
 
 

SEVENTH FRAMEWORK PROGRAMME 
Research Infrastructures 

 

INFRA-2012-2.3.1 – Third Implementation Phase of the European 
High Performance Computing (HPC) service PRACE 

 

 
 
 
 

PRACE-3IP 
 

PRACE Third Implementation Phase Project 
 

Grant Agreement Number: RI-312763 
 

 
D7.2.2 

Exploitation of HPC Tools and Techniques 
 

Final  
 
 

Version:  1.1 
Author(s):  Michael Lysaght, ICHEC  

Bjorn Lindi, SIGMA-NTNU  
Vit Vondrak, VSB 
John Donners, SURFSARA  
Marc Tajchman, GENCI-CEA 

Date: 20.11.2014 
 
 

  



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 i

Project and Deliverable Information Sheet 
 

PRACE Project Project Ref. №:   RI-312763 
Project Title: PRACE Third Implementation Phase Project 
Project Web Site:      http://www.prace-project.eu 
Deliverable ID:          < 7.2.2> 
Deliverable Nature:  <Report > 
Deliverable Level: 
PU 

Contractual Date of Delivery: 
31 / 05 / 2014 
Actual Date of Delivery: 
31 / 05 / 2014 

EC Project Officer: Leonardo Flores Añover
 
* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants 
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the 
Commission Services). CO – Confidential, only for members of the consortium (including the Commission 
Services). 

Document Control Sheet 
 

 
Document 

Title: Exploitation of HPC Tools and Techniques 
ID: D7.2.2 
Version: <1.1> Status: Final 
Available at:     http://www.prace-project.eu 
Software Tool:  Microsoft Word 2007 
File(s):               D7.2.2.docx 

 
Authorship 

Written by: Michael Lysaght, ICHEC  
Bjorn Lindi, SIGMA-NTNU  
Vit Vondrak, VSB 
John Donners, SURFSARA  
Marc Tajchman, GENCI-CEA 
 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 ii

Contributors: I Bethune, EPCC 
F Reid, EPCC 
C Basu, SNIC-LiU 
S-H Ko, SNIC-LiU 
C Moulinec, STFC 
Y Fournier, EDF 
B Benek Gursoy, ICHEC 
H Nagel, NTNU 
A Kwiecien, WCSS 
M Uchronski, WCSS 
M Gebarowski, WCSS 
S Szkoda, WCSS 
Z Koza, IFT 
M Tykierko, WCSS 
P Nolan, ICHEC 
A McKinstry, ICHEC 
J-C Meyer, NTNU 
C Ozturan, Bogazici 
S Soner, Bogazici 
A Ronovsky, VSB 
T Karasek, VSB 
D Horak, VSB 
P Petkov, NCSA 
I Todorov, STFC 
D Grancharov, NCSA 
N Ilieva, NCSA 
E Likova, NCSA 
L Litov, NCSA 
S Markov, NCSA 
A Duran, ITU-UHeM 
S Celebi, ITU-UHeM 
S Piskin, ITU-UHeM 
M Tuncel, ITU-UHeM 
A Abdel-Rehim, CASTORC 
G Koutsou, CASTORC 
C Urbach, University of Bonn 
G V Demirci, Bilkent 
A Turk, Bilkent, 
R Oguz Selvitopi, Bilkent 
K Akbudak, Bilkent 
C Aykanat, Bilkent 
T Ponweiser, JKU 
P Jovanovic, IPB 
T Arslan, NTNU 
J Rodriguez, BSC 

Reviewed by: David Vincente, BSC 
Thomas Eickermann, JUELICH 

Approved by: MB/TB 
 
 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 iii

Document Status Sheet 
 

Version Date Status Comments 
0.1 11/05/2014 Draft First draft for PMO 

review 
1.0 24/05/2014 Final version PMO Review comments 

addressed 
1.1 20/11/2014 After review Broken references 

corrected after review 
prior to publication 

 
 

 

 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 iv

Document Keywords  

 
Keywords: PRACE, HPC, Research Infrastructure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Disclaimer 
 
This deliverable has been prepared by the responsible Work Package of the Project in 
accordance with the Consortium Agreement and the Grant Agreement n° RI-312763. It solely 
reflects the opinion of the parties to such agreements on a collective basis in the context of the 
Project and to the extent foreseen in such agreements. Please note that even though all 
participants to the Project are members of PRACE AISBL, this deliverable has not been 
approved by the Council of PRACE AISBL and therefore does not emanate from it nor 
should it be considered to reflect PRACE AISBL’s individual opinion. 
 
Copyright notices 
 
 2014 PRACE Consortium Partners. All rights reserved. This document is a project 
document of the PRACE project. All contents are reserved by default and may not be 
disclosed to third parties without the written consent of the PRACE partners, except as 
mandated by the European Commission contract RI-312763 for reviewing and dissemination 
purposes.  

All trademarks and other rights on third party products mentioned in this document are 
acknowledged as own by the respective holders. 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 v

Table of Contents 
Project and Deliverable Information Sheet ......................................................................................... i 

Document Control Sheet ........................................................................................................................ i 

Document Status Sheet ........................................................................................................................ iii 

Document Keywords ............................................................................................................................ iv 

Table of Contents .................................................................................................................................. v 

List of Figures ....................................................................................................................................... vi 

List of Tables ......................................................................................................................................... vi 

References and Applicable Documents ............................................................................................. vii 

List of Acronyms and Abbreviations .................................................................................................. xi 

Executive Summary .............................................................................................................................. 1 

1  Introduction ................................................................................................................................... 3 
1.1  The Purpose of the document ............................................................................................................. 3 

1.2  Organisation of Work ......................................................................................................................... 3 

1.3  Structure of the Document ................................................................................................................. 5 

1.4  Intended Audience ............................................................................................................................... 5 

2  Programming Models.................................................................................................................... 5 
2.1  Porting CP2K to Intel Xeon Phi with mixed-mode MPI/OpenMP in native mode ....................... 7 

2.2  Exploiting MPI 3.0 One-sided Communication for enabling Code_Saturne on Multi-
petaflop/Exascale systems ............................................................................................................................ 8 

2.3  Evaluation of the Effectiveness of OpenACC for enabling DL_POLY_4 on the Road to Exascale
 10 

2.4  Enabling CP2K for Exascale with OpenACC/OpenCL ................................................................. 12 

2.5  Enabling the Cellular Automata Library for Exascale with OpenACC ....................................... 14 

2.6  Preparing Coupled Climate Models for Exascale: OpenACC-enabled EC Earth3 Earth System 
Model ........................................................................................................................................................... 16 

2.7  A Hybrid Application of OmpSs ...................................................................................................... 18 

2.8  Application of Accelerator Units to Neural Networks .................................................................... 19 

3  Scalable Libraries and Algorithms ............................................................................................ 20 
3.1  Enabling the Generation of Massive Unstructured Meshes for OpenFOAM using Netgen ....... 22 

3.2  Enhancing Code_Saturne Capability in the area of Parallel Local Mesh Refinement................ 23 

3.3  Exploiting Open Source Codes for Solving Multi-scale Multi-physics Problems ........................ 25 

3.4  Enabling DL_POLY_4 for Scalable MD Simulations with Non-Periodic Boundary Conditions: 
Accounting for Electrostatic Interactions ................................................................................................ 27 

3.5  Enabling OpenFOAM for Bio-medical Flow Simulations ............................................................. 29 

3.6  Towards the Implementation of an Algebraic Multi-Grid Solver for Lattice QCD on Exascale 
Hardware .................................................................................................................................................... 31 

3.7  Parallelisation of Sparse Matrix Kernels for Large-Scale Scientific Applications using the 
MapReduce Paradigm ............................................................................................................................... 34 

4  Debuggers and Profilers ............................................................................................................. 36 
4.1  Profiling Code_Saturne with TAU and auto-tuning kernels with Orio ........................................ 37 

4.2  Performance Analysis of Alya on Multi-petaflop Systems using Extrae ...................................... 40 

5  I/O Management Techniques ..................................................................................................... 42 
5.1  Exploiting the SIONlib library for Fast, Parallel POSIX I/O in the Bonsai Astrophysics Code 42 

6  Summary ...................................................................................................................................... 44 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 vi

 
List of Figures 

Figure 1: Gantt chart outlying first draft of the PRACE 3IP T7.2 exploitation phase schedule in April 
2013. Taken from PRACE 3IP T7.2 Wiki page. ..................................................................................... 4 
Figure 2: Runtimes of the main loop in spme_forces() for different lattice vector dimensions ... 11 
Figure 3: CP2K test results for OpenCL and OpenACC (mm_stack_size = 10000) ............................ 13 
Figure 4: Weak scaling of FHP on a node with 8 NVIDIA M2090 GPUs ........................................... 15 
Figure 5: Profiling of EC-Earth3 (T799L91-ORCA025L46). The simulation was run using 1536 CPU 
cores using a 'total processes per NEMO process ratio' of 3. Routines are presented only if they 
account for greater than 1% of total run time. Left: NEMO, Right: IFS ............................................... 16 
Figure 6: LULESH Speedup on a 16-core SMP system ....................................................................... 19 
Figure 7: Adapted program speedup relative to single-threaded execution in native mode on Xeon Phi
 ............................................................................................................................................................... 20 
Figure 8: Parallel mesh generation timings for (a) Onera-M6.stl, (b) shaft.geo, (c) sphere.stl and (d) 
sphere.geo geometries obtained for various ranges of coarse and fine mesh sizes ............................... 23 
Figure 9: Strong scalability of the CSM (left) and CFD (right) solvers for a wind turbine simulation 26 
Figure 10:  Scaling performance of the Poisson Solver module in DL_POLY_4 (relative to 1 MPI 
process) vs. number of MPI processes for a single time-step ............................................................... 28 
Figure 11: The results obtained using OpenAFOAM icoFOAM solver ............................................... 30 
Figure 12: Scalability of icoFOAM solver on CURIE .......................................................................... 30 
Figure 13: Accumulative time to solution for each MPI process (sec) for solving 20 linear systems. 
Left: B85.24 lattice on 32 cores. Right: D15.48 lattice on 512 cores. .................................................. 33 
Figure 14: Performance of the vectorized matrix-vector multiplications on a single Xeon Phi card. 
Left: Bandwidth. Right: FLOPs/s .......................................................................................................... 34 
Figure 15:  Comparison of mapper/reducer task assignment strategies on SpMV for the 
dielFilterV2real Matrix .......................................................................................................................... 35 
Figure 16: Profiles of functions (averaged on 4096 cores-256 nodes) from Code_Saturne in decreasing 
order of exclusive time, 51M case. ........................................................................................................ 38 
Figure 17: Visual comparison of hotspot routines for the Tube bundle test case .................................. 39 
Figure 18: Orio input file for optimization (loop-unrolling) of _mat_vec_p_l_native. ............. 40 
Figure 19: Profile of the iterative part of Alya on 256 processes (zoomed in) ..................................... 41 
Figure 20: Bandwidth on Cartesius for the naive approach and SIONlib writing to one file using 
different strip sizes (in MB). All runs with one MPI task per node. Error bars indicate the standard 
deviation from eight measurements ...................................................................................................... 43 
 

List of Tables 
Table 1: HPC Tools and Techniques (Programming Models) exploited along with corresponding 
applications .............................................................................................................................................. 5 
Table 2: Scaling results for 'One Tube' test case runs comparing the original two-sided 
communications vs. the new one-sided communication implementation (version 1) ............................. 9 
Table 3: Wall-clock time of the main loop in spme_forces() for different implementations ................ 11 
Table 4: The performance of our implementation of the Cellular Automata Library (FHP) on various 
CUDA-capable devices in GUPS (lattice node updates per second). Higher is better. ......................... 15 
Table 5: Performance of two IFS routines on CPU and GPU.  In each case, we compare runtimes using 
a single CPU (Xeon X5560) core with no GPUs attached to the same CPU chipset with a GPU 
(NVIDIA Tesla M2090) attached .......................................................................................................... 17 
Table 6: HPC Tools and Techniques (Scalable Libraries and Algorithms) exploited along with 
corresponding applications .................................................................................................................... 21 
Table 7: Adaptive refinement of a cubic cavity from 14 million cells to 16 million ............................ 24 
Table 8: Full refinement of a cubic cavity from 14 million cells to 111 million .................................. 25 
Table 9: Adaptive refinement of a cubic cavity from 111 million cells to 126 million ........................ 25 
Table 10: Parameters of the gauge configurations used in testing the AMG Solver. ............................ 32 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 vii

Table 11: HPC Tools and Techniques (Debuggers and Profilers) exploited along with corresponding 
applications ............................................................................................................................................ 36 
 

References and Applicable Documents 

 
[1] M. Lysaght, B. Lindi, V. Vondrak, J. Donners, M. Tajchman, PRACE-3IP D7.2.1 A 
Report on the Survey of HPC Tools and Techniques, pdf: http://www.prace-
project.eu/IMG/pdf/d7.2.1.pdf 
[2] PRACE Whitepapers can be found at: http://www.prace-project.eu/white-papers  
[3] G. Mozdzynski, A PGAS implementation of the ECMWF Integrated Forecasting 
System (IFS), CRESTA report, pdf: 
http://www.easc2013.org.uk/sites/default/files/Pdfs/InvitedTalks/EASC-Mozdzynski.pdf  

[4] CP2K homepage: http://www.cp2k.org 

[5] J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, 
QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and 
plane waves approach. Comp. Phys. Comm. 167 (2): 103-128 (2005) 

[6] Intel Xeon Phi Specifications; 
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html 

[7] F. Reid and I. Bethune, Optimising CP2K for the Intel Xeon Phi, PRACE White Paper, 
2013, pdf: http://www.prace-ri.eu/IMG/pdf/wp140.pdf  

[8] Code_Saturne homepage: http://code-saturne.org/cms/ 
[9] MPI 3.0 standard, pdf: http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf 
[10] ONE_TUBE test case reference:_http://cfd.mace.manchester.ac.uk/cgi-
bin/cfddb/prpage.cgi?78&EXP&&database/cases/case78&cas78_head.html&cas78_desc.html
&cas78_meth.html&cas78_data.html&cas78_refs.html&cas78_rsol.html&1&1&1&1&1&un
known  
[11] DL_POLY homepage: 
http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.aspx  
[12] C. Kartsaklis, G. Civario, Porting DL POLY on GPGPU with CUDA, presented at 
NVIDIA GPU Technology Conference (GTC), San Jose, (2010) 
[13] The OpenACC homepage: http://www.openacc-standard.org/  
[14] I. Bethune, A. Carter, X. Guo, P. Korosoglou, Million Atom KS-DFT with CP2K, 
PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-ri.eu/IMG/pdf/Million_Atom_KS-
DFT_with_CP2K.pdf  
[15] I. Bethune, “Improving the scalability of CP2K on multi-core systems, dCSE Project, 
2010, pdf: http://www.hector.ac.uk/cse/distributedcse/reports/cp2k02/cp2k02_final_report.pdf  
[16] OpenCL Khronos Group homepage, http://www.khronos.org/opencl  
[17] U. Borštnik, J. VandeVondele, V. Weber, J. Hutter, Sparse Matrix Multiplication: The 
Distributed Block-Compressed Sparse Row Library, Parallel Computing, 40(5-6): 47-58 
(2014) 
[18] The OpenACC 2.0a Specification (Corrected), pdf: 
http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf  
[19] The Khronos OpenCL Registry with OpenCL 2.0 specification, 
http://www.khronos.org/registry/cl/  
[20] Portland Group’s PGI Accelerator compilers: 
http://www.pgroup.com/resources/accel.htm  
[21] Allinea DDT homepage: http://www.allinea.com/products/ddt/ 
[22] PGDBG Graphical Symbolic Debugger: http://www.pgroup.com/products/pgdbg.htm 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 viii

[23] F. Reid, I. Bethune, Evaluating CP2K on Exascale Hardware: Intel Xeon Phi”, PRACE 
whitepaper (2014) pdf: http://www.prace-project.eu/IMG/pdf/wp152.pdf  
[24] U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice gas automata for the Navier-Stokes 
equation. Phys. Rev. Lett., 56, 1505 (1986) 

[25] G. Kohring, The cellular automata approach to simulating fluid flows in porous media. 
Physica A, 186, 97–108 (1992) 

[26] Portland Group (2010) PGI Fortran & C Accelerator Programming Model new features 
ver. 1.3. 

[27] M. G. B. Johnson, D. P. Playne, and K. A. Hawick, Data-parallelism and GPUs for 
lattice gas fluid simulations. Proc. International Conference on Parallel and Distributed 
Processing Techniques and Applications (PDPTA10), Las Vegas, USA, 12-15 July, pp. 210–
216. CSREA. PDP4521 (2010) 

[28] EC-Earth homepage: http://www.ec-earth.org/  
[29] http://www.ecmwf.int/research/ifsdocs/CY40r1/ 
[30] G. Madec, NEMO ocean engine, Note du Pole de modélisation, Institut Pierre-Simon 
Laplace (IPSL), France, No 27 ISSN No 1288-1619 (2008) pdf:  NEMO_book_3_4.pdf  
[31] M Vancoppenolle, S. Bouillon, T. Fichefet, H. Goosse, O. Lecomte, M. A. Morales 
Maqueda, and G Madec, LIM The Louvain-la-Neuve sea Ice Model. Note du Pole de 
modélisation, Institut Pierre-Simon Laplace (IPSL), (2012) France, No 31 ISSN No 1288-
1619.  
[32] Vancoppenolle, M., T. Fichefet, H. Goosse, S. Bouillon, G. Madec, and M.A. Morales 
Maqueda, Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model 
description and validation. Ocean Modelling, 27, 33-53 (2009) 
[33] S. Valcke, T Craig, L. Coquart, OASIS3-MCT User Guide, OASIS3-MCT 2.0, 
Technical Report, TR/CMGC/13/17, CERFACS/CNRS SUC URA No 1875, Toulouse, 
France (2013) 
[34] LULESH webpage: https://codesign.llnl.gov/lulesh.php 
[35] ALE3D webpage: https://wci.llnl.gov/codes/ale3d/  
[36] I. Karlin, A. Bhatele, J. Keasler, Bradford L. Chamberlain, J. Cohen, Z. DeVito, R. 
Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, C. H. Still: Exploring 
Traditional and Emerging Parallel Programming Models using a Proxy Application, 
proceedings of the 2013 IEEE 27th International Symposium on Parallel and Distributed 
Processing 
[37] Programming Models at BSC, http://pm.bsc.es/  
[38] B. Dunn and R. Yasser, Learning and inference in a nonequilibrium Ising model with 
hidden nodes, Physical Review E, 2013 
[39] J. Bell L Chacon R. Falgout M. Heroux P. Hovland E. Ng C Webster S.  Wild J.   
Dongarra, J Hittinger. Applied mathematics research for exascale computing report (2014) 
pdf: http://www.netlib.org/utk/people/JackDongarra/PAPERS/doe-exascale-math-report.pdf  
[40] OpenFoam homepage: http://www.openfoam.org/  
[41] NetGen, Mesh Generator hompage: http://www.hpfem.jku.at/netgen/   
[42] Parallel Mesh Multiplication and its Implementation in Code Saturne. A. Ronovsky, P.   
Kabelikova, V.Vondrak, C. Moulinec, Civil-Comp Proceedings ISSN 1759-3433. 
(doi:10.4203/ccp.101.11) 
[43]  Code_Aster homepage: http://www.code-aster.org/ 
[44]  Elmer homepage: http://www.csc.fi/english/pages/elmer 
[45]  FFLOP homepage: http://industry.it4i.cz/produkty/fllop/ 
[46]  PETSc homepage: http://www.mcs.anl.gov/petsc/  
[47] S. Piskin, M. S. Celebi, Analysis of the effects of different pulsatile inlet profiles on the 
hemodynamical properties of blood flow in patient specific carotid artery with stenosis, 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 ix

Computers in Biology and Medicine, Volume 43, Issue 6, 1 July 2013, Pages 717-728, ISSN 
0010-4825, http://dx.doi.org/10.1016/j.compbiomed.2013.02.014 
[48] S. Piskin, M. S. Celebi, "Numerical blood flow simulation with predefined artery 
movement," Biomedical Engineering and Informatics (BMEI), 2012 5th International 
Conference, pp.654,658, 16-18 Oct. 2012 doi: 10.1109/BMEI.2012.6513039 
[49] H. Turkeri, S. Piskin, and M. S. Celebi, A comparison between non-Newtonian and 
Newtonian blood viscosity models, Journal of Biomechanics, 44, Supplement 1, 2011 
[50] S. Piskin and A. Akkus¸ Biofluid flow applications by open-source software, 17. 
National Biomedical Engineering Meeting - BIYOMUT 2012, Istanbul, Turkey, October 3-5, 
2012 
[51] P. Dagna and J. Hertzer, Evaluation of multi-threaded OpenFOAM hybridization for 
massively parallel architectures, PRACE WP98, Aug. 20, 2013, www.prace-
project.eu/IMG/pdf/wp98.pdf  
[52] M. Manguoglu, PRACE WP, Sep. 6, 2012, http://www.prace-
project.eu/IMG/pdf/A_General_Sparse_Sparse_Linear_System_Solver_and_Its_Application_
in_OpenFOAM-2.pdf 
[53] M. Culpo, PRACE WP, Sep. 6, 2012, http://www.prace-
ri.eu/IMG/pdf/Current_Bottlenecks_in_the_Scalability_of_OpenFOAM_on_Massively_Paral
lel_Clusters-2.pdf  
[54] M. Moyles, P. Nash, and Ivan Girotto, PRACE WP, Sep. 6, 2012, http://www.prace-
ri.eu/IMG/pdf/Performance_Analysis_of_Fluid-
Structure_Interactions_using_OpenFOAM.pdf  
[55] T. Behrens, OpenFOAM’s basic solvers for linear systems of equations: Solvers, 
preconditioners, smoothers, Tech. Rep. DTU, Denmark, Feb. 18, 2009, 
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/TimBehrens/tibeh-report-fin.pdf 
[56] Xiaoye S. Li and James W. Demmel, SuperLU_DIST: A Scalable Distributed-Memory 
Sparse Direct Solver for Unsymmetric Linear Systems, ACM Trans. on Math. Software, Vol. 
29, No. 2, June 2003, pp. 110-140.  
[57] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, SuperLU 
Users' Guide, Tech. Report UCB, Computer Science Division, University of California, 
Berkeley, CA, 1999, update: 2011 
[58] A. Duran, M.S. Celebi, M. Tuncel and B. Akaydın, Design and implementation of new 
hybrid algorithm and solver on CPU for large sparse linear systems, PRACE-2IP white paper, 
Libraries, WP 43, July 13, 2012, http://www.prace-ri.eu/IMG/pdf/wp43-
newhybridalgorithmfo_lsls.pdf 
[59] A. Duran, M.S. Celebi, M. Tuncel, and F. Oztoprak. Structural analysis of large sparse 
matrices for scalable direct solvers. PRACE-2IP white paper, Scalable algorithms, WP 82, 
August 20, 2013, http://www.prace-project.eu/IMG/pdf/wp82.pdf 
[60] Andreas Frommer, et. al., “Adaptive aggregation based domain decomposition 
multigrid for the lattice Wilson Dirac operator”, arXiv: 1303.1377[hep-lat]. 
[61] K. Jansen and C. Urbach, “tmLQCD: A Program suite to simulate Wilson Twisted mass 
Lattice QCD”, Comput. Phys. Com. 180(2009)2717-2738 (arXiv: 0905.3331). 
[62] tmLQCD homepage: https://github.com/etmc/tmLQCD. 
[63] https://confluence.csc.fi/display/HPCproto/HPC+Prototypes. 

[64] J Cohen, Graph twiddling in a mapreduce world. Computing in Science & Engineering, 
11(4), 29-41 (2009) 
[65] Ekanayake, J., & Fox, G. (2010). High performance parallel computing with clouds and 
cloud technologies. In Cloud Computing (pp. 20-38). Springer Berlin Heidelberg. 
[66] Kang, U., Tsourakakis, C. E., & Faloutsos, C. (2009, December). Pegasus: A peta-scale 
graph mining system implementation and observations. In Data Mining, 2009. ICDM'09. 
Ninth IEEE International Conference on (pp. 229-238). IEEE. 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 x

[67] Tu, T., Rendleman, C. A., Borhani, D. W., Dror, R. O., Gullingsrud, J., Jensen, M. O., 
and Shaw, D. E. (2008, November). A scalable parallel framework for analyzing terascale 
molecular dynamics simulation trajectories. In High Performance Computing, Networking, 
Storage and Analysis, 2008. SC 2008. International Conference for (pp. 1-12). IEEE. 
[68] Plimpton, S. J., & Devine, K. D. (2011). MapReduce in MPI for large-scale graph 
algorithms. Parallel Computing, 37(9), 610-632. 
[69] Hoefler, T., Lumsdaine, A., & Dongarra, J. (2009). Towards efficient mapreduce using 
mpi. In Recent Advances in Parallel Virtual Machine and Message Passing Interface (pp. 240-
249). Springer Berlin Heidelberg. 
[70] Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for 
partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1), 359-392. 
[71] Catalyurek, U. V., & Aykanat, C. (1999). Hypergraph-partitioning-based decomposition 
for parallel sparse-matrix vector multiplication. Parallel and Distributed Systems, IEEE 
Transactions on, 10(7), 673-693. 
[72] Davis, T. A., & Hu, Y. (2011). The University of Florida sparse matrix collection. ACM 
Transactions on Mathematical Software (TOMS), 38(1), 1. 
[73] TAU homepage: http://www.cs.uoregon.edu/research/tau/home.php 
[74] HPCToolKit homepage: http://hpctoolkit.org/  
[75] Orio homepage: http://brnorris03.github.io/Orio/ 
[76] Moulinec, C., Sunderland, A. G., Kabelikova, P., Ronovsky, A., Vondrak, V., Turk, A., 
Aykanat, C., and Theodosiou, C., 2012,  Optimization of Code_Saturne for Petascale 
Simulations, PRACE white paper (2012), pdf: http://www.prace-
project.eu/IMG/pdf/Optimisation_of_Code_Saturne_for_Petascale_Simulations.pdf   
[77] Alya System homepage: http://www.bsc.es/computer-applications/alya-system 
[78] PRACE UEABS, Unified European Applications Benchmark Suite, http://www.prace-
ri.eu/ueabs?lang=en 
[79] Extrae, http://www.bsc.es/computer-sciences/extrae 
[80] Paraver, http://www.bsc.es/computer-sciences/performance-tools/paraver 
[81] Wautelet, P., Kestener, P., 2012, Parallel IO performance and scalability study on the 
CURIE supercomputer, PRACE white paper, pdf: http://www.prace-
ri.eu/IMG/pdf/Parallel_IO_performance_and_scalability_study_on_the_PRACE_CURIE_sup
ercomputer-2.pdf  

[82] J. Bédorf, E. Gaburov, S. Portegies Zwart, A sparse octree gravitational N-body code 
that runs entirely on the GPU processor, J. Comp. Pys., 231, 2825–2839 (2011) 
[83] W. Frings, F. Wolf, V. Petkov, Scalable Massively Parallel I/O to Task-Local File, 
Proceedings of the Conference on High Performance Computing Networking, Storage and 
Analysis, 17:1-11 (2009) 
 

  



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 xi

List of Acronyms and Abbreviations 

 

AAA Authorization, Authentication, Accounting.  
ACF  Advanced Computing Facility 
ADP  Average Dissipated Power 
AISBL  Association sans but lucrative (legal form of the PRACE RI) 
AMD  Advanced Micro Devices 
APGAS  Asynchronous PGAS (language) 
API  Application Programming Interface 
APML  Advanced Platform Management Link (AMD) 
ASIC  Application-Specific Integrated Circuit 
ATI  Array Technologies Incorporated (AMD) 
BAdW  Bayerischen Akademie der Wissenschaften (Germany) 
BCO  Benchmark Code Owner 
BLAS  Basic Linear Algebra Subprograms 
BSC  Barcelona Supercomputing Center (Spain) 
CAF  Co-Array Fortran 
CAL  Compute Abstraction Layer 
CCE  Cray Compiler Environment 
ccNUMA cache coherent NUMA 
CEA  Commissariat à l'énergie atomique et aux énergies alternatives 
CGS  Classical Gram-Schmidt 
CGSr  Classical Gram-Schmidt with re-orthogonalisation 
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy) 
CINES Centre Informatique National de l’Enseignement Supérieur (represented 

in PRACE by GENCI, France)  
CLE  Cray Linux Environment 
CPU  Central Processing Unit 
CSC  Finnish IT Centre for Science (Finland) 
CSCS The Swiss National Supercomputing Centre (represented in PRACE by 

ETHZ, Switzerland) 
CSR  Compressed Sparse Row (for a sparse matrix) 
CUDA  Compute Unified Device Architecture (NVIDIA) 
DARPA Defense Advanced Research Projects Agency 
DDN  DataDirect Networks 
DDR  Double Data Rate 
DEISA Distributed European Infrastructure for Supercomputing Applications. 

EU project by leading national HPC centres. 
DFT  Density Functional Theory 
DGEMM Double precision General Matrix Multiply 
DIMM  Dual Inline Memory Module 
DMA  Direct Memory Access 
DNA  DeoxyriboNucleic Acid 
DOE  Department of Energy (USA) 
DP  Double Precision, usually 64-bit floating point numbers 
DRAM  Dynamic Random Access memory 
EC  European Commission 
EESI  European Exascale Software Initiative 
EoI  Expression of Interest 
EP  Efficient Performance, e.g., Nehalem-EP (Intel) 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 xii

EPCC Edinburg Parallel Computing Centre (represented in PRACE by 
EPSRC, United Kingdom) 

EPSRC The Engineering and Physical Sciences Research Council (United 
Kingdom) 

eQPACE extended QPACE, name of the FZJ WP8 prototype 
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich 

(Switzerland) 
ESFRI European Strategy Forum on Research Infrastructures; created 

roadmap for pan-European Research Infrastructure.  
EX  Expandable, e.g., Nehalem-EX (Intel) 
FC  Fiber Channel 
FFT  Fast Fourier Transform 
FHPCA FPGA HPC Alliance 
FP  Floating-Point 
FPGA  Field Programmable Gate Array 
FPU  Floating-Point Unit 
FZJ  Forschungszentrum Jülich (Germany) 
GASNet Global Address Space Networking 
GB  Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte 
Gb/s  Giga (= 109) bits per second, also Gbit/s 
GB/s  Giga (= 109) Bytes (= 8 bits) per second, also GByte/s 
GCS  Gauss Centre for Supercomputing (Germany) 
GDDR  Graphic Double Data Rate memory 
GÉANT Collaboration between National Research and Education Networks to 

build a multi-gigabit pan-European network, managed by DANTE. 
GÉANT2 is the follow-up as of 2004. 

GENCI Grand Equipement National de Calcul Intensif (France) 
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per 

second, also GF/s 
GHz  Giga (= 109) Hertz, frequency =109 periods or clock cycles per second 
GigE  Gigabit Ethernet, also GbE 
GLSL  OpenGL Shading Language 
GNU  GNU’s not Unix, a free OS 
GPGPU General Purpose GPU  
GPU  Graphic Processing Unit 
GS  Gram-Schmidt 
GWU  George Washington University, Washington, D.C. (USA) 
HBA  Host Bus Adapter 
HCA  Host Channel Adapter 
HCE  Harwest Compiling Environment (Ylichron) 
HDD  Hard Disk Drive 
HE  High Efficiency 
HET High Performance Computing in Europe Taskforce. Taskforce by 

representatives from European HPC community to shape the European 
HPC Research Infrastructure. Produced the scientific case and valuable 
groundwork for the PRACE project. 

HMM  Hidden Markov Model 
HMPP  Hybrid Multi-core Parallel Programming (CAPS enterprise) 
HP  Hewlett-Packard 
HPC High Performance Computing; Computing at a high performance level 

at any given time; often used synonym with Supercomputing 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 xiii

HPCC  HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/ 
HPCS  High Productivity Computing System (a DARPA program) 
HPL  High Performance LINPACK 
HT  HyperTransport channel (AMD) 
HWA  HardWare accelerator 
IB  InfiniBand 
IBA  IB Architecture 
IBM  Formerly known as International Business Machines 
ICE  (SGI) 
IDRIS Institut du Développement et des Ressources en Informatique 

Scientifique (represented in PRACE by GENCI, France) 
IEEE  Institute of Electrical and Electronic Engineers 
IESP  International Exascale Project 
IL  Intermediate Language 
IMB  Intel MPI Benchmark 
I/O  Input/Output 
IOR  Interleaved Or Random 
IPMI  Intelligent Platform Management Interface 
ISC International Supercomputing Conference; European equivalent to the 

US based SCxx conference. Held annually in Germany. 
IWC  Inbound Write Controller 
JSC  Jülich Supercomputing Centre (FZJ, Germany) 
KB  Kilo (= 210 ~103) Bytes (= 8 bits), also KByte 
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC, 

Sweden) 
LBE  Lattice Boltzmann Equation 
LINPACK Software library for Linear Algebra 
LLNL  Laurence Livermore National Laboratory, Livermore, California (USA) 
LQCD  Lattice QCD 
LRZ  Leibniz Supercomputing Centre (Garching, Germany) 
LS  Local Store memory (in a Cell processor) 
MB  Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte 
MB/s  Mega (= 106) Bytes (= 8 bits) per second, also MByte/s 
MDT  MetaData Target 
MFC  Memory Flow Controller 
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per 

second, also MF/s 
MGS  Modified Gram-Schmidt 
MHz  Mega (= 106) Hertz, frequency =106 periods or clock cycles per second 
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC 

processor architecture developed by MIPS Technology 
MKL  Math Kernel Library (Intel) 
ML  Maximum Likelihood 
Mop/s  Mega (= 106) operations per second (usually integer or logic operations) 
MoU  Memorandum of Understanding. 
MPI  Message Passing Interface 
MPP  Massively Parallel Processing (or Processor) 
MPT  Message Passing Toolkit 
MRAM Magnetoresistive RAM 
MTAP  Multi-Threaded Array Processor (ClearSpead-Petapath) 
mxm  DP matrix-by-matrix multiplication mod2am of the  EuroBen kernels 



D7.2.2 Exploitation of HPC Tools and Techniques 

PRACE-3IP - RI-312763  20.11.2014 xiv

NAS  Network-Attached Storage 
NCF  Netherlands Computing Facilities (Netherlands) 

NDA Non-Disclosure Agreement. Typically signed between vendors and 
customers working together on products prior to their general 
availability or announcement. 
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SAN  Storage Area Network 
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Executive Summary 

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is 
to provide applications enabling support for HPC applications codes which are important for 
European researchers to ensure that these applications can effectively exploit multi-petaflop 
systems. This applications enabling activity uses the most promising tools, algorithms and 
standards for optimisation and parallel scaling that have recently been developed through 
research and experience in PRACE and other projects. 

In this deliverable, we report on the exploitation of new HPC tools and algorithms on 
different codes that are of interest to the European scientific and engineering research 
community. In this sense, the report here follows on naturally from the T7.2 deliverable 
D7.2.1, ‘A Report on the Survey of HPC Tools and Techniques’, which represented the first 
phase of activity in T7.2. Indeed, much of the exploitation work reported on here, was 
inspired by the comprehensive and in-depth analysis of state-of-the-art HPC tools and 
techniques as reported in D7.2.1.  

The report on the exploitation of state-of-the-art HPC tools and techniques presented here 
represents the second phase of activity in T7.2. In this report we summarise how selected 
state-of-the-art HPC tools and techniques fared on real-world applications during the 
exploitation phase of T7.2, where we focus on four separate topics that we have identified as 
being important to enable applications within WP7 on the road to exascale, and which mirror 
the four topics reported on in the survey of HPC Tools and Techniques in D7.2.1. These are: 
(1) Programming Models, (2) Scalable Libraries and Algorithms, (3) Debuggers and Profilers 
and finally, (4) I/O Management Techniques. For a more detailed description of each of the 
exploitation projects summarised here, we refer the reader to the PRACE-3IP whitepaper 
associated with each of the 17 projects. 

Programming Models 

During the second phase of T7.2, we have exploited several different programming models 
that were reported on in D7.2.1 as having genuine potential on the road to exascale. In this 
deliverable we provide summary reports on the effectiveness of each of these HPC tools when 
enabling real applications with future exascale challenges in mind. In particular we have 
focused on probing new (as well as under-exploited) features in mature programming models, 
such as the Message Passing Interface (MPI), the new features of which are now starting to 
confront the challenges of exascale computing. 

We have also exploited programming models targeting many-core architectures (where many-
core typically implies > 50 cores), which are likely to continue to feature as part of future 
large-scale systems as we move into the deep petascale era. As pointed out in the first phase 
of T7.2, the entry of new competitors to the many-core space has increased the relevance of 
open standards on the road to exascale and we have therefore placed a particular focus on 
both mature and emerging open standards during the exploitation phase. In terms of more 
novel approaches to exploiting multi-petascale systems, we have also continued to be inspired 
by experimental programming models featuring in European exascale projects, which offer 
experimental task-based models for programming multi-/many-core architectures. We feel 
that it is worth also noting that, although possibilities for exploiting Partitioned Global 
Address Space (PGAS) languages on real applications were genuinely explored during the 
exploitation phase, no real opportunities arose for doing so, possibly reflecting the continuing 
challenge for exploiting these powerful tools on existing large-scale codes on the road to 
exascale. 
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Scalable Libraries and Algorithms 

During the exploitation phase we have undertaken six separate enablement projects that have 
each focused on exploiting scalable libraries and algorithms. In terms of challenges on the 
road to exascale, global communications, in particular, are known to be a severe barrier when 
trying to scale across large core counts and many open questions still exist on how, for 
example, Fast Fourier Transform (FFT) libraries will perform on future exascale systems. 
With this challenge in mind, we are happy to report on the successful implementation of 
alternative methods to FFT libraries in a real molecular dynamics application, which has the 
potential to significantly improve scalability (and functionality) of the code on large node 
counts for certain problem types. As well as global communications, mesh generation and 
refinement have also been identified as posing major challenges on the road to exascale and as 
a result, we have also focused our efforts on both exploiting and improving state-of-the-art 
mesh tools for enabling Computational Fluid Dynamics (CFD) codes, which we report on 
here. We also report on the successful implementation of an Alegbraic Multi-Grid (AMG) 
algorithm within a lattice Quantum Chromo-Dynamics (QCD) code, which has been shown to 
outperform existing techniques and shows real potential for enabling QCD applications on the 
road to exascale. 

Debuggers and Profilers 

In the survey of state-of-the-art HPC tools and techniques as reported in D7.2.1 we found that 
all of the European exascale projects are concentrating effort on tools for debugging and 
performance analyses. This is deemed a necessity for efficient use of multi-petascale and 
future exascale systems: If we are to enable applications on such systems, then we need to 
have as clear a view as possible of the barriers to achieving performance. At the same time, 
we noted in D7.2.2, that very little effort had gone into documenting the experience of using 
such tools on real applications within PRACE to date. Here, we try to rectify this by reporting 
on how state-of-the art profiling tools fared with respect to real large scale CFD and 
Computational Structural Mechanics (CSM) codes. We also report on how such tools can 
potentially be employed in combination with auto-tuning tools, which are becoming of 
increasing interest on the road to exascale. 

I/O Management Techniques 

During our surveying in the first phase of T7.2 and as reported on in D7.2.2, we found that 
users within PRACE have in general not been able to squeeze as much performance from 
existing parallel file systems as they have from computational hardware, particularly for the 
case of high-level I/O libraries. With this challenge in mind, we have carried out deeper 
investigations into extracting performance from file systems using state-of-the-art high-level 
libraries, work that we are happy to report has improved the I/O performance of an 
astrophysics application on Tier-0 systems and shows real promise on the road to exascale. 
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1 Introduction 

1.1 The Purpose of the document 

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is 
to provide applications enabling support for HPC applications codes which are important for 
European researchers to ensure that these applications can effectively exploit multi-petaflop 
systems. This applications enabling activity used the most promising tools, algorithms and 
standards for optimisation and parallel scaling that have recently been developed through 
research and experience in PRACE and other projects. 

There has been significant research activity undertaken both within PRACE and outside 
PRACE investigating novel techniques to enable applications on petascale and future exascale 
systems. Such activities include, for example, PRACE Work Packages [WP6 (‘Software 
Enabling for Petaflop/s Systems’) in PRACE-PP, WP7 (‘Enabling Petascale Applications: 
Efficent Use of Tier-0 Systems’) and WP9 (‘Future Technologies’) in PRACE-1IP, WP7 
(‘Scaling Applications for Tier-0 and Tier-1 Users’), WP8 (‘Community Codes’), and WP12 
(‘Novel Programming Techniques’) in PRACE-2IP], other EU-funded projects (European 
Exascale Software Initiative (EESI), Towards Exaflop applications (TEXT), Collaborative 
Research into Exascale Systemware, Tools and Applications (CRESTA), Dynamical Exascale 
Entry Platform (DEEP), Mont-Blanc and international collaborations such as the International 
Exascale Software Project (IESP). 

As stated in the Description of Work (DoW), the objective of this deliverable, D7.2.2, is to 
report on the exploitation of new HPC tools and algorithms on different codes. In this sense, 
the report here follows on naturally from the T7.2 deliverable D7.2.1, ‘A Report on the 
Survey of HPC Tools and Techniques’ [1] which represented the first phase of activity in 
T7.2. Indeed, much of the exploitation work reported on here, was inspired by the 
comprehensive and in-depth analysis of state-of-the-art HPC tools and techniques as provided 
in D7.2.1.  

The report on the exploitation of HPC tools and techniques presented here represents the 
second phase of activity in T7.2. Here, we report on four separate topics that are important to 
enabling applications within WP7, and which mirror the four topics reported on in the survey 
of HPC Tools and Techniques in D7.2.1. These are: (1) Programming Models, (2) Scalable 
Libraries and Algorithms, (3) Debuggers and Profilers and finally, (4) I/O Management 
Techniques. In this report we summarise how selected HPC tools and techniques fared on 
real-world applications during the exploitation phase of T7.2. In this way, we hope to provide, 
primarily PRACE partners, with information that should hopefully stimulate further interest 
when considering the tools and techniques for furthering enabling projects. We also hope that 
the report will be of interest to European HPC users and more generally. 

1.2 Organisation of Work 

Much of the work during the exploitation phase (“phase 2”) of T7.2 followed on naturally 
from phase 1 and was organized in four subtasks: 

 Subtask 7.2.A ‘Debuggers and Profilers’ (lead by Bjorn Lindi, SIGMA-NTNU) 
 Subtask 7.2.B: ‘Programming Languages and Standards’ (lead by Marc Tajchman, 

GENCI) 
 Subtask 7.2.C: ‘Scalable Libraries and Algorithms’ (lead byVit Vondrak, VSB) 
 Subtask 7.2.D: ‘I/O Management Techniques’ (lead by John Donners, SURFSARA) 
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PRACE-3IP Face-to-Face Meeting, Warsaw, Poland 

Following the submission of deliverable, D7.2.1 ‘A Report on the Survey of HPC Tools and 
Techniques’ in M11 (April 2013), a PRACE 3IP WP7 Face-to-Face Meeting was held in 
Warsaw, Poland in April 2013, where the conclusions of D7.2.1 were analysed in detail and 
where T7.2 partners were tasked with the following actions: 

 Select a promising HPC tool(s)/technique(s) from the Survey 
 Identify an application that has potential to scale on large compute systems and which 

also has relevance to the European scientific and engineering research community 
 Produce a Description of Work for the exploitation project  
 Produce a working title and abstract for the PRACE-3IP whitepaper associated with 

the project. 

At the Face-to-Face meeting in Warsaw it was agreed that the exploitation projects should be 
inspired by the conclusions drawn from the analysis of state-of-the-art HPC tools and 
techniques as reported on in D7.2.1 and that the project should continue to be inspired by 
work taking place outside PRACE, particularly in the area of exascale research. 

During the meeting in Warsaw, a new PRACE 3IP D7.2.2 page was set up on the PRACE 
wiki in order for monthly project progress reports to be uploaded. The D7.2.2 wiki page also 
contains an overall workplan and logistical information for the exploitation, including a 
“phase 2” schedule which was agreed on in Warsaw and which can be seen in Figure 1. 

 
Figure 1: Gantt chart outlying first draft of the PRACE 3IP T7.2 exploitation phase schedule in April 
2013. Taken from PRACE 3IP T7.2 Wiki page. 
 

PRACE-3IP Face-to-Face Meeting, Dublin, Ireland 

The second Face-to-Face Meeting during “phase 2” of T7.2 was held in Dublin, Ireland in 
December 2013. During the meeting progress reports were presented for each of the projects 
and each of the partners was tasked with the following actions: 

 Produce final title and abstract for the PRACE-3IP whitepaper associated with the 
exploitation project. 

The final list of 17 whitepaper titles along with author lists were sent to PRACE PMO in 
February 2014. 

All whitepapers were completed and submitted for internal T7.2 review on April 4th 2014 and 
subsequently for final PRACE-3IP  review on April 11th 2014. 

1
st

 cutoff 2nd cutoff
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1.3 Structure of the Document 

The document presents four subsections which are aligned with the four subtasks within T7.2, 
and which mirror the four sections in deliverable D7.2.1. These are: Programming Models, 
Debuggers and Profilers, Scalable Libraries and Algorithms and I/O Management 
Techniques. Within each section, a short introduction is provided which further details the 
structure of the individual section, which is then followed by a collection of reports 
summarising the work and findings of each of the T7.2 projects during the exploitation phase. 

1.4 Intended Audience 

Our objective in preparing this report is to exploit the most promising HPC tools and 
techniques that may have applicability for petascaling applications within WP7. Targeted 
primarily at PRACE partners who are involved in enabling applications, it provides an 
overview of how a selection of state-of-the-art HPC tools and techniques fared when enabling 
real applications targeting petascale systems/future exascale systems. We also hope that the 
report here will be of interest to European HPC users and more generally. 

2 Programming Models 

In this section, we report on eight projects that have each focused on exploiting state-of-the-
art programming languages, techniques and standards (hereafter referred to as programming 
models) in order to enable applications for multi-petaflop/future exascale systems. Each 
subsection provides a summary of the project along with a reference to the PRACE-3IP 
whitepaper associated with the project. We recommend that the reader also refers to the 
associated whitepaper for each project [2], which provides a more detailed report on the 
projects than is provided here. The list of programming models as well the applications that 
were enabled can be seen in Table 1 

HPC Tool/Technique Application 

MPI/OpenMP hybrid CP2K 

MPI 2/3.0 One-sided communications Code_Saturne 

OpenACC/OpenCL CP2K 

OpenACC/CUDA Cellular Automata Library for CFD 

OpenACC/CUDA DL_POLY_4 

OpenMP Neural Networks application 

OmpSs 

OpenACC 

LULESH 

EC-Earth3 

Table 1: HPC Tools and Techniques (Programming Models) exploited along with corresponding 
applications 
 

As highlighted in D7.2.1 [1], currently, one programming model still dominates PRACE 
application codes more than any other, namely, Single Program Multiple Data (SPMD) 
message passing using MPI for internode communication, increasingly employed alongside 
OpenMP for intra-node parallelism. MPI and OpenMP are mature standards and widespread 
expertise on their use can be found within PRACE. However, both standards are evolving and 
version 3.0 of MPI and version 4.0 of OpenMP have recently been ratified, with partial 
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implementations for both now being offered by several tool developers. The reporting on new 
features of both standards in D7.2.1, as well as on how both programming models have been 
employed inside and outside PRACE to date has not only inspired us to investigate the 
opportunities for exploiting new features of the standards, but has also motivated us to further 
investigate features that already existed in previous versions of the standards and have so far 
been under-exploited in PRACE to date. An interesting example case of the latter is the 
exploitation of one-sided communication features offered through MPI 2.0/3.0 as described in 
detail in the whitepaper ‘Enabling Code_Saturne for Multi-petaflop/Exascale with MPI 3.0 
One Sided Communications’, and which is summarised later in this section. 

While combining MPI and OpenMP is still considered to be the hybrid programming method 
of choice, the recent advent and rapid adoption of many-core coprocessors/accelerators in the 
design of multi-petaflop systems must increasingly be considered in order to exploit the full 
potential of the compute hardware space on emerging European multi-petascale/future 
exascale systems. To date, the challenge of exploiting such heterogeneous systems has 
typically been met within PRACE by augmenting the MPI/OpenMP hybrid model with an 
additional third model that targets the Single Instruction Multiple Thread (SIMT) architecture 
of GPUs thereby forcing the further extraction of hierarchical levels of parallelism in current 
PRACE applications.  

In D7.2.1, it was found that, by far the most popular programming model for programming 
GPU architectures, both within and outside PRACE, is still NVIDIA’s CUDA framework. 
While concerns are often voiced around the proprietary nature of CUDA, its ease of use and 
surrounding ecosystem is continually being improved upon and the language itself offers 
many elegant features for achieving performance on NVIDIA GPUs. There is, however, 
anecdotal evidence of concerns around the portability, programmability and maintainability of 
large-scale CUDA-based applications on the road to exascale. One possible solution to these 
issues is an open standard directive-based approach of which OpenACC represents the 
strongest offering to date. Interest in OpenACC is growing rapidly both inside and outside 
PRACE where this has been somewhat reinforced by the recent purchase of the Portland 
Group by NVIDIA in 2013. (Somewhat less clear at the time of writing is the much talked 
about roadmap for merging OpenACC and OpenMP into a single open standard). While the 
standard is still young, and in many cases does not result in the same level of performance as 
equivalent CUDA implementations, we have been stimulated by recent success stories, as 
reported on in D7.2.1, (including in DOE exascale projects) to further explore the technology 
and report here on how it has been exploited to enable four separate applications, namely, 
DL_POLY, CP2K, EC-Earth and a CFD application during phase 2 of T7.2. A particularly 
interesting potential discussed in the whitepaper ‘An Analysis of State of the Art Tools for 
Preparing DL_POLY_4 for Exascale’, as summarised in this section, is the capability to use 
OpenACC with CUDA in an interoperable way, possibly having implications for performance 
and maintainability of large-scale applications on the road to exascale. 

The subject of open standards for programming heterogeneous systems has become quite a 
hot topic now that GPUs are not the only accelerator/many-core offering in town, since the 
arrival of Intel’s Many Integrated Core (MIC) coprocessor (Xeon Phi) to the market in 2013. 
The Intel Xeon Phi is an x86-based architecture and so familiar open standards such as 
OpenMP and MPI can be used to program the device. This is currently not the case for GPUs. 
However, the OpenMP 4.0 standard does now support the targeting of accelerators in general 
and so, in theory, there is currently nothing to stop compiler support for programming GPUs 
via OpenMP. While both MPI and OpenMP can be used to program the Intel Xeon Phi, it is 
still unclear which is the best model for extracting performance and whether different models 
are better for different problem cases. One noteworthy fact that is emerging from the many 
Xeon Phi enablement projects in PRACE is that, in many cases, as much programming effort 
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is needed to obtain performance on the Xeon Phi as is required for programming GPUs. Three 
separate projects within T7.2 have focused on exploiting OpenMP 4.0 for enabling 
applications on the Intel Xeon Phi, including CP2K and a QCD application. 

With regards to the MPI plus X paradigm for programming heterogeneous systems, we also 
report here on the exploitation of OmpSs, which is a programming model being developed at 
Barcelona Supercomputing Center (BSC) and is used in both the Mont-Blanc and DEEP 
exascale projects and in essence represents an effort to extend the OpenMP model with new 
directives to support asynchronous parallelism and heterogeneity. However, it can also be 
understood as new directives extending other accelerator based APIs, like CUDA or OpenCL. 
With regards to the latter standard, we still find it difficult to gauge whether OpenCL will be 
more aggressively exploited on the road to exascale. It is a standard that offers a lot in terms 
of the architectures it can target (including FPGAs as of 2013), but it still lacks a groundswell 
of support for its ecosystem and as such lags behind CUDA in terms of programmability. 
Perhaps this will change if Intel puts more support behind the standard as a tool for targeting 
its Xeon Phi hardware. 

Finally, although not exploited during phase 2 of T7.2, we feel it is worth mentioning PGAS 
languages once again. As mentioned in D7.2.2, investigations into PGAS models have 
typically been exploratory in nature with no evidence of real applications being enabled with 
such models to date. (We have, however, found some exceptions to this within several of the 
exascale projects, e.g., ECMWF’s IFS enablement with Co-Array Fortran [3]). Although 
possibilities for exploiting Partitioned Global Address Space (PGAS) languages on real 
applications were genuinely explored during the exploitation phase, no real opportunities 
arose for doing so, possibly reflecting the continuing challenge for exploiting these powerful 
tools on existing large-scale codes on the road to exascale. However, the benefit of a single 
language that can be used to efficiently target multi-petascale and future exascale 
heterogeneous systems in the entirety of their compute hardware space is quite obviously still 
a welcome prospect. 

2.1 Porting CP2K to Intel Xeon Phi with mixed-mode MPI/OpenMP in native 
mode 

WP152: Evaluating CP2K on Exascale Hardware: Intel Xeon Phi 

Authors: I Bethune (EPCC) and Fiona Reid (EPCC) 

Application: CP2K 

HPC Tool/Technique: MPI, OpenMP, FFTW 

Person Months: 4 

CP2K [4] is a popular, open-source program for atomistic simulation.  It provides many levels 
of theory ranging from classical potential models, DFT using a mixed Gaussian and plane 
waves approach known as QUICKSTEP [5], to hybrid DFT and post-HF methods (MP2, 
RPA). In addition, many simulation methods are supported including, molecular dynamics, 
Monte Carlo, path integrals, nudged elastic band and free energy calculations. These features 
have made CP2K an increasingly popular tool across the fields of materials science, 
computational chemistry, solid-state physics and biochemistry. It is widely used throughout 
Europe, including on the current PRACE RI systems, as well as national and local-scale HPC 
systems. 

As a result, it is of interest to evaluate the performance of CP2K on potential future HPC 
architectures to ensure the continued viability of the code as HPC providers start looking 
towards Exascale. One such new architecture is the Intel Xeon Phi [6] (Many Integrated Core, 
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or MIC) platform, which combines the high performance and low power of e.g. GPUs, with 
the ease of use of standard x86 CPUs.   

Intel supports several standard programming models on the Xeon Phi including the widely 
used MPI, OpenMP and OpenCL, as well as proprietary interfaces like Intel Thread Building 
Blocks and Cilk+. Since CP2K already has a mixed-mode MPI and OpenMP parallelisation 
strategy, we ported the code to the Xeon Phi Platform, and investigated the performance and 
scalability that could be achieved without significant code modification or tuning. 

Since this work was carried out in Q2 2013, shortly after the public release of the Xeon Phi, 
the PRACE cluster EURORA was not available, and we used a smaller cluster `Dommic’ at 
CSCS, consisting of 6 nodes each with a Xeon E5-2670 processor and 2 Xeon Phi 5110P co-
processors. 

As reported in our PRACE whitepaper, we uncovered and fixed a number of important bugs 
in the CP2K code, in the Intel Compiler and in Intel’s MKL (all of which are now resolved 
with the Intel Composer XE 2013 SP1 release).  We successfully ported CP2K to the Xeon 
Phi, running in native mode i.e. directly using the Xeon Phi as a many-core computing 
system, rather than as an accelerator.  We evaluated several alternative Fast Fourier 
Transform libraries (FFTW 3.3.3 compiled for MIC, a pre-release FFTW 3.3.4 with MIC 
vectorisation support, and Intel MKL). FFTW 3.3.4 and MKL both gave up to a factor of 6 
faster performance than the unoptimised FFTW 3.3.3, showing that effective use of the MIC-
specific vector instruction set is critical. 

When running in mixed-mode MPI/OpenMP mode on the Xeon Phi, the placement of MPI 
processes and OpenMP threads was found to be very important in achieving maximum 
performance. A ‘balanced’ approach where threads are kept close to the parent process while 
maintaining an even load balance over the Xeon Phi’s virtual cores performed best, and this 
arrangement had to be constructed manually using the MKL_AFFINITY environment 
variable. 

Finally, we carried out benchmarking using the H2O-64 ab-initio molecular dynamics test 
case. The best performance obtained on the Xeon Phi used 16 MPI processes each with 15 
OpenMP threads, generating a total of 240 threads - fully utilising the Xeon Phi.  However, 
using the host CPU with 16 MPI processes was still around 4x faster. 

As a result we have shown that while porting an existing code to the Xeon Phi is relatively 
straightforward, further effort is needed to extract good performance from the MIC 
architecture. Analysis of individual routines in CP2K gave us a good understanding of what 
further development was needed, and work to implement these recommendations was 
undertaken in the PRACE-1IP Extension and is reported in White Paper 140 [7] 

2.2 Exploiting MPI 3.0 One-sided Communication for enabling 
Code_Saturne on Multi-petaflop/Exascale systems 

WP153: Enabling Code_Saturne for Multi-petaflop/Exascale with MPI 3.0 One Sided 
Communications 

Authors: C Basu (SNIC-LiU), Soon-Heum Ko (SNIC LiU), C Moulinec (STFC) and Y 
Fournier (EDF) 

Application: Code_Saturne 

HPC Tool/Technique: MPI 3.0 

Person Months: 2 
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Code_Saturne [8] is a well-known open-source code for solving Navier-Stokes equations in 
2D, 2D-axisymmetric and 3D flows. It can handle steady or unsteady, laminar or turbulent, 
incompressible, compressible or weakly dilatable, isothermal or non-isothermal cases.  

Code_Saturne is an MPI parallelized code, where its scalability naturally depends on efficient 
MPI communications. The newly released MPI 3.0 standard [9] has introduced improved 
Remote Memory Access (RMA) one-sided communication. The lower overhead associated 
with one-sided communication as compared to two-sided communication has the potential to 
increase the performance at peta/exascale by increasing the effective network bandwidth and 
reducing synchronization overheads. As part of this project, we have investigated the impacts 
of MPI one-sided communication on the Code_Saturne. 

Substantial communication overhead of Code_Saturne comes from a halo exchange routine 
named cs_halo_sync_var(). Halo exchange in this routine is implemented by MPI 
point-to-point routines MPI_Isend, MPI_Irecv followed by MPI_Wait. In this project 
we have modified the cs_halo_sync_var() routine to replace MPI point-to-point 
communication with MPI one sided communications. We have implemented two versions of 
the modified routine using MVAPICH2 implementation of MPI, which has support for both 
MPI 2.0 and MPI 3.0. The first version (version 1) of our modified routine uses MPI-2.0 one- 
sided communication routines.  For our tests we have taken a test case called “One Tube”. 
The configuration corresponds to the flow in a staggered bundle of tubes [10]. All our tests 
were carried out on the Triolith cluster, which is an Intel Sandybridge cluster with an 
Infiniband network interconnect. Timing results for our modified version 1 routine are shown 
in Table 2. 
 

MPI 
processes 

Total run time (s) cs_halo_sync_var
time (s) 

 original version 1 original version 1 

64 264.41 264.12 6.6 6.1 

128 152.49 152.11 7.3 6.8 

256 105.89 105.96 9.2 8.5 

512 91.04 91.03 11.3 10.2 

 

Table 2: Scaling results for 'One Tube' test case runs comparing the original two-sided communications 
vs. the new one-sided communication implementation (version 1) 
 

The modified version 1 of cs_halo_sync_var() shows some performance improvement 
with respect to the original version. The modified cs_halo_sync_var() subroutine is around 
10% faster than the original routine for 512 core runs. However weightage of this routine in 
the overall runtime is around 10 – 12 %. Hence we do not see a proportional reduction in 
runtime. The version 1 subroutine also has 1-2% less memory overhead compared to the 
original version. The effects of both timing improvement and less memory consumption are 
expected to be more prominent when running the code on much larger core/node counts on 
the road to exascale. 
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The modified version 2 of cs_halo_sync_var() routine uses the MPI 3.0 one-sided 
communication routines from the MVAPICH2 MPI implementation. We were not able to run 
this version as the run crashes with MPI 3.0 routines, indicating that the MPI 3.0 
implementation employed is still not very robust. However, we conclude from this project, 
that it seems adopting MPI one-sided communication in Code_Saturne can improve its 
scalability further on the road to exascale when optimized and a stable implementation of MPI 
3.0 becomes available.  

2.3 Evaluation of the Effectiveness of OpenACC for enabling DL_POLY_4 
on the Road to Exascale 

WP156: An Analysis of State-of-the-art Tools for Preparing DL_POLY_4 for Exascale 

Authors: B B Gursoy (ICHEC) and H Nagel (NTNU) 

Application: DL_POLY_4 

HPC Tools/Techniques: OpenACC, CUDA 

Person Months: 2  

DL_POLY is a well-known parallel large-scale molecular dynamics simulations package 
developed by I.T. Todorov and W. Smith at the STFC Daresbury Laboratory [11]. The 
DL_POLY_3 package was ported to GPUs, using the CUDA framework by the Irish Centre 
for High-End Computing (ICHEC) in collaboration with Daresbury Laboratory [12]. 
Recently, DL_POLY v4.05.1 has been released with a number of modifications in the source 
code. Although CUDA provides a significant performance improvement, it is hard to maintain 
the code in order to keep up with the changes of the vanilla MPI code. This has inspired us to 
consider OpenACC as an alternative tool that is more easily maintainable on the road to 
exascale compared to the CUDA framework.  

OpenACC is a high-level directive-based programming tool for heterogeneous systems [13]. 
Similar to the execution model of CUDA, it is designed for accelerating compute-intensive 
loops and regions of C/C++/Fortran code by offloading to the GPUs. As highlighted in the 
Deliverable D7.2.1 ‘A report on the Survey of HPC Tools and Techniques’, OpenACC has 
been receiving increasing attention for next generation HPC systems [1]. Inspired by the 
existing CUDA port, this project is an early evaluation of the effectiveness of OpenACC for 
enabling DL_POLY_4 on accelerator-based platforms. In particular, it is concerned with 
investigating the benefits of OpenACC in terms of maintainability, programmability and 
portability issues that are becoming increasingly challenging as we advance to the exascale 
era.  

All tests were conducted on the Abel supercomputer located at the University of Oslo, 
Norway. The Abel computing cluster consists of more than 650 Supermicro X9DRT compute 
nodes each having two Intel E5-2670 Sandy Bridge 2.6 GHz CPUs and 64 GBs of Samsung 
DDR3 memory. A set of nodes is equipped with NVIDIA K20 GPUs. TEST2 and TEST3 test 
cases were used from the data sets that come with DL_POLY. The serial version of 
DL_POLY_4.05.1 was first profiled using the default PGI profiler pgprof to investigate the 
most time consuming routines. To further detect hotspots in these routines, Allinea MAP v4.2 
profiler was used. During profiling, compute intensive loops in ewald_real_forces() 
and ewald_spme_forces() have been targeted during this project. 

For the ewald_real_forces() subroutine, major code refactoring was required to enable 
OpenACC. We illustrate an incremental approach to increase the performance of the 
OpenACC port. There was an approximate 13.6x speedup in the execution of the main loop 
after all the code refactoring relative to the first considered approach. However, the OpenACC 
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port did not perform better than the serial execution time. For the spme_forces() 
subroutine, adding a set of compiler directives with ‘CUDA-inspired’ scheduling parameters 
demonstrated a significant performance increase in the execution of the main loop. In 
particular, a speedup of ~8.8x was achieved relative to the serial execution time when the 
‘CUDA-inspired parameters’ were specified as gang and vector sizes, representing an ~83% 
improvement in performance relative to the naive compiler generated version. However, the 
performance proved not to be as good as the CUDA version. We present our timing results in 
Table 3. We set the environment variable PGI_ACC_TIME to 1 to measure the execution 
time on the GPU. During this project we have found that one of the limiting factors of 
OpenACC is that the standard doesn’t allow the developer to explicitly utilize the fast GPU 
shared memory as was exploited in the CUDA port.  

 

Implementation Runtime 

Serial, original code 60.2 sec 

OpenACC(default) 39.321 sec 

OpenACC(gang(900) vector(8x8)) 6.866 sec 

CUDA port 2.4271 sec 

Table 3: Wall-clock time of the main loop in spme_forces() for different implementations 
 
In Figure 2 we illustrate that the OpenACC port of the main loop in spme_forces() scales 
well when the dimension of the reciprocal lattice vector used within the spme_forces() 
subroutine increases. However, data transfer overhead between the CPU and GPU memory 
dominates the overall execution time heavily for bigger dimensions. For example, when the 
reciprocal lattice vector dimension was 106, 26% of the runtime was spent transferring data 
between the CPU and GPU. With a dimension of 212, data transfers represented 63% of the 
overall execution time.  

 
Figure 2: Runtimes of the main loop in spme_forces() for different lattice vector dimensions 

 

During this project we have also considered an OpenACC port of the 
link_cell_pairs_remove_exclusions() component along with integrating it with the 
rest of the CUDA kernels to test the effectiveness of running OpenACC in an interoperable 
way with CUDA. In this context, the role of the deviceptr clause was highlighted in terms 
of accessing the data that has been already allocated in the GPU memory in order to avoid 
unnecessary data copies between the CPU and GPU memory. Performance tests showed that 
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there is an approximate of 2x speedup of the overall execution time due to minimizing data 
transfers by use of deviceptr. Finally, while performance of the OpenACC port was not 
found to be as high as for the original CUDA implementation, in terms of programmability 
and maintainability, it is worth pointing out that only four OpenACC directives were 
added to the original spme_forces()subroutine for the OpenACC acceleration 
while the corresponding CUDA port consists of approximately 500 lines of CUDA 
code. 

2.4 Enabling CP2K for Exascale with OpenACC/OpenCL 

WP155: Enabling the CP2K Application for Exascale Computing with Accelerators using 
OpenACC and OpenCL  

Authors: A. Kwiecień (WCSS), M. Uchroński (WCSS) and M. Gębarowski (WCSS) 

Application: CP2K 

HPC Tool/Technique: OpenACC/OpenCL 

Person Months: 1.1  

CP2K [4] is an open-source application designed for atomistic and molecular simulation of 
solid state, liquid, molecular and biological systems. CP2K has proven to be a highly scalable 
code [14], which makes it a good candidate for exploitation on current petascale and future 
exascale systems. The code is written in Fortran 95, well parallelized with MPI and, in some 
parts, with hybrid MPI/OpenMP [15] and CUDA. 

The main goal of this project was to identify routines in CP2K suitable for enablement on 
accelerators/coprocessors using OpenCL [16] and OpenACC [13]. OpenCL and OpenACC 
are both open standards and have been identified by PRACE as important for exascale 
computing [1] Based on previous research on CP2K [14][17] we have focused our effort on 
the DBCSR library, which performs sparse matrix multiplications. During this project, we 
worked on CP2K v2.4 (at the time of writing v2.5 is available for download). 

With OpenACC, a developer can annotate C, C++ and Fortran source code to identify 
the areas to be accelerated using #pragma compiler directives and additional functions. 
The latest version of the standard, OpenACC 2.0a [18], was announced on 31st August, 2013. 
The OpenCL framework provides an API and a standard language, based on ISO C99 
language, to write portable code for multi-core CPUs, GPUs, APUs and other architectures, 
including Intel Xeon Phi coprocessors. OpenCL kernels are compiled at runtime to target 
a particular computing device. The latest version of the standard, OpenCL v2.0 [19] was 
announced on 18th March, 2014. For the testing we used: Supernova (WCSS), and for some 
additional testing during development also Zeus (Cyfronet) and Fionn (ICHEC) clusters. 

The OpenACC directives are supported by only a few commercial compilers. The PGI 
compiler [20] was our first choice as the license is available on Supernova and Zeus. A 
number of different issues were identified when building CP2K with the pgfortran compiler, 
including non-supported Fortran 2008 functions and a segmentation fault. We mainly used 
PGI version 13.5, but releases v14.1 and v14.3 were also tested, with no improvement in the 
problematic areas. For debugging purposes we used Allinea DDT [21] and PGDBG [22], but 
further analysis is required to solve the segmentation fault issue. Slow compilation with PGI 
has been a disadvantage, limiting to some extent possibilities of exploring different 
compilation options and target architectures in a given time frame. Due to the issues 
mentioned we needed to narrow our work to a part of the DBCSR library, to check if using 
OpenACC in the sparse matrix block multiplication algorithm would give any performance 
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improvement. For the testing of both OpenCL and OpenACC ports we used an example 
dbcsr_example_3.F delivered with the application source code. 

 
Figure 3: CP2K test results for OpenCL and OpenACC (mm_stack_size = 10000) 

 

We tested several versions of the code including: a serial versions built with GNU gfortran 
and PGI pgf90 compilers, both linked to an external specialized library for small matrix 
multiplication; a version with OpenACC enablement; and a version with OpenCL 
enablement. The results, shown in Figure 3 are obtained for sparse matrices with different 
numbers of small block matrices (from 10k to 1000k blocks, with the constant block size set 
to 100x100, giving 10k elements in every block, and mm_stack_size=10000). Presented 
times are mean values gathered from 10 calls to the multiplication function 
dbcsr_multiply. Tests presented were performed on a Supernova node with an NVIDIA 
GTX 480 GPU. We increased the problem size by changing the dimension of the sparse 
matrix – adding 100 blocks to each dimension in one step.  

If the size of the block matrices was too small (set to 10x10 elements) the OpenCL port 
performed worse for bigger problems than OpenACC and PGI with SMM. Increasing the size 
of block matrices to 100x100 elements has given a performance improvement. Also, too small 
a value of the mm_stack_size parameter (e.g. 1000) results in performance issues for 
accelerator ports (It results in dividing the data into smaller portions and causes many 
sequential executions of the kernels on the GPU device). In the OpenCL port 
the computational data is copied to/from GPU before and after each OpenCL kernel 
execution. The data transfer between CPU and GPU is a well-known performance bottleneck, 
and setting the parameter to a bigger value (e.g. 10000) resulted in a performance 
improvement. Changing the parameter for the OpenACC port has no impact on the execution 
time, because of the placement of the pragmas. We determined that we cannot gain a better 
performance without significantly refactoring the code. It could be realized by copying the 
data to the GPU before the multiplication, rather than right at the start of the OpenACC 
kernel. We have started to investigate this approach, and will continue if time allows.  

In conclusion, both OpenACC and OpenCL have shown potential for improving CP2K 
performance. With OpenCL we have been able to obtain very good results. OpenACC was 
quite straightforward to introduce but in the tested case, in order to get the most of the GPUs 
some further modifications of the library would be needed. Nevertheless, we have shown that 
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even minor code modifications may improve the results and we believe that with proper 
adjustments even better performance can be achived. It must be noticed that the power of the 
OpenACC standard strongly depends on the compilers’ support. The choice of proprietary 
compilers seems to be insufficient, especially in a current landscape of scientific applications 
which often are open-source and developed using open tools and compilers like GCC. This 
may lead to compatibility issues, as described here for CP2K. Another direction worth 
considering is investigating the CAPS source-to-source compilers for OpenACC together with 
GNU or Intel compilers. Combining CAPS and Intel compilers would give another possibility 
to target the Intel Xeon Phi as one of the accelerators, in addition to the work done with CP2K 
on this architecture so far [23]. OpenACC and OpenCL once introduced to the code, in 
connection with the wide compiler support for different targets, are powerful technologies. As 
an additional conclusion we may state that introducing OpenACC to an existing application is 
relatively simpler and requires less knowledge and time from the developer than OpenCL. 
However, it still requires a good understanding of the application, its data and algorithms, and 
may require refactoring of the original code to gain a performance as expected from the GPU 
acceleration. 

2.5 Enabling the Cellular Automata Library for Exascale with OpenACC 

WP154: Multi-GPGPU Cellular Automata Simulations using OpenACC 

Authors: S Szkoda (WCSS), Z Koza (IFT), M Tykierko (WCSS) 

Application: Cellular Automata Library 

HPC Tool/Technique: OpenACC, CUDA, GPU Direct 

Person Months: 0.5  

The Frisch-Hasslacher-Pomeau (FHP) model [24] is a lattice gas cellular automaton designed 
to simulate fluid flows using the exact, purely Boolean arithmetic, without any round-off 
error. Here we investigate the problem of its efficient porting to clusters of Fermi-class 
graphic processing units. To this end two multi-GPU implementations were developed and 
examined as part of this project: one using NVIDIA’s CUDA programming framework as 
well as GPU Direct technologies and the other one using the OpenACC compiler directives 
[26] available via PGI with the MPICH2 MPI implementation for MPI communications. For a 
single Tesla C2090 GPU device both implementations yield up to a 7-fold acceleration over 
an algorithmically comparable, highly optimized multi-threaded implementation running on a 
server-class CPU.  

We have demonstrated that the weak scaling for the explicit multi-GPU CUDA 
implementation is almost linear for up to 8 devices (the maximum number of the devices used 
in the tests), which suggests that the FHP model can be successfully run on much larger 
clusters and is a prospective candidate for exascale computational fluid dynamics. To enable 
multi-node calculations with OpenACC an implementation with MPI is currently being 
developed. The scaling for the OpenACC approach turns out less favorable than the CUDA 
code due to compiler-related technical issues. We found that the multi-GPU approach can 
result in considerable benefits for this class of problem, and that GPU programming can be 
significantly simplified through the use of the OpenACC standard, without a significant loss 
of performance, providing that the compilers supporting OpenACC improve their handling of 
the communication between GPUs.  
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Implementation   GTX480 
[GUPS] 

 M2090 
[GUPS] 

 K20M 
[GUPS] 

8x M2090 
[GUPS] 

OpenACC   36.8   30.1  N/A   188.4 

CUDA   41.1   32.3  57.0  217.1 

Table 4: The performance of our implementation of the Cellular Automata Library (FHP) on various 
CUDA-capable devices in GUPS (lattice node updates per second). Higher is better. 
 

The results for the weak scaling for up to 8 GPUs are shown in Figure 4. The choice between 

technologies depends on both the expected performance and the programming costs. On the 
one hand NVIDIA CUDA gives us finer control over the parallelization of the application 
and, assuming a programmer’s deep understanding of the underlying accelerator architecture, 
is expected to outperform any directive-based tools. On the other hand, the results show that 
by using a small subset of compiler pragmas we can port an application to GPUs in a much 
shorter period (on the order of a few minutes), without a significant performance loss. 

The Portland Group OpenACC implementation is still under development. As soon as it can 
support a CUDA-aware MPI implementation, the development of efficient Multi-GPU 
applications will become much easier and it is likely that manual CUDA programming will be 
used only in the most crucial parts of the code. 

While fully recognising that results presented here account for a single node only, the fact that 
the application scales up within a node so well, shows the potential for effective exploitation 
of large scale systems when scaling out with MPI, which we hope to report on in the very 
near future. 

  

Figure 4: Weak scaling of FHP on a node with 8 NVIDIA M2090 GPUs 



D7.2.2 Exploitation of HPC Tools and Techniques 
 

PRACE-3IP - RI-312763  20.11.2014 16

2.6 Preparing Coupled Climate Models for Exascale: OpenACC-enabled EC 
Earth3 Earth System Model 

WP166: Scaling Coupled Climate Models to Exascale: OpenACC-enabled EC-Earth3 Earth 
System Model  

Authors: P Nolan (ICHEC) and A McKinstry (ICHEC) 

Application: EC-Earth3 

HPC Tool/Technique: OpenACC 

Person Months: 1.5  

This project investigates methods to enhance the parallel capabilities of the EC-Earth3 Earth 
System Model [28] by offloading bottleneck routines to GPUs and Intel Xeon Phi 
coprocessors. EC-Earth3 component models are IFS [29] for the atmosphere, NEMO [30] for 
the ocean, and LIM [32] for the sea-ice, coupled through OASIS3-MCT [33]. The sea-ice 
model, LIM, is a component of NEMO. To gain a full understanding of climate change at a 
regional scale will require EC-Earth3 to be run at a much higher spatial resolution (T3999 
~5km) than is currently feasible. Although long multi-ensemble climate simulations at this 
resolution are currently not possible, it is envisaged that the work outlined in this project will 
provide climate scientists with valuable data for simulations planned for future exascale 
systems. The goals of this project are to: 

1. Highlight bottlenecks of the EC-Earth3 earth system model. 
2. Port EC-Earth3 to new hardware “accelerators” such as general-purpose Graphics 

Processing Units (GPUs) and the Intel Xeon Phi coprocessor. 
3. Enhance the parallel capabilities of EC-Earth3 by offloading the corresponding 

bottleneck routines to GPUs and Intel Xeon Phi coprocessors. 
4. Assist in addressing the challenges of porting EC-Earth3 to new generation of HPC 

systems, which will provide multi-Petaflop performances in the next few years and 
exaflop performances in 2020. 

Goal 1 is fully complete; EC-Earth3 was scale-tested on the Hermit PRACE tier-0 system. 
Goals 2 and 3 are partially complete; OpenACC directives were successfully used to offload 
certain bottleneck routines of EC-Earth3 to GPUs and those sections did achieve some 
encouraging acceleration. A summary of preliminary results is presented here. 

Scaling experiments of EC-Earth3 were carried out on Hermit with NEMO ORCA025L46 
configuration and IFS resolutions of T799, T1279 and T2047. The simulations ran using 
11500 cores and scaled well to ~8000 cores. EC-Earth3 T799 and T1279 resolution runs were 
profiled, using CrayPat, to highlight bottlenecks at low, medium and high core counts. Results 
for resolution T799, using 1536 MPI processes, are presented in Figure 5.  

 

 

 

 

. 

Figure 5: Profiling of EC-Earth3 (T799L91-ORCA025L46). The simulation was run using 1536 CPU
cores using a 'total processes per NEMO process ratio' of 3. Routines are presented only if they account
for greater than 1% of total run time. Left: NEMO, Right: IFS 
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OpenACC directives were used to offload bottleneck routines of EC-Earth3 to GPU 
accelerators. Future work will focus on translating the code to CUDA. EC-Earth3 was 
compiled and run on the ICHEC system, Stoney, using the PGI compilers v12.8. Each 
compute node has two 2.8GHz Intel (Nehalem EP) Xeon X5560 quad-core processors. Each 
node has two NVIDIA Tesla M2090 cards installed, with each card providing 512 GPU cores, 
6GB of local GDDR5 memory and a theoretical peak double-precision performance of 
665Gflops. The following flags were used to compile EC-Earth3: 

mpif90 –O1 -acclibs -ta=nvidia,cuda4.2,fastmath,time -Mipa=inline 

Once EC-Earth3 was compiled, it was relatively straightforward to insert OpenACC 
directives and to accelerate the bottleneck routines identified.  

NEMO was run for one month using the ‘ORCA1L46’ configuration, which has a horizontal 
resolution of approximately 1 degree and 46 ocean levels. Simple OpenACC directives were 
added to the “eosbn2.F90” and “trazdf_imp.F90” routines. These routines were responsible 
for ~0.6% and 1% respectively of total execution time, when run within EC-Earth3 
(T799L91-ORCA025L46) using 1536 MPI processes. These percentages increase when using 
less MPI processes and when running NEMO in standalone mode. By porting the two 
aforementioned subroutines to a single M2090 GPU we have achieved a 4% speedup of the 
overall NEMO code running on a single Nehalem CPU core. Typically, climate simulations 
are run for ~100 years with an ensemble size of over twenty, so the performance improvement 
here, although modest, corresponds to a potential acceleration of over 200 days for a multi-
decadal ensemble of EC-Earth3 climate simulations.  

OpenACC directives were added to the main loop in laitri.F90, and also to some loops in 
rtm_rtrn1a_140gp.F90. Table 5 shows performance of the routines with very small 50 x 50 x 
60 point problem size on a single CPU-core and a single GPU. The GPU achieved a speedup 
factor of about 3 in both cases. It should be noted that this simulation domain is quite small 
and work remains to be done to achieve acceleration on higher resolution domains. 

# % Time 

(self) 

Cumulated 

(sec) 

Self 

(sec) 

Self 

(1-CPU, 
CPU+GPU) 

Total Routine 

1 15.24 108.87 108.87 (33.5,10.1) 108.89 LAITRI 

2 3.80 206.77 27.18 (12.2,3.7) 27.18 RRTM_RTRN1A_140GP 

Table 5: Performance of two IFS routines on CPU and GPU.  In each case, we compare runtimes using a 
single CPU (Xeon X5560) core with no GPUs attached to the same CPU chipset with a GPU (NVIDIA 
Tesla M2090) attached 
 
The results presented show acceleration for two NEMO and two IFS routines. However, a 
large number of EC-Earth3 routines were unsuccessfully ‘accelerated’. This was largely due 
to the fact that data movement between the host and device over the PCIe bus is relatively 
slow. We are currently working to minimize this data movement by offloading data only 
when completely necessary. 
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2.7 A Hybrid Application of OmpSs 

WP150: A Hybrid use of OmpSs for a shock hydrodynamics proxy application 

Authors: J C Meyer (NTNU) 

Application: LULESH 

HPC Tool/Technique: OmpSs 

Person Months: 1 

The LULESH [34] proxy application models the behaviour of the ALE3D [35] multi-physics 
code with an explicit shock hydrodynamics problem, and is developed in order to evaluate 
interactions between programming models and architectures, using a representative code 
significantly less complex than the application it models [36]. As identified in the deliverable 
D7.2.1 [1], the OmpSs programming model [37] specifically targets programming at the 
exascale, and this project investigates the effectiveness of its support for development on 
hybrid architectures. 

Simulation of hydrodynamics is of importance to a wide variety of engineering problems. For 
the sake of simplicity, the proxy application models only the time development of a single, 
specific blast wave, but it presents computing systems with the data movement and 
computational characteristics of more general applications, and has been widely used in 
studies of program and architecture co-design efforts to address exascale challenges. 

Taking cognisance of the fact that the main programming environment challenges on the road 
to exascale are expected to be within nodes rather than across nodes, our focus here is on 
single node performance, which is where the hardware is most rapidly evolving due to 
exponentially expanding parallelism, decreasing relative memory bandwidth and less memory 
per thread. 

A defining characteristic of OmpSs is that it internally implements parallelism as a 
dependency graph of separate computational tasks, either to be explicitly specified by the 
programmer, or implicitly derived from work-sharing directives. We investigate the 
performance implications of explicit and implicit task specifications, and find that the implicit 
approach gives better speed and scalability within a 16-core SMP system for parallelism at the 
granularity found in LULESH. Parallel speedup curves using implicit task generation for 
problem sizes from 53 through 903 element domain sizes are shown in Figure 6. 
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Figure 6: LULESH Speedup on a 16-core SMP system 

 

Further to this, we investigated explicit tasks as a programming construct to offload 
computational work to graphics accelerators. Full empirical testing proves infeasible in this 
case, but a model of application behaviour combining observations from NVIDIA K20 
accelerators with synthetic benchmarks of data movement requirements is presented. It 
suggests that the overheads of task migration is out of proportion to the computational 
intensity of tasks in this application, indicating that a straightforward task-based hybridization 
may give little benefit, and that a greater restructuring will be necessary if a combined 
SMP/accelerator implementation is to provide competitive performance using this 
programming model. 

2.8 Application of Accelerator Units to Neural Networks 

WP164: Computational Throughput of Accelerator Units with Application to Neural 
Networks 

Application: Neural Networks application (ANNIWHD) 

HPC Tool/Technique: OpenMP 

Authors: J C Meyer (NTNU) and B A Dunn (NTNU) 

Person Months: 0.5 

This project describes an effort to evaluate a proof-of-concept adaptation of a sample 
neuroscience application program to utilise accelerator technologies. Accelerator units 
represent an important architectural development in the progress towards exascale 
computations, and a combination of an OpenMP programming model with Intel Xeon Phi 
accelerator units is investigated, both of which were identified as key enabling tools in the 
deliverable D7.2.1 [1]. 

A challenging problem in neural computational research is that of estimating structures of 
neural networks which are hidden from the limited experimental data that can be acquired 
from e.g. neural recordings. The sample application implements an approximate expectation-
maximization method to infer the network structure and time varying states of a hidden 
population [38]. The size of networks that can yield informative results can be made 
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arbitrarily large, and the long-running computational demand is highly localised, making the 
application a candidate for exascale computations. 

 
Figure 7: Adapted program speedup relative to single-threaded execution in native mode on Xeon Phi  

 

The sample application's parallelization relies on calling parallelized linear algebra routines 
from an otherwise sequential implementation, giving insufficient parallel work to effectively 
improve single-threaded run times. The whitepaper describes a proof-of-concept adaptation to 
OpenMP, and includes performance figures that show favourable strong scaling results with 
the relatively small input case already obtaining parallel speedups up to the full utilization of 
a 57-core Xeon Phi unit (3120A), shown in Figure 7. 

3 Scalable Libraries and Algorithms 

As a consequence of the move towards large multi-petascale heterogeneous systems, there is 
an increasing demand for new and improved scalable, efficient, and reliable numerical 
algorithms and libraries that confront existing and upcoming complexities associated with 
such systems, including complex memory hierarchies, the overhead of data movement and 
fault tolerance.  

During phase 1 of T7.2 nine areas of focus for tool assessment were identified and reported 
on in D7.2.1. The list was roughly divided into scalable numerical algorithms/methods (Direct 
Solvers, Iterative Solvers and FFT Libraries), higher-level libraries and other mesh/graph 
partitioning tools. The list by no means represented an exhaustive survey of scalable libraries 
and algorithms, but rather tried to seek a balance between assessing what had been 
investigated in PRACE to date and what had, at the time, been investigated elsewhere 
(specifically within exascale projects) with the same set of tools. In carrying out our 
assessments we drew valuable information from PRACE-2IP WP12 in particular, and from 
each of the European exascale projects, including the CRESTA project which has a 
significant co-design focus. 

In this section, we report on seven projects that have each focused on exploiting state-of-the-
art libraries and algorithms in order to enable applications for multi-petaflop/future exascale 
systems. Each subsection provides a summary of the project along with a reference to the 
PRACE-3IP whitepaper associated with the project [2]. We recommend that the reader also 
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refers to the whitepaper for each project, which provides a more detailed report on the 
projects than is provided here. 

The libraries and algorithms that we have focused our attention on during the exploitation 
phase along with the applications that were enabled are listed in Table 6 

HPC Tool/Technique Application 

Poisson Solver DL_POLY_4 

Mesh Generation OpenFOAM 

Mesh Refinement Code_Saturne 

Algebraic Multi-Grid (AMG) Solver tmLQCD 

CFD/CSM Solvers OpenFOAM, FFLOP, PETSc 

MapReduce Algorithm Sparse Matrix-Vector Kernels 

Table 6: HPC Tools and Techniques (Scalable Libraries and Algorithms) exploited along with 
corresponding applications 
 
In terms of challenges on the road to exascale, global communication, in particular, is known 
to be a severe barrier when trying to scale across large core counts and many open questions 
still exist on how FFT libraries will perform on future exascale systems (see reports on FFT 
libraries in section 4.3 of D7.2.1). With this challenge in mind, we are happy to report on the 
successful implementation of alternative methods to FFT libraries in DL_POLY_4, which has 
the potential to significantly improve scalability (and functionality) of the code on large node 
counts for certain problem types, allowing for scientific investigations using DL_POLY_4 
that were heretofore not possible.  

As well as alternatives to FFT methods, mesh generation and refinement tools were also 
identified in D7.2.1 as being of crucial importance to several communities on the road to 
exascale, including the CFD and CSM domains, where such methods often become severe 
bottlenecks when scaling to large node counts in multi-physics problems in particular. Indeed, 
geometry and mesh generation related concerns have also been highlighted in a recent 
‘Applied Mathematics for Exascale Report’ [39] by the DOE’s Exascale Mathematics Group. 
In this section we report on how mesh generation and mesh refinement tools have been 
exploited to enable Code_Saturne and OpenFOAM, respectively. We also report here on how 
a novel algorithm based on the Algebraic Multi-Grid (AMG) method was implemented within 
a QCD application, allowing for much faster convergence than the original algorithm 
employed. In addition, the algorithm uses a new pre-conditioning method that significantly 
reduces MPI communications, further indicating potential for enablement on future exascale 
machines.  

An in-depth analysis of open source solvers for CFD and CSM is also summarised here, 
where tools such as FFLOP and PETSc along with the wider challenges these tools face in 
solving complex multiscale multiphysics problems on the road to exascale is discussed in 
detail. 

Finally, there are also many issues regarding the reduced reliability of hardware, expected to 
have an important impact on libraries and algorithms on the road to exascale. This is certainly 
the case for fault tolerance and resilience. However, these issues are still very new to the 
PRACE community and in general we have not found many examples of initiatives within 
PRACE in this area to date, an issue that we feel needs to be rectified quickly if we are to 
prepare applications for future multi-petascale and exascale machines. This will be a 
challenging task and one that may require inspiration from areas outside of traditional HPC. 
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One project reported on here that we feel gives a flavour for the type of non-traditional 
methods that should be explored more aggressively within PRACE is ‘Parallelization of 
Sparse Matrix Kernels for Large-Scale Scientific Applications using the MapReduce 
Paradigm’. Besides the proven applicability of the programming model to areas such as graph 
algorithms and linear algebra operations, it is worth noting that the underlying programming 
model of the MR-MPI tool, which is exploited here, was first developed at Google with fault 
tolerance in mind. While the current ‘Big Data’ era is helping to increase awareness of HPC 
in the commercial ICT sector, we feel that PRACE should likewise be inspired by the fast 
pace of advances being made outside of traditional HPC. 

3.1 Enabling the Generation of Massive Unstructured Meshes for 
OpenFOAM using Netgen 

WP160: Generating Massive Unstructured Meshes for OpenFOAM 

Authors: C Ozturan (BOGAZICI) and S Soner (BOGAZICI) 

Application: OpenFOAM 

HPC Tool/Technique: Netgen, PMSH 

Person Months: 4.3 

This project has focused on the development of an enablement tool called PMSH for 
facilitating fast generation of unstructured multi-billion-element tetrahedral meshes (grids) on 
complex geometries for the open source OpenFOAM computational fluid dynamics (CFD) 
package [40]. PMSH was developed as a C++ wrapper code around the open source 
sequential Netgen mesh generator [41]. It is available at https://code.google.com/p/pmsh/. 
Both OpenFOAM as well the Netgen mesh generator have a wide user base from many areas 
of engineering and science. OpenFOAM is a popular application that is used by a number of 
researchers on PRACE Tier-0 and Tier-1 systems. The Netgen mesh generator has also been 
listed as an important tool for HPC applications in the Deliverable D.7.2.1 ‘Survey of HPC 
Tools and Techniques’ [1].  

OpenFOAM provides a mesh generator called blockMesh for simple geometries. The 
blockMesh utility is a multi-block mesh generator that generates hexahedral meshes from a 
text configuration file. For complex geometries, OpenFOAM also provides a mesh generation 
utility called snappyHexMesh, which generates hexahedral meshes. The 
snappyHexMesh utility works more like a mesh sculptor rather than a generator. It takes an 
existing mesh such as the one produced by blockMesh and chisels out a mesh on a complex 
geometry that is given in STL format. The snappyHexMesh utility has advanced features 
like the ability to run in parallel and being able to redistribute the mesh so as to perform 
automatic load balancing. Both utilities, snappyHexMesh and blockMesh, are not as 
advanced as other commercial or open source mesh generator packages for producing quality 
tetrahedral meshes on complex geometries. Since one needs to generate a massive mesh 
before being able to proceed to the solver phase, the mesh generation phase often forms a 
bottleneck that will hinder the use of future exascale solvers on complex geometry problems. 
Therefore, there is a great need in the OpenFOAM community for tools that will enable 
researchers to generate massive meshes on complex geometries. 

In PMSH, parallelization of the mesh generation process is carried out in five main stages: (i) 
generation of a coarse volume mesh (ii) partitioning of the coarse mesh to get sub-meshes, 
each of which is processed by a processor (iii) extraction and refinement of coarse surface 
sub-meshes to produce fine surface sub-meshes (iv) re-meshing of each fine surface sub-mesh 
to get the final fine volume mesh (v) matching of partition boundary vertices followed by 
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global vertex numbering. An integer based barycentric coordinate method is developed for 
matching distributed partition boundary vertices. This method does not have precision related 
problems of floating point coordinate based vertex matching. 

 
Figure 8: Parallel mesh generation timings for (a) Onera-M6.stl, (b) shaft.geo, (c) sphere.stl and (d) 
sphere.geo geometries obtained for various ranges of coarse and fine mesh sizes 
 
Tests were performed on NTNU’s Vilje system. Vilje is an SGI Altix ICE X system that has 
936 nodes available to academic users. Each node has 2 Intel Xeon E5-2670 (Sandy Bridge) 
processors with a total of 16 cores and 28 GB of memory. Due to 14 TB total memory 
allocation limitation of submitted jobs, tests using a maximum of 8192 cores were performed. 
Figure 8 (a), (b), (c) and (d) show timing results of generating meshes for onera-m6,shaft, 
sphere (stl) and sphere (geo) CAD geometries respectively. As shown in the plots in Figure 8, 
PMSH enabled us to generate multi-billion element meshes in a scalable way, indicating the 
potential for our tool within application such as OpenFOAM on mutli-petaflop/future exaflop 
systems. Scalability is found to be better when the initial coarse mesh is smaller and the 
surface refinement level is higher. This is because the initial coarse mesh generation is serial 
and mesh generation from finely refined surface mesh is parallel. 

3.2 Enhancing Code_Saturne Capability in the area of Parallel Local Mesh 
Refinement 

WP158:  Parallel Local Mesh Refinement for Code_Saturne 

Authors:  A Ronovsky (VSB), T Karasek (VSB) and Vit Vondrak (VSB) 

Application: Code_Saturne 

HPC Tool/Technique: Parallel Adaptive Mesh Multiplication, ParMetis, PT-Scotch 

Person Months: 2.25 
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In this project, local refinement methodology and its implementation in Code_Saturne [8] are 
investigated. The local refinement technique can be exploited to create very large meshes with 
up to 1 billion cells, a capability which is of interest to a wide community on the road to 
exascale, including within the CFD and CSM communities. The advantage of local 
refinement is that only regions of interest are refined (e.g., in CFD simulations those regions 
could be either areas close to boundaries, small geometrical entities or regions with a high 
gradient of solved quantities). This approach can create meshes, which are not only very large 
but also provide high accuracy results. The major challenge facing local adaptive refinement 
is that it breaks load balancing of the original mesh and requires a large amount of global 
communications.  

The numerical experiments of a full hybrid refinement of a nuclear reactor cooler segment are 
presented. These experiments were carried out on HECToR (CRAY XE6), Blue Joule and 
Mira (where the latter two machines are IBM Blue Gene/Q machines). Results of an 
implementation of a multilevel mesh multiplication (global refinement) algorithm for multi-
billion cell mesh simulations are presented in our whitepaper. The mesh multiplication 
algorithm starts from a coarse mesh partitioning using ParMetis or PT-Scotch, two 
partitioning tools that were identified as having potential on the road to exascale in 
deliverable D7.2.1, and subdivides each of its cells into a given numbers of subcells, 
subdivides the boundaries and computes the global indices of the new elements. There is no 
limitation on the number of refinements that can be computed by the algorithm, aside from 
the memory available on the machine. Up to four levels of refinement are used in the tests in 
this project. Meshes containing ~6.6 billion, 13 billion and even 105 billion were generated on 
the fly using this technique.  

The main focus of this project was to develop a strategy for an adaptive mesh refinement 
technique and implement it in Code_Saturne. An extended data structure necessary for this 
implementation is presented in detail in our whitepaper, together with a description of the 
adaptive mesh refinement algorithm.  

Performance and scalability tests of the ‘Parallel Adaptive Mesh Multiplication’ (PAMM) 
algorithm [42] have been carried out on ANSELM. The test case simulates the laminar flow 
in a lid-driven cavity (cubic box with a horizontal constant velocity imposed at the top wall). 
The original mesh was created from an unstructured tetrahedral mesh using a full mesh 
multiplication algorithm.  

Two levels of uniform refinement were performed to obtain two meshes, which were 
subsequently further refined using the local mesh refinement algorithm. After one level of 
uniform refinement the mesh has 14 million cells (14M), after two levels it consist of 111 
million cells (111M). A 14M cell mesh was than locally refined to 16M cells and a 111M 
mesh to 126M. A non-weighted partitioning was performed by a Morton space-filling curve 
algorithm. The results of our numerical experiments can be seen in Table 7, Table 8 and Table 
9.  

No. MPI tasks Partitioning (s) Refinement (s) Avg. time step (s) Total time (s) 

128 45 30 105 1513 

256 63 41 85 1231 

512 101 55 165 1852 

1024 179 71 210 2543 

Table 7: Adaptive refinement of a cubic cavity from 14 million cells to 16 million 
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No. MPI tasks Partitioning (s) Refinement (s) Avg. time step (s) Total time (s) 

128 37 8 701 7386 

256 48 9 405 4904 

512 73 11 297 3125 

1024 177 30 583 6520 

Table 8: Full refinement of a cubic cavity from 14 million cells to 111 million 
 

No. MPI tasks Partitioning (s) Refinement (s) Avg. time step (s) Total time (s) 

128 71 66 712 7623 

256 82 80 426 5120 

512 116 97 321 3542 

1024 186 127 605 7035 

Table 9: Adaptive refinement of a cubic cavity from 111 million cells to 126 million 
 

The work undertaken as part of this project has contributed to the Code_Saturne project by 
enhancing the capability of mesh multiplication in order to create full hybrid meshes of up to 
hundreds of billions of cells as well as adaptive tetrahedral meshes with up to hundreds of 
million of cells. To use numerical methods using meshes for discretization of computational 
domain (Finite Element or Finite Volume methods) on future exascale systems large meshes 
consisting of billions of cells will be necessary.  Although the refinement process appears not 
to scale very well, as can be seen from tables 7 to 9, the refinement process takes only a 
negligible fraction of total time. With this in mind we conclude that mesh refinement, either 
full hybrid refinement or local mesh refinement, is a viable solution for the major challenge of 
generating and storing large meshes on the road to exascale computing, where, in particular, 
the method of redistributing a relatively coarse mesh to individual processors, where 
subsequently a much finer mesh is created by one of the refinement methods seems to hold 
promise in terms of efficiency. Where such refinement will become a genuine bottleneck 
when trying to scale on large-scale systems a closer look at load balancing will have to be 
taken. 

3.3 Exploiting Open Source Codes for Solving Multi-scale Multi-physics 
Problems 

WP157: Application of CFD and CSM Open Source Codes for Solving Multiscale 
Multiphysics Problems 

Authors:  D Horak (VSB), T Karasek (VSB) and Vit Vondrak (VSB) 

Application: CFD, CSM multiphysics codes 

HPC Tool/Technique: FFLOP/PETSc 

Person Months: 3 

In this project the use of open source Computational Fluid Dynamics (CFD) and 
Computational Structural Mechanics (CSM) for solving multi-scale multi-physics problems is 
addressed. Multi-scale and multi-physics problems are a set of problems, which were 
identified as facing major challenges on the road to exascale systems. In the whitepaper 
associated with this work an overview of the codes used within PRACE such as OpenFOAM 
[40], Code_Saturne [8], Code_Aster [43], Elmer [44] together with their limitations for 
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solving large problems is presented. The main focus of our project was on exploiting the 
library FLLOP [45] (FETI Light Layer On top of PETSc [46]) library, which is a novel 
software package developed at IT4Innovations, VSB-Technical University of Ostrava, Czech 
Republic for the solution of large-scale quadratic programming problems. It is an extension of 
PETSc, which was identified as a potential HPC tool for exascale systems in deliverable 
D7.2.1 [1].  

During this project, two types of numerical experiments were investigated, where a Fluid 
Structure Interaction (FSI) simulation is used here to demonstrate the capability of the 
existing solvers mentioned above. All the experiments were run on HECToR. Since there is 
no suitable coupler between CFD and CSM codes available and since it was not the intention 
of this project to develop such a coupler, a simple one-way FSI simulation of a wind turbine 
was performed. OpenFOAM was used to perform CFD and FLLOP was used for the CSM 
calculations. Pressures on a blade calculated by OpenFOAM in one particular time-step were 
through I/O files passed to FLLOP as a loading for the CSM calculations. 

Since our main interest is to identify problems and solution methods for future exascale 
systems we focused on the strong scalability of CFD and CSM solvers. The reason for this is 
that in real engineering applications the mesh size is usually fixed and the time-to-solution is 
the main concern. Another typical feature is that CSM meshes are much smaller than CFD 
meshes. In our case we modelled only one turbine blade for which approx. 10,000,000 of 
DOFS were needed to capture its physical behaviour. In contrast we needed more than 
220,000,000 cells (1,300,000,000 unknowns) on the CFD side to obtain results with requested 
accuracy. Figure 9 shows the strong scalability of the CSM and CFD solvers for the wind 
turbine simulation.  

From our numerical experiments, almost ideal scalability of the CFD solver up to 1024 cores 
could be observed. The CSM solver on the other hand shows good scalability only up to 16 
cores. This poor scalability can be explained by fact that the CSM mesh is too small and more 
time is spent on communication instead of computation. Since this is not the first case where 
we have observed such behaviour we have decided to investigate whether this is really due to 
a problem size or whether it comes from the nature of the problem i.e., whether all CSM 
simulations regardless of the problem size would exhibit the same behaviour. 

 
Figure 9: Strong scalability of the CSM (left) and CFD (right) solvers for a wind turbine simulation 
 

To test the scalability of CSM solvers, a numerical model of an elastic cube was used. The 
weak scalability for 13,824, 8,000 and 4,096 elements per subdomain and the numerical 
scalability for these configurations are presented in our white paper. To investigate the strong 
scalability of CSM solvers we selected two different discretizations with 7,077,888 elements 
(approx. 22,000,000 unknowns) and 32,768,000 elements (approx. 100,000,000 unknowns), 
respectively. Presented results demonstrate the fact that significant scaling for tens/hundreds 
cores can be reached if the local problem sizes are sufficiently large. 
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As part of this project, we have identified two main issues with the solving of multiphysics 
problems on future exascale systems. The first issue is that there has to be a suitable solver for 
solving particular problem able to scale up to exascale range. In our work we demonstrated 
that FLLOP can be such a solver for solving CSM problems. The second issue is that there is 
an urgent need for a suitable coupler which will couple different solvers used for solving 
different physical phenomena e.g. FSI. It appears that, currently, no such suitable coupler is 
available and we pose the question here whether this should be the direction of future 
development on the road to exascale. 

3.4 Enabling DL_POLY_4 for Scalable MD Simulations with Non-Periodic 
Boundary Conditions: Accounting for Electrostatic Interactions 

WP161: Development of a Grid-Based Electrostatics Model in a Memory Distributed 
Manner for DL_POLY 4 

Authors:  P Petkov (NCSA), I Todorov (STFC), D Grancharov (NCSA), N Ilieva (NCSA), E 
Likova (NCSA), L Litov (NCSA), S Markov (NCSA) 

Application: DL_POLY_4 

HPC Tool/Technique: Poisson Solver Library 

Person Months: 4 

The motivation for this project was to enhance DL_POLY_4 [11] capability in terms of (i) 
enabling it to treat accurately and efficiently electrostatic interaction under non-periodic 
boundary conditions, and (ii) preparation for exascale computing involving simulations of 
very large (~107 atoms) systems on extremely large core counts, where the FFT component of 
SPME and P3M methods is known to lose its scalable efficiency very quickly and exhibit poor 
performance due to excessive non-local communications and large memory requirements.  

In this project, we demonstrated that the real-space Poisson solver methodology we developed 
provides a viable alternative to the aforementioned methods, which is especially indispensable 
in the case of model systems with no periodic boundary conditions. The Poisson solver works 
in a truly memory distributed manner with very good strong scaling performance for the 
systems sizes investigated. The decline in performance at large processor counts was due to 
limits of strong scaling where communication becomes dominant over computation due to 
increase of small size messages volume and decrease of compute per core.  

Our enabling effort exploits a HPC technique based on solving the Poisson equation as an 
alternative to using FFT techniques, which have been described in detail in deliverable, 
D7.2.1 ‘A Report on HPC Tools and Techniques’ [1], for molecular systems, which are not 
subject to periodic boundary conditions. The methodology offers a memory distributed 
solution of the electrostatic interactions, reducing a nonlocal N2 problem to a local linear one, 
subject to communication costs in a manner similar to 3D FFT methodology. 



D7.2.2 Exploitation of HPC Tools and Techniques 
 

PRACE-3IP - RI-312763  20.11.2014 28

 
Figure 10:  Scaling performance of the Poisson Solver module in DL_POLY_4 (relative to 1 MPI process) 
vs. number of MPI processes for a single time-step 
 

Due to the long-range nature of the electrostatic interactions, their treatment is of crucial 
importance in the context of studying the materials’ properties at atomistic and molecular 
level by means of molecular dynamics (MD) simulations. The electrostatics acts on polar or 
charged molecules, including water, ions, amino acids, nucleic acids, carbohydrates, and 
lipids, and hence greatly influences their behaviour and properties, including solvation, 
folding and binding. Thus, it is essential that the electrostatic interactions be evaluated with a 
high level of accuracy in MD simulations. However, their long-range and many-body 
character makes their evaluation immensely computationally demanding – in fullness, this is a 
N2 problem, N being the number of particles in the model system. A number of techniques 
have been developed to solve the problem in a more scalable manner, of which the most 
widely used, especially in computational bio-chemistry and bio-physics, are SPME and P3M. 
Both of the latter methods are based on the Ewald summation method and use Fourier 
transforms as a central operation. The application of these Ewald-based techniques is however 
limited to model systems with 3D periodic boundary conditions (PBC) in its original 
formulation. An alternative approach is to use a continuum electrostatics model that allows 
simulations under general boundary conditions, for example by solving the Poisson equation. 
Such a technique can be efficiently employed to evaluate accurately the electrostatic 
contribution to the free energy, for modeling of biomolecular titration states, computation of 
the electrostatic potential of lipid bilayers, ion-channel characteristics calculations, etc. 
Moreover, the real-space Poisson solver methodology we developed provides a viable 
alternative, indispensable in the case of model systems with non-periodic boundary 
conditions.  

We tested the performance and scalability of our DL_POLY Poisson solver module on two 
model systems with 3921 (~100 Å box edge) and 32201 (~200 Å box edge) TIP3P water 
molecules, respectively. The test simulations were performed on a Linux cluster with Intel 
Xeon E5540 at 2.53GHz chips. The reported results were obtained using the GNU Fortran90 
compiler, gfortran version 4.8.1, with O3 level of optimization and the execution times were 
averaged over 20 timesteps  

The models systems intermolecular interactions (van der Waals and Coulomb) were handled 
with a smaller cutoff (of 5 Å instead of 8-10 Å) than usual in order to warrant a linear scaling 
of the linked-cells algorithm for construction the Verlet neighbour list (VNL) and have the 
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Poisson solver routine as the dominant contribution of the force evaluation cycle. This 
assumption will hold true up to 64 and 1024 MPI counts for the small and the large system 
respectively. The performance data for the model systems run under the conditions outlined 
above in Figure 10 shows performance degradation at high core counts, which is due to the 
increase of the volume of messages of smaller sizes as the processor counts increase. The 
missing points indicate run failures due to grid-size mismatch on the selected processor 
counts as processor grids dictated unfavourable grid-cell sizes for the linear 27-stencil 
approximation of the potential gradients. A direct comparison between FFT and PS is not 
possible, as FFT relies on periodic boundary conditions, while PS is used when these are not 
required; this is the key advantage of the proposed method, as it allows going beyond the 
limitations of FFT, which is crucial for systems not to be handled in the periodic boundary 
conditions context. 

3.5 Enabling OpenFOAM for Bio-medical Flow Simulations 

WP162:  Scalability of OpenFOAM for bio-medical flow simulations  

Authors:  A Duran (ITU-UHeM), S Celebi (ITU-UHeM), S Piskin (ITU-UHeM) and M 
Tuncel (ITU-UHem) 

Application: OpenFOAM 

HPC Tool/Technique: SuperLU_MCDT 

Person Months: 5  

In this project, we have investigated the challenges facing CFD solvers as applied to bio-
medical fluid flow simulations and in particular the OpenFOAM [40] 2.1.1 solver, 
icoFoam, for the large penta-diagonal matrices coming from the simulation of blood flow 
in arteries with a structured mesh domain. A realistic simulation for the sloshing of blood in 
heart or vessels in an entire body is a complex problem and can take thousands of wall-clock 
hours for several main tasks such as pre-processing (meshing), decomposition and solving 
large linear systems. We generated a structured mesh by using blockMesh as a mesh 
generator tool. To decompose the generated mesh, we employed the decomposePar tool. 
After the decomposition, we used icoFoam as a flow simulator/solver tool. For example, the 
total run time of a simple case is about 1500 hours without preconditioning on one core for 
one period of cardiac cycle. Therefore, this important problem deserves careful consideration 
for potential multi-petascale or exascale computing usage.  

We started from the relatively small instances for the whole simulation and focused on one 
time step simulation for solving large linear systems. This version gives important clues for a 
larger version of the problem. Later, we increase the problem size and time steps to obtain a 
better picture gradually, in our general strategy. We test the performance of the solver 
“icoFoam” for its potential multi petascale or exascale computing usage at TGCC Curie (a 
Tier-0 system) platform at CEA, France. We achieved scaled speed up for large matrices such 
as 64 million x 64 million matrices up to 16384 cores. In other words, we find that the 
scalability improves as the problem size increases for this application. This is an important 
and encouraging result for the problem. On the other hand, we observe software and hardware 
limitations, which may be solved, when we test for 128 million x 128 million matrices.  

Several realistic bio-fluid flow simulations have been carried out [47][48]. The geometries are 
extracted from real patients or generated using real patient data from CT or MRI scans. 
Measured flow rate at vessel inlet by ultrasound technique is used to get the velocity profile of 
the simulation geometry inlet. The parallel runs scale well depending on the preconditioning 
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and mesh size. Some of the results obtained using OpenFOAM icoFOAM solver is shown in 
Figure 11. 

 
Figure 11: The results obtained using OpenAFOAM icoFOAM solver 

 

We test for several matrices of various mesh sizes, after the decomposition, which takes 
several hours for each one. Here, we obtain the scalability results for the large sparse systems 
with three matrices of size 8 million x 8 million up to 1024 cores; 32 million x 32 million up 
to 8192 cores; and 64 million x 64 million up to 16384 cores. The code has shown almost 
linear speed-up up to 16384 cores for the largest matrix in our tests. Moreover, we obtain that 
the scalability becomes better as the problem size increases. Figure 12 illustrates this scaled 
speed-up for these three large matrices having sizes up to 64 million x 64 million up to 16384 
cores. 

  
Figure 12: Scalability of icoFOAM solver on CURIE 

 
As part of this project, we have also embedded other direct solvers (kernel class) such as 
SuperLU_DIST [56][57] and SuperLU_MCDT (Many Core Distributed) [58][59] in addition 
to default solvers provided by OpenFOAM. We continue the tests of OpenFOAM having the 
direct solvers to take advantages of them for robustness. In order to show better usability of 
our many-core enabled direct method compared with iterative methods in blood flow 
simulations, the coefficient matrices with high condition number in transient flow conditions 
need to be tested.  

It is a well-known fact that during the flow simulations both coefficient matrices and right 
hand side vector are changing. This change is especially drastic during the severe flow 
dynamics conditions in simulation. This drastic change, in most cases, shows itself as an ill-
conditioned spectral space and high condition numbers. It is important to observe that, for 
high condition numbers, the time complexity gap between direct and iterative solvers for the 
solution of linear set of equations will be reduced. For more complex flow conditions the 
solution time of iterative solvers will increase based on the fixed solution precision.  In this 
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case direct method's cost is still fixed and the potential gap in solution time is expected to be 
reduced. It is also worth noting that iterative methods work on both coefficient matrix and the 
right hand side vector changing at each time step but our direct solver works only on the 
coefficient matrix. This is also a potential advantage for our direct solver in case of large 
simulation times.  

Our many-core aware direct sparse solver has a capability of harvesting the potential benefits 
of many core distributed systems than any other sparse direct solver especially for 
unsymmetric matrices. Future exascale systems are expected to be having heterogeneous and 
many core distributed nodes. We believe that our SuperLU_MCDT software is a strong 
candidate for these future systems with its strong scalability on many-core distributed servers 
we tested. Our initial tests on 16K cores show that with the large matrices it scales without 
observing any significant performance loss. Potential challenges for our many-core aware 
software is resilience, accelerator support and hyper graph partitioning for both better 
scalability and sustainability.  

3.6 Towards the Implementation of an Algebraic Multi-Grid Solver for 
Lattice QCD on Exascale Hardware 

WP163: Algebraic Multi-Grid Solver for Lattice QCD on Exascale Hardware: Intel Xeon Phi 

Authors: A. Abdel-Rehim (CASTORC), G. Koutsou (CASTORC), C. Urbach (University of 
Bonn) 

Application: tmLQCD 

HPC Tool/Technique: AMG Solver 

Person Months: 8 

In Lattice QCD simulations, 70%-90% of computer time is used to solve a large sparse linear 
system of equations. Moreover, current and future Lattice simulations are performed at 
physical light quark masses, large volumes and small lattice spacing. This makes the linear 
system very ill conditioned. Standard algorithms to solve these systems such as the Conjugate 
Gradient (CG) algorithm become inefficient in this regime making simulations very slow. As 
we approach the regime of large-scale simulations on Exascale machines, it is important to 
use efficient numerical algorithms. Most probably, future Exascale machines will be hybrid 
machines with multicores on every compute node in addition to one or more many-core 
accelerators or co-processors such as the Intel Xeon Phi. These efficient algorithms have also 
to be adapted to the underlying hardware architecture.  

We consider here a promising algorithm to solve a large sparse linear systems based on 
Algebraic Multi-Grid (AMG). The particular implementation considered here is given in [60]. 
The advantage of this algorithm over standard algorithms such as CG is its efficiency in 
dealing with low modes of the Lattice Dirac operator. It converges much faster than CG 
especially on ill conditioned systems such as those that will appear if future Lattice 
simulations. In addition, this algorithm uses Schwartz Alternating Procedure (SAP) as a 
preconditioner. In SAP we solve the linear system restricted to local blocks of the lattice 
(which will be on a single MPI process) in order to find the solution of the global system. 
This will have the effect of reducing communications since all operations will be done on the 
local process. This feature indicates suitability for future exascale machines where one would 
prefer to reduce the communications among MPI processes as much as possible.  

We provide an implementation of this solver inside the tmLQCD lattice software suite [61]. 
This software suite is publically available [62] and is widely used by the European Twisted 
Mass Collaboration (ETMC). It provides codes for Monte Carlo simulations with Wilson, 
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Clover and Twisted-Mass fermions. The tmLQCD package uses a hybrid parallelization with 
OpenMP and MPI making it suitable for hybrid architecture with the Intel Xeon Phi as a co-
processor on each compute node together with multicores. The AMG solver is implemented 
for Twisted-Mass fermions with or without a clover term. The AMG based preconditioner is 
then used with the Flexible GMRES algorithm (FGMRES). 

For the Xeon Phi, the code can be run either in a native mode or an offload mode. However, 
in the case of a native mode, memory limitations restrict the applicability to rather small 
lattices. Offload mode, where the large sparse matrix-vector multiplication as well as small 
linear algebra operations is run on the Xeon Phi while the deflation vector space is stored on 
the host CPU. In addition to these memory considerations, it is also necessary to vectorize the 
code to benefit from the wide registers available on the Xeon Phi. These registers allow for a 
simultaneous operation on 8 double or 16 single precision numbers. Most linear algebra 
operations appearing in lattice codes such as DAXPY can be easily mapped to these registers 
offering an improved performance. However, for the multiplication of gluon field matrices 
which are 3x3 complex unitary matrices times a 3x1 complex colour vector, this mapping is 
not straightforward. The lattice Dirac operator which provides the large sparse matrix-vector 
multiplication involves 8 multiplications of these 3x3 matrices times a colour vector for each 
lattice site. These multiplications however use different matrices and vectors at nearest 
neighbours of the site under consideration. Mapping these operations to the registers on the 
Xeon Phi requires a redesign of the data layout on the lattice data. In this work we considered 
a mapping in which the 3x3 matrices and vectors at more than one site are packed together 
into a larger structure and then the multiplications are done simultaneously on the matrices on 
this structure. Two options are considered. The first is to use complex matrices, in which case 
one pack together the data at 4 sites. The second is to separate real and imaginary parts which 
simplifies the operations and in this case we pack the data on 8 sites. The advantage of this 
packing approach is that the local lattice volume for each MPI process is a multiple of 4 or 8 
in most lattice simulations. In addition, this approach can be extended to the case when 
registers become wider as expected to be the trend in the future. In this work we have 
implemented the vectorization of the 3x3 matrix vector multiplications as a first step towards 
vectorization of the whole Dirac operator sparse matrix-vector multiply. Further work is 
needed for the full vectorization which will be the subject of further tuning and optimization. 
More details and a sample of the vectorization code are given in the related white paper 
WP163. 

The AMG solver based on FGMRES is first tested on a multicore machine. The test is 
performed on a Cray XC30 system. Each compute node has two sockets and each socket has 
12 cores Intel Ivy Bridge processor at 2.4 GHz. TmLQCD is compiled with the Intel compiler 
and configured with the options:  

./configure --enable-mpi –enable-sse2 --with-mpidimension=4 --
with-lapack CC=cc F77=ftn 

We consider two gauge configurations from the ETMC configuration archive with up, down, 
strange, and charm sea quarks. Parameters of these configurations and their label in the 
ETMC database are shown in Table 10. 

Label b L/a T/a      

B85.24 1.95 24 48 0.0085 0.135 0.170 0.1612312

D15.48 2.1 48 96 0.0015 0.120 0.1385 0.156361 

Table 10: Parameters of the gauge configurations used in testing the AMG Solver.  
 

aμl aμσ aμδ κ
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The full set of parameters used for the solver as given in the input file for the “invert” 
executable can be found in the PRACE 3IP whitepaper WP163. We solve 20 random right-
hand sides and compute the accumulated time to solution for FGMRES. We compare the 
timing to the CG solver with Even-Odd preconditioning (CG_EO). CG_EO is the most 
efficient standard solver for tmLQCD with Twisted-Mass fermions. It is to be noted that for 
the FGMRES (AMG) solver, there is a setup cost for generating the deflation subspace. This 
setup cost is only a single time cost, however, it has to be taken into account. This is shown in 
following plots as the time associated with right-hand side number 0. CG_EO doesn’t have 
this setup cost. In Figure 13 we show the results for the smaller and larger lattices involved. 
For the small lattice, we use 32 MPI processes while for the larger lattice we use 512 MPI 
processes. The lattice size in D15.48 is the largest lattice available at the moment. In addition, 
because the code requires the number of lattice blocks for each process to be even and given 
the size of the blocks used, this limits the number of MPI processes to 32 and 512 
respectively. Future simulations will use much larger lattices. As can be seen from the results 
a gain factor between 2 and 4 in solution time is observed.  

 
Figure 13: Accumulative time to solution for each MPI process (sec) for solving 20 linear systems. Left: 
B85.24 lattice on 32 cores. Right: D15.48 lattice on 512 cores. 
 

On the Xeon Phi, we performed tests on the cluster at CSC in Finland. The TmLQCD code is 
compiled in a native mode using the configure command 

./configure --enable-mpi --enable-omp --enable-alignment=64 --
enable-gaugecopy --enable-halfspinor --with-mpidimension=4 --
with-lapack CC=”mpiicc -mkl -mmic” F77=”ifort -mkl -mmic” 
CFLAGS=”-std=c99” 

As a first test we tried to run the inverter on the B85.24 ensemble on a single MIC card 
natively using the same parameters as described before. However, this turned out to take a 
large amount of memory and the code crashed after performing part of the computation. This 
highlights the anticipated difficulty of limited memory to run the entire code on the MIC. A 
redesign of the solver will be necessary to take place if one attempts to use the MIC. 
Alternatively more MIC cards should be used to overcome this problem. Since we had only 
limited number of MIC cards available we had to use smaller lattice of size L/a=16, T/a=32 
hoping that it will fit in memory. The run is done using openMP with 54 threads. In this case 
the solver successfully completed and there were no memory issues. 
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Figure 14: Performance of the vectorized matrix-vector multiplications on a single Xeon Phi card. Left: 
Bandwidth. Right: FLOPs/s 
 

We also test the performance of the vectorized 3x3 matrix vector multiplications. In Figure 14 
we show performance results. In this case we pack 4 complex matrices together of an 
implementation of the matrix-vector multiplications. The results are encouraging, although 
they are lower than what we would hope for given the peak performance of about 1 Tflops/s 
that the MIC can provide. 

3.7 Parallelisation of Sparse Matrix Kernels for Large-Scale Scientific 
Applications using the MapReduce Paradigm 

WP159: Map/Reduce-based Parallelization of Sparse Matrix Kernels for Large-Scale 
Scientific Applications 

Authors:  G V Demirci (BILKENT), A Turk (BILKENT), R Oguz Selvitopi (BILKENT) K 
Akbudak (BILKENT) and C Aykanat (BILKENT) 

Application: Sparse Matrix Alegbra Kernels 

HPC Tool/Technique: MR-MPI 

Person Months: 5 

The scientific computing community has recently tried to exploit the benefits of the 
MapReduce programming model in several works [64][65][66][67][68][69]. Among such 
attempts, MR-MPI [64] is a library developed with the aim of enabling usage of the 
MapReduce paradigm in scientific computing. It is a lightweight C++ library that uses MPI 
for inter-processor communication. It is a small and portable library that consists of a few 
thousand lines of code and provides the core functionality of the MapReduce paradigm with a 
strong focus on performance and scalability. It sacrifices some functionality usually provided 
by common MapReduce libraries such as fault tolerance and data redundancy. However, these 
issues generally arise in the context of distributed systems with commodity machines and they 
are of not of primary concern on Tier-0 systems, but will, however, become so as we advance 
towards the exascale era. 

In this work, we exploit the MR-MPI library to develop a sparse matrix-vector multiplication 
(SpMV) kernel, which has the potential to be further used in community codes that leverage 
such kernels during execution. We designate the multiplication of a single column of the 
coefficient matrix with the corresponding vector entry as a single atomic task. These atomic 
tasks correspond to mapper tasks in MapReduce paradigm. The columns and the 
corresponding vector entries are distributed among mapper tasks using the built-in hash 
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functions of MR-MPI library, which basically perform the partitioning process in a 
randomized manner. This naïve distribution of columns of the coefficient matrix does not take 
the data locality into consideration, which is often inherent in coefficient matrices.  

MR-MPI allows users to define and use their own hash functions. Usage of part vectors as 
hash functions allows one to reduce communication requirements of the SpMV operations by 
minimizing and/or balancing volume of communication. By utilizing user-defined hash 
functions, we can distribute mapper and reducer tasks and achieve data locality to further 
reduce communication requirements of parallel SpMV multiplies. In this work, we propose 
two such techniques to reduce and balance the communication volume: (i) graph-partitioning 
model and (ii) hypergraph-partitioning model. The former method correctly encapsulates the 
communication volume incurred in the SpMV operations performed without extra convert-
and-reduce operations prior to the ‘collate’ stage while the latter one achieves the same feat 
with extra convert-and-reduce operations prior to ‘collate’ stage. The partitioning process is a 
pre-processing stage performed on the matrix used in SpMV operations. The output part 
vectors obtained at the end of the pre-processing phase are utilized as hash functions in MR-
MPI for distributing mapper and reducer tasks among processors. 

 
Figure 15:  Comparison of mapper/reducer task assignment strategies on SpMV for the dielFilterV2real 
Matrix 
 
We present our results on dielFilterV2real matrix [72] with 48 million nonzeros for number 
of processors 64, 128, 256, 512, 1024. Tests were performed on NTNU’s Vilje system 
(an SGI Altix ICE X system). The mapper and reducer task assignments are achieved by 
using user-defined hash functions as part vectors. We compare three alternatives that are used 
for the assignment of mapper and reducer tasks in MR-MPI: (i) RAND, (ii) G/MC (graph-
partitioning method), and (iii) H/MC (hypergraph-partitioning method). The partitioning of 
the graph constructed with G/MC and the hypergraph constructed with H/MC are partitioned 
with MeTiS [70] and PaToH [71] respectively. The obtained results are summarized in Figure 
15.  

As seen from Figure 15, using a random hash function leads to poor scalability, especially 
when processor counts increase, which is the case for RAND-WC and RAND-WOC. The 
results show that to obtain a good scalability performance, various optimization techniques 
centered on communication requirements of the SpMV are necessary. We believe that the 
Map/Reduce paradigm has great potential to achieve exascale performance which 
accommodates several important aspects within itself such as providing a unified interface, 
the ease of programming and fault tolerance. 
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4 Debuggers and Profilers 

A wide range of state-of-the-art tools for debugging and performance analysis were reported 
on in D7.2.1, where a particular focus was placed on performance analysis tools which were 
being exploited and developed in various exascale initiatives throughout Europe and the US. 
Improving debugging and performance analysis tools is deemed a necessity for efficient use 
of upcoming exascale architectures: If we are to enable applications on such systems, then we 
need to have as clear a view as possible of the barriers to achieving performance. PRACE 
application experts have long been faced with a landscape where the optimal executable 
cannot be produced by a traditional compiler alone. Different execution strategies needs to be 
considered, loops need to be unrolled, possibly resulting in statements that can be executed in 
parallel by several threads, costly memory operations need to be minimized, and caches need 
to be properly utilised both among traditional multi-core processors as well as accelerators.  

As well as using profilers, this complex jungle of optimization strategies suggests the benefits 
of running auto-tuning tools alongside profilers in order to better understand code behaviour, 
identify parts of the code suitable for acceleration and improve overall performance. Indeed, 
there is a view that for exascale systems, auto-tuning will be mandatory, where at such scale, 
it will be necessary for auto-tuning to be continuous throughout each execution of the 
application. This requirement is driven by several factors. First, the sheer number of threads 
(on the order of one billion) will mean that dynamic load balancing will almost certainly be 
required. Second, the presence of energy limits (either in the form of total consumption or 
thermal throttling due to heat dissipation) will mean that the performance of cores will be 
dynamically varying. This will mean that the exact performance of the hardware will not be 
known until runtime. Finally, it is likely that hardware failures and faults will be the norm and 
not the exception. This will also contribute to dynamic changes in the hardware available to 
run applications. Such challenges, have motivated us to go slightly beyond our original plan, 
which was to focus only on performance analysis tools, and instead also explore the 
possibility of exploiting auto-tuning tools in PRACE applications, which have so far received 
little attention in PRACE activities to date. 

In this section, we report on two projects that have each focused on exploiting state-of-the-art 
profilers (and in one case an auto-tuning tool) in order to help enable applications for multi-
petaflop/future exascale systems. Each subsection provides a summary of the project along 
with a reference to the PRACE-3IP whitepaper associated with the project [2]. We 
recommend that the reader refers to the whitepaper for each project, which provides a more 
detailed report on the projects than is provided here. 

The profilers and auto-tuners that we have focused our attention on during the exploitation 
phase along with the applications that were focused on are listed in Table 11 

HPC Tool/Technique Application 

Tau Profiler Code_Saturne 

HPCToolkit 

Orio auto-tuning tool  

Code_Saturne 

Code_Saturne 

Extrae profiler Alya 

Table 11: HPC Tools and Techniques (Debuggers and Profilers) exploited along with corresponding 
applications 
 

Tau is an integrated toolkit for performance instrumentation, measurement and analysis. It 
provides a flexible, portable and scalable set of technologies for performance evaluation on 
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extreme-scale HPC systems. We have also investigated Extrae, which is a profiling tool being 
developed at BSC and has come under particular attention as part of several exascale 
initiatives in Europe.  

As pointed out in D7.2.1, this type of assessment of debugging and profiling tools has rarely 
been seen in PRACE reports or whitepapers to date. A substantial effort of training on tools 
for debugging and performance analysis has been carried out within PRACE. However, very 
little is documented on how successfully these tools have been employed within enabling 
projects. One of our missions here is to fix this discrepancy in order to understand the full 
benefits and limits of such tools in extreme cases. 

4.1 Profiling Code_Saturne with TAU and auto-tuning kernels with Orio 

WP149: Profiling of Code_Saturne with TAU and autotuning kernels with Orio 

Authors: B Lindi (NTNU), T Ponweiser (JKU), P Jovanovic (IPB), T Arslan (NTNU)  

Application: Code_Saturne 

HPC Tool/Technique: Tau, Orio, HPCToolkit 

Person Months: 12 

Profiling is an important and necessary step for enabling software for multi-petaflop/future 
exascale computing. As increased parallelism is the only way to increase performance, 
insights to work load distribution and an application’s execution profile are prerequisites for 
exascale enabling. While profiling gives the execution behaviour for an executable, auto-
tuning offers methods to let compute resources automatically explore the parameter space 
governing the run time behaviour in combination with a dataset. In this project we have 
profiled Code_Saturne [8] and based on the profiling results we have identified functions, or 
compute kernels suitable for auto-tuning. Code Saturne is an open source software package, 
which can be used for CFD simulations. It solves the Navier-Stokes equations for different 
types of flow.  

The tools we have used for profiling and auto-tuning are TAU [73], HPCToolkit [74] and 
Orio [75], where each of the tools were identified in deliverable D7.2.1 ‘A Report on HPC 
Tools and Techniques’ [1] as having potential for helping to enable applications on multi-
petaflop/future exascale machines. The TAU Performance System is a portfolio of tools for 
carrying out performance analysis of parallel programs written in Fortran, C, C++, UPC, Java, 
Python. TAU is capable of gathering performance information through instrumentation of 
functions, methods, basic blocks, and statements as well as event-based sampling.  
HPCToolkit is a suite of tools for performance measurement and analysis, which is based on 
statistical sampling of timers and hardware performance counters. Orio focuses on thread-
level (“intra-node”) optimization. It is a tool for auto-tuning of performance critical regions of 
code - typically at the level of C or Fortran loops. Loop bounds and index increments are 
formulated in a C-type language with certain restrictions. In a run-time critical region of code, 
first a computation specification for Orio has to be created. In case that the original 
application is written in C, this step usually involves only marginal adaptations to the given 
original code. Secondly, the computation specification has to be annotated in order to instruct 
Orio which code transformations to apply (e.g. loop unrolling) and which optimization 
parameters to use for these transformations (e.g. loop unroll factors). All optimization 
parameters together with their associated allowed value ranges give rise to an (exponentially 
large) optimization parameter space. Orio generates, compiles, executes and times many 
different program versions. It reports the configuration, which resulted in the best 
performance as well as the associated generated code. The project has been carried out on 
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local workstations or on the Norwegian HPC-cluster “vilje”.”vilje” is a SGI ICE X system 
consisting of 1404 nodes connected with a Infiniband FDR fabric and a Lustre parallel file 
system.  

We profiled two test cases with different mesh sizes, the T-junction case from the Code 
Saturne tutorial and the Tube test case from earlier work in PRACE [76]. We present here the 
results from the Tube Case with a mesh size of 51 million cells profiled with TAU and a mesh 
size of 200 million cells profiled with HPCToolkit.  

Figure 16 shows parts of the profiling result from the Tube Case with 51 million cells 
executed over 4096 CPU-cores. The case was executed over 1024, 2048 and 4096 CPU cores. 
In all cases the functions _mat_vec_p_l_native() and 
_iterative_scalar_gradient() have the largest exclusive time. As the execution 
time drops with increasing CPU-core count, the total wall clock time is around 527, 368 and 
302 seconds for the different CPU-core counts, respectively, we experience increasing 
exclusive times for MPI calls indicating that an increasing proportion of the execution time is 
spent on communication. 

 
 
Figure 16: Profiles of functions (averaged on 4096 cores-256 nodes) from Code_Saturne in decreasing 
order of exclusive time, 51M case. 

As a simple metric for identification of performance critical kernel routines, we select the 
number of processor cycles (PAPI_TOT_CYC) spent within a given routine R, excluding 
those cycles which are spent in routines called by R. We call this metric the exclusive time of 
a routine. The mesh size for the Tube bundle case is 200 million cells and case has been 
executed across 1024, 2048 and 4096 CPU-cores. In all cases, the routine 
_mat_vec_p_l_native() has a relative high contribution to the overall runtime. The 
routine _iterative_scalar_gradient() seems to be the most critical only for the 
Tube bundle test case. The explanation for this seems to lie in the fact that 
_iterative_scalar_gradient() is significantly faster for perfectly orthogonal 
meshes than for more typical meshes with moderate non-orthogonality, like the Tube bundle 
case. 

The above profiling results suggested that our focus be placed on the two kernel routines 
_mat_vec_p_l_native() and _iterative_scalar_gradient(). Scalability 
results can be seen in Figure 17. For the following, we introduce the abbreviations MVN 
(_mat_vec_p_l_native()) and ISG (_iterative_scalar_gradient()) for 
these two routines 
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Figure 17: Visual comparison of hotspot routines for the Tube bundle test case 

 

Following Orio’s standard workflow, we isolated the two performance critical loops of MVN 
and ISG in two separate input files for Orio and annotated the code with appropriate auto-
tuning instructions. We used the 200 million cells Tube bundle test case with 1024 MPI 
processes, which we consider to be representative for typical use cases. The generated data 
files served as input for the Orio auto-tuning process. 

In a first step, we applied only loop-unrolling to the selected loops of MVN and ISG. For 
MVN, the annotated code for Orio is listed in Figure 18. The Orio-generated code - Orio 
reported 5 as optimal unroll. Indeed the tuned code is measurably faster than the original 
code. However the speedup is not particularly high: For both routines, MVN and ISG, the 
total speedup ranges approximately between 3 and 5%, comparing generated and original 
code with full compiler optimization (-O2 or -O3). 

Indeed, a deeper analysis of MVN and ISG shows that both routines suffer from the same 
fundamental problem: both selected loops iterate exactly once over all internal faces of the 
process-local part of the mesh. Note that the loop in ISG is a bit more advanced in that the 
iteration is partitioned into multiple passes, where in each pass independent groups of faces 
are treated in parallel by multiple threads.1 However, in our single-threaded testing setup, this 
degenerates essentially to same type of iteration as in MVN. The total number of iterations for 
the outer two loops in ISG is exactly one; the innermost loop iterates over all internal local 
mesh faces for our test case.  

For both, MVN and ISG, the indices ii and jj refer to the two mesh cells which are adjacent to 
the mesh face of the current iteration. Analysis of the exported runtime data shows that these 
indices jump very arbitrarily from iteration to iteration. Consequently, the (read and write) 
access of associated cell data is very inefficient because cache misses occur with very high 
probability. It seems that things get even worse if this irregular data access pattern is carried 
out by multiple threads in parallel. Here, in addition to expensive load and store operations 
from/to main memory, also false sharing effects are observable (threads are frequently 
invalidating each other’s cache lines). We assume that this observation might be a possible 
explanation for the decreased efficiency when comparing the hybrid (MPI + OpenMP) variant 
of Code_Saturne with a purely MPI-parallelized version. 

Due to the irregular data access pattern in both selected loops, loop vectorization is not 
applicable. Moreover, loop parallelization has been excluded in the first place, because our 
initial investigations showed that Code_Saturne performs best when running with single-
threaded MPI processes. 

                                                 
1In this context we call two faces independent, if they have no adjacent cell in common. 
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Figure 18: Orio input file for optimization (loop-unrolling) of _mat_vec_p_l_native. 

 
We come to the conclusion that for a further optimization of MVN and ISG, a smart 
reorganization of the involved data structures (such as for example the introduction of a 
thread-level mesh decomposition) as well as appropriate algorithmic reformulations are 
required. Clearly such fundamental changes to the code lie beyond the capabilities of Orio 
(and most likely beyond the capabilities of any other fully-automated tool available in the 
foreseeable future). 

4.2 Performance Analysis of Alya on Multi-petaflop Systems using Extrae 

WP151: Performance Analysis of Alya on a Tier-0 Machine using Extrae 

Authors: J Rodriguez (BSC) 

Application: Alya 

HPC Tool/Technique: Extrae profiler 

Person Months: 2 

Alya [77] is a computational mechanics code capable of solving different physics. It has been 
extensively used in MareNostrum III (BSC’s Tier-0 machine), and it has been also used as a 
benchmarking code in PRACE Unified European Applications Benchmark Suite [78]. In this 
section, Extrae [79] and Paraver [80] will be used to collect and analyze performance data 
during an Alya simulation in a petaflop environment. 

Alya is a code developed at BSC, which solves partial differential equations (PDEs) in non-
structured meshes, using finite element methods. Among the problems it solves are: 
convection-diffusion reactions, incompressible flows, compressible flows, turbulence, bi-
phasic flows and free surface, excitable media, acoustics, thermal flow, quantum mechanics 
(DFT) and solid mechanics (large strain).  

/*@ begin PerfTuning (   
  def build { ... } 
  def performance_counter { ... } 
  def performance_params { 
  param UF[] = range(1,8); 
  } 
  def search { 
  arg algorithm = 'Exhaustive'; 
  } 
  def input_params { } 
  def input_vars 
  { 
  arg decl_file = 'decl.h'; 
  arg init_file = 'init.c';  
  } 
) @*/ 
 
  int face_id, ii, jj; 
/*@ begin Loop( transform Unroll(ufactor=UF) 
 
  for (face_id = 0; face_id <= n_faces‐1; face_id++) { 
ii = face_cel_p[2*face_id] ‐1; 
     jj = face_cel_p[2*face_id + 1] ‐1; 
     y[ii] += xa[face_id] * x[jj]; 
     y[jj] += xa[face_id] * x[ii]; 
} 
 
) @*/ 
/*@ end @*/ 
/*@ end @*/ 
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The source code is written in Fortran 90/95 and parallelized using MPI and OpenMP. Being a 
large-scale scientific code, Alya demands substantial I/O processing, which may consume 
considerable time and can therefore potentially reduce speed-up at exascale.  

It is organized in modules that solve different physical problems. These modules are now 
being used in production, and scalability has been proven on 20,000 cores using meshes with 
billions of elements. The code has been tested and proven to run efficiently on many Tier-0 
machines such as JUQUEEN/FERMI (BlueGene/Q), CURIE (Bull Cluster) and other Intel-
based clusters around the world.  

In the current section, we will use Alya executions with Test Case B as input (a 27 million 
mesh representing the respiratory system), which can be obtained from PRACE UEABS. 
These executions will be instrumented with Extrae, and as a result, we will get a trace file that 
can be visualized with Paraver. 

Trace files obtained with Extrae [79] collect a large amount of data (hardware counters, states, 
bursts, events), which may lead to a trace file of several gigabytes in size (e.g. the 2048-core 
execution generated a 66 GB trace file). As it is not possible to manage such an amount of 
data on an average computer, there are some options to reduce the trace file size to a few 
gigabytes or even some megabytes in size. Among these options, a trace file can be cut just 
for a specific time interval, or the trace file can be filtered to show some of the events in the 
trace. 

After a close look on an iterative section of the execution, we can see some load imbalance in 
the par_operat() Fortran routine between the different processes Figure 19. According to 
the associated histogram produced by Extrae, at this part of the execution, the timings in 
par_operat() calls vary from 106 ms to 292 ms.  

 
Figure 19: Profile of the iterative part of Alya on 256 processes (zoomed in) 

 

If we look at the source code for subroutine par_operat() we can check that depending 
on the process rank there are different loops and different MPI_AllReduce() calls to be 
executed, which will explain the mentioned behaviour.  

As a result of the study, we have verified the powerful options provided by Extrae and 
Paraver in terms of detail, insight and parallel behaviour.  

Regarding the use of Extrae and Paraver, we confirm that they are very valuable tools when 
getting an in-depth analysis of a code’s behaviour. We also conclude that it is a key toolset in 
the exascale path because of its low level detail of hardware analysis. However, when 
generating trace files for a very large amount of cores (10,000 cores or above), we may have 
some intricacy in merging the performance data into one single trace file, or even managing a 
trace file of several gigabytes. 
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5 I/O Management Techniques 

As pointed out in D7.2.1, the increasing data needs of scientific and engineering applications 
mean that the problems associated with reading, writing, analysing, storing and sharing large 
amounts of data are becoming more relevant to a wider user community within PRACE. 
Indeed, the increase of the I/O performance of HPC systems has not kept pace with compute 
capabilities. On top of this, users have not been able to squeeze as much performance from 
parallel file systems as they have from computational hardware. Moreover, on most HPC 
systems users get exclusive computing resources, whereas the file system is normally shared 
between all jobs. Many of the applications that have already been run on the PRACE 
infrastructure, are limited by I/O bottlenecks. Due to the increasing observational datasets 
from many scientific fields, these problems are not expected to be solved anytime in the near 
future. 

Unfortunately, it is difficult to extract good performance from most current parallel I/O 
libraries for structured file formats. Libraries like PnetCDF and HDF5 reach only modest I/O 
bandwidths of 1-2Gb/s or even less in production codes, as shown in a recent PRACE white 
paper [81]. It is unclear how the performance can be increased significantly, due to the 
unknown impact of the multiple software and hardware layers between the API that the user 
sees down to the file system, writing the data to a storage medium. 

In this section, we report on a project that has focused on exploiting a state-of-the-art I/O 
library, namely SIONlib, in order to enable the BONSAI astrophysics application for multi-
petaflop/future exascale systems. In D7.2.1, the SIONlib library was identified as a potentially 
beneficial I/O tool on the road to exacale as it avoids potential performance bottlenecks by 
explicating the blocked nature of the filesystem. The SIONlib library is well suited for 
temporary files and situations without an established tool-chain for post-processing that 
expects certain file formats. Another advantage is that applications already using POSIX I/O 
calls don't need to be rewritten radically to parallelize their I/O. As noted in the introduction, 
the International Exascale Software Project roadmap expects check-pointing as a technique 
likely to continue on exascale systems. The SIONlib library seems ideally suited for this 
purpose as checkpoints are usually written in one go and resilience of the library is therefore 
less critical. 

As for the other sections, here we provide a summary of the project along with a reference to 
the PRACE-3IP whitepaper associated with the project. We recommend that the reader also 
refers to the whitepaper for the project, which provides a more detailed report than is provided 
here. 

5.1 Exploiting the SIONlib library for Fast, Parallel POSIX I/O in the Bonsai 
Astrophysics Code 

WP165:  Using SIONlib for Multi-Petaflop/Exascale POSIX I/O in Bonsai 

Authors: J Donners (SURFsara), J. Bédorf (Leiden University) 

Application: Bonsai 

HPC Tool/Technique: SIONlib 

Person Months: 2 

Bonsai [82] is a gravitational N-body tree-code that runs completely on the GPU, which 
reduces the amount of time spent on communication with the CPU. The Bonsai code has been 
proven to scale up to nearly the full size of the Titan system at ORNL, which has 18,688 GPU 
nodes. The report here describes a project to modify the I/O of Bonsai, since it is a remaining 
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bottleneck: the creation of separate files for each MPI task overloads the Lustre metadata 
server and causes severe slowdowns. The SIONlib library [83] solves exactly this issue by 
writing to a shared file. The SIONlib library also circumvents the issues mentioned in the 
introduction by using the stripe size on the Lustre filesystem as a natural boundary in the file 
format. The SIONlib I/O performance can be seen as an upper limit for the I/O performance 
to a shared file. 

The use of the SIONlib library on the Lustre filesystem of different PRACE systems was 
investigated. Several issues had to be resolved, both with the SIONlib library and the 
Liblustre API, before a satisfactory I/O performance could be achieved. First benchmarks on 
Cartesius, an Intel cluster with InfiniBand interconnect and Lustre file system with SIONlib 
1.4p3 showed a considerable time for creating and opening a SIONlib file that was striped 
across all OSTs in ANSI mode. Also, the buffering for POSIX mode was incomplete. Both 
issues will be fixed in the next release of SIONlib. SIONlib reaches about 60% of the 
performance of a naive approach where each MPI task writes a separate file. However, the 
naive approach is certainly going to fail at exascale. If not technically, certainly many 
millions of files cannot be handled in a straightforward manner. 

The first experiment tests if the SIONlib library can reach sufficient I/O bandwidth for the 
Bonsai application. The I/O needs to be fast enough to write all data to disk before the next 
I/O event of the running application. Each node runs 1 MPI task to perform the I/O. 

 
Figure 20: Bandwidth on Cartesius for the naive approach and SIONlib writing to one file using different 
strip sizes (in MB). All runs with one MPI task per node. Error bars indicate the standard deviation from 
eight measurements 
 
Figure 20 shows the bandwidth on Cartesius for SIONlib and a separate file per MPI task 
('naive approach'). Different lustre stripe sizes were used for SIONlib. It is clear that the naive 
approach offers the best write bandwidth for these modest MPI sizes. The optimal stripe size 
for SIONlib is around 6-8MB, with about 60% of the performance of the naive approach.  

The second experiment tests if the SIONlib library can scale to over 10,000 MPI tasks writing 
to a single file. Since there is no supercomputer with over 10,000 nodes and a Lustre file 
system available within PRACE, these tests have been run with fully occupied nodes. The 
results show that the I/O performance can also be sustained at high MPI counts, with about 
14GB/s for 16K MPI tasks on Hermit. 

Reading of the output files is done for two main reasons: to restart the simulation and to 
analyze the output. This is not a problem, since the read bandwidth is easily exhausted by a 
handful of nodes. Neither any metadata updates, nor any locking is needed to read the file. 
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To conclude, the SIONlib library can reach a significant portion of the maximum I/O 
bandwidth and can sustain this even for files that are shared between more than 10,000 MPI 
tasks. The SIONlib library exhibits both the performance and the scalability that is needed to 
be successful at exascale. 

Several PRACE systems were used for this project: the PRACE Tier-1 system Cartesius and 
the PRACE Tier-0 systems Curie and Hermit. Furthermore, some tests were run on the Titan 
system at ORNL.  

6 Summary 

This deliverable reports on the 17 projects undertaken as part of the exploitation phase of 
PRACE-3IP T7.2 ‘HPC Tools & Techniques’, where the projects are aligned with four 
separate topics that we consider relevant to enable applications on current multi-petascale and 
future exascale systems, and where inspiration has been taken from the comprehensive survey 
of state-of-the-art HPC tools and techniques carried out during the first phase of T7.2, which 
was reported on in D7.2.1. In this section, we summarise our findings separately by topic: 
programming models, scalable libraries and algorithms, debuggers and profilers, and I/O 
management techniques. In-depth conclusions for each of the projects reported on in this 
deliverable can be found in associated whitepapers and so here we list only what we think are 
the most salient findings made during the exploitation phase. 

Programming Models 

 By exploiting MPI 2.0/3.0 one-sided communications, we have successfully enabled a 
subroutine in the CFD code, Code_Saturne, to improve its scalability on multi-
petaflop and future exascale systems. For the small test cases investigated during the 
exploitation phase of T7.2, we found that MPI one-sided performance to be slightly 
better than two-sided point-to-point MPI communications. However, we expect that 
the impact of the work should be more greatly felt when employing Code_Saturne on 
larger problem types and higher node counts on the road to exascale. More significant 
performance improvements are expected when efficient and robust MPI 3.0 
implementations become available soon. We have also demonstrated how MPI one-
sided communications implemented during the exploitation phase are expected to 
improve memory usage, which is an important factor as MPI’s internal memory usage 
is expected to become very large on future exascale machines. 

 By exploiting MPI and OpenMP as well as more novel programming models such as 
OpenACC and OpenCL, we have started preparing the materials science code, CP2K, 
for exascale. During the early stages of the exploitation phase, we focused on enabling 
CP2K on the new Intel Xeon Phi platform for the first time. The Xeon Phi’s MIC 
architecture is expected to be a relevant architecture on the road to exascale and many 
development projects around Europe are currently investing effort in enabling codes 
for future large-scale Xeon Phi-based clusters, which have the benefit of being 
exploitable with mature open standards such as MPI and OpenMP. However, needless 
to say, GPGPU architectures are still very much in the game as a component 
architecture on future exascale systems, and as part of CP2K-focused enablement 
effort, we have also exploited OpenACC and OpenCL to enable the DBCSR library in 
CP2K on a potentially wider range of computing resources, to bring the overall 
application closer to exascale. In particular, by exploiting OpenACC we have been 
able to obtain impressive performance relative to the corresponding lower-level 
CUDA implementation of the library without many modifications to the source code, 
demonstrating the potential of the relatively young standard on the road to exascale. 
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 By exploiting OpenACC, we have enabled a novel Cellular Automata Library, which 
employs the Frisch-Hasslacher-Pomeau (FHP) model to simulate fluid flows using 
exact, purely Boolean arithmetic, without any round-off error. We investigated the 
problem of its efficient porting to GPGPU-based clusters. As part of the project we 
demonstrated that the almost linear weak scaling for both multi-GPU implementations 
within a node suggests that the FHP model can be successfully run on much larger 
clusters and is a prospective candidate for exascale computational fluid dynamics. We 
also showed that the strong scaling for the OpenACC approach faced technical issues 
with communication between GPUs. We expect that, as soon as more robust PGI 
compilers become available, the development of efficient multi-GPU applications in 
general will become much easier. 

 By exploiting OmpSs, we have explored the task-driven approach to targeting both 
CPU and GPGPU devices in a single code, namely the shock hydrodynamics proxy 
application, LULESH, which features heavily as part of many exascale-focused 
projects in the US. As pointed out in D7.2.1, task-based parallelism may be key to 
obtaining performance on future heterogeneous platforms, but has been under-
investigated in PRACE to date. However, for this particular application/model pair we 
found that the frequent synchronization of small tasks exposes little slack to take 
advantage of. Indeed, we have found that LULESH works best when task-spawning 
overhead is at a minimum, and so semi-static load balancing will probably offer a 
better way to exploit hybrid execution over dynamic schemes as a follow-up approach. 

 By exploiting OpenACC, we have investigated the possibilities for enabling codes 
within the EC-Earth3 suite for future exascale systems. To gain a full understanding of 
climate change at a regional scale will require EC-Earth3 to be run at a much higher 
spatial resolution (T3999 ~5km) than is currently feasible. Although multi-decadal, 
multi-ensemble global climate simulations at this resolution are currently not possible, 
it is envisaged that the work outlined in this deliverable will provide climate scientists 
with valuable data for simulations planned for future exascale systems.  

 We have investigated the effectiveness of OpenACC in enabling DL_POLY_4 and 
how the PGI implementation of the standard compares relative to the original CUDA 
port of DL_POLY. Although, there is still some way to go until OpenACC proves 
itself in terms of performance (e.g., OpenACC 2.0 still doesn’t allow the developer to 
explicitly utilize the fast shared memory on NVIDIA GPUs), the standard is still in its 
infancy and the features it strives to offer, namely programmability, portability and 
maintainability make it a promising tool for enabling large-scale complex 
applications, such as DL_POLY_4, on the road to exascale. 

 Finally, by exploiting OpenMP 4.0, we enabled a Neural Networks application on the 
Intel Xeon Phi for the first time, where very good scaling performance was achieved. 
The application area is new and very promising, and due to its almost embarrassingly 
parallel nature, it holds real promise in exploiting many-core technology on the road to 
exascale. 

Scalable Libraries and Algorithms 

 By implementing and exploiting a new distributed memory Poisson Solver library in 
DL_POLY_4, we have provided an alternative to the existing FFT library in 
DL_POLY_4, which for many problem cases results can potentially result in a 
significant improvement in scalability on large node counts due to reduced global 
communication. Global communication, in particular, is known to be a severe barrier 
when trying to scale across large core counts (see reports on FFT libraries in section 
4.3 of D7.2.1) and many open questions still exist on how FFT libraries will scale on 
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future exascale systems. It is expected that when DL_POLY_4 allows for the use of 
OpenMP within its MPI DD framework, the scalability will be further improved. 

 By implementing and exploiting a new mesh generation tool, PMSH, we have enabled 
massive mesh generation in OpenFOAM for the first time. In particular, meshes with 
7 Billion elements have been generated in approximatley 20 minutes using a scalable 
mesh generator built on top of Netgen. We strongly expect that the tool will allow for 
exascale-enabled solvers to be used on complex geometry problems in the near future. 
Our future work will focus on advanced schemes for projecting vertices on geometric 
boundaries. As well as mesh generation, we have also demonstrated that mesh 
refinement as enabled during the exploitation phase in Code_Saturne, is also a 
possible option to create huge meshes (billions of cells) for future CDF and CSM 
exascale challenges.  

 As part of the exploitation phase, we have also provided an in-depth analysis of open 
source solvers for CFD and CSM, where tools such as FFLOP and PETSc along with 
the wider challenges these tools face in solving complex multiscale multiphysics 
problems on the road to exascale have been discussed in detail in the PRACE-3IP 
whitepaper, WP157. 

 By exploiting a new Algebraic Multi-Grid solver algorithm we have started preparing 
the lattice QCD code tmLQCD for the exascale era and have demonstrated that the 
AMG technique is faster than standard CG algorithm used in tmLQCD. The algorithm 
is expected to play an important role as we approach large-scale simulations with 
physical quark masses and large volumes. These large-scale simulations will require 
tens of thousands of cores or more.  We have also enabled the tmLQCD code on the 
Intel Xeon Phi where more work is now needed to redesign key algorithms because of 
memory limitations. Overall, our study provides a first feasibility step towards using 
Multi-Grid solvers in QCD applications on future exscale machines. 

 Finally, we have looked outside of traditional HPC to investigate the opportunities for 
exploiting paradigms that have been developed for different workloads, namely the 
MapReduce paradigm. Although there are open questions about what the MapReduce 
paradigm can offer in terms of performance, we are happy to report that its 
exploitation is already leading to stimulating conversations centred round fault 
tolerance as PRACE prepares for the exascale era.  

Debuggers and Profilers 

 We have exploited the state-of-the-art profiler TAU to provide a detailed analysis of 
the performance challenges facing Code_Saturne on the road to exascale and have also 
used the tool in combination with a static auto-tuning tool, namely Orio, to investigate 
the potential benefits of auto-tuning on the road to exascale. The tools and techniques 
show potential in guiding the application developer to better performance in a 
heterogeneous run-time environment. As these tools mature, they will probably prove 
indispensable in dealing with the complexity that a heterogonous compute 
environment represents. 

 During the exploitation phase, we have also analysed the performance of a Tier-0 code 
(Alya) using Extrae and Paraver for collecting and viewing the performance data. We 
have verified the powerful options provided by Extrae and Paraver: detail, insight and 
parallel behaviour and have identified real issues that tool developers will need to 
confront at extreme scale. In particular, we have highlighted that when generating 
trace files for a very large amount of cores (10,000 cores or above), we may have 
some difficulties in merging the performance data into one single trace file, or even 
managing a trace file of several gigabytes. 
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I/O Management Techniques 

 We have exploited SIONlib to prepare the BONSAI astrophysics application for 
future multi-petascale/exascale systems and have demonstrated that the library reaches 
a write performance of about 15-20GB/s on several PRACE systems: Cartesius, Curie 
and Hermit. SIONlib combines a simple API with a file format that is designed to give 
maximum performance on parallel filesystems and we have demonstrated that the 
library scales on up to at least 16K cores writing to the same file. I/O is already a huge 
bottleneck on today’s petascale systems and is expected to become a much bigger 
challenge on the road to exascale. 


