good accuracy and convergence properties. It is also very well suited to parallel 
implementation on very large supercomputers as well as on clusters with GPU accelerating 
graphics cards. All SPECFEM3D_GLOBE software is written in Fortran 2003 with full portability 
in mind, and conforms strictly to the Fortran 2003 standard. It uses no obsolete or obsolescent 
features of Fortran. The package uses parallel programming based upon the Message Passing 
Interface (MPI). The package includes support for GPU graphics card acceleration and also 
supports OpenCL. 

2.13.2 Test Cases 

Test Case A is designed to run on Tier-1 sized systems (up to around 1,000 x86 cores, or 
equivalent), Test Case B is designed to run on Tier-0 sized systems (up to around 10,000 x86 cores, 
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or equivalent) and finally the test case C is designed to run on PCP prototypes (up to around 100 
cores, or equivalent). 

The test cases simulate the earthquake of June 1994 in Northern Bolivia at a global scale with the 
global shear-wave speed model named s362ani. The solver calculates seismograms for 129 
stations, and simulations are run for a record length of 3 minutes 30 for test case A, 10 minutes for 
test case B and one minute for test case C. 

The different test cases correspond to different meshes of the earth. The size of the mesh is 
determined by a combination of following variables: NCHUNKS, the number of chunks in the 
cubed sphere (6 for global simulations), NPROC_XI, the number of processors or slices along one 
chunk of the cubed sphere and NEX_XI, the number of spectral elements along one side of a chunk 
in the cubed sphere. These three variables give us the number of degrees of freedom of the mesh 
and determine the amount of memory needed per core. The SPECFEM3D solver must be 
recompiled each time we change the mesh size because the solver uses a static loop size and the 
compilers know the size of all loops only at the time of compilation and can therefore optimise 
them efficiently. 

Test case A runs with 96 MPI tasks using hybrid parallelisation (MPI+OpenMP or 
MPI+OpenMP+CUDA depending on the system tested) and has the following mesh 
characteristics: NCHUNKS=6, NPROC_XI=4 and NEX_XI=384. 

Test Case B runs with 1536 MPI tasks using hybrid parallelisation and has the following mesh 
characteristics: NCHUNKS=6, NPROC_XI=16 and NEX_XI=384. 

Test Case C B runs with 6 MPI tasks using hybrid parallelisation and has the following mesh 
characteristics: NCHUNKS=6, NPROC_XI=1 and NEX_XI=64. 

3 Benchmark Systems 

3.1 Tier-0 systems 

PRACE hosting members Tier-0 systems: 

3.1.1 Hazel Hen 

Hazel Hen [26] is the Tier-0 system hosted by HLRS, Germany. Hazel Hen is a Cray XC40 system 
composed of 7712 compute nodes with a total of 185,088 Intel Haswell E5-2680 v3 compute cores. 
Hazel Hen has an Aries [23] interconnect and features 965 TB of Main Memory and a total of 11 
PB of storage. The peak performance is 7.42 Pflop/s. 

3.1.2 Irene 

Irene (Joliot-Curie computer) [27] is the Tier-0 system hosted by CEA, France. Irene is a Bull 
Sequana X1000 supercomputer, and has 2 compute partitions: 

• Irene SKL: 
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o 1,656 Intel Xeon Platinum 8168 (Skylake) dual processors nodes @ 2.7 GHz, 24 
cores/CPU, 

o 79,488 compute cores for 6.86 Pflop/s peak performance, 
o 192 GB of DDR4 memory / node, 
o InfiniBand EDR interconnect. 

• Irene KNL: 
o 666 many cores Intel Xeon Phi 7250 (Knights Landing) nodes @ 1.4 GHz, 68 

cores/CPU, 
o 45,288 compute cores for 2 Pflop/s peak performance, 
o 96 GB DDR4 memory/node + 16 GB MCDRAM memory/node, 
o Bull eXascale Interconnect (BXI). 

3.1.3 JUWELS 

JUWELS, the Jülich Wizard for European Leadership Science [28], is the Tier-0 system hosted by 
the Jülich Supercomputing Centre, Germany. JUWELS is an Atos Bull Sequana X1000 system 
with dual 24-core Intel Xeon Platinum 8168 (Skylake) CPUs @ 2.7 GHz and an EDR-InfiniBand. 
The peak performance is 9.89 Pflop/s. 

3.1.4 Marconi 

Marconi [29] is the Tier-0 system, co-designed by CINECA and based on the Lenovo NeXtScale 
platform, which replaced the previous IBM BlueGene/Q system (Fermi) in June 2016. The 
supercomputer has been upgraded by adding new partitions with the result that as of March 2019 
there are two partitions: 

1. A2 containing 3,600 nodes with 1 × 68-cores Intel Xeon Phi 7250 (Knights Landing) @ 
1.4 GHz processor per node 

2. A3 composed of ca. 3,000 nodes with 2 × 24-cores Intel Xeon Platinum 8160 @ 2.1 GHz 
(Skylake) processors per node. 

The A2 partition, available as part of CINECA’s PRACE Tier-0 offer, has a peak performance of 
11 Pflop/s while the A3 partition has a peak performance of ca. 8 Pflop/s. The network fabric is 
based on the Intel Omni-Path architecture while data storage is provided by the IBM Spectrum 
Scale™ (GPFS) file system. 

3.1.5 MareNostrum4 

MareNostrum4 [30] is the Tier-0 system hosted by BSC, Spain. It is based on Intel Xeon Platinum 
processors from the Skylake generation. It is a Lenovo system composed of SD530 Compute 
Racks, an Intel Omni-Path high performance network interconnect and running SuSE Linux 
Enterprise Server as operating system. Its current LINPACK Rmax Performance is 6.2272 Pflop/s. 

This general-purpose block consists of 48 racks housing 3456 nodes with a grand total of 165,888 
processor cores and 390 TB of main memory. Compute nodes are equipped with: 
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• 2 sockets Intel Xeon Platinum 8160 (Skylake) CPU with 24 cores each @ 2.10 GHz for a 
total of 48 cores per node; L1d 32 kB; L1i cache 32 kB; L2 cache 1024 kB; L3 cache 
33792 kB 

• 96 GB of main memory 1.880 GB/core (216 nodes high memory, 10368 cores with 7.928 
GB/core) 

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E adapter (in a full fat tree 
topology) 

• 10 Gbit Ethernet 
• 200 GB local SSD available as temporary storage during jobs 

3.1.6 Piz Daint 

Piz Daint [31] is the Tier-0 system hosted by CSCS, Switzerland. Piz Daint is a Cray XC40/XC50 
system: 

• 5704 XC50 nodes with one Intel Xeon E5-2690 v3 (Haswell) @ 2.60 GHz (12 cores, 64 GB 
RAM) and one NVIDIA Tesla P100 (16 GB) 

• 1813 XC40 nodes with two Intel Xeon E5-2695 v4 (Broadwell) @ 2.10 GHz (2 × 18 cores, 
64/128 GB RAM). 

The system has an Aries interconnect using a Dragonfly topology. 

Cray XC40/ XC50 has advanced power monitoring and control features enabled on the compute 
blades. This helps system administrators and researchers involved in advanced power monitoring, 
power aware computing, and energy efficient computing. All blades developed for Cray XC 
platform supports out of band collection of energy statistics by default at 1 Hz. 

Node level, cabinet level and system level energy data are exposed via Cray advanced platform 
monitoring and control (CAPMC) to the system workload manager (WLM). The additional or 
optional way of collecting energy statistics is through pm counters located on 
“/sys/cray/PM_COUNTERS” path. Cray supports resource utilisation reporting (RUR) and PAPI 
(Performance application performance interface) [50]. 

Node level power capping on Cray XC50 blade supporting Intel Xeon scalable processors utilises 
Intel node manager firmware running on the platform controller hub (PCH). Cray firmware 
communicates with the Intel firmware over an Intelligent Platform Management Bus (IPMB). The 
implemented power capping utilises the Intel Running Average Power limit. 

Additional references for Cray’s energy monitoring and documentation can be found in [50]. 

3.1.7 SuperMUC-NG 

SuperMUC-NG [32] is the Tier-0 system hosted by LRZ, Germany. SuperMUC-NG is a Lenovo 
system: 

• 6336 Thin compute nodes each with 48 cores Intel Xeon Platinum 8174 (Skylake) @ 3.1 
GHz and 96 GB memory 

• 144 Fat compute node each with 48 cores Intel Xeon Platinum 8174 (Skylake) @ 3.1 GHz 
and 768 GB memory 
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The internal interconnect is an Omni-Path network with 100 Gbit/s. The compute nodes are 
bundled into 8 domains (islands). Within one island, the Omni-Path network topology is a ‘fat tree’ 
for highly efficient communication. The Omni-Path connection between the islands is pruned 
(pruning factor 1:4). 

Unfortunately, SuperMUC-NG will become available only on 1 April 2019. This is too late to be 
able to include results in this report. 

3.2 PCP prototypes 

3.2.1 DAVIDE 

D.A.V.I.D.E. (Development of an Added Value Infrastructure Designed in Europe) [33] is an 
energy-aware petaflops Class High Performance Cluster based on the IBM POWER Architecture 
coupled with NVIDIA Tesla Pascal GPUs (P100) using NVLink. The innovative design of 
DAVIDE has been developed by E4 Computer Engineering for PRACE, with the aim of producing 
a leading edge HPC cluster showing higher performance, reduced power consumption and ease of 
use. 

DAVIDE entered the TOP500 and Green500 list in June 2017 in its air-cooled version, while the 
current version features liquid cooling and an innovative technology for monitoring and capping 
the power consumption. 

The current configuration consists of 45 × (2 POWER8 + 4 Tesla P100) nodes with NVLink and 
coupled with an InfiniBand (2×IB EDR) network. The peak performance is approximately 
1 Pflop/s. 

3.2.2 Frioul 

The Frioul PCP prototype [34] was designed by Atos/Bull and has been hosted by CINES, France 
since 2016. Jointly financed by PRACE (PCP) and GENCI (Frioul), part of the PCP machine was 
dismantled before being shipped to the TGCC; the other part was merged into Frioul to become a 
single homogeneous machine. The Frioul configuration has changed from 48 to 54 compute nodes 
and has changed the file system (MooseFS I/O to BeeGFS I/O). Since late 2018, the energy 
measurement tools (BEO & HDEEVIZ) initially present on the PRACE PCP prototype are no 
longer available on Frioul. It is now made of 18 Bull Sequana X1210 blades, each including 3 Intel 
Xeon Phi KNL nodes. In total, it has a theoretical peak performance of 172 Tflop/s. 

• 54 nodes with 
o 1× Intel Xeon Phi 7250 processor (KNL), 68 cores at 1.4 GHz with SMT4 
o 16 GB MCDRAM, 192 GB DDR4 DIMMs 

• InfiniBand EDR 
• BeeGFS I/O 
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3.2.3 JUMAX 

The JUMAX PCP prototype [46] is based on Maxeler’s MAX5 DataFlow Engines (DFE) cards. A 
DFE card comprises an FPGA, which is used to implement part of the application following a data-
flow paradigm. JUMAX is hosted by JSC, Germany. Since porting UEABS applications to 
JUMAX was completely out of scope of the PRACE-5IP benchmarking activities, we do not 
present any results on JUMAX. JUMAX results will be presented in the PCP Conclusion 
Report [53]. 

3.3 Partner prototype systems 

3.3.1 DEEP-ER SDV 

The DEEP-ER Prototype SDV [35], Software Development Vehicle, is hosted by JSC, Germany 

Cluster 

• 16 dual-socket Intel Xeon E5-2680v3 nodes 
• Each node: 128 GB DRAM, 400 GB NVM 

Booster 

• 8 Adams Pass Intel Xeon Phi 7210 CPU 
• Each node: 16 GB on-package memory, 96 GB DRAM, 200 GB NVM 

System 

• EXTOLL fabric using TOURMALET NICs with six links of 100 Gbit/s each 
• Aggregate performance approx. 40 Tflop/s 

Storage 

• 2 storage servers (spinning disks, 57 TB) 
• 1 metadata server (SSDs) 
• BeeGFS file system 

3.3.2 Mont-Blanc 3 Dibona 

The Mont-Blanc 3 prototype Dibona [36] is hosted by Atos, France. Dibona is a Bull Sequana 
X1000 system. It has 48 nodes, each node includes: 

• Dual socket Marvell ThunderX2 (32 cores per CPU, 64 cores per node, each core at 2 
GHz, 32 MB L3 cache) 

• 256 GB of main memory per node (16 DDR4-2666 DIMM slots, 8 channels per CPU) 

• 256 GB local storage e (+ 8 TB NFS) 

The Mont-Blanc 3 prototype Dibona is equipped with a fat-tree with a pruning factor of 1:2 at L1 
level interconnect topology with InfiniBand EDR 100 Gb/s. 
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4 Benchmark Results per Application 

4.1 Alya 

The Alya benchmarks have been performed on systems with different architectures, Skylake 
(JUWELS and MareNostrum4), Haswell (DEEP-ER SDV), KNL (Marconi, Frioul), GPU (Piz 
Daint, DAVIDE) and ARM (Dibona). 

Due to the similarities with other architectures tested, benchmarks were not performed on the Hazel 
Hen, Irene-KNL and Irene Skylake systems. 

The elapsed time of only the time-integration phase has been considered, since it is the dominant 
part in the production runs of Alya. Likewise, the node workload for each system was selected 
according to the similar configurations used in scientific simulations. 

We have only used Test Case B on the Tier-0 systems since its size is too large for the smaller 
systems. Conversely, we have only used Test Case C on the PCP Prototypes since its size is too 
small for the larger systems. 

4.1.1 Performance on Skylake: JUWELS and MareNostrum4 

Table 1 and Table 2 present the results for the Skylake systems, JUWELS and MareNostrum4 for 
Case A and B respectively. We can observe better performance on JUWELS for all the cases 
because the CPU frequency on JUWELS (2.7 GHz) is higher than on MareNostrum4 (2.1 GHz). 

Additionally, the parallel efficiency on all the cases is better than for MareNostrum4. One of the 
causes of this difference on the efficiency is the network of each system, Mellanox EDR-InfiniBand 
on JUWELS and Intel Omni-Path on MareNostrum4. 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
JUWELS MareNostrum4 

192 124.24 1.0 100% 129.45 1.0 100% 
384 62.56 2.0 99% 67.45 1.9 96% 
768 31.24 4.0 99% 33.93 3.8 95% 

1536 16.45 7.6 94% 18.28 7.1 89% 
Table 1: Test Case A – Skylake 
 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
JUWELS MareNostrum4 

1152 372.52 1.0 100% 451.38 1.0 100% 
2304 196.48 1.9 95% 262.32 1.7 86% 
4608 99.65 3.7 93% 124.98 3.6 90% 
9216 61.34 6.1 76% 86.61 5.2 65% 

Table 2: Test Case B – Skylake 

4.1.2 Performance on Marconi-KNL 

Table 3 and Table 4 show the performance results of Alya on Marconi-KNL for Test Case A and 
Test Case B. We observe that for the same number of nodes (68 cores is one node on Marconi-
KNL and 48 cores is one node in Skylake systems) the performance is similar, despite of KNL has 
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more cores per node. Also, the parallel efficiency is worse on KNL due to each node has more MPI 
tasks, so each node has more communication. We obtained the best performance using the 
Quadrant mode for the Clustering settings and the Cache mode for the MCDRAM [54]. The 
performance results of Table 3 and Table 4 were obtained using these modes. 

Number of cores Time (s) SpeedUp Efficiency 
272 130.66 1.0 100% 
544 68.31 1.9 96% 

1088 37.94 3.4 86% 
2176 22.78 5.7 72% 

Table 3: Test Case A – Marconi-KNL 
 

Number of cores Time (s) SpeedUp Efficiency 
2176 486.54 1.0 100% 
4352 281.05 1.7 87% 
8704 157.55 3.1 77% 

13056 122.24 4.0 66% 
Table 4: Test Case B – Marconi-KNL 

4.1.3 Performance on GPU: Piz Daint 

Table 5 and Table 6 show the performance results obtained in the executions in Piz Daint of cases 
A and B respectively. Alya’s code was compiled using the compilers PGI 18.5 for using OpenACC 
in the assembly of the matrix system, and CUDA 9.2 in the linear solver of the Poisson equation. 

The parallel efficiency for the case A is 84% when increasing the number of nodes 8 times from 
the initial setting. As expected, the strong scalability is lower than in the CPU runs, because 
reducing the local workload negatively affects the GPU occupancy, resulting in a slowdown in the 
performance. Moreover, the relative weight of the MPI communications increases when using a 
larger number of nodes. Consequently, the overlapping strategy used in the GPU implementation 
reduces its efficiency for hiding the communications. 

This behaviour is observed more intensively in Table 6 In such case, the initial setting has half of 
the local workload than case A, and therefore, the parallel efficiency slows down 11%. Despite the 
decrease in parallel performance, the GPU still runs in average 2.5 times faster than the pure CPU 
implementation. 

Number of nodes Time (s) SpeedUp Efficiency 
8 123.01 1.0 100% 

16 64.49 1.91 95% 
32 34.49 3.79 95% 
64 18.28 6.73 84% 

Table 5: Test Case A – Piz Daint 
 

Number of nodes Time (s) SpeedUp Efficiency 
128 67.01 1.0 100% 
256 34.81 1.93 96% 
512 20.47 3.27 82% 

1024 11.54 5.81 73% 
Table 6: Test Case B – Piz Daint 
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4.1.4 Performance and Energy Consumption on PCP prototypes 

As we can see on Table 7 and Table 8, Frioul is two times slower than DAVIDE in a node to node 
comparison of absolute times. However, note that the last ones are composed of 4 GPUs and 2 
POWER8 CPUs. Roughly speaking, we could say that currently for Alya the execution in an Intel 
Xeon Phi 7250 is as fast as two NVIDIA P100 GPUs. For the strong speedup test, an ideal 
acceleration and a linear increase of energy cost would result in a constant energy cost per job. 
Both conditions are not true in practice on the PCP prototypes. Energy consumption grows between 
1.4 and 2.6 times, this increase being more notorious for the DAVIDE system. The executions on 
Frioul are 3.7 times more energy efficient than the ones on DAVIDE system. However, note that 
on the energy measurements for DAVIDE are also considered the POWER8 hosts that are not in 
Alya’s calculations, but only to carry out intra-node communications. 

Number of 
full nodes Performance Energy Speed-Up Performance 

Efficiency 
Normalised 

energy 
4 92.80 898222 1.0 100% 1.0 
8 47.83 1441304 1.9 97% 1.6 

16 26.65 1722932 3.5 87% 1.9 
32 14.77 1821975 6.3 79% 2.0 

Table 7: Test Case C – PCP prototype DAVIDE 
 

Number of 
full nodes Performance Energy Speed-Up Performance 

Efficiency 
Normalised 

energy 
4 220.07 332128 1.0 100% 1.0 
8 108.18 389952 2.0 102% 1.2 

16 55.81 380000 3.9 99% 1.1 
32 28.68 470000 7.7 96% 1.4 

Table 8: Test Case C – PCP prototype Frioul 

4.1.5 Performance on DEEP-ER SDV 

In Table 9 we observe that the Alya scalability on the DEEP-ER SDV prototype slows down in 
40% with respect to MareNostrum4 with 16 nodes on each system. This result is expected due the 
network differences. In terms of CPU performance, ignoring the communication load, it is observed 
that MareNostrum4 is 50% faster than the DEEP-ER SDV prototype. 

Number of cores Time (s) SpeedUp Efficiency 
48 772.64 1.0 100% 
96 421.31 1.8 92% 

192 278.47 2.8 69% 
384 176.28 4.4 55% 

Table 9: Test Case A – DEEP-ER SDV 
 

4.1.6 Performance on ARM: Mont-Blanc 3 Dibona 

Alya’s code was compiled on Mont-Blanc 3 Dibona using GCC 7.2.1 and OpenMPI 3.1.2. We see 
from Table 10 that the performance of Alya on Mont-Blanc 3 Dibona is slower if we compare the 
ARM system node to node, with the Skylake systems. However, the scalability in Dibona is on the 
expected range, if we compare with a system with InfiniBand network, for example, JUWELS. 
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Number of cores Time (s) SpeedUp Efficiency 
128 1202.7 1.0 100% 
256 658.85 1.8 91% 
512 332.72 3.6 90% 

1024 182.57 6.6 82% 
Table 10: Test Case A – Mont-Blanc 3 Dibona 

4.2 Code_Saturne 

The tests have been carried out on: 4 machines, using CPUs only, namely Hazel Hen, Irene-SKL, 
JUWELS and MareNostrum4; on 3 machines with KNLs, Irene-KNL, Frioul and Marconi; and 3 
extra machines, Piz Daint (CPUs and GPUs), Dibona (ARM) and DAVIDE (POWER8). Two 
series of benchmark tests have been run, for 10 time steps each, with 13M cells (Test Case A) and 
111M cells (Test Case B), respectively, and the time per time step and efficiency were used for 
comparison. It was decided to stick to efficiency and not present also the speed-up behaviour, as 
the efficiency shows more insight than the speed-up, the speed-up can easily be derived from the 
efficiency, and finally for a practical reason, to keep a large-enough font size in the tables below. 
The partitioning was performed on-the-fly using a Space Filling Curve algorithm which relies on 
Morton's configuration. 

4.2.1 Performance on CPU-based machines: Hazel Hen, Irene-SKL, JUWELS and 
MareNostrum4 

MPI only is used on all these 4 machines, without any hyperthreading at all, as it was found that 
there was no benefit to have it on. Consequently, Irene-SKL, JUWELS and MareNostrum4 have 
been used with 48 MPI tasks per node, whereas Hazel Hen has been used with 24 MPI tasks per 
node. 

Table 11 shows time per time step and efficiency for each of the Test Case A simulations. Nearly 
perfect efficiency is observed on the four machines up to 16 nodes of Hazel Hen and 8 nodes of 
the 3 other machines (384 MPI tasks in total). Beyond these node counts, the performance 
deteriorates, which can be explained by the fact that either each core is not loaded enough (about 
17,000 cells per MPI tasks when 768 cores are used) or MPI communications are taking over one-
task computation. This alteration in performance could also be explained by the fact that the Space 
Filling Curve partitioner does not provide an optimised edge-cut which results in an increase in the 
number of MPI tasks involved in point-to-point communications. 

Among the three Tier-0 machines, both Skylake-based computers show best results, with JUWELS 
giving the best performance up to 16 nodes, in terms of timing and efficiency. On MareNostrum4, 
Code_Saturne is slightly slower than on Skylake-based computers, which might be explained by 
the higher CPU frequency of the latter (2.1 GHz vs 2.7 GHz). The node-to-node comparison shows 
that the simulations ran on JUWELS are always at least twice as fast as on Hazel Hen, which was 
to be expected given the type of processors used on Hazel Hen (Haswell). 

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4 
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff 

1 24 50.40 100% 48 23.98 100% 48 22.60 100% 48 29.02 100% 
2 48 25.24 100% 96 12.05 100% 96 11.09 102% 96 13.63 106% 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 27 18.04.2019 

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4 
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff 

4 96 12.72 99% 192 6.21 96% 192 5.32 106% 192 6.78 107% 
8 192 6.08 104% 384 3.33 90% 384 2.69 105% 384 3.46 105% 
16 384 3.17 99% 768 2.22 68% 768 1.52 93% 768 2.18 83% 
32 768 2.01 78%          

Table 11: Test Case A: Performance of Code_Saturne on the 4 CPU-based machines 
 

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4 
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff 

8 192 81.42 100% 384 38.75 100% 384 34.52 100% 384 45.41 100% 
16 384 39.91 102% 768 20.50 95% 768 17.79 97% 768 24.99 91% 
32 768 22.87 89% 1,536 12.01 81% 1536 9.54 90% 1,536 12.99 87% 
64 1,536 11.33 89% 3,072 7.40 65% 3072 6.69 65% 3,072 8.96 63% 

128 3,072 8.53 60%          
Table 12: Test Case B: Performance of Code_Saturne on the 4 CPU-based machines 
 

Table 12 presents Code_Saturne's timings and efficiency for Test Case B. The same trend as for 
Test Case A is observed, e.g. the fastest simulations are on JUWELS, being at least twice as fast 
as on Hazel Hen. 

4.2.2 Performance on KNL-based machines: Irene-KNL, Frioul and Marconi 

Three KNL-based machines are used to assess the performance of Code_Saturne. All of them rely 
on 68 thread-nodes. For Test Case A, it was found that simulations using 34 MPI tasks and 2 
OpenMP threads per node were faster than simulations using 68 MPI tasks per node from 4 nodes 
on (these comparisons are not shown here), on Irene-KNL and Frioul, the best timing being 
obtained on Frioul (4.23 s) using 32 nodes, even if the best efficiency was achieved on Irene-KNL. 
However, using MPI only on Marconi with 68 MPI tasks per node (as opposed to 34 MPI tasks 
and 2 OpenMP threads per node simulation, which results are not shown here) exhibited the best 
timing and performance on that machine. 

#nodes Irene-KNL Frioul Marconi 
#threads T(s) Eff #threads T(s) Eff #cores T(s) Eff 

1 68 63.15 100% 68 47.74 100% 68 43.85 100% 
2 136 33.75 100% 136 24.75 96% 136 23.89 92% 
4 272 18.58 99% 272 13.32 90% 272 12.76 86% 
8 544 8.30 104% 544 8.75 68% 544 7.52 73% 

16 1,088 7.07 99% 1,088 5.70 52% 1,088 6.10 45% 
32 2,176 5.10 78% 2,176 4.23 35%    

Table 13: Test Case A: Performance of Code_Saturne on the 3 KNL-based machines (2 OpenMP threads per 
MPI task are used on Irene-KNL and Frioul and MPI only on Marconi) 
 

For Test Case B interestingly (see Table 14), using MPI only on the full nodes of Marconi shows 
better performance than combinations of 34 MPI tasks and 2 OpenMP threads per on Irene-KNL. 

#nodes Irene-KNL Marconi 
#threads T(s) Eff #threads T(s) Eff 

8 544 98.00 100% 544 75.31 100% 
16 1,088 56.13  87% 1,088 40.47 93% 
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#nodes Irene-KNL Marconi 
#threads T(s) Eff #threads T(s) Eff 

32 2,176 32.68 75% 2,176 22.67 83% 
64 4,352 23.70 52% 4,352 13.90 68% 

128 8,704 13.84 44% 8,704 11.54 41% 
Table 14: Test Case B: Performance of Code_Saturne on Irene-KNL (2 OpenMP threads per MPI task) and 
Marconi (MPI only) 

4.2.3 Performance on other architectures: Piz Daint, Dibona, DAVIDE 

Many simulations have been carried out to select the best combination of MPI tasks, OpenMP 
threads, and GPUs (when available) on Piz Daint, Dibona and DAVIDE. Table 15 shows that the 
best timings obtained for Test Case A using Piz Daint are for 8 MPI tasks and 2 OpenMP threads 
and 1 GPU per node, Dibona for 32 MPI tasks and 2 OpenMP threads per node and DAVIDE for 
16 MPI tasks and 4 OpenMP threads and 4 GPUs per node. If we consider former tests carried out 
for Code_Saturne on POWER8/9 machines, each GPU requires at least 300,000 cells to 
demonstrate good performance (see [44]). Given the relatively modest size of the test case (13M 
cells) and the 300,000-cell threshold, a meaningful comparison is carried out up to 4 nodes for the 
3 machines. In this case, the simulations ran on DAVIDE are the fastest of the 2 GPU machines, 
by at least a factor of about 2. Simulations on Dibona are slightly slower than on DAVIDE, but the 
compute time per time step is still good (37.86 s vs 30.03 s, 21.28 s vs 16.75 s, and 12.13 s vs 8.52 
s using 1, 2 and 4 nodes of Dibona and DAVIDE, respectively). The simulations on Dibona are 
clearly faster than on Piz Daint up to 16 nodes. Note that it was not possible to run simulations 
using 32 nodes and more on Dibona. 

#nodes Piz Daint Dibona DAVIDE 
#threads T(s) Eff #threads T(s) Eff #threads T(s) Eff 

1 16 80.25 100% 64 37.86 100% 64 30.03 100% 
2 32 41.66 96% 128 21.28 89% 128 16.75 90% 
4 64 22.29 90% 256 12.13 78% 256 8.52 88% 
6       384 6.70  74% 
8 128 12.60 80% 512 8.55  55%    

16 256 7.79 64% 1,024 6.40 37%    
32 512 5.08 49%       
64 1,024 3.55 35%       

128 2,048 2.19 28%       
Table 15: Test Case A: Performance of Code_Saturne on the 3 extra machines (Piz Daint, 8 MPI tasks and 2 
OpenMP threads and 1 GPU per node, Dibona, 32 MPI tasks and 2 OpenMP threads per node, DAVIDE, 16 
MPI tasks and 4 OpenMP threads and 4 GPUs per node) 
 

#nodes Piz Daint 
#threads T(s) Eff 

8 128 119.65 100% 
16 256 63.17 95% 
32 512 40.60 74% 
64 1,024 24.07 62% 

128 2,048 15.36 49% 
256 4,096 10.32 36% 
512 8,196 8.25 23% 

Table 16: Test Case B: Performance of Code_Saturne on Piz Daint (8 MPI tasks and 2 OpenMP threads and 1 
GPU per node) 
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Table 16 shows the timings obtained for Test Case B on Piz Daint. The scalability is very good up 
to 32 nodes, and some speed-up is still observed up to 512 nodes. 

4.2.4 Cross comparison for all the machines/architectures 

For Test Case A, the best timings and performance are observed on JUWELS, a time step taking 
about 1.52 s on 16 nodes and 768 cores, being about 3.75 times faster than the fastest simulations 
on a KNL-machine (Frioul), about 4.21 times faster than the simulation on the ARM cluster 
(Dibona) and about 5.125 times faster than the simulation on the GPU-based machine (Piz Daint). 
This might be explained by the very high speed of the Skylake nodes, but also because of the nature 
of the problem to solve in Code_Saturne, where the Navier-Stokes equations are solved implicitly 
using sparse matrices (sparse linear algebra). However, the limitation in terms of number of 
available nodes on DAVIDE (6 nodes) and the fact that the processors are now a relatively old 
technology (POWER8) do not help making a state-of-the-art comparison. It would be good in the 
future to compare the results on JUWELS to results obtained on a POWER9 machine with 
NVLINK 2.0 enabled. 

For Test Case B, less data were available, because of the limitation in the number of available 
nodes on some of the machines (Frioul, Dibona and DAVIDE, for instance). Once again, JUWELS 
is the machine were the simulations run the fastest. 

4.2.5 Energy consumption 

The energy consumption is computed on DAVIDE (Test Case A) and Piz Daint (Test Case A and 
B). It was not possible to get the energy consumption on Frioul as the tools to compute it were no 
longer available on the machine, when the MPI/OpenMP/GPU version of the code used in this 
work was made available in late 2018. 

The results presented for DAVIDE (CPU), (see 1st column of Table 17), were run using 16 MPI 
tasks and 2 OpenMP threads per node, and for DAVIDE (GPU), (see 2nd column of Table 17), 
using 16 MPI tasks, 2 OpenMP threads and 4 GPUs per node. Not enough nodes were available to 
run meaningful tests for Test Case B. Consequently, Test Case A results only are presented on that 
machine. Note as well that the results are presented for a different configuration than the ones 
shown in Section 4.2.2, but for cases (16 MPI tasks and 2 OpenMP threads per node) where the 
energy measurements are available and happen to be consistent. 

The results obtained for Test Case A on Piz Daint (CPU), (see 3rd column of Table 17) have been 
obtained using 12 MPI tasks per node, and on Piz Daint (GPU), (see 4th column of Table 17) using 
8 MPI tasks, 2 OpenMP threads and 1 GPU per node. The same conditions are used for the results 
shown in Table 18 and Test Case B. 

For Test Case A, the energy consumed on DAVIDE (CPU) is larger than for the three other 
configurations. It also shows a decreasing trend, when the number of nodes increases, which is the 
opposite of the three other cases. This large energy spent could be explained by the fact that the 
time per time step is about twice as large as for DAVIDE (CPU) for two and four nodes, and the 
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simulations then last longer. The simulations on DAVIDE (GPU) are much faster than on Piz Daint 
(CPU and GPU) on two and four nodes, however, the energy consumption is very similar in these 
three cases (225 kJ, 215 kJ, 208 kJ respectively on 4 nodes), making DAVIDE the best machine 
for ratio time to solution/energy consumption. 

If the number of nodes is increased (Piz Daint CPU and GPU), so does the energy consumption, 
but it remains very similar for both configurations. 

#nodes DAVIDE (CPU) DAVIDE (GPU) Piz Daint (CPU) Piz Daint (GPU) 
#threads T(s) E(kJ) #threads T(s) E(kJ) #cores T(s) E(kJ) #threads T(s) E(kJ) 

1 16 61.36  16 32.66  12 102.63 214 16 80.26 170 
2 32 29.84 513 32 17.87 194 24 50.10 210 32 41.66 181 
4 64 14.53 406 64 9.01 225 48 24.36 215 64 22.29 208 
6 96 9.73 363 96 6.85 344       
8       96 11.78 224 128 12.60 239 
16       192 6.63 282 256 7.79 315 
32       384 4.09 400 512 5.08 465 
64       768 3.44 763 1,024 3.55 772 

128       1,536 3.08 1,550 2,048 2.19 1,230 
Table 17: Test Case A: Energy consumption comparison between DAVIDE and Piz Daint, using CPU or GPU 
configurations 
 

#nodes Piz Daint (CPU) Piz Daint (GPU) 
#cores T(s) E(kJ) #threads T(s) E(kJ) 

8 96 144.89 2,450 64 119.65 2,180 
16 192 72.82 2,530 128 63.17 2,390 
32 384 36.62 2,710 256 40.60 3,000 
64 768 19.99 3,330 512 24.07 3,830 

128 1,536 11.71 4,710 1,024 15.36 5,150 
256 3,072 9.04 7,850 2,048 10.32 8,040 
512 6,144 7.33 15,810 4,096 8.25 14,330 

Table 18: Test Case B: Energy consumption on Piz Daint, CPUs and GPUs 
 

For Test Case B on Piz Daint (CPU and GPU), the same trend is observed, e.g. using GPUs does 
not seem to impact the total energy, as it is smaller on 8 and 16 nodes, when the time per time step 
is smaller than for the CPU only cases. From 32 to 256 nodes, using GPUs is marginally more 
energy consuming, mainly because the simulations last then longer. The only exception is for 512 
nodes, when the GPU simulation uses less energy, and is slower than the CPU simulation. 

4.3 CP2K 

This section reports CP2K benchmarking results, analyses performance and energy efficiency for 
the three test cases described in Section 2.3, which have been run on a number of systems including 
PRACE Tier-0, PRACE PCP prototype, Mont-Blanc 3 and DEEP-ER project prototype machines. 
The porting effort consisting of the installation and execution work done as part of the CP2K 
benchmarking effort is also reported on. 

With regards to the performance and energy efficiency of CP2K a comparison is made for two of 
the three test cases between the PCP prototype systems and one of the Tier-0 systems that also 
provides energy measurements (Piz Daint). 
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4.3.1 General remarks regarding installation 

In addition to the strict requirements for LAPACK, BLAS and ScaLAPACK (often satisfied by an 
MKL installation or in the case of Dibona by the ARM Performance Libraries), FFTW3, and an 
MPI library in order to run in parallel, CP2K can make use of several other libraries to improve 
performance and extend functionality. Some of these, especially the autotuning library libgrid 
which computes products of Gaussians as well as the small matrix-matrix multiplication libraries 
libsmm/libxsmm can take very significant effort to build, especially on systems with unusual 
configurations and pre-production prototype systems with limited documentation and software 
stacks. For this reason and to ensure that performance and energy comparisons were nonetheless 
done on a fair footing between the various systems, on each system CP2K was linked only to the 
Libint (version 1.1.4) and Libxc (usually version 4.2.3) libraries required to run the benchmarks, 
in addition to the strictly required libraries. Libint and Libxc were therefore built first on each 
system, and in some cases also FFTW (version 3.3.x) and ScaLAPACK (version 2.0.2) where these 
were not present already. 

Gfortran is the (strongly) recommended compiler for CP2K, and CP2K is known to generate a 
range of compile-time and run-time issues in conjunction with many different particular major and 
minor versions of the Intel compiler – see [47] for a partial listing of known issues. Wherever 
possible CP2K was therefore built using gfortran. In addition, CP2K needs to be linked to a version 
of an MPI library that was built using the same compiler as used to build CP2K itself. The same is 
advisable for other libraries. In several cases these requirements placed significant barriers to 
porting CP2K, e.g. to the prototype systems given their limited software stacks and on which 
building an MPI library with the desired compiler would be especially problematic given novel 
interconnects and/or platform configurations. 

For execution on GPUs, CP2K was compiled using the flags -D__ACC and -D__DBCSR_ACC to 
offload sparse matrix multiplication. 

4.3.2 General remarks regarding execution 

To begin, hybrid MPI+OpenMP runs for fixed core count for a range of different combinations of 
threads per rank and ranks per node were performed for small and larger node counts in order to 
determine the combination giving optimal performance for each test case prior to runs exploring 
strong scaling for that test case. 

There is no reading of any large amount of input data for any of the test cases hence initialisation 
cost is ignored in timings –the application’s self-reported runtimes are extracted from output logs. 

The maximum allowed memory per process for Test Case B (LiH-HFX) was adjusted in the input 
file for each different choice of numbers of MPI ranks per nodes, with a safe limit that avoids the 
application running out of memory and being killed found to consist of roughly 0.75× the total on-
node memory on each machine. 

Test Case C (H2O-DFT-LS) generates large data structures that for a few machines do not fit into 
memory for smaller total number of nodes, which explains the absence of measurements for these 
small node counts. 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 32 18.04.2019 

4.3.3 Performance Results 

Results for each test case run on each machine are given below, see the section after for analysis. 
In each case the choice of hybrid MPI + OpenMP runtime threading configuration that was found 
to be optimal and used in runs to generate scaling data is given. 

4.3.3.1 Performance on JUWELS 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 1353.46 1.00 100.00 
2 786.46 1.72 86.05 
4 434.60 3.11 77.86 
8 308.03 4.39 54.92 
16 213.11 6.35 39.69 
32 319.18 4.24 13.25 

Table 19: Test Case A (using 24 MPI × 2 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 1343.94 1.00 100.00 
2 677.98 1.98 99.11 
4 344.97 3.90 97.40 
8 180.89 7.43 92.87 
16 93.09 14.44 90.23 
32 50.69 26.51 82.85 
64 28.26 47.56 74.31 
128 23.35 57.56 44.97 

Table 20: Test Case B (using 2 MPI × 24 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
2 576.26 1.00 100.00 
4 313.96 1.84 91.77 
8 188.36 3.06 76.48 
16 109.37 5.27 65.86 
32 81.36 7.08 44.27 
64 56.78 10.15 31.72 
128 95.84 6.01 9.39 

Table 21: Test Case C (using 24 MPI × 2 OpenMP) 

4.3.3.2 Performance on Piz Daint (XC50 partition, with GPU) 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 3426.61 1.00 100.00 792 
2 1805.93 1.90 94.87 832 
4 1079.81 3.17 79.33 975 
8 620.42 5.52 69.04 1140 
16 422.55 8.11 50.68 1510 
32 319.49 10.73 33.52 2200 
64 294.02 11.65 18.21 3980 
128 360.43 9.51 7.43 9300 

Table 22: Test Case A (using 12 MPI × 1 OpenMP) 
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Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 5273.17 1.00 100.00 1050 
2 2644.66 1.99 99.69 1080 
4 1349.94 3.91 97.66 1110 
8 691.98 7.62 95.26 1120 
16 350.30 15.05 94.08 1140 
32 185.36 28.45 88.90 1230 
64 98.74 53.40 83.44 1370 
128 57.19 92.20 72.03 1660 
256 34.79 151.57 59.21 2300 
512 27.43 192.24 37.55 3590 
1024 26.63 198.02 19.34 8140 

Table 23: Test Case B (using 12 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
8 326.75 1.00 100.00 517 
16 203.52 1.61 80.27 566 
32 178.70 1.83 45.71 756 
64 65.88 4.96 62.00 889 
128 50.41 6.48 40.51 1330 
256 34.65 9.43 29.47 1940 
512 28.31 11.54 18.03 3330 
1024 27.11 12.05 9.42 6620 
2048 27.31 11.96 4.67 14450 

Table 24: Test Case C (using 6 MPI × 2 OpenMP) 

4.3.3.3 Performance on Piz Daint (XC50 partition, without GPU – CPU only) 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 5643.44 1.00 100.00 1100 
2 2719.30 2.08 103.77 1130 
4 1567.81 3.60 89.99 1290 
8 777.30 7.26 90.75 1310 
16 485.85 11.62 72.60 1650 
32 317.29 17.79 55.58 2100 
64 241.21 23.40 36.56 3150 
128 198.21 28.47 22.24 5060 
256 214.57 26.30 10.27 10790 
512 209.43 26.95 5.26 20850 

Table 25: Test Case A (using 12 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 5213.40 1.00 100.00 1020 
2 2652.29 1.97 98.28 1040 
4 1354.34 3.85 96.24 1050 
8 690.03 7.56 94.44 1110 
16 358.49 14.54 90.89 1140 
32 178.59 29.19 91.23 1160 
64 93.96 55.49 86.70 1260 
128 50.46 103.32 80.72 1560 
256 30.73 169.65 66.27 1860 
512 23.28 223.94 43.74 2750 
1024 24.26 214.90 20.99 6590 
2048 35.80 145.63 7.11 17920 

Table 26: Test Case B (using 12 MPI × 1 OpenMP) 
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Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 

1 1306.53 1.00 100.00 1090 
2 668.76 1.95 97.68 1130 
4 379.41 3.44 86.09 1310 
8 226.36 5.77 72.15 1550 
16 147.12 8.88 55.50 2050 
32 86.25 15.15 47.34 2480 
64 58.09 22.49 35.14 3600 
128 43.10 30.31 23.68 5200 
256 27.10 48.21 18.83 7370 
512 32.72 39.93 7.80 15940 

Table 27: Test Case C (using 6 MPI × 2 OpenMP) 

4.3.3.4 Performance on Frioul 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
2 5917.00 1.00 100.00 1417.40 
4 3737.00 1.58 79.17 1631.30 
8 1922.00 3.08 76.96 1596.20 
16 794.00 7.45 93.15 1520.20 
32 424.00 13.96 87.22 1603.60 
64 231.00 25.61 80.05 1795.50 
128 147.00 40.25 62.89 2343.40 

Table 28: Test Case B (using 8 MPI × 8 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 2963.00 1.00 100.00 1410.20 
2 1210.00 2.45 122.44 1396.00 
4 729.00 4.06 101.61 1531.00 
8 383.00 7.74 96.70 1616.00 
16 226.00 13.11 81.94 1857.00 
32 139.00 21.32 66.61 2427.00 

Table 29: Test Case C (using 8 MPI × 8 OpenMP) 

4.3.3.5 Performance on DAVIDE (without GPU – CPU only) 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 4686.00 1.00 100.00 2825.00 
2 2344.00 2.00 99.96 2833.00 
4 1194.00 3.92 98.12 2926.00 
8 612.00 7.66 95.71 2978.00 
16 323.00 14.51 90.67 3166.00 

Table 30: Test Case B (using 16 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
1 24573.00 1.00 100.00 15504.00 
2 12502.00 1.97 98.28 15684.00 
4 6380.00 3.85 96.29 16217.00 
8 3295.00 7.46 93.22 16777.00 
16 1695.00 14.50 90.61 17314.00 

Table 31: Test Case C (using 16 MPI × 1 OpenMP) 
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4.3.3.6 Performance on DAVIDE (with GPU) 

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ) 
2 4657 1.00 100.00 3458 
3 2337 1.99 99.64 3484 

16 320 14.55 90.96 3963 
Table 32: Test Case B (using 16 MPI × 1 OpenMP) 

4.3.3.7 Performance on DEEP-ER SDV 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 3036.90 1.00 100.00 
2 1773.79 1.71 85.60 
4 1006.19 3.02 75.46 
6 750.04 4.05 67.48 

Table 33: Test Case A (using 24 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 2882.87 1.00 100.00 
2 1509.32 1.91 95.50 
4 785.97 3.67 91.70 
8 433.14 6.66 83.20 

16 256.84 11.22 70.15 
Table 34: Test Case B (using 12 MPI × 2 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
2 1464.77 1.00 100.00 
4 779.10 1.88 94.00 
8 403.13 3.63 90.84 

Table 35: Test Case C (using 12 MPI × 2 OpenMP) 

4.3.3.8 Performance on Dibona 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 2402.36 1.00 100.00 
2 1334.29 1.80 90.02 
4 769.59 3.12 78.04 
8 477.77 5.03 62.85 

16 336.71 7.13 44.59 
Table 36: Test Case A (using 64 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 1800.09 1.00 100.00 
2 918.89 1.96 97.95 
4 468.31 3.84 96.10 
8 244.09 7.37 92.18 

16 132.92 13.54 84.64 
Table 37: Test Case B (using 64 MPI × 1 OpenMP) 
 

Nodes Time (s) Speedup Parallel efficiency (%) 
1 2909.43 1.00 100.00 
2 1397.04 2.08 104.13 
4 739.62 3.93 98.34 
8 406.22 7.16 89.53 
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Nodes Time (s) Speedup Parallel efficiency (%) 
16 222.92 13.05 81.57 

Table 38: Test Case C (using 64 MPI × 1 OpenMP) 

4.3.4 Performance comparisons 

We present in Figure 2, Figure 3 and Figure 4 comparisons of the performance of Test Cases A, B 
and C on the range of systems on which benchmarking was performed. Scaling runs for each 
system and test case were performed after first determining hybrid MPI + OpenMP runtime 
configurations that yield optimal performance across a range of node sizes on each system, with 
the comparisons between systems being made between these optimal runs to more realistically 
reflect production usage of the respective machines. 

 
Figure 2: time to solution for Test Case A (H2O-512) 
 

Runs on Piz Daint with and without usage of the P100 GPUs were all performed on the XC50 GPU 
partition, thereby taking advantage of the opportunity to compare the performance of CP2K with 
and without GPU whilst keeping all else – CPU, memory, interconnect and software stack – 
constant. For test case B (LiH-HFX) we see no benefit from GPU usage at any scale. For test case 
A (H2O-512) we see significant benefit from the GPU for fewer than 32 nodes but with CPU-only 
runs winning out for larger node counts, possibly due to strong scaling diminishing the amount of 
node-local work that can be offloaded, meaning data transfer overheads become too costly. For test 
case C (H2O-DFT-LS) there is significant benefit up to large node counts. Examining the logs from 
GPU-enabled runs of all three test cases and analysing the statistics of calls to CP2K’s DBCSR 
acceleration layer, it is clear that a much higher percentage of small matrix multiplication calls are 
successfully offloaded to the GPU in test cases A and C, which are likely benefiting from the GPU 
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as a result. This suggests custom autotuning work to generate kernels to enable more efficient GPU 
offloading as described at [48] and [49] could improve performance of test case B on GPU-
equipped machines. It is worth noting that given the current state of DBCSR, this would require 
significant effort from HPC users and/or support staff (which was beyond scope of the porting and 
benchmarking effort undertaken in this project). However, development work on DBCSR currently 
being undertaken is expected to bypass the need for custom autotuning in future, which would 
enable better offloading by default for a wider range of simulations. 

 
Figure 3: time to solution for Test Case B (LiH-HFX). Note that runtimes on Dibona, DAVIDE (with and 
without GPUs) and Piz Daint (with and without GPUs) are all very similar for 1–16 nodes. 
 

With regards to performance of CP2K using the same P100 GPUs on the DAVIDE PCP prototype 
system, which provides four such GPUs per node, it was found that the benefit for offloading was 
equally limited for test case B and that it provided no observable performance benefit. Test cases 
A and C were not run successfully on DAVIDE GPUs due to various errors thrown by the CUDA 
runtime and linear algebra library respectively. These errors could not be resolved during the 
available access time to the prototype system. Based on experience with CP2K GPU offloading in 
this project and publicly available guidance from developers it is expected that although test cases 
A and C would be likely to benefit from the GPUs available on DAVIDE in a similar way as on 
Piz Daint, the amount and type of compute offload generated by these test cases would be far from 
enough to exploit four on-node GPUs concurrently with good parallel efficiency. 
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Figure 4: time to solution for Test Case C (H2O-DFT-LS). Note that runtimes on Dibona, Frioul, and DEEP-
ER SDV and to a lesser extent Piz Daint with GPU are all very similar for 1–32 nodes 
 

It is important to note that in general not only the absolute performance of CP2K as reported for 
these benchmarks but also the rate at which the application’s parallel scaling efficiency diminishes 
do not accurately reflect the full potential of the code when it is linked against all possible 
performance libraries and carefully tuned, however this should not invalidate the cross-system 
comparison which we undertake here and the conclusions drawn. 

Scaling behaviour on all the PRACE PCP prototypes as well as the Mont-Blanc 3 and DEEP-ER 
prototypes appears roughly on par with that of large established systems such as JUWELS and Piz 
Daint. In fact, JUWELS appears to lose parallel scaling efficiency rather earlier than e.g. Piz Daint, 
especially for test cases A and C, negating its node-for-node basis performance advantage thanks 
to a more recent generation Intel processor. This is reflected in the CP2K logs, which show that for 
the largest node count benchmarked in the latter two cases, for which there is an increase in runtime, 
the application spends a much larger percentage of its runtime in MPI operations, specifically 
waiting and collective operations. 

In general, on a node-for-node basis, performance on JUWELS where each node has two 24-core 
Skylake processors is consistently fastest, exceeding performance on machines equipped with older 
generation Intel processors or with ThunderX2 or POWER8-based nodes, apart from at the largest 
scale where JUWELS’ poorer MPI performance for CP2K negates this raw processing power 
advantage. Performance on ThunderX2-based Dibona appears competitive across the board, 
especially for test case B where it starts to approach JUWELS’ Skylake-based performance. For 
test case C, Dibona and DEEP-ER SDV nodes match Piz Daint’s CPU+GPU performance node 
for node. The same applies for DEEP-ER SDV in test case A, where Dibona comfortably exceeds 
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it as well as Piz Daint. Frioul performs very similarly to Dibona, DEEP-ER SDV and Piz Daint 
CPU+GPU in test case C, but not competitively with even Piz Daint’s CPU-only 12-core Haswell 
nodes in test case A. Finally, while DAVIDE nodes match Piz Daint nodes in test case B, 
DAVIDE’s performance in test case B is significantly slower than all the other systems. 

As well as relying strongly on high-performance linear algebra libraries (which were provided on 
most benchmark systems by an MKL installation), CP2K is heavily dependent for performance on 
efficient MPI communication and hence a low latency, high bandwidth interconnect for 
decomposing and reconstituting variables onto grids, calling Fourier transforms, etc. Test cases for 
which results from several different systems exhibit very similar runtimes despite running on nodes 
with significantly different raw processing power may therefore reflect instances of 
communication-bound computing which, if the respective machines’ communication layers do not 
differ significantly in their performance, causes similar performance bottlenecks to appear. 

4.3.5 Energy consumption comparisons 

Having considered performance across the various systems we would like to add to this comparison 
an evaluation of energy consumption in an attempt to better understand the possibilities offered by 
the PRACE PCP prototypes and future technologies. In performing this comparison, we will also 
make use of the rough energy measurements provided for jobs on Piz Daint which, although 
recorded with significantly lower sampling frequency and specificity than the specialised hardware 
and software developed for DAVIDE and Frioul, nonetheless gives us a context within which to 
better understand results from these prototype systems. In doing this comparison we aim to 
highlight findings from benchmarking CP2K that should help inform how best to trade off 
performance and energy consumption. 

To provide some quantitative context, it has been confirmed by Piz Daint support staff that a job 
strongly using the GPU will use 30.97 kJ during the same time that a job not using the GPU at all 
uses 7.98 kJ. However, it is important to note that the estimated job energy usage measurements 
provided on Piz Daint do not include the interconnect or any cabinet-level hardware. Where we 
make a comparison to the PCP prototypes, in the case of Frioul we can provide information on the 
breakdown of energy on that system into node energy and switch energy in order to compare it to 
Piz Daint fairly. 

Figure 5 shows the energy to solution for test case A, which was only run on Piz Daint and not on 
either of the PCP prototype systems. Considering also the corresponding performance shown in 
Figure 2 and summarising calculations based on the raw data, we can state the following with 
regards to CP2K running test case A: 

• Performance on Piz Daint with GPU for one node is 1.65× that without GPU. This 
advantage steadily decreases with more nodes, and switches over somewhere between 16 
and 32 nodes to benefit running without GPU. At 128 nodes, performance with GPU is 
0.55× that without GPU. 

• Total energy consumption with GPU for one node is 0.72× that without GPU. This 
advantage steadily decreases with more nodes and switches over somewhere between 16 
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and 32 nodes to benefit running without GPU. At 128 nodes, total energy consumption with 
GPU is 1.84× is that without GPU. 

• Average power consumption with GPU for one node is 1.2× that without GPU 
(symptomatic of the GPU being used somewhat) and decreases steadily to being almost 
identical to running without GPU for 128 nodes, symptomatic of little use of GPU. 
 
Conclusion for test case A: this test case benefits from using the GPU for fewer than 16–
32 nodes on the Piz Daint architecture both from the perspective of performance and from 
the perspective of reduced total energy consumption, however for large number of nodes 
the opposite is true and it is both quicker and more energy efficient not to use the GPU. The 
desired crossover point to this decision from either performance or energy perspective will 
depend on prioritisation. Average power drawn by the simulation varies only about 20% 
over the range of number of nodes considered, so may not have a big impact on the choice 
of what scale to run at, though this information could be utilised as part of power capping 
planning. 

 
Figure 5: Energy to solution for Test Case A (H2O-512) 
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Figure 6: Energy to solution for Test Case B (LiH-HFX) 
 

Figure 6 shows scaling of total energy consumption with job size for test case B and including both 
PCP prototype systems as well as Piz Daint. Considering just Piz Daint, we can see there is very 
little difference between both total energy consumption and runtime running with or without GPU. 
In fact, we can calculate that it is slightly worse on both accounts to run with GPU. Frioul has both 
higher energy consumption (1.3× – 1.4× that of Piz Daint for the same number of nodes) and (from 
results shown earlier) longer runtime (2.2× – 2.5× that of Piz Daint). To determine whether this is 
a fair comparison given that the Piz Daint energy measurements are node-level only and do not 
include networking or cabinet-level hardware, we can examine the breakdown of total job energy 
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on Frioul into node-level energy and switch energy. This is shown below for test case C, but is also 
representative of test case B. 

 
Figure 7: breakdown of node and switch energy contributions to total job energy on Frioul for test case C (H2O-
DFT-LS) 
 

This shows that the contribution from the switch energy is not significant and that the conclusions 
about Piz Daint’s greater energy efficiency hold once compared purely with Frioul’s node energy. 

With regards to DAVIDE, whilst DAVIDE both with and without GPU is marginally faster on a 
node-for-node basis than Piz Daint (runtime 0.9× that of Piz Daint), DAVIDE without GPU uses 
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2.7× – 3.5× more energy than Piz Daint and DAVIDE with GPUs uses 4.4× – 3.5× that of Piz 
Daint. 

Piz Daint is therefore considerably more energy efficient than either of the PCP prototype systems 
when it comes to running CP2K test case B. 

 
Figure 8: Energy to solution for Test Case C (H2O-DFT-LS) 
 

Considering first Piz Daint, Figure 9 in combination with performance results shows that: 

• Performance with GPU for one node is more than two times that without GPU, and running 
with GPU continues to provide better performance for more nodes. 

• Total energy consumption with GPU is always lower than without GPU, but increases from 
0.46× that without GPU for 1 node to 0.9× that without GPU for 2048 nodes. 

• Average power consumption with GPU is always lower (except for at around 2048 nodes), 
drawing between 0.62× and 0.97× the average power consumption without GPU. 

Clearly, this test case greatly benefits from the use of the GPU on the Piz Daint architecture 
regardless of how many nodes are being used; performance, total energy consumption and average 
power consumption are all better with GPU. 

Concerning the PCP prototype systems: as for test case B, Frioul has higher total energy 
consumption than Piz Daint in test case C (~3.2× that of Piz Daint with GPU) and takes ~1.2× as 
long to complete the simulation. Finally, DAVIDE running test case C without use of the GPU 
appeared to exhibit a surprising 32× – 85× greater energy consumption than Piz Daint reproducibly 
across runs and for different node counts. It is possible that the CUDA runtime mistakenly engaged 
all four GPUs, contributing to greater than expected power draw. As previously mentioned, test 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 44 18.04.2019 

cases A and C were not run successfully on DAVIDE GPUs due to various errors thrown by the 
CUDA runtime and linear algebra library respectively. These errors could not be resolved during 
the available access time to the prototype system. For test case C, as for test case B, Piz Daint 
appears to be considerably more energy efficient running CP2K. A recurring insight from these 
energy and performance comparisons appears to be that energy efficiency, high performance, and 
especially high parallel efficiency are not only complementary but in fact highly correlated. 

4.3.6 Analysis of threading and energy on Frioul 

Results on Frioul were obtained as part of the preceding PRACE-4IP project extension and 
analysed here in more depth, including with direct comparison to performance and energy 
consumption results on other systems in order to provide new insight. No new benchmarking data 
were obtained as part of the PRACE-5IP project since the newer software stack on the system did 
not include a CP2K-compatible version of the Intel compiler nor any MPI library version built with 
gcc, and because the Bull Energy Optimizer (BEO) software tool required to collect energy 
measurements was not available for a significant part of the machine access time during 
PRACE-5IP. 

Tests were run with KNLs configured in Quad/Flat mode. The command numactl --preferred=1 
was used to allow memory allocation in MCDRAM until exhausted. All benchmarks were run with 
one hyperthread per physical core as previous KNL benchmarking showed no benefit in using 
multiple hyperthreads per core. The process pinning options I_MPI_DOMAIN=auto and 
I_MPI_PIN_RESPECT_CPUSET=0 were used, and thread affinity controlled with 
KMP_AFFINITY=compact,1,0,granularity=fine,verbose and KMP_HW_SUBSET=64C,1T. 

Figure 9 illustrates the effect the choice of MPI ranks per node and OpenMP threads per rank can 
have on the time to solution by showing results for Test Case C (H2O-DFT-LS) on Frioul. Similar 
behaviour was found for Test Case B (LiH-HFX). Pure MPI performs worst. Adding 
multithreading improves performance, until ~ 8 threads per process (the best case) at which point 
the time to solution is almost 2× faster than for pure MPI. Performance deteriorates for > 8 threads 
per process, but is never quite as bad as for < 8 threads and as for pure MPI. 

These results are not typical for CP2K running on conventional multicore processors, where one 
or two threads per process give best performance for a variety of problems and where higher thread 
counts are often used primarily as a way of alleviating memory requirements, allowing the 
simulation to run at all or potentially faster as more intermediate results can be stored in memory 
rather than recomputed on the fly. On Intel’s MIC architecture CP2K clearly benefits from 
increased threading. This may in part be due to the smaller amount of memory available per core 
on this architecture, meaning that more cores should be used jointly for a single MPI rank requiring 
a certain minimum amount of memory (or benefiting from additional available memory). 
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Figure 9: Time to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different choices of 
number of MPI processes per node and number of OpenMP threads per process 
 

When we look at the total energy to solution for the same test case (Figure 10) we see it directly 
mirrors the trend in the time to solution. This suggests energy usage for a fixed number of nodes is 
simply proportional to runtime, with the same power drawn independent of the degree of threading 
in code execution. In other words, runs use more energy simply because they last longer, not 
because they cause the hardware to draw more power over the same (or even shorter) time than 
more energy-efficient runs. To understand this better, we plot in Figure 11 the average power (total 
job energy / runtime) for this test case running on different numbers of nodes, which will also show 
if average power drawn for a given threaded execution mode differs depending on the number of 
nodes in the job. 
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Figure 10: Energy to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different choices of 
number of MPI processes per node and number of OpenMP threads per process 
 

Figure 11 shows that average power drawn by nodes is not completely independent of threading 
but follows a regular pattern. More threads per process leads to somewhat lower average power 
draw. For a given threading choice, average power draw grows roughly linearly with number of 
nodes. The fastest, lowest-energy execution modes use 8–16 threads per process, and draws 
middling power on average but completes quickly enough to still win overall on energy. Runs with 
> 8–16 threads draw less power on average but suffer performance penalty and so incur a higher 
overall energy cost as a result of longer runtimes. The outlier is pure MPI (64 MPI × 1 OMP) 
execution, which on 32 nodes draws by far the most power of all execution modes, on 64 nodes 
draws middling power, but which always loses on total energy consumption due to more than 
proportionally increased runtime. 
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Figure 11: Average power drawn during runs for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for 
different choices of number of MPI processes per node and number of OpenMP threads per process 
 

4.3.7 Conclusions 

We have used CP2K benchmarks to quantify some of the performance and energy characteristics 
of PRACE PCP and other prototypes with reference to established Tier-0 HPC systems in a way 
that has allowed us to cross compare between these systems and draw some conclusions regarding 
what they offer from the perspective of running an important scientific application. In doing so we 
have found a recurring insight gained from these energy and performance comparisons to be that 
energy efficiency and high (parallel) performance and efficiency are not only complementary but 
in fact highly correlated, and that focusing on the one is likely to help improve the other. 

Disregarding the impact of poorer MPI performance at large scale on JUWELS, its Intel Skylake-
based nodes were found to offer superior node-for-node CP2K performance compared to older 
generation Haswell-equipped Piz Daint and DEEP-SDV nodes, KNL-equipped Frioul nodes, 
ThunderX2-based Dibona nodes, and Power8-based DAVIDE nodes. However, Dibona’s 
ThunderX2-based nodes were found to offer competitive performance, especially compared to 
Haswell-based Piz Daint and DEEP-SDV. Offloading to a single GPU per node on Piz Daint was 
found to provide significant performance benefit for two out of three test cases, with no significant 
benefit for the third test case. It was not possible to ascertain the benefit from using four GPUs per 
node as available on DAVIDE for the two test cases that were found to benefit from single GPUs 
per node, however the guidance from developers is that a minority of simulations and systems are 
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expected to generate enough computational work to overcome offloading overheads and efficiently 
make use of four GPUs per node as available on DAVIDE. 

With regards to energy: energy consumption on Piz Daint – especially with use of GPU – was 
found to be significantly more energy efficient than the PCP prototype systems Frioul and 
especially compared to DAVIDE. A detailed investigation on Frioul of the effect of choice of 
OpenMP threading on performance and energy consumption with all else being equal showed that 
both vary strongly with the number of threads per MPI rank. It was found that for CP2K the choice 
that uses least energy on the Frioul architecture is the same as yields the shortest runtime. 

As well as allowing us to compare performance and energy usage, the process of benchmarking 
across established Tier-0 and novel prototype architectures has highlighted the importance for 
successful porting and efficient usage of scientific applications such as CP2K of having a software 
stack that includes MPI and performance libraries that are maximally compatible with a range of 
compilers and compiler versions. 

4.4 GADGET 

We carried out tests using the PRACE Tier-0 facilities (JUWELS [28], MareNostrum4 [30], 
Marconi-KNL [29], and the Mont-Blanc 3 prototype Dibona [36]) in order to benchmark 
GADGET-3 and determine its weak and strong scaling. However, we were only able to 
successfully run Test Cases A and B. GADGET was compiled with the optimisation level O2. The 
tests were carried out with one MPI-task per core and the code ran for 50 timesteps. 

4.4.1 System and software environment 

MareNostrum4: Software modules FFTW/2.1.5, GSL/2.4 and HDF5/1.10.1. Compiler: Intel C 
Compiler Ver.17.0.4. 

JUWELS: Software modules: GSL/2.5 and HDF5/1.10.1. Compiler: Intel C Compiler Ver. 
19.0.0.117. We installed FFTW.2.1.5 as it is not available in JUWELS. 

Marconi-KNL: Software modules: profile/advanced, intel/pe-xe-2018, intelmpi/2018, GSL/2.5 
and hdf5/1.10.4. Compiler: Intel C Compiler Ver. 18.0.5. We installed FFTW.2.1.5. 

Mont-Blanc 3 prototype Dibona: Software modules: openmpi4.0.0/arm19.0. Compiler: ARM 
Compiler 19.0. We installed FFTW.2.1.5 and GSL/2.5. 

4.4.2 Modifications carried out in GADGET-3 

The function forcefree.c includes the MPI_Allgatherv call with the overlap of the input and output 
buffers (MPI_Allgatherv(&DomainMoment[DomainStartList[ThisTask * MULTIPLEDOMAINS 
+ m]],revcounts [This Task],…). This is not allowed by the MPI standard and Intel MPI detects 
this error and stops the program with a message about aliased buffers (“PMPI_Allgatherv(1379): 
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Buffers must not be aliased”). A way out is using MPI_IN_PLACE in the call, that is, 
MPI_Allgatherv(MPI_IN_PLACE,recvcounts [This Task], …). 

4.4.3 Dynamic analysis 

Performance analysis was carried out in order to determine the timings of the different functions 

and the MPI calls. This analysis was carried out in JUWELS loading the modules Score-P/4.1 and 
Vampir/9.5.0. The latter was used for event trace visualisation. The GADGET code was compiled 
with the Score-P wrappers for mpicc and mpic++. The relative inclusive (that is, the amount of 
time spent in a function and all of its subroutines) and exclusive (that is, the amount of time spent 
in a function) times per function shown in Figure 12 (top and bottom panels) were measured for 
Test Case A running for 50 timesteps and using 16 cores with 1 MPI task per core. The execution 
time of the code is dominated, excluding the MPI_Allgather, by the force_freeevaluate_shortrange 
(35%), and msort_pmperiodic_with_tmp (11.8%) functions. The code may be accelerated through 
the insertion of OpenMP directives in these two functions. 

4.4.4 Performance Results 

Test Case A – Results and Analysis 

The results of this test case A are shown in Table 39 and displayed in Figure 13. The different 
systems show an increase in computing time as we move from the SKL CPUs to ARM and the 
KNL in Marconi. MareNostrum4 shows a speedup a little bit larger than the remaining systems, 

Figure 12: Accumulated exclusive (top panel) and inclusive (bottom panel) times per function 
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except for 128 cores where Dibona has the largest speedup. Overall the SKL systems are faster in 
this test and their clock speed determines the observed timings. 

MPI Tasks 
per CPU # Nodes # Cores JUWELS MareNostrum4 Dibona 

Time (s) Speedup Time (s) Speedup Time (s) Speedup 
8 1 8 206 1.00 259 1.00 322 1.00 
16 1 16 107 1.93 129 2.01 168 1.92 
16 1 32 56 3.68 67 3.87 86 3.74 
16 2 64 32 6.44 37 7.00 51 6.31 
16 4 128 19 10.84 22 11.77 26 12.38 
16 8 256 15 13.73 12 21.58 17 18.94 

 
MPI Tasks 
per KNL # Nodes # Cores Marconi 

Time (s) Speedup 
8 1 8 1055 1.00 
16 1 16 514 2.05 
32 1 32 302 3.49 
64 1 64 169 6.24 
64 2 128 99 10.66 
64 4 256 63 16.75 

Table 39: Small size problem computing times and speedup 
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Test Case B – Results and Analysis 

The results of this test case are shown in Table 40 and displayed in Figure 14. Contrary to the clear 
separation between computing times in Test Case A, here both JUWELS and Marenostrum4 have 
similar timings, while the remaining systems lag behind in the timing. Clearly the ARM CPU is 
faster than the KNL, although the explanation for such a large difference resides not only in the 
size of the problem, but also on the architecture of the two processors and their clock speeds. The 

Figure 13: Variation of the computing time vs. number of cores (top panel) and speedup (bottom panel) 
for Test Case A. 
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speedup between the SKL (JUWELS and MareNostrum4) and the ARM systems are similar for 
the present test case. 

 

MPI Tasks 
per CPU # Nodes # Cores JUWELS MareNostrum4 DIBONA 

Time (s) Speedup Time (s) Speedup Time (s) Speedup 
16 2 64 2235 1.00 2519 1.000 3425 1.00 
16 4 128 1053 2.12 1148 2.194 1431 2.39 
16 8 256 567 3.94 598 4.212 794 4.31 
16 16 512 312 7.16 330 7.633 422 8.12 
16 32 1024 180 12.42 191 13.188 285** 12.02** 
16 64 2048 165 13.55 151 16.682   

 
MPI Tasks 
per KNL # Nodes # Cores Marconi 

Time (s) Speedup 
8 1 64 7787 1.00 
32 2 128 3610 2.16 
32 4 256 2508 3.10 
64 8 512 1530 5.09 
64 16 1024 791 9.84 
64 32 2048 763 10.21 

Table 40: Medium size problem computing times and speedup 
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Figure 14: Variation of the computing time vs. number of cores (top panel) and speedup (bottom panel) for 
Test Case B 

4.4.5 Conclusion 

We have carried out tests for the GADGET code by running a cosmological simulation in 
established Tier-0 SKL and KNL systems and in an ARM prototype system. With the exception of 
Test Case A, the remaining tests are highly demanding in terms of computing resources. Hence, 
these tests provide an indication regarding the adequate systems to run such heavy simulations. It 
is clear that the SKL and ARM systems are better suitable to handle complex N-body and SPH 
cosmological simulations with the GADGET code. 

4.5 GPAW 

The performance of GPAW for the benchmarks described in Section 2.5 was measured and 
compared on different systems with a range of parallel job sizes (Table 41, Table 42, and Table 
43). Only the time spent in the main computational loop (SCF-cycle) was used as the runtime in 
the comparison to exclude any differences in initialisation overheads. 

The systems and architectures covered included: JUWELS, MareNostrum4, Frioul, DAVIDE, and 
Sisu. 

• Sisu [37] is a Cray XC40 system at CSC, similar to Hazel Hen at HLRS with dual 12-core 
x86 Haswell CPUs (Intel Xeon E5-2690v3), and an Aries interconnect using a Dragonfly 
topology. 

GPAW is mainly compute bound for all the benchmarks, but generates also periodically high levels 
of MPI communication, especially for the benchmarks Case M: Copper filament and Case L: 
Silicon cluster. Memory usage of GPAW is also quite high, setting limits to the minimum number 
of nodes needed for the benchmarks. 
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4.5.1 Performance Results 

Nodes Sisu JUWELS MareNostrum4 Piz 
Daint 

DAVIDE / 
P100 

DAVIDE / 
POWER8 Frioul 

1 239.1 111.2 136 566 114.3 517.7 527.3 
2 136.7 58.9 73.3 305.8 77.3 282.8 307.2 
4 78.9 32.5 44 175.7 56.2 263.5 187.3 
8 44.3 20.8 30.0 106.3 46.3 84.7 140.8 
16 31.5 14.2 21.2 70.3  172.6 114.8 
32 21.9 11.3 22 54.8   118.3 
64 19.0   50    

128    43.2    
256    41.5    
512    41.6    

Table 41: Total runtime (in seconds) for benchmark Case S: Carbon nanotube 
 

Nodes Sisu JUWELS MareNostrum4 DAVIDE / 
POWER8 Frioul 

1  1821 2073 15595 456.5 
2  1059.3 1213.9 7891 214.8 
4 1531 623.0 740 3928 128.7 
8 932.2 309.2 354.0 2087 72.0 

16 439.0 159.3 208 3477 49.5 
32 251.1 92.4 130  36.0 
64 150.5 58.2 87   

128 93.4 38.8 64   
256 60.6 31.6 56   
512 42.0 29.7    
768 42.6     

Table 42: Total runtime (in seconds) for benchmark Case M: Copper filament 
 

Nodes Sisu JUWELS MareNostrum4 DAVIDE / 
POWER8 

1     
2    26290 
4  1986  17720 
8  936 1264 15734 

16 1217 486.1 628 11049 
32 646.5 267.8 376  
64 377.1 189.6 269  

128 226.4 156.2 183  
256 140.3    
512 115.4    
768 123.7    

Table 43: Total runtime (in seconds) for benchmark Case L: Silicon cluster 
 

Nodes Sisu JUWELS MareNostrum4 
32  1592 2043 
64 2398 888 1214 

128 1328  633 
256 684   
512 502   
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Nodes Sisu JUWELS MareNostrum4 
768 375.9   

Table 44: Total runtime (in seconds) for benchmark Case L: Silicon cluster using a larger system with a radius 
of 20Å 

4.5.2 Performance Cross comparison 

Skylake vs. Haswell Based on the benchmark runtimes on different systems (Table 41, Table 42, 
Table 43, and Table 44), one can conclude that compared to the older Haswell CPUs, the next 
generation Skylake CPUs are roughly twice as fast, with speed-ups ranging from no speed-up to 
three times faster. On JUWELS, the performance increase is consistently more than two times until 
the scalability limits for the benchmarks are reached. 

KNL vs. Haswell Looking at the data for the Frioul system, Knights Landing (KNL) MICs are 
significantly slower than the same generation Haswell CPUs. Scalability is also worse on KNLs, 
which is actually not surprising considering that GPAW uses only MPI for parallelisation. Since 
the number of cores, and thus MPI tasks, is larger on the KNL, this generates a higher 
communication load on the node that could only be mitigated by not using all cores, which would 
of course then lower the overall performance. 

Interestingly, next generation Skylake CPUs have a similar number of cores per node, but are better 
able to handle the increased communication load. 

POWER8 vs. Haswell The performance of POWER8 CPUs seems to depend greatly on the 
benchmark in question. For Case S: Carbon nanotube (Table 41), POWER8 CPUs offer a similar 
level of performance than KNLs do. But for Case M: Copper filament (Table 42), the performance 
of POWER8 CPUs is an order of magnitude lower. It is likely that this is due to the higher MPI 
load generated by the latter benchmark. 

P100 vs. Skylake The performance of a single P100 GPU (on a POWER8 host CPU) seems to be 
similar to a node with two 24-core Skylake CPUs (Table 41). When using multiple GPUs, the 
performance does not scale as well as, though. The execution model of the experimental GPGPU-
version of GPAW is such that for each GPU only a single host CPU core is used. On one hand, this 
means that the majority of computing is done on the GPU, and on the other hand, that the MPI 
communication load is significantly lower per node than e.g. when using only the host CPUs as 
was done for the POWER8 CPU results. Nevertheless, despite the lower MPI load, the scalability 
is still not as good as e.g. on JUWELS or MareNostrum4. 

JUWELS vs. MareNostrum4 A comparison of the two Skylake systems (JUWELS and 
MareNostrum4) gives an interesting chance for direct comparison between roughly similar 
systems. The CPUs on JUWELS have a slightly higher frequency (2.7 GHz) than those on the 
MareNostrum4 (2.1 GHz). The two systems also have different interconnects, with an Intel Omni-
Path on MareNostrum4 and a Mellanox EDR-InfiniBand on JUWELS. 

The single-node performance difference of the two systems is approximately equivalent to the 
slightly higher CPU frequency on JUWELS. When using multiple nodes, the performance 
difference increases in favour of JUWELS. Since single-node performance was roughly equivalent 
(if one takes into account the CPU frequencies), this likely means that the interconnect on JUWELS 
is better suited for the MPI communication load from GPAW. 
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Piz Daint vs. DAVIDE Another possibility for direct comparison is offered by the two P100 
GPGPU systems (Piz Daint and DAVIDE). A major difference between the systems is that on Piz 
Daint each node has a single GPU and a single Haswell host CPU whereas on DAVIDE each node 
has four GPUs and two POWER8 host CPUs. In other respects, the two systems are also quite 
different, e.g. Piz Daint has an Aries interconnect in a Dragonfly topology and on DAVIDE the 
interconnect is an InfiniBand EDR network. 

Since only a single CPU core is used per GPU in the current GPGPU-version of GPAW, this means 
that the number of GPUs is the dominant factor when comparing the performance between systems. 
Even after taking into account the fact that each DAVIDE node is the rough equivalent of four Piz 
Daint nodes (4 × P100 on DAVIDE compared to Piz Daint), it is clear from Table 41 that Piz Daint 
has lower overall performance than DAVIDE for GPAW. Since the host CPUs on Piz Daint have 
better performance, this is most likely due to communication overhead coming either from 
differences in the interconnect or from a less dense packing of the allocated nodes. It is possible, 
that by requesting a more densely packed allocation of nodes (similar to DAVIDE), the 
performance difference could be mitigated. 

4.5.3 Energy consumption 

PRACE PCP prototypes (DAVIDE and Frioul) have built-in energy measurement hardware and 
tools to estimate the energy usage of jobs. These tools were used to estimate the total energy 
consumption of two benchmarks (Table 45). 

For KNLs (on Frioul), the energy consumption seems to be a more or less linear function of the 
total usage of processors, i.e. the number of nodes used times the runtime. There is a slight 
improvement in the coefficient of the linear function for larger number of nodes, but since the total 
energy consumption is nevertheless growing, the most optimal energy-to-solution is to use only a 
single KNL. 

For P100 GPGPUs and for POWER8 CPUs (on DAVIDE), the total energy consumption 
decreases when using more nodes. In light of the fact that also the runtime decreases, it seems that 
for P100s and POWER8s it is beneficial to use as many nodes as possible, within scalability limits, 
to reach an optimal energy-to-solution. 

Nodes 
Case S: Carbon nanotube Case M: Copper filament 

DAVIDE / 
P100 

DAVIDE / 
POWER8 Frioul Frioul 

1 91.9 451.5 153.8 159.3 
2 72.2 226.3 242.5 204.9 
4 52.6 245.7 306.5 255.0 
8  79.5 490.8 352.2 

16   826.1 614.9 
32   1800 1200 

Table 45: Total energy consumption (in kJ) for benchmarks Case S: Carbon nanotube and Case M: Copper 
filament in PRACE PCP prototypes 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 57 18.04.2019 

4.6 GROMACS 

GROMACS is a package that uses multilevel optimisations. The main difference from other codes 
is the use of low-level CPU accelerated kernels. For mainstream processors the computationally 
expensive parts are written using specific CPU features like SSE, AVX, VSX etc. Of course, the 
catch-up C version of kernel is still present. The comparison between C and CPU accelerated builds 
lead to a speedup of 4–10, depending on the CPU features. Its memory footprint is quite small 
compared to other Molecular Dynamics packages. 

It uses hybrid MPI/OpenMP parallelisation. GROMACS does domain decomposition on MPI tasks 
and can use OpenMP on each cell. 3D domain decomposition quality is sensitive on the number of 
MPI tasks, for example on 68 KNL cores this can be done as 2×2×17 that lead in many cases to 
unbalanced distribution of computation and in some cases, it rejects to run. This is the reason why 
in the reported results on KNL we used 64 instead of 68 cores/node. Using hybrid MPI/OpenMP 
parallelisation, one can achieve better domain decomposition and use OpenMP on each cell. 
Parallelisation using OpenMP is efficient when using small number of threads per task, in general 
in the range 1–10. At high numbers of nodes, using hybrid MPI/OpenMP parallelisation scheme, 
we may extend its scalability when pure MPI scalability is exhausted, by decreasing the number of 
MPI packets/increasing the packet size. It also has pinning capabilities. 

For NVIDIA GPUs, it includes the corresponding CUDA kernels to offload work on GPU. Speedup 
from GPUs is not as high as with other packages because it is already CPU optimised. In most 
cases, speedup using GPUs is analogous to the theoretical performance ration of the GPU/CPU. 

On all systems, trial runs with some combinations of MPI tasks/threads task were performed using 
small, intermediate and high number of nodes in order to find the combination that yields the higher 
performance as function of number of nodes on each system. In results tables, only the combination 
that yields the higher performance is reported. 

4.6.1 Performance on KNL systems 

GROMACS ran on three KNL systems, Frioul, Irene-KNL and Marconi-KNL with their own 
characteristics like KNL memory configuration, interconnect and batch system limitations. 
Marconi-KNL seems to be faster when using 1 or 2 nodes, but scalability is limited at higher 
number of nodes. Frioul system had limited number of nodes with the same memory configuration 
available during benchmarks and although its performance seems good there is not sufficient data 
to have a clear picture of scalability. On the other hand, Irene-KNL had limitation on the number 
of tasks/threads per node, but reached higher performance, with efficiency 55.3% at 64 nodes. A 
direct comparison of three KNL systems using 16 nodes, shows large deviation in performance 
between systems. 

Frioul Irene-KNL Marconi-KNL 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 
1 66 4 1.84 1 64 1 1.57 1 136 2 2.05 
2 66 4 3.57 2 64 1 2.94 2 136 2 3.62 
6 66 4 9.33 4 64 1 5.56 4 136 2 5.97 
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Frioul Irene-KNL Marconi-KNL 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 

Nod
es 

Tasks/ 
Node 

Threads/
Task 

Perform
ance 

[ns/day] 
8 66 4 12.05 8 64 1 10.08 8 136 2 8.82 
16 66 4 20.10 16 64 1 10.00 16 68 4 12.67 
20 66 4 24.40 32 64 1 16.42 32 34 8 11.62 
    64 64 1 37.50 64 68 4 11.89 
    128 64 1 55.60     
Table 46: GROMACS Performance on KNL systems (in ns/day units) for Test Case B: Lignocellulose 

4.6.2 Performance on GPU accelerated systems 

Benchmarks with GPUs were performance on two machines, the POWER8/P100 with NVLink 
based DAVIDE and Haswell/P100/PCIe Piz Daint. On DAVIDE, initially machines were 
configured with SMT off. Results from previous PRACE implementation phases exhibit significant 
performance gain when using SMT with hybrid applications. Machines were configured for some 
period with SMT on, where the results were obtained. For comparison, performance and energy to 
solution are reported with both SMT on and off. Using up to 16 nodes, DAVIDE with four 
P100/node is roughly 5–20% faster than Piz Daint of one P100/node. Performance on DAVIDE 
without SMT is significantly lower (~60%) with respect the performance with SMT. The efficiency 
with 16 nodes is 51.4% for DAVIDE and 69.8% for Piz Daint. GROMACS performance is 
increasing up to 800 nodes although with decreasing efficiency. 

DAVIDE 
16 physical cores/Node, SMT=4 

Piz Daint 
12 Physical Cores/Nodes, HT=ON 

Nodes Tasks/Node Threads/Task Performance [ns/day] Nodes Tasks/Node Threads/Task Performance  
[ns/day] 

1 16 4 3.90 4 12 2 10.88 
2 16 4 6.07 8 6 4 13.49 
4 16 4 12.50 16 12 2 30.40 
8 16 4 20.84 32 12 2 55.94 
16 16 4 32.11 64 12 2 83.29 
32 16 4 52.09 128 6 4 99.79 
    300 12 2 128.31 
    800 12 2 143.05 
Table 47: GROMACS Performance on systems with GPUs (in ns/day units) for Test Case B: Lignocellulose 

4.6.3 Performance on Haswell/Skylake systems 

There are four systems with different interconnect technologies and CPUs. Hazel Hen is Haswell 
based with Aries network, while the rest are based on Skylake and also different interconnect and 
CPU settings – Hyperthreading and probably power management. On a single node, JUWELS with 
Hyperthreading enabled has higher performance, MareNostrum4 and Irene-SKL have comparable 
performance taking into account the different frequency of CPUs. Older Haswell of Hazel Hen 
have less than half the performance of Skylake Machines. At 128 nodes the efficiency drops down 
to 48.1%, 30%, 32.8%, 29.8% from Hazel Hen, MareNostrum4, Irene-SKL and JUWELS 
respectively. Finally, the DEEP SDV Haswell have similar single node performance to this of 
Hazel Hen. Scaling on DEEP SDV is not comparable to this of same CPU Hazel Hen. 
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Hazel Hen:  
24 Physical Cores/Node, HT=ON 

MareNostrum4:  
48 Physical Cores/Node, HT=OFF 

Nodes Tasks/Node Threads/Task Performance [ns/day] Nodes Tasks/Node Threads/Task Performance  
[ns/day] 

1 24 2 1.182 1 12 4 2.384 
2 24 2 2.329 2 12 4 4.43 
4 24 2 4.542 4 12 4 8.125 
8 24 2 8.711 8 12 4 15.11 

16 24 2 14.582 16 24 2 27.089 
32 24 2 24.252 32 24 2 44.26 
64 24 2 44.762 64 12 4 63.646 

128 24 2 72.841 128 48 1 94.493 
256 24 2 125.076     
320 24 2 129.302     

Irene-SKL:  
48 Physical Cores/Node, HT=OFF 

JUWELS: 
48 Physical Cores/Node, HT=ON 

1 8 6 2.761 1 48 2 3.288 
2 8 6 5.363 2 48 2 6.408 
4 8 6 10.244 4 48 2 12.328 
8 8 6 19.112 8 48 2 22.186 

16 8 6 33.255 16 24 4 40.06 
32 8 6 57.876 32 12 8 57.55 
60 8 6 92.095 64 24 4 100.528 

128 12 4 116.108 128 12 8 125.491 
192 12 4 164.861 256 12 8 101.508 
384 12 4 205.703     

DEEP-ER SDV: 
24 Physical Cores/Node, HT=ON     

1 24 2 1.095     
2 24 2 1.995     
4 24 2 3.244     
8 24 2 4.848     

16 24 2 5.152     
Table 48: GROMACS Performance on x86 systems (in ns/day units) for Test Case B: Lignocellulose 

4.6.4 Energy consumption 

PRACE PCP prototypes DAVIDE and Frioul have built-in high frequency energy measurement 
hardware and tools to estimate the total energy usage of all involved components (Node, network 
and storage). 

Since parallel efficiency decreases by increasing the number of nodes for both machines, the energy 
to solution is also increasing. The energy to solution for Frioul and DAVIDE with SMT=4 is very 
close for the same number of nodes except single node, On the other hand, the performance on 
DAVIDE with SMT on is roughly double of this of the same number of Frioul nodes. This indicates 
that with DAVIDE, consuming the same amount of energy we have the solution in half of time. 
Without SMT on DAVIDE, the energy to solution is roughly 50% higher than with SMT enabled. 

DAVIDE Frioul 

Nodes 
SMT=1 SMT=4 

Nodes Performance 
[ns/day] 

Energy 
[kJ] Performance 

[ns/day] 
Energy 

[kJ] 
Performance 

[ns/day] 
Energy 

[kJ] 
1 2.36 641.6 3.90 436.0 1 1.48 829.7 
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DAVIDE Frioul 

Nodes 
SMT=1 SMT=4 

Nodes Performance 
[ns/day] 

Energy 
[kJ] Performance 

[ns/day] 
Energy 

[kJ] 
Performance 

[ns/day] 
Energy 

[kJ] 
2 4.55 667.4 6.07 554.5 4 4.89 533.9 
4 9.25 682.9 12.50 508.9 8 9.43 603.5 
8 14.13 900.4 20.84 620.9 16 14.18 817.4 

16 21.46 1264.1 32.11 859.2 32 22.35 1200.0 
32 38.54 1723.0 52.09 1180.0 48 29.25 1700.0 
40 39.77 2186.5      

Table 49: Performance and total energy consumption (in kJ) for GROMACS benchmarks Case B: 
Lignocellulose, on PRACE PCP prototypes 

4.7 NAMD 

NAMD is a molecular dynamics package for mainly biomolecular systems. It supports 
parallelisation with MPI, Threads, CUDA for GPUs, as well as other architectures. It has a large 
memory footprint, and uses a dynamic load balancer to redistribute computation among tasks. In 
PRACE benchmarks the special memory optimised build was used that enables the simulation of 
very large systems without the need for huge amounts of memory in the master process. The input 
data for PRACE benchmark are 2.3 GB in size. The initialisation stage except read/distribute input 
data, optimise FFTW parameters based on input data, setups load balancer etc. The initialisation 
time is usually very short – order of few seconds, but on some systems, it was found to be of order 
of one minute. Also, this time happens to have large deviations on the same system. In the reported 
data, the setup time, that is reported by NAMD is subtracted and the pure simulation time was taken 
into account. For each machine a number of trial runs was performed using small, intermediate and 
large number of nodes in order to obtain the combination of MPI tasks/ threads per task that yields 
the best performance. It should be noted that in the hybrid version, one thread is used as controller 
while the rest of the threads are used for computation. This means that with N threads / task this 
results to N – 1 threads for computation. 

4.7.1 Performance on KNL systems 

NAMD ran on two KNL systems, Frioul and Marconi-KNL with their own characteristics like 
KNL memory configuration. Both systems have similar performance with Frioul being slightly 
faster for the same number of nodes. 

Frioul Marconi-KNL 

Nodes Tasks/Node Threads/Task Wall Time 
[sec] Nodes Tasks/Node Threads/Task Wall Time 

[sec] 
2 4 64 55607.1 2 4 64 65889.2 
4 4 64 30210.7 4 4 64 34234.6 
8 4 64 17340.0 8 4 64 17720.9 
16 4 64 10144.6 16 4 64 9224.7 
32 64 4 6479.4 32 64 4 7053.6 
64 64 4 5262.1 64 64 4 3232.3 
    128 64 4 1934.8 
    192 64 4 1595.2 

Table 50: NAMD Execution Time on KNL systems (in seconds) for Test Case B: STMV.28M 
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4.7.2 Performance on GPU accelerated systems 

Benchmarks with GPUs were performance on two machines, the POWER8/P100 with NVLink 
based DAVIDE and Haswell/P100/PCIe Piz Daint. On DAVIDE, initially machines were 
configured with SMT off. Results from previous PRACE implementation phases exhibit significant 
performance gain when using SMT with hybrid applications. Machines were configured for some 
period with SMT on, where the results obtained. 

NAMD benchmark case B is large enough and does extensive GPU use. DAVIDE with four P100 
is significantly faster compared to the same number of nodes of Piz Daint. Scaling is almost linear 
up to the available 40 DAVIDE nodes. 

DAVIDE 
16 physical cores/Node, SMT=4 

Piz Daint 
12 Physical Cores/Nodes, HT=ON 

Nodes Tasks/Node Threads/Task Wall Time 
[sec] Nodes Tasks/Node Threads/Task Wall Time 

[sec] 
6 16 4 2408.1 4 1 12 12433.4 
8 16 4 1826.8 8 1 12 5227.5 
12 16 4 1260.4 16 1 12 2907.1 
16 16 4 1078.3 32 1 12 2431.2 
24 16 4 608.4 64 1 12 783.7 
32 16 4 529.7 128 1 12 807.2 
40 16 4 484.3 256 1 12 586.8 

Table 51: NAMD Execution Time on systems with GPUs for Test Case B: STMV.28M 

4.7.3 Performance on Haswell/Skylake systems 

On Haswell/Skylake systems, NAMD case B exhibits almost linear scaling up to the available 
number of nodes on each system except JUWELS, where scaling drops down when using more 
than 64 nodes. Performance is comparable taking into account the differences. 

Hazel Hen:  
24 Physical Cores/Node, HT=ON 

MareNostrum4:  
48 Physical Cores/Node, HT=OFF 

Nodes Tasks/Node Threads/Task Wall Time 
[sec] Nodes Tasks/Node Threads/Task Wall Time 

[sec] 
32 2 24 2944.4 2 2 24 44195.7 
64 2 24 1545.3 4 2 24 21815.4 

128 2 24 792.3 8 2 24 11041.7 
192 2 24 557.7 16 2 24 5683.5 
256 2 24 421.6 32 2 24 2937.5 
320 2 24 344.9 64 2 24 1501.2 
400 2 24 303.1 128 2 24 808.8 

    256 2 24 443.5 
    320 2 24 367.8 
    400 2 24 297.5 

Irene-SKL:  
48 Physical Cores/Node, HT=OFF 

JUWELS: 
48 Physical Cores/Node, HT=ON 

4 8 6 15994.0 1 4 24 43660.5 
16 8 6 4355.7 2 4 24 21222.1 
32 8 6 2249.5 4 4 24 10478.1 
64 8 6 1073.3 8 4 24 5534.6 

128 8 6 548.8 16 4 24 2671.3 
216 8 6 343.4 32 4 24 1395.3 
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    64 4 24 906.8 
    96 4 24 914.2 
    144 4 24 951.9 
        

DEEP-ER SDV  
24 Physical Cores/Node, HT=ON     

4 2 12 36165.1     
8 2 12 25713.1     

16 2 12 17705.3     
        
        

Table 52: NAMD Performance on x86 systems for Test Case B: STMV.28M 

4.7.4 Energy consumption 

PRACE PCP prototypes DAVIDE and Frioul have built-in high frequency energy measurement 
hardware and tools to estimate the total energy usage of all involved components (Node, network 
and storage). Since parallel efficiency decreases by increasing the number of nodes for both 
machines, the energy to solution is also increasing. 

Performance on DAVIDE with SMT on is significantly higher on DAVIDE compared to Frioul. 
This results to a significantly lower energy to solution on DAVIDE. 

DAVIDE (SMT=4) Frioul 
Nodes Wall Time [sec] Energy [kJ] Nodes Wall Time [sec] Energy [kJ] 

16 1078.3 19434.9 2 55607.1 38700 
32 608.4 20224.8 4 30210.7 41200 
40 529.7 22896.6 8 17340.0 46200 

   16 10144.6 52300 
   32 6479.4 65200 
   64 5262.1 97400 

Table 53: Performance and total energy consumption (in kJ) for NAMD benchmark Case B: STMV.28M, on 
PRACE PCP prototypes 

4.8 NEMO 

Comparative benchmarking of NEMO has been performed on homogenous CPU only system 
comprising of JUWELS, MareNostrum4 and Hazel Hen. Since Irene-SKL and JUWELS are 
similar in nodal configuration and interconnect, we skipped the Irene-SKL and also were not able 
to use SuperMUC-NG because of its unavailability until April 2019. 

We also committed benchmarking NEMO on DEEP-ER SDV and Dibona but did not proceed 
further due to following reasons: 

DEEP-ER SDV booster modules consist of Intel Xeon Phis and we decided not to benchmark 
NEMO on Xeon Phi or any other accelerator type of nodes. Since we did not utilise booster nodes 
and also wanted to benchmark NEMO on a 1024 CPU core count to make results comparable on 
different systems, this was not possible since the highest core count available on DEEP-ER SDV 
cluster partition is 768 and therefore we did not proceed with DEEP-ER SDV. 
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4.8.1 Installation 

We have installed NEMO version 3.6 with XIOS 2.0 on JUWELS and MareNostrum4 using the 
Intel compiler toolchain and NEMO version 3.6 with XIOS-1.0 on Hazel Hen also with the Intel 
compiler tool chain. 

4.8.2 Performance Results 

Test Case A 

SubDomain 
size per core 

CPU 
Cores 

Average Time(s) per computational step and relative speedup 

MareNostrum4 Speed 
Up JUWELS Speed 

Up Hazel Hen Speed 
Up 

122 × 162 512 1.15 1 1.14 1 0.99 1 
122 × 82 1024 0.59 1.94 0.58 1.96 0.51 1.97 

Table 54: NEMO Test Case A performance 
 

Test Case B 

Subdomain 
size per core 

CPU 
Cores 

Average Time(s) per computational step and relative speedup 

MareNostrum4 Speed 
Up JUWELS Speed 

Up Hazel Hen Speed 
Up 

122 × 82 4092 0.62 1 0.55 1 0.51 1 
61 × 82 8192 0.39 1.5 0.29 1.9 - - 
62 × 42  16384 0.22 2.8 0.15 3.6 - - 

Table 55: NEMO Test Case B performance 

4.8.3 Performance Cross Comparison 

The three-systems involved (JUWELS, MareNostrum4 and Hazel Hen) represent the widespread 
system characteristics involving latest generation Intel CPUs and modern interconnect 
technologies (Intel Omni-Path, Mellanox InfiniBand EDR, and Aries with Dragonfly Topology). 

NEMO is a memory bound code [25] and also involves a lot of point to point and collective 
communication due to underlying numerical constructs. NEMO is a representative of some of the 
MPI applications which are heavily influenced by memory subsystem and interconnect 
performance especially when experiments are conducted on a very large number of cores. 

The PRACE best practice guide for modern interconnects [23] shows theoretical maximum nodal 
bandwidth for JUWELS, Hazel Hen and MareNostrum4. The numbers are summarised in Table 
56. 

 JUWELS – 
Intel Omni-Path 

MareNostrum4 – 
InfiniBand EDR 

Hazel Hen – 
Dragonfly Aries 

Theoretical Max 
Bandwidth (GB/s) 12.8 12.8 15 

Table 56: Theoretical Max Bandwidth (GB/s) 
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According to Table 56 there exists a clear trend for maximal theoretical bandwidth per node where 
Hazel Hen has the highest performance and this combination with modest CPU clock frequency 
should provide the relatively better performance for memory and communication bound 
applications. Also, [24] documents the detailed performance comparison of different interconnects 
for latency and bandwidth. The authors conclude that for latency and bandwidth the Aries 
interconnect outperforms both InfiniBand EDR and Intel Omni-Path with upper hand for 
InfiniBand EDR compared to Intel Omni-Path. We should perhaps see qualitatively similar trends 
in performance for NEMO as well. 

Results from test case A show quite similar performance characteristics with slightly upper hand 
for JUWELS and for Hazel Hen. The average time taken for each computational step is lowest for 
Hazel Hen and the relative speed-up also shows a very similar trend. Since the speedup can only 
help us to evaluate application scalability on a single system, its use for comparing performance 
with other system should not be practiced, therefore it is important to not only look at the speedup 
but also time taken on different systems. 

Results from test case B depicts scalability and time perspective up to 16000 cores. In some cases, 
16000 cores represents almost a third of the full production system under consideration. On 16384 
cores and 8192 cores we can see a clear trend, NEMO on JUWELS achieve relative speedup of 3.6 
and 1.9 compared to 2.8 and 1.5 on MareNostrum4. The time taken on JUWELS is less than that 
on MareNostrum4 and this is perhaps due to a better interconnect performance on JUWELS since 
nodal performance is almost identical. We can also see time taken for test case B on Hazel Hen for 
4096 cores and it outperforms other system in comparison. 

Since NEMO is a memory bound application, we can clearly see that throwing more computational 
power per node in this case (MareNostrum4 and JUWELS) does not help but a better interconnect 
and a balanced system does. Summarizing, in case of NEMO benchmarking, the above-mentioned 
trends in interconnect performance clearly augment the experiments conducted here on three 
representative systems and support the numbers of system performance. 

4.9 PFARM 

PFARM benchmark runs were undertaken on PRACE Tier-0 and PCP prototypes. The 
parallelisation and test cases are described in Section 2.9 

The performance of PFARM from the four main CPU architectures benchmarked – Intel Xeon 
Skylake, Intel Xeon Phi Knights Landing, Intel Xeon Haswell/NVIDIA P100 and ARM 
ThunderX2 is analysed in this section. The compilers used, compiler optimisation flags and 
numerical libraries used are summarised Table 57. 

Machine Compiler Compiler Optimisation Flags Numerical Libraries 

JUWELS Intel Fortran 
v2019.0.117 

-mtune=skylake -mkl=parallel -
Ofast Intel MKL v2019.0.117 

Marconi Intel Fortran 
v2018.0.5 

-xMIC-AVX512 -mtune=knl -
mkl=parallel -Ofast Intel MKL v2018.5.274 

Piz Daint Cray Fortran v8.7.3 -O3 Magma 2.3.0 & Cray Libsci v18.07.1 
(third-party) 
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Machine Compiler Compiler Optimisation Flags Numerical Libraries 

Dibona ARM Fortran 
Compiler v 19.0 -Ofast ARM Performance Libs 19.0.0 

Table 57: Summary of Programming Environments 

4.9.1 Performance Results 

The PFARM EXDIG MPI/OpenMP code is designed to match individual sector calculations to 
nodes in order to minimise inter-node communication and maximise the number of threads 
available for computation. One MPI task is assigned to each compute node. The number of sectors 
in the benchmark is therefore an upper bound on the number of nodes used in the benchmark run 
– 16 sectors/nodes for Test Case 1 and 64 sectors/nodes for Test Case 2. If the calculation is 
relatively small and memory limits permit, more than one sector calculation, and therefore more 
than one MPI task, can be placed on a node, but this is not a scheme investigated here. Each MPI 
task uses OpenMP/CUDA to parallelise the computationally intensive sector Hamiltonian 
eigensolvers via highly-optimised vendor-supplied numerical libraries (Table 57). 

Parallel performance results for both datasets are summarised for the four main architectures tested 
in Table 58 and Table 59. JUWELS is the Skylake system with the highest CPU frequency (2.7 
GHz) and this platform provides the fastest results overall for both test cases. The Mellanox EDR-
InfiniBand network on JUWELS also contributes to the best overall parallel efficiency results, 
though inter-node communication in the PFARM parallelisation is designed to be very low. The 
ability of the GPFS parallel filesystem to handle multiple simultaneous outputs of large volumes 
of data from multiple nodes is of more importance to parallel efficiency here. All the modern 
filesystems tested here perform relatively well in this respect. However, for Test Case 2 all systems 
show a marked reduction in parallel efficiency going from 32 nodes (~90% to 98%) to 64 (~77% 
to 87%) nodes. 

Number 
of nodes 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
JUWELS (Intel Skylake) Marconi (KNL) 

1 48 2379.45 1.0 100% 5184.94 1.0 100% 
2 96 1199.83 1.98 99.15% 2599.42 1.99 99.73% 
4 192 594.84 4.00 100% 1307.55 3.96 99.13% 
8 384 302.42 7.87 98.35% 673.28 7.70 96.26% 

16 768 153.07 15.54 97.16% 355.78 14.57 91.08% 
 

Number 
of nodes 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
Piz Daint 

(Intel Haswell & NVIDIA P100) Dibona (ARM) 

1 48 2404.05 1.0 100% 13540.67 1.0 100% 
2 96 1206.64 1.99 99.15% 6773 1.99 99.96% 
4 192 605.12 3.97 100% 3386.5 3.99 99.96% 
8 384 305.11 7.87 98.35% 1700.97 7.96 99.50% 

16 768 154.66 15.54 97.16% 853.11 15.87 99.20% 
Table 58: Summary of Results from PRACE systems for full runs of the PFARM EXDIG Benchmark (Test 
Case 1). Runs undertaken with one compute thread per core. 
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Number 
of nodes 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
JUWELS (Intel Skylake) Marconi (KNL) 

1 48 1580.71 1.0 100% 4213.81 1.0 100% 
2 96 802.45 1.97 98.49% 2155.14 1.96 97.76% 
4 192 401.22 3.93 98.49% 1080.55 3.90 97.49% 
8 384 203.34 7.77 97.17% 544.22 7.74 96.79% 

16 768 101.28 15.61 97.55% 273.13 15.43 96.42% 
32 1536 50.36 31.39 98.09% 139.60 30.19 94.33% 
64 3072 28.24 55.97 87.46% 75.48 55.83 87.23% 

 

Number 
of nodes 

Number of 
cores 

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency 
Piz Daint 

(Intel Haswell & NVIDIA P100) Dibona (ARM) 

1 48 1882.07 1.0 100% 7587.51 1.0 100% 
2 96 945.26 1.99 99.55% 3820.20 1.99 99.31% 
4 192 474.77 3.96 99.11% 1935.25 3.92 98.02% 
8 384 239.23 7.87 98.34% 972.10 7.81 99.57% 

16 768 124.98 15.05 94.12% 490.58 15.47 96.67% 
32 1536 65.52 28.72 89.77%  64 3072 37.94 49.61 77.51% 

Table 59: Summary of Results from PRACE systems for full runs of the PFARM EXDIG Benchmark (Test 
Case 2). Runs undertaken with one compute thread per core. 

4.9.2 Detailed Performance Analysis 

4.9.2.1 Timing Breakdown 

A PFARM (EXDIG) calculation takes place in several distinct stages. The time spent in each stage 
is reported in Table 60. JUWELS is used as the example platform here and timing breakdowns do 
not differ significantly from platform to platform. Firstly, in the SETUP stage, H file data produced 
from a preceding inner region calculation is read from disk by all the nodes. This non-optimised 
parallel input from one file to multiple nodes is potentially a bottleneck on large node counts, but 
all systems cope relatively well here. The results show that the relative cost of SETUP rises from 
0.02% on 1 node to 5.42% on 64 nodes. The Legendre basis functions are applied and the sector 
Hamiltonian matrices are filled in the stage MATRIX ASSEMBLY stage. This is a sequential cost 
within each node for each sector calculation and therefore its proportion of runtime remains fairly 
constant throughout at approximately 10%. The parallel eigensolution of the sector Hamiltonian 
matrix using OpenMP threads on the CPUs is undertaken in DIAG using optimised numerical 
library routines e.g. DSYEVD. This stage is relatively onerous and parallelises well across the 
range of node counts, averaging roughly 70% of runtime. This is mainly thanks to the inherent 
parallelism in the R-matrix calculation construction (a single node run will repeat 64 sector 
calculations whilst a 64 node run will undertake the compete set in parallel). The final stage AMPS 
is dominated by output costs from each node. Again, this follows the inherent coarse-grained 
parallelism and the relative cost remains fairly constant at 15–20%. 

Nodes 
Total 

Runtime 
(s) 

SETUP 
(s) 

SETUP 
(%) 

MATRIX 
ASSEMBLY 

(s) 

MATRIX 
ASSEMBLY 

(%) 

DIAG 
(Threaded) 

(s) 

DIAG 
(Threaded) 

(%) 

AMPS 
(s) 

AMPS 
(%) 

1 1580.71 0.37 0.02 171.52 10.85 1190.04 75.29 218.78 13.84 
2 802.45 0.31 0.04 86.40 10.77 594.56 74.09 121.18 15.10 
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Nodes 
Total 

Runtime 
(s) 

SETUP 
(s) 

SETUP 
(%) 

MATRIX 
ASSEMBLY 

(s) 

MATRIX 
ASSEMBLY 

(%) 

DIAG 
(Threaded) 

(s) 

DIAG 
(Threaded) 

(%) 

AMPS 
(s) 

AMPS 
(%) 

4 401.22 0.65 0.16 43.36 10.81 298.08 74.29 59.13 14.74 
8 203.34 0.63 0.31 21.92 10.78 148.64 73.10 32.15 15.81 
16 101.28 0.94 0.93 10.72 10.58 75.64 74.68 13.98 13.80 
32 50.36 1.54 2.80 5.34 10.31 37.82 73.01 7.19 13.88 
64 28.24 1.81 5.42 2.67 9.45 18.91 66.96 5.13 18.17 

Table 60: Breakdown of timings within distinct computational stages of PFARM EXDIG for Test Case 2 
(JUWELS) 
 

Table 60 shows that the eigensolver calculation contributes significantly to overall computation 
costs. The computational complexity of the eigensolver, where both eigenvalues and eigenvectors 
are required is of order O(N3), where N is the dimension of the matrix. This means that as the 
problem size increases, the proportion of runtime reduces in stages of the code with either O(N) 
costs, e.g. SETUP, or O(N2) costs, e.g. MATRIX ASSEMBLY and AMPS. Table 61 shows the 
high proportion of runtime spent in the parallel eigensolver for Test Case 2 on the test platforms. 
Similar results are obtained for Test Case 1. On 64 nodes, all 64 sector Hamiltonian calculations 
take place simultaneously in one batch. Therefore the sequential (within a node) properties of the 
stages outside the eigensolver begin to impact more on overall runtime and the proportion of 
runtime spent in the parallel eigensolver decreases significantly on all the platforms, see Table 60 
and Table 61. 

Nodes JUWELS Marconi Piz Daint Dibona 
1 75.31 64.12 73.21 87.41 
2 74.09 64.68 73.09 88.70 
4 74.29 64.57 72.66 86.81 
8 73.10 64.44 72.37 86.02 
16 73.97 64.32 70.96 85.81 
32 75.42 63.84 67.40  64 66.96 62.07 58.38 

Table 61: Percentage of total runtime in the eigensolver routine DSYEVD (Test Case 2) 
 

4.9.2.2 Intra-Node Parallel Performance 

Evidently, eigensolver performance is highly important to PFARM EXDIG efficiency. In this 
version of EXDIG it is the intra-node performance of the eigensolver routine DSYEVD that 
determines performance. The parallel eigensolver performance within nodes for Test Case 2 for 
different numerical libraries – MKL, ARM PL – on three different CPUs is shown in Table 62. 
Based on the optimal number of threads, intra-node parallel efficiency is fairly constant for the 
different CPUs (~35%). On JUWELS and Frioul, the optimal thread count corresponds to the 
maximum number of physical cores. However, on Dibona, using 32 threads per node is faster than 
using 64 and this configuration is generally preferred. 

Only the DAVIDE benchmark platform provides multiple GPUs per node. MAGMA eigensolvers 
are currently preferred to CuSolver eigensolvers as these can automatically parallelise across GPUs 
on a node. Table 63 shows performance results on a single DAVIDE node with 1 – 4 GPUs for a 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 68 18.04.2019 

DSYEVD eigensolver routine from MAGMA using Test Case 2 data. Parallel efficiency is 
approximately 30% using 4 GPUs. 

JUWELS (Intel Skylake 48 cores) Frioul (Intel KNL 64 cores) 
Threads 

(1 per 
core) 

DSYEVD 
(MKL) 

(s) 

Efficiency 
(%) 

Speed-
up 

Threads 
(1 per 
core) 

DSYEVD 
(MKL) 

(s) 

Efficiency 
(%) Speed-up 

1 300.15 100.00 1.00 1 1037.72 100.00 1.00 
2 189.00 79.40 1.59 2 598.23 86.73 1.73 
4 90.16 83.23 3.33 4 300.00 86.48 3.46 
8 49.74 75.43 6.03 8 139.87 92.74 7.42 

12 35.79 69.89 8.39 16 75.75 85.62 13.70 
24 22.78 54.90 13.18 32 46.99 69.01 22.08 
48 18.38 34.02 16.33 64 42.90 37.80 24.19 

 

Threads 

Dibona: ARM ThunderX2 with 64 cores 
 

DSYEVD 
(ARM PL) (s) Efficiency % Speed-up 

1 1320.07 100.00 1.00 
2 714.20 92.42 1.85 
    

4 394.33 83.69 3.35 
8 219.15 75.29 6.02 

16 144.47 57.11 9.14 
32 120.85 34.14 10.92 
64 125.40 16.45 10.53 

Table 62: Single node parallel eigensolver performance on CPUs (Test Case 2) 
 

Nodes × GPUs 
DAVIDE: Intel Haswell with 4 P100 cards 

DSYEVD 
(MAGMA) (s) Efficiency % Speed-up 

1 × 1 3305.98 100.00 1.00 
1 × 2 2874.26 57.51 1.15 
1 × 4 2556.89 32.32 1.29 

Table 63: Single node parallel eigensolver performance on DAVIDE with multi GPU acceleration (Test Case 2) 

4.9.3 Energy Consumption 

Energy monitoring tools have been used to collect power consumption data on DAVIDE and Piz 
Daint, which are both GPU-accelerated platforms. The tool was unavailable on Frioul when these 
benchmark runs were undertaken. These energy consumption results are shown in Table 64. 
Reported energy costs on Piz Daint are fairly constant with node count, whilst on DAVIDE they 
vary quite widely with node count. Test Case 1 generally consumes more energy than Test Case 2 
– this is to be expected, as the problem size is larger and the runs take longer. The four node 
DAVIDE value looks somewhat of an outlier. Restricted access to larger node counts on DAVIDE 
meant that repeated tests for verification were not possible. 
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Nodes 

Test Case 1 Test Case 2 
DAVIDE Piz Daint DAVIDE Piz Daint 

Total Energy (kJ) Total Energy 
(kJ) 

Total Energy 
(kJ) 

Total Energy 
(kJ) 

1 2361.49 347.10 1627.99 257.92 
2 1944.36 342.51 829.72 254.15 
4 497.53 352.48 968.06 250.85 
8  357.44  261.54 

16  378.48  284.45 
32  347.10  301.27 
64  342.51  420.36 

Table 64: Energy Consumption comparison 

4.10 QCD 

The QCD Benchmark runs are performed on all PRACE Tier-0 systems, except Hazel Hen and in 
case of part 2 Irene-KNL, the PCP Prototypes Frioul and DAVIDE, the DEEP-ER SDV system 
and the Mont-Blanc 3 Dibona system. 

4.10.1 Performance Results for QCD part 1 

In Table 65 we show strong scaling results for the QCD benchmark kernel part 1. The kernel scales 
very well for the Skylake machines on up to 128 nodes. For larger volumes the local lattice size 
becomes too small and communications dominate the kernel. For the case of accelerated systems 
with NVIDIA Pascals and Intel KNLs (with the exception of Marconi-KNL) the strong scaling is 
not as good. In the case of Piz Daint, the communication bottleneck begins to dominate starting 
from 32 nodes, while for the KNLs on Irene, good scaling is observed up to 128 nodes. 
Interestingly, the total performance per node on Mont-Blanc 3 is similar to that observed on 
Skylake systems. 

Nodes Irene-
KNL 

Irene-
SKL JUWELS Marconi

-KNL 
MareNo
strum4 

Piz 
Daint DAVIDE Frioul DEEP-

ER 
Mont-

Blanc 3 
1 155.94 219.68 182.49 133.38 186.4 53.73 53.4 151 656.41 206.17 
2 81.87 114.22 91.83 186.14 94.63 32.38 113 86.9 432.93 93.48 
4 48.01 58.11 46.58 287.17 47.22 19.13 21.4 52.7 277.67 49.95 
8 26.83 32.09 25.37 533.49 25.86 12.78 14.8 36.5 189.83 25.19 

16 15.32 14.35 11.77 1,365.7 11.64 9.2 10.1 27.8 119.14 12.55 
32 8.83 7.28 5.43 2,441.2 5.59 6.35 6.94 15.6   
64 7.18 4.18 2.65  2.65 6.41  11.7   

128 5.48  1.39  2.48 5.95     
256   1.38   5.84     
512   0.89        

 MPI=1 
omp=64 

MPI=8 
omp=6 

MPI=8 
omp=6 

MPI=1 
omp=64 

MPI=8 
omp= 6 

 4 GPUs MPI=1 
omp=68 

MPI=4 
omp=3 

MPI=64 
omp=1 

Table 65: Time-to-solution of benchmark kernel part 1, given in seconds, for lattice size V=8×64×64×64 

4.10.2 Performance Results for QCD part 2 

For the kernel in part 2, we use two different problem sizes, namely: V=96×32×32×32 shown in 
Table 66 and V=128×64×64×64 shown in Table 67. We use three different software packages 
which implement the same functionality but optimised for different target systems. For NVIDIA 
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GPU machines, we use QUDA, for the Intel machines, we perform the tests using the QPhiX 
library, while for the ARM system, we utilise GRID. As mentioned, QUDA and QPhiX apply the 
Wilson Dirac operator within a CG solver, while the GRID benchmark only applies the operator, 
without additional linear algebra operations included in the CG. We note that GRID also compiles 
for Intel architectures, and after comparing its performance with QPhiX on JUWELS we found a 
similar performance pattern for parallelisations up to 512 nodes, from which we conclude that the 
performance results for Mont-Blanc 3 are representative and can be used to compare the 
performance of the different HPC systems. 

For the smaller test size of V=96×32×32×32, the performance on the Skylake machines scales very 
well until 64 nodes. For larger partitions the local lattice size becomes too small, the 
communications dominate, and the scaling stagnates. Here we also observe large fluctuations of 
the performance of up to 60%. In case of the GPU machines, we see that scaling on Piz Daint starts 
to flatten-out after 4 nodes, while on DAVIDE it continues up to 32 nodes when using one GPU 
per Node. This shows that NVLINK is able to sustain the strong scaling for a larger number of 
nodes. The strong scaling of the KNL machines flattens-out after 8 nodes, and we observe large 
fluctuations for all parallelisations up to 40%. The scaling on DEEP-ER and Mont-Blanc 3 is good 
while the performance of Mont-Blanc 3 is comparable to the Skylake machines. 

For the lager test size of V=128×64×64×64 we perform strong scaling tests on larger PRACE 
Tier-0 systems. We found for the Skylake systems a good scaling on up to 512 nodes, although the 
performance results start to have larger deviations from around 128 nodes especially on Irene. On 
Piz Daint, the scaling is weaker however the total performance per node is larger compared to the 
Skylake nodes on up to 128 nodes. The KNL machines show scaling on up to 16 nodes, however 
with larger fluctuations and not exceeding a performance of around 4100 Gflop/s. 

Overall, we found that JUWELS shows the best scaling results with moderate fluctuations for 
larger partitions starting from 128 nodes and reaching a maximal performance of around 41 Tflop/s 
on 512 nodes using double precision. Nevertheless, for smaller partitions with up to 128 nodes, Piz 
Daint shows the best total performance per node, with up to 13 Tflop/s on 128 nodes using double 
precision. 

In Table 68 we show the performance and energy consumption on the PCP prototypes, DAVIDE 
and Frioul. The timings are for two CG application in case of QUDA given by 24 iteration each 
and five CG application in case of QPhiX given by 250 iteration each. For the runs on DAVIDE 4 
GPUs per node were used, while the runs on Frioul are performed on one KNL CPU in flat mode 
per node. 

Nodes Irene-
SKL JUWELS Marconi-

KNL 
Mare-

Nostrum 
Piz 

Daint DAVIDE Frioul DEEP-
ER 

Mont-
Blanc 3 

1 135.84 132.25 152.11 142.44 387.66 392.76 184.73 41.78 99.64 
2 241.34 245.77 264.59 264.56 755.31 773.90 269.71 40.77 214.55 
4 451.61 457.74 393.37 486.43 1,400.06 1,509.46 441.53 59.63 410.90 
8 757.83 866.57 607.10 899.43 1,654.21 2,902.83 614.47 67.34 715.70 

16 1,265.89 1,688.55 584.51 1,668.48 2,145.69 5,394.16 644.30 91.51 1,165.66 
32 2,691.25 3,458.24 730.26 3,013.55 2,923.98 9,650.91 937.76 -- -- 
64 4,920.97 6,208.53 611.61 4,601.35 2,332.71 -- 800.51 -- -- 

128 8,493.40 10,234.19 156.86 4,415.97 -- -- -- -- -- 
256 -- 10,042.6 -- -- -- -- -- -- -- 
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Nodes Irene-
SKL JUWELS Marconi-

KNL 
Mare-

Nostrum 
Piz 

Daint DAVIDE Frioul DEEP-
ER 

Mont-
Blanc 3 

512 -- 5,309.96 -- -- -- -- -- -- -- 
 MPI =8 

omp = 6 
MPI =8 
omp = 6 

MPI=4 
omp=68 

MPI =8 
omp = 6 

1 GPU 1 GPU 
per node 

MPI=1 
omp=68 

MPI=1 
omp=64 

MPI=64 
omp=1 

Table 66: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using problem size 
V=96×32×32×32 
 

Node Irene-SKL JUWELS Marconi-KNL MareNostrum4 Piz Daint 
1 141.51 135.23 64.43 144.32 -- 
2 266.70 263.74 154.70 280.68 -- 
4 504.36 496.94 423.19 514.96 -- 
8 936.21 954.09 916.72 930.95 2,694.10 

16 1,662.49 1,791.72 1,496.82 1,778.23 5,731.56 
32 3,061.35 3,301.38 2,430.12 2,635.74 7,779.29 
64 4,680.76 5,979.32 2,457.25 5,264.16 10,607.20 

128 5,890.96 10,577.84 2,273.16 7,998.56 13,560.50 
256 15,520.32 19,702.56 -- -- -- 
512 20,095.67 36,079.10 -- -- -- 

 MPI =8 
omp = 6 

MPI =8 
omp = 6 

MPI=4 
omp = 68 

MPI =8 
omp = 6 

1 GPU per Node 

Table 67: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using problem size 
V=128×64×64×64 
 

Nodes DAVIDE 
time (s) 

DAVIDE 
performance 

(Gflop/s) 

DAVIDE 
Energy 

(kJ) 

Frioul 
time (s) 

Frioul 
performance 

(Gflop/s) 

Frioul 
energy 

(kJ) 
1 3.76 1533.13 14.901 81.9 184.729 34.1 
2 4.88 3005.07 19.813 56.1 269.705 39.9 
4 3.72 5409.18 26.466 34.3 441.534 49.8 
8 4.04 7248.57 43.078 24.6 614.466 65.8 

16 4.86 3490.27 88.145 23.5 644.303 117.0 
32 4.86 4570.13 288.513 16.1 937.755 171.2 
64 -- -- -- 18.9 800.514 375.0 

Table 68: Performance and energy consumption of kernel of part 2 on the PCP Prototypes using problem size 
V=96×32×32×32 

4.11 Quantum Espresso 

In this section we describe the benchmark activity carried out for the QE application on various 
Tier-0 and Tier-1 systems available in PRACE. For each system we report how the application was 
used and installed, the performance data obtained, and an analysis of the results. On some computer 
systems we employed a profiling or tracing tool (e.g. Scalasca, Intel APS and Extrae) to give further 
insights on the benchmark results. In addition, for Piz Daint and the PCP prototypes (i.e. DAVIDE 
and Frioul), we report the corresponding energy-to-solution data. 

4.11.1 Performance on Hazel Hen 

Performance benchmarks were not run on this architecture – instead we show data for the 
Broadwell partition of Marconi (see later). It should also be noted that Hazel Hen will be replaced 
with a completely different system which is expected to occur in Q1 of 2019. 
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4.11.2 Performance on Irene 

Due to the similarities between this and other architectures tested, benchmarks were not run on the 
Irene systems. For Intel KNL and Skylake data the reader is referred to the sections on Marconi. 

4.11.3 Performance on JUWELS 

4.11.3.1 Installation and execution 

The QE application was not available on this system so it was compiled from source. On JUWELS 
we note that it is essential to unset the ARCH environment available otherwise the QE configure 
script does not recognise the operating system. In addition, we observed runtime problems with the 
Intel19 MPI library, so this was substituted with Parastation MPI. With this installation procedure, 
the application compiles, installs and executes correctly. The small dataset was run without using 
OpenMP threads, while the large data set was run with 13 or 26 MPI tasks per node and four 
OpenMP threads per task. 

4.11.3.2 Results 

Strong parallel scaling curves for both datasets are given in Figure 15, with the corresponding data 
in Table 69. 

Small test case Large test case 
Cores Wall time/s Cores Wall time/s 

16 1765 130 2037 
32 843 208 1266 
48 567 390 936 
96 324 520 518 

144 310   
Table 69: Performance Data for JUWELS 

Figure 15: Strong scaling for small (left) and large (right) datasets on JUWELS 
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4.11.3.3 Analysis 

The scaling and performances are as we expected for this architecture. On JUWELS we did a 
further performance analysis using the Scalasca tool for the AUSURF benchmarks (single node). 
A snapshot from this analysis is shown in Figure 16 and from the leftmost panel we see that about 
20% of the elapsed time is consumed in MPI calls (this result is confirmed by other analyses on 
different systems, see later). The middle panel, on the other hand, shows that most of the CPU time 

is used in the diagonalisation routines for the calculation of the electronic SCF energy (mainly in 
the MKL library). The third panel shows the almost perfect load balancing of the 48 tasks as 
demonstrated by the fact that the slices, each representing an MPI task, have similar colours. 

4.11.4 Performance on Marconi (KNL and Skylake and Broadwell) 

4.11.4.1 Installation and execution 

Optimised installations of QE for both KNL and Skylake and Broadwell partitions are present on 
Marconi and were used in the benchmarks. For the KNL partition 64 MPI tasks/node were used 
for the small test case while 13 per node were used for the large test case. For Marconi Skylake 48 
tasks were used for the former and 26 for the latter, for Broadwell 36 and 13 tasks respectively 

Figure 16: Scalasca Analysis of AUSURF for 1 node on JUWELS 
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were employed. We note that while the Marconi-KNL nodes have 68 cores, using 64 tasks is more 
convenient for the parallelisation strategy of QE. 

4.11.4.2 Results 

The strong scaling curves for small and large test cases on all Marconi partitions are shown in 
Figure 17, Figure 18 and Figure 19 with the corresponding data in Table 70. 
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Figure 17: Strong scaling curves for small (left) and large (right) test cases on Marconi-KNL 
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Broadwell KNL Skylake 
Small Large Small Large Small Large 

Nodes Wall 
time/s Nodes Wall 

time/s Nodes Wall 
time/s Nodes Wall 

time/s Nodes Wall 
time/s nodes Wall 

time/s 
1 991 10 9681 1 1197 16 4164 1 566 10 3791 
2 529 15 7567 2 897 20 3726 2 376 20 1685 
3 518 20 6550 3 725 30 3573 3 321 30 1274 
4 437 40 2969 4 751 40 2667 4 266 40 1062 
  50 3295   50 2463 5 283   
      60 2421     
      70 1936     
      80 1911     
      90 1663     
      100 1664     

Table 70: Performance data for the Broadwell, KNL and Skylake partitions on Marconi 
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Figure 19: Performance on Marconi Broadwell 
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4.11.4.3 Analysis 

We see from the graphs that for both datasets, the performance of Marconi Skylake is about twice 
that of KNL and Broadwell. In order to understand better the performance and scaling on the two 
architectures, we ran the Intel Application Snapshot tool for the small test case on KNL and Skylake 

- snapshots of the graphical outputs are show in Figure 20 We notice that on Skylake, just like on 
JUWELS, about 20% of the elapsed time is spent in MPI calls but the application is classed as 
memory bound by the profiler, i.e. dictated by the time needed to access main memory. For KNL, 
on the other hand, the application is MPI bound with more than 40% of the elapsed time being 
consumed in the MPI calls. The poor MPI performance on KNL is in fact one reason for the poor 
performance of MPI-only programs on this processor. 

4.11.5 Performance on MareNostrum4 

4.11.5.1 Installation and execution 

QE version 6.2 was present on MareNostrum4 but given the standard x86 architecture of the system 
we opted to install the latest version 6.3 from source. No problems were revealed during installation 

Figure 20: Performance Analyses using the Intel APS tool for the small dataset on Marconi-KNL (top) and 
Marconi Skylake (bottom) 
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and the application was benchmarked similarly to other systems (e.g. JUWELS or Marconi SKL), 
although due to time constraints only the small dataset was benchmarked. 

4.11.5.2 Results 

The variation of elapsed time with MPI tasks for the small dataset are reported in Figure 21 and 
Table 71. 

 

 
Nodes Wall time/s 

1 743 
2 587 
3 537 
4 448 
5 518 

Table 71: Performance data on MareNostrum4 

4.11.5.3 Analysis 

Only limited benchmarks were collected but the wall times show the expected trend for the 
AUSURF small benchmark case, even though the absolute values are higher than equivalent results 
for Marconi Skylake or JUWELS. To understand this difference, we have compared the timings 
output by QE for the two architectures for one node (=48 cores) and found that the major difference 
lies in the calculation of the electron energy (see Figure 22). Here the most expensive function is 
the c-bands routine which requires matrix operations and are performed in the Intel MKL library. 
One reason for the increased wall time could then be the different versions of the MKL used for 
compilations; MKL 2017 in the case of MareNostrum4 as opposed to MKL 2018 for the Marconi 
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Figure 21: Strong scaling of the small dataset on MareNostrum4 
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version. Unfortunately, we haven’t been able to confirm this hypothesis by recompiling the 
application on MareNostrum4 with later versions of the Intel suite. 

Extrae Tracing 

The availability of the Extrae tracing tool on MareNostrum4 has allowed us to perform a very 
detailed performance analysis on the system. Because trace files can be very large, we have 
conducted an analysis of only a very short run, based on one iteration of the AUSURF input and 
using 8 MPI tasks. The 1.6 GB trace file was then further reduced with the Paraver tool to about 
500 Mb to allow further analysis with Paraver itself. A snapshot of the trace together with a window 
detailing only the MPI calls is shown in Figure 23. Here, the upper window shows all the activity 
during the iteration, while the lower shows only the MPI-related processes. In this tool colours are 
used to indicate important activity states so in the upper window we see processes which are 
“Running” (blue), in MPI barriers (red) or communications (orange), while the yellow lines link 
tasks involved in communications. In the lower pane, tasks are identified as involved in calls to 
MPI_Barrier (red), MPI_AlltoAll (violet), MPI_Rsend (green), MPI_Allreduce (pink) and 
MPI_comm_size (blue), while the rectangles have been added to indicate the MPI_Barrier 
synchronisation for the k-point calculation. We see very clearly from the figure that an important 
bottleneck is the MPI_Barrier needed to synchronise the two groups of MPI tasks corresponding 
to the two k-points. Other communications, such as MPI_AlltoAll or MPI_Allreduce, are also 
important although we stress that we have focussed on a communication intensive region of the 
program and with just eight MPI tasks we have only a limited view of the more general parallel 
communications pattern. 

 
Figure 22: Output timings from the small test case on MareNostrum4 (upper) and Marconi Skylake (lower) 

MareNostrum4 
Called by electrons: 
     c_bands      :    644.60s CPU    655.89s WALL (      22 calls) 
     sum_band     :     52.31s CPU     53.94s WALL (      22 calls) 
     v_of_rho     :      4.74s CPU      4.95s WALL (      22 calls) 
     newd         :      4.40s CPU      5.52s WALL (      22 calls) 
     mix_rho      :      1.07s CPU      1.12s WALL (      22 calls) 

Marconi 
Called by electrons: 
     c_bands      :    455.48s CPU    472.78s WALL (      22 calls) 
     sum_band     :     52.06s CPU     54.25s WALL (      22 calls) 
     v_of_rho     :      4.38s CPU      4.62s WALL (      22 calls) 
     newd         :      4.36s CPU      5.55s WALL (      22 calls) 
     mix_rho      :      1.14s CPU      1.22s WALL (      22 calls) 
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Figure 23: Snapshots of an Extrae trace file of the first iteration of Quantum Espresso on MareNostrum4 

4.11.6 Performance on Piz Daint 

4.11.6.1 Installation and execution 

Since Piz Daint is equipped with one NVIDIA Tesla Pascal P100 per node we decided to run the 
CUDA Fortran version of Quantum Espresso, already present on the system. For the runs we used 
one MPI task per node (corresponding to the number of GPUs) and 12 OpenMP threads per task. 
We note that because nearly all the program memory is assigned to the GPU memory (16 GB per 
device), it is difficult to obtain a large number of benchmark data points with this version of the 
code. The reason is due to the fact that you need a large number of GPUs in order to have sufficient 
memory to actually run the program, but then you are already likely to have reached the 
performance limit. 

4.11.6.2 Results 

In Figure 24 and Table 72 we show the scaling data we have obtained for both the small and large 
test case. 
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Small Test Case Large Test Case 

Nodes Wall time/s Nodes Wall time/s 
4 157 78 388 
6 138 104 304 
8 114 130 307 

10 116   
Table 72: Performance data for Piz Daint 

4.11.6.3 Analysis 

For the reasons cited above only a limited number of data points was collected. We note however 
that the program performance is very high on this architecture. The SLURM scheduler also 
provides energy data per node, but this analysis we leave until the end of the section on Quantum 
Espresso. 

4.11.7 Performance on SuperMUC-NG 

Not available during the benchmark period. 

4.11.8 Performance on DAVIDE and Frioul 

4.11.8.1 Installation and Execution 

For the DAVIDE POWER8+GPU cluster we used the CUDA Fortran version of QE compiled with 
the OpenMPI installation for the IBM POWER8 architecture. When using the GPU all four 
accelerators per node were allocated, employing four MPI tasks and one OpenMP thread per task. 
We note that for the large test case, which has 26 k-points, these parameters are not optimal because 
we should use multiples of 13 or 26 for the MPI tasks. Since for the GPU version we can allocate 
only one MPI task/GPU, running over 26 k-points would have made it impossible to get meaningful 
benchmarks (we recall that the DAVIDE cluster has only 45 nodes). For the Frioul system the 
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Figure 24: Benchmarks for the small and large test cases on Piz Daint 
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application was compiled and run as for Marconi-KNL (see above), although it should be noted 
that only KNL devices in flat mode were available. For both systems the energy consumed for each 
benchmark, as reported by the appropriate tool, is also reported. 

4.11.8.2 Results 

The wall times for the two test cases are given in Figure 25 and Table 73 and show results for 
accelerated and non-accelerated (i.e. only POWER8) runs on DAVIDE together with the 
simulations launched on Frioul. In Figure 26 and Table 74 we report the corresponding energies. 
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Figure 25: Performances for the small (right) and large (left) datasets on the PCP prototypes, DAVIDE and Frioul. 
For DAVIDE both accelerated and non-accelerated results (POWER8) are shown 
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DAVIDE POWER8 DAVIDE POWER8 + GPU Frioul 
Small Large Small Large Small Large 

Nodes Wall 
time/s Nodes Wall 

time/s Nodes Wall 
time/s Nodes Wall 

time/s Nodes Wall 
time/s nodes Wall 

time/s 

1 3817 4 9169 1 312 2 2337 1 (32 
cores) 2481 10 5916 

2 1514 6 6560 2 248 4 1511 1 2062 15 3549 
4 990 8 5753 3 200 5 1470 2 1442 20 3886 
8 733 10 3771 4 197 6 1324 4 1063 30 3539 
  20 2855   8 995 8 659 40 4732 
  30 3285   10 1041     
      20 1189     

Table 73: Performance data on DAVIDE and Frioul 
 

DAVIDE POWER8 DAVIDE POWER8 + GPU Frioul 
Small Large Small Large Small Large 

Node
s 

Energ
y 

/MJ 

Node
s 

Energ
y 

/MJ 

Node
s 

Energy/M
J 

Node
s 

Energ
y 

/MJ 

Node
s 

Energ
y 

/MJ 

node
s 

Energ
y 

/MJ 
1 2.7 4 29.0 1 0.3 2 3.9 0.5 0.7 10 16.0 
2 2.4 6 30.7 2 0.4 4 4.8 1 0.6 15 14.9 
4 2.3 8 35.0 3 0.4 5 5.8 2 0.7 20 20.0 
8 4.5 10 28.9 4 0.6 6 6.1 4 1.0 30 29.2 
  20 44.4   8 6.0 8 1.4   
  30 75.9   10 8.0     
      20 16.1     

Table 74: Energy data for DAVIDE and Frioul 

4.11.8.3 Analysis 

We see from Figure 25 that for both datasets using the Tesla P100 GPUs on the DAVIDE system 
gives the best performances while the wall times on Frioul’s KNL nodes are similar to the 
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Figure 26: The energy consumed by the batch jobs for the two datasets on the PCP prototypes 
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performances on the POWER8 processors. Comparing with the other GPU system tested, Piz 
Daint, we note that the GPU performances for the small dataset on DAVIDE are similar. For the 
larger dataset the application is slower than Piz Daint, but this may be partly due to the fact that 
OpenMP threads were not used on DAVIDE. However, an advantage of the latter system is that 
with four GPUs per node, we require only one node to perform the small dataset whereas with Piz 
Daint we need at least four. The performances for the Frioul system are lower and, in addition, 
lower than those reported for Marconi-KNL (see Figure 17). One reason may be the fact that on 
Marconi-KNL devices were used in cache mode, whilst on Frioul flat mode was employed. Since 
the QE application has not been programmed to exploit the MCDRAM on KNL a difference in 
performance would be expected since the application can use the additional memory available in 
cache mode. As regards the energies to solution shown in Figure 26, we see that for both datasets 
the simulations with the GPUs require the least energy, while the POWER8 runs require the most 
energy. The KNL simulations use considerably less energy than POWER8 alone, but still higher 
than the GPUs. 

4.11.9 Performance on DEEP-ER SDV 

4.11.9.1 Installation and Execution 

The program was installed with the Intel compiler and options suitable for KNL execution, but 
using the Parastation implementation of MPI instead of Intel MPI. We remark that benchmarking 
this platform was challenging due to the small number of KNL nodes available and, as the results 
appear to show, an issue relating to communications between three nodes. 

4.11.9.2 Results 

Performances for the small dataset are shown in Table 75. 

Nodes #tasks Wall time (s) 
1 64 2669 
2 128 1806 
3 192 6420 

Table 75: Benchmarks for the DEEP-ER SDV 

4.11.9.3 Analysis 

For this system we have been able to obtain only very few data. The performances for 1–2 nodes 
are lower than other similar data for KNL (e.g. Marconi-KNL), while it has been very difficult to 
perform runs for more than three nodes, presumably due to a communication issue at the time the 
benchmarks were performed. 

4.11.10 Summary of performance and energy analyses 

For the small test case, the benchmark data on all architectures effectively reflect the relative clock 
speeds of the processor cores since the computationally expensive calculations all take place in the 
linear algebra library (e.g. Intel’s MKL). This is true for the large test case as well but the data are 
more difficult to interpret because the high memory requirements mean that large numbers of nodes 
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are often needed and the UEABS architectures have different memory per core specifications. In 
addition, the fact that this test case has 26 k-points means that to exploit the best parallelism we 
need groups of cores which are multiples of 13 or 26, i.e. cores will be unused if we can only ask 
for whole nodes (by contrast we recall that the small test case has 2 k-points which is more 
convenient). In addition, depending on the cores/node available sometimes we can benefit from 
OpenMP threads. For both inputs, GPU acceleration has a big impact but since the CUDA version 
of the program does not use the host memory, many GPUs are required in order to provide 
sufficient memory. 

The more detailed performance analyses using profilers has confirmed that while single core 
performance cannot probably be improved any further, there is a scaling bottleneck due to the MPI 
barriers needed to synchronise the tasks involved for each k-point calculation. 

4.11.10.1 Energy Consumption 

In addition to the performance analysis in terms of elapsed times, we have also recorded the energy 
used per job when available. This has already been described for the PCP prototypes but we can 
also extend the analysis to a Tier-0 system, i.e. Piz Daint. A comparison of the energies obtained 
from the PCP prototypes and Piz Daint using the GPU for the test cases is shown in Figure 27 and 
Table 76 (we have excluded the energies from the non-accelerated runs of DAVIDE). For the small 
test case Piz Daint seems to be more energy efficient than DAVIDE, despite the fact that for the 
Tier-0 system more nodes are required, although we recall that DAVIDE has four NVIDIA Tesla 
P100 GPUs/node. We have limited data for the large test case on Piz Daint, but the energy required 
is similar to that of DAVIDE within the strong scaling regime (i.e. between 1–10 nodes for 
DAVIDE). 

 

 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

0 2 4 6 8 10 12

En
er

gy
/M

J

#nodes

AUSURF Energy

DAVIDE GPU FRIOUL KNL Piz DAINT

0

5

10

15

20

25

30

35

1 10 100 1000

En
er

gy
/M

J

#nodes

Ta2O5 Energy

DAVIDE_GPU FRIOUL KNL Piz DAINT

Figure 27: Comparison of the energy consumed per job for the two test cases on DAVIDE (GPU), Frioul (KNL) 
and Piz Daint (GPU) 



D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks 

PRACE-5IP- EINFRA-730913 85 18.04.2019 

Piz Daint DAVIDE POWER8 + GPU Frioul 
Small Large Small Large Small Large 

Nodes Energy 
/MJ 

Nodes Energy 
/MJ 

Nodes Energy /MJ  Nodes Energy 
/MJ 

Nodes Energy 
/MJ 

nodes Energy 
/MJ 

4 0.12 78 5.70 1 0.27 2 3.92 0.5 0.68 10 16.00 
6 0.15 104 6.27 2 0.38 4 4.84 1 0.62 15 14.90 
8 0.17 130 7.05 3 0.43 5 5.84 2 0.68 20 20.00 

10 0.18   4 0.59 6 6.13 4 1.02 30 29.20 
      8 5.98 8 1.40   
      10 8.01     
      20 16.11     

Table 76: Comparison of energy-to-solution for Piz Daint, DAVIDE and Frioul 

4.12 SHOC 

In order to run all benchmarks from SHOC at once, we use the size 3, as mentioned in Section 
2.12. The command to run all benchmarks is: 

./shocdriver –s 3 –cuda 

The SHOC benchmark has been run on Cartesius, Ouessant, DAVIDE, Piz Daint, and JUWELS. 
The results are presented in Table 77. 

4.12.1 Performance Results 

Device/Bench K40 
(Cartesius) 

POWER8 + 
P100 

(Ouessant) 

POWER8 + 
P100 

(DAVIDE) 

P100 
(Piz 

Daint) 

V100 
(JUWELS) 

BusSpeedDownload (GB/s) 10.5 32.23 32.9 12.47 12.38 
BusSpeedReadback (GB/s) 10.5 34 34 13.21 13.15 
maxspflops (Gflop/s) 3716 10424 10475 9322 15539 
maxdpflops (Gflop/s) 1412 5315 5318 4735 7802 
gmem_readbw (GB/s) 177 575.16 574.53 574 894.93 
gmem_readbw_strided (GB/s) 18 99.15 98.65 97.84 476.83 
gmem_writebw (GB/s) 175 436 436 431 777.69 
gmem_writebw_strided (GB/s) 7 26.3 26.15 25.1 60.18 
lmem_readbw (GB/s) 1168 4239 4245 4166 9413 
lmem_writebw (GB/s) 1194 5488 5485 5221 10125 
BFS (MEdges/s) 49.2 91.9 90.2 110 122.7 
FFT_sp (Gflop/s) 523 1472 1467 1498 2255 
FFT_dp (Gflop/s) 262 733 734 742 1131 
SGEMM (Gflop/s) 2921 8604 8732 8255 14065 
DGEMM (Gflop/s) 1032 3635 3654 3546 5399 
MD (SP) (Gflop/s) 188 483 522 456 863 
MD5Hash (GH/s) 3.38 15.77 15.87 14.03 34.2 
Reduction (GB/s) 144 271 270 250 331 
Scan (GB/s) 53.8 99.2 98.5 106 184.8 
Sort (GB/s) 3.22 12.54 12.52 9.87 20.98 
Spmv (FP64/no padding) (Gflop/s) 4 23 23 19 56 
Spmv (FP32/with padding) (Gflop/s) 23 65 65 60 151 
Stencil2D (Gflop/s) 126 465 470 431 661 
Stencil2D_dp (Gflop/s) 60 258 258 250 322 
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Device/Bench K40 
(Cartesius) 

POWER8 + 
P100 

(Ouessant) 

POWER8 + 
P100 

(DAVIDE) 

P100 
(Piz 

Daint) 

V100 
(JUWELS) 

Triad (GB/s) 13.5 43 41.3 15.6 16.31 
S3D (level 2) (Gflop/s) 95 294 292 289 423 

Table 77: SHOC performance 
 

We can see clear differences between the GPU families (Kepler, Pascal, Volta), but also between 
the hosts that drive these GPUs. The difference amongst these results sits in the fact that the 
Ouessant and DAVIDE feature NVLink connections between the hosts and accelerators, as 
opposed to PCIe in all other cases. The performance of this can be easily noticed in the 
BusSpeedDownload/BusSpeedUpload/Triad benchmarks, outperforming both the Piz Daint results 
based on P100 as well as JUWELS with the newer Volta architecture. 

For the other workloads, we can see the clear evolution in terms of compute and memory 
performance between the GPU families. The peak performance difference in terms of FP32/FP64 
compute between Kepler and Pascal architectures is of a factor of around 2.5. The same goes for 
the peak memory bandwidth between the two cards (288 GB/s vs 732 GB/s). Thus, this is the main 
reason why the P100 results are generally around a factor of three times faster than the K40 ones. 

It is interesting to compare the DAVIDE/Ouessant results to the ones obtained on Piz Daint. The 
results on Piz Daint are on average inferior, and this is mostly because there is still communication 
happening between the CPU hosts and the GPU, NVLink outperforming PCIe transfers. 

When comparing the P100 accelerator with the V100 one from JUWELS, we see that again 
NVIDIA has improved the architecture, this time with around 50% (both in terms of memory 
bandwidth and FP32/FP64 peak compute). The 50% performance difference is reflected in most 
benchmark results, with the exception of those that benefit from NVLink connectivity on the host 
side (POWER8). Another interesting exception is the gmem_readbw_strided benchmark, that now 
reaches 50% of the peak memory bandwidth (in the case of V100), whereas for the Kepler GPU 
generation it was reaching around 10%, and for the Pascal GPU around 20%. Thus, V100 has much 
better architectural support for strided access. 

4.12.2 Energy Consumption 

Being a synthetic benchmark, SHOC does not really fit the time and energy to solution paradigm 
as the other scientific benchmarks. However, it has been included for completeness (although 
“solution” does not represent much in this case) on some representative benchmarks. The results 
have been obtained on DAVIDE. As an interesting note, all compute-bound workloads draw 
around 1200W of power on average, whereas the memory-bound ones only around 750W. The test 
setup to measure energy consumption was as follows: 

• GEMM with size 4 benchmark and executed 1000 times 
• FFT with size 4 benchmark and executed 10000 times 
• MD5Hash with size 4 and executed 1000 times 
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Test Number of GPUs Time to solution 
(s) 

Energy to solution 
(kJ) 

Average node power 
consumption (W) 

GEMM 1 193 140 722 
GEMM 4 226 289 1274 
FFT 1 54 34.7 642 
FFT 4 166 126 758 
MD5Hash 1 104 70.7 680 
MD5Hash 4 106 125 1176 

Table 78: SHOC time and energy to solution 
 

The tests that are run on 4 GPUs are actually performing four times the work of the ones that are 
using one GPU. Thus, when the relative time difference between the one GPU and four GPU runs 
is small, almost perfect scaling efficiency is observed, as it can be observed for the compute-bound 
examples such as GEMM. On the other side, if we take the FFT example, it needs 3.07× more time 
to perform four times the work, while using 1.18× more power on average. The energy to solution 
metric merges these two metrics together, showing that this implementation of FFT used 3.63× 
more energy to perform 4× the work. 

We have also used the same “size 3” benchmarks as outlined below, and we report the energy 
metrics for a full benchmark suite run as presented by the DAVIDE system. The results are below; 
however, they are less insightful compared to the per-benchmark energy measurements. 

./shocdriver –s 3 –cuda 

Cumulative (all nodes) 

Mean power (W): 577.757197279 
Total energy (J): 169282.858803 
Mean GPUs power (W): 148.426778011 
Total GPUs energy (J): 43785.8995132 

4.13 SPECFEM3D 

The code has been tested and timed on several architectures, it has been compiled on almost all 
systems with Intel compilers (between version 17.0 and version 19.1 depending on their availability 
on the systems) except on Cray systems (Hazel Hen, Piz Daint: PrgEnv-cray+cray-mpich), 
OpenPOWER (DAVIDE: gnu+openmpi) and ARM (Dibona: arm-hpc-compiler). So far, it has 
only been possible to run on one fixed core count for each test case, so scaling curves are not 
available. 

4.13.1 Performance Results by Test Case 

4.13.1.1 Test case A 

Machine Solver (s) Threads OpenMP 

Tier-1 Systems 
Occigen 1082 12 
SuperMUC-Haswell 1210 12 
SuperMUC-Sandy Bridge 3367.2 12 

PRACE Tier-0 Systems Hazel Hen 2389 6 
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Machine Solver (s) Threads OpenMP 
Joliot Curie-KNL 1639 16 
Joliot Curie-SKL 734 12 
JUWELS 658 12 
Marconi-KNL 1653 17 
MareNostrum4 744 12 
Piz Daint 195 6 

PRACE PCP Prototypes Frioul 1963.5 17 
Mont-Blanc 3 Prototype Dibona 3921.2 16 

Table 79: Time to solutions for SPECFEM3D Globe on test case A 

4.13.1.2 Test case B 

Machine Solver (s) Threads OpenMP 

Tier-1 Systems Occigen 248.2 12 
SuperMUC-Haswell 240.36 12 

PRACE Tier-0 Systems 

Joliot Curie-KNL 330 16 
Joliot Curie-SKL 169 12 
JUWELS 193 6 
Marconi-KNL 1211 17 
MareNostrum4 156 12 
Piz Daint 50 6 

Table 80: Time to solutions for SPECFEM3D Globe on test case B 

4.13.1.3 Test case C 

4.13.1.3.1 Run on one node 

Machine Solver (s) Threads OpenMP 

Tier-1 Systems Occigen 143.5 4 
SuperMUC-Haswell 196.2 4 

PRACE Tier-0 Systems 

Joliot Curie-KNL 160.3 10 
Joliot Curie-SKL 83.9 8 
JUWELS 83.2 8 
Marconi-KNL 3440.3 12 
MareNostrum4 88.2 8 
Piz Daint 26.7 2 

PRACE PCP Prototypes DAVIDE 113 2 
Frioul 944.4 12 

DEEP-ER Prototype SDV 134.6 4 
Mont-Blanc 3 Prototype Dibona 474.9 10 
Table 81: Time to solutions for SPECFEM3D Globe on test case C using one node 

4.13.1.3.2 Run on two nodes 

Machine Solver (s) Threads OpenMP 

Tier-1 Systems Occigen 109 4 
SuperMUC-Haswell 123.678 8 

PRACE Tier-0 Systems 

Joliot Curie-KNL 468.4 22 
Joliot Curie-SKL 68.2 16 
JUWELS 66.7 16 
Marconi-KNL 1246.2 22 
MareNostrum4 74.25 16 
Piz Daint 16.6 4 
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Machine Solver (s) Threads OpenMP 

PRACE PCP Prototypes DAVIDE 51.7 4 
Frioul 170.7 22 

DEEP-ER Prototype SDV 99 8 
Mont-Blanc 3 Prototype Dibona 656 20 

Table 82: Time to solutions for SPECFEM3D Globe on test case C using two nodes 

4.13.2 Comparison methodology 

In order to compare the efficiency of the SPECFEM3D code on the different supercomputers, we 
chose to test the efficiency of the code for a fixed number of compute nodes (and therefore a 
variable number of cores) as it allows us to easily observe the efficiency of the code according to 
the architecture used. Indeed, current heterogeneous and/or hybrid (CPU+GPU) architectures make 
it difficult for us to evaluate the performance for a fixed number of cores used since the number of 
cores per node is very variable depending on the architectures used; 68 cores for Intel KNL 
architectures compared to eight for Intel Sandy Bridge nodes for example. 

In order to highlight the theoretical and experimental performance accelerations according to the 
architecture used, we compared the theoretical peak performance per node of each machine with 
that of the MareNostrum4 supercomputer (ranked 25 in the TOP500 November 2018) then we did 
the same for the solver times for SPECFEM3D compiled on the different machines compared to 
the solver time we obtained on the MareNostrum4 supercomputer. Here is the definition of the two 
metrics used in the graph below: 

Theoretical performance speedup compared to MareNostrum4 = 
Peak performance per node supercomputer X
Peak performance per node MareNostrum4  

Solver's resolution time speedup compared to MareNostrum4 = 
Solver time Supercomputer X

Solver time MareNostrum4  

4.13.3 Comparative results of systems 

 
Figure 28: Solver speedup and theoretical performance compared to MareNostrum4 on 24 nodes 
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Figure 29: Solver speedup and theoretical performance compared to MareNostrum4 on 384 nodes 
 

 
Figure 30: Solver speedup and theoretical performance compared to MareNostrum4 on 1 node 
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Figure 31: Solver speedup and theoretical performance compared to MareNostrum4 on 2 nodes 
 

The results obtained on Skylake microarchitecture supercomputers are consistent, we obtain decent 
and homogeneous performance on all three machines. This newer (and therefore more expensive) 
architecture is an interesting solution for performing simulations with SPECFEM3D. 

By comparing the theoretical peak performance of the machines to the performance of the solvers, 
we can see that the SPECFEM3D code is relatively efficient on Haswell and Sandy Bridge nodes 
(Occigen, Piz Daint, Hazel Hen, SuperMUC). These architectures are therefore good candidates 
for obtaining correct performance with less expensive systems. 

On Knights Landing (KNL) machines (Joliot Curie-KNL, Marconi-KNL) comparing to 
PRACE-4IP runs [20], performance for the most part systems more than twice as slower. This is 
due to the fact that a code modified by Intel were used but as Intel didn’t release the code publicly, 
the current public code [6] have been used to carry these performances. It is recommended to avoid 
using SPECFEM3D with this type of architecture. 

GPU-based computations significantly outperform the CPU-based calculations, the code is very 
well adapted to accelerators to achieve such performance it is essential to use this type of hybrid 
architecture (CPU+GPU). Performance on Piz Daint (on all test cases) is at least three times better 
than that of any supercomputer tested. 

4.13.4 Energy Efficiency 

We collected the power consumed on the Piz Daint and DAVIDE computers because only these 
two computers had energy measurement tools during the benchmarks. These energy consumptions 
are shown in Table 83. 
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Problem Nodes Piz Daint - 
Energy (kJ) 

Piz Daint - 
Performance 

DAVIDE - 
Energy (kJ) 

DAVIDE - 
Performance 

Test case C 1 8.7 26.7 89.114241 113 
Test case C 2 9.45 16.6 83.03966382 51.7 
Test case A 24 1260 195   
Test case B 384 5180 50   

Table 83: Energy to Solution on DAVIDE and Piz Daint 

The energy comparison for this code is not obvious since the test cases run on a number of cores 
depending on the available memory size and a fortiori, we cannot vary the number of processors 
used as we wish. To facilitate this comparison, we normalised the energy consumption by dividing 
by the number of nodes used multiplied by the solver time and multiplying by the calculation time 
for test case C on one node. 

Problem Nodes Piz Daint - Normalised energy DAVIDE - Normalised energy 
Test case C 1 8.7 89.114241 
Test case C 2 7.599849398 41.51983191 
Test case A 24 7.188461538  
Test case B 384 7.2034375  

Table 84: Normalised energy consumption on DAVIDE and Piz Daint 

The results in Table 83 and Table 84 highlight the consistency of Piz Daint's energy consumption, 
where consumption remains linear for an increasing number of nodes. For DAVIDE, the 
consumption goes from simple to double for the test case C; indeed, on Table 83 we notice that the 
consumption remains identical whether we turn on one or two nodes. 

5 Conclusions 

The whole purpose of benchmarking is providing a metric for comparing systems. Clearly, one 
single (application) benchmark won’t provide the answer to what the fastest/most efficient or most 
energy efficient system is. For this we will combine the previous results and derive a comparison 
of the overall performance of the systems. We will also derive a comparison of the energy 
efficiency for the few systems where we obtained energy measurements. 

If you want to select the optimal system/architecture for a given application, please have a look at 
the corresponding Section 4 subsection where we present performance and energy efficiency 
results, analyses, and conclusions per application. 

5.1 Performance Comparison of all Benchmark Systems 

5.1.1 LINPACK Performance 

To set a baseline, we provide the TOP500/HPL performance of the current PRACE Tier-0 systems 
in Table 85. In the last two columns, we provide the HPL performance per core (for GPUs we 
consider the SM units as cores), and a relative core performance (normalised using the maximum 
value). Although there is a lot to argue about the relevance of HPL for real applications 
performance, it still can be used as a starting point in comparing system performance. (It is relevant 
for dense linear algebra and other codes that can efficiently use AVX/SIMD instructions.) The 
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ranking is more-or-less as expected, from highest to lowest: the Skylake systems, the Broadwell 
and Haswell systems, the Knights Landing systems. Piz Daint is the only GPU based system and 
is most relevant for applications that can exploit the GPUs. SuperMUC-NG, the latest and greatest 
Skylake system, even has a higher relative core performance than Piz Daint. Unfortunately, it was 
not yet available for our benchmarking activities. 

PRACE Tier-0 system Rpeak 
(Pflop/s) 

Rmax 

(Pflop/s) Cores Rmax per core 
(Gflop/s/core) 

Relative core 
performance 

SuperMUC-NG 26.874 19.477 305,856 63.68 1.00 
Piz Daint 27.154 21.230 387,872 54.73 0.86 
JUWELS 9.891 6.178 114,480 53.96 0.85 
Irene-SKL 6.636 4.066 79,488 51.15 0.80 
MareNostrum4 10.296 6.471 153,216 42.23 0.66 
Marconi Broadwell 2.003 1.724 54,432 31.67 0.50 
Hazel Hen 7.404 5.640 185,088 30.47 0.48 
Marconi-KNL 18.816 10.385 348,000 29.84 0.47 
Irene-KNL 2.340 1.311 56,304 23.29 0.37 

Table 85: TOP500 performance of PRACE Tier-0 systems 

5.1.2 Application Performance 

In Section 4 we provided a plethora of benchmark results: i.e. for many Application Benchmark / 
Data Set / Problem Size – System combinations. If you are a PRACE user and are interested in 
running one of the UEABS applications, you are advised to study the relevant subsection. On the 
other hand, we want to provide some insight in the relative application performance of the 
benchmark systems presented in Section 3, and the additional systems that have been used in 
Section 4 for some of the applications. To this reason we took a similar approach as in Section 
5.1.1 and used selected performance results from the benchmark results in Section 4. If 
performance was determined as time to solution, we took the inverse value and divided this by the 
number of cores. If performance already was determined as some speed, we also divided this by 
the number of cores. Thus, we obtained an abstract speed metric per core. Subsequently, we 
normalised these values per Application-Test Case combination by dividing all values by the 
highest abstract speed per core metric. This results in a relative application speed per core. Finally, 
we colour coded the relative speed per core: green for relative speed 1 (highest) and red for the 
lowest; and sorted the columns on their average speed. The results are presented in Table 86. We 
did not include SHOC in these results since these synthetic benchmarks are all single node and 
GPU only. To get a fair comparison of the GPU based Piz Daint and DAVIDE results, we used 
performance results with the same number of GPUs where possible. 
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Alya 
A   1.00 0.93       0.36         0.14   0.65 0.35   

B   1.00 0.80       0.79             0.33     

C                     0.67   1.00       

Code_Saturne A 0.91 1.00 0.69   0.96 0.68 0.14       0.14 0.18 0.19 0.18   0.15 

B 1.00 0.55 0.39   0.69 0.48 0.13             0.18   0.15 

CP2K 
A 1.00 0.57         0.20         0.27     0.32   

B 1.00 0.95         0.18   0.85   0.06 0.53 0.06   0.30   

C 1.00 0.89         0.36   0.15     0.31 0.31   0.31   

GADGET A   1.00 0.84                 0.65   0.19     

B   1.00 0.95                 0.71   0.23     

GPAW 
S   1.00 0.69 0.94     0.14   0.74   0.22   0.10       

M   0.44 0.34 0.32         0.06       1.00       

L   1.00 0.77 0.80         0.13               

GROMACS B   1.00 0.68   0.73 0.83 0.54       0.25   0.25 0.22 0.10 0.18 

NAMD B   1.00 0.47   0.95 0.62 0.41       0.61   0.15 0.14 0.12   

NEMO G   0.89 1.00   0.82                       

PFARM 1   1.00 0.84   0.38 0.82 0.69       0.14 0.13 0.33 0.32 0.29 0.24 

2   1.00 0.83   0.46 0.79 0.60       0.13 0.16 0.27 0.26 0.28 0.24 

QCD 
1   0.99 1.00     0.81 0.89       0.92 0.70 0.30 0.01 0.07 0.48 

2v1   1.00 0.99     0.75 0.90       0.72 0.52 0.27 0.24 0.04   

2v2   0.60 0.59     0.56 1.00             0.31 0.12   

Quantum 
Espresso 

S   0.96 0.50       1.00   0.67 0.76 0.57   0.24   0.18   

L   1.00           0.56 0.98 0.21 0.51   0.17 0.18     

SPECFEM3D 
C   0.35 0.32     0.34 1.00       0.08 0.03 0.10 0.01 0.18 0.04 

A   0.42 0.37   0.23 0.38 1.00         0.05 0.10 0.12   0.12 

B   0.37 0.45     0.42 1.00             0.04   0.15 

Table 86: Selected relative speed per application-dataset combination 
 

Looking at the green colours, the clear overall winners are: 

1. The Skylake based JUWELS and MareNostrum4. 
2. The Haswell based Sisu and Hazel Hen. 
3. The GPU based Piz Daint is a clear winner for SPECFEM3D and is competitive for QCD. 

The few CPU only results on the Haswell based Piz Daint show an even higher performance per 
core – probably because of the available interconnect bandwidth per core – but they leave the GPUs 
unused, which is a waste of resources. 

For the GPU based systems, in general Piz Daint shows a higher performance than DAVIDE when 
using the same number of GPUs. 

The POWER8 based DAVIDE (CPU only) results for CP2K (Test Case B) and Quantum Espresso 
(Large Test Case) are competitive with the JUWELS and Piz Daint results. 
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The ARM based Dibona system shows a good performance for GADGET and QCD (part 1). We 
are looking forward to the future ARM CPUs with Scalable Vector Extension (SVE) that will make 
the ARM CPUs even more competitive. 

The KNL performance per core is consistently lowest, which is due to the low clock speed. 
Nowadays, Skylake also has AVX-512, and the only remaining true Xeon Phi differentiator is the 
16 GB MCDRAM High Bandwidth Memory (HBM). Furthermore, KNL has been discontinued by 
Intel. Nevertheless, the KNL based Frioul system is the winner for GPAW Test Case M. 

The full picture strongly corresponds with the LINPACK results presented in Section 5.1.1 where 
Piz Daint is marginally faster per core than JUWELS and Irene-SKL. (As stated earlier: 
SuperMUC-NG was not yet available for benchmarking.) The conclusion might be that LINPACK 
performance still is a reasonable indicator for application performance, but most people – including 
the LINPACK originators themselves – will disagree. 

5.2 Energy Efficiency 

5.2.1 LINPACK Energy Efficiency 

To set a baseline, we provide the Green500/HPL energy efficiency – if listed – of the current 
PRACE Tier-0 systems in Table 87. In the last column we provide the relative energy efficiency 
(normalised using the maximum value). The ranking is as expected. The GPU based system Piz 
Daint is at least twice as energy efficient as all other non-accelerated systems. Next are the recent 
Skylake systems and the Knights Landing system. The oldest Haswell and Broadwell based 
systems are least energy efficient. 

PRACE Tier-0 system Rmax 
(Pflop/s) 

Power 
(kW) 

Power 
Efficiency 
(Gflop/J) 

Relative 
power 

efficiency 
Piz Daint 21.230 2384 8904 1.00 
JUWELS 6.178 1361 4539 0.51 
Irene-SKL 4.066 917 4434 0.50 
Irene-KNL 1.311 326 4022 0.45 
MareNostrum4 6.471 1632 3965 0.45 
Hazel Hen 5.640 3615 1560 0.18 
Marconi Broadwell 1.724 1360 1268 0.14 

Table 87: Green500 energy efficiency of PRACE Tier-0 systems 

5.2.2 Energy to Solution on DAVIDE and Frioul (in their original PCP-configuration) 

As mentioned in Section 3.2.2., the energy measurements tools initially present on Frioul are no 
longer available since late 2018. Because of this, we were not able to provide Frioul energy 
measurements for some of the applications. To nevertheless give some insight on the relative 
energy efficiency of DAVIDE and Frioul in their original PCP-configuration, we give another 
presentation of the energy to solution as published in the Wrap-up table in PRACE-4IP D7.7 
(cf. [21]). (The original table presents a summary of all measurements and the authors refer to the 
relevant benchmark results in the preceding sections for an interpretation.) In Table 88 we present 
the energy to solution for the test cases where both DAVIDE and Frioul results were provided. We 
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normalised using the minimum energy for a given Application-Test Case. Higher values mean 
higher energy to solution. We also added colouring green (for the baseline, 1) – red (for the highest 
value). Clearly, CP2K Test Case 1 is an outlier. This was due to excessive I/O. 

Application Test 
Case 

Relative Energy to Solution 
DAVIDE Frioul 

Alya 1 4.11 1.00 
2 3.88 1.00 

Code_Saturne 1 1.00 4.27 

CP2K 1 1.76 1.00 
2 9.32 1.00 

GROMACS 1 1.36 1.00 
2 1.00 1.19 

NAMD 1 3.38 1.00 
2 1.00 3.14 

PFARM 1 1.00 1.96 

QCD part 1 1 1.00 2.20 
2 1.00 5.50 

QCD part 2 1 1.00 3.34 

Quantum Espresso 1 1.00 3.84 
2 1.00 3.08 

SPECFEM3D 
Globe 1 1.00 2.08 

Average   2.11 2.29 
Average w/o CP2K   1.63 2.37 

Table 88: Relative energy to solution on DAVIDE and Frioul in their original PCP-configuration 
 

Overall, it is shown that the most energy efficient system is heavily application dependent. Giving 
all benchmarks an equal weight and taking the average Relative Energy to Solution, shows that 
DAVIDE overall is slightly more energy efficient than Frioul. The difference is somewhat larger 
if we exclude the CP2K outlier. 

5.2.3 Energy to Solution on DAVIDE, Frioul and Piz Daint 

In Table 89 we selected Energy to Solution measurements from Section 4 combined with the 
measurements also presented in Table 88. We only selected benchmarks with at least two 
measurements where at least one of them is on a non-PCP prototype. To give a good comparison 
we selected benchmarks with the largest system coverage. Since the energy efficiency also depends 
on the number of nodes, we also tried to cover different node counts. Similarly, to what has been 
done in Table 88, we normalised and colour coded the energy to solution to come to a relative 
energy to solution. 
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Application Test Case nodes DAVIDE DAVIDE 
CPU only Frioul Piz Daint Piz Daint 

CPU only 
Code_Saturne A 4 1.02       1.00 
CP2K A 1       1.00 1.39 
CP2K A 128       1.84 1.00 
CP2K B 16 3.48 2.78 1.33 1.00 1.00 
CP2K C 16   30.59 3.28 1.00 2.31 
GPAW S 1 1.52 7.48 2.55 1.00   
GPAW S 8   1.00 6.17 1.08   
PFARM 1 1 6.80     1.00   
PFARM 1 4 1.41     1.00   
PFARM 2 1 6.31     1.00   
PFARM 2 4 3.86     1.00   
Quantum 
Espresso S 4 4.96 18.89 11.74 1.00   

Quantum 
Espresso L 10 1.00 3.61 2.00     

SPECFEM3D C 2 8.79     1.00   
Table 89: Selected relative energy to solution measurements 
 

Overall, Piz Daint is the most energy efficient system. There are only two exceptions: CP2K on 
128 nodes runs more efficiently using only the CPUs. This is to be expected since in this case the 
GPUs are underutilised but still using a lot of energy. For GPAW on 8 nodes, the CPU only run on 
DAVIDE wins. This is somewhat comparable to the CP2K case. The runner up is the other GPU 
system: DAVIDE. The reason is clear: DAVIDE uses the same NVIDIA P100 GPUs but it has 4 
GPUs (and two CPUs) per node whereas Piz Daint only has one GPU (and one CPU) per node. For 
perfectly scaling codes, the four GPUS in a DAVIDE node are expected to use four times the 
energy of one GPU in a Piz Daint node. Except for PFARM we see that the smallest problem sizes 
on DAVIDE use some 4 times or more energy compared to Piz Daint. 
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