

E-Infrastructures
H2020-EINFRA-2016-2017

EINFRA-11-2016: Support to the next implementation phase of Pan-

European High Performance Computing Infrastructure and
Services (PRACE)

PRACE-5IP

PRACE Fifth Implementation Phase Project

Grant Agreement Number: EINFRA-730913

D7.5

Evaluation of Accelerated and Non-accelerated Benchmarks
Final

Version: 1.0
Authors: Walter Lioen (SURFsara), Miguel Avillez (UEVORA), Valeriu Codreanu

(SURFsara), Dimitris Dellis (GRNET), Sagar Dolas (SURFsara), Andrew
Emerson (CINECA), Jacob Finkenrath (CyI), Cédric Jourdain (CINES), Martti
Louhivuori (CSC), Cristian Morales (BSC), Charles Moulinec (STFC), Arno
Proeme (EPCC), Andrew Sunderland (STFC)

Date: 18.04.2019

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 i 18.04.2019

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: EINFRA-730913

Project Title: PRACE Fifth Implementation Phase Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: < D7.5>
Deliverable Nature: <DOC_TYPE: Report>
Dissemination Level:
PU*

Contractual Date of Delivery:
30 / April / 2019
Actual Date of Delivery:
30 / April / 2019

EC Project Officer: Leonardo Flores Añover

* - The dissemination level is indicated as follows: PU – Public, CO – Confidential, only for members of the
consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision
2005/444/EC.

Document Control Sheet

Document

Title: Evaluation of Accelerated and Non-accelerated Benchmarks
ID: D7.5
Version: <1.0> Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2013
File(s): D7.5.docx

Authorship

Written by: Walter Lioen (SURFsara), Miguel Avillez
(UEVORA), Valeriu Codreanu
(SURFsara), Dimitris Dellis (GRNET),
Sagar Dolas (SURFsara), Andrew Emerson
(CINECA), Jacob Finkenrath (CyI), Cédric
Jourdain (CINES), Martti Louhivuori
(CSC), Cristian Morales (BSC), Charles
Moulinec (STFC), Arno Proeme (EPCC),
Andrew Sunderland (STFC)

Contributors: Giannis Koutsou, CyI
Srijit Paul, CyI

Reviewed by: Florian Berberich, JUELICH
Nikos Nikoloutsakos, GRNET

Approved by: MB/TB

http://www.prace-project.eu/
http://www.prace-project.eu/

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 ii 18.04.2019

Document Status Sheet

Version Date Status Comments
0.1 27/February/2019 Draft Skeleton
0.2 10/March/2019 Draft First integrated version
0.3 17/March/2019 Draft
0.4 24/March/2019 Draft
0.5 31/March/2019 Draft
0.6 01/April/2019 Draft For PRACE internal

review
0.7 12/April/2019 Draft

1.0 18/April/2019 Final version For MB/TB approval

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 iii 18.04.2019

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Applications, Benchmarking,

Energy Efficiency, Systems, Energy to Solution, Time to Solution,
Performance

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in accordance
with the Consortium Agreement and the Grant Agreement n° EINFRA-730913. It solely reflects
the opinion of the parties to such agreements on a collective basis in the context of the Project and
to the extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of PRACE
AISBL and therefore does not emanate from it nor should it be considered to reflect PRACE
AISBL’s individual opinion.

Copyright notices

 2019 PRACE Consortium Partners. All rights reserved. This document is a project document of
the PRACE project. All contents are reserved by default and may not be disclosed to third parties
without the written consent of the PRACE partners, except as mandated by the European
Commission contract EINFRA-730913 for reviewing and dissemination purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 iv 18.04.2019

Table of Contents

Document Control Sheet ... i

Document Status Sheet ... ii

Document Keywords .. iii
List of Figures .. ix

List of Tables .. xi

References and Applicable Documents .. xiii

List of Acronyms and Abbreviations ... xvi

List of Project Partner Acronyms .. xix

Executive Summary ... 1

1 Introduction ... 1

1.1 UEABS History and Previous Work .. 1

1.2 Work Described in this Report ... 2

1.3 Outline .. 2

1.4 Intended Audience ... 2

2 Application Benchmarks .. 3

2.1 Alya ... 3

2.1.1 Code Description .. 3

2.1.2 Test Cases ... 3

2.2 Code_Saturne ... 3

2.2.1 Code Description .. 3

2.2.2 Test Cases ... 4

2.3 CP2K ... 4

2.3.1 Code Description .. 4

2.3.2 Test Cases ... 5

2.4 GADGET .. 6

2.4.1 Code Description .. 6

2.4.2 Test Cases ... 7

2.5 GPAW ... 7

2.5.1 Code Description .. 7

2.5.2 Test Cases ... 8

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 v 18.04.2019

2.6 GROMACS .. 8

2.6.1 Code Description .. 8

2.6.2 Test Cases ... 9

2.7 NAMD ... 9

2.7.1 Code Description .. 9

2.7.2 Test Cases ... 10

2.8 NEMO ... 10

2.8.1 Code Description .. 10

2.8.2 Test Cases ... 11

2.9 PFARM ... 12

2.9.1 Code Description .. 12

2.9.2 Test Cases ... 14

2.10 QCD .. 14

2.10.1 Code Description .. 14

2.10.2 Test Cases ... 15

2.11 Quantum Espresso ... 15

2.11.1 Code Description .. 15

2.11.2 Test Cases ... 16

2.12 SHOC .. 16

2.12.1 Code Description .. 16

2.12.2 Test Cases ... 17

2.13 SPECFEM3D ... 17

2.13.1 Code Description .. 17

2.13.2 Test Cases ... 17

3 Benchmark Systems .. 18

3.1 Tier-0 systems .. 18

3.1.1 Hazel Hen ... 18

3.1.2 Irene ... 18

3.1.3 JUWELS ... 19

3.1.4 Marconi .. 19

3.1.5 MareNostrum4 ... 19

3.1.6 Piz Daint ... 20

3.1.7 SuperMUC-NG ... 20

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 vi 18.04.2019

3.2 PCP prototypes .. 21

3.2.1 DAVIDE ... 21

3.2.2 Frioul .. 21

3.2.3 JUMAX ... 22

3.3 Partner prototype systems .. 22

3.3.1 DEEP-ER SDV ... 22

3.3.2 Mont-Blanc 3 Dibona ... 22

4 Benchmark Results per Application ... 23

4.1 Alya ... 23

4.1.1 Performance on Skylake: JUWELS and MareNostrum4 ... 23

4.1.2 Performance on Marconi-KNL .. 23

4.1.3 Performance on GPU: Piz Daint ... 24

4.1.4 Performance and Energy Consumption on PCP prototypes 25

4.1.5 Performance on DEEP-ER SDV .. 25

4.1.6 Performance on ARM: Mont-Blanc 3 Dibona ... 25

4.2 Code_Saturne ... 26

4.2.1 Performance on CPU-based machines: Hazel Hen, Irene-SKL, JUWELS and
MareNostrum4 .. 26

4.2.2 Performance on KNL-based machines: Irene-KNL, Frioul and Marconi 27

4.2.3 Performance on other architectures: Piz Daint, Dibona, DAVIDE 28

4.2.4 Cross comparison for all the machines/architectures .. 29

4.2.5 Energy consumption ... 29

4.3 CP2K ... 30

4.3.1 General remarks regarding installation .. 31

4.3.2 General remarks regarding execution ... 31

4.3.3 Performance Results .. 32

4.3.3.1 Performance on JUWELS .. 32

4.3.3.2 Performance on Piz Daint (XC50 partition, with GPU) 32

4.3.3.3 Performance on Piz Daint (XC50 partition, without GPU – CPU only) 33

4.3.3.4 Performance on Frioul ... 34

4.3.3.5 Performance on DAVIDE (without GPU – CPU only) 34

4.3.3.6 Performance on DAVIDE (with GPU) ... 35

4.3.3.7 Performance on DEEP-ER SDV .. 35

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 vii 18.04.2019

4.3.3.8 Performance on Dibona ... 35

4.3.4 Performance comparisons .. 36

4.3.5 Energy consumption comparisons ... 39

4.3.6 Analysis of threading and energy on Frioul ... 44

4.3.7 Conclusions .. 47

4.4 GADGET .. 48

4.4.1 System and software environment .. 48

4.4.2 Modifications carried out in GADGET-3 ... 48

4.4.3 Dynamic analysis ... 49

4.4.4 Performance Results .. 49

4.4.5 Conclusion .. 53

4.5 GPAW ... 53

4.5.1 Performance Results .. 54

4.5.2 Performance Cross comparison ... 55

4.5.3 Energy consumption ... 56

4.6 GROMACS .. 57

4.6.1 Performance on KNL systems .. 57

4.6.2 Performance on GPU accelerated systems .. 58

4.6.3 Performance on Haswell/Skylake systems ... 58

4.6.4 Energy consumption ... 59

4.7 NAMD ... 60

4.7.1 Performance on KNL systems .. 60

4.7.2 Performance on GPU accelerated systems .. 61

4.7.3 Performance on Haswell/Skylake systems ... 61

4.7.4 Energy consumption ... 62

4.8 NEMO ... 62

4.8.1 Installation ... 63

4.8.2 Performance Results .. 63

4.8.3 Performance Cross Comparison .. 63

4.9 PFARM ... 64

4.9.1 Performance Results .. 65

4.9.2 Detailed Performance Analysis .. 66

4.9.2.1 Timing Breakdown ... 66

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 viii 18.04.2019

4.9.2.2 Intra-Node Parallel Performance .. 67

4.9.3 Energy Consumption .. 68

4.10 QCD .. 69

4.10.1 Performance Results for QCD part 1 ... 69

4.10.2 Performance Results for QCD part 2 ... 69

4.11 Quantum Espresso ... 71

4.11.1 Performance on Hazel Hen .. 71

4.11.2 Performance on Irene ... 72

4.11.3 Performance on JUWELS .. 72

4.11.3.1 Installation and execution .. 72

4.11.3.2 Results .. 72

4.11.3.3 Analysis .. 73

4.11.4 Performance on Marconi (KNL and Skylake and Broadwell) 73

4.11.4.1 Installation and execution .. 73

4.11.4.2 Results .. 74

4.11.4.3 Analysis .. 76

4.11.5 Performance on MareNostrum4 ... 76

4.11.5.1 Installation and execution .. 76

4.11.5.2 Results .. 77

4.11.5.3 Analysis .. 77

4.11.6 Performance on Piz Daint .. 79

4.11.6.1 Installation and execution .. 79

4.11.6.2 Results .. 79

4.11.6.3 Analysis .. 80

4.11.7 Performance on SuperMUC-NG .. 80

4.11.8 Performance on DAVIDE and Frioul .. 80

4.11.8.1 Installation and Execution ... 80

4.11.8.2 Results .. 81

4.11.8.3 Analysis .. 82

4.11.9 Performance on DEEP-ER SDV .. 83

4.11.9.1 Installation and Execution ... 83

4.11.9.2 Results .. 83

4.11.9.3 Analysis .. 83

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 ix 18.04.2019

4.11.10 Summary of performance and energy analyses .. 83

4.11.10.1 Energy Consumption .. 84

4.12 SHOC .. 85

4.12.1 Performance Results .. 85

4.12.2 Energy Consumption .. 86

4.13 SPECFEM3D ... 87

4.13.1 Performance Results by Test Case ... 87

4.13.1.1 Test case A .. 87

4.13.1.2 Test case B .. 88

4.13.1.3 Test case C ... 88

4.13.1.3.1 Run on one node ... 88

4.13.1.3.2 Run on two nodes ... 88

4.13.2 Comparison methodology .. 89

4.13.3 Comparative results of systems .. 89

4.13.4 Energy Efficiency ... 91

5 Conclusions .. 92

5.1 Performance Comparison of all Benchmark Systems .. 92

5.1.1 LINPACK Performance .. 92

5.1.2 Application Performance ... 93

5.2 Energy Efficiency ... 95

5.2.1 LINPACK Energy Efficiency .. 95

5.2.2 Energy to Solution on DAVIDE and Frioul (in their original PCP-configuration) 95

5.2.3 Energy to Solution on DAVIDE, Frioul and Piz Daint .. 96

Acknowledgements ... 97

List of Figures
Figure 1: Partitioning of Configuration Space in PFARM... 13
Figure 2: time to solution for Test Case A (H2O-512) .. 36
Figure 3: time to solution for Test Case B (LiH-HFX). Note that runtimes on Dibona, DAVIDE
(with and without GPUs) and Piz Daint (with and without GPUs) are all very similar for 1–16
nodes. .. 37
Figure 4: time to solution for Test Case C (H2O-DFT-LS). Note that runtimes on Dibona, Frioul,
and DEEP-ER SDV and to a lesser extent Piz Daint with GPU are all very similar for 1–32 nodes
 .. 38
Figure 5: Energy to solution for Test Case A (H2O-512) .. 40

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 x 18.04.2019

Figure 6: Energy to solution for Test Case B (LiH-HFX) ... 41
Figure 7: breakdown of node and switch energy contributions to total job energy on Frioul for
test case C (H2O-DFT-LS) .. 42
Figure 8: Energy to solution for Test Case C (H2O-DFT-LS) .. 43
Figure 9: Time to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different
choices of number of MPI processes per node and number of OpenMP threads per process 45
Figure 10: Energy to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different
choices of number of MPI processes per node and number of OpenMP threads per process 46
Figure 11: Average power drawn during runs for Test Case C (H2O-DFT-LS) on 64 nodes of
Frioul for different choices of number of MPI processes per node and number of OpenMP threads
per process .. 47
Figure 12: Accumulated exclusive (top panel) and inclusive (bottom panel) times per function . 49
Figure 13: Variation of the computing time vs. number of cores (top panel) and speedup (bottom
panel) for Test Case A. ... 51
Figure 14: Variation of the computing time vs. number of cores (top panel) and speedup (bottom
panel) for Test Case B .. 53
Figure 15: Strong scaling for small (left) and large (right) datasets on JUWELS 72
Figure 16: Scalasca Analysis of AUSURF for 1 node on JUWELS .. 73
Figure 17: Strong scaling curves for small (left) and large (right) test cases on Marconi-KNL ... 74
Figure 18: Strong scaling of small (left) and large (right) test cases on Marconi Skylake 74
Figure 19: Performance on Marconi Broadwell ... 75
Figure 20: Performance Analyses using the Intel APS tool for the small dataset on Marconi-KNL
(top) and Marconi Skylake (bottom) .. 76
Figure 21: Strong scaling of the small dataset on MareNostrum4 ... 77
Figure 22: Output timings from the small test case on MareNostrum4 (upper) and Marconi
Skylake (lower) .. 78
Figure 23: Snapshots of an Extrae trace file of the first iteration of Quantum Espresso on
MareNostrum4 ... 79
Figure 24: Benchmarks for the small and large test cases on Piz Daint .. 80
Figure 25: Performances for the small (right) and large (left) datasets on the PCP prototypes,
DAVIDE and Frioul. For DAVIDE both accelerated and non-accelerated results (POWER8) are
shown ... 81
Figure 26: The energy consumed by the batch jobs for the two datasets on the PCP prototypes .. 82
Figure 27: Comparison of the energy consumed per job for the two test cases on DAVIDE
(GPU), Frioul (KNL) and Piz Daint (GPU) ... 84
Figure 28: Solver speedup and theoretical performance compared to MareNostrum4 on 24 nodes
 .. 89
Figure 29: Solver speedup and theoretical performance compared to MareNostrum4 on 384 nodes
 .. 90
Figure 30: Solver speedup and theoretical performance compared to MareNostrum4 on 1 node . 90
Figure 31: Solver speedup and theoretical performance compared to MareNostrum4 on 2 nodes91

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xi 18.04.2019

List of Tables
Table 1: Test Case A – Skylake ... 23
Table 2: Test Case B – Skylake ... 23
Table 3: Test Case A – Marconi-KNL ... 24
Table 4: Test Case B – Marconi-KNL ... 24
Table 5: Test Case A – Piz Daint ... 24
Table 6: Test Case B – Piz Daint ... 24
Table 7: Test Case C – PCP prototype DAVIDE ... 25
Table 8: Test Case C – PCP prototype Frioul .. 25
Table 9: Test Case A – DEEP-ER SDV ... 25
Table 10: Test Case A – Mont-Blanc 3 Dibona ... 26
Table 11: Test Case A: Performance of Code_Saturne on the 4 CPU-based machines 27
Table 12: Test Case B: Performance of Code_Saturne on the 4 CPU-based machines 27
Table 13: Test Case A: Performance of Code_Saturne on the 3 KNL-based machines (2 OpenMP
threads per MPI task are used on Irene-KNL and Frioul and MPI only on Marconi) 27
Table 14: Test Case B: Performance of Code_Saturne on Irene-KNL (2 OpenMP threads per MPI
task) and Marconi (MPI only) .. 28
Table 15: Test Case A: Performance of Code_Saturne on the 3 extra machines (Piz Daint, 8 MPI
tasks and 2 OpenMP threads and 1 GPU per node, Dibona, 32 MPI tasks and 2 OpenMP threads
per node, DAVIDE, 16 MPI tasks and 4 OpenMP threads and 4 GPUs per node) 28
Table 16: Test Case B: Performance of Code_Saturne on Piz Daint (8 MPI tasks and 2 OpenMP
threads and 1 GPU per node) ... 28
Table 17: Test Case A: Energy consumption comparison between DAVIDE and Piz Daint, using
CPU or GPU configurations ... 30
Table 18: Test Case B: Energy consumption on Piz Daint, CPUs and GPUs 30
Table 19: Test Case A (using 24 MPI × 2 OpenMP) ... 32
Table 20: Test Case B (using 2 MPI × 24 OpenMP) ... 32
Table 21: Test Case C (using 24 MPI × 2 OpenMP) ... 32
Table 22: Test Case A (using 12 MPI × 1 OpenMP) ... 32
Table 23: Test Case B (using 12 MPI × 1 OpenMP) ... 33
Table 24: Test Case C (using 6 MPI × 2 OpenMP) ... 33
Table 25: Test Case A (using 12 MPI × 1 OpenMP) ... 33
Table 26: Test Case B (using 12 MPI × 1 OpenMP) ... 33
Table 27: Test Case C (using 6 MPI × 2 OpenMP) ... 34
Table 28: Test Case B (using 8 MPI × 8 OpenMP) ... 34
Table 29: Test Case C (using 8 MPI × 8 OpenMP) ... 34
Table 30: Test Case B (using 16 MPI × 1 OpenMP) ... 34
Table 31: Test Case C (using 16 MPI × 1 OpenMP) ... 34
Table 32: Test Case B (using 16 MPI × 1 OpenMP) ... 35
Table 33: Test Case A (using 24 MPI × 1 OpenMP) ... 35
Table 34: Test Case B (using 12 MPI × 2 OpenMP) ... 35
Table 35: Test Case C (using 12 MPI × 2 OpenMP) ... 35
Table 36: Test Case A (using 64 MPI × 1 OpenMP) ... 35
Table 37: Test Case B (using 64 MPI × 1 OpenMP) ... 35

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xii 18.04.2019

Table 38: Test Case C (using 64 MPI × 1 OpenMP) ... 36
Table 39: Small size problem computing times and speedup .. 50
Table 40: Medium size problem computing times and speedup .. 52
Table 41: Total runtime (in seconds) for benchmark Case S: Carbon nanotube 54
Table 42: Total runtime (in seconds) for benchmark Case M: Copper filament 54
Table 43: Total runtime (in seconds) for benchmark Case L: Silicon cluster 54
Table 44: Total runtime (in seconds) for benchmark Case L: Silicon cluster using a larger system
with a radius of 20Å ... 55
Table 45: Total energy consumption (in kJ) for benchmarks Case S: Carbon nanotube and Case
M: Copper filament in PRACE PCP prototypes .. 56
Table 46: GROMACS Performance on KNL systems (in ns/day units) for Test Case B:
Lignocellulose .. 58
Table 47: GROMACS Performance on systems with GPUs (in ns/day units) for Test Case B:
Lignocellulose .. 58
Table 48: GROMACS Performance on x86 systems (in ns/day units) for Test Case B:
Lignocellulose .. 59
Table 49: Performance and total energy consumption (in kJ) for GROMACS benchmarks Case B:
Lignocellulose, on PRACE PCP prototypes .. 60
Table 50: NAMD Execution Time on KNL systems (in seconds) for Test Case B: STMV.28M . 60
Table 51: NAMD Execution Time on systems with GPUs for Test Case B: STMV.28M 61
Table 52: NAMD Performance on x86 systems for Test Case B: STMV.28M 62
Table 53: Performance and total energy consumption (in kJ) for NAMD benchmark Case B:
STMV.28M, on PRACE PCP prototypes .. 62
Table 54: NEMO Test Case A performance .. 63
Table 55: NEMO Test Case B performance .. 63
Table 56: Theoretical Max Bandwidth (GB/s) ... 63
Table 57: Summary of Programming Environments ... 65
Table 58: Summary of Results from PRACE systems for full runs of the PFARM EXDIG
Benchmark (Test Case 1). Runs undertaken with one compute thread per core. 65
Table 59: Summary of Results from PRACE systems for full runs of the PFARM EXDIG
Benchmark (Test Case 2). Runs undertaken with one compute thread per core. 66
Table 60: Breakdown of timings within distinct computational stages of PFARM EXDIG for Test
Case 2 (JUWELS) .. 67
Table 61: Percentage of total runtime in the eigensolver routine DSYEVD (Test Case 2) 67
Table 62: Single node parallel eigensolver performance on CPUs (Test Case 2) 68
Table 63: Single node parallel eigensolver performance on DAVIDE with multi GPU
acceleration (Test Case 2) .. 68
Table 64: Energy Consumption comparison .. 69
Table 65: Time-to-solution of benchmark kernel part 1, given in seconds, for lattice size
V=8×64×64×64 .. 69
Table 66: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using
problem size V=96×32×32×32 .. 71
Table 67: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using
problem size V=128×64×64×64 .. 71

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xiii 18.04.2019

Table 68: Performance and energy consumption of kernel of part 2 on the PCP Prototypes using
problem size V=96×32×32×32 .. 71
Table 69: Performance Data for JUWELS ... 72
Table 70: Performance data for the Broadwell, KNL and Skylake partitions on Marconi 75
Table 71: Performance data on MareNostrum4 ... 77
Table 72: Performance data for Piz Daint .. 80
Table 73: Performance data on DAVIDE and Frioul ... 82
Table 74: Energy data for DAVIDE and Frioul ... 82
Table 75: Benchmarks for the DEEP-ER SDV .. 83
Table 76: Comparison of energy-to-solution for Piz Daint, DAVIDE and Frioul 85
Table 77: SHOC performance .. 86
Table 78: SHOC time and energy to solution .. 87
Table 79: Time to solutions for SPECFEM3D Globe on test case A .. 88
Table 80: Time to solutions for SPECFEM3D Globe on test case B .. 88
Table 81: Time to solutions for SPECFEM3D Globe on test case C using one node 88
Table 82: Time to solutions for SPECFEM3D Globe on test case C using two nodes 89
Table 83: Energy to Solution on DAVIDE and Piz Daint ... 92
Table 84: Normalised energy consumption on DAVIDE and Piz Daint 92
Table 85: TOP500 performance of PRACE Tier-0 systems .. 93
Table 86: Selected relative speed per application-dataset combination ... 94
Table 87: Green500 energy efficiency of PRACE Tier-0 systems .. 95
Table 88: Relative energy to solution on DAVIDE and Frioul in their original PCP-configuration
 .. 96
Table 89: Selected relative energy to solution measurements ... 97

References and Applicable Documents
[1] GPAW website: https://wiki.fysik.dtu.dk/gpaw/
[2] B. Joo, D. D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pamnany, V. W. Lee, P.

Dubey, and W. Watson III. Lattice QCD on Intel Xeon Phi. International Supercomputing
Conference (ISC’13), 2013

[3] R. Babbich, M. Clark, and B. Joo. Parallelizing the QUDA Library for Multi-GPU
Calculations in Lattice Quantum Chromodynamics. SC 10 (Supercomputing 2010)

[4] MILC code suite: http://www.physics.utah.edu/~detar/milc/
[5] Gray, Alan, and Kevin Stratford. A lightweight approach to performance portability with

targetDP. The International Journal of High Performance Computing Applications (2016):
1094342016682071, Also available at https://arxiv.org/abs/1609.01479

[6] SPECFEM3D_Globe GitHub repository: https://github.com/geodynamics/specfem3d_globe
[7] SPECFEM3D_Globe website: http://www.geodynamics.org/cig/software/specfem3d-globe
[8] Alya website: https://www.bsc.es/research-development/research-areas/engineering-

simulations/alya-high-performance-computational

https://wiki.fysik.dtu.dk/gpaw/
http://www.physics.utah.edu/%7Edetar/milc/
https://arxiv.org/abs/1609.01479
https://github.com/geodynamics/specfem3d_globe
http://www.geodynamics.org/cig/software/specfem3d-globe
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational
https://www.bsc.es/research-development/research-areas/engineering-simulations/alya-high-performance-computational

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xiv 18.04.2019

[9] DEISA Benchmark Suite. Note: the DEISA Benchmarking Suite website is no longer
online, but a copy can be found via the Internet Archive:
https://web.archive.org/web/20120110132601/http://www.deisa.eu/science/benchmarking

[10] UEABS, the Unified European Application Benchmark Suite. Original location on PRACE
RI website: http://www.prace-ri.eu/ueabs/. This repository is obsoleted by [12].

[11] PRACE Accelerator Benchmark Suite. Original GitLab location:
https://misterfruits.gitlab.io/ueabs/ms33.html. This repository is obsoleted by [12].

[12] UEABS, the Unified European Application Benchmark Suite. PRACE GitLab repository:
https://repository.prace-ri.eu/git/UEABS/ueabs/tree/master

[13] Alan D. Simpson, Mark Bull, and Jon Hill. Identification and Categorisation of
Applications and Initial Benchmarks Suite. PRACE-PP Deliverable D6.1, June 27, 2008.
http://www.prace-
ri.eu/IMG/pdf/Identification_and_Categorisatio_of_Applications_and_Initial_Benchmark_
Suite_final.pdf

[14] Peter Michielse, Jon Hill, Guillaume Houzeaux, Olli-Pekka Lehto, and Walter Lioen.
Report on available Performance Analysis and Benchmark Tools, Representative
Benchmark. PRACE-PP Deliverable D6.3.1. November 24, 2008. http://www.prace-
ri.eu/IMG/pdf/D6-3-1.pdf

[15] Peter Michielse, Lukas Arnold, Olli-Pekka Lehto, and Walter Lioen. Final Benchmark
Suite. PRACE-PP Deliverable D6.3.2. June 18, 2010. http://www.prace-ri.eu/IMG/pdf/D6-
3-2-extended.pdf

[16] Mark Bull, Stefanie Janetzko, Jose Carlos Sancho, and Jeroen Engelberts. Benchmarking
and Performance Modelling on Tier-0 Systems. PRACE-1IP Deliverable D7.4.2. March 26,
2012. http://www.prace-ri.eu/IMG/pdf/d7.4.2_1ip.pdf

[17] Mark Bull. Unified European Applications Benchmark Suite. PRACE-2IP Deliverable 7.4.
July 26, 2013. http://www.prace-ri.eu/IMG/pdf/d7.4_3ip.pdf

[18] Mark Bull. UEABS Benchmarking Results. PRACE-3IP Deliverable D7.3.2. February 20,
2014. http://www.prace-ri.eu/IMG/pdf/d7.3.2_3ip.pdf

[19] G. Hautreux, D. Dellis, C. Moulinec, A. Sunderland, A. Gray, A. Proeme, V. Codreanu, A.
Emerson, B. Eguzkitza, J. Strassburg, and M. Louhivuori. Description of the initial
accelerator benchmark suite. PRACE White Paper WP212. http://www.prace-
ri.eu/IMG/pdf/WP212.pdf

[20] Victor Cameo Ponz. Application performance on accelerators. PRACE-4IP Deliverable
D7.5. March 24, 2017. http://www.prace-ri.eu/IMG/pdf/D7.5_4ip.pdf

[21] Victor Cameo Ponz. Performance and energy metrics on PCP systems. PRACE-4IP
Deliverable D7.7. January 8, 2018. http://www.prace-ri.eu/IMG/pdf/D7.7_v1.2_4ip.pdf

[22] NEMO website: https://www.nemo-ocean.eu
[23] Best Practice Guide – Modern Interconnects. http://www.prace-ri.eu/best-practice-guide-

modern-interconnects
[24] Network Cray Fabric Aries:

https://www.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray
_Aries.pdf

[25] ExaNoDe Deliverable D2.5: http://exanode.eu/wp-content/uploads/2017/04/D2.5.pdf

https://web.archive.org/web/20120110132601/http:/www.deisa.eu/science/benchmarking
http://www.prace-ri.eu/ueabs/
https://misterfruits.gitlab.io/ueabs/ms33.html
https://repository.prace-ri.eu/git/UEABS/ueabs/tree/master
http://www.prace-ri.eu/IMG/pdf/Identification_and_Categorisatio_of_Applications_and_Initial_Benchmark_Suite_final.pdf
http://www.prace-ri.eu/IMG/pdf/Identification_and_Categorisatio_of_Applications_and_Initial_Benchmark_Suite_final.pdf
http://www.prace-ri.eu/IMG/pdf/Identification_and_Categorisatio_of_Applications_and_Initial_Benchmark_Suite_final.pdf
http://www.prace-ri.eu/IMG/pdf/D6-3-1.pdf
http://www.prace-ri.eu/IMG/pdf/D6-3-1.pdf
http://www.prace-ri.eu/IMG/pdf/D6-3-2-extended.pdf
http://www.prace-ri.eu/IMG/pdf/D6-3-2-extended.pdf
http://www.prace-ri.eu/IMG/pdf/d7.4.2_1ip.pdf
http://www.prace-ri.eu/IMG/pdf/d7.4_3ip.pdf
http://www.prace-ri.eu/IMG/pdf/d7.3.2_3ip.pdf
http://www.prace-ri.eu/IMG/pdf/WP212.pdf
http://www.prace-ri.eu/IMG/pdf/WP212.pdf
http://www.prace-ri.eu/IMG/pdf/D7.5_4ip.pdf
http://www.prace-ri.eu/IMG/pdf/D7.7_v1.2_4ip.pdf
https://www.nemo-ocean.eu/
http://www.prace-ri.eu/best-practice-guide-modern-interconnects
http://www.prace-ri.eu/best-practice-guide-modern-interconnects
https://www.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray_Aries.pdf
https://www.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray_Aries.pdf
http://exanode.eu/wp-content/uploads/2017/04/D2.5.pdf

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xv 18.04.2019

[26] Hazel Hen, Tier-0 system at HLRS, Germany: https://www.hlrs.de/systems/cray-xc40-
hazel-hen/

[27] Irene, Tier-0 system at CEA, France: http://www-hpc.cea.fr/en/complexe/tgcc-Irene.htm
[28] JUWELS, Tier-0 system at JSC, Germany: http://www.fz-

juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
[29] Marconi, Tier-0 system at CINECA, Italy: http://www.hpc.cineca.it/hardware/marconi
[30] MareNostrum, Tier-0 system at BSC, Spain:

https://www.bsc.es/MareNostrum/MareNostrum
[31] Piz Daint, Tier-0 system at CSCS, Switzerland: https://www.cscs.ch/computers/piz-daint/
[32] SuperMUC-NG, Tier-0 system at LRZ, Germany:

https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
[33] DAVIDE PCP prototype at CINECA, Italy:

https://www.e4company.com/en/?id=press§ion=1&page=&new=davide_supercompute
r

[34] Frioul PCP prototype at CINES, France: https://www.cines.fr/le-supercalculateur-frioul/
[35] DEEP-ER prototype SDV at JSC, Germany: https://www.deep-

projects.eu/hardware/prototypes.html
[36] Mont-Blanc 3 prototype Dibona: https://www.montblanc-project.eu/prototypes
[37] Sisu Tier-1 system at CSC, Finland: https://research.csc.fi/sisu-supercomputer
[38] GADGET website: https://wwwmpa.mpa-garching.mpg.de/gadget/
[39] Alig, C., Schartmann, M., Burkert, A., & Dolag, K., 2013, ApJ, 771, 119
[40] Springel V., Yoshida N., White S. D. M., 2001, New Astronomy, 6, 51
[41] Springel V., 2005, MNRAS, 364, 1105
[42] Nils Meyer, Peter Georg, Dirk Pleiter, Stefan Solbrig, and Tilo Wettig. SVE-enabling

Lattice QCD Codes. arXiv:1901.07294 [cs.DC]. DOI: 10.1109/CLUSTER.2018.00079.
2018 IEEE International Conference on Cluster Computing (CLUSTER), p. 623.

[43] Peter A. Boyle, Guido Cossu, Azusa Yamaguchi, and Antonin Portelli. Grid: A next
generation data parallel C++ QCD library. DOI: 10.22323/1.251.0023. PoS
LATTICE2015 (2016) 023.

[44] https://sc18.supercomputing.org/proceedings/tech_poster/tech_poster_pages/post149.html
[45] A G Sunderland, C J Noble, V M Burke and P G Burke, A Parallel R-matrix Program

PRMAT for Electron-Atom and Electron-Ion Scattering Calculations, Comput. Phys.
Commun. (CPC) 145 (2002), 311–340

[46] Stephen Booth. Technical lessons learnt from the implementation of the joint PCP for
PRACE-3IP. PRACE-3IP Deliverable D8.3.4, January 10, 2018. http://www.prace-
ri.eu/IMG/pdf/d8.3.4-3ip.pdf

[47] https://www.cp2k.org/dev:compiler_support
[48] https://www.cp2k.org/howto:compile_with_cuda
[49] https://www.cp2k.org/howto:libcusmm
[50] Cray XC Advanced Power Management Updates:

https://cug.org/proceedings/cug2018_proceedings/includes/files/pap174s2-file1.pdf
[51] Code_Saturne website: https://www.code-saturne.org/cms/

https://www.hlrs.de/systems/cray-xc40-hazel-hen/
https://www.hlrs.de/systems/cray-xc40-hazel-hen/
http://www-hpc.cea.fr/en/complexe/tgcc-Irene.htm
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUWELS/JUWELS_node.html
http://www.hpc.cineca.it/hardware/marconi
https://www.bsc.es/marenostrum/marenostrum
https://www.cscs.ch/computers/piz-daint/
https://doku.lrz.de/display/PUBLIC/SuperMUC-NG
https://www.e4company.com/en/?id=press§ion=1&page=&new=davide_supercomputer
https://www.e4company.com/en/?id=press§ion=1&page=&new=davide_supercomputer
https://www.cines.fr/le-supercalculateur-frioul/
https://www.deep-projects.eu/hardware/prototypes.html
https://www.deep-projects.eu/hardware/prototypes.html
https://www.montblanc-project.eu/prototypes
https://research.csc.fi/sisu-supercomputer
https://wwwmpa.mpa-garching.mpg.de/gadget/
https://sc18.supercomputing.org/proceedings/tech_poster/tech_poster_pages/post149.html
http://www.prace-ri.eu/IMG/pdf/d8.3.4-3ip.pdf
http://www.prace-ri.eu/IMG/pdf/d8.3.4-3ip.pdf
https://www.cp2k.org/dev:compiler_support
https://www.cp2k.org/howto:compile_with_cuda
https://www.cp2k.org/howto:libcusmm
https://cug.org/proceedings/cug2018_proceedings/includes/files/pap174s2-file1.pdf
https://www.code-saturne.org/cms/

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xvi 18.04.2019

[52] PRACE CodeVault: https://repository.prace-ri.eu/git/PRACE/CodeVault
[53] PCP Conclusion Report. PRACE. To appear April 2019.
[54] Best Practice Guide – Knights Landing. http://www.prace-ri.eu/IMG/pdf/Best-Practice-

Guide-Knights-Landing.pdf

List of Acronyms and Abbreviations
AISBL Association International Sans But Lucratif
 (legal form of the PRACE-RI)
ADMM Auxiliary Density Matrix Method
AMBER Assisted Model Building with Energy Refinement
APS Application Performance Snapshot (Intel)
ARM previously Advanced RISC Machine, originally Acorn RISC Machine
AVX Advanced Vector Extensions
BCO Benchmark Code Owner
BDW Broadwell (Intel)
BEO Bull Energy Optimizer
BLAS Basic Linear Algebra Subprograms
BXI Bull eXascale Interconnect
CAPMC Cray Advanced Platform Monitoring and Control
CFD Computational Fluid Dynamics
CG Conjugate Gradients
CHARMM Chemistry at HARvard Macromolecular Mechanics
CPU Central Processing Unit
CUDA Compute Unified Device Architecture (NVIDIA)
DAVIDE Development for an Added Value Infrastructure Designed in Europe
DBCSR Distributed Block Compressed Sparse Row
DDR4 Double Data Rate 4
DEEP Dynamical Exascale Entry Platform
DEISA Distributed European Infrastructure for Supercomputing Applications EU project

by leading national HPC centres
DFE DataFlow Engine
DFT Density Functional Theory
DFTB Density Functional based Tight Binding
DIMM Dual In-line Memory Module
DoA Description of Action (formerly known as DoW)
DoW Description of Work
DP Double Precision
DRAM Dynamic Random-Access Memory
EC European Commission
EDF Électricité de France R&D
EDR Enhanced Data Rate
ELPA Eigenvalue Solvers for Petaflop Applications
EoI Expression of Interest
FCC Face-Centred Cubic
FFT Fast Fourier Transform

https://repository.prace-ri.eu/git/PRACE/CodeVault
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Knights-Landing.pdf
http://www.prace-ri.eu/IMG/pdf/Best-Practice-Guide-Knights-Landing.pdf

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xvii 18.04.2019

FFTW Fastest Fourier Transform in the West
flop floating-point operation
FPGA Field-Programmable Gate Array
FP32 32-bit Floating-Point
FP64 64-bit Floating-Point
FWI Full Waveform Imaging
GAPW Gaussian Augmented Plane Wave method
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCC GNU Compiler Collection
Gflop/s Giga (= 109) floating point operations (usually in 64-bit, i.e. DP) per second, also

GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GNU GNU's Not Unix
GPFS General Parallel File System
GPGPU General-Purpose GPU
GPL GNU Public License
GPU Graphic Processing Unit
GPW Gaussian Plane Wave method
GROMACS GROningen MAchine for Chemical Simulations
GSL GNU Scientific Library
HBM High Bandwidth Memory
HDEEM High Definition Energy Efficiency Monitoring
HDEEMVIZ HDEEM VIZualization
HDF5 Hierarchical Data Format 5
HFI Host Fabric Interface
HPC High Performance Computing; Computing at a high performance level at any

given time; often used synonym with Supercomputing
HPL High Performance LINPACK
HSW Haswell (Intel)
HT HyperThreading
IB InfiniBand
IBM International Business Machines
IO Input/Output
IPMB Intelligent Platform Management Bus/Bridge
JUWELS Jülich Wizard for European Leadership Science (Tier-0 system)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KNC Knights Corner (Intel)
KNL Knights Landing (Intel)
LAPACK Linear Algebra PACKage
LDA Local Density Approximation
LGPL GNU Lesser General Public License
LINPACK Software library for Linear Algebra
MB Management Board (highest decision making body of the project)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MCDRAM Multi-Channel DRAM

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xviii 18.04.2019

MD Molecular Dynamics
MD5 Message-Digest 5
Mflop/s Mega (= 106) floating point operations (usually in 64-bit, i.e. DP) per second, also

MF/s
MIC Many-Integrated Core (Intel)
MILC MIMD Lattice Computation
MIMD Multiple Instruction Multiple Data
MKL Math Kernel Library (Intel)
MoU Memorandum of Understanding.
MPI Message Passing Interface
NAMD Nanoscale Molecular Dynamics
NEB Nudged Elastic Band
NEMO Nucleus for European Modelling of the Ocean
NetCDF Network Common Data Form
NFS Network File System
NIC Network Interface Controller
NVM Non-Volatile Memory
OMP OpenMP
OPA Omni-Path (Intel)
OpenACC Open Accelerators
OpenCL Open Computing Language
OpenMP Open Multi-Processing
OpenMPI Open MPI
PA Preparatory Access (to PRACE resources)
PABS PRACE Application Benchmark Suite
PAPI Performance Application Programming Interface
PCH Platform Controller Hub
PCI Peripheral Component Interconnect
PCIe PCI Express
PCP Pre-Commercial Procurement
Pflop/s Peta (= 1015) floating-point operations (usually in 64-bit, i.e. DP) per second, also

PF/s
PGI Portland Group, Inc
PLE Parallel Locator Exchange
POSIX Portable Operating-System Interface
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PRACE 2 The PRACE Research Infrastructure following the initial five year period.
pthreads POSIX threads
PWscf Plane-Wave Self-Consistent Field
RI Research Infrastructure
QCD Quantum ChromoDynamics
QE Quantum Espresso
QUDA A library for QCD on GPUs
RAM Random-Access Memory
RUR Resource Utilisation Reporting
ScaLAPACK Scalable LAPACK
SCF Self-Consistent Field method
SDV Software Development Vehicle (DEEP-ER prototype)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xix 18.04.2019

SEM Spectral-Element Method
SHOC Scalable HeterOgeneous Computing
SIMD Single Instruction Multiple Data
SKL Skylake (Intel)
SLURM Simple Linux Utility for Resource Management (batch system)
SM Streaming Multiprocessor
SMT Simultaneous MultiThreading
SPH Smoothed Particle Hydrodynamics
SSD Solid-State Drive
SSE Streaming SIMD Extensions
STMV Satellite Tobacco Mosaic Virus
SuSE Software und System-Entwicklung
SVE Scalable Vector Extension (ARM)
targetDP target Data Parallel
TB Technical Board (group of Work Package leaders)
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCO Total Cost of Ownership. Includes recurring costs (e.g. personnel, power, cooling,

maintenance) in addition to the purchase cost.
TDP Thermal Design Power
Tflop/s Tera (= 1012) floating-point operations (usually in 64-bit, i.e. DP) per second, also

TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this context the

Supercomputing Research Infrastructure would host the Tier-0 systems; national
or topical HPC centres would constitute Tier-1

TreePM Tree Particle–Mesh
UEABS Unified European Applications Benchmark Suite
VSX Vector Scalar Extension
WLM WorkLoad Manager
XIOS XML-IO-Server

List of Project Partner Acronyms
BADW-LRZ Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,

Germany (3rd Party to GCS)
BILKENT Bilkent University, Turkey (3rd Party to UYBHM)
BSC Barcelona Supercomputing Center - Centro Nacional de

Supercomputación, Spain
CaSToRC Computation-based Science and Technology Research Center, Cyprus
CCSAS Computing Centre of the Slovak Academy of Sciences, Slovakia
CEA Commissariat à l’Énergie Atomique et aux Énergies Alternatives, France

(3rd Party to GENCI)
CESGA Fundación Publica Gallega Centro Tecnológico de Supercomputación de

Galicia, Spain, (3rd Party to BSC)
CINECA CINECA Consorzio Interuniversitario, Italy
CINES Centre Informatique National de l’Enseignement Supérieur, France (3rd

Party to GENCI)
CNRS Centre National de la Recherche Scientifique, France (3rd Party to GENCI)
CSC CSC Scientific Computing Ltd., Finland

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xx 18.04.2019

CSIC Spanish Council for Scientific Research (3rd Party to BSC)
CYFRONET Academic Computing Centre CYFRONET AGH, Poland (3rd party to

PSNC)
CyI The Cyprus Institute, Cyprus
EPCC EPCC at The University of Edinburgh, UK
ETHZurich (CSCS) Eidgenössische Technische Hochschule Zürich – CSCS, Switzerland
FIS FACULTY OF INFORMATION STUDIES, Slovenia (3rd Party to

ULFME)
GCS Gauss Centre for Supercomputing e.V., Germany
GENCI Grand Équipement National de Calcul Intensif, France
GRNET Greek Research and Technology Network, Greece
INRIA Institut National de Recherche en Informatique et Automatique, France

(3rd Party to GENCI)
IST Instituto Superior Técnico, Portugal (3rd Party to UC-LCA)
IT4Innovations IT4Innovations National supercomputing centre at VŠB-Technical

University of Ostrava, Czech Republic
IUCC INTER UNIVERSITY COMPUTATION CENTRE, Israel
JUELICH Forschungszentrum Jülich GmbH, Germany
KIFÜ (NIIFI) Governmental Information Technology Development Agency, Hungary
KTH Royal Institute of Technology, Sweden (3rd Party to SNIC)
LiU Linkoping University, Sweden (3rd Party to SNIC)
NCSA NATIONAL CENTRE FOR SUPERCOMPUTING APPLICATIONS,

Bulgaria
NTNU The Norwegian University of Science and Technology, Norway (3rd Party

to SIGMA)
NUI-Galway National University of Ireland Galway, Ireland
PRACE Partnership for Advanced Computing in Europe aisbl, Belgium
PSNC Poznan Supercomputing and Networking Center, Poland
RISCSW RISC Software GmbH
RZG Max Planck Gesellschaft zur Förderung der Wissenschaften e.V.,

Germany (3rd Party to GCS)
SIGMA2 UNINETT Sigma2 AS, Norway
SNIC Swedish National Infrastructure for Computing (within the Swedish

Science Council), Sweden
STFC Science and Technology Facilities Council, UK (3rd Party to EPSRC)
SURFsara Dutch national high-performance computing and e-Science support

center, part of the SURF cooperative, Netherlands
UC-LCA Universidade de Coimbra, Laboratório de Computação Avançada,

Portugal
UCPH Københavns Universitet, Denmark
UHEM Istanbul Technical University, Ayazağa Campus, Turkey
UiO University of Oslo, Norway (3rd Party to SIGMA)
ULFME UNIVERZA V LJUBLJANI, Slovenia
UmU Umea University, Sweden (3rd Party to SNIC)
UnivEvora Universidade de Évora, Portugal (3rd Party to UC-LCA)
UPC Universitat Politècnica de Catalunya, Spain (3rd Party to BSC)
UPM/CeSViMa Madrid Supercomputing and Visualization Center, Spain (3rd Party to

BSC)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 xxi 18.04.2019

USTUTT-HLRS Universität Stuttgart – HLRS, Germany (3rd Party to GCS)
WCNS Politechnika Wrocławska, Poland (3rd Party to PSNC)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 1 18.04.2019

Executive Summary
The Unified European Application Benchmark Suite (UEABS) provides a publicly available
benchmark suite. One of the key results of this activity is the re-unification of the UEABS and the
accelerator benchmark suite so that the UEABS lives up to its Unified name again. This new release
is migrated to the PRACE GitLab server (next to the CodeVault repository). We present benchmark
results and performance analyses on PRACE Tier-0 systems, on two PRACE PCP prototypes, on
a DEEP-ER prototype, and on a Mont-Blanc 3 prototype. (If you want to select the optimal
system/architecture for a given UEABS application, please have a look at these results.)
Furthermore, we compare the energy efficiency from an application point of view of systems where
energy measurements at job level are possible. Finally, we conclude with a high-level comparison
of the benchmark systems: starting with the ubiquitous LINPACK performance; followed by both
application performance (time to solution, or speed) as well as energy efficiency (energy to
solution). For this we combine all benchmark results and derive a comparison of the overall
performance of the systems, and a comparison of the energy efficiency for the systems where we
obtained energy measurements.

The energy efficiency of the two benchmarked PCP prototypes strongly depends on the application
benchmark / data set / problem size / node count. Overall, the GPU based system (DAVIDE) is
somewhat more energy efficient than the KNL system (Frioul). If we add the GPU based Piz Daint
system to the comparison, then Piz Daint clearly is the most energy efficient system.

As expected, the optimal system/architecture also strongly depends on the application benchmark
/ data set / problem size / node count. Overall the most recent Intel Skylake systems are the most
performant, JUWELS being the fastest. For applications that can exploit GPUs, Piz Daint is most
performant. On the other end of the spectrum, the systems based on the discontinued Knights
Landing in general are least performant. The conclusion might be that LINPACK performance still
is a reasonable indicator for application performance, but most people – including the LINPACK
originators themselves – will disagree.

1 Introduction

The Unified European Application Benchmark Suite (UEABS) [12] is a set of currently 13
application codes taken from the pre-existing DEISA Benchmark Suite [9], the PRACE
Application Benchmark suite (PABS) [15], and the PRACE Accelerator Benchmark Suite [20].
The objective is providing a single benchmark suite of scalable, currently relevant and publicly
available application codes and datasets, of a size which can realistically be run on large systems,
and maintained in the future.

1.1 UEABS History and Previous Work

The PRACE benchmarking activity was started during the PRACE-PP project [13][14][15] and the
benchmark activities continued in PRACE-1IP [16]. The UEABS itself was only publicly released
(Version 1.0) by the PRACE-2IP project [17]. Benchmarking activities continued in PRACE-3IP

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 2 18.04.2019

resulting in a new release (Version 1.1) and a benchmark report [18]. In PRACE-4IP the UEABS
was updated twice (Version 1.2 and 1.3) and a separate activity on the PRACE Accelerator
Benchmark Suite was started. The Accelerator Benchmark Suite [19] was based on a subset of the
UEABS Version 1.2, where some applications were removed because of lack of accelerator
potential; and one application and a synthetic benchmark have been added. The Accelerator
Benchmark Suite was published as GitLab repository [11] and a benchmark report targeting GPUs
and Xeon Phi has been produced [20]. Finally, in the PRACE-4IP extension, a benchmark report
targeting the PCP prototypes has been produced [21].

1.2 Work Described in this Report

In the PRACE-5IP DoA we committed the following: “This task will also update and maintain the
Unified European Applications Benchmark Suite (UEABS), so that it can be used in future
procurements and to help European researchers choose systems that are appropriate for their
computational requirements. The accelerator versions of the benchmarks developed under PRACE-
4IP will be re-integrated, and we will investigate putting the benchmark suite into CodeVault1. We
will evaluate the results on PRACE systems from the standard benchmarks to the accelerated
benchmarks, compare where both are available, and will strive to identify reasons for, and patterns
in, the performance.” The original benchmark scope has been extended by including two PRACE-
3IP PCP [46] prototype systems: DAVIDE and Frioul; the Mont-Blanc 3 prototype system Dibona;
and the DEEP-ER prototype system SDV.

In May 2018, we released UEABS version 2.0: an integrated version of the accelerated and non-
accelerated version and published it on the PRACE git repository (where also CodeVault can be
found but in a separate repository). For this we reconstructed a versioned git repository from a
“flat” website representation and merged back the (UEABS Version 1.2 based) Accelerator
Benchmark Suite. In April 2019 we will release UEABS version 2.1, an updated version that
reflects the applications and datasets as used in this report.

1.3 Outline

Section 2 describes the application benchmarks, the test problems and data sets. Section 3 provides
descriptions of the benchmark systems. Section 4 presents the benchmark results per application.
Finally, in Section 5 – based on the benchmark results – a comparison is presented on the relative
performance of the benchmark systems.

1.4 Intended Audience

The UEABS can be used as one of the benchmarks in future procurements and it can help European
researchers chose systems that are appropriate for their computational requirements.

1 PRACE CodeVault [52] is an open repository containing various high-performance computing code samples. The
project aims to support self-learning of HPC programming and will be used as an Open platform for the HPC
community to share example code snippets, proof-of-concept codes and so forth.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 3 18.04.2019

2 Application Benchmarks

Currently, the UEABS is a set of 13 application codes. In the sections below, we describe the
benchmark applications, the benchmark problems and the datasets.

2.1 Alya

2.1.1 Code Description

The Alya System [8] is a Computational Mechanics code capable of solving different types of
physics, each one with its own modelisation characteristics, in a coupled way. Among the problems
it solves are: convection-diffusion reactions, incompressible flows, compressible flows, turbulence,
bi-phasic flows and free surface, excitable media, acoustics, thermal flow, quantum mechanics
(DFT) and solid mechanics (large strain).

From scratch, Alya was specially designed for massively parallel supercomputers, and the
parallelisation embraces four levels of the computer hierarchy. A substructuring technique with
MPI as the message passing library is used for distributed memory supercomputers. At the node
level, both loop and task parallelisms are considered using OpenMP as an alternative to MPI.
Dynamic load balance techniques have been introduced as well to better exploit computational
resources at the node level. At the CPU level, some kernels are also designed to enable
vectorisation. Finally, accelerators like GPU are also exploited through OpenACC pragmas or with
CUDA to further enhance the performance of the code on heterogeneous computers.

2.1.2 Test Cases

• Test Case A: A 132 million element mesh representing the flow around a sphere. It is
expected to scale up to 1500 MPI tasks.

• Test Case B: A 1056 million element mesh representing the flow around a sphere. It is
expected to scale up to 12000 MPI tasks.

• Test Case C: A 68.8 million element mesh representing the flow around a sphere. It is
expected to scale up to 750 MPI tasks.

2.2 Code_Saturne

2.2.1 Code Description

Code_Saturne [51] is open-source multi-purpose CFD software, primarily developed by EDF R&D
and maintained by them. It relies on the Finite Volume method and a collocated arrangement of
unknowns to solve the Navier-Stokes equations, for incompressible or compressible flows, laminar
or turbulent flows and non-Newtonian and Newtonian fluids. A highly parallel coupling library
(Parallel Locator Exchange - PLE) is also available in the distribution to account for other physics,
such as conjugate heat transfer and structure mechanics. For the incompressible solver, the pressure
is solved using an integrated Algebraic Multi-Grid algorithm and the scalars are computed by
conjugate gradient methods or Gauss-Seidel/Jacobi.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 4 18.04.2019

The original version of the code is written in C for pre-postprocessing, IO handling, parallelisation
handling, linear solvers and gradient computation, and Fortran 95 for most of the physics
implementation. MPI is used on distributed memory machines and OpenMP pragmas have been
added to the most costly parts of the code to handle potential shared memory. The version used in
this work (also freely available) relies also on CUDA to take advantage of potential GPU
acceleration.

The equations are solved iteratively using time-marching algorithms, and most of the time spent
during a time step is usually due to the computation of the velocity-pressure coupling, for simple
physics. For this reason, the two test cases chosen for the benchmark suite have been designed to
assess the velocity-pressure coupling computation, and rely on the same configuration, with a mesh
8 times larger for Test Case B than for Test Case A, the time step being halved to ensure a correct
Courant number.

2.2.2 Test Cases

Two test cases are dealt with, where only the mesh size has been changed. Depending on the
architecture run on and the type of physics investigated, it is expected that 10,000 (IBM
BlueGene/Q) to 25,000 cells (classical CPU-based machine) per MPI task are required to keep
good performance.

• Test Case A: A 13 million tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-
driven cavity. This case is supposed to scale up to 1,300 (resp. 520) MPI tasks for 10,000
(resp. 25,000) cells per MPI task, depending on the machine.

• Test Case B: A 111 million tetrahedral cell mesh to simulate a laminar flow in a 3-D lid-
driven cavity. This case is supposed to scale up to 11,100 (resp. 4,440) MPI tasks for 5,000
(resp. 25,000) cells per MPI task, depending on the machine.

2.3 CP2K

2.3.1 Code Description

CP2K is a quantum chemistry and solid-state physics software package that can perform atomistic
simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems.
CP2K provides a general framework for different modelling methods such as DFT using the mixed
Gaussian and plane waves approaches GPW and GAPW. Supported theory levels include DFTB,
LDA, GGA, MP2, RPA, semi-empirical methods (AM1, PM3, PM6, RM1, MNDO, ...), and
classical force fields (AMBER, CHARMM, ...). CP2K can do simulations of molecular dynamics,
metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy,
energy minimisation, and transition state optimisation using NEB or dimer method.

CP2K is written in Fortran 2008 and can be run in parallel using a combination of multi-threading,
MPI, and CUDA. All of CP2K is MPI parallelised, with some additional loops also being OpenMP
parallelised. It is therefore most important to take advantage of MPI parallelisation, however
running one MPI rank per CPU core often leads to memory shortage. At this point OpenMP threads
can be used to utilise all CPU cores without suffering an overly large memory footprint. The
optimal ratio between MPI ranks and OpenMP threads depends on the type of simulation and the

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 5 18.04.2019

system in question. CP2K supports CUDA, allowing it to offload some linear algebra operations
including sparse matrix multiplications to the GPU through its DBCSR acceleration layer. FFTs
can optionally also be offloaded to the GPU. Benefits of GPU offloading may yield improved
performance depending on the type of simulation and the system in question.

CP2K strictly requires BLAS, LAPACK and ScaLAPACK and benefits strongly from FFTW. The
application can furthermore make use of a number of further performance-enhancing and
functionality-extending libraries. For the purpose of performing the benchmarks reported here on
a range of systems CP2K was linked to libint and libxc in addition to the abovementioned strictly
required libraries and FFTW.

2.3.2 Test Cases

This section details the CP2K benchmark test cases that were run. None of the test cases make use
of large input data, so initialisation cost is minimal. Inputs consist of CP2K-format input files and
potential and basis set input files.

Test Case A: H2O-512

Ab-initio molecular dynamics simulation of liquid water using the Born-Oppenheimer approach,
via Quickstep DFT. Production quality settings for the basis sets (TZV2P) and the planewave cutoff
(280 Ry) are chosen, and the Local Density Approximation (LDA) is used for the calculation of
the Exchange-Correlation energy. The configurations were generated by classical equilibration,
and the initial guess of the electronic density is made based on Atomic Orbitals. The system
contains 512 water molecules (1536 atoms, 4096 electrons) in a 12.4 Å3 cell and MD is run for 10
steps.

Test Case B: LiH-HFX

This is a single-point energy calculation using Quickstep GAPW (Gaussian and Augmented Plane-
Waves) with hybrid Hartree-Fock exchange. It consists of a 216 atom Lithium Hydride crystal with
432 electrons in a 12.3 Å3 cell. These types of calculations are generally around one hundred times
the computational cost of a standard local DFT calculation, although this can be reduced using the
Auxiliary Density Matrix Method (ADMM). Using OpenMP is likely to be of benefit here as the
HFX implementation requires a large amount of memory to store partial integrals. By using several
threads, fewer MPI processes share the available memory on the node and thus enough memory is
available to avoid recomputing any integrals on-the-fly, improving performance.

Test Case C: H2O-DFT-LS

This is a single-point energy calculation using linear-scaling DFT. It consists of 6144 atoms in a
39 Å3 box (2048 water molecules in total). An LDA functional is used with a DZVP MOLOPT
basis set and a 300 Ry cut-off. For large systems the linear-scaling approach for solving Self-
Consistent-Field equations will be much cheaper computationally than using standard DFT and
allows scaling up to 1 million atoms for simple systems. The linear scaling cost results from the
fact that the algorithm is based on an iteration on the density matrix. The cubically-scaling
orthogonalisation step of standard Quickstep DFT using OT is avoided and the key operation is
sparse matrix-matrix multiplications, which have a number of non-zero entries that scale linearly
with system size. These are implemented efficiently in the CP2K-internal DBCSR library.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 6 18.04.2019

2.4 GADGET

2.4.1 Code Description

GADGET [38] is a cosmological, parallelised N-body and Smoothed Particle Hydrodynamics
(SPH) code [40][41] that is tailored to solve a wide range of astrophysical problems, e.g., large-
scale structure formation (formation of galaxies in the Universe), colliding and merging galaxies,
studying the dynamics of the gaseous intergalactic medium, formation of the stars and its
regulation, tidal disruption events by massive black holes. In all these types of simulations,
GADGET follows the evolution of a self-gravitating collisionless N-body system, and solves the
Euler equations by means of SPH.

The code major components are the time integration model, the tree-code module (hierarchical tree
algorithm, optionally in combination with a particle-mesh scheme for long-range gravitational
forces) to compute gravitational forces, the communication scheme for gravitational and SPH
forces, a domain decomposition strategy based on orthogonal bisection, the entropy-based
formulation of SPH (conserving energy and entropy in regions free of dissipation, while allowing
for fully adaptive smoothing length), and the TreePM functionality. Both the force computation
and the time stepping of GADGET are fully adaptive, with a dynamic range which is, in principle,
unlimited.

The code uses an explicit communication model and is parallelised with MPI. The domain
decomposition scheme ensures that the results of forces depend on the number of used
processors/cores, which is usually obtained by using orthogonal bisection in domain
decomposition. The scheme uses a Peano-Hilbert spatial filling fractal curve to become a three-
dimensional space in the one-dimensional curve. This is then simply divided into parts that define
the different domains. This scheme has several advantages, such as the fact that points that are
close in the one-dimensional curve usually are close in the three-dimensional space. For some code
parts, GADGET-3 can also use either Pthreads or OpenMP for a hybrid MPI/shared-memory
parallelisation.

The latter is important to overcome the slowdown the overall performance of the code in
calculations that put a great stress on the domain decomposition, e.g., the case of extreme high
particle velocities in the vicinity of black holes (see, e.g., [39]). After a few iterations, particle
properties need to be communicated to other domains, which could reside on non-local CPUs. This
strongly increased need for communication slows down the overall performance. The hybrid
OpenMP-MPI implementation in GADGET helps to overcome this problem by reducing the
number of MPI tasks to the number of physical CPUs on each compute node and for every MPI
task spawning additional OpenMP tasks corresponding to the number of cores on each of the CPUs.
With this approach, a larger number of particles can be processed locally without the need of MPI
communication. This can have an effect up to a factor of 4 in performance over the standard MPI
implementation [39].

The code can in principle be started using an arbitrary number of processors, but the
communication algorithms will be most efficient for powers of 2. It is also possible to use a single
processor only, in which case the code behaves like a serial code, except that GADGET will still

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 7 18.04.2019

go through some of the overhead induced by the parallelisation algorithms, so the code will not
quite reach the same performance as an optimal serial solution in this case.

GADGET, as well as the included initial conditions generator N-GENIC (after the initial conditions
are generated they are folded into GADGET), is written in C and requires the open-source GSL
(GNU Scientific Library, which is needed for a few cosmological integrations at start-up, and for
random-number generation), FFTW (Fastest Fourier Transform in the West; It is only needed for
simulations that use the TreePM algorithm. Note that the MPI-capable version 2.x of FFTW is
required, and that FFTW needs to be explicitly compiled with parallel support enabled), and HDF5
(Hierarchical Data Format ver. 5; GADGET can be compiled without this library, but then the
HDF5 format is not supported) libraries.

The code originally developed by Volker Springel was first publicly released in 2000 (GADGET-1
and GADGET-1.1, the latter corrected a bug in the forcetree.c file) was followed by GADGET-2
(2005), and later GADGET-3. Version 4 is expected to be released during 2019.

2.4.2 Test Cases

Three test cases are considered in order to determine weak and strong scaling of the GADGET
code by using a simulation of a cosmological structure formation in a periodic box with adiabatic
gas physics. The cosmological density field is modelled with dark matter and gas. The initial
conditions of the simulations are generated by the N-GenIC code running in parallel using 8, 128,
and 1024 cores for the test cases A, B, and C, respectively.

Test Case A: Small size problem with 2×1283 particles calculated with 1 through 256 cores. The
initial conditions for the same number of particles have a total size of 65 MB, and the total peak
memory needed is ~2.2 GB.

Test Case B: Medium size problem with 2×5123 particles calculated with 64 through 2048 cores.
The initial conditions (with 2×5123 particles) have a total size of 4.1 GB, and the total peak memory
need is ~140 GB.

Test Case C: Large size problem with 2×20483 particles calculated with 64 through 2048 cores.
The initial conditions (with 2×5123 particles) have a total size of 257 GB, and the total peak
memory needed is ~8.8 TB.

2.5 GPAW

2.5.1 Code Description

GPAW [1] is a density-functional theory (DFT) program for ab initio electronic structure
calculations using the projector augmented wave method. It uses a uniform real-space grid
representation of the electronic wave functions that allows for excellent computational scalability
and systematic converge properties.

GPAW is written mostly in Python, but includes also computational kernels written in C as well as
leveraging external libraries such as NumPy, BLAS and ScaLAPACK. Parallelisation is based on

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 8 18.04.2019

message-passing using MPI with no support for multithreading. Development branches for
GPGPUs and MICs include support for offloading to accelerators using either CUDA or
pyMIC/libxsteam, respectively. GPAW is freely available under the GPL license.

2.5.2 Test Cases

Case S: Carbon nanotube

A ground state calculation for a carbon nanotube in vacuum. By default, uses a 6-6-10 nanotube
with 240 atoms (freely adjustable) and serial LAPACK with an option to use ScaLAPACK.
Expected to scale up to 10 nodes and/or 100 MPI tasks.

Case M: Copper filament

A ground state calculation for a copper filament in vacuum. By default, uses a 2×2×3 FCC lattice
with 71 atoms (freely adjustable) and ScaLAPACK for parallelisation. Expected to scale up to 100
nodes and/or 1000 MPI tasks.

Case L: Silicon cluster

A ground state calculation for a silicon cluster in vacuum. By default, the cluster has a radius of
15Å (freely adjustable) and consists of 702 atoms, and ScaLAPACK is used for parallelisation.
Expected to scale up to 1000 nodes and/or 10000 MPI tasks.

2.6 GROMACS

2.6.1 Code Description

GROMACS is a versatile package to perform molecular dynamics, i.e. simulate the Newtonian
equations of motion for systems with hundreds to millions of particles. It is primarily designed for
biochemical molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded
interactions, but since GROMACS is extremely fast at calculating the non-bonded interactions (that
usually dominate simulations) many groups are also using it for research on non-biological
systems, e.g. polymers. GROMACS supports all the usual algorithms you expect from a modern
molecular dynamics implementation, but there are also quite a few features that make it stand out
from the competition.

GROMACS provides extremely high performance compared to all other programs. A lot of
algorithmic optimisations have been introduced in the code. In recent versions of GROMACS, on
almost all common computing platforms, the innermost loops are written in C using intrinsic
functions that the compiler transforms to SIMD machine instructions, to utilise the available
instruction-level parallelism. These kernels are available in either single or double precision, and
in support all the different kinds of SIMD support found in x86-family (and other) processors. It is
capable of hybrid parallelisation i.e. both MPI and OpenMP and supports offloading to accelerators
using CUDA.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 9 18.04.2019

GROMACS is Free Software, available under the GNU Lesser General Public License (LGPL),
version 2.1.

2.6.2 Test Cases

• Test Case A: GluCl Ion Channel
The ion channel system is the membrane protein GluCl, which is a pentameric chloride
channel embedded in a lipid bilayer. The GluCl ion channel was embedded in a DOPC
membrane and solvated in TIP3P water. This system contains 142k atoms, and is a quite
challenging parallelisation case due to the small size. However, it is likely one of the most
wanted target sizes for biomolecular simulations due to the importance of these proteins for
pharmaceutical applications. It is particularly challenging due to a highly inhomogeneous
and anisotropic environment in the membrane, which poses hard challenges for load
balancing with domain decomposition. This test case was used as the “Small” test case in
previous PRACE-2IP-4IP projects. It is reported to scale efficiently up to 1000+ cores on
x86 based systems.

• Test Case B: Lignocellulose
A model of cellulose and lignocellulosic biomass in an aqueous solution. This system of
3.3 million atoms is inhomogeneous. This system uses reaction-field electrostatics instead
of PME and therefore scales well on x86. This test case was used as the “Large” test case
in previous PRACE-2IP-4IP projects. It is reported in previous PRACE projects to scale
efficiently up to 10000+ x86 cores.

2.7 NAMD

2.7.1 Code Description

NAMD is a widely used molecular dynamics application designed to simulate bio-molecular
systems on a wide variety of compute platforms. NAMD is developed by the “Theoretical and
Computational Biophysics Group” at the University of Illinois at Urbana Champaign. In the design
of NAMD particular emphasis has been placed on scalability when utilising a large number of
processors. The application can read a wide variety of different file formats, for example force
fields, protein structures, which are commonly used in bio-molecular science. A NAMD license
can be applied for on the developer’s website free of charge. Once the license has been obtained,
binaries for a number of platforms and the source can be downloaded from the website.
Deployment areas of NAMD include pharmaceutical research by academic and industrial users.
NAMD is particularly suitable when the interaction between a number of proteins or between
proteins and other chemical substances is of interest. Typical examples are vaccine research and
transport processes through cell membrane proteins. NAMD is written in C++ and parallelised
using Charm++ parallel objects, which are implemented on top of MPI, supporting both pure MPI
and hybrid parallelisation. Offloading for accelerators is implemented for both GPU and MIC (Intel
Xeon Phi).

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 10 18.04.2019

2.7.2 Test Cases

The datasets are based on the original “Satellite Tobacco Mosaic Virus (STMV)” dataset from the
official NAMD site. The memory optimised build of the package and data sets are used in
benchmarking. Data are converted to the appropriate binary format used by the memory optimised
build.

• Test Case A: STMV.8M

This is a 2×2×2 replication of the original STMV dataset from the official NAMD site. The
system contains roughly 8 million atoms. This data set scales efficiently up to 1000 x86
cores.

• Test Case B: STMV.28M

This is a 3×3×3 replication of the original STMV dataset from the official NAMD site,
created during PRACE-2IP project. The system contains roughly 28 million atoms and is
expected to scale efficiently up to few tens of thousands x86 cores.

2.8 NEMO

2.8.1 Code Description

NEMO (Nucleus for European Modelling of the Ocean) [22] is a mathematical modelling
framework for research activities and prediction services in ocean and climate sciences developed
by a European consortium. It is intended to be a tool for studying the ocean and its interaction with
the other components of the earth climate system over a large number of space and time scales. It
comprises of the core engines namely OPA (ocean dynamics and thermodynamics), SI3 (sea ice
dynamics and thermodynamics), TOP (oceanic tracers) and PISCES (biogeochemical process).

Prognostic variables in NEMO are the three-dimensional velocity field, a linear or non-linear sea
surface height, the temperature and the salinity. In the horizontal direction, the model uses a
curvilinear orthogonal grid and in the vertical direction, a full or partial step z-coordinate, or s-
coordinate, or a mixture of the two. The distribution of variables is a three-dimensional Arakawa
C-type grid for most of the cases.

The model is implemented in Fortran 90, with pre-processing (C-pre-processor). It is optimised for
vector computers and parallelised by domain decomposition with MPI. It supports modern C/C++
and Fortran compilers. All input and output is done with third party software called XIOS with a
dependency on NetCDF (Network Common Data Format) and HDF5. It is highly scalable and a
perfect application for measuring supercomputing performances in terms of compute capacity,
memory subsystem, I/O and interconnect performance.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 11 18.04.2019

2.8.2 Test Cases

The GYRE configuration has been built to model the seasonal cycle of the double gyre box model.
It consists of an idealised domain over which a seasonal forcing is applied. This allows for studying
a large number of interactions and their combined contribution to large scale circulation.

The domain geometry is rectangular bounded by vertical walls and flat bottom. The configuration
is meant to represent the idealised North Atlantic or North Pacific basin. The circulation is forced
by analytical profiles of wind and buoyancy fluxes. The wind stress is zonal and its curl changes
sign at 22 and 36. It forces a subpolar gyre in the north, a subtropical gyre in the wider part of the
domain and a small recirculation gyre in the southern corner. The net heat flux takes the form of a
restoring toward a zonal apparent air temperature profile.

A portion of the net heat flux which comes from the solar radiation is allowed to penetrate within
the water column. The fresh water flux is also prescribed and varies zonally. It is determined such
that, at each time step, the basin-integrated flux is zero.

The basin is initialised at rest with vertical profiles of temperature and salinity uniformity applied
to the whole domain. The GYRE configuration is set through the namelist_cfg file. The horizontal
resolution is determined by setting jp_cfg as follows:

Jpiglo = 30 × jp_cfg + 2

Jpjglo = 20 × jp_cfg + 2

In this configuration, we use a default value of 30 ocean levels, depicted by jpk=31. The GYRE
configuration is an ideal case for benchmark tests as it is very simple to increase the resolution and
perform both weak and strong scalability experiment using the same input files. We use two
configurations as follows:

Test Case A:

• jp_cfg = 128 suitable up to 1000 cores
• Number of Days: 20
• Number of Time steps: 1440
• Time step size: 20 mins
• Number of seconds per time step: 1200

We performed scalability test on 512 cores and 1024 cores for test case A.

Test Case B:

• jp_cfg = 256 suitable up to 20,000 cores.
• Number of Days (real): 80
• Number of time step: 4320
• Time step size(real): 20 mins
• Number of seconds per time step: 1200

We performed scalability test for 4096 cores, 8192 cores and 16384 cores for test case B.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 12 18.04.2019

Both these test cases can give us quite good understanding of node performance and interconnect
behaviour. We switch off the generation of mesh files by setting the flag nn_mesh = 0 in the
namelist_ref file. Also using_server = false is defined in io_server file.

We report the performance in step time which is the total computational time averaged over the
number of time steps for different test cases. This helps us to compare systems in a standard manner
across all combinations of system architectures. The other main reason for reporting time per
computational time step is to make sure that results are more reproducible and comparable.

Since NEMO supports both weak and strong scalability, test case A and test case B both can be
scaled down to run on smaller number of processors while keeping the memory per processor
constant achieving similar results for step time. To measure the step time, we inserted a patch which
includes the MPI_wtime() functional call in nemogcn.f90 file for each step which also cumulatively
adds the step time until the second last step. We then divide the total cumulative time by the number
of time steps to average out any overhead.

2.9 PFARM

2.9.1 Code Description

PFARM is part of a suite of programs based on the ‘R-matrix’ ab-initio approach to the variational
solution of the many-electron Schrödinger equation for electron-atom and electron-ion scattering
[45]. The package has been used to calculate electron collision data for astrophysical applications
(such as: the interstellar medium, planetary atmospheres) with, for example, various ions of Fe and
Ni and neutral O, plus other applications such as plasma modelling and fusion reactor impurities.
The code has recently been adapted to form a compatible interface with the UKRmol suite of codes
for electron (positron) molecule collisions thus enabling large-scale parallel outer-region
calculations for molecular systems as well as atomic systems.

In the R-matrix approach, configuration space is partitioned into Internal, External and Asymptotic
regions and the calculation is adapted accordingly for each region (Figure 1). Inner region
calculations use a separate program. In order to enable efficient computation, the External Region
calculation takes place in two distinct stages, named EXDIG and EXAS, with intermediate files
linking the two.

EXDIG is dominated by the assembly of sector Hamiltonian matrices and their subsequent
eigensolutions, with full sets of both eigenvalues and eigenvectors required. The properties of the
sector Hamiltonian matrices are dense, real, and symmetric. For electron-atom or electron-ion
calculations (e.g. Test Case 1), a very fine energy mesh is required at the lower end of the energy
range in order to resolve clustered Rydberg resonances converging to all thresholds. This
necessitates a large number of Legendre basis functions in the sector Hamiltonian leading to
relatively large matrix sizes with closely-coupled eigenvalues. However, this level of accuracy is
computationally wasteful for scattering energies at the mid-to-higher end of the energy range. To
resolve this problem the external region is configured twice within EXDIG, firstly for the FINE
mesh (fewer, larger matrices) and then a COARSE mesh (more, smaller matrices). Therefore, two
series of sector calculations take place within the same run. Matrix sizes are constant with each

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 13 18.04.2019

mesh. Electron-molecule calculations (e.g. Test Case 2) do not produce such fine resonances and
therefore require only a single mesh.

EXAS propagates scattering energies across the external region configuration space and uses a
combined functional/domain decomposition approach where good load-balancing is essential to
maintain efficient parallel performance. Each of the main stages in the calculation is written in
Fortran 2003, is parallelised using MPI and is designed to take advantage of highly optimised,
numerical library routines. Hybrid MPI / OpenMP parallelisation has also been introduced into the
code via shared memory enabled numerical library kernels. Given the high computation, memory
and storage load, EXDIG is chosen here as the PFARM benchmark application code.

The MPI/OpenMP version of EXDIG employs a high-level MPI parallelisation, which assigns the
complete calculation of each sector (or sub-region) to an MPI task – a ‘sector MPI task’. The sector
matrix assembly and eigensolution is undertaken by each individual sector MPI task. Highly
optimised platform-specific numerical libraries employing parallel threads, such as Intel MKL,
Cray Libsci and ARM Performance Libraries are used to optimise the eigensolutions of the sector
Hamiltonian matrices. Given the required full set of closely-coupled eigenpairs the eigensolver
routine DSYEVD is favoured, which employs a divide-and-conquer algorithm. In this model, the
maximum number of MPI tasks is equivalent to the number of sectors defined. With 1 MPI task
per node, the number of OpenMP threads is usually set to the number of cores in a node.

Accelerator-based implementations have been implemented for EXDIG. The GPU-enabled version
of EXDIG uses the MAGMA numerical library routine MAGMA_DSYEVD to employ multiple
GPUs per node for the eigensolution. The Xeon Phi-enabled version of EXDIG uses a machine-
optimised version of Intel MKL, akin to the CPU version.

A fully distributed-data version using MPI with ScaLAPACK/ELPA routines is also available
(though not benchmarked here). This version is suitable for very large cases, where memory within
a node is insufficient.

Given that the overall runtime is dominated by calls to Dense Linear Algebra routines, PFARM
performance usually attains a relatively high fraction of the peak performance of the architecture.

Figure 1: Partitioning of Configuration Space in PFARM

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 14 18.04.2019

2.9.2 Test Cases

External region R-matrix propagations take place over the outer partition of configuration space,
including the region where long-range potentials remain important. The length of this region is
determined from the user input and the program decides upon the best strategy for dividing this
space into multiple sub-regions (or sectors). Generally, a choice of larger sector lengths requires
the application of larger numbers of Legendre basis functions (and therefore larger Hamiltonian
matrices) in order to maintain accuracy across the sector and vice-versa. Memory limits on the
target hardware are also an input parameter that is used for determining a preferred configuration.

Test Case 1 (Atomic)

This dataset is an electron-atom scattering case with 1181 channels calculating electron scattering
with FeIII. A very fine energy mesh is required at the lower end of the energy range in order to
resolve multiple Rydberg resonances. The relevant computational characteristics for this problem
are:

• FINE mesh calculation: 16 sectors are defined with 22 Legendre functions in the sector
Hamiltonian assembly, leading to sector matrices of dimension 25982.

• COARSE mesh calculation: 16 sectors are defined with 10 Legendre functions in the sector
Hamiltonian assembly, leading to sector matrices of dimension 11810.

Test Case 2 (Molecular)

This dataset is an electron-molecule scattering case with 1361 channels calculating electron
scattering with Methane. No fine mesh is required, so a single mesh is defined. The relevant
computational characteristics of this problem are:

• SINGLE mesh calculation: 64 sectors are defined with 10 Legendre functions in the sector
Hamiltonian assembly, leading to sector matrices of dimension 13610.

Due to the greater number of sectors in Test Case 2, this dataset will scale to a higher number of
nodes.

2.10 QCD

2.10.1 Code Description

The QCD benchmark is, unlike the other benchmarks in the PRACE application benchmark suite,
not a full application but a set of 5 kernels which are representative of some of the most compute-
intensive parts of QCD calculations.

The benchmark kernels of the QCD UEABS are based on codes widely used by the lattice QCD
community. Namely, the 5 different QCD kernels in UEABS, taken from software packages of
major European QCD collaborations, were extended in the PRACE-4IP project to include kernels
capable of using accelerators. In this deliverable, we report on performance results obtained from
“Kernel E” of the non-accelerated QCD UEABS kernels, which we will denote here as “part 1”, as
well as the accelerated kernels added during PRACE-4IP, which we will denote as “part 2”. Kernel
E is extracted from the MILC code suite (cf. [4]). The performance-portable targetDP model has

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 15 18.04.2019

been used to allow the benchmark to utilise NVIDIA GPUs, Intel Xeon Phi manycore CPUs, and
traditional multi-core CPUs. The use of MPI (in conjunction with targetDP) allows multiple nodes
to be used in parallel (cf. [5]). Part 2 includes kernels from the library QPhiX[2], optimised for
Intel architectures such as Skylake and KNL Xeon Phi cards, and QUDA[3], for NVIDIA GPUs.
In addition, we use the software package GRID[42][43] for obtaining performance result on the
Mont-Blanc 3 system Dibona, making use of its ARM optimised kernel.

In all cases, the benchmark kernels repeatedly apply the so-called Wilson Dirac operator on an
iteratively updated vector. For all cases, with the exception of GRID, these repeated operator
applications are carried out within a conjugate gradient (CG) method implemented in double
precision, i.e. an iterative Krylov subspace solver, which apart from the operator application
includes BLAS-like linear algebra operations and global reductions. For the case of GRID, the
benchmark kernel used includes only the operator application, i.e. the other linear algebra
operations and reductions are not included. The Wilson Dirac operator represents a discrete, 4-
dimensional covariant derivative, defined on a regular 4-dimensional Cartesian grid. In a parallel
implementation, the lattice volume is decomposed into 4-dimensional sub-domains, using one MPI
process per sub-domain. As in any parallel implementation of such stencil operations, the
application of the operator on grid-points of the sub-domain boundary requires information from
the nearest neighbouring processes. This nearest-neighbour communication, along with a global
reduction for the residual required in iterative solvers, is the most frequent communication required
in any lattice QCD application, which is of the order of once every millisecond.

2.10.2 Test Cases
We perform strong scaling tests of the benchmark kernels using small to moderate problem sizes,
namely V=8×64×64×64 grid points for part 1 and V=96×32×32×32 and V=128×64×64×64 grid
points for part 2. The former two fit on typical small HPC systems, while the later problem size is
representative of current state-of-the-art lattice simulations and can be scaled up to O(1000) of
nodes.

2.11 Quantum Espresso

2.11.1 Code Description

Quantum Espresso (QE) is an integrated suite of open-source computer codes for electronic-
structure calculations and materials modelling at the nanoscale. It is based on density-functional
theory, plane waves, and pseudopotentials. For the benchmarking activity we opted to test the most
commonly used package in the suite, PWscf, which performs plane wave self-consistent field
calculations (e.g. for calculating the ground state energy or structure optimisations).

The program has been written mainly in Fortran 90, and parallelised with both MPI and OpenMP
in a sophisticated multiple communicator scheme. The result is a highly optimised application
where the performance is strongly dictated by the linear algebra implementation. Memory
requirements are directly related to the input size while the I/O load is usually negligible.

For the CPU-based calculations we used versions 6.x, with x=1–3, depending on availability on
the host architecture. The differences between these minor versions are mainly functional
improvements or bugfixes so we do not expect significant performance variations. For the GPU

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 16 18.04.2019

architectures, we used the 6.3 CUDA Fortran version recently developed by F. Spiga. For those
systems where QE was not available, or not present at a sufficiently high version, the package was
compiled from the source code.

2.11.2 Test Cases

Small

The small dataset is based on a standard benchmark called AUSURF and consists of the
optimisation of a surface composed of 112 gold atoms. The optimisation threshold is set such that
convergence is normally achieved in exactly 21 iterations. On most x86 systems the benchmark
scales up to about 200 MPI tasks. Notice that since the structure presents 2 k-points the QE -npool
parameter should be set to 2. We did not use OpenMP threads for this input, except for the GPU
runs.

Large

The large benchmark is based on a structure of tantalum oxide and is labelled as TA2O5. Like
AUSURF this also performs a geometry optimisation but CPU and memory requirements are much
higher. For this reason, we also used OpenMP threads. The system exhibits 26 k-points so the -
npool parameter should be 13 or 26 or multiples thereof.

2.12 SHOC

2.12.1 Code Description

The Benchmark Suite also includes a series of synthetic benchmarks. For this purpose, we choose
the Scalable HeterOgeneous Computing (SHOC) benchmark suite, augmented with a series of
benchmark examples developed internally. SHOC is a collection of benchmark programs testing
the performance and stability of systems using computing devices with non-traditional
architectures for general purpose computing. Its initial focus is on systems containing GPU and
multi-core processors, and on the OpenCL programming standard, but CUDA and OpenACC
versions were added. Moreover, a subset of the benchmarks is optimised for the Intel Xeon Phi
coprocessor.

The SHOC benchmark suite currently contains benchmark programs categorised by complexity.
Some measure low-level ‘feeds and speeds’ behaviour (Level 0), some measure the performance
of a higher-level operation such as a Fast Fourier Transform (FFT) (Level 1), and the others
measure real application kernels (Level 2).

The SHOC benchmark suite has been selected to evaluate the performance of accelerators (GPUs)
on synthetic benchmarks, mostly because SHOC provides CUDA/OpenCL/Offload/OpenACC
variants of the benchmarks. This allowed us to evaluate NVIDIA GPUs (with
CUDA/OpenCL/OpenACC) and Intel Xeon Phi KNC (with both Offload and OpenCL). However,
on the latest Xeon Phi processor (codenamed KNL) none of these 4 models is supported. Thus,
benchmarks on the KNL architecture cannot be run at this point, and there isn't any news of Intel
supporting OpenCL on the KNL.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 17 18.04.2019

Code implementation description

Offloading for accelerators is implemented through CUDA and OpenCL for GPU and through
OpenMP for MIC (Intel Xeon Phi). For selected benchmarks OpenACC implementations are
provided for GPU.

SHOC is written in C++ and is open-source and freely available.

2.12.2 Test Cases

The benchmarks contained in SHOC currently feature 4 different sizes for increasingly large
systems. The size convention is as follows:

1. CPU / debugging

2. Mobile/integrated GPU

3. Discrete GPU (e.g. GeForce or Radeon series)

4. HPC-focused or large memory GPU (e.g. Tesla or FireStream Series)

2.13 SPECFEM3D

2.13.1 Code Description

The software package SPECFEM3D_GLOBE [7] simulates three-dimensional global and regional
seismic wave propagation and performs full waveform imaging (FWI) or adjoint tomography based
upon the spectral-element method (SEM). The SEM is a continuous Galerkin technique, which can
easily be made discontinuous; it is then close to a particular case of the discontinuous Galerkin
technique, with optimised efficiency because of its tensorised basis functions. In particular, it can
accurately handle very distorted mesh elements. Effects due to lateral variations in compressional-
wave speed, shear-wave speed, density, a 3D crustal model, ellipticity, topography and bathymetry,
the oceans, rotation, and self-gravitation are included. The package can accommodate full 21-
parameter anisotropy as well as lateral variations in attenuation. Adjoint capabilities and finite-
frequency kernel simulations are also included.

It has very good accuracy and convergence properties. It is also very well suited to parallel
implementation on very large supercomputers as well as on clusters with GPU accelerating
graphics cards. All SPECFEM3D_GLOBE software is written in Fortran 2003 with full portability
in mind, and conforms strictly to the Fortran 2003 standard. It uses no obsolete or obsolescent
features of Fortran. The package uses parallel programming based upon the Message Passing
Interface (MPI). The package includes support for GPU graphics card acceleration and also
supports OpenCL.

2.13.2 Test Cases

Test Case A is designed to run on Tier-1 sized systems (up to around 1,000 x86 cores, or
equivalent), Test Case B is designed to run on Tier-0 sized systems (up to around 10,000 x86 cores,

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 18 18.04.2019

or equivalent) and finally the test case C is designed to run on PCP prototypes (up to around 100
cores, or equivalent).

The test cases simulate the earthquake of June 1994 in Northern Bolivia at a global scale with the
global shear-wave speed model named s362ani. The solver calculates seismograms for 129
stations, and simulations are run for a record length of 3 minutes 30 for test case A, 10 minutes for
test case B and one minute for test case C.

The different test cases correspond to different meshes of the earth. The size of the mesh is
determined by a combination of following variables: NCHUNKS, the number of chunks in the
cubed sphere (6 for global simulations), NPROC_XI, the number of processors or slices along one
chunk of the cubed sphere and NEX_XI, the number of spectral elements along one side of a chunk
in the cubed sphere. These three variables give us the number of degrees of freedom of the mesh
and determine the amount of memory needed per core. The SPECFEM3D solver must be
recompiled each time we change the mesh size because the solver uses a static loop size and the
compilers know the size of all loops only at the time of compilation and can therefore optimise
them efficiently.

Test case A runs with 96 MPI tasks using hybrid parallelisation (MPI+OpenMP or
MPI+OpenMP+CUDA depending on the system tested) and has the following mesh
characteristics: NCHUNKS=6, NPROC_XI=4 and NEX_XI=384.

Test Case B runs with 1536 MPI tasks using hybrid parallelisation and has the following mesh
characteristics: NCHUNKS=6, NPROC_XI=16 and NEX_XI=384.

Test Case C B runs with 6 MPI tasks using hybrid parallelisation and has the following mesh
characteristics: NCHUNKS=6, NPROC_XI=1 and NEX_XI=64.

3 Benchmark Systems

3.1 Tier-0 systems

PRACE hosting members Tier-0 systems:

3.1.1 Hazel Hen

Hazel Hen [26] is the Tier-0 system hosted by HLRS, Germany. Hazel Hen is a Cray XC40 system
composed of 7712 compute nodes with a total of 185,088 Intel Haswell E5-2680 v3 compute cores.
Hazel Hen has an Aries [23] interconnect and features 965 TB of Main Memory and a total of 11
PB of storage. The peak performance is 7.42 Pflop/s.

3.1.2 Irene

Irene (Joliot-Curie computer) [27] is the Tier-0 system hosted by CEA, France. Irene is a Bull
Sequana X1000 supercomputer, and has 2 compute partitions:

• Irene SKL:

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 19 18.04.2019

o 1,656 Intel Xeon Platinum 8168 (Skylake) dual processors nodes @ 2.7 GHz, 24
cores/CPU,

o 79,488 compute cores for 6.86 Pflop/s peak performance,
o 192 GB of DDR4 memory / node,
o InfiniBand EDR interconnect.

• Irene KNL:
o 666 many cores Intel Xeon Phi 7250 (Knights Landing) nodes @ 1.4 GHz, 68

cores/CPU,
o 45,288 compute cores for 2 Pflop/s peak performance,
o 96 GB DDR4 memory/node + 16 GB MCDRAM memory/node,
o Bull eXascale Interconnect (BXI).

3.1.3 JUWELS

JUWELS, the Jülich Wizard for European Leadership Science [28], is the Tier-0 system hosted by
the Jülich Supercomputing Centre, Germany. JUWELS is an Atos Bull Sequana X1000 system
with dual 24-core Intel Xeon Platinum 8168 (Skylake) CPUs @ 2.7 GHz and an EDR-InfiniBand.
The peak performance is 9.89 Pflop/s.

3.1.4 Marconi

Marconi [29] is the Tier-0 system, co-designed by CINECA and based on the Lenovo NeXtScale
platform, which replaced the previous IBM BlueGene/Q system (Fermi) in June 2016. The
supercomputer has been upgraded by adding new partitions with the result that as of March 2019
there are two partitions:

1. A2 containing 3,600 nodes with 1 × 68-cores Intel Xeon Phi 7250 (Knights Landing) @
1.4 GHz processor per node

2. A3 composed of ca. 3,000 nodes with 2 × 24-cores Intel Xeon Platinum 8160 @ 2.1 GHz
(Skylake) processors per node.

The A2 partition, available as part of CINECA’s PRACE Tier-0 offer, has a peak performance of
11 Pflop/s while the A3 partition has a peak performance of ca. 8 Pflop/s. The network fabric is
based on the Intel Omni-Path architecture while data storage is provided by the IBM Spectrum
Scale™ (GPFS) file system.

3.1.5 MareNostrum4

MareNostrum4 [30] is the Tier-0 system hosted by BSC, Spain. It is based on Intel Xeon Platinum
processors from the Skylake generation. It is a Lenovo system composed of SD530 Compute
Racks, an Intel Omni-Path high performance network interconnect and running SuSE Linux
Enterprise Server as operating system. Its current LINPACK Rmax Performance is 6.2272 Pflop/s.

This general-purpose block consists of 48 racks housing 3456 nodes with a grand total of 165,888
processor cores and 390 TB of main memory. Compute nodes are equipped with:

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 20 18.04.2019

• 2 sockets Intel Xeon Platinum 8160 (Skylake) CPU with 24 cores each @ 2.10 GHz for a
total of 48 cores per node; L1d 32 kB; L1i cache 32 kB; L2 cache 1024 kB; L3 cache
33792 kB

• 96 GB of main memory 1.880 GB/core (216 nodes high memory, 10368 cores with 7.928
GB/core)

• 100 Gbit/s Intel Omni-Path HFI Silicon 100 Series PCI-E adapter (in a full fat tree
topology)

• 10 Gbit Ethernet
• 200 GB local SSD available as temporary storage during jobs

3.1.6 Piz Daint

Piz Daint [31] is the Tier-0 system hosted by CSCS, Switzerland. Piz Daint is a Cray XC40/XC50
system:

• 5704 XC50 nodes with one Intel Xeon E5-2690 v3 (Haswell) @ 2.60 GHz (12 cores, 64 GB
RAM) and one NVIDIA Tesla P100 (16 GB)

• 1813 XC40 nodes with two Intel Xeon E5-2695 v4 (Broadwell) @ 2.10 GHz (2 × 18 cores,
64/128 GB RAM).

The system has an Aries interconnect using a Dragonfly topology.

Cray XC40/ XC50 has advanced power monitoring and control features enabled on the compute
blades. This helps system administrators and researchers involved in advanced power monitoring,
power aware computing, and energy efficient computing. All blades developed for Cray XC
platform supports out of band collection of energy statistics by default at 1 Hz.

Node level, cabinet level and system level energy data are exposed via Cray advanced platform
monitoring and control (CAPMC) to the system workload manager (WLM). The additional or
optional way of collecting energy statistics is through pm counters located on
“/sys/cray/PM_COUNTERS” path. Cray supports resource utilisation reporting (RUR) and PAPI
(Performance application performance interface) [50].

Node level power capping on Cray XC50 blade supporting Intel Xeon scalable processors utilises
Intel node manager firmware running on the platform controller hub (PCH). Cray firmware
communicates with the Intel firmware over an Intelligent Platform Management Bus (IPMB). The
implemented power capping utilises the Intel Running Average Power limit.

Additional references for Cray’s energy monitoring and documentation can be found in [50].

3.1.7 SuperMUC-NG

SuperMUC-NG [32] is the Tier-0 system hosted by LRZ, Germany. SuperMUC-NG is a Lenovo
system:

• 6336 Thin compute nodes each with 48 cores Intel Xeon Platinum 8174 (Skylake) @ 3.1
GHz and 96 GB memory

• 144 Fat compute node each with 48 cores Intel Xeon Platinum 8174 (Skylake) @ 3.1 GHz
and 768 GB memory

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 21 18.04.2019

The internal interconnect is an Omni-Path network with 100 Gbit/s. The compute nodes are
bundled into 8 domains (islands). Within one island, the Omni-Path network topology is a ‘fat tree’
for highly efficient communication. The Omni-Path connection between the islands is pruned
(pruning factor 1:4).

Unfortunately, SuperMUC-NG will become available only on 1 April 2019. This is too late to be
able to include results in this report.

3.2 PCP prototypes

3.2.1 DAVIDE

D.A.V.I.D.E. (Development of an Added Value Infrastructure Designed in Europe) [33] is an
energy-aware petaflops Class High Performance Cluster based on the IBM POWER Architecture
coupled with NVIDIA Tesla Pascal GPUs (P100) using NVLink. The innovative design of
DAVIDE has been developed by E4 Computer Engineering for PRACE, with the aim of producing
a leading edge HPC cluster showing higher performance, reduced power consumption and ease of
use.

DAVIDE entered the TOP500 and Green500 list in June 2017 in its air-cooled version, while the
current version features liquid cooling and an innovative technology for monitoring and capping
the power consumption.

The current configuration consists of 45 × (2 POWER8 + 4 Tesla P100) nodes with NVLink and
coupled with an InfiniBand (2×IB EDR) network. The peak performance is approximately
1 Pflop/s.

3.2.2 Frioul

The Frioul PCP prototype [34] was designed by Atos/Bull and has been hosted by CINES, France
since 2016. Jointly financed by PRACE (PCP) and GENCI (Frioul), part of the PCP machine was
dismantled before being shipped to the TGCC; the other part was merged into Frioul to become a
single homogeneous machine. The Frioul configuration has changed from 48 to 54 compute nodes
and has changed the file system (MooseFS I/O to BeeGFS I/O). Since late 2018, the energy
measurement tools (BEO & HDEEVIZ) initially present on the PRACE PCP prototype are no
longer available on Frioul. It is now made of 18 Bull Sequana X1210 blades, each including 3 Intel
Xeon Phi KNL nodes. In total, it has a theoretical peak performance of 172 Tflop/s.

• 54 nodes with
o 1× Intel Xeon Phi 7250 processor (KNL), 68 cores at 1.4 GHz with SMT4
o 16 GB MCDRAM, 192 GB DDR4 DIMMs

• InfiniBand EDR
• BeeGFS I/O

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 22 18.04.2019

3.2.3 JUMAX

The JUMAX PCP prototype [46] is based on Maxeler’s MAX5 DataFlow Engines (DFE) cards. A
DFE card comprises an FPGA, which is used to implement part of the application following a data-
flow paradigm. JUMAX is hosted by JSC, Germany. Since porting UEABS applications to
JUMAX was completely out of scope of the PRACE-5IP benchmarking activities, we do not
present any results on JUMAX. JUMAX results will be presented in the PCP Conclusion
Report [53].

3.3 Partner prototype systems

3.3.1 DEEP-ER SDV

The DEEP-ER Prototype SDV [35], Software Development Vehicle, is hosted by JSC, Germany

Cluster

• 16 dual-socket Intel Xeon E5-2680v3 nodes
• Each node: 128 GB DRAM, 400 GB NVM

Booster

• 8 Adams Pass Intel Xeon Phi 7210 CPU
• Each node: 16 GB on-package memory, 96 GB DRAM, 200 GB NVM

System

• EXTOLL fabric using TOURMALET NICs with six links of 100 Gbit/s each
• Aggregate performance approx. 40 Tflop/s

Storage

• 2 storage servers (spinning disks, 57 TB)
• 1 metadata server (SSDs)
• BeeGFS file system

3.3.2 Mont-Blanc 3 Dibona

The Mont-Blanc 3 prototype Dibona [36] is hosted by Atos, France. Dibona is a Bull Sequana
X1000 system. It has 48 nodes, each node includes:

• Dual socket Marvell ThunderX2 (32 cores per CPU, 64 cores per node, each core at 2
GHz, 32 MB L3 cache)

• 256 GB of main memory per node (16 DDR4-2666 DIMM slots, 8 channels per CPU)

• 256 GB local storage e (+ 8 TB NFS)

The Mont-Blanc 3 prototype Dibona is equipped with a fat-tree with a pruning factor of 1:2 at L1
level interconnect topology with InfiniBand EDR 100 Gb/s.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 23 18.04.2019

4 Benchmark Results per Application

4.1 Alya

The Alya benchmarks have been performed on systems with different architectures, Skylake
(JUWELS and MareNostrum4), Haswell (DEEP-ER SDV), KNL (Marconi, Frioul), GPU (Piz
Daint, DAVIDE) and ARM (Dibona).

Due to the similarities with other architectures tested, benchmarks were not performed on the Hazel
Hen, Irene-KNL and Irene Skylake systems.

The elapsed time of only the time-integration phase has been considered, since it is the dominant
part in the production runs of Alya. Likewise, the node workload for each system was selected
according to the similar configurations used in scientific simulations.

We have only used Test Case B on the Tier-0 systems since its size is too large for the smaller
systems. Conversely, we have only used Test Case C on the PCP Prototypes since its size is too
small for the larger systems.

4.1.1 Performance on Skylake: JUWELS and MareNostrum4

Table 1 and Table 2 present the results for the Skylake systems, JUWELS and MareNostrum4 for
Case A and B respectively. We can observe better performance on JUWELS for all the cases
because the CPU frequency on JUWELS (2.7 GHz) is higher than on MareNostrum4 (2.1 GHz).

Additionally, the parallel efficiency on all the cases is better than for MareNostrum4. One of the
causes of this difference on the efficiency is the network of each system, Mellanox EDR-InfiniBand
on JUWELS and Intel Omni-Path on MareNostrum4.

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
JUWELS MareNostrum4

192 124.24 1.0 100% 129.45 1.0 100%
384 62.56 2.0 99% 67.45 1.9 96%
768 31.24 4.0 99% 33.93 3.8 95%

1536 16.45 7.6 94% 18.28 7.1 89%
Table 1: Test Case A – Skylake

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
JUWELS MareNostrum4

1152 372.52 1.0 100% 451.38 1.0 100%
2304 196.48 1.9 95% 262.32 1.7 86%
4608 99.65 3.7 93% 124.98 3.6 90%
9216 61.34 6.1 76% 86.61 5.2 65%

Table 2: Test Case B – Skylake

4.1.2 Performance on Marconi-KNL

Table 3 and Table 4 show the performance results of Alya on Marconi-KNL for Test Case A and
Test Case B. We observe that for the same number of nodes (68 cores is one node on Marconi-
KNL and 48 cores is one node in Skylake systems) the performance is similar, despite of KNL has

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 24 18.04.2019

more cores per node. Also, the parallel efficiency is worse on KNL due to each node has more MPI
tasks, so each node has more communication. We obtained the best performance using the
Quadrant mode for the Clustering settings and the Cache mode for the MCDRAM [54]. The
performance results of Table 3 and Table 4 were obtained using these modes.

Number of cores Time (s) SpeedUp Efficiency
272 130.66 1.0 100%
544 68.31 1.9 96%

1088 37.94 3.4 86%
2176 22.78 5.7 72%

Table 3: Test Case A – Marconi-KNL

Number of cores Time (s) SpeedUp Efficiency
2176 486.54 1.0 100%
4352 281.05 1.7 87%
8704 157.55 3.1 77%

13056 122.24 4.0 66%
Table 4: Test Case B – Marconi-KNL

4.1.3 Performance on GPU: Piz Daint

Table 5 and Table 6 show the performance results obtained in the executions in Piz Daint of cases
A and B respectively. Alya’s code was compiled using the compilers PGI 18.5 for using OpenACC
in the assembly of the matrix system, and CUDA 9.2 in the linear solver of the Poisson equation.

The parallel efficiency for the case A is 84% when increasing the number of nodes 8 times from
the initial setting. As expected, the strong scalability is lower than in the CPU runs, because
reducing the local workload negatively affects the GPU occupancy, resulting in a slowdown in the
performance. Moreover, the relative weight of the MPI communications increases when using a
larger number of nodes. Consequently, the overlapping strategy used in the GPU implementation
reduces its efficiency for hiding the communications.

This behaviour is observed more intensively in Table 6 In such case, the initial setting has half of
the local workload than case A, and therefore, the parallel efficiency slows down 11%. Despite the
decrease in parallel performance, the GPU still runs in average 2.5 times faster than the pure CPU
implementation.

Number of nodes Time (s) SpeedUp Efficiency
8 123.01 1.0 100%

16 64.49 1.91 95%
32 34.49 3.79 95%
64 18.28 6.73 84%

Table 5: Test Case A – Piz Daint

Number of nodes Time (s) SpeedUp Efficiency
128 67.01 1.0 100%
256 34.81 1.93 96%
512 20.47 3.27 82%

1024 11.54 5.81 73%
Table 6: Test Case B – Piz Daint

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 25 18.04.2019

4.1.4 Performance and Energy Consumption on PCP prototypes

As we can see on Table 7 and Table 8, Frioul is two times slower than DAVIDE in a node to node
comparison of absolute times. However, note that the last ones are composed of 4 GPUs and 2
POWER8 CPUs. Roughly speaking, we could say that currently for Alya the execution in an Intel
Xeon Phi 7250 is as fast as two NVIDIA P100 GPUs. For the strong speedup test, an ideal
acceleration and a linear increase of energy cost would result in a constant energy cost per job.
Both conditions are not true in practice on the PCP prototypes. Energy consumption grows between
1.4 and 2.6 times, this increase being more notorious for the DAVIDE system. The executions on
Frioul are 3.7 times more energy efficient than the ones on DAVIDE system. However, note that
on the energy measurements for DAVIDE are also considered the POWER8 hosts that are not in
Alya’s calculations, but only to carry out intra-node communications.

Number of
full nodes Performance Energy Speed-Up Performance

Efficiency
Normalised

energy
4 92.80 898222 1.0 100% 1.0
8 47.83 1441304 1.9 97% 1.6

16 26.65 1722932 3.5 87% 1.9
32 14.77 1821975 6.3 79% 2.0

Table 7: Test Case C – PCP prototype DAVIDE

Number of
full nodes Performance Energy Speed-Up Performance

Efficiency
Normalised

energy
4 220.07 332128 1.0 100% 1.0
8 108.18 389952 2.0 102% 1.2

16 55.81 380000 3.9 99% 1.1
32 28.68 470000 7.7 96% 1.4

Table 8: Test Case C – PCP prototype Frioul

4.1.5 Performance on DEEP-ER SDV

In Table 9 we observe that the Alya scalability on the DEEP-ER SDV prototype slows down in
40% with respect to MareNostrum4 with 16 nodes on each system. This result is expected due the
network differences. In terms of CPU performance, ignoring the communication load, it is observed
that MareNostrum4 is 50% faster than the DEEP-ER SDV prototype.

Number of cores Time (s) SpeedUp Efficiency
48 772.64 1.0 100%
96 421.31 1.8 92%

192 278.47 2.8 69%
384 176.28 4.4 55%

Table 9: Test Case A – DEEP-ER SDV

4.1.6 Performance on ARM: Mont-Blanc 3 Dibona

Alya’s code was compiled on Mont-Blanc 3 Dibona using GCC 7.2.1 and OpenMPI 3.1.2. We see
from Table 10 that the performance of Alya on Mont-Blanc 3 Dibona is slower if we compare the
ARM system node to node, with the Skylake systems. However, the scalability in Dibona is on the
expected range, if we compare with a system with InfiniBand network, for example, JUWELS.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 26 18.04.2019

Number of cores Time (s) SpeedUp Efficiency
128 1202.7 1.0 100%
256 658.85 1.8 91%
512 332.72 3.6 90%

1024 182.57 6.6 82%
Table 10: Test Case A – Mont-Blanc 3 Dibona

4.2 Code_Saturne

The tests have been carried out on: 4 machines, using CPUs only, namely Hazel Hen, Irene-SKL,
JUWELS and MareNostrum4; on 3 machines with KNLs, Irene-KNL, Frioul and Marconi; and 3
extra machines, Piz Daint (CPUs and GPUs), Dibona (ARM) and DAVIDE (POWER8). Two
series of benchmark tests have been run, for 10 time steps each, with 13M cells (Test Case A) and
111M cells (Test Case B), respectively, and the time per time step and efficiency were used for
comparison. It was decided to stick to efficiency and not present also the speed-up behaviour, as
the efficiency shows more insight than the speed-up, the speed-up can easily be derived from the
efficiency, and finally for a practical reason, to keep a large-enough font size in the tables below.
The partitioning was performed on-the-fly using a Space Filling Curve algorithm which relies on
Morton's configuration.

4.2.1 Performance on CPU-based machines: Hazel Hen, Irene-SKL, JUWELS and
MareNostrum4

MPI only is used on all these 4 machines, without any hyperthreading at all, as it was found that
there was no benefit to have it on. Consequently, Irene-SKL, JUWELS and MareNostrum4 have
been used with 48 MPI tasks per node, whereas Hazel Hen has been used with 24 MPI tasks per
node.

Table 11 shows time per time step and efficiency for each of the Test Case A simulations. Nearly
perfect efficiency is observed on the four machines up to 16 nodes of Hazel Hen and 8 nodes of
the 3 other machines (384 MPI tasks in total). Beyond these node counts, the performance
deteriorates, which can be explained by the fact that either each core is not loaded enough (about
17,000 cells per MPI tasks when 768 cores are used) or MPI communications are taking over one-
task computation. This alteration in performance could also be explained by the fact that the Space
Filling Curve partitioner does not provide an optimised edge-cut which results in an increase in the
number of MPI tasks involved in point-to-point communications.

Among the three Tier-0 machines, both Skylake-based computers show best results, with JUWELS
giving the best performance up to 16 nodes, in terms of timing and efficiency. On MareNostrum4,
Code_Saturne is slightly slower than on Skylake-based computers, which might be explained by
the higher CPU frequency of the latter (2.1 GHz vs 2.7 GHz). The node-to-node comparison shows
that the simulations ran on JUWELS are always at least twice as fast as on Hazel Hen, which was
to be expected given the type of processors used on Hazel Hen (Haswell).

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff

1 24 50.40 100% 48 23.98 100% 48 22.60 100% 48 29.02 100%
2 48 25.24 100% 96 12.05 100% 96 11.09 102% 96 13.63 106%

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 27 18.04.2019

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff

4 96 12.72 99% 192 6.21 96% 192 5.32 106% 192 6.78 107%
8 192 6.08 104% 384 3.33 90% 384 2.69 105% 384 3.46 105%
16 384 3.17 99% 768 2.22 68% 768 1.52 93% 768 2.18 83%
32 768 2.01 78%

Table 11: Test Case A: Performance of Code_Saturne on the 4 CPU-based machines

#nodes Hazel Hen Irene-SKL JUWELS MareNostrum4
#cores T(s) Eff #cores T(s) Eff #cores T(s) Eff #cores T(s) Eff

8 192 81.42 100% 384 38.75 100% 384 34.52 100% 384 45.41 100%
16 384 39.91 102% 768 20.50 95% 768 17.79 97% 768 24.99 91%
32 768 22.87 89% 1,536 12.01 81% 1536 9.54 90% 1,536 12.99 87%
64 1,536 11.33 89% 3,072 7.40 65% 3072 6.69 65% 3,072 8.96 63%

128 3,072 8.53 60%
Table 12: Test Case B: Performance of Code_Saturne on the 4 CPU-based machines

Table 12 presents Code_Saturne's timings and efficiency for Test Case B. The same trend as for
Test Case A is observed, e.g. the fastest simulations are on JUWELS, being at least twice as fast
as on Hazel Hen.

4.2.2 Performance on KNL-based machines: Irene-KNL, Frioul and Marconi

Three KNL-based machines are used to assess the performance of Code_Saturne. All of them rely
on 68 thread-nodes. For Test Case A, it was found that simulations using 34 MPI tasks and 2
OpenMP threads per node were faster than simulations using 68 MPI tasks per node from 4 nodes
on (these comparisons are not shown here), on Irene-KNL and Frioul, the best timing being
obtained on Frioul (4.23 s) using 32 nodes, even if the best efficiency was achieved on Irene-KNL.
However, using MPI only on Marconi with 68 MPI tasks per node (as opposed to 34 MPI tasks
and 2 OpenMP threads per node simulation, which results are not shown here) exhibited the best
timing and performance on that machine.

#nodes Irene-KNL Frioul Marconi
#threads T(s) Eff #threads T(s) Eff #cores T(s) Eff

1 68 63.15 100% 68 47.74 100% 68 43.85 100%
2 136 33.75 100% 136 24.75 96% 136 23.89 92%
4 272 18.58 99% 272 13.32 90% 272 12.76 86%
8 544 8.30 104% 544 8.75 68% 544 7.52 73%

16 1,088 7.07 99% 1,088 5.70 52% 1,088 6.10 45%
32 2,176 5.10 78% 2,176 4.23 35%

Table 13: Test Case A: Performance of Code_Saturne on the 3 KNL-based machines (2 OpenMP threads per
MPI task are used on Irene-KNL and Frioul and MPI only on Marconi)

For Test Case B interestingly (see Table 14), using MPI only on the full nodes of Marconi shows
better performance than combinations of 34 MPI tasks and 2 OpenMP threads per on Irene-KNL.

#nodes Irene-KNL Marconi
#threads T(s) Eff #threads T(s) Eff

8 544 98.00 100% 544 75.31 100%
16 1,088 56.13 87% 1,088 40.47 93%

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 28 18.04.2019

#nodes Irene-KNL Marconi
#threads T(s) Eff #threads T(s) Eff

32 2,176 32.68 75% 2,176 22.67 83%
64 4,352 23.70 52% 4,352 13.90 68%

128 8,704 13.84 44% 8,704 11.54 41%
Table 14: Test Case B: Performance of Code_Saturne on Irene-KNL (2 OpenMP threads per MPI task) and
Marconi (MPI only)

4.2.3 Performance on other architectures: Piz Daint, Dibona, DAVIDE

Many simulations have been carried out to select the best combination of MPI tasks, OpenMP
threads, and GPUs (when available) on Piz Daint, Dibona and DAVIDE. Table 15 shows that the
best timings obtained for Test Case A using Piz Daint are for 8 MPI tasks and 2 OpenMP threads
and 1 GPU per node, Dibona for 32 MPI tasks and 2 OpenMP threads per node and DAVIDE for
16 MPI tasks and 4 OpenMP threads and 4 GPUs per node. If we consider former tests carried out
for Code_Saturne on POWER8/9 machines, each GPU requires at least 300,000 cells to
demonstrate good performance (see [44]). Given the relatively modest size of the test case (13M
cells) and the 300,000-cell threshold, a meaningful comparison is carried out up to 4 nodes for the
3 machines. In this case, the simulations ran on DAVIDE are the fastest of the 2 GPU machines,
by at least a factor of about 2. Simulations on Dibona are slightly slower than on DAVIDE, but the
compute time per time step is still good (37.86 s vs 30.03 s, 21.28 s vs 16.75 s, and 12.13 s vs 8.52
s using 1, 2 and 4 nodes of Dibona and DAVIDE, respectively). The simulations on Dibona are
clearly faster than on Piz Daint up to 16 nodes. Note that it was not possible to run simulations
using 32 nodes and more on Dibona.

#nodes Piz Daint Dibona DAVIDE
#threads T(s) Eff #threads T(s) Eff #threads T(s) Eff

1 16 80.25 100% 64 37.86 100% 64 30.03 100%
2 32 41.66 96% 128 21.28 89% 128 16.75 90%
4 64 22.29 90% 256 12.13 78% 256 8.52 88%
6 384 6.70 74%
8 128 12.60 80% 512 8.55 55%

16 256 7.79 64% 1,024 6.40 37%
32 512 5.08 49%
64 1,024 3.55 35%

128 2,048 2.19 28%
Table 15: Test Case A: Performance of Code_Saturne on the 3 extra machines (Piz Daint, 8 MPI tasks and 2
OpenMP threads and 1 GPU per node, Dibona, 32 MPI tasks and 2 OpenMP threads per node, DAVIDE, 16
MPI tasks and 4 OpenMP threads and 4 GPUs per node)

#nodes Piz Daint
#threads T(s) Eff

8 128 119.65 100%
16 256 63.17 95%
32 512 40.60 74%
64 1,024 24.07 62%

128 2,048 15.36 49%
256 4,096 10.32 36%
512 8,196 8.25 23%

Table 16: Test Case B: Performance of Code_Saturne on Piz Daint (8 MPI tasks and 2 OpenMP threads and 1
GPU per node)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 29 18.04.2019

Table 16 shows the timings obtained for Test Case B on Piz Daint. The scalability is very good up
to 32 nodes, and some speed-up is still observed up to 512 nodes.

4.2.4 Cross comparison for all the machines/architectures

For Test Case A, the best timings and performance are observed on JUWELS, a time step taking
about 1.52 s on 16 nodes and 768 cores, being about 3.75 times faster than the fastest simulations
on a KNL-machine (Frioul), about 4.21 times faster than the simulation on the ARM cluster
(Dibona) and about 5.125 times faster than the simulation on the GPU-based machine (Piz Daint).
This might be explained by the very high speed of the Skylake nodes, but also because of the nature
of the problem to solve in Code_Saturne, where the Navier-Stokes equations are solved implicitly
using sparse matrices (sparse linear algebra). However, the limitation in terms of number of
available nodes on DAVIDE (6 nodes) and the fact that the processors are now a relatively old
technology (POWER8) do not help making a state-of-the-art comparison. It would be good in the
future to compare the results on JUWELS to results obtained on a POWER9 machine with
NVLINK 2.0 enabled.

For Test Case B, less data were available, because of the limitation in the number of available
nodes on some of the machines (Frioul, Dibona and DAVIDE, for instance). Once again, JUWELS
is the machine were the simulations run the fastest.

4.2.5 Energy consumption

The energy consumption is computed on DAVIDE (Test Case A) and Piz Daint (Test Case A and
B). It was not possible to get the energy consumption on Frioul as the tools to compute it were no
longer available on the machine, when the MPI/OpenMP/GPU version of the code used in this
work was made available in late 2018.

The results presented for DAVIDE (CPU), (see 1st column of Table 17), were run using 16 MPI
tasks and 2 OpenMP threads per node, and for DAVIDE (GPU), (see 2nd column of Table 17),
using 16 MPI tasks, 2 OpenMP threads and 4 GPUs per node. Not enough nodes were available to
run meaningful tests for Test Case B. Consequently, Test Case A results only are presented on that
machine. Note as well that the results are presented for a different configuration than the ones
shown in Section 4.2.2, but for cases (16 MPI tasks and 2 OpenMP threads per node) where the
energy measurements are available and happen to be consistent.

The results obtained for Test Case A on Piz Daint (CPU), (see 3rd column of Table 17) have been
obtained using 12 MPI tasks per node, and on Piz Daint (GPU), (see 4th column of Table 17) using
8 MPI tasks, 2 OpenMP threads and 1 GPU per node. The same conditions are used for the results
shown in Table 18 and Test Case B.

For Test Case A, the energy consumed on DAVIDE (CPU) is larger than for the three other
configurations. It also shows a decreasing trend, when the number of nodes increases, which is the
opposite of the three other cases. This large energy spent could be explained by the fact that the
time per time step is about twice as large as for DAVIDE (CPU) for two and four nodes, and the

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 30 18.04.2019

simulations then last longer. The simulations on DAVIDE (GPU) are much faster than on Piz Daint
(CPU and GPU) on two and four nodes, however, the energy consumption is very similar in these
three cases (225 kJ, 215 kJ, 208 kJ respectively on 4 nodes), making DAVIDE the best machine
for ratio time to solution/energy consumption.

If the number of nodes is increased (Piz Daint CPU and GPU), so does the energy consumption,
but it remains very similar for both configurations.

#nodes DAVIDE (CPU) DAVIDE (GPU) Piz Daint (CPU) Piz Daint (GPU)
#threads T(s) E(kJ) #threads T(s) E(kJ) #cores T(s) E(kJ) #threads T(s) E(kJ)

1 16 61.36 16 32.66 12 102.63 214 16 80.26 170
2 32 29.84 513 32 17.87 194 24 50.10 210 32 41.66 181
4 64 14.53 406 64 9.01 225 48 24.36 215 64 22.29 208
6 96 9.73 363 96 6.85 344
8 96 11.78 224 128 12.60 239
16 192 6.63 282 256 7.79 315
32 384 4.09 400 512 5.08 465
64 768 3.44 763 1,024 3.55 772

128 1,536 3.08 1,550 2,048 2.19 1,230
Table 17: Test Case A: Energy consumption comparison between DAVIDE and Piz Daint, using CPU or GPU
configurations

#nodes Piz Daint (CPU) Piz Daint (GPU)
#cores T(s) E(kJ) #threads T(s) E(kJ)

8 96 144.89 2,450 64 119.65 2,180
16 192 72.82 2,530 128 63.17 2,390
32 384 36.62 2,710 256 40.60 3,000
64 768 19.99 3,330 512 24.07 3,830

128 1,536 11.71 4,710 1,024 15.36 5,150
256 3,072 9.04 7,850 2,048 10.32 8,040
512 6,144 7.33 15,810 4,096 8.25 14,330

Table 18: Test Case B: Energy consumption on Piz Daint, CPUs and GPUs

For Test Case B on Piz Daint (CPU and GPU), the same trend is observed, e.g. using GPUs does
not seem to impact the total energy, as it is smaller on 8 and 16 nodes, when the time per time step
is smaller than for the CPU only cases. From 32 to 256 nodes, using GPUs is marginally more
energy consuming, mainly because the simulations last then longer. The only exception is for 512
nodes, when the GPU simulation uses less energy, and is slower than the CPU simulation.

4.3 CP2K

This section reports CP2K benchmarking results, analyses performance and energy efficiency for
the three test cases described in Section 2.3, which have been run on a number of systems including
PRACE Tier-0, PRACE PCP prototype, Mont-Blanc 3 and DEEP-ER project prototype machines.
The porting effort consisting of the installation and execution work done as part of the CP2K
benchmarking effort is also reported on.

With regards to the performance and energy efficiency of CP2K a comparison is made for two of
the three test cases between the PCP prototype systems and one of the Tier-0 systems that also
provides energy measurements (Piz Daint).

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 31 18.04.2019

4.3.1 General remarks regarding installation

In addition to the strict requirements for LAPACK, BLAS and ScaLAPACK (often satisfied by an
MKL installation or in the case of Dibona by the ARM Performance Libraries), FFTW3, and an
MPI library in order to run in parallel, CP2K can make use of several other libraries to improve
performance and extend functionality. Some of these, especially the autotuning library libgrid
which computes products of Gaussians as well as the small matrix-matrix multiplication libraries
libsmm/libxsmm can take very significant effort to build, especially on systems with unusual
configurations and pre-production prototype systems with limited documentation and software
stacks. For this reason and to ensure that performance and energy comparisons were nonetheless
done on a fair footing between the various systems, on each system CP2K was linked only to the
Libint (version 1.1.4) and Libxc (usually version 4.2.3) libraries required to run the benchmarks,
in addition to the strictly required libraries. Libint and Libxc were therefore built first on each
system, and in some cases also FFTW (version 3.3.x) and ScaLAPACK (version 2.0.2) where these
were not present already.

Gfortran is the (strongly) recommended compiler for CP2K, and CP2K is known to generate a
range of compile-time and run-time issues in conjunction with many different particular major and
minor versions of the Intel compiler – see [47] for a partial listing of known issues. Wherever
possible CP2K was therefore built using gfortran. In addition, CP2K needs to be linked to a version
of an MPI library that was built using the same compiler as used to build CP2K itself. The same is
advisable for other libraries. In several cases these requirements placed significant barriers to
porting CP2K, e.g. to the prototype systems given their limited software stacks and on which
building an MPI library with the desired compiler would be especially problematic given novel
interconnects and/or platform configurations.

For execution on GPUs, CP2K was compiled using the flags -D__ACC and -D__DBCSR_ACC to
offload sparse matrix multiplication.

4.3.2 General remarks regarding execution

To begin, hybrid MPI+OpenMP runs for fixed core count for a range of different combinations of
threads per rank and ranks per node were performed for small and larger node counts in order to
determine the combination giving optimal performance for each test case prior to runs exploring
strong scaling for that test case.

There is no reading of any large amount of input data for any of the test cases hence initialisation
cost is ignored in timings –the application’s self-reported runtimes are extracted from output logs.

The maximum allowed memory per process for Test Case B (LiH-HFX) was adjusted in the input
file for each different choice of numbers of MPI ranks per nodes, with a safe limit that avoids the
application running out of memory and being killed found to consist of roughly 0.75× the total on-
node memory on each machine.

Test Case C (H2O-DFT-LS) generates large data structures that for a few machines do not fit into
memory for smaller total number of nodes, which explains the absence of measurements for these
small node counts.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 32 18.04.2019

4.3.3 Performance Results

Results for each test case run on each machine are given below, see the section after for analysis.
In each case the choice of hybrid MPI + OpenMP runtime threading configuration that was found
to be optimal and used in runs to generate scaling data is given.

4.3.3.1 Performance on JUWELS

Nodes Time (s) Speedup Parallel efficiency (%)
1 1353.46 1.00 100.00
2 786.46 1.72 86.05
4 434.60 3.11 77.86
8 308.03 4.39 54.92
16 213.11 6.35 39.69
32 319.18 4.24 13.25

Table 19: Test Case A (using 24 MPI × 2 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
1 1343.94 1.00 100.00
2 677.98 1.98 99.11
4 344.97 3.90 97.40
8 180.89 7.43 92.87
16 93.09 14.44 90.23
32 50.69 26.51 82.85
64 28.26 47.56 74.31
128 23.35 57.56 44.97

Table 20: Test Case B (using 2 MPI × 24 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
2 576.26 1.00 100.00
4 313.96 1.84 91.77
8 188.36 3.06 76.48
16 109.37 5.27 65.86
32 81.36 7.08 44.27
64 56.78 10.15 31.72
128 95.84 6.01 9.39

Table 21: Test Case C (using 24 MPI × 2 OpenMP)

4.3.3.2 Performance on Piz Daint (XC50 partition, with GPU)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 3426.61 1.00 100.00 792
2 1805.93 1.90 94.87 832
4 1079.81 3.17 79.33 975
8 620.42 5.52 69.04 1140
16 422.55 8.11 50.68 1510
32 319.49 10.73 33.52 2200
64 294.02 11.65 18.21 3980
128 360.43 9.51 7.43 9300

Table 22: Test Case A (using 12 MPI × 1 OpenMP)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 33 18.04.2019

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 5273.17 1.00 100.00 1050
2 2644.66 1.99 99.69 1080
4 1349.94 3.91 97.66 1110
8 691.98 7.62 95.26 1120
16 350.30 15.05 94.08 1140
32 185.36 28.45 88.90 1230
64 98.74 53.40 83.44 1370
128 57.19 92.20 72.03 1660
256 34.79 151.57 59.21 2300
512 27.43 192.24 37.55 3590
1024 26.63 198.02 19.34 8140

Table 23: Test Case B (using 12 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
8 326.75 1.00 100.00 517
16 203.52 1.61 80.27 566
32 178.70 1.83 45.71 756
64 65.88 4.96 62.00 889
128 50.41 6.48 40.51 1330
256 34.65 9.43 29.47 1940
512 28.31 11.54 18.03 3330
1024 27.11 12.05 9.42 6620
2048 27.31 11.96 4.67 14450

Table 24: Test Case C (using 6 MPI × 2 OpenMP)

4.3.3.3 Performance on Piz Daint (XC50 partition, without GPU – CPU only)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 5643.44 1.00 100.00 1100
2 2719.30 2.08 103.77 1130
4 1567.81 3.60 89.99 1290
8 777.30 7.26 90.75 1310
16 485.85 11.62 72.60 1650
32 317.29 17.79 55.58 2100
64 241.21 23.40 36.56 3150
128 198.21 28.47 22.24 5060
256 214.57 26.30 10.27 10790
512 209.43 26.95 5.26 20850

Table 25: Test Case A (using 12 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 5213.40 1.00 100.00 1020
2 2652.29 1.97 98.28 1040
4 1354.34 3.85 96.24 1050
8 690.03 7.56 94.44 1110
16 358.49 14.54 90.89 1140
32 178.59 29.19 91.23 1160
64 93.96 55.49 86.70 1260
128 50.46 103.32 80.72 1560
256 30.73 169.65 66.27 1860
512 23.28 223.94 43.74 2750
1024 24.26 214.90 20.99 6590
2048 35.80 145.63 7.11 17920

Table 26: Test Case B (using 12 MPI × 1 OpenMP)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 34 18.04.2019

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)

1 1306.53 1.00 100.00 1090
2 668.76 1.95 97.68 1130
4 379.41 3.44 86.09 1310
8 226.36 5.77 72.15 1550
16 147.12 8.88 55.50 2050
32 86.25 15.15 47.34 2480
64 58.09 22.49 35.14 3600
128 43.10 30.31 23.68 5200
256 27.10 48.21 18.83 7370
512 32.72 39.93 7.80 15940

Table 27: Test Case C (using 6 MPI × 2 OpenMP)

4.3.3.4 Performance on Frioul

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
2 5917.00 1.00 100.00 1417.40
4 3737.00 1.58 79.17 1631.30
8 1922.00 3.08 76.96 1596.20
16 794.00 7.45 93.15 1520.20
32 424.00 13.96 87.22 1603.60
64 231.00 25.61 80.05 1795.50
128 147.00 40.25 62.89 2343.40

Table 28: Test Case B (using 8 MPI × 8 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 2963.00 1.00 100.00 1410.20
2 1210.00 2.45 122.44 1396.00
4 729.00 4.06 101.61 1531.00
8 383.00 7.74 96.70 1616.00
16 226.00 13.11 81.94 1857.00
32 139.00 21.32 66.61 2427.00

Table 29: Test Case C (using 8 MPI × 8 OpenMP)

4.3.3.5 Performance on DAVIDE (without GPU – CPU only)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 4686.00 1.00 100.00 2825.00
2 2344.00 2.00 99.96 2833.00
4 1194.00 3.92 98.12 2926.00
8 612.00 7.66 95.71 2978.00
16 323.00 14.51 90.67 3166.00

Table 30: Test Case B (using 16 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
1 24573.00 1.00 100.00 15504.00
2 12502.00 1.97 98.28 15684.00
4 6380.00 3.85 96.29 16217.00
8 3295.00 7.46 93.22 16777.00
16 1695.00 14.50 90.61 17314.00

Table 31: Test Case C (using 16 MPI × 1 OpenMP)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 35 18.04.2019

4.3.3.6 Performance on DAVIDE (with GPU)

Nodes Time (s) Speedup Parallel efficiency (%) Energy (kJ)
2 4657 1.00 100.00 3458
3 2337 1.99 99.64 3484

16 320 14.55 90.96 3963
Table 32: Test Case B (using 16 MPI × 1 OpenMP)

4.3.3.7 Performance on DEEP-ER SDV

Nodes Time (s) Speedup Parallel efficiency (%)
1 3036.90 1.00 100.00
2 1773.79 1.71 85.60
4 1006.19 3.02 75.46
6 750.04 4.05 67.48

Table 33: Test Case A (using 24 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
1 2882.87 1.00 100.00
2 1509.32 1.91 95.50
4 785.97 3.67 91.70
8 433.14 6.66 83.20

16 256.84 11.22 70.15
Table 34: Test Case B (using 12 MPI × 2 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
2 1464.77 1.00 100.00
4 779.10 1.88 94.00
8 403.13 3.63 90.84

Table 35: Test Case C (using 12 MPI × 2 OpenMP)

4.3.3.8 Performance on Dibona

Nodes Time (s) Speedup Parallel efficiency (%)
1 2402.36 1.00 100.00
2 1334.29 1.80 90.02
4 769.59 3.12 78.04
8 477.77 5.03 62.85

16 336.71 7.13 44.59
Table 36: Test Case A (using 64 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
1 1800.09 1.00 100.00
2 918.89 1.96 97.95
4 468.31 3.84 96.10
8 244.09 7.37 92.18

16 132.92 13.54 84.64
Table 37: Test Case B (using 64 MPI × 1 OpenMP)

Nodes Time (s) Speedup Parallel efficiency (%)
1 2909.43 1.00 100.00
2 1397.04 2.08 104.13
4 739.62 3.93 98.34
8 406.22 7.16 89.53

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 36 18.04.2019

Nodes Time (s) Speedup Parallel efficiency (%)
16 222.92 13.05 81.57

Table 38: Test Case C (using 64 MPI × 1 OpenMP)

4.3.4 Performance comparisons

We present in Figure 2, Figure 3 and Figure 4 comparisons of the performance of Test Cases A, B
and C on the range of systems on which benchmarking was performed. Scaling runs for each
system and test case were performed after first determining hybrid MPI + OpenMP runtime
configurations that yield optimal performance across a range of node sizes on each system, with
the comparisons between systems being made between these optimal runs to more realistically
reflect production usage of the respective machines.

Figure 2: time to solution for Test Case A (H2O-512)

Runs on Piz Daint with and without usage of the P100 GPUs were all performed on the XC50 GPU
partition, thereby taking advantage of the opportunity to compare the performance of CP2K with
and without GPU whilst keeping all else – CPU, memory, interconnect and software stack –
constant. For test case B (LiH-HFX) we see no benefit from GPU usage at any scale. For test case
A (H2O-512) we see significant benefit from the GPU for fewer than 32 nodes but with CPU-only
runs winning out for larger node counts, possibly due to strong scaling diminishing the amount of
node-local work that can be offloaded, meaning data transfer overheads become too costly. For test
case C (H2O-DFT-LS) there is significant benefit up to large node counts. Examining the logs from
GPU-enabled runs of all three test cases and analysing the statistics of calls to CP2K’s DBCSR
acceleration layer, it is clear that a much higher percentage of small matrix multiplication calls are
successfully offloaded to the GPU in test cases A and C, which are likely benefiting from the GPU

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 37 18.04.2019

as a result. This suggests custom autotuning work to generate kernels to enable more efficient GPU
offloading as described at [48] and [49] could improve performance of test case B on GPU-
equipped machines. It is worth noting that given the current state of DBCSR, this would require
significant effort from HPC users and/or support staff (which was beyond scope of the porting and
benchmarking effort undertaken in this project). However, development work on DBCSR currently
being undertaken is expected to bypass the need for custom autotuning in future, which would
enable better offloading by default for a wider range of simulations.

Figure 3: time to solution for Test Case B (LiH-HFX). Note that runtimes on Dibona, DAVIDE (with and
without GPUs) and Piz Daint (with and without GPUs) are all very similar for 1–16 nodes.

With regards to performance of CP2K using the same P100 GPUs on the DAVIDE PCP prototype
system, which provides four such GPUs per node, it was found that the benefit for offloading was
equally limited for test case B and that it provided no observable performance benefit. Test cases
A and C were not run successfully on DAVIDE GPUs due to various errors thrown by the CUDA
runtime and linear algebra library respectively. These errors could not be resolved during the
available access time to the prototype system. Based on experience with CP2K GPU offloading in
this project and publicly available guidance from developers it is expected that although test cases
A and C would be likely to benefit from the GPUs available on DAVIDE in a similar way as on
Piz Daint, the amount and type of compute offload generated by these test cases would be far from
enough to exploit four on-node GPUs concurrently with good parallel efficiency.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 38 18.04.2019

Figure 4: time to solution for Test Case C (H2O-DFT-LS). Note that runtimes on Dibona, Frioul, and DEEP-
ER SDV and to a lesser extent Piz Daint with GPU are all very similar for 1–32 nodes

It is important to note that in general not only the absolute performance of CP2K as reported for
these benchmarks but also the rate at which the application’s parallel scaling efficiency diminishes
do not accurately reflect the full potential of the code when it is linked against all possible
performance libraries and carefully tuned, however this should not invalidate the cross-system
comparison which we undertake here and the conclusions drawn.

Scaling behaviour on all the PRACE PCP prototypes as well as the Mont-Blanc 3 and DEEP-ER
prototypes appears roughly on par with that of large established systems such as JUWELS and Piz
Daint. In fact, JUWELS appears to lose parallel scaling efficiency rather earlier than e.g. Piz Daint,
especially for test cases A and C, negating its node-for-node basis performance advantage thanks
to a more recent generation Intel processor. This is reflected in the CP2K logs, which show that for
the largest node count benchmarked in the latter two cases, for which there is an increase in runtime,
the application spends a much larger percentage of its runtime in MPI operations, specifically
waiting and collective operations.

In general, on a node-for-node basis, performance on JUWELS where each node has two 24-core
Skylake processors is consistently fastest, exceeding performance on machines equipped with older
generation Intel processors or with ThunderX2 or POWER8-based nodes, apart from at the largest
scale where JUWELS’ poorer MPI performance for CP2K negates this raw processing power
advantage. Performance on ThunderX2-based Dibona appears competitive across the board,
especially for test case B where it starts to approach JUWELS’ Skylake-based performance. For
test case C, Dibona and DEEP-ER SDV nodes match Piz Daint’s CPU+GPU performance node
for node. The same applies for DEEP-ER SDV in test case A, where Dibona comfortably exceeds

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 39 18.04.2019

it as well as Piz Daint. Frioul performs very similarly to Dibona, DEEP-ER SDV and Piz Daint
CPU+GPU in test case C, but not competitively with even Piz Daint’s CPU-only 12-core Haswell
nodes in test case A. Finally, while DAVIDE nodes match Piz Daint nodes in test case B,
DAVIDE’s performance in test case B is significantly slower than all the other systems.

As well as relying strongly on high-performance linear algebra libraries (which were provided on
most benchmark systems by an MKL installation), CP2K is heavily dependent for performance on
efficient MPI communication and hence a low latency, high bandwidth interconnect for
decomposing and reconstituting variables onto grids, calling Fourier transforms, etc. Test cases for
which results from several different systems exhibit very similar runtimes despite running on nodes
with significantly different raw processing power may therefore reflect instances of
communication-bound computing which, if the respective machines’ communication layers do not
differ significantly in their performance, causes similar performance bottlenecks to appear.

4.3.5 Energy consumption comparisons

Having considered performance across the various systems we would like to add to this comparison
an evaluation of energy consumption in an attempt to better understand the possibilities offered by
the PRACE PCP prototypes and future technologies. In performing this comparison, we will also
make use of the rough energy measurements provided for jobs on Piz Daint which, although
recorded with significantly lower sampling frequency and specificity than the specialised hardware
and software developed for DAVIDE and Frioul, nonetheless gives us a context within which to
better understand results from these prototype systems. In doing this comparison we aim to
highlight findings from benchmarking CP2K that should help inform how best to trade off
performance and energy consumption.

To provide some quantitative context, it has been confirmed by Piz Daint support staff that a job
strongly using the GPU will use 30.97 kJ during the same time that a job not using the GPU at all
uses 7.98 kJ. However, it is important to note that the estimated job energy usage measurements
provided on Piz Daint do not include the interconnect or any cabinet-level hardware. Where we
make a comparison to the PCP prototypes, in the case of Frioul we can provide information on the
breakdown of energy on that system into node energy and switch energy in order to compare it to
Piz Daint fairly.

Figure 5 shows the energy to solution for test case A, which was only run on Piz Daint and not on
either of the PCP prototype systems. Considering also the corresponding performance shown in
Figure 2 and summarising calculations based on the raw data, we can state the following with
regards to CP2K running test case A:

• Performance on Piz Daint with GPU for one node is 1.65× that without GPU. This
advantage steadily decreases with more nodes, and switches over somewhere between 16
and 32 nodes to benefit running without GPU. At 128 nodes, performance with GPU is
0.55× that without GPU.

• Total energy consumption with GPU for one node is 0.72× that without GPU. This
advantage steadily decreases with more nodes and switches over somewhere between 16

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 40 18.04.2019

and 32 nodes to benefit running without GPU. At 128 nodes, total energy consumption with
GPU is 1.84× is that without GPU.

• Average power consumption with GPU for one node is 1.2× that without GPU
(symptomatic of the GPU being used somewhat) and decreases steadily to being almost
identical to running without GPU for 128 nodes, symptomatic of little use of GPU.

Conclusion for test case A: this test case benefits from using the GPU for fewer than 16–
32 nodes on the Piz Daint architecture both from the perspective of performance and from
the perspective of reduced total energy consumption, however for large number of nodes
the opposite is true and it is both quicker and more energy efficient not to use the GPU. The
desired crossover point to this decision from either performance or energy perspective will
depend on prioritisation. Average power drawn by the simulation varies only about 20%
over the range of number of nodes considered, so may not have a big impact on the choice
of what scale to run at, though this information could be utilised as part of power capping
planning.

Figure 5: Energy to solution for Test Case A (H2O-512)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 41 18.04.2019

Figure 6: Energy to solution for Test Case B (LiH-HFX)

Figure 6 shows scaling of total energy consumption with job size for test case B and including both
PCP prototype systems as well as Piz Daint. Considering just Piz Daint, we can see there is very
little difference between both total energy consumption and runtime running with or without GPU.
In fact, we can calculate that it is slightly worse on both accounts to run with GPU. Frioul has both
higher energy consumption (1.3× – 1.4× that of Piz Daint for the same number of nodes) and (from
results shown earlier) longer runtime (2.2× – 2.5× that of Piz Daint). To determine whether this is
a fair comparison given that the Piz Daint energy measurements are node-level only and do not
include networking or cabinet-level hardware, we can examine the breakdown of total job energy

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 42 18.04.2019

on Frioul into node-level energy and switch energy. This is shown below for test case C, but is also
representative of test case B.

Figure 7: breakdown of node and switch energy contributions to total job energy on Frioul for test case C (H2O-
DFT-LS)

This shows that the contribution from the switch energy is not significant and that the conclusions
about Piz Daint’s greater energy efficiency hold once compared purely with Frioul’s node energy.

With regards to DAVIDE, whilst DAVIDE both with and without GPU is marginally faster on a
node-for-node basis than Piz Daint (runtime 0.9× that of Piz Daint), DAVIDE without GPU uses

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 43 18.04.2019

2.7× – 3.5× more energy than Piz Daint and DAVIDE with GPUs uses 4.4× – 3.5× that of Piz
Daint.

Piz Daint is therefore considerably more energy efficient than either of the PCP prototype systems
when it comes to running CP2K test case B.

Figure 8: Energy to solution for Test Case C (H2O-DFT-LS)

Considering first Piz Daint, Figure 9 in combination with performance results shows that:

• Performance with GPU for one node is more than two times that without GPU, and running
with GPU continues to provide better performance for more nodes.

• Total energy consumption with GPU is always lower than without GPU, but increases from
0.46× that without GPU for 1 node to 0.9× that without GPU for 2048 nodes.

• Average power consumption with GPU is always lower (except for at around 2048 nodes),
drawing between 0.62× and 0.97× the average power consumption without GPU.

Clearly, this test case greatly benefits from the use of the GPU on the Piz Daint architecture
regardless of how many nodes are being used; performance, total energy consumption and average
power consumption are all better with GPU.

Concerning the PCP prototype systems: as for test case B, Frioul has higher total energy
consumption than Piz Daint in test case C (~3.2× that of Piz Daint with GPU) and takes ~1.2× as
long to complete the simulation. Finally, DAVIDE running test case C without use of the GPU
appeared to exhibit a surprising 32× – 85× greater energy consumption than Piz Daint reproducibly
across runs and for different node counts. It is possible that the CUDA runtime mistakenly engaged
all four GPUs, contributing to greater than expected power draw. As previously mentioned, test

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 44 18.04.2019

cases A and C were not run successfully on DAVIDE GPUs due to various errors thrown by the
CUDA runtime and linear algebra library respectively. These errors could not be resolved during
the available access time to the prototype system. For test case C, as for test case B, Piz Daint
appears to be considerably more energy efficient running CP2K. A recurring insight from these
energy and performance comparisons appears to be that energy efficiency, high performance, and
especially high parallel efficiency are not only complementary but in fact highly correlated.

4.3.6 Analysis of threading and energy on Frioul

Results on Frioul were obtained as part of the preceding PRACE-4IP project extension and
analysed here in more depth, including with direct comparison to performance and energy
consumption results on other systems in order to provide new insight. No new benchmarking data
were obtained as part of the PRACE-5IP project since the newer software stack on the system did
not include a CP2K-compatible version of the Intel compiler nor any MPI library version built with
gcc, and because the Bull Energy Optimizer (BEO) software tool required to collect energy
measurements was not available for a significant part of the machine access time during
PRACE-5IP.

Tests were run with KNLs configured in Quad/Flat mode. The command numactl --preferred=1
was used to allow memory allocation in MCDRAM until exhausted. All benchmarks were run with
one hyperthread per physical core as previous KNL benchmarking showed no benefit in using
multiple hyperthreads per core. The process pinning options I_MPI_DOMAIN=auto and
I_MPI_PIN_RESPECT_CPUSET=0 were used, and thread affinity controlled with
KMP_AFFINITY=compact,1,0,granularity=fine,verbose and KMP_HW_SUBSET=64C,1T.

Figure 9 illustrates the effect the choice of MPI ranks per node and OpenMP threads per rank can
have on the time to solution by showing results for Test Case C (H2O-DFT-LS) on Frioul. Similar
behaviour was found for Test Case B (LiH-HFX). Pure MPI performs worst. Adding
multithreading improves performance, until ~ 8 threads per process (the best case) at which point
the time to solution is almost 2× faster than for pure MPI. Performance deteriorates for > 8 threads
per process, but is never quite as bad as for < 8 threads and as for pure MPI.

These results are not typical for CP2K running on conventional multicore processors, where one
or two threads per process give best performance for a variety of problems and where higher thread
counts are often used primarily as a way of alleviating memory requirements, allowing the
simulation to run at all or potentially faster as more intermediate results can be stored in memory
rather than recomputed on the fly. On Intel’s MIC architecture CP2K clearly benefits from
increased threading. This may in part be due to the smaller amount of memory available per core
on this architecture, meaning that more cores should be used jointly for a single MPI rank requiring
a certain minimum amount of memory (or benefiting from additional available memory).

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 45 18.04.2019

Figure 9: Time to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different choices of
number of MPI processes per node and number of OpenMP threads per process

When we look at the total energy to solution for the same test case (Figure 10) we see it directly
mirrors the trend in the time to solution. This suggests energy usage for a fixed number of nodes is
simply proportional to runtime, with the same power drawn independent of the degree of threading
in code execution. In other words, runs use more energy simply because they last longer, not
because they cause the hardware to draw more power over the same (or even shorter) time than
more energy-efficient runs. To understand this better, we plot in Figure 11 the average power (total
job energy / runtime) for this test case running on different numbers of nodes, which will also show
if average power drawn for a given threaded execution mode differs depending on the number of
nodes in the job.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 46 18.04.2019

Figure 10: Energy to solution for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for different choices of
number of MPI processes per node and number of OpenMP threads per process

Figure 11 shows that average power drawn by nodes is not completely independent of threading
but follows a regular pattern. More threads per process leads to somewhat lower average power
draw. For a given threading choice, average power draw grows roughly linearly with number of
nodes. The fastest, lowest-energy execution modes use 8–16 threads per process, and draws
middling power on average but completes quickly enough to still win overall on energy. Runs with
> 8–16 threads draw less power on average but suffer performance penalty and so incur a higher
overall energy cost as a result of longer runtimes. The outlier is pure MPI (64 MPI × 1 OMP)
execution, which on 32 nodes draws by far the most power of all execution modes, on 64 nodes
draws middling power, but which always loses on total energy consumption due to more than
proportionally increased runtime.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 47 18.04.2019

Figure 11: Average power drawn during runs for Test Case C (H2O-DFT-LS) on 64 nodes of Frioul for
different choices of number of MPI processes per node and number of OpenMP threads per process

4.3.7 Conclusions

We have used CP2K benchmarks to quantify some of the performance and energy characteristics
of PRACE PCP and other prototypes with reference to established Tier-0 HPC systems in a way
that has allowed us to cross compare between these systems and draw some conclusions regarding
what they offer from the perspective of running an important scientific application. In doing so we
have found a recurring insight gained from these energy and performance comparisons to be that
energy efficiency and high (parallel) performance and efficiency are not only complementary but
in fact highly correlated, and that focusing on the one is likely to help improve the other.

Disregarding the impact of poorer MPI performance at large scale on JUWELS, its Intel Skylake-
based nodes were found to offer superior node-for-node CP2K performance compared to older
generation Haswell-equipped Piz Daint and DEEP-SDV nodes, KNL-equipped Frioul nodes,
ThunderX2-based Dibona nodes, and Power8-based DAVIDE nodes. However, Dibona’s
ThunderX2-based nodes were found to offer competitive performance, especially compared to
Haswell-based Piz Daint and DEEP-SDV. Offloading to a single GPU per node on Piz Daint was
found to provide significant performance benefit for two out of three test cases, with no significant
benefit for the third test case. It was not possible to ascertain the benefit from using four GPUs per
node as available on DAVIDE for the two test cases that were found to benefit from single GPUs
per node, however the guidance from developers is that a minority of simulations and systems are

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 48 18.04.2019

expected to generate enough computational work to overcome offloading overheads and efficiently
make use of four GPUs per node as available on DAVIDE.

With regards to energy: energy consumption on Piz Daint – especially with use of GPU – was
found to be significantly more energy efficient than the PCP prototype systems Frioul and
especially compared to DAVIDE. A detailed investigation on Frioul of the effect of choice of
OpenMP threading on performance and energy consumption with all else being equal showed that
both vary strongly with the number of threads per MPI rank. It was found that for CP2K the choice
that uses least energy on the Frioul architecture is the same as yields the shortest runtime.

As well as allowing us to compare performance and energy usage, the process of benchmarking
across established Tier-0 and novel prototype architectures has highlighted the importance for
successful porting and efficient usage of scientific applications such as CP2K of having a software
stack that includes MPI and performance libraries that are maximally compatible with a range of
compilers and compiler versions.

4.4 GADGET

We carried out tests using the PRACE Tier-0 facilities (JUWELS [28], MareNostrum4 [30],
Marconi-KNL [29], and the Mont-Blanc 3 prototype Dibona [36]) in order to benchmark
GADGET-3 and determine its weak and strong scaling. However, we were only able to
successfully run Test Cases A and B. GADGET was compiled with the optimisation level O2. The
tests were carried out with one MPI-task per core and the code ran for 50 timesteps.

4.4.1 System and software environment

MareNostrum4: Software modules FFTW/2.1.5, GSL/2.4 and HDF5/1.10.1. Compiler: Intel C
Compiler Ver.17.0.4.

JUWELS: Software modules: GSL/2.5 and HDF5/1.10.1. Compiler: Intel C Compiler Ver.
19.0.0.117. We installed FFTW.2.1.5 as it is not available in JUWELS.

Marconi-KNL: Software modules: profile/advanced, intel/pe-xe-2018, intelmpi/2018, GSL/2.5
and hdf5/1.10.4. Compiler: Intel C Compiler Ver. 18.0.5. We installed FFTW.2.1.5.

Mont-Blanc 3 prototype Dibona: Software modules: openmpi4.0.0/arm19.0. Compiler: ARM
Compiler 19.0. We installed FFTW.2.1.5 and GSL/2.5.

4.4.2 Modifications carried out in GADGET-3

The function forcefree.c includes the MPI_Allgatherv call with the overlap of the input and output
buffers (MPI_Allgatherv(&DomainMoment[DomainStartList[ThisTask * MULTIPLEDOMAINS
+ m]],revcounts [This Task],…). This is not allowed by the MPI standard and Intel MPI detects
this error and stops the program with a message about aliased buffers (“PMPI_Allgatherv(1379):

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 49 18.04.2019

Buffers must not be aliased”). A way out is using MPI_IN_PLACE in the call, that is,
MPI_Allgatherv(MPI_IN_PLACE,recvcounts [This Task], …).

4.4.3 Dynamic analysis

Performance analysis was carried out in order to determine the timings of the different functions

and the MPI calls. This analysis was carried out in JUWELS loading the modules Score-P/4.1 and
Vampir/9.5.0. The latter was used for event trace visualisation. The GADGET code was compiled
with the Score-P wrappers for mpicc and mpic++. The relative inclusive (that is, the amount of
time spent in a function and all of its subroutines) and exclusive (that is, the amount of time spent
in a function) times per function shown in Figure 12 (top and bottom panels) were measured for
Test Case A running for 50 timesteps and using 16 cores with 1 MPI task per core. The execution
time of the code is dominated, excluding the MPI_Allgather, by the force_freeevaluate_shortrange
(35%), and msort_pmperiodic_with_tmp (11.8%) functions. The code may be accelerated through
the insertion of OpenMP directives in these two functions.

4.4.4 Performance Results

Test Case A – Results and Analysis

The results of this test case A are shown in Table 39 and displayed in Figure 13. The different
systems show an increase in computing time as we move from the SKL CPUs to ARM and the
KNL in Marconi. MareNostrum4 shows a speedup a little bit larger than the remaining systems,

Figure 12: Accumulated exclusive (top panel) and inclusive (bottom panel) times per function

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 50 18.04.2019

except for 128 cores where Dibona has the largest speedup. Overall the SKL systems are faster in
this test and their clock speed determines the observed timings.

MPI Tasks
per CPU # Nodes # Cores JUWELS MareNostrum4 Dibona

Time (s) Speedup Time (s) Speedup Time (s) Speedup
8 1 8 206 1.00 259 1.00 322 1.00
16 1 16 107 1.93 129 2.01 168 1.92
16 1 32 56 3.68 67 3.87 86 3.74
16 2 64 32 6.44 37 7.00 51 6.31
16 4 128 19 10.84 22 11.77 26 12.38
16 8 256 15 13.73 12 21.58 17 18.94

MPI Tasks
per KNL # Nodes # Cores Marconi

Time (s) Speedup
8 1 8 1055 1.00
16 1 16 514 2.05
32 1 32 302 3.49
64 1 64 169 6.24
64 2 128 99 10.66
64 4 256 63 16.75

Table 39: Small size problem computing times and speedup

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 51 18.04.2019

Test Case B – Results and Analysis

The results of this test case are shown in Table 40 and displayed in Figure 14. Contrary to the clear
separation between computing times in Test Case A, here both JUWELS and Marenostrum4 have
similar timings, while the remaining systems lag behind in the timing. Clearly the ARM CPU is
faster than the KNL, although the explanation for such a large difference resides not only in the
size of the problem, but also on the architecture of the two processors and their clock speeds. The

Figure 13: Variation of the computing time vs. number of cores (top panel) and speedup (bottom panel)
for Test Case A.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 52 18.04.2019

speedup between the SKL (JUWELS and MareNostrum4) and the ARM systems are similar for
the present test case.

MPI Tasks
per CPU # Nodes # Cores JUWELS MareNostrum4 DIBONA

Time (s) Speedup Time (s) Speedup Time (s) Speedup
16 2 64 2235 1.00 2519 1.000 3425 1.00
16 4 128 1053 2.12 1148 2.194 1431 2.39
16 8 256 567 3.94 598 4.212 794 4.31
16 16 512 312 7.16 330 7.633 422 8.12
16 32 1024 180 12.42 191 13.188 285** 12.02**
16 64 2048 165 13.55 151 16.682

MPI Tasks
per KNL # Nodes # Cores Marconi

Time (s) Speedup
8 1 64 7787 1.00
32 2 128 3610 2.16
32 4 256 2508 3.10
64 8 512 1530 5.09
64 16 1024 791 9.84
64 32 2048 763 10.21

Table 40: Medium size problem computing times and speedup

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 53 18.04.2019

Figure 14: Variation of the computing time vs. number of cores (top panel) and speedup (bottom panel) for
Test Case B

4.4.5 Conclusion

We have carried out tests for the GADGET code by running a cosmological simulation in
established Tier-0 SKL and KNL systems and in an ARM prototype system. With the exception of
Test Case A, the remaining tests are highly demanding in terms of computing resources. Hence,
these tests provide an indication regarding the adequate systems to run such heavy simulations. It
is clear that the SKL and ARM systems are better suitable to handle complex N-body and SPH
cosmological simulations with the GADGET code.

4.5 GPAW

The performance of GPAW for the benchmarks described in Section 2.5 was measured and
compared on different systems with a range of parallel job sizes (Table 41, Table 42, and Table
43). Only the time spent in the main computational loop (SCF-cycle) was used as the runtime in
the comparison to exclude any differences in initialisation overheads.

The systems and architectures covered included: JUWELS, MareNostrum4, Frioul, DAVIDE, and
Sisu.

• Sisu [37] is a Cray XC40 system at CSC, similar to Hazel Hen at HLRS with dual 12-core
x86 Haswell CPUs (Intel Xeon E5-2690v3), and an Aries interconnect using a Dragonfly
topology.

GPAW is mainly compute bound for all the benchmarks, but generates also periodically high levels
of MPI communication, especially for the benchmarks Case M: Copper filament and Case L:
Silicon cluster. Memory usage of GPAW is also quite high, setting limits to the minimum number
of nodes needed for the benchmarks.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 54 18.04.2019

4.5.1 Performance Results

Nodes Sisu JUWELS MareNostrum4 Piz
Daint

DAVIDE /
P100

DAVIDE /
POWER8 Frioul

1 239.1 111.2 136 566 114.3 517.7 527.3
2 136.7 58.9 73.3 305.8 77.3 282.8 307.2
4 78.9 32.5 44 175.7 56.2 263.5 187.3
8 44.3 20.8 30.0 106.3 46.3 84.7 140.8
16 31.5 14.2 21.2 70.3 172.6 114.8
32 21.9 11.3 22 54.8 118.3
64 19.0 50

128 43.2
256 41.5
512 41.6

Table 41: Total runtime (in seconds) for benchmark Case S: Carbon nanotube

Nodes Sisu JUWELS MareNostrum4 DAVIDE /
POWER8 Frioul

1 1821 2073 15595 456.5
2 1059.3 1213.9 7891 214.8
4 1531 623.0 740 3928 128.7
8 932.2 309.2 354.0 2087 72.0

16 439.0 159.3 208 3477 49.5
32 251.1 92.4 130 36.0
64 150.5 58.2 87

128 93.4 38.8 64
256 60.6 31.6 56
512 42.0 29.7
768 42.6

Table 42: Total runtime (in seconds) for benchmark Case M: Copper filament

Nodes Sisu JUWELS MareNostrum4 DAVIDE /
POWER8

1
2 26290
4 1986 17720
8 936 1264 15734

16 1217 486.1 628 11049
32 646.5 267.8 376
64 377.1 189.6 269

128 226.4 156.2 183
256 140.3
512 115.4
768 123.7

Table 43: Total runtime (in seconds) for benchmark Case L: Silicon cluster

Nodes Sisu JUWELS MareNostrum4
32 1592 2043
64 2398 888 1214

128 1328 633
256 684
512 502

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 55 18.04.2019

Nodes Sisu JUWELS MareNostrum4
768 375.9

Table 44: Total runtime (in seconds) for benchmark Case L: Silicon cluster using a larger system with a radius
of 20Å

4.5.2 Performance Cross comparison

Skylake vs. Haswell Based on the benchmark runtimes on different systems (Table 41, Table 42,
Table 43, and Table 44), one can conclude that compared to the older Haswell CPUs, the next
generation Skylake CPUs are roughly twice as fast, with speed-ups ranging from no speed-up to
three times faster. On JUWELS, the performance increase is consistently more than two times until
the scalability limits for the benchmarks are reached.

KNL vs. Haswell Looking at the data for the Frioul system, Knights Landing (KNL) MICs are
significantly slower than the same generation Haswell CPUs. Scalability is also worse on KNLs,
which is actually not surprising considering that GPAW uses only MPI for parallelisation. Since
the number of cores, and thus MPI tasks, is larger on the KNL, this generates a higher
communication load on the node that could only be mitigated by not using all cores, which would
of course then lower the overall performance.

Interestingly, next generation Skylake CPUs have a similar number of cores per node, but are better
able to handle the increased communication load.

POWER8 vs. Haswell The performance of POWER8 CPUs seems to depend greatly on the
benchmark in question. For Case S: Carbon nanotube (Table 41), POWER8 CPUs offer a similar
level of performance than KNLs do. But for Case M: Copper filament (Table 42), the performance
of POWER8 CPUs is an order of magnitude lower. It is likely that this is due to the higher MPI
load generated by the latter benchmark.

P100 vs. Skylake The performance of a single P100 GPU (on a POWER8 host CPU) seems to be
similar to a node with two 24-core Skylake CPUs (Table 41). When using multiple GPUs, the
performance does not scale as well as, though. The execution model of the experimental GPGPU-
version of GPAW is such that for each GPU only a single host CPU core is used. On one hand, this
means that the majority of computing is done on the GPU, and on the other hand, that the MPI
communication load is significantly lower per node than e.g. when using only the host CPUs as
was done for the POWER8 CPU results. Nevertheless, despite the lower MPI load, the scalability
is still not as good as e.g. on JUWELS or MareNostrum4.

JUWELS vs. MareNostrum4 A comparison of the two Skylake systems (JUWELS and
MareNostrum4) gives an interesting chance for direct comparison between roughly similar
systems. The CPUs on JUWELS have a slightly higher frequency (2.7 GHz) than those on the
MareNostrum4 (2.1 GHz). The two systems also have different interconnects, with an Intel Omni-
Path on MareNostrum4 and a Mellanox EDR-InfiniBand on JUWELS.

The single-node performance difference of the two systems is approximately equivalent to the
slightly higher CPU frequency on JUWELS. When using multiple nodes, the performance
difference increases in favour of JUWELS. Since single-node performance was roughly equivalent
(if one takes into account the CPU frequencies), this likely means that the interconnect on JUWELS
is better suited for the MPI communication load from GPAW.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 56 18.04.2019

Piz Daint vs. DAVIDE Another possibility for direct comparison is offered by the two P100
GPGPU systems (Piz Daint and DAVIDE). A major difference between the systems is that on Piz
Daint each node has a single GPU and a single Haswell host CPU whereas on DAVIDE each node
has four GPUs and two POWER8 host CPUs. In other respects, the two systems are also quite
different, e.g. Piz Daint has an Aries interconnect in a Dragonfly topology and on DAVIDE the
interconnect is an InfiniBand EDR network.

Since only a single CPU core is used per GPU in the current GPGPU-version of GPAW, this means
that the number of GPUs is the dominant factor when comparing the performance between systems.
Even after taking into account the fact that each DAVIDE node is the rough equivalent of four Piz
Daint nodes (4 × P100 on DAVIDE compared to Piz Daint), it is clear from Table 41 that Piz Daint
has lower overall performance than DAVIDE for GPAW. Since the host CPUs on Piz Daint have
better performance, this is most likely due to communication overhead coming either from
differences in the interconnect or from a less dense packing of the allocated nodes. It is possible,
that by requesting a more densely packed allocation of nodes (similar to DAVIDE), the
performance difference could be mitigated.

4.5.3 Energy consumption

PRACE PCP prototypes (DAVIDE and Frioul) have built-in energy measurement hardware and
tools to estimate the energy usage of jobs. These tools were used to estimate the total energy
consumption of two benchmarks (Table 45).

For KNLs (on Frioul), the energy consumption seems to be a more or less linear function of the
total usage of processors, i.e. the number of nodes used times the runtime. There is a slight
improvement in the coefficient of the linear function for larger number of nodes, but since the total
energy consumption is nevertheless growing, the most optimal energy-to-solution is to use only a
single KNL.

For P100 GPGPUs and for POWER8 CPUs (on DAVIDE), the total energy consumption
decreases when using more nodes. In light of the fact that also the runtime decreases, it seems that
for P100s and POWER8s it is beneficial to use as many nodes as possible, within scalability limits,
to reach an optimal energy-to-solution.

Nodes
Case S: Carbon nanotube Case M: Copper filament

DAVIDE /
P100

DAVIDE /
POWER8 Frioul Frioul

1 91.9 451.5 153.8 159.3
2 72.2 226.3 242.5 204.9
4 52.6 245.7 306.5 255.0
8 79.5 490.8 352.2

16 826.1 614.9
32 1800 1200

Table 45: Total energy consumption (in kJ) for benchmarks Case S: Carbon nanotube and Case M: Copper
filament in PRACE PCP prototypes

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 57 18.04.2019

4.6 GROMACS

GROMACS is a package that uses multilevel optimisations. The main difference from other codes
is the use of low-level CPU accelerated kernels. For mainstream processors the computationally
expensive parts are written using specific CPU features like SSE, AVX, VSX etc. Of course, the
catch-up C version of kernel is still present. The comparison between C and CPU accelerated builds
lead to a speedup of 4–10, depending on the CPU features. Its memory footprint is quite small
compared to other Molecular Dynamics packages.

It uses hybrid MPI/OpenMP parallelisation. GROMACS does domain decomposition on MPI tasks
and can use OpenMP on each cell. 3D domain decomposition quality is sensitive on the number of
MPI tasks, for example on 68 KNL cores this can be done as 2×2×17 that lead in many cases to
unbalanced distribution of computation and in some cases, it rejects to run. This is the reason why
in the reported results on KNL we used 64 instead of 68 cores/node. Using hybrid MPI/OpenMP
parallelisation, one can achieve better domain decomposition and use OpenMP on each cell.
Parallelisation using OpenMP is efficient when using small number of threads per task, in general
in the range 1–10. At high numbers of nodes, using hybrid MPI/OpenMP parallelisation scheme,
we may extend its scalability when pure MPI scalability is exhausted, by decreasing the number of
MPI packets/increasing the packet size. It also has pinning capabilities.

For NVIDIA GPUs, it includes the corresponding CUDA kernels to offload work on GPU. Speedup
from GPUs is not as high as with other packages because it is already CPU optimised. In most
cases, speedup using GPUs is analogous to the theoretical performance ration of the GPU/CPU.

On all systems, trial runs with some combinations of MPI tasks/threads task were performed using
small, intermediate and high number of nodes in order to find the combination that yields the higher
performance as function of number of nodes on each system. In results tables, only the combination
that yields the higher performance is reported.

4.6.1 Performance on KNL systems

GROMACS ran on three KNL systems, Frioul, Irene-KNL and Marconi-KNL with their own
characteristics like KNL memory configuration, interconnect and batch system limitations.
Marconi-KNL seems to be faster when using 1 or 2 nodes, but scalability is limited at higher
number of nodes. Frioul system had limited number of nodes with the same memory configuration
available during benchmarks and although its performance seems good there is not sufficient data
to have a clear picture of scalability. On the other hand, Irene-KNL had limitation on the number
of tasks/threads per node, but reached higher performance, with efficiency 55.3% at 64 nodes. A
direct comparison of three KNL systems using 16 nodes, shows large deviation in performance
between systems.

Frioul Irene-KNL Marconi-KNL

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]
1 66 4 1.84 1 64 1 1.57 1 136 2 2.05
2 66 4 3.57 2 64 1 2.94 2 136 2 3.62
6 66 4 9.33 4 64 1 5.56 4 136 2 5.97

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 58 18.04.2019

Frioul Irene-KNL Marconi-KNL

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]

Nod
es

Tasks/
Node

Threads/
Task

Perform
ance

[ns/day]
8 66 4 12.05 8 64 1 10.08 8 136 2 8.82
16 66 4 20.10 16 64 1 10.00 16 68 4 12.67
20 66 4 24.40 32 64 1 16.42 32 34 8 11.62
 64 64 1 37.50 64 68 4 11.89
 128 64 1 55.60
Table 46: GROMACS Performance on KNL systems (in ns/day units) for Test Case B: Lignocellulose

4.6.2 Performance on GPU accelerated systems

Benchmarks with GPUs were performance on two machines, the POWER8/P100 with NVLink
based DAVIDE and Haswell/P100/PCIe Piz Daint. On DAVIDE, initially machines were
configured with SMT off. Results from previous PRACE implementation phases exhibit significant
performance gain when using SMT with hybrid applications. Machines were configured for some
period with SMT on, where the results were obtained. For comparison, performance and energy to
solution are reported with both SMT on and off. Using up to 16 nodes, DAVIDE with four
P100/node is roughly 5–20% faster than Piz Daint of one P100/node. Performance on DAVIDE
without SMT is significantly lower (~60%) with respect the performance with SMT. The efficiency
with 16 nodes is 51.4% for DAVIDE and 69.8% for Piz Daint. GROMACS performance is
increasing up to 800 nodes although with decreasing efficiency.

DAVIDE
16 physical cores/Node, SMT=4

Piz Daint
12 Physical Cores/Nodes, HT=ON

Nodes Tasks/Node Threads/Task Performance [ns/day] Nodes Tasks/Node Threads/Task Performance
[ns/day]

1 16 4 3.90 4 12 2 10.88
2 16 4 6.07 8 6 4 13.49
4 16 4 12.50 16 12 2 30.40
8 16 4 20.84 32 12 2 55.94
16 16 4 32.11 64 12 2 83.29
32 16 4 52.09 128 6 4 99.79
 300 12 2 128.31
 800 12 2 143.05
Table 47: GROMACS Performance on systems with GPUs (in ns/day units) for Test Case B: Lignocellulose

4.6.3 Performance on Haswell/Skylake systems

There are four systems with different interconnect technologies and CPUs. Hazel Hen is Haswell
based with Aries network, while the rest are based on Skylake and also different interconnect and
CPU settings – Hyperthreading and probably power management. On a single node, JUWELS with
Hyperthreading enabled has higher performance, MareNostrum4 and Irene-SKL have comparable
performance taking into account the different frequency of CPUs. Older Haswell of Hazel Hen
have less than half the performance of Skylake Machines. At 128 nodes the efficiency drops down
to 48.1%, 30%, 32.8%, 29.8% from Hazel Hen, MareNostrum4, Irene-SKL and JUWELS
respectively. Finally, the DEEP SDV Haswell have similar single node performance to this of
Hazel Hen. Scaling on DEEP SDV is not comparable to this of same CPU Hazel Hen.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 59 18.04.2019

Hazel Hen:
24 Physical Cores/Node, HT=ON

MareNostrum4:
48 Physical Cores/Node, HT=OFF

Nodes Tasks/Node Threads/Task Performance [ns/day] Nodes Tasks/Node Threads/Task Performance
[ns/day]

1 24 2 1.182 1 12 4 2.384
2 24 2 2.329 2 12 4 4.43
4 24 2 4.542 4 12 4 8.125
8 24 2 8.711 8 12 4 15.11

16 24 2 14.582 16 24 2 27.089
32 24 2 24.252 32 24 2 44.26
64 24 2 44.762 64 12 4 63.646

128 24 2 72.841 128 48 1 94.493
256 24 2 125.076
320 24 2 129.302

Irene-SKL:
48 Physical Cores/Node, HT=OFF

JUWELS:
48 Physical Cores/Node, HT=ON

1 8 6 2.761 1 48 2 3.288
2 8 6 5.363 2 48 2 6.408
4 8 6 10.244 4 48 2 12.328
8 8 6 19.112 8 48 2 22.186

16 8 6 33.255 16 24 4 40.06
32 8 6 57.876 32 12 8 57.55
60 8 6 92.095 64 24 4 100.528

128 12 4 116.108 128 12 8 125.491
192 12 4 164.861 256 12 8 101.508
384 12 4 205.703

DEEP-ER SDV:
24 Physical Cores/Node, HT=ON

1 24 2 1.095
2 24 2 1.995
4 24 2 3.244
8 24 2 4.848

16 24 2 5.152
Table 48: GROMACS Performance on x86 systems (in ns/day units) for Test Case B: Lignocellulose

4.6.4 Energy consumption

PRACE PCP prototypes DAVIDE and Frioul have built-in high frequency energy measurement
hardware and tools to estimate the total energy usage of all involved components (Node, network
and storage).

Since parallel efficiency decreases by increasing the number of nodes for both machines, the energy
to solution is also increasing. The energy to solution for Frioul and DAVIDE with SMT=4 is very
close for the same number of nodes except single node, On the other hand, the performance on
DAVIDE with SMT on is roughly double of this of the same number of Frioul nodes. This indicates
that with DAVIDE, consuming the same amount of energy we have the solution in half of time.
Without SMT on DAVIDE, the energy to solution is roughly 50% higher than with SMT enabled.

DAVIDE Frioul

Nodes
SMT=1 SMT=4

Nodes Performance
[ns/day]

Energy
[kJ] Performance

[ns/day]
Energy

[kJ]
Performance

[ns/day]
Energy

[kJ]
1 2.36 641.6 3.90 436.0 1 1.48 829.7

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 60 18.04.2019

DAVIDE Frioul

Nodes
SMT=1 SMT=4

Nodes Performance
[ns/day]

Energy
[kJ] Performance

[ns/day]
Energy

[kJ]
Performance

[ns/day]
Energy

[kJ]
2 4.55 667.4 6.07 554.5 4 4.89 533.9
4 9.25 682.9 12.50 508.9 8 9.43 603.5
8 14.13 900.4 20.84 620.9 16 14.18 817.4

16 21.46 1264.1 32.11 859.2 32 22.35 1200.0
32 38.54 1723.0 52.09 1180.0 48 29.25 1700.0
40 39.77 2186.5

Table 49: Performance and total energy consumption (in kJ) for GROMACS benchmarks Case B:
Lignocellulose, on PRACE PCP prototypes

4.7 NAMD

NAMD is a molecular dynamics package for mainly biomolecular systems. It supports
parallelisation with MPI, Threads, CUDA for GPUs, as well as other architectures. It has a large
memory footprint, and uses a dynamic load balancer to redistribute computation among tasks. In
PRACE benchmarks the special memory optimised build was used that enables the simulation of
very large systems without the need for huge amounts of memory in the master process. The input
data for PRACE benchmark are 2.3 GB in size. The initialisation stage except read/distribute input
data, optimise FFTW parameters based on input data, setups load balancer etc. The initialisation
time is usually very short – order of few seconds, but on some systems, it was found to be of order
of one minute. Also, this time happens to have large deviations on the same system. In the reported
data, the setup time, that is reported by NAMD is subtracted and the pure simulation time was taken
into account. For each machine a number of trial runs was performed using small, intermediate and
large number of nodes in order to obtain the combination of MPI tasks/ threads per task that yields
the best performance. It should be noted that in the hybrid version, one thread is used as controller
while the rest of the threads are used for computation. This means that with N threads / task this
results to N – 1 threads for computation.

4.7.1 Performance on KNL systems

NAMD ran on two KNL systems, Frioul and Marconi-KNL with their own characteristics like
KNL memory configuration. Both systems have similar performance with Frioul being slightly
faster for the same number of nodes.

Frioul Marconi-KNL

Nodes Tasks/Node Threads/Task Wall Time
[sec] Nodes Tasks/Node Threads/Task Wall Time

[sec]
2 4 64 55607.1 2 4 64 65889.2
4 4 64 30210.7 4 4 64 34234.6
8 4 64 17340.0 8 4 64 17720.9
16 4 64 10144.6 16 4 64 9224.7
32 64 4 6479.4 32 64 4 7053.6
64 64 4 5262.1 64 64 4 3232.3
 128 64 4 1934.8
 192 64 4 1595.2

Table 50: NAMD Execution Time on KNL systems (in seconds) for Test Case B: STMV.28M

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 61 18.04.2019

4.7.2 Performance on GPU accelerated systems

Benchmarks with GPUs were performance on two machines, the POWER8/P100 with NVLink
based DAVIDE and Haswell/P100/PCIe Piz Daint. On DAVIDE, initially machines were
configured with SMT off. Results from previous PRACE implementation phases exhibit significant
performance gain when using SMT with hybrid applications. Machines were configured for some
period with SMT on, where the results obtained.

NAMD benchmark case B is large enough and does extensive GPU use. DAVIDE with four P100
is significantly faster compared to the same number of nodes of Piz Daint. Scaling is almost linear
up to the available 40 DAVIDE nodes.

DAVIDE
16 physical cores/Node, SMT=4

Piz Daint
12 Physical Cores/Nodes, HT=ON

Nodes Tasks/Node Threads/Task Wall Time
[sec] Nodes Tasks/Node Threads/Task Wall Time

[sec]
6 16 4 2408.1 4 1 12 12433.4
8 16 4 1826.8 8 1 12 5227.5
12 16 4 1260.4 16 1 12 2907.1
16 16 4 1078.3 32 1 12 2431.2
24 16 4 608.4 64 1 12 783.7
32 16 4 529.7 128 1 12 807.2
40 16 4 484.3 256 1 12 586.8

Table 51: NAMD Execution Time on systems with GPUs for Test Case B: STMV.28M

4.7.3 Performance on Haswell/Skylake systems

On Haswell/Skylake systems, NAMD case B exhibits almost linear scaling up to the available
number of nodes on each system except JUWELS, where scaling drops down when using more
than 64 nodes. Performance is comparable taking into account the differences.

Hazel Hen:
24 Physical Cores/Node, HT=ON

MareNostrum4:
48 Physical Cores/Node, HT=OFF

Nodes Tasks/Node Threads/Task Wall Time
[sec] Nodes Tasks/Node Threads/Task Wall Time

[sec]
32 2 24 2944.4 2 2 24 44195.7
64 2 24 1545.3 4 2 24 21815.4

128 2 24 792.3 8 2 24 11041.7
192 2 24 557.7 16 2 24 5683.5
256 2 24 421.6 32 2 24 2937.5
320 2 24 344.9 64 2 24 1501.2
400 2 24 303.1 128 2 24 808.8

 256 2 24 443.5
 320 2 24 367.8
 400 2 24 297.5

Irene-SKL:
48 Physical Cores/Node, HT=OFF

JUWELS:
48 Physical Cores/Node, HT=ON

4 8 6 15994.0 1 4 24 43660.5
16 8 6 4355.7 2 4 24 21222.1
32 8 6 2249.5 4 4 24 10478.1
64 8 6 1073.3 8 4 24 5534.6

128 8 6 548.8 16 4 24 2671.3
216 8 6 343.4 32 4 24 1395.3

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 62 18.04.2019

 64 4 24 906.8
 96 4 24 914.2
 144 4 24 951.9

DEEP-ER SDV
24 Physical Cores/Node, HT=ON

4 2 12 36165.1
8 2 12 25713.1

16 2 12 17705.3

Table 52: NAMD Performance on x86 systems for Test Case B: STMV.28M

4.7.4 Energy consumption

PRACE PCP prototypes DAVIDE and Frioul have built-in high frequency energy measurement
hardware and tools to estimate the total energy usage of all involved components (Node, network
and storage). Since parallel efficiency decreases by increasing the number of nodes for both
machines, the energy to solution is also increasing.

Performance on DAVIDE with SMT on is significantly higher on DAVIDE compared to Frioul.
This results to a significantly lower energy to solution on DAVIDE.

DAVIDE (SMT=4) Frioul
Nodes Wall Time [sec] Energy [kJ] Nodes Wall Time [sec] Energy [kJ]

16 1078.3 19434.9 2 55607.1 38700
32 608.4 20224.8 4 30210.7 41200
40 529.7 22896.6 8 17340.0 46200

 16 10144.6 52300
 32 6479.4 65200
 64 5262.1 97400

Table 53: Performance and total energy consumption (in kJ) for NAMD benchmark Case B: STMV.28M, on
PRACE PCP prototypes

4.8 NEMO

Comparative benchmarking of NEMO has been performed on homogenous CPU only system
comprising of JUWELS, MareNostrum4 and Hazel Hen. Since Irene-SKL and JUWELS are
similar in nodal configuration and interconnect, we skipped the Irene-SKL and also were not able
to use SuperMUC-NG because of its unavailability until April 2019.

We also committed benchmarking NEMO on DEEP-ER SDV and Dibona but did not proceed
further due to following reasons:

DEEP-ER SDV booster modules consist of Intel Xeon Phis and we decided not to benchmark
NEMO on Xeon Phi or any other accelerator type of nodes. Since we did not utilise booster nodes
and also wanted to benchmark NEMO on a 1024 CPU core count to make results comparable on
different systems, this was not possible since the highest core count available on DEEP-ER SDV
cluster partition is 768 and therefore we did not proceed with DEEP-ER SDV.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 63 18.04.2019

4.8.1 Installation

We have installed NEMO version 3.6 with XIOS 2.0 on JUWELS and MareNostrum4 using the
Intel compiler toolchain and NEMO version 3.6 with XIOS-1.0 on Hazel Hen also with the Intel
compiler tool chain.

4.8.2 Performance Results

Test Case A

SubDomain
size per core

CPU
Cores

Average Time(s) per computational step and relative speedup

MareNostrum4 Speed
Up JUWELS Speed

Up Hazel Hen Speed
Up

122 × 162 512 1.15 1 1.14 1 0.99 1
122 × 82 1024 0.59 1.94 0.58 1.96 0.51 1.97

Table 54: NEMO Test Case A performance

Test Case B

Subdomain
size per core

CPU
Cores

Average Time(s) per computational step and relative speedup

MareNostrum4 Speed
Up JUWELS Speed

Up Hazel Hen Speed
Up

122 × 82 4092 0.62 1 0.55 1 0.51 1
61 × 82 8192 0.39 1.5 0.29 1.9 - -
62 × 42 16384 0.22 2.8 0.15 3.6 - -

Table 55: NEMO Test Case B performance

4.8.3 Performance Cross Comparison

The three-systems involved (JUWELS, MareNostrum4 and Hazel Hen) represent the widespread
system characteristics involving latest generation Intel CPUs and modern interconnect
technologies (Intel Omni-Path, Mellanox InfiniBand EDR, and Aries with Dragonfly Topology).

NEMO is a memory bound code [25] and also involves a lot of point to point and collective
communication due to underlying numerical constructs. NEMO is a representative of some of the
MPI applications which are heavily influenced by memory subsystem and interconnect
performance especially when experiments are conducted on a very large number of cores.

The PRACE best practice guide for modern interconnects [23] shows theoretical maximum nodal
bandwidth for JUWELS, Hazel Hen and MareNostrum4. The numbers are summarised in Table
56.

 JUWELS –
Intel Omni-Path

MareNostrum4 –
InfiniBand EDR

Hazel Hen –
Dragonfly Aries

Theoretical Max
Bandwidth (GB/s) 12.8 12.8 15

Table 56: Theoretical Max Bandwidth (GB/s)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 64 18.04.2019

According to Table 56 there exists a clear trend for maximal theoretical bandwidth per node where
Hazel Hen has the highest performance and this combination with modest CPU clock frequency
should provide the relatively better performance for memory and communication bound
applications. Also, [24] documents the detailed performance comparison of different interconnects
for latency and bandwidth. The authors conclude that for latency and bandwidth the Aries
interconnect outperforms both InfiniBand EDR and Intel Omni-Path with upper hand for
InfiniBand EDR compared to Intel Omni-Path. We should perhaps see qualitatively similar trends
in performance for NEMO as well.

Results from test case A show quite similar performance characteristics with slightly upper hand
for JUWELS and for Hazel Hen. The average time taken for each computational step is lowest for
Hazel Hen and the relative speed-up also shows a very similar trend. Since the speedup can only
help us to evaluate application scalability on a single system, its use for comparing performance
with other system should not be practiced, therefore it is important to not only look at the speedup
but also time taken on different systems.

Results from test case B depicts scalability and time perspective up to 16000 cores. In some cases,
16000 cores represents almost a third of the full production system under consideration. On 16384
cores and 8192 cores we can see a clear trend, NEMO on JUWELS achieve relative speedup of 3.6
and 1.9 compared to 2.8 and 1.5 on MareNostrum4. The time taken on JUWELS is less than that
on MareNostrum4 and this is perhaps due to a better interconnect performance on JUWELS since
nodal performance is almost identical. We can also see time taken for test case B on Hazel Hen for
4096 cores and it outperforms other system in comparison.

Since NEMO is a memory bound application, we can clearly see that throwing more computational
power per node in this case (MareNostrum4 and JUWELS) does not help but a better interconnect
and a balanced system does. Summarizing, in case of NEMO benchmarking, the above-mentioned
trends in interconnect performance clearly augment the experiments conducted here on three
representative systems and support the numbers of system performance.

4.9 PFARM

PFARM benchmark runs were undertaken on PRACE Tier-0 and PCP prototypes. The
parallelisation and test cases are described in Section 2.9

The performance of PFARM from the four main CPU architectures benchmarked – Intel Xeon
Skylake, Intel Xeon Phi Knights Landing, Intel Xeon Haswell/NVIDIA P100 and ARM
ThunderX2 is analysed in this section. The compilers used, compiler optimisation flags and
numerical libraries used are summarised Table 57.

Machine Compiler Compiler Optimisation Flags Numerical Libraries

JUWELS Intel Fortran
v2019.0.117

-mtune=skylake -mkl=parallel -
Ofast Intel MKL v2019.0.117

Marconi Intel Fortran
v2018.0.5

-xMIC-AVX512 -mtune=knl -
mkl=parallel -Ofast Intel MKL v2018.5.274

Piz Daint Cray Fortran v8.7.3 -O3 Magma 2.3.0 & Cray Libsci v18.07.1
(third-party)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 65 18.04.2019

Machine Compiler Compiler Optimisation Flags Numerical Libraries

Dibona ARM Fortran
Compiler v 19.0 -Ofast ARM Performance Libs 19.0.0

Table 57: Summary of Programming Environments

4.9.1 Performance Results

The PFARM EXDIG MPI/OpenMP code is designed to match individual sector calculations to
nodes in order to minimise inter-node communication and maximise the number of threads
available for computation. One MPI task is assigned to each compute node. The number of sectors
in the benchmark is therefore an upper bound on the number of nodes used in the benchmark run
– 16 sectors/nodes for Test Case 1 and 64 sectors/nodes for Test Case 2. If the calculation is
relatively small and memory limits permit, more than one sector calculation, and therefore more
than one MPI task, can be placed on a node, but this is not a scheme investigated here. Each MPI
task uses OpenMP/CUDA to parallelise the computationally intensive sector Hamiltonian
eigensolvers via highly-optimised vendor-supplied numerical libraries (Table 57).

Parallel performance results for both datasets are summarised for the four main architectures tested
in Table 58 and Table 59. JUWELS is the Skylake system with the highest CPU frequency (2.7
GHz) and this platform provides the fastest results overall for both test cases. The Mellanox EDR-
InfiniBand network on JUWELS also contributes to the best overall parallel efficiency results,
though inter-node communication in the PFARM parallelisation is designed to be very low. The
ability of the GPFS parallel filesystem to handle multiple simultaneous outputs of large volumes
of data from multiple nodes is of more importance to parallel efficiency here. All the modern
filesystems tested here perform relatively well in this respect. However, for Test Case 2 all systems
show a marked reduction in parallel efficiency going from 32 nodes (~90% to 98%) to 64 (~77%
to 87%) nodes.

Number
of nodes

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
JUWELS (Intel Skylake) Marconi (KNL)

1 48 2379.45 1.0 100% 5184.94 1.0 100%
2 96 1199.83 1.98 99.15% 2599.42 1.99 99.73%
4 192 594.84 4.00 100% 1307.55 3.96 99.13%
8 384 302.42 7.87 98.35% 673.28 7.70 96.26%

16 768 153.07 15.54 97.16% 355.78 14.57 91.08%

Number
of nodes

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
Piz Daint

(Intel Haswell & NVIDIA P100) Dibona (ARM)

1 48 2404.05 1.0 100% 13540.67 1.0 100%
2 96 1206.64 1.99 99.15% 6773 1.99 99.96%
4 192 605.12 3.97 100% 3386.5 3.99 99.96%
8 384 305.11 7.87 98.35% 1700.97 7.96 99.50%

16 768 154.66 15.54 97.16% 853.11 15.87 99.20%
Table 58: Summary of Results from PRACE systems for full runs of the PFARM EXDIG Benchmark (Test
Case 1). Runs undertaken with one compute thread per core.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 66 18.04.2019

Number
of nodes

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
JUWELS (Intel Skylake) Marconi (KNL)

1 48 1580.71 1.0 100% 4213.81 1.0 100%
2 96 802.45 1.97 98.49% 2155.14 1.96 97.76%
4 192 401.22 3.93 98.49% 1080.55 3.90 97.49%
8 384 203.34 7.77 97.17% 544.22 7.74 96.79%

16 768 101.28 15.61 97.55% 273.13 15.43 96.42%
32 1536 50.36 31.39 98.09% 139.60 30.19 94.33%
64 3072 28.24 55.97 87.46% 75.48 55.83 87.23%

Number
of nodes

Number of
cores

Time (s) SpeedUp Efficiency Time (s) SpeedUp Efficiency
Piz Daint

(Intel Haswell & NVIDIA P100) Dibona (ARM)

1 48 1882.07 1.0 100% 7587.51 1.0 100%
2 96 945.26 1.99 99.55% 3820.20 1.99 99.31%
4 192 474.77 3.96 99.11% 1935.25 3.92 98.02%
8 384 239.23 7.87 98.34% 972.10 7.81 99.57%

16 768 124.98 15.05 94.12% 490.58 15.47 96.67%
32 1536 65.52 28.72 89.77% 64 3072 37.94 49.61 77.51%

Table 59: Summary of Results from PRACE systems for full runs of the PFARM EXDIG Benchmark (Test
Case 2). Runs undertaken with one compute thread per core.

4.9.2 Detailed Performance Analysis

4.9.2.1 Timing Breakdown

A PFARM (EXDIG) calculation takes place in several distinct stages. The time spent in each stage
is reported in Table 60. JUWELS is used as the example platform here and timing breakdowns do
not differ significantly from platform to platform. Firstly, in the SETUP stage, H file data produced
from a preceding inner region calculation is read from disk by all the nodes. This non-optimised
parallel input from one file to multiple nodes is potentially a bottleneck on large node counts, but
all systems cope relatively well here. The results show that the relative cost of SETUP rises from
0.02% on 1 node to 5.42% on 64 nodes. The Legendre basis functions are applied and the sector
Hamiltonian matrices are filled in the stage MATRIX ASSEMBLY stage. This is a sequential cost
within each node for each sector calculation and therefore its proportion of runtime remains fairly
constant throughout at approximately 10%. The parallel eigensolution of the sector Hamiltonian
matrix using OpenMP threads on the CPUs is undertaken in DIAG using optimised numerical
library routines e.g. DSYEVD. This stage is relatively onerous and parallelises well across the
range of node counts, averaging roughly 70% of runtime. This is mainly thanks to the inherent
parallelism in the R-matrix calculation construction (a single node run will repeat 64 sector
calculations whilst a 64 node run will undertake the compete set in parallel). The final stage AMPS
is dominated by output costs from each node. Again, this follows the inherent coarse-grained
parallelism and the relative cost remains fairly constant at 15–20%.

Nodes
Total

Runtime
(s)

SETUP
(s)

SETUP
(%)

MATRIX
ASSEMBLY

(s)

MATRIX
ASSEMBLY

(%)

DIAG
(Threaded)

(s)

DIAG
(Threaded)

(%)

AMPS
(s)

AMPS
(%)

1 1580.71 0.37 0.02 171.52 10.85 1190.04 75.29 218.78 13.84
2 802.45 0.31 0.04 86.40 10.77 594.56 74.09 121.18 15.10

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 67 18.04.2019

Nodes
Total

Runtime
(s)

SETUP
(s)

SETUP
(%)

MATRIX
ASSEMBLY

(s)

MATRIX
ASSEMBLY

(%)

DIAG
(Threaded)

(s)

DIAG
(Threaded)

(%)

AMPS
(s)

AMPS
(%)

4 401.22 0.65 0.16 43.36 10.81 298.08 74.29 59.13 14.74
8 203.34 0.63 0.31 21.92 10.78 148.64 73.10 32.15 15.81
16 101.28 0.94 0.93 10.72 10.58 75.64 74.68 13.98 13.80
32 50.36 1.54 2.80 5.34 10.31 37.82 73.01 7.19 13.88
64 28.24 1.81 5.42 2.67 9.45 18.91 66.96 5.13 18.17

Table 60: Breakdown of timings within distinct computational stages of PFARM EXDIG for Test Case 2
(JUWELS)

Table 60 shows that the eigensolver calculation contributes significantly to overall computation
costs. The computational complexity of the eigensolver, where both eigenvalues and eigenvectors
are required is of order O(N3), where N is the dimension of the matrix. This means that as the
problem size increases, the proportion of runtime reduces in stages of the code with either O(N)
costs, e.g. SETUP, or O(N2) costs, e.g. MATRIX ASSEMBLY and AMPS. Table 61 shows the
high proportion of runtime spent in the parallel eigensolver for Test Case 2 on the test platforms.
Similar results are obtained for Test Case 1. On 64 nodes, all 64 sector Hamiltonian calculations
take place simultaneously in one batch. Therefore the sequential (within a node) properties of the
stages outside the eigensolver begin to impact more on overall runtime and the proportion of
runtime spent in the parallel eigensolver decreases significantly on all the platforms, see Table 60
and Table 61.

Nodes JUWELS Marconi Piz Daint Dibona
1 75.31 64.12 73.21 87.41
2 74.09 64.68 73.09 88.70
4 74.29 64.57 72.66 86.81
8 73.10 64.44 72.37 86.02
16 73.97 64.32 70.96 85.81
32 75.42 63.84 67.40 64 66.96 62.07 58.38

Table 61: Percentage of total runtime in the eigensolver routine DSYEVD (Test Case 2)

4.9.2.2 Intra-Node Parallel Performance

Evidently, eigensolver performance is highly important to PFARM EXDIG efficiency. In this
version of EXDIG it is the intra-node performance of the eigensolver routine DSYEVD that
determines performance. The parallel eigensolver performance within nodes for Test Case 2 for
different numerical libraries – MKL, ARM PL – on three different CPUs is shown in Table 62.
Based on the optimal number of threads, intra-node parallel efficiency is fairly constant for the
different CPUs (~35%). On JUWELS and Frioul, the optimal thread count corresponds to the
maximum number of physical cores. However, on Dibona, using 32 threads per node is faster than
using 64 and this configuration is generally preferred.

Only the DAVIDE benchmark platform provides multiple GPUs per node. MAGMA eigensolvers
are currently preferred to CuSolver eigensolvers as these can automatically parallelise across GPUs
on a node. Table 63 shows performance results on a single DAVIDE node with 1 – 4 GPUs for a

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 68 18.04.2019

DSYEVD eigensolver routine from MAGMA using Test Case 2 data. Parallel efficiency is
approximately 30% using 4 GPUs.

JUWELS (Intel Skylake 48 cores) Frioul (Intel KNL 64 cores)
Threads

(1 per
core)

DSYEVD
(MKL)

(s)

Efficiency
(%)

Speed-
up

Threads
(1 per
core)

DSYEVD
(MKL)

(s)

Efficiency
(%) Speed-up

1 300.15 100.00 1.00 1 1037.72 100.00 1.00
2 189.00 79.40 1.59 2 598.23 86.73 1.73
4 90.16 83.23 3.33 4 300.00 86.48 3.46
8 49.74 75.43 6.03 8 139.87 92.74 7.42

12 35.79 69.89 8.39 16 75.75 85.62 13.70
24 22.78 54.90 13.18 32 46.99 69.01 22.08
48 18.38 34.02 16.33 64 42.90 37.80 24.19

Threads

Dibona: ARM ThunderX2 with 64 cores

DSYEVD
(ARM PL) (s) Efficiency % Speed-up

1 1320.07 100.00 1.00
2 714.20 92.42 1.85

4 394.33 83.69 3.35
8 219.15 75.29 6.02

16 144.47 57.11 9.14
32 120.85 34.14 10.92
64 125.40 16.45 10.53

Table 62: Single node parallel eigensolver performance on CPUs (Test Case 2)

Nodes × GPUs
DAVIDE: Intel Haswell with 4 P100 cards

DSYEVD
(MAGMA) (s) Efficiency % Speed-up

1 × 1 3305.98 100.00 1.00
1 × 2 2874.26 57.51 1.15
1 × 4 2556.89 32.32 1.29

Table 63: Single node parallel eigensolver performance on DAVIDE with multi GPU acceleration (Test Case 2)

4.9.3 Energy Consumption

Energy monitoring tools have been used to collect power consumption data on DAVIDE and Piz
Daint, which are both GPU-accelerated platforms. The tool was unavailable on Frioul when these
benchmark runs were undertaken. These energy consumption results are shown in Table 64.
Reported energy costs on Piz Daint are fairly constant with node count, whilst on DAVIDE they
vary quite widely with node count. Test Case 1 generally consumes more energy than Test Case 2
– this is to be expected, as the problem size is larger and the runs take longer. The four node
DAVIDE value looks somewhat of an outlier. Restricted access to larger node counts on DAVIDE
meant that repeated tests for verification were not possible.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 69 18.04.2019

Nodes

Test Case 1 Test Case 2
DAVIDE Piz Daint DAVIDE Piz Daint

Total Energy (kJ) Total Energy
(kJ)

Total Energy
(kJ)

Total Energy
(kJ)

1 2361.49 347.10 1627.99 257.92
2 1944.36 342.51 829.72 254.15
4 497.53 352.48 968.06 250.85
8 357.44 261.54

16 378.48 284.45
32 347.10 301.27
64 342.51 420.36

Table 64: Energy Consumption comparison

4.10 QCD

The QCD Benchmark runs are performed on all PRACE Tier-0 systems, except Hazel Hen and in
case of part 2 Irene-KNL, the PCP Prototypes Frioul and DAVIDE, the DEEP-ER SDV system
and the Mont-Blanc 3 Dibona system.

4.10.1 Performance Results for QCD part 1

In Table 65 we show strong scaling results for the QCD benchmark kernel part 1. The kernel scales
very well for the Skylake machines on up to 128 nodes. For larger volumes the local lattice size
becomes too small and communications dominate the kernel. For the case of accelerated systems
with NVIDIA Pascals and Intel KNLs (with the exception of Marconi-KNL) the strong scaling is
not as good. In the case of Piz Daint, the communication bottleneck begins to dominate starting
from 32 nodes, while for the KNLs on Irene, good scaling is observed up to 128 nodes.
Interestingly, the total performance per node on Mont-Blanc 3 is similar to that observed on
Skylake systems.

Nodes Irene-
KNL

Irene-
SKL JUWELS Marconi

-KNL
MareNo
strum4

Piz
Daint DAVIDE Frioul DEEP-

ER
Mont-

Blanc 3
1 155.94 219.68 182.49 133.38 186.4 53.73 53.4 151 656.41 206.17
2 81.87 114.22 91.83 186.14 94.63 32.38 113 86.9 432.93 93.48
4 48.01 58.11 46.58 287.17 47.22 19.13 21.4 52.7 277.67 49.95
8 26.83 32.09 25.37 533.49 25.86 12.78 14.8 36.5 189.83 25.19

16 15.32 14.35 11.77 1,365.7 11.64 9.2 10.1 27.8 119.14 12.55
32 8.83 7.28 5.43 2,441.2 5.59 6.35 6.94 15.6
64 7.18 4.18 2.65 2.65 6.41 11.7

128 5.48 1.39 2.48 5.95
256 1.38 5.84
512 0.89

 MPI=1
omp=64

MPI=8
omp=6

MPI=8
omp=6

MPI=1
omp=64

MPI=8
omp= 6

 4 GPUs MPI=1
omp=68

MPI=4
omp=3

MPI=64
omp=1

Table 65: Time-to-solution of benchmark kernel part 1, given in seconds, for lattice size V=8×64×64×64

4.10.2 Performance Results for QCD part 2

For the kernel in part 2, we use two different problem sizes, namely: V=96×32×32×32 shown in
Table 66 and V=128×64×64×64 shown in Table 67. We use three different software packages
which implement the same functionality but optimised for different target systems. For NVIDIA

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 70 18.04.2019

GPU machines, we use QUDA, for the Intel machines, we perform the tests using the QPhiX
library, while for the ARM system, we utilise GRID. As mentioned, QUDA and QPhiX apply the
Wilson Dirac operator within a CG solver, while the GRID benchmark only applies the operator,
without additional linear algebra operations included in the CG. We note that GRID also compiles
for Intel architectures, and after comparing its performance with QPhiX on JUWELS we found a
similar performance pattern for parallelisations up to 512 nodes, from which we conclude that the
performance results for Mont-Blanc 3 are representative and can be used to compare the
performance of the different HPC systems.

For the smaller test size of V=96×32×32×32, the performance on the Skylake machines scales very
well until 64 nodes. For larger partitions the local lattice size becomes too small, the
communications dominate, and the scaling stagnates. Here we also observe large fluctuations of
the performance of up to 60%. In case of the GPU machines, we see that scaling on Piz Daint starts
to flatten-out after 4 nodes, while on DAVIDE it continues up to 32 nodes when using one GPU
per Node. This shows that NVLINK is able to sustain the strong scaling for a larger number of
nodes. The strong scaling of the KNL machines flattens-out after 8 nodes, and we observe large
fluctuations for all parallelisations up to 40%. The scaling on DEEP-ER and Mont-Blanc 3 is good
while the performance of Mont-Blanc 3 is comparable to the Skylake machines.

For the lager test size of V=128×64×64×64 we perform strong scaling tests on larger PRACE
Tier-0 systems. We found for the Skylake systems a good scaling on up to 512 nodes, although the
performance results start to have larger deviations from around 128 nodes especially on Irene. On
Piz Daint, the scaling is weaker however the total performance per node is larger compared to the
Skylake nodes on up to 128 nodes. The KNL machines show scaling on up to 16 nodes, however
with larger fluctuations and not exceeding a performance of around 4100 Gflop/s.

Overall, we found that JUWELS shows the best scaling results with moderate fluctuations for
larger partitions starting from 128 nodes and reaching a maximal performance of around 41 Tflop/s
on 512 nodes using double precision. Nevertheless, for smaller partitions with up to 128 nodes, Piz
Daint shows the best total performance per node, with up to 13 Tflop/s on 128 nodes using double
precision.

In Table 68 we show the performance and energy consumption on the PCP prototypes, DAVIDE
and Frioul. The timings are for two CG application in case of QUDA given by 24 iteration each
and five CG application in case of QPhiX given by 250 iteration each. For the runs on DAVIDE 4
GPUs per node were used, while the runs on Frioul are performed on one KNL CPU in flat mode
per node.

Nodes Irene-
SKL JUWELS Marconi-

KNL
Mare-

Nostrum
Piz

Daint DAVIDE Frioul DEEP-
ER

Mont-
Blanc 3

1 135.84 132.25 152.11 142.44 387.66 392.76 184.73 41.78 99.64
2 241.34 245.77 264.59 264.56 755.31 773.90 269.71 40.77 214.55
4 451.61 457.74 393.37 486.43 1,400.06 1,509.46 441.53 59.63 410.90
8 757.83 866.57 607.10 899.43 1,654.21 2,902.83 614.47 67.34 715.70

16 1,265.89 1,688.55 584.51 1,668.48 2,145.69 5,394.16 644.30 91.51 1,165.66
32 2,691.25 3,458.24 730.26 3,013.55 2,923.98 9,650.91 937.76 -- --
64 4,920.97 6,208.53 611.61 4,601.35 2,332.71 -- 800.51 -- --

128 8,493.40 10,234.19 156.86 4,415.97 -- -- -- -- --
256 -- 10,042.6 -- -- -- -- -- -- --

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 71 18.04.2019

Nodes Irene-
SKL JUWELS Marconi-

KNL
Mare-

Nostrum
Piz

Daint DAVIDE Frioul DEEP-
ER

Mont-
Blanc 3

512 -- 5,309.96 -- -- -- -- -- -- --
 MPI =8

omp = 6
MPI =8
omp = 6

MPI=4
omp=68

MPI =8
omp = 6

1 GPU 1 GPU
per node

MPI=1
omp=68

MPI=1
omp=64

MPI=64
omp=1

Table 66: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using problem size
V=96×32×32×32

Node Irene-SKL JUWELS Marconi-KNL MareNostrum4 Piz Daint
1 141.51 135.23 64.43 144.32 --
2 266.70 263.74 154.70 280.68 --
4 504.36 496.94 423.19 514.96 --
8 936.21 954.09 916.72 930.95 2,694.10

16 1,662.49 1,791.72 1,496.82 1,778.23 5,731.56
32 3,061.35 3,301.38 2,430.12 2,635.74 7,779.29
64 4,680.76 5,979.32 2,457.25 5,264.16 10,607.20

128 5,890.96 10,577.84 2,273.16 7,998.56 13,560.50
256 15,520.32 19,702.56 -- -- --
512 20,095.67 36,079.10 -- -- --

 MPI =8
omp = 6

MPI =8
omp = 6

MPI=4
omp = 68

MPI =8
omp = 6

1 GPU per Node

Table 67: Performance of the kernel of part 2, in Gflop/s as reported by the benchmark, using problem size
V=128×64×64×64

Nodes DAVIDE
time (s)

DAVIDE
performance

(Gflop/s)

DAVIDE
Energy

(kJ)

Frioul
time (s)

Frioul
performance

(Gflop/s)

Frioul
energy

(kJ)
1 3.76 1533.13 14.901 81.9 184.729 34.1
2 4.88 3005.07 19.813 56.1 269.705 39.9
4 3.72 5409.18 26.466 34.3 441.534 49.8
8 4.04 7248.57 43.078 24.6 614.466 65.8

16 4.86 3490.27 88.145 23.5 644.303 117.0
32 4.86 4570.13 288.513 16.1 937.755 171.2
64 -- -- -- 18.9 800.514 375.0

Table 68: Performance and energy consumption of kernel of part 2 on the PCP Prototypes using problem size
V=96×32×32×32

4.11 Quantum Espresso

In this section we describe the benchmark activity carried out for the QE application on various
Tier-0 and Tier-1 systems available in PRACE. For each system we report how the application was
used and installed, the performance data obtained, and an analysis of the results. On some computer
systems we employed a profiling or tracing tool (e.g. Scalasca, Intel APS and Extrae) to give further
insights on the benchmark results. In addition, for Piz Daint and the PCP prototypes (i.e. DAVIDE
and Frioul), we report the corresponding energy-to-solution data.

4.11.1 Performance on Hazel Hen

Performance benchmarks were not run on this architecture – instead we show data for the
Broadwell partition of Marconi (see later). It should also be noted that Hazel Hen will be replaced
with a completely different system which is expected to occur in Q1 of 2019.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 72 18.04.2019

4.11.2 Performance on Irene

Due to the similarities between this and other architectures tested, benchmarks were not run on the
Irene systems. For Intel KNL and Skylake data the reader is referred to the sections on Marconi.

4.11.3 Performance on JUWELS

4.11.3.1 Installation and execution

The QE application was not available on this system so it was compiled from source. On JUWELS
we note that it is essential to unset the ARCH environment available otherwise the QE configure
script does not recognise the operating system. In addition, we observed runtime problems with the
Intel19 MPI library, so this was substituted with Parastation MPI. With this installation procedure,
the application compiles, installs and executes correctly. The small dataset was run without using
OpenMP threads, while the large data set was run with 13 or 26 MPI tasks per node and four
OpenMP threads per task.

4.11.3.2 Results

Strong parallel scaling curves for both datasets are given in Figure 15, with the corresponding data
in Table 69.

Small test case Large test case
Cores Wall time/s Cores Wall time/s

16 1765 130 2037
32 843 208 1266
48 567 390 936
96 324 520 518

144 310
Table 69: Performance Data for JUWELS

Figure 15: Strong scaling for small (left) and large (right) datasets on JUWELS

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 50 100 150 200

w
al

lti
m

e/
s

#cores

AUSURF JUWELS

0

500

1000

1500

2000

2500

0 200 400 600

w
al

lti
m

e/
s

#cores

TA2O5 JUWELS

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 73 18.04.2019

4.11.3.3 Analysis

The scaling and performances are as we expected for this architecture. On JUWELS we did a
further performance analysis using the Scalasca tool for the AUSURF benchmarks (single node).
A snapshot from this analysis is shown in Figure 16 and from the leftmost panel we see that about
20% of the elapsed time is consumed in MPI calls (this result is confirmed by other analyses on
different systems, see later). The middle panel, on the other hand, shows that most of the CPU time

is used in the diagonalisation routines for the calculation of the electronic SCF energy (mainly in
the MKL library). The third panel shows the almost perfect load balancing of the 48 tasks as
demonstrated by the fact that the slices, each representing an MPI task, have similar colours.

4.11.4 Performance on Marconi (KNL and Skylake and Broadwell)

4.11.4.1 Installation and execution

Optimised installations of QE for both KNL and Skylake and Broadwell partitions are present on
Marconi and were used in the benchmarks. For the KNL partition 64 MPI tasks/node were used
for the small test case while 13 per node were used for the large test case. For Marconi Skylake 48
tasks were used for the former and 26 for the latter, for Broadwell 36 and 13 tasks respectively

Figure 16: Scalasca Analysis of AUSURF for 1 node on JUWELS

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 74 18.04.2019

were employed. We note that while the Marconi-KNL nodes have 68 cores, using 64 tasks is more
convenient for the parallelisation strategy of QE.

4.11.4.2 Results

The strong scaling curves for small and large test cases on all Marconi partitions are shown in
Figure 17, Figure 18 and Figure 19 with the corresponding data in Table 70.

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5

w
al

lti
m

e/
s

#nodes

AUSURF on Marconi KNL

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 50 100 150

w
al

lti
m

e/
s

#nodes

TA2O5 on Marconi KNL

Figure 17: Strong scaling curves for small (left) and large (right) test cases on Marconi-KNL

0

100

200

300

400

500

600

0 2 4 6

w
al

lti
m

e/
s

#nodes

AUSURF Marconi Skylake

0

500

1000

1500

2000

2500

3000

3500

4000

0 10 20 30 40 50

w
al

lti
m

e/
s

#nodes

TA2O5 Skylake

Figure 18: Strong scaling of small (left) and large (right) test cases on Marconi Skylake

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 75 18.04.2019

Broadwell KNL Skylake
Small Large Small Large Small Large

Nodes Wall
time/s Nodes Wall

time/s Nodes Wall
time/s Nodes Wall

time/s Nodes Wall
time/s nodes Wall

time/s
1 991 10 9681 1 1197 16 4164 1 566 10 3791
2 529 15 7567 2 897 20 3726 2 376 20 1685
3 518 20 6550 3 725 30 3573 3 321 30 1274
4 437 40 2969 4 751 40 2667 4 266 40 1062
 50 3295 50 2463 5 283
 60 2421
 70 1936
 80 1911
 90 1663
 100 1664

Table 70: Performance data for the Broadwell, KNL and Skylake partitions on Marconi

0

200

400

600

800

1000

1200

0 1 2 3 4 5

w
al

lti
m

e/
s

#nodes

AUSURF on Marconi Broadwell

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60

w
al

lti
m

e/
s

nodes

TA2O5

Figure 19: Performance on Marconi Broadwell

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 76 18.04.2019

4.11.4.3 Analysis

We see from the graphs that for both datasets, the performance of Marconi Skylake is about twice
that of KNL and Broadwell. In order to understand better the performance and scaling on the two
architectures, we ran the Intel Application Snapshot tool for the small test case on KNL and Skylake

- snapshots of the graphical outputs are show in Figure 20 We notice that on Skylake, just like on
JUWELS, about 20% of the elapsed time is spent in MPI calls but the application is classed as
memory bound by the profiler, i.e. dictated by the time needed to access main memory. For KNL,
on the other hand, the application is MPI bound with more than 40% of the elapsed time being
consumed in the MPI calls. The poor MPI performance on KNL is in fact one reason for the poor
performance of MPI-only programs on this processor.

4.11.5 Performance on MareNostrum4

4.11.5.1 Installation and execution

QE version 6.2 was present on MareNostrum4 but given the standard x86 architecture of the system
we opted to install the latest version 6.3 from source. No problems were revealed during installation

Figure 20: Performance Analyses using the Intel APS tool for the small dataset on Marconi-KNL (top) and
Marconi Skylake (bottom)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 77 18.04.2019

and the application was benchmarked similarly to other systems (e.g. JUWELS or Marconi SKL),
although due to time constraints only the small dataset was benchmarked.

4.11.5.2 Results

The variation of elapsed time with MPI tasks for the small dataset are reported in Figure 21 and
Table 71.

Nodes Wall time/s

1 743
2 587
3 537
4 448
5 518

Table 71: Performance data on MareNostrum4

4.11.5.3 Analysis

Only limited benchmarks were collected but the wall times show the expected trend for the
AUSURF small benchmark case, even though the absolute values are higher than equivalent results
for Marconi Skylake or JUWELS. To understand this difference, we have compared the timings
output by QE for the two architectures for one node (=48 cores) and found that the major difference
lies in the calculation of the electron energy (see Figure 22). Here the most expensive function is
the c-bands routine which requires matrix operations and are performed in the Intel MKL library.
One reason for the increased wall time could then be the different versions of the MKL used for
compilations; MKL 2017 in the case of MareNostrum4 as opposed to MKL 2018 for the Marconi

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

w
al

lti
m

e/
s

#nodes

AUSURF MareNostrum4

Figure 21: Strong scaling of the small dataset on MareNostrum4

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 78 18.04.2019

version. Unfortunately, we haven’t been able to confirm this hypothesis by recompiling the
application on MareNostrum4 with later versions of the Intel suite.

Extrae Tracing

The availability of the Extrae tracing tool on MareNostrum4 has allowed us to perform a very
detailed performance analysis on the system. Because trace files can be very large, we have
conducted an analysis of only a very short run, based on one iteration of the AUSURF input and
using 8 MPI tasks. The 1.6 GB trace file was then further reduced with the Paraver tool to about
500 Mb to allow further analysis with Paraver itself. A snapshot of the trace together with a window
detailing only the MPI calls is shown in Figure 23. Here, the upper window shows all the activity
during the iteration, while the lower shows only the MPI-related processes. In this tool colours are
used to indicate important activity states so in the upper window we see processes which are
“Running” (blue), in MPI barriers (red) or communications (orange), while the yellow lines link
tasks involved in communications. In the lower pane, tasks are identified as involved in calls to
MPI_Barrier (red), MPI_AlltoAll (violet), MPI_Rsend (green), MPI_Allreduce (pink) and
MPI_comm_size (blue), while the rectangles have been added to indicate the MPI_Barrier
synchronisation for the k-point calculation. We see very clearly from the figure that an important
bottleneck is the MPI_Barrier needed to synchronise the two groups of MPI tasks corresponding
to the two k-points. Other communications, such as MPI_AlltoAll or MPI_Allreduce, are also
important although we stress that we have focussed on a communication intensive region of the
program and with just eight MPI tasks we have only a limited view of the more general parallel
communications pattern.

Figure 22: Output timings from the small test case on MareNostrum4 (upper) and Marconi Skylake (lower)

MareNostrum4
Called by electrons:
 c_bands : 644.60s CPU 655.89s WALL (22 calls)
 sum_band : 52.31s CPU 53.94s WALL (22 calls)
 v_of_rho : 4.74s CPU 4.95s WALL (22 calls)
 newd : 4.40s CPU 5.52s WALL (22 calls)
 mix_rho : 1.07s CPU 1.12s WALL (22 calls)

Marconi
Called by electrons:
 c_bands : 455.48s CPU 472.78s WALL (22 calls)
 sum_band : 52.06s CPU 54.25s WALL (22 calls)
 v_of_rho : 4.38s CPU 4.62s WALL (22 calls)
 newd : 4.36s CPU 5.55s WALL (22 calls)
 mix_rho : 1.14s CPU 1.22s WALL (22 calls)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 79 18.04.2019

Figure 23: Snapshots of an Extrae trace file of the first iteration of Quantum Espresso on MareNostrum4

4.11.6 Performance on Piz Daint

4.11.6.1 Installation and execution

Since Piz Daint is equipped with one NVIDIA Tesla Pascal P100 per node we decided to run the
CUDA Fortran version of Quantum Espresso, already present on the system. For the runs we used
one MPI task per node (corresponding to the number of GPUs) and 12 OpenMP threads per task.
We note that because nearly all the program memory is assigned to the GPU memory (16 GB per
device), it is difficult to obtain a large number of benchmark data points with this version of the
code. The reason is due to the fact that you need a large number of GPUs in order to have sufficient
memory to actually run the program, but then you are already likely to have reached the
performance limit.

4.11.6.2 Results

In Figure 24 and Table 72 we show the scaling data we have obtained for both the small and large
test case.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 80 18.04.2019

Small Test Case Large Test Case

Nodes Wall time/s Nodes Wall time/s
4 157 78 388
6 138 104 304
8 114 130 307

10 116
Table 72: Performance data for Piz Daint

4.11.6.3 Analysis

For the reasons cited above only a limited number of data points was collected. We note however
that the program performance is very high on this architecture. The SLURM scheduler also
provides energy data per node, but this analysis we leave until the end of the section on Quantum
Espresso.

4.11.7 Performance on SuperMUC-NG

Not available during the benchmark period.

4.11.8 Performance on DAVIDE and Frioul

4.11.8.1 Installation and Execution

For the DAVIDE POWER8+GPU cluster we used the CUDA Fortran version of QE compiled with
the OpenMPI installation for the IBM POWER8 architecture. When using the GPU all four
accelerators per node were allocated, employing four MPI tasks and one OpenMP thread per task.
We note that for the large test case, which has 26 k-points, these parameters are not optimal because
we should use multiples of 13 or 26 for the MPI tasks. Since for the GPU version we can allocate
only one MPI task/GPU, running over 26 k-points would have made it impossible to get meaningful
benchmarks (we recall that the DAVIDE cluster has only 45 nodes). For the Frioul system the

0
20
40
60
80

100
120
140
160
180

2 4 6 8 10 12

w
al

lti
m

e/
s

#nodes

AUSURF

0
50

100
150
200
250
300
350
400
450

60 80 100 120 140

w
al

lti
m

e/
s

#nodes

TA2O5

Figure 24: Benchmarks for the small and large test cases on Piz Daint

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 81 18.04.2019

application was compiled and run as for Marconi-KNL (see above), although it should be noted
that only KNL devices in flat mode were available. For both systems the energy consumed for each
benchmark, as reported by the appropriate tool, is also reported.

4.11.8.2 Results

The wall times for the two test cases are given in Figure 25 and Table 73 and show results for
accelerated and non-accelerated (i.e. only POWER8) runs on DAVIDE together with the
simulations launched on Frioul. In Figure 26 and Table 74 we report the corresponding energies.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10

w
al

lti
m

e/
s

#nodes

AUSURF walltimes

DAVDE Power8 DAVIDE GPU CINES KNL

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40

w
al

lti
m

e/
s

#nodes

Ta2O5 walltimes

DAVIDE Power8 DAVIDE_GPU FRIOUL KNL

Figure 25: Performances for the small (right) and large (left) datasets on the PCP prototypes, DAVIDE and Frioul.
For DAVIDE both accelerated and non-accelerated results (POWER8) are shown

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 82 18.04.2019

DAVIDE POWER8 DAVIDE POWER8 + GPU Frioul
Small Large Small Large Small Large

Nodes Wall
time/s Nodes Wall

time/s Nodes Wall
time/s Nodes Wall

time/s Nodes Wall
time/s nodes Wall

time/s

1 3817 4 9169 1 312 2 2337 1 (32
cores) 2481 10 5916

2 1514 6 6560 2 248 4 1511 1 2062 15 3549
4 990 8 5753 3 200 5 1470 2 1442 20 3886
8 733 10 3771 4 197 6 1324 4 1063 30 3539
 20 2855 8 995 8 659 40 4732
 30 3285 10 1041
 20 1189

Table 73: Performance data on DAVIDE and Frioul

DAVIDE POWER8 DAVIDE POWER8 + GPU Frioul
Small Large Small Large Small Large

Node
s

Energ
y

/MJ

Node
s

Energ
y

/MJ

Node
s

Energy/M
J

Node
s

Energ
y

/MJ

Node
s

Energ
y

/MJ

node
s

Energ
y

/MJ
1 2.7 4 29.0 1 0.3 2 3.9 0.5 0.7 10 16.0
2 2.4 6 30.7 2 0.4 4 4.8 1 0.6 15 14.9
4 2.3 8 35.0 3 0.4 5 5.8 2 0.7 20 20.0
8 4.5 10 28.9 4 0.6 6 6.1 4 1.0 30 29.2
 20 44.4 8 6.0 8 1.4
 30 75.9 10 8.0
 20 16.1

Table 74: Energy data for DAVIDE and Frioul

4.11.8.3 Analysis

We see from Figure 25 that for both datasets using the Tesla P100 GPUs on the DAVIDE system
gives the best performances while the wall times on Frioul’s KNL nodes are similar to the

0,00

1,00

2,00

3,00

4,00

5,00

0 2 4 6 8 10

En
er

gy
/M

J

#nodes

AUSURF Energy

DAVIDE Power8 DAVIDE GPU FRIOUL KNL

0

10

20

30

40

50

60

70

80

0 10 20 30 40

En
er

gy
/M

J

#nodes

Ta2O5 Energy

DAVIDE Power8 DAVIDE_GPU FRIOUL KNL

Figure 26: The energy consumed by the batch jobs for the two datasets on the PCP prototypes

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 83 18.04.2019

performances on the POWER8 processors. Comparing with the other GPU system tested, Piz
Daint, we note that the GPU performances for the small dataset on DAVIDE are similar. For the
larger dataset the application is slower than Piz Daint, but this may be partly due to the fact that
OpenMP threads were not used on DAVIDE. However, an advantage of the latter system is that
with four GPUs per node, we require only one node to perform the small dataset whereas with Piz
Daint we need at least four. The performances for the Frioul system are lower and, in addition,
lower than those reported for Marconi-KNL (see Figure 17). One reason may be the fact that on
Marconi-KNL devices were used in cache mode, whilst on Frioul flat mode was employed. Since
the QE application has not been programmed to exploit the MCDRAM on KNL a difference in
performance would be expected since the application can use the additional memory available in
cache mode. As regards the energies to solution shown in Figure 26, we see that for both datasets
the simulations with the GPUs require the least energy, while the POWER8 runs require the most
energy. The KNL simulations use considerably less energy than POWER8 alone, but still higher
than the GPUs.

4.11.9 Performance on DEEP-ER SDV

4.11.9.1 Installation and Execution

The program was installed with the Intel compiler and options suitable for KNL execution, but
using the Parastation implementation of MPI instead of Intel MPI. We remark that benchmarking
this platform was challenging due to the small number of KNL nodes available and, as the results
appear to show, an issue relating to communications between three nodes.

4.11.9.2 Results

Performances for the small dataset are shown in Table 75.

Nodes #tasks Wall time (s)
1 64 2669
2 128 1806
3 192 6420

Table 75: Benchmarks for the DEEP-ER SDV

4.11.9.3 Analysis

For this system we have been able to obtain only very few data. The performances for 1–2 nodes
are lower than other similar data for KNL (e.g. Marconi-KNL), while it has been very difficult to
perform runs for more than three nodes, presumably due to a communication issue at the time the
benchmarks were performed.

4.11.10 Summary of performance and energy analyses

For the small test case, the benchmark data on all architectures effectively reflect the relative clock
speeds of the processor cores since the computationally expensive calculations all take place in the
linear algebra library (e.g. Intel’s MKL). This is true for the large test case as well but the data are
more difficult to interpret because the high memory requirements mean that large numbers of nodes

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 84 18.04.2019

are often needed and the UEABS architectures have different memory per core specifications. In
addition, the fact that this test case has 26 k-points means that to exploit the best parallelism we
need groups of cores which are multiples of 13 or 26, i.e. cores will be unused if we can only ask
for whole nodes (by contrast we recall that the small test case has 2 k-points which is more
convenient). In addition, depending on the cores/node available sometimes we can benefit from
OpenMP threads. For both inputs, GPU acceleration has a big impact but since the CUDA version
of the program does not use the host memory, many GPUs are required in order to provide
sufficient memory.

The more detailed performance analyses using profilers has confirmed that while single core
performance cannot probably be improved any further, there is a scaling bottleneck due to the MPI
barriers needed to synchronise the tasks involved for each k-point calculation.

4.11.10.1 Energy Consumption

In addition to the performance analysis in terms of elapsed times, we have also recorded the energy
used per job when available. This has already been described for the PCP prototypes but we can
also extend the analysis to a Tier-0 system, i.e. Piz Daint. A comparison of the energies obtained
from the PCP prototypes and Piz Daint using the GPU for the test cases is shown in Figure 27 and
Table 76 (we have excluded the energies from the non-accelerated runs of DAVIDE). For the small
test case Piz Daint seems to be more energy efficient than DAVIDE, despite the fact that for the
Tier-0 system more nodes are required, although we recall that DAVIDE has four NVIDIA Tesla
P100 GPUs/node. We have limited data for the large test case on Piz Daint, but the energy required
is similar to that of DAVIDE within the strong scaling regime (i.e. between 1–10 nodes for
DAVIDE).

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

0 2 4 6 8 10 12

En
er

gy
/M

J

#nodes

AUSURF Energy

DAVIDE GPU FRIOUL KNL Piz DAINT

0

5

10

15

20

25

30

35

1 10 100 1000

En
er

gy
/M

J

#nodes

Ta2O5 Energy

DAVIDE_GPU FRIOUL KNL Piz DAINT

Figure 27: Comparison of the energy consumed per job for the two test cases on DAVIDE (GPU), Frioul (KNL)
and Piz Daint (GPU)

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 85 18.04.2019

Piz Daint DAVIDE POWER8 + GPU Frioul
Small Large Small Large Small Large

Nodes Energy
/MJ

Nodes Energy
/MJ

Nodes Energy /MJ Nodes Energy
/MJ

Nodes Energy
/MJ

nodes Energy
/MJ

4 0.12 78 5.70 1 0.27 2 3.92 0.5 0.68 10 16.00
6 0.15 104 6.27 2 0.38 4 4.84 1 0.62 15 14.90
8 0.17 130 7.05 3 0.43 5 5.84 2 0.68 20 20.00

10 0.18 4 0.59 6 6.13 4 1.02 30 29.20
 8 5.98 8 1.40
 10 8.01
 20 16.11

Table 76: Comparison of energy-to-solution for Piz Daint, DAVIDE and Frioul

4.12 SHOC

In order to run all benchmarks from SHOC at once, we use the size 3, as mentioned in Section
2.12. The command to run all benchmarks is:

./shocdriver –s 3 –cuda

The SHOC benchmark has been run on Cartesius, Ouessant, DAVIDE, Piz Daint, and JUWELS.
The results are presented in Table 77.

4.12.1 Performance Results

Device/Bench K40
(Cartesius)

POWER8 +
P100

(Ouessant)

POWER8 +
P100

(DAVIDE)

P100
(Piz

Daint)

V100
(JUWELS)

BusSpeedDownload (GB/s) 10.5 32.23 32.9 12.47 12.38
BusSpeedReadback (GB/s) 10.5 34 34 13.21 13.15
maxspflops (Gflop/s) 3716 10424 10475 9322 15539
maxdpflops (Gflop/s) 1412 5315 5318 4735 7802
gmem_readbw (GB/s) 177 575.16 574.53 574 894.93
gmem_readbw_strided (GB/s) 18 99.15 98.65 97.84 476.83
gmem_writebw (GB/s) 175 436 436 431 777.69
gmem_writebw_strided (GB/s) 7 26.3 26.15 25.1 60.18
lmem_readbw (GB/s) 1168 4239 4245 4166 9413
lmem_writebw (GB/s) 1194 5488 5485 5221 10125
BFS (MEdges/s) 49.2 91.9 90.2 110 122.7
FFT_sp (Gflop/s) 523 1472 1467 1498 2255
FFT_dp (Gflop/s) 262 733 734 742 1131
SGEMM (Gflop/s) 2921 8604 8732 8255 14065
DGEMM (Gflop/s) 1032 3635 3654 3546 5399
MD (SP) (Gflop/s) 188 483 522 456 863
MD5Hash (GH/s) 3.38 15.77 15.87 14.03 34.2
Reduction (GB/s) 144 271 270 250 331
Scan (GB/s) 53.8 99.2 98.5 106 184.8
Sort (GB/s) 3.22 12.54 12.52 9.87 20.98
Spmv (FP64/no padding) (Gflop/s) 4 23 23 19 56
Spmv (FP32/with padding) (Gflop/s) 23 65 65 60 151
Stencil2D (Gflop/s) 126 465 470 431 661
Stencil2D_dp (Gflop/s) 60 258 258 250 322

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 86 18.04.2019

Device/Bench K40
(Cartesius)

POWER8 +
P100

(Ouessant)

POWER8 +
P100

(DAVIDE)

P100
(Piz

Daint)

V100
(JUWELS)

Triad (GB/s) 13.5 43 41.3 15.6 16.31
S3D (level 2) (Gflop/s) 95 294 292 289 423

Table 77: SHOC performance

We can see clear differences between the GPU families (Kepler, Pascal, Volta), but also between
the hosts that drive these GPUs. The difference amongst these results sits in the fact that the
Ouessant and DAVIDE feature NVLink connections between the hosts and accelerators, as
opposed to PCIe in all other cases. The performance of this can be easily noticed in the
BusSpeedDownload/BusSpeedUpload/Triad benchmarks, outperforming both the Piz Daint results
based on P100 as well as JUWELS with the newer Volta architecture.

For the other workloads, we can see the clear evolution in terms of compute and memory
performance between the GPU families. The peak performance difference in terms of FP32/FP64
compute between Kepler and Pascal architectures is of a factor of around 2.5. The same goes for
the peak memory bandwidth between the two cards (288 GB/s vs 732 GB/s). Thus, this is the main
reason why the P100 results are generally around a factor of three times faster than the K40 ones.

It is interesting to compare the DAVIDE/Ouessant results to the ones obtained on Piz Daint. The
results on Piz Daint are on average inferior, and this is mostly because there is still communication
happening between the CPU hosts and the GPU, NVLink outperforming PCIe transfers.

When comparing the P100 accelerator with the V100 one from JUWELS, we see that again
NVIDIA has improved the architecture, this time with around 50% (both in terms of memory
bandwidth and FP32/FP64 peak compute). The 50% performance difference is reflected in most
benchmark results, with the exception of those that benefit from NVLink connectivity on the host
side (POWER8). Another interesting exception is the gmem_readbw_strided benchmark, that now
reaches 50% of the peak memory bandwidth (in the case of V100), whereas for the Kepler GPU
generation it was reaching around 10%, and for the Pascal GPU around 20%. Thus, V100 has much
better architectural support for strided access.

4.12.2 Energy Consumption

Being a synthetic benchmark, SHOC does not really fit the time and energy to solution paradigm
as the other scientific benchmarks. However, it has been included for completeness (although
“solution” does not represent much in this case) on some representative benchmarks. The results
have been obtained on DAVIDE. As an interesting note, all compute-bound workloads draw
around 1200W of power on average, whereas the memory-bound ones only around 750W. The test
setup to measure energy consumption was as follows:

• GEMM with size 4 benchmark and executed 1000 times
• FFT with size 4 benchmark and executed 10000 times
• MD5Hash with size 4 and executed 1000 times

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 87 18.04.2019

Test Number of GPUs Time to solution
(s)

Energy to solution
(kJ)

Average node power
consumption (W)

GEMM 1 193 140 722
GEMM 4 226 289 1274
FFT 1 54 34.7 642
FFT 4 166 126 758
MD5Hash 1 104 70.7 680
MD5Hash 4 106 125 1176

Table 78: SHOC time and energy to solution

The tests that are run on 4 GPUs are actually performing four times the work of the ones that are
using one GPU. Thus, when the relative time difference between the one GPU and four GPU runs
is small, almost perfect scaling efficiency is observed, as it can be observed for the compute-bound
examples such as GEMM. On the other side, if we take the FFT example, it needs 3.07× more time
to perform four times the work, while using 1.18× more power on average. The energy to solution
metric merges these two metrics together, showing that this implementation of FFT used 3.63×
more energy to perform 4× the work.

We have also used the same “size 3” benchmarks as outlined below, and we report the energy
metrics for a full benchmark suite run as presented by the DAVIDE system. The results are below;
however, they are less insightful compared to the per-benchmark energy measurements.

./shocdriver –s 3 –cuda

Cumulative (all nodes)

Mean power (W): 577.757197279
Total energy (J): 169282.858803
Mean GPUs power (W): 148.426778011
Total GPUs energy (J): 43785.8995132

4.13 SPECFEM3D

The code has been tested and timed on several architectures, it has been compiled on almost all
systems with Intel compilers (between version 17.0 and version 19.1 depending on their availability
on the systems) except on Cray systems (Hazel Hen, Piz Daint: PrgEnv-cray+cray-mpich),
OpenPOWER (DAVIDE: gnu+openmpi) and ARM (Dibona: arm-hpc-compiler). So far, it has
only been possible to run on one fixed core count for each test case, so scaling curves are not
available.

4.13.1 Performance Results by Test Case

4.13.1.1 Test case A

Machine Solver (s) Threads OpenMP

Tier-1 Systems
Occigen 1082 12
SuperMUC-Haswell 1210 12
SuperMUC-Sandy Bridge 3367.2 12

PRACE Tier-0 Systems Hazel Hen 2389 6

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 88 18.04.2019

Machine Solver (s) Threads OpenMP
Joliot Curie-KNL 1639 16
Joliot Curie-SKL 734 12
JUWELS 658 12
Marconi-KNL 1653 17
MareNostrum4 744 12
Piz Daint 195 6

PRACE PCP Prototypes Frioul 1963.5 17
Mont-Blanc 3 Prototype Dibona 3921.2 16

Table 79: Time to solutions for SPECFEM3D Globe on test case A

4.13.1.2 Test case B

Machine Solver (s) Threads OpenMP

Tier-1 Systems Occigen 248.2 12
SuperMUC-Haswell 240.36 12

PRACE Tier-0 Systems

Joliot Curie-KNL 330 16
Joliot Curie-SKL 169 12
JUWELS 193 6
Marconi-KNL 1211 17
MareNostrum4 156 12
Piz Daint 50 6

Table 80: Time to solutions for SPECFEM3D Globe on test case B

4.13.1.3 Test case C

4.13.1.3.1 Run on one node

Machine Solver (s) Threads OpenMP

Tier-1 Systems Occigen 143.5 4
SuperMUC-Haswell 196.2 4

PRACE Tier-0 Systems

Joliot Curie-KNL 160.3 10
Joliot Curie-SKL 83.9 8
JUWELS 83.2 8
Marconi-KNL 3440.3 12
MareNostrum4 88.2 8
Piz Daint 26.7 2

PRACE PCP Prototypes DAVIDE 113 2
Frioul 944.4 12

DEEP-ER Prototype SDV 134.6 4
Mont-Blanc 3 Prototype Dibona 474.9 10
Table 81: Time to solutions for SPECFEM3D Globe on test case C using one node

4.13.1.3.2 Run on two nodes

Machine Solver (s) Threads OpenMP

Tier-1 Systems Occigen 109 4
SuperMUC-Haswell 123.678 8

PRACE Tier-0 Systems

Joliot Curie-KNL 468.4 22
Joliot Curie-SKL 68.2 16
JUWELS 66.7 16
Marconi-KNL 1246.2 22
MareNostrum4 74.25 16
Piz Daint 16.6 4

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 89 18.04.2019

Machine Solver (s) Threads OpenMP

PRACE PCP Prototypes DAVIDE 51.7 4
Frioul 170.7 22

DEEP-ER Prototype SDV 99 8
Mont-Blanc 3 Prototype Dibona 656 20

Table 82: Time to solutions for SPECFEM3D Globe on test case C using two nodes

4.13.2 Comparison methodology

In order to compare the efficiency of the SPECFEM3D code on the different supercomputers, we
chose to test the efficiency of the code for a fixed number of compute nodes (and therefore a
variable number of cores) as it allows us to easily observe the efficiency of the code according to
the architecture used. Indeed, current heterogeneous and/or hybrid (CPU+GPU) architectures make
it difficult for us to evaluate the performance for a fixed number of cores used since the number of
cores per node is very variable depending on the architectures used; 68 cores for Intel KNL
architectures compared to eight for Intel Sandy Bridge nodes for example.

In order to highlight the theoretical and experimental performance accelerations according to the
architecture used, we compared the theoretical peak performance per node of each machine with
that of the MareNostrum4 supercomputer (ranked 25 in the TOP500 November 2018) then we did
the same for the solver times for SPECFEM3D compiled on the different machines compared to
the solver time we obtained on the MareNostrum4 supercomputer. Here is the definition of the two
metrics used in the graph below:

Theoretical performance speedup compared to MareNostrum4 =
Peak performance per node supercomputer X
Peak performance per node MareNostrum4

Solver's resolution time speedup compared to MareNostrum4 =
Solver time Supercomputer X

Solver time MareNostrum4

4.13.3 Comparative results of systems

Figure 28: Solver speedup and theoretical performance compared to MareNostrum4 on 24 nodes

0 0,5 1 1,5 2 2,5 3 3,5 4

Occigen
SuperMUC-Haswell

SuperMUC-SB
Hazel Hen

Joliot Curie - KNL
Joliot Curie - SKL

JUWELS
Marconi - KNL
MareNostrum

Piz Daint
Frioul

Dibona

Test case A : 24 nodes

Solver speedup compared to Marenostrum Theoretical performance compared to Marenostrum

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 90 18.04.2019

Figure 29: Solver speedup and theoretical performance compared to MareNostrum4 on 384 nodes

Figure 30: Solver speedup and theoretical performance compared to MareNostrum4 on 1 node

0 0,5 1 1,5 2 2,5 3 3,5 4

Occigen
SuperMUC-Haswell

Joliot Curie - KNL
Joliot Curie - SKL

JUWELS
Marconi - KNL
MareNostrum

Piz Daint

Test case B : 384 nodes

Solver speedup compared to Marenostrum Theoretical performance compared to Marenostrum

0 1 2 3 4 5 6 7

Occigen
SuperMUC-Haswell

Joliot Curie - KNL
Joliot Curie - SKL

JUWELS
Marconi - KNL
MareNostrum

Piz Daint
DAVIDE

Frioul (KNL)
SDV

Dibona

Test Case C: 1 node

Solver speedup compared to Marenostrum Theoretical performance compared to Marenostrum

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 91 18.04.2019

Figure 31: Solver speedup and theoretical performance compared to MareNostrum4 on 2 nodes

The results obtained on Skylake microarchitecture supercomputers are consistent, we obtain decent
and homogeneous performance on all three machines. This newer (and therefore more expensive)
architecture is an interesting solution for performing simulations with SPECFEM3D.

By comparing the theoretical peak performance of the machines to the performance of the solvers,
we can see that the SPECFEM3D code is relatively efficient on Haswell and Sandy Bridge nodes
(Occigen, Piz Daint, Hazel Hen, SuperMUC). These architectures are therefore good candidates
for obtaining correct performance with less expensive systems.

On Knights Landing (KNL) machines (Joliot Curie-KNL, Marconi-KNL) comparing to
PRACE-4IP runs [20], performance for the most part systems more than twice as slower. This is
due to the fact that a code modified by Intel were used but as Intel didn’t release the code publicly,
the current public code [6] have been used to carry these performances. It is recommended to avoid
using SPECFEM3D with this type of architecture.

GPU-based computations significantly outperform the CPU-based calculations, the code is very
well adapted to accelerators to achieve such performance it is essential to use this type of hybrid
architecture (CPU+GPU). Performance on Piz Daint (on all test cases) is at least three times better
than that of any supercomputer tested.

4.13.4 Energy Efficiency

We collected the power consumed on the Piz Daint and DAVIDE computers because only these
two computers had energy measurement tools during the benchmarks. These energy consumptions
are shown in Table 83.

0 1 2 3 4 5 6 7

Occigen
SuperMUC-Haswell

Joliot Curie - KNL
Joliot Curie - SKL

JUWELS
Marconi - KNL
MareNostrum

Piz Daint
DAVIDE

Frioul (KNL)
SDV

Dibona

Test Case C: 2 nodes

Solver speedup compared to Marenostrum Theoretical performance compared to Marenostrum

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 92 18.04.2019

Problem Nodes Piz Daint -
Energy (kJ)

Piz Daint -
Performance

DAVIDE -
Energy (kJ)

DAVIDE -
Performance

Test case C 1 8.7 26.7 89.114241 113
Test case C 2 9.45 16.6 83.03966382 51.7
Test case A 24 1260 195
Test case B 384 5180 50

Table 83: Energy to Solution on DAVIDE and Piz Daint

The energy comparison for this code is not obvious since the test cases run on a number of cores
depending on the available memory size and a fortiori, we cannot vary the number of processors
used as we wish. To facilitate this comparison, we normalised the energy consumption by dividing
by the number of nodes used multiplied by the solver time and multiplying by the calculation time
for test case C on one node.

Problem Nodes Piz Daint - Normalised energy DAVIDE - Normalised energy
Test case C 1 8.7 89.114241
Test case C 2 7.599849398 41.51983191
Test case A 24 7.188461538
Test case B 384 7.2034375

Table 84: Normalised energy consumption on DAVIDE and Piz Daint

The results in Table 83 and Table 84 highlight the consistency of Piz Daint's energy consumption,
where consumption remains linear for an increasing number of nodes. For DAVIDE, the
consumption goes from simple to double for the test case C; indeed, on Table 83 we notice that the
consumption remains identical whether we turn on one or two nodes.

5 Conclusions

The whole purpose of benchmarking is providing a metric for comparing systems. Clearly, one
single (application) benchmark won’t provide the answer to what the fastest/most efficient or most
energy efficient system is. For this we will combine the previous results and derive a comparison
of the overall performance of the systems. We will also derive a comparison of the energy
efficiency for the few systems where we obtained energy measurements.

If you want to select the optimal system/architecture for a given application, please have a look at
the corresponding Section 4 subsection where we present performance and energy efficiency
results, analyses, and conclusions per application.

5.1 Performance Comparison of all Benchmark Systems

5.1.1 LINPACK Performance

To set a baseline, we provide the TOP500/HPL performance of the current PRACE Tier-0 systems
in Table 85. In the last two columns, we provide the HPL performance per core (for GPUs we
consider the SM units as cores), and a relative core performance (normalised using the maximum
value). Although there is a lot to argue about the relevance of HPL for real applications
performance, it still can be used as a starting point in comparing system performance. (It is relevant
for dense linear algebra and other codes that can efficiently use AVX/SIMD instructions.) The

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 93 18.04.2019

ranking is more-or-less as expected, from highest to lowest: the Skylake systems, the Broadwell
and Haswell systems, the Knights Landing systems. Piz Daint is the only GPU based system and
is most relevant for applications that can exploit the GPUs. SuperMUC-NG, the latest and greatest
Skylake system, even has a higher relative core performance than Piz Daint. Unfortunately, it was
not yet available for our benchmarking activities.

PRACE Tier-0 system Rpeak
(Pflop/s)

Rmax

(Pflop/s) Cores Rmax per core
(Gflop/s/core)

Relative core
performance

SuperMUC-NG 26.874 19.477 305,856 63.68 1.00
Piz Daint 27.154 21.230 387,872 54.73 0.86
JUWELS 9.891 6.178 114,480 53.96 0.85
Irene-SKL 6.636 4.066 79,488 51.15 0.80
MareNostrum4 10.296 6.471 153,216 42.23 0.66
Marconi Broadwell 2.003 1.724 54,432 31.67 0.50
Hazel Hen 7.404 5.640 185,088 30.47 0.48
Marconi-KNL 18.816 10.385 348,000 29.84 0.47
Irene-KNL 2.340 1.311 56,304 23.29 0.37

Table 85: TOP500 performance of PRACE Tier-0 systems

5.1.2 Application Performance

In Section 4 we provided a plethora of benchmark results: i.e. for many Application Benchmark /
Data Set / Problem Size – System combinations. If you are a PRACE user and are interested in
running one of the UEABS applications, you are advised to study the relevant subsection. On the
other hand, we want to provide some insight in the relative application performance of the
benchmark systems presented in Section 3, and the additional systems that have been used in
Section 4 for some of the applications. To this reason we took a similar approach as in Section
5.1.1 and used selected performance results from the benchmark results in Section 4. If
performance was determined as time to solution, we took the inverse value and divided this by the
number of cores. If performance already was determined as some speed, we also divided this by
the number of cores. Thus, we obtained an abstract speed metric per core. Subsequently, we
normalised these values per Application-Test Case combination by dividing all values by the
highest abstract speed per core metric. This results in a relative application speed per core. Finally,
we colour coded the relative speed per core: green for relative speed 1 (highest) and red for the
lowest; and sorted the columns on their average speed. The results are presented in Table 86. We
did not include SHOC in these results since these synthetic benchmarks are all single node and
GPU only. To get a fair comparison of the GPU based Piz Daint and DAVIDE results, we used
performance results with the same number of GPUs where possible.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 94 18.04.2019

Application

 T
es

t C
as

e

 P
iz

 D
ai

nt
-H

SW

 JU
W

EL
S

 M
ar

eN
os

tru
m

4

 S
is

u

 H
az

el
 H

en

 Ir
en

e-
SK

L

 P
iz

 D
ai

nt
-P

10
0

 M
ar

co
ni

-S
K

L

 D
A

V
ID

E-
P8

 M
ar

co
ni

-B
D

W

 D
A

V
ID

E

 D
ib

on
a

 F
rio

ul

 M
ar

co
ni

-K
N

L

 S
D

V

 Ir
en

e-
K

N
L

Alya
A 1.00 0.93 0.36 0.14 0.65 0.35

B 1.00 0.80 0.79 0.33

C 0.67 1.00

Code_Saturne A 0.91 1.00 0.69 0.96 0.68 0.14 0.14 0.18 0.19 0.18 0.15

B 1.00 0.55 0.39 0.69 0.48 0.13 0.18 0.15

CP2K
A 1.00 0.57 0.20 0.27 0.32

B 1.00 0.95 0.18 0.85 0.06 0.53 0.06 0.30

C 1.00 0.89 0.36 0.15 0.31 0.31 0.31

GADGET A 1.00 0.84 0.65 0.19

B 1.00 0.95 0.71 0.23

GPAW
S 1.00 0.69 0.94 0.14 0.74 0.22 0.10

M 0.44 0.34 0.32 0.06 1.00

L 1.00 0.77 0.80 0.13

GROMACS B 1.00 0.68 0.73 0.83 0.54 0.25 0.25 0.22 0.10 0.18

NAMD B 1.00 0.47 0.95 0.62 0.41 0.61 0.15 0.14 0.12

NEMO G 0.89 1.00 0.82

PFARM 1 1.00 0.84 0.38 0.82 0.69 0.14 0.13 0.33 0.32 0.29 0.24

2 1.00 0.83 0.46 0.79 0.60 0.13 0.16 0.27 0.26 0.28 0.24

QCD
1 0.99 1.00 0.81 0.89 0.92 0.70 0.30 0.01 0.07 0.48

2v1 1.00 0.99 0.75 0.90 0.72 0.52 0.27 0.24 0.04

2v2 0.60 0.59 0.56 1.00 0.31 0.12

Quantum
Espresso

S 0.96 0.50 1.00 0.67 0.76 0.57 0.24 0.18

L 1.00 0.56 0.98 0.21 0.51 0.17 0.18

SPECFEM3D
C 0.35 0.32 0.34 1.00 0.08 0.03 0.10 0.01 0.18 0.04

A 0.42 0.37 0.23 0.38 1.00 0.05 0.10 0.12 0.12

B 0.37 0.45 0.42 1.00 0.04 0.15

Table 86: Selected relative speed per application-dataset combination

Looking at the green colours, the clear overall winners are:

1. The Skylake based JUWELS and MareNostrum4.
2. The Haswell based Sisu and Hazel Hen.
3. The GPU based Piz Daint is a clear winner for SPECFEM3D and is competitive for QCD.

The few CPU only results on the Haswell based Piz Daint show an even higher performance per
core – probably because of the available interconnect bandwidth per core – but they leave the GPUs
unused, which is a waste of resources.

For the GPU based systems, in general Piz Daint shows a higher performance than DAVIDE when
using the same number of GPUs.

The POWER8 based DAVIDE (CPU only) results for CP2K (Test Case B) and Quantum Espresso
(Large Test Case) are competitive with the JUWELS and Piz Daint results.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 95 18.04.2019

The ARM based Dibona system shows a good performance for GADGET and QCD (part 1). We
are looking forward to the future ARM CPUs with Scalable Vector Extension (SVE) that will make
the ARM CPUs even more competitive.

The KNL performance per core is consistently lowest, which is due to the low clock speed.
Nowadays, Skylake also has AVX-512, and the only remaining true Xeon Phi differentiator is the
16 GB MCDRAM High Bandwidth Memory (HBM). Furthermore, KNL has been discontinued by
Intel. Nevertheless, the KNL based Frioul system is the winner for GPAW Test Case M.

The full picture strongly corresponds with the LINPACK results presented in Section 5.1.1 where
Piz Daint is marginally faster per core than JUWELS and Irene-SKL. (As stated earlier:
SuperMUC-NG was not yet available for benchmarking.) The conclusion might be that LINPACK
performance still is a reasonable indicator for application performance, but most people – including
the LINPACK originators themselves – will disagree.

5.2 Energy Efficiency

5.2.1 LINPACK Energy Efficiency

To set a baseline, we provide the Green500/HPL energy efficiency – if listed – of the current
PRACE Tier-0 systems in Table 87. In the last column we provide the relative energy efficiency
(normalised using the maximum value). The ranking is as expected. The GPU based system Piz
Daint is at least twice as energy efficient as all other non-accelerated systems. Next are the recent
Skylake systems and the Knights Landing system. The oldest Haswell and Broadwell based
systems are least energy efficient.

PRACE Tier-0 system Rmax
(Pflop/s)

Power
(kW)

Power
Efficiency
(Gflop/J)

Relative
power

efficiency
Piz Daint 21.230 2384 8904 1.00
JUWELS 6.178 1361 4539 0.51
Irene-SKL 4.066 917 4434 0.50
Irene-KNL 1.311 326 4022 0.45
MareNostrum4 6.471 1632 3965 0.45
Hazel Hen 5.640 3615 1560 0.18
Marconi Broadwell 1.724 1360 1268 0.14

Table 87: Green500 energy efficiency of PRACE Tier-0 systems

5.2.2 Energy to Solution on DAVIDE and Frioul (in their original PCP-configuration)

As mentioned in Section 3.2.2., the energy measurements tools initially present on Frioul are no
longer available since late 2018. Because of this, we were not able to provide Frioul energy
measurements for some of the applications. To nevertheless give some insight on the relative
energy efficiency of DAVIDE and Frioul in their original PCP-configuration, we give another
presentation of the energy to solution as published in the Wrap-up table in PRACE-4IP D7.7
(cf. [21]). (The original table presents a summary of all measurements and the authors refer to the
relevant benchmark results in the preceding sections for an interpretation.) In Table 88 we present
the energy to solution for the test cases where both DAVIDE and Frioul results were provided. We

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 96 18.04.2019

normalised using the minimum energy for a given Application-Test Case. Higher values mean
higher energy to solution. We also added colouring green (for the baseline, 1) – red (for the highest
value). Clearly, CP2K Test Case 1 is an outlier. This was due to excessive I/O.

Application Test
Case

Relative Energy to Solution
DAVIDE Frioul

Alya 1 4.11 1.00
2 3.88 1.00

Code_Saturne 1 1.00 4.27

CP2K 1 1.76 1.00
2 9.32 1.00

GROMACS 1 1.36 1.00
2 1.00 1.19

NAMD 1 3.38 1.00
2 1.00 3.14

PFARM 1 1.00 1.96

QCD part 1 1 1.00 2.20
2 1.00 5.50

QCD part 2 1 1.00 3.34

Quantum Espresso 1 1.00 3.84
2 1.00 3.08

SPECFEM3D
Globe 1 1.00 2.08

Average 2.11 2.29
Average w/o CP2K 1.63 2.37

Table 88: Relative energy to solution on DAVIDE and Frioul in their original PCP-configuration

Overall, it is shown that the most energy efficient system is heavily application dependent. Giving
all benchmarks an equal weight and taking the average Relative Energy to Solution, shows that
DAVIDE overall is slightly more energy efficient than Frioul. The difference is somewhat larger
if we exclude the CP2K outlier.

5.2.3 Energy to Solution on DAVIDE, Frioul and Piz Daint

In Table 89 we selected Energy to Solution measurements from Section 4 combined with the
measurements also presented in Table 88. We only selected benchmarks with at least two
measurements where at least one of them is on a non-PCP prototype. To give a good comparison
we selected benchmarks with the largest system coverage. Since the energy efficiency also depends
on the number of nodes, we also tried to cover different node counts. Similarly, to what has been
done in Table 88, we normalised and colour coded the energy to solution to come to a relative
energy to solution.

D7.5 Evaluation of Accelerated and Non-accelerated Benchmarks

PRACE-5IP- EINFRA-730913 97 18.04.2019

Application Test Case nodes DAVIDE DAVIDE
CPU only Frioul Piz Daint Piz Daint

CPU only
Code_Saturne A 4 1.02 1.00
CP2K A 1 1.00 1.39
CP2K A 128 1.84 1.00
CP2K B 16 3.48 2.78 1.33 1.00 1.00
CP2K C 16 30.59 3.28 1.00 2.31
GPAW S 1 1.52 7.48 2.55 1.00
GPAW S 8 1.00 6.17 1.08
PFARM 1 1 6.80 1.00
PFARM 1 4 1.41 1.00
PFARM 2 1 6.31 1.00
PFARM 2 4 3.86 1.00
Quantum
Espresso S 4 4.96 18.89 11.74 1.00

Quantum
Espresso L 10 1.00 3.61 2.00

SPECFEM3D C 2 8.79 1.00
Table 89: Selected relative energy to solution measurements

Overall, Piz Daint is the most energy efficient system. There are only two exceptions: CP2K on
128 nodes runs more efficiently using only the CPUs. This is to be expected since in this case the
GPUs are underutilised but still using a lot of energy. For GPAW on 8 nodes, the CPU only run on
DAVIDE wins. This is somewhat comparable to the CP2K case. The runner up is the other GPU
system: DAVIDE. The reason is clear: DAVIDE uses the same NVIDIA P100 GPUs but it has 4
GPUs (and two CPUs) per node whereas Piz Daint only has one GPU (and one CPU) per node. For
perfectly scaling codes, the four GPUS in a DAVIDE node are expected to use four times the
energy of one GPU in a Piz Daint node. Except for PFARM we see that the smallest problem sizes
on DAVIDE use some 4 times or more energy compared to Piz Daint.

Acknowledgements

We gratefully acknowledge the support of the DEEP-ER project. We are especially grateful for the
support we got from Sebastian Lührs and Estela Suarez from the Jülich Supercomputing Centre
(Forschungszentrum Jülich). The results presented here have been (partially) performed on the
DEEP-ER SDV prototype, which was built with funding from the European Commission's FP7
Programme, under Grant Agreements n° 610476.

We gratefully acknowledge the support of the Mont-Blanc 3 project. We are especially grateful for
the support we got from Etienne Walter and Joël Wanza-Weloli from Atos France. The results
presented here have been (partially) performed on the Mont-Blanc 3 Dibona prototype, which was
built with funding from the European Commission’s Horizon 2020 Research and Innovation
Programme under Grant Agreement n° 671697.

	Document Control Sheet
	Document Status Sheet
	Document Keywords
	List of Figures
	List of Tables
	References and Applicable Documents
	List of Acronyms and Abbreviations
	List of Project Partner Acronyms
	Executive Summary
	1 Introduction
	1.1 UEABS History and Previous Work
	1.2 Work Described in this Report
	1.3 Outline
	1.4 Intended Audience

	2 Application Benchmarks
	2.1 Alya
	2.1.1 Code Description
	2.1.2 Test Cases

	2.2 Code_Saturne
	2.2.1 Code Description
	2.2.2 Test Cases

	2.3 CP2K
	2.3.1 Code Description
	2.3.2 Test Cases

	2.4 GADGET
	2.4.1 Code Description
	2.4.2 Test Cases

	2.5 GPAW
	2.5.1 Code Description
	2.5.2 Test Cases

	2.6 GROMACS
	2.6.1 Code Description
	2.6.2 Test Cases

	2.7 NAMD
	2.7.1 Code Description
	2.7.2 Test Cases

	2.8 NEMO
	2.8.1 Code Description
	2.8.2 Test Cases

	2.9 PFARM
	2.9.1 Code Description
	2.9.2 Test Cases

	2.10 QCD
	2.10.1 Code Description
	2.10.2 Test Cases

	2.11 Quantum Espresso
	2.11.1 Code Description
	2.11.2 Test Cases

	2.12 SHOC
	2.12.1 Code Description
	2.12.2 Test Cases

	2.13 SPECFEM3D
	2.13.1 Code Description
	2.13.2 Test Cases

	3 Benchmark Systems
	3.1 Tier-0 systems
	3.1.1 Hazel Hen
	3.1.2 Irene
	3.1.3 JUWELS
	3.1.4 Marconi
	3.1.5 MareNostrum4
	3.1.6 Piz Daint
	3.1.7 SuperMUC-NG

	3.2 PCP prototypes
	3.2.1 DAVIDE
	3.2.2 Frioul
	3.2.3 JUMAX

	3.3 Partner prototype systems
	3.3.1 DEEP-ER SDV
	3.3.2 Mont-Blanc 3 Dibona

	4 Benchmark Results per Application
	4.1 Alya
	4.1.1 Performance on Skylake: JUWELS and MareNostrum4
	4.1.2 Performance on Marconi-KNL
	4.1.3 Performance on GPU: Piz Daint
	4.1.4 Performance and Energy Consumption on PCP prototypes
	4.1.5 Performance on DEEP-ER SDV
	4.1.6 Performance on ARM: Mont-Blanc 3 Dibona

	4.2 Code_Saturne
	4.2.1 Performance on CPU-based machines: Hazel Hen, Irene-SKL, JUWELS and MareNostrum4
	4.2.2 Performance on KNL-based machines: Irene-KNL, Frioul and Marconi
	4.2.3 Performance on other architectures: Piz Daint, Dibona, DAVIDE
	4.2.4 Cross comparison for all the machines/architectures
	4.2.5 Energy consumption

	4.3 CP2K
	4.3.1 General remarks regarding installation
	4.3.2 General remarks regarding execution
	4.3.3 Performance Results
	4.3.3.1 Performance on JUWELS
	4.3.3.2 Performance on Piz Daint (XC50 partition, with GPU)
	4.3.3.3 Performance on Piz Daint (XC50 partition, without GPU – CPU only)
	4.3.3.4 Performance on Frioul
	4.3.3.5 Performance on DAVIDE (without GPU – CPU only)
	4.3.3.6 Performance on DAVIDE (with GPU)
	4.3.3.7 Performance on DEEP-ER SDV
	4.3.3.8 Performance on Dibona

	4.3.4 Performance comparisons
	4.3.5 Energy consumption comparisons
	4.3.6 Analysis of threading and energy on Frioul
	4.3.7 Conclusions

	4.4 GADGET
	4.4.1 System and software environment
	4.4.2 Modifications carried out in GADGET-3
	4.4.3 Dynamic analysis
	4.4.4 Performance Results
	4.4.5 Conclusion

	4.5 GPAW
	4.5.1 Performance Results
	4.5.2 Performance Cross comparison
	4.5.3 Energy consumption

	4.6 GROMACS
	4.6.1 Performance on KNL systems
	4.6.2 Performance on GPU accelerated systems
	4.6.3 Performance on Haswell/Skylake systems
	4.6.4 Energy consumption

	4.7 NAMD
	4.7.1 Performance on KNL systems
	4.7.2 Performance on GPU accelerated systems
	4.7.3 Performance on Haswell/Skylake systems
	4.7.4 Energy consumption

	4.8 NEMO
	4.8.1 Installation
	4.8.2 Performance Results
	4.8.3 Performance Cross Comparison

	4.9 PFARM
	4.9.1 Performance Results
	4.9.2 Detailed Performance Analysis
	4.9.2.1 Timing Breakdown
	4.9.2.2 Intra-Node Parallel Performance

	4.9.3 Energy Consumption

	4.10 QCD
	4.10.1 Performance Results for QCD part 1
	4.10.2 Performance Results for QCD part 2

	4.11 Quantum Espresso
	4.11.1 Performance on Hazel Hen
	4.11.2 Performance on Irene
	4.11.3 Performance on JUWELS
	4.11.3.1 Installation and execution
	4.11.3.2 Results
	4.11.3.3 Analysis

	4.11.4 Performance on Marconi (KNL and Skylake and Broadwell)
	4.11.4.1 Installation and execution
	4.11.4.2 Results
	4.11.4.3 Analysis

	4.11.5 Performance on MareNostrum4
	4.11.5.1 Installation and execution
	4.11.5.2 Results
	4.11.5.3 Analysis

	4.11.6 Performance on Piz Daint
	4.11.6.1 Installation and execution
	4.11.6.2 Results
	4.11.6.3 Analysis

	4.11.7 Performance on SuperMUC-NG
	4.11.8 Performance on DAVIDE and Frioul
	4.11.8.1 Installation and Execution
	4.11.8.2 Results
	4.11.8.3 Analysis

	4.11.9 Performance on DEEP-ER SDV
	4.11.9.1 Installation and Execution
	4.11.9.2 Results
	4.11.9.3 Analysis

	4.11.10 Summary of performance and energy analyses
	4.11.10.1 Energy Consumption

	4.12 SHOC
	4.12.1 Performance Results
	4.12.2 Energy Consumption

	4.13 SPECFEM3D
	4.13.1 Performance Results by Test Case
	4.13.1.1 Test case A
	4.13.1.2 Test case B
	4.13.1.3 Test case C
	4.13.1.3.1 Run on one node
	4.13.1.3.2 Run on two nodes

	4.13.2 Comparison methodology
	4.13.3 Comparative results of systems
	4.13.4 Energy Efficiency

	5 Conclusions
	5.1 Performance Comparison of all Benchmark Systems
	5.1.1 LINPACK Performance
	5.1.2 Application Performance

	5.2 Energy Efficiency
	5.2.1 LINPACK Energy Efficiency
	5.2.2 Energy to Solution on DAVIDE and Frioul (in their original PCP-configuration)
	5.2.3 Energy to Solution on DAVIDE, Frioul and Piz Daint

	Acknowledgements

