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Executive Summary 

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is 
to provide applications enabling support for HPC applications codes which are important for 
European researchers to ensure that these applications can effectively exploit multi-petaflop 
systems. This applications enabling activity will use the most promising tools, algorithms and 
standards for optimisation and parallel scaling that have recently been developed through 
research and experience in PRACE and other projects. 

This deliverable contains a comprehensive survey of the research activity undertaken within 
PRACE to date so as to better understand what HPC tools and techniques have been 
developed that could be successfully applied to help other applications within WP7 
effectively exploit multi-petaflop systems and so see how the various applications 
communities have progressed over the last few years within PRACE. As well as surveying the 
tools and techniques that have been employed in PRACE, this deliverable also reports on how 
tools and techniques are being used in various exascale projects and initiatives outside of 
PRACE. This perspective is presented so as to inspire new “forward looking” approaches to 
enable European applications on the road to exascale computing. 

The survey covers four separate topics that we consider relevant to enable applications on 
current multi-petascale systems. We summarize our findings separately by topic: 
Programming Interfaces and Standards, Debuggers and Profilers, Scalable Libraries and 
Algorithms and I/O Management Techniques. 

Programming Interfaces and Standards: 

As part of this report we have surveyed thirteen individual programming languages and 
standards and report on how they have been used in PRACE to date. While we have found 
that, unsurprisingly, the MPI model still dominates within PRACE, evidence suggests that the 
most recent version of the standard provides features that are starting to confront the 
challenges of exascale computing and which have not yet been exploited within PRACE to 
any considerable extent. As a result, we recommend that the latest features of the standard be 
exploited during the enablement of applications on multi-petascale systems in WP7.  

We have also assessed the wide range of programming models for exploiting heterogeneous 
architectures and conclude that the entry of new competitors to the many-core space has 
increased the relevance of open standards on the road to exascale (where many-core typically 
implies > 50 cores). Indeed, even for GPUs we have found considerable evidence that an open 
standards approach, of which OpenACC represents the strongest offering to date, is becoming 
more popular both within and outside PRACE and should be considered for enabling 
applications within WP7. In terms of more novel approaches to exploiting multi-petascale 
systems, we have drawn rich information from the European exascale projects as well as work 
being carried out in the US, which includes interesting findings on novel extensions to 
OpenMP and the use of Partitioned Global Address Space (PGAS) languages in real 
applications, which should inspire WP7. 

Debuggers and Profilers 

As part of this report, we have surveyed fourteen debugging and profiling tools. We have 
found that all of the European exascale projects are concentrating effort into tools for 
debugging and performance analyses. This is deemed a necessity for efficient use of multi-
petascale and future exascale systems: If we are to enable applications on such systems, then 
we need to have as clear a view as possible of the barriers to achieving performance. In some 
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respect, we feel that the European exascale project, DEEP, provides a model for how the 
profiling tools should enable applications in WP7. It is worth noting that this type of rigorous 
assessment of debugging and profiling tools has rarely been seen in PRACE reports or 
whitepapers to date. A substantial effort of training on tools for debugging and performance 
analysis has been carried out within PRACE. However, very little is documented on how 
successfully these tools have been employed within enabling projects. One of our missions 
within WP7 is to fix this discrepancy and to work more closely with tool developers to 
understand the full benefits and limits of such tools in extreme cases. 

Scalable Libraries and Algorithms 

As part of this report we have surveyed a representative collection of libraries and techniques 
that currently garner much interest both within and outside PRACE. As a consequence of the 
move towards large multi-petascale heterogeneous systems, there is an increasing demand for 
new and improved scalable, efficient, and reliable numerical algorithms and libraries that 
confront existing and upcoming complexities associated with such systems, including 
complex memory hierarchies, the overhead of data movement and fault tolerance. In 
particular, we have surveyed very interesting exploratory work that has recently been carried 
out in WP12 PRACE-2IP on libraries and algorithms, which we feel should be exploited 
further on real applications within WP7. As well as surveying research within PRACE, we 
have also looked to the work being carried out in European exascale projects and further 
afield to find out more about how such projects are tackling the challenges confronting 
libraries and algorithms at extreme scales.  

I/O Management Techniques 

As part of this report we have surveyed five I/O management techniques. The increasing data 
needs of scientific and engineering applications mean that the problems associated with 
reading, writing, analysing, storing and sharing large amounts of data are becoming more 
relevant to a wider user community within PRACE. While the performance gap between file 
systems and compute systems is well known, during our surveying we have found that users 
within PRACE have in general not been able to squeeze as much performance from existing 
parallel file systems as they have from computational hardware, particularly for the case of 
high-level I/O libraries. Deeper investigations into extracting performance from parallel file 
systems (with WP7 applications) will be the main focus of our enablement work within WP7. 
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1 Introduction 

1.1 Purpose of the document 

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is 
to provide applications enabling support for HPC applications codes which are important for 
European researchers to ensure that these applications can effectively exploit multi-petaflop 
systems. This applications enabling activity will use the most promising tools, algorithms and 
standards for optimisation and parallel scaling that have recently been developed through 
research and experience in PRACE and other projects. 

There has been significant research activity undertaken both within PRACE and outside 
PRACE investigating novel techniques to enable applications on petascale and future exascale 
systems. Such activities include, for example, PRACE Work Packages [WP6 (‘Software 
Enabling for Petaflop/s Systems’) in PRACE-PP, WP7 (‘Enabling Petascale Applications: 
Efficent Use of Tier-0 Systems’) and WP9 (‘Future Technologies’) in PRACE-1IP, WP7 
(‘Scaling Applications for Tier-0 and Tier-1 Users’), WP8 (‘Community Codes’), and WP12 
(‘Novel Programming Techniques’) in PRACE-2IP], other EU-funded projects (European 
Exascale Software Initiative (EESI) [1], Towards Exaflop applications (TEXT) [2], 
Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) [3], 
Dynamical Exascale Entry Platform (DEEP) [4], Mont-Blanc [5]) and international 
collaborations such as the International Exascale Software Project (IESP) [6]. 

As stated in the Description of Work (DoW), the objective of this deliverable, D7.2.1, is to 
survey these activities so as to better understand what software tools, algorithms and 
standards have been developed within them that could be successfully applied to help other 
applications effectively exploit multi-petaflop systems and so see how the various 
applications communities have progressed over the last few years. These techniques will be 
used on some of the applications identified in Task 7.1. Through this task, WP7 will pursue 
effective engagement and dialogue with major exascale projects. The outputs from this task 
will be useful within PRACE, for European HPC users and also more generally. 

The survey on HPC tools and techniques presented here reports on four separate topics that 
are important to enabling applications within WP7. These are: (1) Programming Interfaces 
and Standards, (2) Debuggers and Profilers, (3) Scalable Libraries and Algorithms and finally, 
(4) I/O Management Techniques. The report here represents the first phase of T7.2. It should 
be stressed that actual implementation (or exploitation) of the tools and techniques reported 
here will only occur during the next phase of the task. The purpose of this report is to give a 
global picture of how these tools and techniques fared during PRACE projects to date and to 
also bring the reader up to date on the latest state of each of the tools and techniques that we 
report on. In this way, we hope to provide, primarily WP7 partners, with information that 
should hopefully stimulate further interest when considering the tools and techniques for the 
exploitation phase of T7.2. We also hope that the report will be of interest to European HPC 
users and more generally. 

1.2 On the road to exascale 

All of the HPC tools and techniques that we survey here are considered to be the state-of-the-
art for enabling applications on current multi-petascale systems. However, it is widely 
expected that the exascale systems of the future will be qualitatively different from current 
and past computer systems. They will be built using massive multi-core processors with 
hundreds of cores per chip, their performance will be driven by parallelism, constrained by 
energy, and with all of their parts, will be subject to frequent faults and failures [7]. While the 
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focus of WP7 is on enabling European applications for current multi-petascale systems, this is 
not to mean that WP7 should ignore the challenges that are expected to confront applications 
on the road to exascale. While there still may not be a general consensus on what an exascale 
machine in the future will look like, it is becoming increasingly likely that it will share some 
of the characteristics of the current No.1 systems in both the Top500 (Titan, Cray XK7) and 
Green500 lists (Beacon, Appro GreenBlade), indicating a possible convergence towards 
heterogeneous architectures as a means to reach exascale. With this view in mind, there are 
opportunities now for WP7 to anticipate and prepare for the challenges that will be faced as 
we advance from the petascale era to the exascale frontier.  

For example, the main programming environment challenges on the road to exascale are 
expected to be within nodes rather than across nodes. The total number of nodes for any given 
machine is not changing dramatically, so current practices of using MPI between nodes, 
certainly up to the deep petascale, provides one option of utilizing future exascale systems. If 
MPI is to be used in the future however, it certainly cannot be used in its current form and, as 
is increasingly evidenced by practice on petascale systems both within and outside PRACE, 
not on its own. One big challenge for MPI on its own is fault tolerance or resilience. 
Currently, a standard MPI implementation will abort the entire computation if any of its ranks 
encounters a failure. The traditional handling of these failures is using checkpoint/restart 
techniques. However, as the overhead of these implementations grow with core count, such 
methods will become highly inefficient. A fault tolerant MPI would enable an application to 
recover from failures and continue execution although some parts of the system have been 
lost indefinitely. Fortunately, there is much active work in this area within the MPI research 
community, some of which has already been accepted as part of the most recent version of the 
MPI 3 standard and, as has been found during our surveying, is already being investigated by 
on-going projects within PRACE. 

While there are a myriad of models to choose from when augmenting the MPI model for 
exploiting many-core heterogeneous petascale machines, many of which we characterise in 
this report, in terms of key metrics such as performance and productivity, there is as of yet, no 
single model that sticks out from above the rest. The fact that there are so many models to 
choose from, also begs the question of how best to maintain application robustness on the 
road to exascale within WP7. If there is a ‘one-size fits all’ programming model for the future 
then maybe it is best represented by a Partitioned Global Address Space (PGAS) language 
such as Chapel [8]. Now starting to confront the challenges of exploiting architectures with 
deeper memory hierarchies and hybrid CPU/accelerator/coprocessor architectures [9], the 
bigger challenge that face such models are in terms of fault tolerance of which we have found 
little evidence of initiatives in this area to date. While such problems are being posed to 
PGAS development teams, an on-going challenge for WP7 is how best to exploit these 
forward looking models within real community applications on the road to exascale. 

In considering the best programming models to choose from when enabling applications, a 
key and new aspect for WP7 to consider on the road to exascale is the scope of what 
enablement experts will require from debugging and profiling tools. Instead of one or two 
simple measures of performance, exascale computing will see a broadening of scope as to 
what tools report on and what they address. Examples of interest include memory utilization, 
temperature, reliability, and power consumption. European HPC applications are large, often 
complex and push the limits of language features. Tools deployed must also be robust enough 
to handle these codes on heterogeneous systems, but at the same time must be highly usable if 
they are to deliver impact in increasing the performance of applications. Fortunately, there are 
several debugging and profiling tools that we report on here that are starting to address these 
issues. While some of the features might not be highly relevant to applications within WP7 
today, they will become increasingly so as we advance to exascale. We feel that T7.2 offers 
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an opportunity to work more closely with debugging and profiling tool developers and the 
user community to find out how advanced features can properly be exploited to prepare 
European applications for multi-petascale and future exascale machines. 

As well as programming languages and performance tools, algorithms and libraries must also 
be designed to match the complexity of future exascale systems. While there are major 
challenges such as energy consumption reduction that algorithms and libraries can 
significantly help with on the road to exascale, priorities for applications within WP7 still lie 
within the areas of performance and scalability. That is not to say that these problems are 
independent of each other. In fact, quite the opposite, in that some of the most interesting 
research that we report on here on so-called ‘communication avoiding/hiding algorithms’ will 
most likely be of benefit to both the scalability of an application and reduce energy 
consumption needs on the system as well. Within PRACE there have been several interesting 
“forward looking” initiatives in the area of libraries and algorithms, most recently within 
WP12 PRACE-2IP that have looked closely at such issues, as well as others, with exascale in 
mind. Beyond scalability and performance, there is the important issue of fault tolerance of 
libraries and algorithms that will also need to be addressed as a high priority. While we have 
not found much activity within this area in PRACE to date, we suspect that this will become a 
more pressing issue as PRACE moves into the deep petascale and future exascale eras. 

The increasing data needs of scientific and engineering applications mean that the problems 
associated with reading, writing, analysing, storing and sharing large amounts of data are 
becoming more relevant to a wider user community within PRACE. This will become 
increasingly so as we advance to the exascale era. There is a general consensus that the 
current development model of the storage I/O stack of current petascale machines will not 
scale to the new levels of concurrency, storage hierarchy, and capacity that will be found on 
exascale machines. As the depth of the storage hierarchy increases one of the biggest concerns 
is the programmability and performance of the I/O software stack. I/O system optimizations 
are often applied independently at each system layer. However, this approach can cause 
mismatches between the requirements of different layers (for instance in terms of load, 
locality, consistency). Due to this uncoordinated development, understanding the relationships 
between optimizations at different layers has become challenging. In this report we 
characterise several I/O tools that may help to enable WP7 applications for multi-petascale 
sytems, but that will in general need significant improvements in terms of both performance 
and resilience in order to prepare European applications for the exascale era. As well as 
improving I/O performance for WP7 applications, we hope to provide insight into where 
improvements can be made. 

In all of the areas we mention above, we intend to liaise closely with the European exascale 
projects (CRESTA, DEEP, Mont-Blanc and TEXT), where possible, during the exploitation 
phase of T7.2, so as to expose WP7 to some of the advanced tools and techniques that are 
being researched and implemented within these projects and in doing so, prepare WP7 
applications for the challenges that will be confronted on the road to exascale. 
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1.3 Organization of work 

In order to structure work in WP7, the first goal for all task leaders was to define work plans, 
including a proposal for several subtasks. Figure 1 gives a schematic overview of the subtasks 
in T7.2 

 

Figure 1: Schematic overview of subtasks in Task 7.2 

During the PRACE-3IP kick-off meeting in Paris in September 2012, subtask leaders for T7.2 
were identified. The subtask leaders are: 

 Subtask 7.2.A ‘Debuggers and Profilers’: Bjorn Lindi (SIGMA-NTNU) 
 Subtask 7.2.B: ‘Programming Languages and Standards’: Marc Tajchman (GENCI) 
 Subtask 7.2.C: ‘Scalable Libraries and Algorithms’: Vit Vondrak (VSB) 
 Subtask 7.2.D: ‘I/O Management Techniques’: John Donners (SURFSARA) 

For deliverable D7.2.1, sources of input for the survey on HPC tools and techniques were 
identified clearly during and following the PRACE-3IP kick-off meeting. Activities within 
PRACE that have employed HPC tools and techniques have generally been well documented 
in PRACE deliverables and whitepapers which are available via the PRACE website and 
BSCW (The only exception to this rule is detailed reporting on debuggers and profilers, 
which has generally been more difficult to come by). Since a considerable amount of enabling 
work is still in progress within PRACE-2IP (mainly within WP8 and WP12), efforts were 
made to collaborate directly with relevant activities within PRACE-2IP via Face-to-Face 
(F2F) meetings and private communications. 

While there has been a substantial amount of “exploratory” work on advanced disruptive 
technologies already carried out within PRACE (e.g., T7.5-1IP, WP12-2IP WP9-2IP), one of 
the objectives of T7.2 is to also survey how “future-looking” HPC tools and techniques have 
also been used outside PRACE, with particular emphasis on how such tools and techniques 
have been employed to enable “real” applications on multi-petascale systems and to also 
survey how European (and international) exascale projects are investigating tools and 
techniques for enabling applications on future exascale systems.  
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In order to identify and obtain relevant sources of input outside PRACE, direct contact was 
established with several European exascale projects including the TEXT, CRESTA, DEEP 
and Mont-Blanc projects to find out how HPC tools and techniques are currently being 
employed within these projects. (On the European level, we have also drawn from the 
European Exascale Software Initiative (EESI)). Activities within exascale initiatives outside 
Europe have also been surveyed here. Sources of input have included documentation from the 
IESP, and the US Department Of Energy (DOE)’s exascale workshops (e.g., the DOE 
sponsored Exascale Research Conference 2012 [10]) 

1.4 Structure of the document 

The document presents four subsections which are aligned with the four subtasks within T7.2, 
and which will remain in place during the exploitation phase of the task. These are: 
Programming Interfaces and Standards, Debuggers and Profilers, Scalable Libraries and 
Algorithms and I/O Management Techniques. Within each section, a short introduction is 
provided which further details the structure of the individual section. This is followed by a 
survey of tools and techniques that are relevant to that particular section. Within each 
individual tool/technique assessment, we provide a brief overview of the current state of the 
tool, how the tool has been employed in PRACE to date, how it has been employed more 
widely (particularly on large-scale systems), a table listing the pros and cons of the 
tool/technique, which system/architecture the tool/technique is targeted at and finally a 
conclusion section which provides our own indication as to the applicability of the 
tool/technique during the T7.2 exploitation phase and beyond. 

1.5 Intended Audience 

Our objective in preparing this survey is to determine and document the characteristics of the 
most promising HPC tools and techniques that may have applicability for petascaling 
applications within WP7 PRACE-3IP. Targeted primarily at PRACE partners who will be 
involved in the exploitation phase of T7.2, it provides an up to date overview of a selection of 
HPC tools and techniques in order to allow for PRACE partners to determine if further 
investigation is warranted for the exploitation effort during the second phase of T7.2 and 
beyond. We also hope that the report here will be of interest to European HPC users and more 
generally. 
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2 Programming Interfaces and Standards 

In this section, we characterize the following novel programming interfaces, languages, 
frameworks and standards (hereafter referred to as models) that are of interest to T7.2 in 
particular, and the European HPC community more widely, as we move towards the deep 
petascale and exascale eras: 

 MPI (Message Passing Interface) 
 OpenMP (Open Multi Processing) 
 OpenCL (Open Computer Language) 
 CUDA (Compute Unified Device architecture) 
 OpenACC 
 Threading Building Blocks (TBB) 
 Cilk plus 
 OmpSs 
 Co-Array FORTRAN (CAF) 
 Unified Parallel C (UPC) 
 X10 
 Chapel 
 Global Arrays Toolkit (GA) 

For each model, we provide an overview and discuss the model’s present state, how it has 
been employed in PRACE to date, how it has been employed more widely, and our views on 
the suitability of the model for enabling PRACE application codes during the exploitation 
phase of T7.2. 

At present, one model still dominates PRACE application codes more than any other, namely, 
Single Program Multiple Data (SPMD) message passing using MPI for internode 
communication, and increasingly, OpenMP for intra-node parallelism. MPI and OpenMP are 
mature standards and widespread expertise on their use can be found within PRACE. 
However, both standards are evolving and version 3.0 of MPI [11] and version 3.1 of 
OpenMP [12] have recently been ratified, with full implementations now being offered by 
several different initiatives. We report on several of the new features offered by both 
standards and point to the need to investigate these further as part of the exploitation phase of 
T7.2 

While combining MPI and OpenMP is still considered to be the hybrid programming method 
of choice, the recent advent and rapid adoption of many-core coprocessors/accelerators in the 
design of Top500 supercomputers, including PRACE Tier-0 machines (as well as PRACE 
prototype architectures) has meant that additional models (albeit still hybrid ones) must 
increasingly be considered in order to exploit the full potential of the compute hardware space 
on upcoming European multi-petascale systems. To date, the challenge of exploiting such 
heterogeneous systems has typically been met within PRACE by augmenting the 
MPI/OpenMP hybrid model with an additional third model that targets the Single Instruction 
Multiple Data (SIMD) like architecture of GPUs (more accurately defined as Single 
Instruction Multiple Thread (SIMT)), thereby forcing the further extraction of hierarchical 
levels of parallelism in current PRACE applications. (It should also be mentioned that, as is 
the case for all accelerator/coprocessor-based systems, performance is limited by the high 
latency penalty of data transfers to and from the attached device, which is connected to the 
CPU host through the PCI bus. However, as the technology matures, 
accelerators/coprocessors are expected to integrate directly into the motherboard and this 
latency penalty will decrease.) 
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We have found that by far the most popular programming model for programming GPU 
architectures, both within and outside PRACE, is still CUDA [13]. While concerns are often 
voiced around the low-level, non-x86-based nature of CUDA, its ease of use and surrounding 
ecosystem is continually being improved upon by NVIDIA. While OpenCL [14] does offer an 
alternative open standard framework, adoption of the standard is slow, due possibly to its 
relatively poor ecosystem in comparison to CUDA, as well as lack of clarity on the level of 
long-term support for the standard. One possible solution to these issues is a directive-based 
open standards approach of which OpenACC [15] represents the strongest offering to date. 
Experience with the transition from vector codes to message passing codes twenty years ago 
proves the benefits of common, open standards for programming models. Much greater 
productivity was achieved following the widespread adoption of the MPI standard. An open 
standard for the utilization of GPUs holds a similar promise. It must be emphasized that 
OpenACC is a young standard and as a consequence has not featured much in PRACE 
activities to date. However, interest in it is growing and we are happy that we can report on 
several interesting cases where it has been employed most recently as part of on-going work 
within PRACE 2IP as well as within exascale projects outside PRACE.  

With the arrival of Intel’s Many Integrated Core (MIC) coprocessor to the market this year 
(2013), this is a particularly interesting time for heterogeneous systems. The Intel MIC is a 
component architecture in two of the PRACE prototypes and shares several similarities with 
GPUs. Some of the main differences compared to GPUs stem from the fact that the Intel MIC 
is an x86-based architecture and so familiar open standards such as OpenMP and MPI can be 
used to program the device, which is not the case for GPUs in general. While both of the 
aforementioned standards can be used to program the Intel Xeon Phi, it is still unclear which 
is the best model for extracting performance and whether different models are better for 
different problem cases. In fact, Intel supports several other open standards and libraries for 
programming the coprocessor including, TBB [16], Cilk Plus [17] and OpenCL [18], which 
are all reported on here. 

With regards to the MPI plus X paradigm for programming heterogeneous systems, we also 
assess OmpSs [19], which is a programming model being developed at Barcelona 
Supercomputing Center (BSC) and is used in both the Mont-Blanc and DEEP exascale 
projects and in essence represents an effort to extend the OpenMP model with new directives 
to support asynchronous parallelism and heterogeneity (devices like GPUs). However, it can 
also be understood as new directives extending other accelerator based APIs, like CUDA or 
OpenCL. 

Finally, we consider the Partitioned Global Address Space (PGAS) family of languages, 
(CAF [20], UPC [21], X10 [22], Chapel [8] and Global Arrays [23]). These models present an 
entirely different way of developing large-scale applications, which at the very least promises 
more concise and comprehensible code. Advantages of PGAS models pertaining to 
performance revolve around single-sided communications as opposed to two-sided MPI 
communications, which are prevalent in most applications within PRACE. While having 
featured within several PRACE activities, we have found that investigations into PGAS 
models have typically been exploratory in nature with no evidence of real applications being 
enabled with such models to date. (We have, however, found some exceptions to this within 
several of the exascale projects). Just as MPI plus X offers a solution to programming 
heterogeneous systems, several investigations are in progress to allow for PGAS languages to 
target GPU-based systems as well [9]. While still very much at an early stage of research, the 
benefit of a single language that can be used to efficiently target multi-petascale and future 
exascale heterogeneous systems in the entirety of their compute hardware space is a welcome 
prospect. 
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2.1 MPI 

2.1.1 Brief overview 

MPI [24] is still the most widely employed parallel programming model within PRACE and is 
generally well grasped within the PRACE community. For this reason we only report on some 
of the more novel features offered by the latest MPI 3.0 standard, which was published in 
September 2012 [11] and is widely viewed as a major update, positioning MPI for the deep 
petascale and future exascale era. We also briefly touch on some novel features not included 
in the standard, but are instead offered through various MPI implementations and have been 
shown to be particularly beneficial on heterogeneous systems. It should be born in mind that 
MPI attracts a huge amount of research interest, and so it would be impossible for us to cover 
all of the interesting work being carried out in its various implementations. 

In brief, MPI 3.0 offers the following new features to MPI 

 Non-blocking and neighbourhood collective operations 

 Revamped remote memory access (RMA, a.k.a. “one-sided” operations) 

 New Fortran 2008 bindings 

 Richer external tool support 

 Better support for large counts 

 “Matched” probe support 

 C const correctness 

 Shared memory windows 

 Non-blocking communicator creation / duplication 

 Countless small grammar fixes, textual cleanups, and clarifications 

To our knowledge, both the MPICH [25] MVAPICH [26] implementations of MPI offer the 
full set of MPI 3.0 features and OpenMPI [27] offers a subset of the features. 

The MPI Forum [24] added support for one-sided communication (also known as remote 
memory access, or RMA) in version 2.0 of the MPI standard, to function alongside MPI’s 
traditional two-sided and collective communication models. While MPI 2 was effective for a 
variety of applications and systems, it has lacked various communication and synchronization 
features, and its conservative memory model has limited its ability to efficiently utilize 
hardware capabilities, such as cache coherence.  

The MPI 3 standard now adds a variety of new atomic operations, synchronization primitives, 
window types, and a new memory model that better exposes the capabilities of architectures 
with coherent memory subsystems. It is believed that these features will address issues in the 
MPI 2 model and greatly improve the performance potential of MPI RMA.  

Other important new functionality includes non-blocking collective communication and better 
handling of situations arising out of process failures, e.g., an application may choose to be 
notified when an error occurs anywhere in the system and an application may ignore failures 
that do not impact its MPI requests. There is also the capability to rebuild a communicator 
when a process fails or allowing it to continue in a degraded state. MPI processes may also 
ignore failures that do not impact its MPI requests. An important new feature is that an 
application that does not use collective operations will not require collective recovery. 
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One of the other interesting initiatives which is being investigated at the moment and which is 
not part of the standard, but rather features as part of the MVAPICH implementation, is 
MVAPICH2-X [28] which provides a unified high-performance runtime that supports both 
MPI and PGAS programming models on InfiniBand clusters. It enables developers to port 
parts of large MPI applications that are suited for PGAS programming model. This minimizes 
the development overheads that have been a huge deterrent in porting MPI applications to use 
PGAS models. The unified runtime also delivers superior performance compared to using 
separate MPI and PGAS libraries by optimizing use of network and memory resources. 

MVAPICH2-X supports UPC and OpenSHMEM [29] as PGAS models. It can be used to run 
pure MPI, pure UPC, pure OpenSHMEM as well as hybrid MPI/OpenMP/PGAS applications. 
It takes advantage of the RDMA features offered by the InfiniBand interconnect to support 
UPC/OpenSHMEM data transfer and atomic operations. It also provides a high-performance 
shared memory channel for multi-core InfiniBand clusters. 

Also not part of MPI standard, but which is proving very beneficial when enabling on 
heterogeneous systems, is the more optimized support being offered for coprocessors and 
accelerators including NVIDIA’s Fermi and Kepler architectures [30] [31] as well as Intel’s 
new MIC architecture [32]. 

Latest release/version: MPI 3.0 (standard now implemented) 

2.1.2 Evidence of use within PRACE 

MPI is the most widely used parallel programming method within PRACE to date and for this 
reason we have only selected a few examples of how it has been employed. 

For an interesting in-depth analysis of MPI/OpenMP hybrid parallelisation, the reader is 
referred to section 2.4 within deliverable D6.4 in PRACE-PP [33], which focuses on the 
hybrid parallelisation of the materials science application, Quantum Espresso (QE). In this 
particular study, Fast Fourier Transform (FFT) and Linear Algebra subtasks within Quantum 
Espresso were hybridised using OpenMP in combination with MPI. The authors demonstrate 
that for large core counts and specific data sets,the hybridised version of QE allowed for 
scaling on up to 65,000 cores on a IBM BlueGene/P. 

Another interesting investigation was also recently reported in the PRACE-1IP Preparatory 
Access whitepaper, ‘High resolution ocean simulations with NEMO modeling system’ [34] 
where runs were carried out on the PRACE Tier-0  Bull supercomputer, CURIE, and where 
within the NEMO code all MPI_Scatter and MPI_Gather operations were replaced by 
MPI_Send and MPI_Receive calls which improved scalability on all platforms. In this 
study MPI persistent communication channels were also investigated but without much 
performance gain achieved.  

More recently, within WP8 PRACE-2IP, PRACE partners have been working on introducing 
fault tolerance to the ocean modelling code, NEMO, where plans are afoot to interface with 
the new fault tolerant features of MPI 3.0 [35]. 

2.1.3 Evidence of use outside PRACE 

MPI is used extensively on most petascale systems worldwide, so we have selected only a few 
examples of where it has demonstrated scalability on a large number of processes.  

One of the codes using MPI that is already petascaling is the vector particle-in-cell, VPIC, 
code on Blue Waters, the Cray supercomputer at NCSA, Illinois [36], which integrates the 
relativistic Maxwell-Boltzmann system in a linear background medium for multiple particle 
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species. The science problem in question had a 3,072x3,072x2,464 cell domain with 
7.44103x1012 particles and the code was run on 22,528 nodes of the Blue Waters system with 
180,224 MPI processes (with 4 OMP threads/rank), and achieved 1.25 PFLOPS sustained.  

Another example of an MPI-based code that has demonstrated excellent scalability on 
petascale systems is the PPM code [36], (the example of which we give here is also from runs 
on Blue Waters). PPM is a hydrodynamics code based on the Piecewise-Parabolic Method 
(PPM) Communication primarily involves halo exchanges on a 3D Cartesian mesh which are 
overlapped by computations, as is the I/O. In this work a rank re-ordering scheme was 
implemented to interleave the I/O server tasks in the MPI rank list. The test case uses a 
10,5603 zone mesh and was run across 702,784 cores of Blue Waters system, with 681,472 
worker threads organized into eight threads per MPI task. In total, 87,846 MPI ranks were 
running on 21,962 nodes with sustained 1.5 PF/s. More than 587 TB of data was saved with 
an aggregate of over 17 GB/sec I/O rate. In this example, communication and I/O were 
essentially 100% overlapped with computation. 

With regards to MPI scalability, at the time of writing it was reported that researchers at 
Lawrence Livermore National Laboratory have performed record simulations using all 
1,572,864 cores of Sequoia [37] based on IBM BlueGene/Q architecture, and is the first 
machine to exceed one million computational cores. The simulations are the largest particle-
in-cell (PIC) code simulations by number of cores ever performed. The code used in these 
simulations was OSIRIS [38], an MPI-based PIC code that has also been run on PRACE 
systems. OSIRIS obtained 75% efficiency on the full machine. 

All the six scientific applications in European exascale project, DEEP are parallelized using 
MPI. One of the requirements with respect to the software stack within DEEP is the need for 
an MPI layer running through the whole machine, from Cluster to Booster. (The general 
purpose Cluster consists of nodes with Intel Xeon processors and InfiniBand network whenas 
the Booster nodes contains Intel MIC processors and are connected with special 3D torus 
network are suited for highly scalable computation kernel.) This so-called ‘Global MPI’ 
implementation within DEEP is intended to realise the offload functionality that sends the 
highly scalable code parts of the applications and associated data from the Cluster to the 
Booster and receives results of these code parts the other way round. For this purpose 
MPI_Comm_spawn() will be implemented in ‘ParaStationMPI’ [39] (ParaStation MPI has 
been designed to select the most appropriate of all available interconnects at runtime), making 
it aware of the underlying resource management and allowing to start offloading-binaries on 
the Booster. The offload functionality is a collective operation of all MPI processes running 
on the Cluster side and initiating the offload. The MPI process space created on the Booster 
side is aware of and connected to the parent MPI processes running on the Cluster, and can 
communicate with them. 
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2.1.4 Pros and Cons 

Metric Pros Cons 

Scalability MPI can scale up-to several 
thousand cores  

Memory consumption 
increases with cores. At large 
scale communication time 
becomes dominant  

Performance MPI libraries are tuned for 
host system and interconnect. 
Both inter-node and intra-
node bandwidth/latency are 
close to hardware 
specifications. 

At large scale MPI-only 
codes can suffer from 
network congestion  

Productivity MPI is still the favoured 
model for developing 
applications for distributed 
memory systems. Can be 
used with Fortran, C and 
C++. 

Powerful one-sided 
communication features have 
been added to MPI 2, but 
these are typically underused, 
which begs the question as to 
their ease-of-use. Such issues 
may be rectified by the MPI 3 
standard, but at the time of 
writing it is too difficult to 
say. 

Sustainability MPI standard has been 
available for last 20 years. It 
is supported by a large 
number of organizations.  

- 

Correctness Debugging tools are widely 
available for MPI-based 
applications, but are mainly 
commercial (DDT and 
TotalView) 

- 

Portability MPI codes are portable. In 
most cases one does not 
require any change in the 
source code when moving 
from one system to another.  

 

Availability MPI is an open standard and 
is available on most modern 
supercomputers.  

- 

Resilience MPI 3.0 standard provides 
better fault tolerance features 

Application codes need to be 
adapted to fault features of 
MPI, e.g., if a process dies 
due to hardware failure an 
MPI program can still run 
provided the application 
program adjusts itself to the 
new situation.  

Table 1 MPI - Pros and Cons 
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2.1.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Yes Yes Yes (MPI+X) 

Table 2 MPI - Target systems/architectures 

2.1.6 Conclusion 

Although all the projections of what an exascale machine will look like in the future show that 
the MPI-only programming model won’t be sufficient, MPI+X will more than likely remain 
the dominant programming model for another few years. Certainly for the moment, there are 
few signs of it being usurped from this position on the road to exascale. It can be seen from 
our brief report that the MPI forum is starting to address the challenges that MPI will face on 
this road, and we believe that the exploitation phase of T7.2 provides PRACE partners with a 
very valuable opportunity to investigate new MPI 3.0 features. It is well appreciated that MPI 
has many shortcomings when considering new hybrid many-core systems, but it is our 
opinion that these shortcomings can only be addressed after properly considering the full 
scope of what the new standard has to offer. 

2.2 OpenMP 

2.2.1 Brief overview 

OpenMP [40] is still the model of choice for ‘X’ in the MPI plus X paradigm and, like MPI, 
has been widely exploited within PRACE to date. Adding OpenMP threading to an MPI code 
is an efficient way to run on multicore processors and nodes like those currently found on all 
PRACE systems. Since OpenMP operates in a shared memory space, it is possible to reduce 
the memory overhead associated with MPI tasks and reduce the need for replicated data 
across tasks. While OpenMP is promoted as being easy to use and allows incremental 
parallelisation of codes, naive implementations frequently yield poor performance. In 
practice, as with MPI, the same care and attention should be exercised over algorithm and 
hardware details when programming with OpenMP. 

The last major update to the OpenMP standard resulted in OpenMP 3.0 [12] where the major 
new feature was a model for task-based parallel programming. Evidence suggests that this is 
still a relatively underused method within PRACE to date. More recently (2011), the OpenMP 
ARB released version 3.1. Version 3.1 is a minor release that offers corrections of the 3.0 
specification. Here, we mention some of the new features included in OpenMP 3.1 that we 
believe should be of interest during the exploitation phase of T7.2. 

The OpenMP 3.1 Specification introduces predefined min and max operators for the C and 
C++ base languages.  With these operators, programmers no longer have to work-around the 
lack of these operators and implement reductions themselves. Without lengthy coding 
patterns, it now becomes possible to directly use min and max in the reduction clause of a 
parallel region or work-sharing construct in C/C++. 

The atomic construct has been extended. It now provides support to atomically capture the 
value of an updated variable for later reuse. This, for instance, enables programmers to 
efficiently implement dynamic scheduling approaches without expensive locking or critical 
regions. It is also now possible to read a memory location and to write to a memory location. 
The old behaviour of atomic is now made explicit through the introduction of the update 
clause for atomic updates of memory locations. 
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The tasking model has received an update to allow for more efficient coding of task-parallel 
applications. With the taskyield construct, OpenMP now supports user-defined 
scheduling points to indicate to the OpenMP runtime to suspend one task in favour of other 
tasks. As a means for performance optimization, the conditional final clause, the 
mergeable clause, and the corresponding calls in the runtime support routines, reduce 
overheads that are a result of task creation. When the final clause evaluates to true, a task 
may not be scheduled for deferred execution, but instead is immediately executed. This also 
applies to all child tasks that might be generated by this task. With the mergeable clause, 
programmers can avoid potentially expensive initialization of the task environment. With 
these additions, fine-grained task-based programming may benefit from less tasking overhead. 

Version 3.1 also includes a variety of minor corrections and additions. The behaviour of 
firstprivate was corrected for types with constant qualification and the data 
environment of parallel regions in Fortran now support intent(in) for variables. The 
descriptions of the examples have been expanded to a large extent and clarifications have 
been added. 

In the lead up to version 4.0 of OpenMP [41] the OpenMP consortium are working on added 
support for SIMD directives, significantly extended support for thread affinity, added UDRs, 
sequentially consistent atomics, atomic swap, and added initial support for Fortran 2003. 
Other key features that the OpenMP consortium is working on are support for accelerators 
(with a possible merge with the OpenACC standard) and improvements in error handling. 

It is worth also mentioning that one of the more interesting target architectures for OpenMP is 
the new Intel MIC (Xeon Phi) coprocessor, where for the moment Intel recommends OpenMP 
(in combination with Intel’s Language Extensions for Offload (LEO)) as a model for 
exploiting the many-core device. OpenMP parallelization on an Intel Xeon/MIC coprocessor 
platform can be applied in four different programming models that can be realized with 
different compiler options: native OpenMP on the Xeon host; serial Xeon host with OpenMP 
offload; OpenMP on the Xeon host with OpenMP offload and native OpenMP on the MIC 
coprocessor. For more information on how to program the Intel MIC coprocessor using 
OpenMP, the reader is referred to the recently produced PRACE ‘Best Practice Guide for the 
Intel Xeon Phi’, available on the PRACE website [42]. 

Latest version/release: v3.1 

2.2.2 Evidence of use within PRACE 

Since the standard is mature and provides a relatively low barrier to entry for hybrid 
programming on large-scale multicore systems, (as well as many-core coprocessors more 
recently), OpenMP has been widely used (in combination with MPI) within PRACE to date. 
Although easy to pick up quickly it is generally found to be quite difficult to extract the same 
level of intra-node performance from an OpenMP shared-memory implementation as that of 
an intra-node MPI implementation. Here, we provide only a few examples of how OpenMP is 
being and has been employed in PRACE to date.  

In WP7 PRACE-1IP, the use of OpenMP in a hybrid scheme was reported in deliverable D7.5 
[43] in the work entitled ‘Hybridization of parallel sparse matrix vector multiplication - 
BiCGStab algorithm’. In that work, which was carried out and tested on JUGENE, it was 
found that adding OpenMP to an MPI-based sparse matrix vector multiplication algorithm 
gives better performance only when the granularity of each MPI task is large enough to 
exploit shared memory parallelism. Also within PRACE-1IP, the PRACE whitepaper, 
‘Performance Analysis and Petascaling Enabling of GROMACS’ [44] reports on the 
hybridised version of GROMACS, which was tested on the IBM PLX cluster at CINECA. 
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The hybrid OpenMP/MPI mode of GROMACS was shown to significantly improve the 
scaling of large problem sizes on a large number of cores, typically over 200,000 particles on 
over 500 cores. On systems with very fast interconnects such as Cray XE6, LINDGREN 
machine at PDC, the hybrid mode was shown to not offer much advantage. 

More recently, within WP8 PRACE-2IP, on-going work has focused on developing hybrid 
OpenMP/MPI parallelism for Fluidity-ICOM with tests being run on the Cray XE6, HECToR 
machine at EPCC [35]. As part of this work, all matrix assembly kernels in Fluidity-ICOM 
have now been successfully threaded using OpenMP, where memory bandwidth usage 
through NUMA optimisations (e.g., first touch, thread pinning) and using a NUMA aware 
heap memory manager have shown to achieve best performance using pure OpenMP within 
the NUMA node. In the matrix assembly kernels, the OpenMP parallel algorithm uses graph 
colouring to identify independent sets of elements that can be assembled simultaneously with 
no race conditions.  

Also within WP8 PRACE-2IP, on-going work is being been carried out on hybridising the 
ABINIT code using OpenMP in combination with MPI, where the focus has been on the non-
local operator within the many-body Hamiltonian [35]. Tests have been carried out on an Intel 
Sandy Bridge-based platform (TGCC-CURIE), where the input data test case was for 107 
gold atoms. The calculations were run over 128 MPI processes and good performance gains 
were seen when using up to 8 OpenMP threads (85% parallel efficiency), but for more than 8 
threads, thread synchronization issues were encountered and performance was seen to 
degrade.  

With WP8 PRACE-2IP, the OpenMP model is also being implemented in the NEMO code 
using both loop-level and tiling/coarse-grained approaches [35]. The effect of array-index 
ordering has also been investigated. In NEMO, the 3D arrays have the level/depth index 
outermost. The outer loop for the vast majority of loop nests is therefore over this index. It is 
this loop that is parallelized in the loop-level approach to using OpenMP. The proposed 
approaches have been applied in two different forms of the tracer advection kernel (MUSCL 
and TVD) in NEMO and are being evaluated on an IBM Power6 cluster at CMCC, Italy, an 
IBM iDataPlex with Intel Westmere CPUs at CINECA, Italy, a dual-socket Intel Sandy 
Bridge system at STFC Daresbury, UK and on a Cray XE6 (HECToR), UK. 

It should also be mentioned that within WP8 PRACE-2IP, there is some early-stage work 
being carried out at CINECA in porting the Quantum Espresso suite of codes to the Intel 
Xeon Phi using OpenMP, where early results are showing promise [35]. 

2.2.3 Evidence of use outside PRACE 

On large-scale systems OpenMP is obviously used in a hybrid model with MPI. Interesting 
results on the improved scalability achieved by using OpenMP within the Fluidity code [45] 
Using large matrices generated by Fluidity, an open source CFD application code, which uses 
PETSc as its linear solver engine, the effect of explicit communication overlap using task-
based parallelism was evaluated. The authors also show how to further improve performance 
by explicitly load balancing threads within MPI processes. A significant speedup over the 
pure-MPI mode (2x speedup on 32,768 cores) and efficient strong scaling of the sparse 
matrix-vector multiplication on a Fujitsu PRIMEHPC FX10 and a Cray XE6 (HECToR) was 
demonstrated. 

Since the Intel MIC architecture is only at an early stage of release, there is not much publicly 
available data on how OpenMP is being used to exploit the new architecture. In a recent study 
on how OpenMP fares on the Intel MIC architecture, 'OpenMP Programming on Intel Xeon 
Phi: An Early Performance comparison’ [46] the overhead of the standard OpenMP constructs 
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which use synchronization was shown to be smaller than on large Symmetric Multiprocessing 
(SMP) machines, which makes the approach very promising for many HPC applications using 
OpenMP. The overhead of the Intel LEO of�oad pragma was also shown to be quite low, 
demonstrating that it will not limit scalability. The bandwidth of one MIC coprocessor was 
shown to be up to 156 GB/s, which exceeds eight Intel Xeon X7550 processors. With the 
Roofline model the authors of this work have predicted a maximum performance of about 20 
GFLOPS for the SMXV kernel they use as a benchmark. The authors claim that their early 
work on the Intel MIC architecture already demonstrates that scientific OpenMP applications 
can run efficiently on the upcoming Intel MIC coprocessor without requiring a major rewrite 
of code. It is worth bearing in mind that most information relating to the performance of the 
Intel MIC coprocessor has been released very recently after fairly lengthy NDAs, so recent 
publicly available results have often been obtained on test systems based on the early Knights 
Ferry architecture and are only representative of what can be achieved on the latest Knights 
Corner version of the coprocessor. 

2.2.4 Pros and Cons 

Metric Pros Cons 
Scalability Improves scalability of the 

code within a node. Good 
scalability also demonstrated 
on the Intel MIC architecture 

Needs to be combined with 
other multi-node 
parallelization techniques. 

Performance Can improve performance of 
the application by alleviating 
MPI intra-node 
communication bottlenecks. 
However, OpenMP intra-
node performance is often 
seen to be worse than intra-
node MPI performance 

cc-NUMA behaviour and 
False Sharing can have a 
negative impact on 
performance. Thread creation 
and context switching are 
severe overheads. 

Productivity Easy to incorporate in the 
code, the code may run on 
new hardware without a 
rewrite (e.g. Intel Xeon MIC 
coprocessor). Can be used 
with Fortan, C and C++ 

No major cons, other than 
refactoring that may be 
needed to extract good 
performance. 

Sustainability Proved sustainability over the 
years, support included for 
new platforms and tools. 

- 

Correctness Debugging tools are 
improving (e.g Intel 
ThreadChecker).  
Multithreaded codes are 
notoriously difficult to debug 

There is no support for error 
handling. Improvements in 
error handling are being 
proposed for OpenMP 4.0 

Portability OpenMP is an open standard 
and is portable across many 
different architectures. 

Using OpenMP on large-
scale systems is possible with 
message passing interface 
(MPI) – code needs to be 
redesigned and rewritten. 

Availability Open standard, well 
supported by compiler 

- 
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vendors (e.g. Intel, AMD, 
Cray, PGI, NAG). Also 
supported by GNU  

Resilience - - 
Table 3 OpenMP - Pros and cons 

2.2.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Yes Yes Yes (MPI+X) 

Table 4 OpenMP - Target systems/architecture 

2.2.6 Conclusion 

OpenMP offers the easiest means of hybridising existing MPI-based codes, a model that is 
becoming increasingly important as the core-count on nodes continues to increase. With the 
advent of Intel’s Xeon Phi coprocessor, OpenMP is already finding new target architectures in 
the many-core space, and could become even more relevant as a standard if plans go ahead to 
merge OpenACC into OpenMP 4.0 in the near future. One particular feature supported since 
OpenMP 3.0 that we feel has been under-investigated in PRACE so far is task-based 
parallelism and we feel that T7.2 offers a valuable opportunity to investigate this new feature 
further. 

2.3 OpenCL 

2.3.1 Brief overview 

OpenCL [14] is a parallel programming open standard intended for use with heterogeneous 
computing systems. It is similar to CUDA, [13] in that it is able to target graphics processing 
units (GPUs). However, OpenCL is more general-purpose than CUDA, with a goal to provide 
a standard language to write efficient, portable code for multi- core CPUs, GPUs, Cell-type 
architectures and other parallel processors. Programs that utilize OpenCL consist of two parts, 
the traditional code (C/C++), and the OpenCL API, which enables the setup and control of 
execution kernels performing the computationally intensive work requiring parallelization. 
Kernels are written in a subset of the ISO C99 language that is compiled to target a particular 
computing device. 

OpenCL supports both task and data parallel execution models, while CUDA is primarily 
focused on data parallelism. A kernel applies a single stream of instructions to vast quantities 
of data. Each piece of data is known as a work-item, and kernels can have a practically 
unlimited number of work-items. Kernels form the parallel unit of OpenCL, and they can be 
composed into a task via asynchronous command queues.  

The standard hasn’t changed since the last release in 2011, but there are more architectures 
that it now targets and new tools supporting the development of the code (e.g. Intel SDK 
(Software Development Kit) for OpenCL Applications 2013 [18], ARM Mali OpenCL SDK 
[47]). For example, OpenCL has been adopted on ARM platforms, including the new ARM 
Mali-T6xx GPU series, and is the focus of much work within the European Mont-Blanc 
exascale project. During 2013 the Mont-Blanc project is developing the first Mont-Blanc 
prototype hardware and in parallel with hardware development, they plan to develop the 
required OpenCL support for the embedded GPU in the HPC system software stack, starting 
from the OpenCL runtime environment itself as well as higher-level scientific libraries [5]. 
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Intel recently released the new Intel SDK for OpenCL applications [18], which provides a 
development environment for OpenCL 1.2 applications across both Intel Xeon processor and 
the Intel MIC coprocessor. One of the nice features of OpenCL to point out here is that the 
same OpenCL source code written for the Intel Xeon processor can be reused on the Intel 
MIC coprocessor with minimum modifications. NVIDIA has not announced any official 
statement on further support for OpenCL. However, since late 2010 active support from 
NVIDIA for OpenCL has decreased. OpenCL support is still included in the latest NVIDIA 
GPU drivers, but in 2012 the code samples were removed from the CUDA SDK, focusing 
instead on CUDA. 

It is worth pointing out that since OpenCL is built on a subset of ISO C99 there are a number 
of restrictions such as no recursion and limited pointers. These restrictions in the kernels can 
be limiting. Expanding OpenCL to handle these advanced features (similar to the way CUDA 
functionality has grown) would be beneficial. 

Latest version/release: v1.2 

2.3.2 Evidence of use within PRACE 

OpenCL has been investigated within several WP7 and WP9 PRACE-1IP projects. In the 
PRACE Whitepaper ‘‘Benchmarking and analysis of DL_POLY 4 on GPU clusters [48], 
comparisons were made between a CUDA (v4.0) and OpenCL (v1.1) port of DL_POLY to 
GPU architectures. In terms of productivity, it was concluded in that work that the OpenCL 
framework required much more effort than CUDA. The authors found that the lack of quality 
documentation, flexible debugging tools and the small number of libraries around the 
standard made the development process challenging. They also point out that C++ templates 
are not supported in OpenCL, which resulted in a far greater number of lines of code 
compared to the CUDA version. It should be pointed out that AMD's OpenCL SDK now 
supports OpenCL Static C++ Programming Language extensions, which allows for some 
C++ features for writing the kernels (inheritance and passing classes instances from the host 
to the device). However, documentation is still poor. According to the Khronos website C++ 
bindings don’t officially support OpenCL 1.2 entry points yet [14]. 

In deliverable, D9.2.2, in PRACE-1IP section 2 [49], reports on how the performance of 
OpenCL was evaluated by porting the EUROBEN mod2am, mod2as and mod2f kernels. 
Tests were carried out on several many-core architectures including NVIDIA GTX480, 
AMD/ATI Radeon HD 5970, AMD/ATI Radeon HD 5870, NVIDIA Tesla M2050, AMD 
Brazos platform (Zacate E-350: CPU 1.6 GHz 2 cores, with AMD Radeon HD 6310 492 
MHz), Intel Core i7 CPU 3.20 GHz. Results of the mod2am and mod2f benchmarks, for both 
Double Precision (DP) and Single Precision (SP), have shown that OpenCL on the GPU was 
2x better than on the CPU for large matrix sizes, but these results should be considered in the 
context of the time that they were obtained and the rapid progress that has been made in 
many-core technology since then. 

OpenCL has also been employed more recently within WP12 PRACE-2IP, where in the 
PRACE whitepaper, “Optimization of SHAKE and RATTLE Algorithms” [50] further 
enabling and optimisation of DL_POLY algorithms on GPU-based systems was reported. 
Development and testing was carried on local WCSS GPU machines (2x GTX480, 2x AMD 
Radeon HD 6900 Series) and performance results for the DL_POLY H2O benchmark showed 
that the OpenCL implementation ran slower than the CUDA version for the same algorithms 
The biggest performance difference between the NVIDIA-CUDA and the NVIDIA-OpenCL 
implementations occurs for kernels: k1_th (OpenCL code is 10 times slower than CUDA 
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code), and install_red_struct (OpenCL code is 5.5 times slower than CUDA code). 
For other kernels OpenCL calls are 2 times slower than equivalent CUDA calls. 

2.3.3 Evidence of use outside PRACE 

Although several Mont-Blanc application codes are partially ported to OpenCL, these 
applications are at a very early stage of testing on the Mont-Blanc prototype system and in 
general we found it very difficult to find examples of OpenCL-based petascale applications 
running on large-scale systems outside PRACE. We do note that the popular Molecular 
Dynamics code, LAMMPS, has been ported to GPUs on the Cray Xk7, Titan machine at 
ORNL using both CUDA and OpenCL builds [51] but it is not clear whether performance 
results provided are from the CUDA or OpenCL builds of the code. In associated work [52] 
more detail is provided on how OpenCL and CUDA are exploited within LAMMPS using the 
GERYON library, which provides and API allowing a single code to compile with both 
CUDA and OpenCL [53]. Benchmarks were performed on the Keeneland system where at the 
time of publication each node contained two 2 Intel Westmere hex-core CPUs and 3 Tesla 
M2070 GPUs. For the OpenCL comparisons, device code for both CUDA and OpenCL was 
compiled with version 4 of the CUDA toolkit. Performance comparisons of CUDA and 
OpenCL were made for the same kernels using the 'rhodopsin' LAMMPS benchmark where it 
was shown the accumulated time for host-device data transfer and compute kernel time was 
demonstrated to be 24% larger for the OpenCL executable. 

One initiative that we do think is worth pointing out is VexCL - vector expression template 
library for OpenCL[54]. It has been created for ease of C++ based OpenCL development. 
Multi-device and multi-platform computations are supported. Source code of the library is 
publicly available under MIT license. VexCL is integrated into odeint - a C++ library for 
numerical solution of ordinary differential equations. 

2.3.4 Pros and Cons 

Metric Pros Cons 

Scalability Strong scalability, up to 
thousands of concurrent 
threads. 

Scalability on distributed 
memory systems can be 
achieved only when external 
libraries are used (e.g. MPI). 

Performance A fairly low-level API that 
consequently has the 
potential to extract 
performance from multi-
/many-core architectures 

Performance is 
implementation dependent. 
Best performance can only be 
achieved when targeting 
specific architectures  

Some evidence suggests that 
OpenCL implementations 
tend to underperform when 
compared to CUDA, for 
kernels solving the same 
problem.  

Productivity Based on C99. Many 
language bindings and 
wrappers exist. No direct 
support for Fortran. 

Architecture based 
knowledge is essential. 
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Ecosystem is quite poor in 
comparison to CUDA  

Sustainability It seems to be on roadmaps 
of major new device and 
architectures providers. 

Difficult to discern long term 
support from several major 
vendors  

Correctness Debuggers exist (AMD 
CodeXL, OpenCL Studio)  

- 

Portability Many architectures 
supported. Portable code. 

 

Availability Open and royalty-free 
standard. Support from 
several compiler vendors 
(e.g., Intel, AMD, CAPS, 
NVIDIA, IBM) 

- 

Resilience - - 

Table 5 OpenCL - Pros and Cons 

2.3.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes 

Table 6 OpenCL - Target systems/architectures 

2.3.6 Conclusion 

One of the main appeals of OpenCL is that it is an open standard intended for use with a wide 
variety of heterogeneous computing systems. Since PRACE uses diverse computing systems, 
OpenCL does seem to offer a solution in terms of portability. OpenCL is a shared-memory 
programming model, and therefore must be used in conjunction with another model such as 
MPI for inter-node parallelism.  

Developing efficient OpenCL code is typically found to require more effort than other GPU 
frameworks. There are some efforts, besides the new SDKs and tools for code debugging and 
analysis, which try to address this issue. During the ADAPT workshop on January 22nd, 2013 
ACL (Adaptive OpenCL) was presented [55]. It was proposed for real-time computing 
environments of mobile computing, but we feel that the core idea of the algorithm support for 
dynamically adapting data-model properties and runtime machine characteristics might be 
worth further investigation for heterogeneous and dynamic HPC systems in the future. 

OpenCL lives something of a double life between the worlds of HPC and mobile, consumer 
computing. What drives both of these areas is that they are equally committed to solving core 
problems around heterogeneous computing as is exemplified by the use of OpenCL in the 
Mont-Blanc project. In terms of HPC, OpenCL lives somewhat in the shadow of CUDA, but 
its relevance may change with the release of the Intel MIC architecture and the support that 
Intel puts behind it. We feel that T7.2 should liaise closely with European exascale projects 
such as Mont-Blanc project to learn how OpenCL will be exploited during 2013. 
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2.4 OpenACC 

2.4.1 Brief overview 

OpenACC [15] is a directive-based open standard supported by NVIDIA, PGI, Cray and 
CAPS, designed to simplify parallel programming of heterogeneous CPU/GPU systems. As is 
the case for OpenMP, the programmer can annotate C, C++ and Fortran source code to 
identify the areas that should be accelerated using #pragma compiler directives and 
additional functions, where the the #pragma directive retains the compatibility of the code 
when compiling with non-OpenACC compilers. Unlike OpenMP, code can be started not only 
on the CPU, but also on the GPU. The latest public comment draft version of the standard, 
OpenACC 2.0 [56], was announced in November 12, 2012 at the SC12 Conference but is still 
under review. If ratified, version 2.0 will offer a series of new features and capabilities for 
better memory usage, data handling and more flexible programming. 

OpenACC 2.0 intends to offer new features to deal with what can be a bottleneck in data 
management and to increase performance. This is provided through unstructured data 
lifetimes, which allow data to exist on the device beyond a kernel or parallel region. This 
allows for increased data locality and fewer barriers. There is also a default(none) 
clause that can be added to data directives optionally. This ensures that no data is handled 
automatically, which can help to isolate reasons for poor performance. Version 2.0 also 
intends to allow for nested parallelism, where kernels on the accelerator can generate another 
accelerator kernel within. If this takes place entirely on the accelerator, the number of data 
transfer events between host and device are reduced. Additionally, the improved readability 
added through the use of directives makes any additions to the code simpler. This will be 
helpful for implementing changes to code that may be required for exascale execution. 

OpenACC runs on multiple hardware platforms and operating systems. It is fully compatible 
with the NVIDIA CUDA and GPU libraries. It is interoperable with MPI and OpenMP. 
Moreover, it is intended to merge with OpenMP to create a common specification for 
accelerators in the future [57]. 

2.4.2 Evidence of use within PRACE 

OpenACC has not been employed in many PRACE projects to date, but indications are that it 
is becoming increasingly popular as a means of porting legacy codes to GPU-based systems. 
OpenACC has recently been reported on within WP12 PRACE-2IP. The PRACE whitepaper 
‘Investigating Performance Benefits from OpenACC Kernel Directives’ [58] reports on how 
the performance of matrix-matrix multiplication and classical Gram-Schmidt ortho-
normalisation were analysed for different OpenACC gang and vector sizes by using PGI and 
CAPS compilers on different hardware architectures. The authors demonstrated that when 
gang and vector sizes are modified to match the architecture, the performance increased 
compared to the automatic scheduling parameters. In particular, for a basic hand-coded 
DGEMM algorithm the PGI and CAPS compiled versions of the OpenACC-based code show 
a speedup of 1.7x and 3.1x respectively. For both applications, the best results were obtained 
for different scheduling parameters selected for the PGI and CAPS compiled versions. PGI 
and CAPS compiled versions of the two applications were compared with the serial runtime 
and OpenMP implementation with four threads. These versions were shown to perform 
similarly with the optimal parameters and were also shown to perform better than the serial 
and quad-core OpenMP implementations. In particular, for Gram-Schmidt 
orthonormalisation, the PGI compiled version achieved a speedup of 1.9x over the 
corresponding OpenMP version. For the compiled version with CAPS, tests were also carried 
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out on the new NVIDIA K20 architecture. The best performance for this case was obtained 
using different gang and vector sizes than were used for NVIDIA M2090 based tests, 
demonstrating a clear link to scheduling and architecture. Moreover, a 1.3x improvement was 
achieved on the K20 when compared to the M2090. 

Work with OpenACC within PRACE is also on-going within WP8 PRACE-2IP as part of 
optimisation of the ICON Non-Hydrostatic Solver [35] OpenACC was used in combination 
with MPI and performance results were compared between the application running on an Intel 
Sandy Bridge node versus the application running on a K20X GPU. The hybrid version of the 
code was found to be 2x faster for cases where memory is fully exploited. This work is at an 
early stage and the OpenACC version and the authors are currently working on further 
optimisations. 

2.4.3 Evidence of use outside PRACE 

Outside PRACE, OpenACC has also recently garnered much interest as a parallel 
programming model particularly with respect to porting large legacy codes to GPU-based 
systems. A hybrid MPI/OpenMP/OpenACC version of S3D (a parallel direct numerical 
simulation solver for turbulent reacting flows) was developed recently, targeting the Cray 
XK7, Titan system at ORNL, where the performance of the OpenACC port has recently been 
evaluated. As reported in [59] the performance of the application approximately doubled 
when moving from a hybrid OpenMP/MPI implementation to a hybrid 
OpenMP/MPI/OpenACC on a GPU-based system. When comparing the 
OpenMP/MPI/OpenACC 16 core performance to a 32 Core OpenMP/MPI hybrid 
implementation, the performance improved by roughly 1.4x on the GPU-based system, 
indicating that OpenACC is showing promise as a directive-based approach for enabling 
applications on peta/multi-petascale heterogeneous systems. It should also be pointed out that 
the refactoring involved in porting to OpenACC also improved the runtime of the 
OpenMP/MPI hybrid code by roughly 12% due to restructuring loops, combining 
computation, and restructuring computation. 

OpenACC is also being actively investigated within the European CRESTA project where a 
recent report [60] demonstrates how OpenACC allowed for the performance of Nek5000 
benchmarks to be improved by a factor of 5x-9x over hand optimized serial code using an 
NVIDIA C2050 GPU, and 6x-12x over naive code using only five directives. Auto tuning for 
optimal gang and vector sizes led to a further 2x improvement depending on matrix size and 
shape. While OpenACC is often promoted as an easy means of porting applications to GPUs, 
it is not always a trivial task to port legacy code to the GPU. In a separate project within 
CRESTA [61], hybridisation of the HemeLB application (similar to the Lattice Boltzman 
Ludwig application) was attempted by taking an MPI/OpenMP version of the code and 
replacing OpenMP directives with the analogous OpenACC “parallel loop” directive. This 
resulted in a number of compiler errors however (PGI compiler v12.3), revealing difficulties 
with pointers containing pointers/references to other structures (“deep data structures”), and 
difficulties with data management for virtual functions. It was pointed out in this work that 
these errors would have also occurred with CUDA, and would require a major code re-write. 

2.4.4 Pros and Cons 

Metric Pros Cons 

Scalability Good scalability can be 
obtained. Can be improved 
by specifying gang, worker 
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and vector clauses, and 
nested parallelism introduced 
in version 2.0 

Performance Achieves good performance 
compared to OpenMP by 
enabling use of GPUs. 
Improved performance with 
async clause, new data 
clauses and directives in 
version 2.0 

Requires data management 
and movement between the 
host and device memory. 
Relies on heavily on 
compiler. 

Productivity Based on compiler directives. 
Is intended to be as easy to 
use as OpenMP. Easy to 
maintain. Compatible with 
low-level GPU languages and 
libraries 

For good performance, 
restructuring of code is 
generally needed. 

Sustainability Full support from PGI, Cray, 
CAPS and NVIDIA; 
Webinars and a user forum is 
available in the official web 
site; Integration to OpenMP 
with any type of accelerator 
support is an ongoing work  

Many other competing 
emerging GPU programming 
models  

Correctness TotalView and Allinea DDT 
support for Cray CCE 8 
compiled programs. 
Advantage of compiler 
support to detect errors; 
Better memory and data 
handling in version 2.0 can 
reduce errors caused by 
incorrect data 

Requires effort to decide data 
dependencies, and errors with 
data can be hard to detect. 

Portability Portable across operating 
systems, and multi-core 
processors such as NVIDIA 
and AMD GPUs, and Intel 
Xeon Phi 

Convergence needed from 
compiler vendors 

Availability Open standard; Supported by 
the latest versions of PGI, 
Cray and CAPS compilers; 
There is a free 30-day trial of 
the PGI Accelerator compiler 

Compilers are not open 
source 

Resilience   

Table 7 OpenACC - Pros and Cons 



D7.2.1 A Report on the Survey of HPC Tools and Techniques 
 

PRACE-3IP - RI-312763  29.04.2013 25

2.4.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Unknown Yes Yes Yes Yes 

Table 8 OpenACC - Target systems/architectures 

2.4.6 Conclusion 

Due to its relative ease of use in comparison to both CUDA and OpenCL, OpenACC is 
becoming an increasingly popular model for porting legacy applications to GPU-based 
systems. The standard is still in its infancy and there are many issues with regards to 
implementation that still need to be resolved, which also make it difficult to assess the 
performance of the model. Indications are that NVIDA is fully supportive of initiatives in this 
area and are also increasing the level of OpenACC material on their website regularly. While 
it is generally appreciated that CUDA offers the ability to perform lower-level optimization 
for the GPU, OpenACC may be increasingly used as a means of efficiently probing the 
potential benefits of porting to GPUs, with CUDA being used in an optional second 
optimization stage. In terms of code maintainability, OpenACC is a much more attractive 
option than CUDA for large-scale codes. If OpenACC can prove itself over the next year or 
two, it may become the model of choice for programming GPUs in the near future. Either 
way, it seems likely that OpenACC will be merged in some way with OpenMP. It is 
interesting to note that Intel’s Language Extensions for Offloading share similarities with 
OpenACC offloading directives and more than likely some sort of convergence will be 
reflected in the new OpenMP 4.0 standard in 2013 [57]. 

2.5 TBB and Cilk Plus 

2.5.1 Brief overview 

While TBB [16] and Cilk Plus [17] are two very different models for programming x86-based 
multi-core (and more recently many-core) shared memory architectures, we group a report on 
the two together here for the reason that they are both strongly supported by Intel as models 
for programming Xeon- and Xeon Phi- based platforms. According to Intel, in many cases, 
the two models can also compliment each other in the same code. The models are based on 
the C++ language and do not contain constructs for multiple nodes such that an existing 
framework such as MPI would be required for communication across nodes of a platform. 
They have also not been widely used to date within and outside PRACE.  

TBB: 

Threading Building Blocks (TBB) is a C++ template library intended to support task 
parallelism without explicitly managing threads. TBB does not implement any vectorization, 
which is left instead for the programmer to manage, either with pragmas, compiler flags, 
platform-specific or vectorization API calls such as SSE.  

There are substantial differences between TBB’s scheduling implementation and Cilk Plus as 
Cilk Plus narrowly concerns itself with fork-join thread scheduling, while TBB supports a 
very broad range of scheduling constructs. TBB bases its scheduling on a task graph, which is 
a directed acyclic graph of tasks, ordered by their execution dependence on other tasks. The 
core implementation concept for TBB is that it implements a “work stealing” algorithm to 
traverse this task graph in both a breadth-first and depth-first manner simultaneously, 
responsively balancing workloads while deferring tasks as little as possible. 
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TBB contains lower-level and higher-level components. The lower-level components of TBB 
include: Task Scheduler, Thread Local Storage, Synchronization Primitives, Memory 
Allocation, Threads and others. The higher-level domain of TBB has two elements: Generic 
Parallel Algorithms, which are analogous to C++ STL algorithms, and Concurrent 
Containers, which are analogous to C++ STL containers. 

The lower-level TBB constructs are aimed at allowing TBB programmers flexibility in 
making lower-level parallelism choices to optimize performance while preserving a serial 
coding style. The higher-level TBB constructs conveniently express and automate many 
common tasks. Parallel algorithms such as parallel_for() and 
parallel_reduce() allow programmers to express normal serial programming 
constructs in a natural way, yet still take advantage of the TBB core task stealing. Similarly, 
concurrent containers include C++ constructs, which present the proper interface for use with 
parallel algorithms, such as concurrent_vector(). The programmer thinks in terms of 
for loops and reductions, while TBB manages the load balancing and task graph. 

Other examples of the high-level TBB toolkit include the parallel_pipeline template, 
which encourages data locality by passing tasks through a pipeline in chunks rather than 
executing each pipeline stage. 

Latest version/release: v4.1.3 

Cilk Plus: 

Cilk Plus is fairly straightforward as an extension of C/C++. The language is meant to be 
processor oblivious, which provides the programmer scalability without the need to rewrite 
code in order to utilize new architectures with additional cores. As such it is targeted mainly 
at legacy code that may be easily parallelized through the aid of the Cilk Plus keywords and 
parallel constructs.  

The main concept behind the Cilk Plus programming model is work-stealing which is handled 
by the Cilk Plus runtime system. Cilk Plus contains only a handful of keywords that control 
the bulk of the parallel-related tasks. These are the cilk_spawn, cilk_sync, and 
cilk_for keywords. The language provides additional features such as elemental functions 
that take advantage of vector operations available on the hardware. Definitions for reductions 
are present to simplify certain codes.  

The most commonly used keyword in Cilk Plus is cilk_spawn, which is used to branch 
parallel sections of code. Each spawn creates a strand of work that is scheduled for a worker 
to process. Both the user thread and Cilk threads may be used to perform spawned work, and 
the default thread that runs the strand is the parent thread that spawned it. If and only if there 
is a larger quantity of work to do, multiple strands are broken up to be processed by other 
workers.  

Following a cilk_spawn in which there are dependencies on the return from the spawn, the 
Cilk Plus program must provide a matching cilk_sync to ensure that the spawned threads 
have finished their strands of work before moving forward. This synchronization point is 
local, meaning a parent thread may continue once its children threads have all finished, as 
opposed to a global synchronization, where all threads must finish. This allows for more fluid 
workflow control in a program, especially with respect to task-based parallelism. 

The cilk_for keyword is used primarily where there is a higher level of data parallelism, 
where the many iterations in a standard for loop are independent of one another, allowing 
for parallel execution. One of the key advantages to using the cilk_for keyword, as 
opposed to a standard loop with cilk_spawn inside the iteration, is that the cilk_for 
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splits up the work using a divide-and-conquer approach. This decreases the overall execution 
time because it counters some of the overhead associated with the otherwise serialized 
spawning. 

Latest version/release: Offered as part of the latest Intel compilers. As of August 2011, Intel 
has announced that it is maintaining Cilk Plus as a branch of GCC 4.7. The runtime library is 
available dual-licenced, including BSD-3. 

2.5.2 Evidence of use within PRACE 

Cilk Plus has been reported on within PRACE-1IP, where it was used in a novel approach that 
saw it combined with UPC: In the PRACE-1IP deliverable, D7.5, ‘HPC Programming 
Techniques’ [43], the section on ‘A cache-oblivious matrix transposition (FFTW)’, describes 
how UPC/Cilk Plus was explored an alternative to the de-facto standard programming model 
for petascale systems (i.e, the mixed MPI/OpenMP model). UPC/Cilk was evaluated as an 
interoperable alternative hybrid model, because it offers a uniform shared-memory 
programming interface. UPC was used for the distributed memory parallelization across 
multiple nodes, while Cilk was used for the shared-memory parallelization inside the node. 
The evaluation revealed speedups of 4x compared to the proprietary Intel (MKL) 
implementation using MPI/OpenMP. In general, it was concluded that UPC presents an 
efficient, concise and expressive alternative to MPI and mixed UPC/Cilk programming is an 
abstract yet efficient tool for large parallel computations. 

To our knowledge there has been little documented evidence of TBB being used in PRACE to 
date. In the PRACE-1IP deliverable, D9.2.1, ‘First Report on Multi-Petascale to Exascale 
Software’ [62], a molecular dynamics algorithm with van der Waals interactions was used for 
testing TBB, where tests were carried out on a 4-core Intel Corei7 920 with 8 SMT cores and 
4x speedup was achieved for large problem sizes.  

2.5.3 Evidence of use outside PRACE 

We have found it quite difficult to find evidence of TBB and Cilk Plus being used on large 
petascale systems outside PRACE. The only reports that we have found that may be of 
interest are those concerning Cilk Plus and TBB being used on the new Intel MIC 
architecture.  

In a paper entitled, ‘Efficient Hybrid Execution of C++ Applications using Intel Xeon Phi 
Coprocessor’ [63] TBB was used in combination with a C++ template library developed at the 
university of Vienna to port an SPH code to the Intel Xeon Phi architecture. Performance 
gains are demonstrated when using TBB on the Xeon Phi (~27x speedup for 2 Coprocesors in 
combination with one Host vs a single core on the Host), but performance gains are difficult 
to properly extract due the code not being a pure TBB implementation. 

The C++ deal.II ‘Differential Equations Analysis Library’ [64] developed to enable rapid 
development of modern finite element codes makes use of TBB in combination with MPI 
based libraries such as PETSc and has been shown to scale to ~16,000 cores. The highly 
scalable Trilinos multi-physics library [65] also uses TBB, but detailed reporting on how TBB 
is implemented in both of these packages is diffult to come by. 

In a paper recently written by the Ohio Supercomputer Center in collaboration with Intel [66] 
comparisons were made between Cilk Plus and OpenMP on two Intel Knights Ferry (Xeon 
Phi) cards where both models were used in dense linear algebra factorization algorithms. Task 
parallelism was used for both Cilk Plus and OpenMP and it was demonstrated that at low 
thread counts both models performed similarly, but that beyond 30 threads, neither scaled and 
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OpenMP performed somewhat better than Cilk Plus. It should be kept in mind that this was an 
early stage test on the KNF architecture and the authors indicated that further investigations 
were underway. 

2.5.4 Pros and Cons 

Metric Pros Cons 

Scalability Task based parallelism upon 
task-stealing scheduler is 
meant to be highly scalable 
on a growing number of 
cores. 

Interoperability (calling from 
the inside of 
functors/lambdas) with 
classic paradigms (MPI) 
needs to be verified. 

Performance The overhead introduced by 
the TBB library is low since 
its scheduling mechanism is 
meant to mask stall latencies. 
Cilk Plus performance should 
be as good as OpenMP, but 
evidence is hard to come by.  

Evidence suggests that 
OpenMP runtime 
outperforms Cilk Plus in 
certain situations. 

Productivity Development time is low for 
people that are not used to 
C++ template 
metaprogramming, STL 
algorithms and iterators. 

Cannot be directly used from 
codes other than C++. 

Sustainability Supported by Intel and 
backed-up by a fairly large 
community of developers and 
users. 

 

Correctness TBB masks all the 
complexity of multithreaded 
programming, helping write 
efficiently scalable, less error 
prone codes. Intel debugging 
tools are available. TBB is a 
library, so should be robust 

 

Portability The current releases have 
been successfully ported and 
tested on x86, Power and 
SPARC architectures, several 
operating systems and 
compilers. Performance 
portability should be high 
due to the shared-memory 
parallelism paradigm 
common to all platforms. 
Supported by the GNU 
compiler 

 

Availability The TBB library is open-
source (GPL) and publicly 
available for download. As of 
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August 2011, Intel has 
announced that it is 
maintaining Cilk Plus as a 
branch of GCC 4.7. The 
runtime library is available 
dual-licenced, including 
BSD-3. 

Resilience   
Table 9 TBB & Cilk Plus - Pros and Cons 

2.5.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No No Yes No Yes 

Table 10 TBB & Cilk Plus - Target systems/architectures 

2.5.6 Conclusion 

The high-level nature of TBB is probably not a feature that will attract PRACE WP7 partners 
looking to extend or improve existing codes. Most likely it is the lower-level ideas that might 
be important. While most reviews of TBB have generally been made in the context of Intel 
Xeon-based platforms, it might be worth considering the potential benefits of TBB for the 
new Xeon Phi coprocessor. An initial port from OpenMP to TBB might well be 
straightforward and worth investigating further, particularly on Xeon Phi-based systems. 

Although interesting, particularly with the Xeon Phi architecture in mind, Cilk Plus does not 
seem to provide much advantage over OpenMP at the moment. In comparing the keywords in 
Cilk Plus and the directives in OpenMP, it is clear that the ease of programming is not a 
concern for either, with OpenMP providing additional options in scheduling and allowing for 
NUMA effects in some variations. In this sense, Cilk Plus is considerably more limited than 
OpenMP. It is, however, worth keeping in mind the success of the novel Cilk Plus/UPC 
combination that was reported on in PRACE-1IP. 

2.6 CUDA 

2.6.1 Brief overview 

CUDA [13] is a programming model and instruction set architecture initially released in 
November 2006 by NVIDIA to allow for application developers to access GPUs without 
having to use graphics application programming interfaces. CUDA comes with a software 
environment that supports C and C++, along with Fortran, OpenCL, and DirectCompute. 

The core concepts for CUDA revolve around three key abstractions: a hierarchy of thread 
groups, shared memories, and barrier synchronization. These abstractions are accessible to the 
programmer through a set of language constructs. The result is fine-grained data-
parallelism/thread parallelism nested within coarse-grained data parallelism/task parallelism, 
where the coarse-grained data parallelism/task parallelism is solved independently by blocks 
of threads. At present, data cannot be shared between GPUs, so a task is limited in size by the 
amount of memory on a single GPU. 

For well-behaved problems, CUDA performance is seen to be good and facilitates reasonably 
easy exploitation of the underlying GPU hardware. However many advanced optimizations 
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are required to obtain peak performance. The optimizations require knowledge of the 
underlying hardware being used for development and can differ with new hardware 
architectures. 

The software system has reached a point of reasonable maturity and continues to be widely 
adopted. Version 4.0 included easier support for multiple GPUs, as well as a Unified Virtual 
Address space between CPUs and GPUs on the same node. CUDA 5.0 (the latest release) 
offers two new features that target the new NVIDIA Kepler K20 architecture: 

 Hyper-Q is one of the new features of the Kepler architecture. It allows multiple 
processes to launch work on a single GPU simultaneously. Since this maximizes the 
GPU utilization while decreasing the CPU idle time, it plays a key role in increasing 
overall performance. 

 CUDA 5.0 allows the K20 GPU to use its parallel processing capability efficiently by 
employing a new feature known as ‘dynamic parallelism’. It allows GPU threads to 
dynamically spawn new threads without synchronizing with the CPU host. 

As part of CUDA 5.0, RDMA (Remote Direct Memory Access) support is added to NVIDIA 
GPUDirect technology [31]. It enables direct communication between GPUs and third party 
devices such as SSDs, NICs and IB adapters, and allows these devices to directly access GPU 
memory without the involvement of the CPU. This reduces MPI_SendRecv latency 
between GPUs and demands on system memory bandwidth. 

Latest version/release: v5.0 

2.6.2 Evidence of use within PRACE 

CUDA has been used in several projects within PRACE and in many cases has achieved 
significant performance gains over applications running on a single CPU and in some cases 
over an entire compute node. 

In the PRACE-1IP whitepaper ‘Extending the QUDA library for Domain Wall and Twisted 
Mass fermions’ [67] two GPU-enabled operators were analysed. Performance tests were 
carried out on NVIDIA M2090 GPUs and a BlueGene/P cluster (IBM PowerPC450) as well 
as a M2070 GPU and CrayXE6 “Magny-Cours” 12-core socket. The GPU accelerated 
inverter (using mixed precision) on a single M2090 GPU was found to perform better than the 
inverter running (in double precision) on 64 BlueGene 4-way nodes for the same tolerance. 
The GPU accelerated CG Solver on a single M2070 GPU achieves a speed-up of 4.7x 
compared to a single 12-way Magny-Cours CPU socket. 

Some of CUDA's more recent features were reported on in PRACE-1IP deliverable, D9.2.2, 
‘Final Software Evaluation Report’ [49], where single GPU bandwidth measurements were 
made using the STREAM benchmark. Tests were carried out on 8 GPU-based nodes (2 
NVIDIA M2070 GPUs per compute node). Each node was equipped with a two-socket 
mainboard, with Nehalem Xeon CPUs operating at 2.7GHz. The version of MVAPICH2 used 
(1.8a2) incorporates optimized support for GPU to GPU communications via the standard 
MPI interface. To our knowledge, the work made the first documented use of GPUDirect 
within PRACE to enable peer-to-peer transmission between “peer-accesible-devices” and 
CUDA Inter Process Communication (IPC), which allows for the passing of CUDA events 
between processes. Use was also made of Unified Virtual Addressing (UVAS). 
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2.6.3 Evidence of use outside PRACE 

As is the case within PRACE, CUDA has been exploited in various codes running on large 
petascale machines, including the Cray XK7 Titan machine at ORNL. Unfortunately, we have 
not been able to find many examples of where the new features, namely ‘Hyper-Q’ and 
‘Dynamic Parallelism’ offered by the new K20 architecture have been used in real 
applications running on petascale systems. One case that we did find was the evaluation of 
Hyper-Q in the materials science and computational chemistry code, CP2K [68]. CP2K is 
parallelised using MPI and OpenMP and in several components of the code CUDA is used for 
acceleration. In the investigation that we refer to [68], a data set of 864 water molecules was 
tested. Without Hyper-Q, only one MPI process runs on each GPU. In this case, the workload 
is too small for the GPU and there is not much performance improvement over the CPU-only 
case. With Hyper-Q, it is possible to use the same number of MPI processes per node as in the 
CPU-only case, which means 16 MPI processes per GPU in this instance. This unlocks the 
full benefit of the GPU, leading to a speedup of 2.5x. A nice feature of Hyper-Q technology is 
that it can be tested relatively quickly as no extra coding effort to enable it is needed. The 
only requirement is that you run on a K20 and have the CUDA 5.0 compiler and runtime. 

We also mention work on porting Denovo, a code used for radiation transport modelling, to 
Titan, which was recently reported in a paper entitled 'High Performance Radiation Transport 
Simulations - Preparing for Titan' [69]. In this work the SWEEP kernel was rewritten in C++ 
and CUDA, where CUDA 4.1 was used for the port to GPUs. It was reported that the GPU 
accelerated program runs 40x faster than on a single CPU core. It was also pointed out that 
more than 50% of time was spent in coding GPU irrelevant parts of the code and the rest was 
spent on CUDA tuning. More recently, the same team reports that the outcomes of DENOVO 
sweep redesign have been positive: initial results showed CPU-only code is faster on Cray 
XT5 by 2x. At the time of publication, the performance of the code on the XK7 (Opteron + 
GPU) exceeded the performance on the XE6 (dual Opteron) by 3.3x. 

2.6.4 Pros and Cons 

Metric Pros Cons 

Scalability Strong scalability, up to 
thousands of concurrent 
threads. 

Scalability on distributed 
memory systems can be 
achieved only when external 
libraries are used (e.g. MPI). 

Performance Fairly low-level API that can 
extract very good 
performance from NVIDIA 
hardware. 

 

Productivity Reasonably high 
productivity, the CUDA 
compiler, math libraries, 
tools for debugging and 
optimizing, manuals and 
other documentation in a 
single SDK. Nsight Eclipse 
Edition IDE also helps. 
Accessible through many 
different programming 
languages. Direct support for 

Low-level control of the GPU 
is often required for better 
performance  
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C, C++ and Fortran (the latter 
via the PGI compiler) 

Sustainability Strong support from 
NVIDIA. 

Proprietary framework. How 
this fits within exascale 
roadmap is difficult to know 

Correctness Powerful tools for debugging 
and profiling, more efficient 
with the NVIDIA Nsight 
Eclipse Edition IDE, Kepler 
retains the full IEEE-754 
compliant single and double 
precision arithmetic 
introduced in Fermi, in 
addition to ECC memory. 

 

Portability Portable between all NVIDIA 
devices.  

Only runs on NVIDIA GPUs. 

Availability Available free on the 
NVIDIA website. 

Not Open Source 

Resilience   

Table 11 CUDA - Pros and Cons 

2.6.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No Yes No Yes Yes 

Table 12 CUDA - Target structures/architectures 

2.6.6 Conclusion 

CUDA has been in existence since 2006 and is supported by a single vendor, NVIDIA, so the 
system has had time to mature. Since some of the new PRACE prototypes will consist of the 
latest K20 GPUs, we see the exploitation phase of T7.2 as an opportunity to enable 
applications to exploit the full compute resources of these new platforms using some of the 
new features being offered by CUDA 5.0, including ‘Hyper-Q’ and ‘Dynamic Parallelism’. It 
will be interesting to see what effect direct-based approaches will have on the continued use 
of CUDA within PRACE. While it is generally appreciated that CUDA offers the ability to 
perform lower-level optimizations for the GPU, OpenACC may be increasingly used as a 
means of efficiently probing the potential benefits of porting to GPUs, with CUDA being 
used in an optional second optimization stage. If a directive-based approach like OpenACC 
can prove itself over the next year or two, it may become the model of choice for 
programming GPUs in the near future. 

2.7 OmpSs 

2.7.1 Brief overview 

OmpSs [19] is an effort to integrate features from the StarSs [70] programming model 
developed by BSC into a single programming model. In particular, the objective is to extend 
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OpenMP with new directives to support asynchronous parallelism and heterogeneity (devices 
like GPUs). However, it can also be understood as new directives extending other accelerator 
based APIs like CUDA or OpenCL. The OmpSs environment is built on top of the Mercurium 
compiler and Nanos++ runtime system [19]. OmpSs takes many of the ideas from the StarSs 
model (in particular a similar directive syntax for specifying data dependencies and MPI 
communication as tasks), but extends it to support accelerator devices as well as task-based 
parallelism across clusters of shared-memory / multi-core systems via a distributed runtime 
layer. Numerous other improvements e.g. data dependencies on array sections, tasks around 
arbitrary structured blocks, and CUDA device targets have been implemented. 

OmpSs currently supports shared memory systems and systems with CUDA GPUs as well as 
clusters of these. Support for other accelerator devices (Intel MIC, OpenCL devices) is 
planned. The OmpSs runtime is built on top of Nanos++, which can handle communication 
between nodes directly (using GASNet [71] allowing task scheduling to take account of 
synchronization and communication between nodes, and thus enable efficient programming 
on clusters of multi-core (or accelerated) nodes. Alternatively, explicit mixed-mode 
programming with OmpSs and MPI is possible using the StarSs model of communication 
tasks. 

OmpSs is still not widely deployed, but the published work to date indicates that it should be 
possible to install on many of the PRACE systems. Development of OmpSs is ongoing, 
supported by Mont-Blanc and DEEP and so any attempt to use it in PRACE should 
collaborate closely with these projects. (It is expected that work with OmpSs will feature 
heavily within the Mont-Blanc project this year.) OmpSs is designed to work with several 
tools – Scalasca or Paraver for profiling and performance analysis, Tareador for code analysis 
and parallelization, and Temanejo for parallel debugging. 

Latest version/release: Regular snapshots of the development version of OmpSs are 
available from the OmpSs website. At time of writing the most recent was version ‘0.7a-
2013-02-20’ (for the Nanos++ runtime) and ‘1.99.0-2013-02-20’ for the compiler.  A separate 
download of a nightly build of the OmpSs Fortran compiler is also available. 

2.7.2 Evidence of use within PRACE 

OmpSs has not been widely used within PRACE to date. However, most recently in WP12 
PRACE-2IP, an investigation into the performance of OmpSs has been reported in the 
whitepaper, ‘Analysis and Optimization of a Hybrid Linear Equation Solver using Task-
Based Parallel Programming Models’ [72]. Investigations were carried out on the MinoTauro 
system hosted by BSC. The performance of OmpSs was reported, where running on 12 
hardware threads was shown to greatly reduce the total execution time of the application (by 
up to 80%), in comparison with serial version of the application. Extensive experimentation 
using MPI/OmpSs, and final comparisons with original MPI/OpenMP implementations, are 
still underway and will be reported within PRACE soon. 

The PRACE-1IP deliverable, D9.2.2 ‘Final Software Evaluation Report’ [49] reports on how 
OmpSs was used to parallelise the application benchmark, HYDRO. Initially, the 
investigators took a C version of HYDRO in the PRACE_HYDRO_V1 package to port to 
OmpSs. However, loops proved to be too fine-grain leading to too much overhead. A more 
recent version of HYDRO takes a more coarse-grain approach and was selected instead. In 
this version, the main iteration loop of the Godunov scheme was parallelized using OmpSs 
and was tested on different configurations of numbers of nodes to evaluate the scalability of 
the code. Runtime results of the HYDRO with MPI/OmpSs were obtained as a function of the 
number of MPI processes. Two threads per MPI process were used in all cases and 6 MPI 
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processes were placed per node. It was found that HYDRO scales quite well with the number 
of MPI processes. (The execution time was 36 seconds at 35 MPI processes and decreases 
down to 7 seconds on 320 MPI processes.). Just as useful as the reporting of performance in 
this deliverable is the reporting of recommendations by the authors which are too extensive to 
be reported here, but should certainly be consulted during the exploitation phase of T7.2. 

2.7.3 Evidence of use outside PRACE 

As OmpSs is at an early stage of development, there are few publications yet available 
demonstrating the use of OmpSs with real applications. However, the DEEP and Mont-Blanc 
projects both propose using OmpSs as part of their prototype exascale platforms. In [73], the 
use of OmpSs to implement a number of synthetic benchmarks is reported where tests were 
carried out on up to 32 nodes (4 cores per node) on a PowerPC cluster and where overall 
performance was generally found to be on a par with MPI, but was significantly faster for the 
‘Sparse LU’ problem “…due to the easier expression of complex data dependencies.” The 
work in [74] extends the above investigation to a cluster with NVIDIA GPUs where OmpSs 
was found to give comparable performance to CUDA but with far less lines of code required. 

The Mont-Blanc project is investigating the use of OmpSs to port existing HPC applications 
to a low-power exascale architecture based on ARM CPUs. While not yet at a petascale level, 
some work has already been done. Selected application kernels have been chosen for detailed 
porting and optimization work using OmpSs but results are not yet publicly available. 

Finally, the DEEP project proposes a hybrid architecture of standard CPUs and a ‘Booster’ 
cluster comprising Intel MIC accelerators, using OmpSs as a programming model to manage 
task scheduling across these resources in an efficient manner. Within the DEEP project, 
OmpSs will serve as an offload abstraction layer to hide the complexity of the MPI offload 
functionality from the user. In OmpSs, the developer specifies the input and output data 
needed for each task. The execution runtime dynamically calculates the dependency-graph 
and schedules the tasks accordingly on the available resources. To offload MPI-tasks, the 
developer can also specify the target MPI process in which the task must run, providing an 
additional level of flexibility. In DEEP OmpSs will be extended to define the ‘Booster’ as a 
destination device in which a given number of nodes will be reserved for the offloaded highly 
scalable code parts of the applications. Thus, from the application programmer’s point of 
view these offloaded code-parts can be seen as single OmpSs tasks, even if their internal 
structure is highly complex and might actually include internal MPI-based communication 
operations. The allocation of nodes for these highly scalable code parts will be done statically 
at first place and later on dynamically, as the DEEP software environment is further 
developed. With the extension OmpSs eases the distribution of work between Cluster and 
Booster. However, the application developer is free to use the MPI layer directly and to fully 
control the offload functionality by him/herself [75]. 

2.7.4 Pros and Cons 

Metric Pros Cons 

Scalability OmpSs is designed 
specifically for programming 
at the Exascale and 
development is closely 
coupled to the DEEP and 
Mont-Blanc projects, so good 
scalability of the runtime 

No results at large scale have 
yet been published 
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should be expected. 

Performance Performance is typically 
equal to or better than 
traditional programming 
models (e.g. MPI/OpenMP), 
especially where there are 
complex dependency patterns 
and communication and 
computation can be 
overlapped. 

- 

Productivity Porting of real applications to 
OmpSs showed that fewer 
lines of code were needed 
than for CUDA and 
CUDA+MPI 

- 

Sustainability At least in the medium-term 
development will be 
supported by DEEP and 
Mont-Blanc. There is an 
effort to include task 
dependencies in the OpenMP 
4.0 standard, somewhat 
similar to what is 
implemented in OmpSs. 

- 

Correctness - - 

Portability Supports C, C++ and Fortran 
source code 

Ports to MIC, ARM and 
OpenCL are ongoing but not 
yet available. 

Availability Nightly builds are available 
from BSC website 

Currently at ‘alpha’ 
development stage 

Resilience - - 

Table 13 OmpSs - Pros and Cons 

2.7.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Planned Ongoing Yes 

Table 14 OmpSs - Target systems/architectures 

2.7.6 Conclusion 

By extending the OpenMP directive syntax and implementing a new runtime, OmpSs is a 
significant improvement over StarSs, and will make porting of existing applications to this 
model much more practical. The planned support of Intel MIC and ARM CPUs are clearly 
important as these types of components are likely to feature in future exascale architectures. 
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Similarly to StarSs, the ability to express complex data dependency patterns in a concise 
matter is clearly advantageous for large-scale parallel programming, and the improvements to 
both the programming model and runtime in OmpSs make it easier to port real applications 
without substantial re-engineering. However, OmpSs is still at an early stage of development 
and no results showing petascale performance have yet been published. The ability to manage 
parallelism across heterogenous architectures consisting of CPUs and accelerators in a 
transparent fashion will be necessary on deep petascale and exascale systems. OmpSs is an 
integral part of the DEEP and Mont-Blanc architectures for a future exascale system and we 
suggest that if OmpSs is to be exploited in T7.2, partners should work closely with both of 
these projects. 

2.8 Co-Array Fortran (CAF) 

2.8.1 Brief overview 

Co-Array Fortran (CAF) [20] [76] is a small set of extensions to the Fortran 90 standard and 
subsequently now part of the Fortran 2008 standard [76] for SPMD, parallel processing. CAF 
is an example of a PGAS language which supports access to non-local data using a 
subscripted array syntax, lightweight and flexible synchronization primitives, pointers, and 
dynamic allocation of shared data. An executing CAF program consists of a static collection 
of asynchronous process images. Like MPI programs, CAF programs explicitly manage 
locality, data and computation distribution. However, CAF is implicitly based on one-sided 
communication so that rather than explicitly coding message exchanges to obtain off-
processor data, CAF programs can directly reference off-processor values using subscripted 
references. Since both remote data access and synchronization are expressed in the language, 
communication and synchronization are amenable to compiler-based optimizing 
transformations. CAF is aimed at multi-core multi-node system architecture.  

Although now part of the Fortran 2008 standard, CAF compiler support is still lagging. So far 
the Cray compiler on Cray systems has the most optimized implementation of CAF. Other 
implementations either work on single node (for gfortran) or multiple nodes using MPI (Intel 
CAF) or using GASNet (Rice university CAF [77]). These latter two implementations are 
currently un-optimized and not ready for large-scale systems. Although the latest version of 
the Intel Fortran compiler has support for CAF it currently compiles source code into MPI 
executables, which subsequently have to be launched using the Intel MPI runtime. The Rice 
University version of CAF is an open-source implementation. However, it should be pointed 
out that the Rice University implementation of CAF does not follow the CAF standard 
exactly. 

Latest version/release: CAF is now part of the Fortran 2008 standard. 

2.8.2 Evidence of use within PRACE 

Although several PRACE Tier-0 and Tier-1 (Cray-based) systems, including HERMIT, 
LINDGREN, MONTE ROSA and HECToR offer CAF supported compilers, CAF-based 
development work has not been widely reported within PRACE to date. In PRACE-1IP a 
parallel benchmark suite for CAF was developed from scratch and reported on in deliverable 
D7.5 ‘HPC Programming Techniques’ [43] in a section entitled, ‘Parallel Benchmark Suite 
for Fortran Coarrays’. This benchmark was tested on Cray architectures and a general-purpose 
Intel cluster, where the project aimed to see if bottlenecks caused by MPI performance at 
large-scale could be solved by using CAF instead. It was shown that under certain problem-
defined conditions, CAF can outperform MPI on platforms with appropriate hardware support 
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such as the Cray XE6, which has native compiler support and a communications network 
(GEMINI) that is optimized for remote memory access. On Cray systems without hardware 
support (e.g. the XT4 with Seastar2+ interconnect) performance was seen to be poorer than 
MPI. Anecdotal evidence suggests that performance of CAF on general clusters with recent 
Intel compiler CAF support is still quite poor. 

2.8.3 Evidence of use outside PRACE 

The use of CAF on large real applications is not very common. However there are several 
projects in which CAF is being investigated and where some performance gain has been 
achieved. The CRESTA [3] project has a CAF co-design team consisting of many active 
developers. CRESTA is using global Numerical Weather Prediction software from ECMWF 
called the Integrated Forecast System or IFS for testing CAF. The CAF implementation of 
IFS was tested on HECToR using the Cray compiler where on 70,000 cores it was found to be 
20% faster than the original MPI/OpenMP implementation [78]. The CAF implementation of 
IFS actually involves a small part of the code where it has been implemented as a mix of MPI, 
OpenMP and CAF. In particular it is, to our knowledge, the first time that coarrays have been 
used in a real production application within the context of OpenMP parallel regions. The 
purpose of these optimizations is primarily to allow the overlap of computation and 
communication, and to reduce the volume of data communicated. It should be pointed out that 
if these developments are successful then the IFS model may continue to use the spectral 
method to 2030 and beyond on an exascale sized system. 

2.8.4 Pros and Cons 

Metric Pros Cons 

Scalability Based on one-sided 
communication. Easy to 
overlap computation and 
communication 

Actual scaling figures for 
large number of cores are not 
known 

Performance Cray CAF is optimized. In 
point to point benchmarks it 
is faster than MPI.  

Other CAF implementations 
only provide functionality. 
Performance is often poor. 

Productivity CAF syntax is very easy-to-
use. CAF programs can be 
written faster than MPI 
programs. 

Not tested much on large 
codes. 

Sustainability CAF is now part of Fortran 
standard. So vendors are 
likely to support it. 

- 

Correctness Commercial debugging tools 
such as DDT and TotalView 
support debugging of CAF 
applications 

- 

Portability As CAF is part of Fortran 
standard it should be portable 
as the Fortran code itself 

As not many compiler 
vendors are supporting full 
Fortran 2008 standard 
portability is currently an 
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issue.  

Availability Available mostly on Cray 
systems.  

 

Resilience   

Table 15 CAF - Pros and Cons 

2.8.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No (in dev) No No 

Table 16 CAF - Target systems/architectures 

2.8.6 Conclusion 

It is not clear if CAF alone can be used on a petascale or future exascale system. There are 
very few decent CAF installations on general-purpose clusters and the only performing CAF 
implementations tend to be found on Cray systems. It has been demonstrated in the CRESTA 
project that CAF can be used in hybrid programming together with MPI and OpenMP, which 
suggests that CAF is one of the few PGAS languages that can be exploited in an incremental 
fashion with legacy code, which is undoubtedly an attractive feature for the exploitation phase 
of T7.2. It should also be noted that Intel has indicated support for CAF as a model for 
programming the Intel MIC architecuture and is currently developing support. 

2.9 Unified Parallel C (UPC) 

2.9.1 Brief overview 

UPC, or Unified Parallel C [79] is a parallel programming language that is an extension of 
ISO C [ISO99]. Additionally, UPC is a PGAS (Partitioned Global Address Space) language 
using a globally shared memory programming model which exploits data locality combined 
with a distributed memory model for its underlying implementation. The application 
developer is presented with a single shared, partitioned address space, where variables may be 
directly read and written by any processor, but each variable is physically associated with a 
single processor. UPC uses the SPMD model of computation in which the amount of 
parallelism is fixed at program startup time, typically with a single thread of execution per 
processor. Parallelism is achieved through the use of shared memory and work sharing across 
independent UPC threads of execution, hereafter referred to as simply “threads.” Each thread 
has its own private memory space, as well as an associated shared memory region of the 
global address space that can be accessed by other threads. 

The implementation of UPC threads is not restricted to actual user-space threads and the two 
are distinct concepts. In the case of Berkeley UPC, UPC applications run on top of GASNet 
and GASNet determines the actual thread implementation. Possible GASNet layers include 
pthreads, PSHM (process shared memory), MPI (in which the UPC shared memory is actually 
implemented via MPI calls), and various network APIs such as Infiniband verbs. 

The number of UPC ‘threads’ is fixed at program startup, and does not change during the 
code’s execution. This attribute of UPC makes it similar to MPI in that each process or 
‘thread’ is alive from inception through exit. 
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Shared memory variables in UPC form the foundation of UPC’s parallelism. Rather than 
exchanging data across threads through explicit communication as in MPI, information is 
exchanged primarily through the use of shared memory. 

Shared memory variables are declared through the use of the shared qualifier. In UPC, shared 
variables are always of global scope and must be declared globally; there is no provision for 
local shared variable declarations. 
UPC compilers are compliant to a UPC specification that is not part of the ANSI C standard.  

Latest version/release: Berkeley UPC v2.16.0 

2.9.2 Evidence of use within PRACE 

UPC has not been widely used in PRACE to date. UPC was used in PRACE-1IP and was 
reported on in the PRACE-1IP whitepaper, ‘Porting and Optimizing HYDRO to new 
platforms and programming paradigms - lessons learnt’ [80]. In this project, HYDRO, a 2D 
Computational Fluid Dynamics benchmark code, was parallelised using UPC. Tests were 
carried out using the Cray UPC compiler on HERMIT and performance was shown to scale 
across a number of threads. However, significant degradation occurred in memory accesses 
outside the affinity of the threads, especially when accessing memory across nodes. 

In the PRACE-1IP, deliverable, D7.5 [43] a report was conducted on ‘A cache-oblivious 
matrix transposition (FFTW)’ where the main goal of this work was to explore an alternative 
to the de-facto standard programming model for petascale systems, i.e., the mixed 
MPI/OpenMP model. The authors evaluated UPC-Cilk as an interoperable alternative hybrid 
model, because it offers a uniform shared memory programming interface. UPC was used for 
the distributed memory parallelization across multiple nodes, while Cilk was used for the 
shared-memory parallelization inside the node. The evaluation revealed speedups up to a 
factor of 4x compared to the proprietary Intel (MKL) implementation using MPI/OpenMP. In 
general, the authors concluded that UPC presents an efficient, concise and expressive 
alternative to MPI and mixed UPC/Cilk programming is an abstract yet efficient tool for large 
parallel computations. 

2.9.3 Evidence of use outside PRACE 

Just as in PRACE, example cases of where UPC has been employed to enable real codes on 
large petascale systems have been difficult to find. 

There has been some interesting work carried out recently at Intel’s Exascale Science Labs 
[81] where a 2D Electrostatic Particle-in-Cell algorithm was implemented in UPC with 
dynamic load-balancing [82]. The underlying algorithm that was implemented was the 
Conjugate Gradient method and the authors of the work were inspired by recent investigations 
showing that UPC can be used efficiently for the development of 1D PIC codes The overall 
conclusion made by the authors was that UPC allows for an efficient design and 
implementation of the required data structures, but the level of detail provided on the 
scalability of the UPC code is quite low, other than that weak scaling on up to 500 “threads” 
is shown to be good.  

UPC functionality was added to the Ludwig Lattice Boltzmann application [84] and tested on 
the X2 component of HECToR on 122 vector processors. Although a full conversion was 
beyond the scope of the work, the ability of UPC and MPI to coexist allowed for the key 
section of the code to be converted to use UPC rather than MPI communications, and 
performance comparisons to be made. The use of UPC reduced complexity by allowing data 
structure halo cells and associated message passing halo-swap routines to be replaced by more 
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intuitive direct remote memory accesses. A straightforward adaptation involving direct use of 
UPC shared data structures was found to perform significantly worse than the MPI version, 
but it was found that this was not primarily attributable to communication performance 
degradation, but instead to overheads involving shared pointer operations. An optimised 
version using regular C pointers (obtained via casting) where possible was found to perform 
more comparably to, but still slightly worse than, the MPI version 

Finally, in the paper, ‘Hybrid Parallel Programming with MPI and Unified Parallel C’ [83] a 
real hybrid of MPI+UPC application with good results was demonstrated. As the authors 
underline, 

“…this model offers an incremental pathway that allows existing applications to take 
advantage of MPI’s locality control and UPC’s global address space. In addition, it can serve 
as a test-bed for developing new programming models that aim to combine these features. For 
memory-constrained MPI codes, the hybrid model enables the processing of larger problems 
by aggregating the memory of several nodes into a single, shared global address space. For 
locality-constrained UPC codes, the hybrid model can improve locality through the creation 
of UPC groups that are connected with MPI.”  

The model was evaluated on two benchmarks, a random access benchmark and the ‘Barnes-
Hut’ n-body simulation. Compared against a baseline execution on 256 cores, it was found 
that, for groups that span two cluster nodes, the hybrid random access benchmark yields a 
25% improvement in execution time and hybrid Barnes-Hut experiences a 2X speedup. In the 
case of Barnes-Hut the cost of hybridization was a 2% increase in code size. 

2.9.4 Pros and Cons 

Metric Pros Cons 

Scalability Good when thread has 
affinity to the memory it is 
accessing (up to 4K cores). 

One may need to employ 
practices, which require 
explicit knowledge of the 
memory model to obtain 
good scaling. In such cases, 
the benefit of using UPC over 
MPI is not obvious. 

Performance In the serial sections UPC is 
identical to C with the well 
known benefits in 
performance associated. 

 

Productivity For some simple parallel 
applications, implementing 
an algorithm in UPC can be 
much faster than in MPI. 

For complex data accesses, 
where threads need to access 
non-local data, the developer 
may require to explicitly take 
care of data accesses, leading 
to considerably more 
complex code. 

Sustainability The first version of UPC was 
released in 1999 and 
development of UPC 
compilers is still ongoing. 

Although versions have been 
released continuously for 
almost 15 years, UPC is still 
not considered a mature 
programming language for 
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parallel architectures. 

Correctness C debugging tools can be 
used for the serial versions of 
the code. There are versions 
of the Totalview debugger 
(7.0.1 or greater) that will 
debug UPC programs on x86 
architectures. 

 

Portability Porting from C to UPC can 
be trivial for kernels where 
threads operate on local data. 

For more complex kernels 
where threads operate on data 
local to other threads, one 
may require increased effort 
for porting as well as a 
detailed understanding of the 
application’s details such as 
data paths. 

Availability A number of open-source and 
commercial implementations 
are available. The 
specification itself has 
reached a level of maturity to 
allow for several conforming 
compilers. Prominent 
compilers include the 
following: HP UPC 
(commercial), Cray UPC 
(commercial), GCC UPC 
(free), Berkeley UPC (free), 
Michigan Tech MuPC (free), 
IBM UPC Alpha Edition 
(commercial) 

 

 

Resilience   

Table 17 UPC - Pros and Cons 

2.9.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No No No 

Table 18 UPC - Target systems/architectures 

2.9.6 Conclusion 

The present nature of the UPC language requires that an entire application be modified if one 
small region is to be parallelized. This implies that the time to parallelize a large code with 
UPC will always be longer than the time to parallelize with OpenMP, so for the moment we 
feel that UPC should be treated with curiosity by PRACE partners, but not as a candidate to 
incrementally add new levels of parallelisation to PRACE applications. For those interested in 
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investigating further, an excellent paper has been written outlining a successful process of 
MPI/UPC hybridisation [83], which was referenced and reported on above. 

2.10 Chapel 

2.10.1 Brief overview 

Chapel (Cascade High-Productivity Language) [8] is a general-purpose parallel programming 
language being developed by Cray under the DARPA High Productivity Computing Systems 
(HPCS) program. Taken from its name, Chapel’s purpose is to increase programmer 
productivity while enhancing code robustness. Chapel’s aim is to support the expression of all 
parallelism in an application while targeting all available hardware parallelism with a single, 
unified set of language concepts. 

Chapel also operates under a multi-resolution philosophy, meaning that programmers can 
initially write very abstract code and subsequently add more detail to tune for their target 
architecture. Object-oriented design, type inference, and other features allow for rapid 
prototyping and code reuse. 

Chapel has several general and parallel language constructs that are meant to reduce the 
amount of code necessary to express a concept or perform work. Among many others, these 
include constructs to deal with the distributed nature of a global-view data structure, 
concurrency constructs, and data and task parallelism constructs. 

 Data parallelism is generally invoked by the forall keyword where iterations of an 
otherwise serial loop may be calculated independently of other iterations. The number 
of threads that are used for this all- way parallelism depends on how many cores exist 
on a processor, but may be changed through configuration variables. Other methods 
for managing data parallelism include reductions, scans, and shorthand forms in 
dealing with arrays as a whole. 

 Task parallelism is invoked using the begin and cobegin keywords for 
unstructured task parallelism and the coforall keyword for structured task 
parallelism. In general, there is a distinct thread for each task spawned through a task 
parallelism construct, and there may be many more threads than there are cores on a 
processor. In the case of structured task parallelism, each iteration is processed as a 
separate task from other iterations, and generally, the serial code inside an iteration is 
more complex than its data parallel counterpart. Because the threads of a task parallel 
region of code may exceed the number of cores in a processor, the kernel may switch 
among threads leading to possible issues with concurrency for poorly written codes. 

All parallelism in Chapel is implemented using POSIX threads by default, and all 
communication is implemented using the portable GASNet communication library [71] 
supporting one-sided communication and active messages. As a result of this approach, 
Chapel runs on most parallel systems, whether custom or commodity. 

The interoperability with other languages is presently not fully functional, and there are issues 
with calling Chapel generated code from an external language. Moreover, as Chapel does not 
support explicit pointers, it will require a great deal of effort to successfully glue Chapel 
together with languages such as C.  

There is currently a lot of interest in how PGAS languages will confront the challenges 
associated with heterogeneous systems. It is generally appreciated that Chapel’s current 
definition of locales is very adept at describing horizontal locality such as that which exists 
between nodes of a homogeneous cluster. However, once a system’s compute nodes involve 
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NUMA domains or heterogeneous resources, Chapel programmers have no way to target code 
to specific processors or memories. To this end, the Chapel team is working on adding a 
concept of hierarchical locales to represent architectural substructures or realms of locality 
within a node (i.e. vertical locality) [85]. The idea is that a programmer could use Chapel’s 
on-clauses to specify that a task should run on a specific processor type or instance, or to 
allocate a variable using a specific memory. Beyond this, the Chapel team and others are also 
carrying out very interesting work on allowing for Chapel to target GPUs [9].  

Latest release/version: Version 1.6.0 

2.10.2 Evidence of use within PRACE 

Chapel has not been widely employed within PRACE to date. It was first reported within 
PRACE-PP in deliverable D6.6, ‘Report on petascale software libraries and programming 
models’ [87] where the EUROBEN kernels mod2am (dense matrix-matrix multiply), mod2as 
(sparse matrix-vector multiply) and mod2f (1D FFT) were ported to a Cray XT5 (AMD 
Barcelona processors at 2.3 GHz, 2 quad-cores per nodes). Version 0.9 of Chapel was used 
where performance results for the Chapel port were found to be very poor, however, it was 
explicitly noted by the authors of the report that the performance of the Chapel compiler was 
very poor and that the Chapel port should only be seen as a proof-of-concept and should not 
be used in performance studies at this premature stage. 

Chapel has also been more recently reported on within PRACE-1IP in deliverable D9.2.1 [62] 
where it was noted that since the initial evaluation of Chapel during PRACE-PP the language 
and the compiler/runtime have evolved significantly. One of the most notable areas of 
improvement is interoperability with other languages. Chapel now supports calling C 
functions, converting to/from C data-types and using native C data-types. In principle, this 
permits linking C libraries such as LAPACK, BLAS, or MKL. However, it is unclear as of 
now, how regular C functions access distributed data. Chapel has not been designed to 
interoperate with other parallel programming models. However, as long as the model is 
implemented as a library, such as MPI, Chapel could be used in a hybrid setting. In terms of 
performance, the authors of the deliverable note that Remote Memory Accesses are 
implemented inefficiently, which is the primary reason why the EUROBEN kernels do not 
perform well. At the time of writing of D9.2.1 this situation had not changed since the initial 
evaluation. Tests with the Chapel compiler v1.2.1 on the Gemini interconnect of the Cray 
XE6 exhibit improved performance due to very low network latency. However, the 
benchmarks did still not scale beyond an unacceptably small number of nodes. 

2.10.3 Evidence of use outside PRACE 

As is the case within PRACE, Chapel has not been widely used on real applications on large –
scale systems around the world to date. Performance measurements with respect to several of 
the HPC Challenge benchmarks have been performed. The most current published results 
from the challenge are from 2009 by the Chapel team; their entry for class 2 (most 
productivity) was awarded “most elegant implementation”. Although the language has 
evolved since then, the performance results show that Chapel was comparable to an MPI 
version of the code for the Global and EP STREAM Triad benchmarks. Performance on the 
Random Access benchmark was not competitive with MPI. In terms of productivity, the paper 
noted that Chapel consistently beat MPI in terms of lines of source code (Chapel had far 
fewer lines for the same program) [88].  
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2.10.4 Pros and Cons 

Metric Pros Cons 

Scalability Task spawning and 
synchronization across the 
machine seems to be 
reasonably efficient. 

RMA transfer very 
inefficient; does not allow 
scaling of communication 
intensive applications. 
Generally, scaling has been 
seen to be poor to date, but is 
expected to improve. 

Performance Scalar performance has 
improved significantly. 

- 

Productivity Very short, readable code. 
Easy to program and 
maintain. Clear and powerful 
concepts for parallel 
programming. 

Practically no tools support. 

Sustainability  Only supported by Cray 

Correctness - No support on current 
debuggers 

Portability Intermediate C Code 
generated, can be ported   
onto Windows (Cygwin) or 
any Unix-like platform. Can 
be used with C language, but 
interopability at an early 
stage 

- 

Availability Can be used under the terms 
of the BSD license and a user 
agreement. 

- 

Resilience - - 

Table 19 Chapel - Pros and Cons 

2.10.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No On-going 
work 

No No Yes 

Table 20 Chapel - Target systems/architectures 

2.10.6 Conclusion 

The primary advantages Chapel has over MPI are in programming ease and elegance. 
Because it is a multi-resolution language, it allows for quicker prototyping of algorithms, with 
architecture specific optimizations added in later. This provides greater code robustness due 
to a decreased chance for communication errors. Finally, because Chapel is multi-level, it is 
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able to provide homogeneous coding semantics, whereas one may have to add OpenMP to 
MPI code to fully utilize processor capabilities. With respect to performance, Chapel 
currently lags behind OpenMP and MPI in general, although it is comparable in some cases 
and is expected to improve overall as the language progresses. We feel that T7.2 were to 
explore the possibilities of exploiting Chapel (this would be difficult with a real application), 
it would be interesting to test its current capabilities on heterogeneous systems. 

2.11 X10 

2.11.1 Brief overview 

X10 [22] is a parallel asynchronous Partitioned Global Address Space language based on Java 
and developed by IBM. Like Chapel, the X10 project started in 2006 as a response to the 
DARPA HPCS program. X10 is called an asynchronous PGAS language because of the 
ability to explicitly control concurrency through constructs such as async and finish. 

The stated motivation behind X10 is to provide a language that addresses the inherent 
complexities of the increasingly popular many-core architectures (of which NVIDIA Kepler 
and the Intel MIC are examples) in a single, unified programming model. The goals of the 
X10 project are to create a language that is simple (hence its Java base), safe (from design 
errors, and through static checking), powerful (capable of expressing typical HPC codes), 
scalable, and universal (can be used and deployed on a host of architectures). Using the 
X10/CUDA backend, one can identify fragments of an X10 program to run on the GPU. For 
ideal workloads, this can give a speedup of up to 30x or more (claimed by X10 developer 
team on X10 website [22]).. 

X10’s asynchronous PGAS framework provides the programmer with greater flexibility than 
a standard PGAS model by allowing threads (activities) to be created dynamically and by 
making it possible for dynamic load balancing to occur. This means heterogeneous systems 
and applications that require load balancing should both be supported, increasing the potential 
for adoption.  

Like Chapel, X10 should greatly reduce the amount of code required for a particular parallel 
application, relative to the amount of code in an MPI-based or MPI/OpenMP code. This is 
due to the absence of message passing code, as global memory locations can be addressed as 
if they are local. 

IBM developerWorks [89] provides an X10 debugger called ‘The IBM Parallel Debugger for 
X10 Programming.’ The X10 Parallel Debugger is still a fairly new product, so bugs are to be 
expected. However, the goal of the project is to provide a complete parallel debugger for X10 
code, so in the long term, it should be robust. 

Latest release/version: v2.3.1 

2.11.2 Evidence of use within PRACE 

X10 has not been widely employed within PRACE to date. It was first reported on within 
PRACE-1IP in deliverable D6.6, ‘Report on petascale software libraries and programming 
models’ [87], where the EUROBEN kernels mod2am (dense matrix-matrix multiply), mod2as 
(sparse matrix-vector multiply) and mod2f (1D FFT) were ported to an IBM pSeries 575 (108 
nodes with 32 Power6 cores at 4.7 GHz by node) and where performance results for the X10 
port were less than impressive. However, it was explicitly noted by the authors of the report 
that the performance of the X10 compiler (v1.7.5) was very poor and that the X10 port should 
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only be seen as a proof-of-concept and should not be used in performance studies at this 
premature stage. 

A more recent investigation of X10 was reported in WP12 PRACE-2IP in the PRACE 
whitepaper, ‘Parallelization Using a PGAS Language such as X10 in HYDRO and Triton’ 
[90]. In that project X10 was used to parallelise two CFD codes, Hydro and Triton and was 
tested on the CEA Titane CCRT system (1068 nodes, 2 processors Intel Xeon 5570 by node, 
4 cores by processor) Version 2.2.1 of X10 was used, but the test case was too small to obtain 
valuable conclusions. The measured compute times showed fair scalability behaviour (over 25 
8-way compute nodes) but performance was far worse than the MPI/OpenMP versions of the 
codes. 

2.11.3 Evidence of use outside PRACE 

The X10 development team recently participated in the 2012 HPC Challenge contests [91]. In 
this contest, X10 received the “Best Performance” award. Benchmarks were run on up to 55K 
cores, and showed good scalability and performance (80%-100% scalability depending on the 
benchmark, 40%-80% relative performance vs. reference HPC Challenge implementation). 
On one of the benchmarks, X10 code performed significantly better due to the strongly 
unbalanced test behaviour [92]. 

Another interesting use of X10 can be found within Anuchem [93] a collection of 
computational chemistry codes written in X10. These codes are experimental in nature and 
are not guaranteed to run against the latest stable release of X10. However some components 
may be of interest to those considering X10 during the T7.2 exploitation phase. Examples of 
implemented algorithms are the parallel fast multi-pole method, or Hartree-Fock method. 
Performance studies have used up to 256 cores on the Watson 4P Blue Gene/P system (4 
cores by node). The code exhibits close to linear scaling on up to 64 places (strong scaling 
experiment for 51000 particles). However, scaling is reduced for more than 64 places because 
of the relatively small problem size. 

2.11.4 Pros and Cons 

Metric Pros Cons 

Scalability Low level benchmarks scales 
up to ~50K cores, application 
tests up to 256 cores 

 

Performance Performance improved a lot 
with newest X10 versions 

Still behind MPI-based code 

Productivity Powerful concepts for 
parallel programming. 
X10 syntax was simplified in 
recent versions. 
Dedicated Eclipse framework 
version for X10 (with 
intelligent editor)  

Experience needed in object-
oriented programming. No 
clear indication that X10 can 
be used with other languages 
such as C, C++ and Fortran 

Sustainability  Specification and 
development by IBM only. 

Correctness Dedicated parallel debugger  
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for X10 developed by IBM 

Portability X10 binaries available on 
several platforms (Linux X86 
– X86_64, Windows with 
Cygwin, MacOSX, 
BlueGene/P, AIX/Power), or 
can be compiled from source 
code 

Even if X10 tools are 
compiled from source code, 
some external tools are 
available in binary form only  

Availability As X10 is managed by IBM 
only, availability of X10 
follows the language 
specification versions 

- 

Resilience   

Table 21 X10 - Pros and Cons 

2.11.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes (using 
dedicated 
gateway) 

No No Yes 

Table 22 X10 - Target systems/architectures 

2.11.6 Conclusion 

Like Chapel, programming in X10 would be a radical shift for the majority of PRACE 
partners working within WP7. However, this is not necessarily a negative point if the shift 
provides benefit in the form of reduced time to code, large reductions in lines of code, and 
greater maintainability. Also like Chapel, at present, X10 cannot exist as a secondary 
language; while C or C++ object files can be linked into an X10 application, the reverse is not 
possible. Like Java or C++ there are characteristics of the language syntax that may make it 
more difficult for some programmers to maintain or work with. A solid understanding of 
existing classes would be necessary to optimally program and maintain application code, and 
in many cases there may be a nontrivial learning curve associated with acquiring this 
understanding, especially within the HPC community, where most code is written using C and 
Fortran. Beyond productivity considerations, the real issue at the moment when considering 
X10 is performance and scalability, which is yet to prove itself within PRACE or on a wider 
basis. 

2.12 Global Arrays Toolkit 

2.12.1 Brief overview 

The Global Arrays (GA) Toolkit from Pacific Northwest National Laboratory (PNNL) [23] 
provides an efficient and portable "shared-memory" programming interface for distributed-
memory computers. Each process in a MIMD parallel program can asynchronously access 
logical blocks of physically distributed dense multi-dimensional arrays, without need for 
explicit cooperation by other processes. Unlike other shared-memory environments, the GA 
model exposes to the programmer the non-uniform memory access (NUMA) characteristics 
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of the high performance computers and acknowledges that access to a remote portion of the 
shared data is slower than to the local portion. The locality information for the shared data is 
available, and a direct access to the local portions of shared data is provided. 

Global Arrays has been designed to complement rather than substitute for the message-
passing programming model. The programmer is free to use both the shared-memory and 
message-passing paradigms in the same program, and to take advantage of existing message-
passing software libraries. Global Arrays is compatible with MPI and can be used with 
Fortran, C, C++ and Python- based source code. Fortran, C and C++ support is included by 
the toolkit natively 

GA is aimed explicitly at distributed-memory architectures and its primary goal is to provide 
an efficient and portable “shared-memory” programming interface for such systems.  GA 
does this by exposing a simple structure – a ‘Global Array’, whose storage can potentially 
span the whole memory of the distributed system. The programmer is given a uniform API to 
access array elements regardless of whether the element in question is stored locally or on 
another node. This greatly simplifies the programming model, but more importantly, it 
provides a way to work around memory-size bottlenecks in machines with hard memory limit. 
For example, an IBM Blue Gene/P system typically has 2 GB of RAM on every node, which 
might not be enough for certain tasks. GA allows the programmer to allocate/use arrays much 
larger than the 2 GB, where the programmer can, in fact, allocate an array that spans the entire 
RAM of the whole machine/partition. 

The tool is based on an internal portability layer (ARMCI) [94] with support for a large 
selection of architectures, including IBM Blue Gene/P, IBM Blue Gene/L, Cray XT4/XT5, 
Infiniband/OpenIB, Myrinet, systems with Qsnet interconnect, IBM SP, etc. The ARMCI 
layer is built in the library and there are no additional steps needed in order to use the toolkit, 
apart from linking with the appropriate shared static library. 

The ARMCI portability layer is specifically optimized for some of these architectures. For 
example, on an IBM Blue Gene/P it uses the low-level DCMF (Deep Computing Messaging 
Framework) layer to implement one-way data communication instead of relying on MPI to do 
this (in fact, MPI on IBM Blue Gene/P is also implemented using DCMF, so GA skips one 
layer of complexity and gains a lot of performance). On platforms for which no such low-
level interface is available, the Global Arrays primitives are implemented on top of MPI. This 
effectively means that GA is available on every platform for which MPI is available. 

The tool has a large selection of supported platforms and specific instructions for compiling 
on each of them. Basically, it relies on MPI compiler wrappers and the compiler suites native 
for each platform are usually supported. 

Latest version/release: v5.1.1 

2.12.2 Evidence of use within PRACE 

Global Arrays has not been widely used to date within PRACE. However, it was employed in 
WP7 PRACE-1IP and reported on in the PRACE whitepaper, ‘Data I/O Optimization in 
GROMACS using Global Arrays Toolkit’ [95], where the authors describe how they used 
v5.0.2 of the tool to enable GROMACS to scale on an IBM BG/P. The GA toolkit helped in 
solving the memory-bottleneck in GROMACS on an IBM Blue Gene/P due to the hard 
memory limit of the Blue Gene/P compute nodes having only 2GB RAM (512MB in VN 
mode). By using GA the authors showed how GROMACS handled a system with over 
2,000,000 atoms in VN mode, a problem that was otherwise not amenable to execution on 
such a system. 
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2.12.3 Evidence of use outside PRACE 

A GA-based parallel implementation of NWChem coupled cluster calculations was performed 
at 1.39 PFLOPS using over 223,000 processors on ORNL's JAGUAR system, an achievement 
that won the Gordon Bell Finalist at SC09 [96]. 

While we found it quite difficult to find other examples of how Global Arrays is being 
exploited outside PRACE, we point the reader to an interesting article on how Global Arrays 
parallel programming model has recently been implemented using MPI’s RMA functionality. 
This implementation was achieved by porting GA’s low-level ARMCI PGAS runtime system 
to MPI’s one-sided API where similar performance to the conventional ARMCI-based 
implementation was achieved [97]. 

2.12.4 Pros and Cons 

Metric Pros Cons 

Scalability The tool mainly uses one-
sided communication 
patterns, which show 
excellent scalability. On 
architectures that offer low-
level access to internal 
messaging framework, it 
would surpass plain MPI.  

- 

Performance Excellent performance – 
SC09 Gordon Bell finalist, 
achieving 1.39 petaFLOPS 
on Jaguar (Cray XT5) 

In order to achieve 
transparent one-sided 
communication, a separate 
thread has to be used to 
advance the messaging state. 
On architectures that allow 
spawning limited number of 
threads (e.g. IBM Blue 
Gene), this can be viewed as 
one less worker thread and 
thus poorer performance. 

Productivity Offers shared-memory 
programming model in 
distributed-memory 
architectures, which greatly 
simplifies certain tasks and 
thus improves productivity. 
Excellent high-level 
abstraction leading to easy to 
use, but powerful API. 

- 

Sustainability The project is actively being 
developed and supported 
with new version appearing 
every 6 months or so. 

- 

Correctness The package comes with its - 
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own sanity-test routines that 
are performed during build 
time. The results usually 
show no major show-
stopping bugs and raise the 
confidence level regarding 
the correctness of the 
package. 

Portability The package is portable and 
supported on many high-
performance architectures 
and clusters (Cray, IBM Blue 
Gene, special support for 
Infiniband and Myrinet, etc.) 
For those architectures that 
expose low-level messaging 
frameworks, such libraries 
are used as optimizations. On 
others, GA is built on top of 
one-sided MPI 
communication primitives, so 
the overall portability is not 
lesser than that of MPI. 
Supports Fortran, C/C++ and 
Python source code 

- 

Availability Complete source code and 
documentation freely 
available at PNNL website. 

- 

Resilience - - 

Table 23 Global Arrays Toolkit - Pros and Cons 

2.12.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No Not sure Yes 

Table 24 Global Arrays Toolkit - Target systems/architectures 

2.12.6 Conclusion 

For distributed-memory systems the Global Arrays Toolkit demonstrates at least as good 
scalability and performance as plain MPI. Its added benefit is that it adds a simplified 
programming model and also been shown to solve memory bottleneck issues on large-scale 
systems (e.g. IBM Blue Gene). If however future exascale systems are built on top of 
coprocessors/acceletors, Global Arrays Toolkit may be less beneficial in its current state. 
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3 Debuggers and Profilers 

A wide range of tools for debugging and performance analysis exists. A survey of system 
software stacks in the IESP [98] community lists approximately forty different tools for 
debugging and performance analyses. This survey is by no means exhaustive, as there are 
many additional tools both from vendors and Open Source initiatives that offer improved 
capabilities either for debugging or performance improvement. 

The tools covered in this report are either on the IESP list or they have been covered by 
PRACE on an earlier occasion, especially in PRACE-PP as described in deliverable, D6.3.1. 
‘Report on available Performance Analysis and Benchmark Tools, Representative 
Benchmark’ [99]. Several tools described in D6.3.1 (DewizPat, Allinea OPT, IBM VPA) are 
no longer available or do not exist as distinct products; some have been replaced by other 
products, others are merged into existing ones. The trend of merging of tools continues both 
in Open Source projects and commercial products. It is more and more challenging to 
maintain these tools due to the increasing complexity of the runtime environments. 

The increasing complexity of the runtime environment is caused by the developments in 
hardware. Most current HPC-systems have CPUs with many cores and several CPUs on each 
node. This has led to hybrid codes where MPI is used for inter-node communication and 
OpenMP is used for intra-node communication and parallelism. A tool only addressing intra-
node parallelism will not catch the whole picture; likewise will a tool only focusing on 
internode communication not get a complete view. Tools developed at HPC research centres 
have tried to accommodate for this, as these tools incorporate all levels of parallelism. Tools 
developed by hardware vendors are often to the contrary more intra-node focused. 

It is more than likely that the next generation of HPC-systems will have coprocessors or 
accelerators within a node, like the newly installed STAMPEDE at TACC (Texas Advanced 
Computing Centre) and Titan at ORNL (Oak Ridge National Laboratory). This adds a new 
runtime environment to the node and yet another level of complexity. Very few tools can 
accommodate for this development. It is a daunting task to reliably analyse an execution 
environment with inter-node parallelism and two separate, but co-functioning intra-node 
threaded runtime environments. While the hardware vendors offer tools for analysing and 
debugging kernels executing on the coprocessor, it is in most cases the HPC research centres 
that develop tools, which can give a holistic view of the hierarchy of runtime environments. 

All of the European exascale projects (TEXT, CRESTA, DEEP, Mont Blanc) are putting 
effort into tools for debugging and performance analyses. This is deemed a necessity for 
efficient use of upcoming exascale architectures. Ayudame/Temanejo has been developed in 
TEXT. Vampir is further developed as part of CRESTA. Support for OmpSs/ Intel Xeon Phi 
and OmpSs/ARM in Scalasca is developed as part of DEEP and Mont Blanc, respectively. In 
addition there is the Holistic Performance System Analysis project (HOPSA) [100]. The 
product of this project is the SCORE-P [101] measurement structure. This structure is shared 
by the tools Scalasca, Vampir, Tau and Periscope. A common measurement structure benefits 
both profiling tools developers and users. The developers can concentrate more of their 
resources on the analysis part of the specific tool instead of the measurement framework, 
while the users will experience increased operability between the tools as well as fewer 
learning curves.  

We feel that the tools in the SCORE-P project are among the most natural to use in the 
exploitation phase, together with tools for analysing coprocessors and accelerators. 

DEEP has analysed the space weather application iPIC3D. With the tool Scalasca, the 
behaviour of the different parts of the application has been identified. Some of these parts can 
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be accelerated by being partly moved to the “Booster” part of the DEEP architecture [102]. 
During the exploitation phase T7.2 should strive to establish similar insight as often as 
possible.  

It is worth noting that this type of analysis has rarely been seen in PRACE reports or 
whitepapers to date. A substantial effort of training on tools for debugging and performance 
analysis has been carried out within PRACE. However, very little is documented on how 
successfully these tools have been employed within enabling projects. One of our missions for 
the exploitation phase is to fix this discrepancy and provide good examples of debugging and 
performance analyses with the different tools chosen. 

In this section we report on the following debugging and profiling tools that we feel represent 
the state of the art and should be of interest during the exploitation phase of T7.2: 

Tool Category Scalability Sustainability Portability Availability # of 
arch
s 

Tau Scalable OSS 131000 NSF, DOE, 
DOD, 
research 
centers 

Large range 
of systems 

Open 
source 

5 

Scalasca Scalable OSS 274912 FZ Jülich, 
user groups 

IBM BG, 
Cray XT, 
Linux 

Open 
source 

2 

Vampir Scalable OSS 200448 Dresden 
University, 
LLNL 

Large range 
of systems 

Open 
source 

5 

TotalView Scalable ISV 786432 Wide use, 
vendor 
support 

Linux, AIX, 
Solaris 

Commerc
ial 

5 

Allinea DDT Scalable ISV 200000 ORNL, 
vendor 
support 

Linux Commerc
ial 

5 

Intel tools Workstation  Vendor 
support 

x86 systems Commerc
ial 

1 

NVIDIA 
NSight 

Workstation  Vendor 
support 

CUDA 
systems 

Free 3 

IBM HPCT Vendor tools  Vendor 
support 

IBM systems Commerc
ial 

 

CrayPat/Appre
ntice2 

Vendor tools  Vendor 
support 

Cray systems Commerc
ial 

 

Paraver/Extrae Other   Linux, GPU, 
Xeon Phi 

  

IPM Other   Linux, GPU   

OpenSpeedsho
p 

Other   Large range 
of systems 

  

PAPI Other  Linux kernel Linux Open 
source 

 

Temanejo/Ayu
dame 

Other  Mont Blanc 
project 

StarSS/Omp
SS programs 

Open 
source 

 

Table 25 Debugging and Profiling Tools 
(OSS: Open Source Software, ISV: Independent Software Vendor, archs: Hardware Architectures) 
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3.1 TAU 

3.1.1 Brief overview 

The development of Tuning and Analysis Utilities (TAU) [103] started in the nineties. The 
ambition for TAU has, from the very start, been to grow with the developments in hardware, 
making a tool that survived several hardware generations. Consequently, there is continuous 
on-going work to accommodate for the changes in large-scale system architectures [104]. 

TAU has developed a very rich set of features that can be utilized at varying degrees of 
invasiveness both for profiling and trace logging. Three methods for instrumentation are 
available to a user: library preloading, complier directives and source code transformation. 
Each method offers an increase in features at the expense of binary or source code 
modification [105]. Binary modification is done with recompilation through TAU supplied 
scripts. Source code is also modified with supplied scripts. 

TAU can be used on applications developed with the programming languages C, C++, 
Fortran, Java and Python. The utilities offered are performance monitoring, performance data 
mining, parallel profile analysis and program analysis. All these utilities have different 
interfaces such that the analyses can be done with a graphical user interface or by scripts. Data 
mining can be done with R, Weka or Octave/Matlab. Measured data can be stored in a DBMS 
through the toolkit TAUdb, formerly known as Performance Data Management Framework 
(PerfDMF). Collected data can be processed with other analysis tools like Vampir, Scalasca 
or Paraver.  

TAU is very portable and it is available on a range of platforms. It has been used on all 
generations of both Cray XT/XE and IBM BlueGene machines. It supports the latest 
generations of both platforms that include the Cray Cascade prototype with Intel Sandy 
Bridge and IBM Blue Gene/Q [103]. 

Here we list some of the features that we think should be of interest to PRACE partners 
during the exploitation phase of T7.2: 

 Modules from different programming languages can be instrumented, i.e. a Python 
based program using FORTRAN made object modules. 

 Both source (PDT) and binary rewriting capabilities, with support for logging time 
spent in application routines and outer-loops. 

 I/O characterizations with peak read and write bandwidth as well as total volume. 
Time spent in I/O-phase can be measured 

  Memory usage can be instrumented with detection of peak heap memory usage. 
Allocation and de-allocation of memory can be tracked. 

 Support for debugging capabilities with callstack, memory leak detection, and runtime 
bounds checking 

 Performance database technology to store performance data, cross experiment and 
data mining tool (PerfExplorer) 

 ParaProf offers 3D visual browser. 3D communication pattern or 3D topology can be 
viewed 

 Automatic performance measurement system on BG/P 

TAU has been extended to support heterogeneous platforms [106]. It supports the Intel Xeon 
Phi in the native, offload and the host mode. This includes support for event based sampling, 
and the commonly used instrumentation techniques (PDT, MPI, and linker).  

Measurements can be conducted both with profiling and trace logging of kernel invocations 
on an accelerator. Both PAPI [107] and CUPTI [108] can be utilized. CUPTI can be used with 
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library preloading. Calls to OpenCL can also be intercepted in this way. Accelerator code 
generation capabilities with PGI or HMPP are also supported.  

As of version 2.21.2 TAU can track the memory usage for the lifetime of CUDA kernels 
(CUDA v4.1 and later). This involves the whole memory hierarchy of registers and both local 
and shared memory can be tracked. 

TAU can also be combined with the auto-tuning framework Orio [109][110]. Orio can 
empirically execute thousands of accelerator kernels over a large set of different parameters. 
By instrumenting the kernels, TAU’s data mining capabilities can be used for finding the 
most efficient set of parameters for a given kernel. An exploration of acceleration kernels 
carried out with Orio using PETSc has shown a 1.5 - 2x performance improvement for certain 
methods compared to implemented libraries like CUBLAS [111]. 

Latest version/release: v2.22.1. 

3.1.2 Evidence of use within PRACE 

Information on experience with TAU is generally quite scarce within PRACE. However, the 
survey carried out in PRACE-PP [99] shows that at the time TAU was installed on three 
PRACE partner sites. This number has undoubtedly increased significantly in the intervening 
period as TAU has become increasingly recognized as a tool that scales well and offers a 
large amount of versatility and functionality. In WP7 PRACE-1IP, TAU was reported on in 
the PRACE whitepaper, ‘Optimizing GPAW’ [112] where profiling and tracing on up to 1024 
cores was carried out using TAU. Also, in WP7 PRACE-1IP, TAU was reported on in the 
PRACE whitepaper, ‘High Resolution EC Earth porting and benchmarking on Curie’ [113] 
where EC-EARTH was profiled on 394 cores using the TAU tool. In both cases, not a lot of 
detail was provided on how successfully TAU was employed. 

3.1.3 Evidence of use outside PRACE 

Just as is the case within PRACE we found it quite difficult to find reported examples of 
where TAU has been used to date with real applications on large-scale systems. TAU was 
used in a recent performance profiling of the S3D combustion modelling code on Intrepid 
(IBM BG/P) in the US. Data was collected for S3D on up to 12,000 cores using the C2H4 
benchmark where the goal was to evaluate the scaling properties of code regions and the 
scalability of MPI operations with the S3D code. The full power of the TAU profiler is well 
demonstrated in the work where the bimodal behaviour in MPI_Wait calls with the code 
were discovered as well as other metrics of interest such as memory usage, flop/s and issues 
with PAPI counters on BG/P [114]. 

3.1.4 Pros and Cons 

Metric Pros Cons 

Scalability TAU has been used to 
conduct a full profile of the 
application Pflotran executed 
on 131 000 cores [115]. 

 

Performance TAU has a throttling 
mechanism for managing the 
output stream. One can also 
choose a lightweight 
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management core which 
reduces the overhead by  
50% compared to TAU’s 
default core. Reducing 
overhead is a target: the MPI 
wrapper interposition library 
is now using a more efficient 
data structure for tracking 
asynchronous communication 
events. 

 

Productivity Profiling can be done without 
any binary or source code 
modifications. As increased 
level of detail is needed, 
binaries or source code is 
modified with supplied 
scripts. Profiling level is 
controlled by the user in 
separate files. Different 
utilities may have varying 
degrees of threshold before 
they can be used usefully. 

TAU is in essence a 
collection of tools more than 
a tool in itself. Experience is 
needed to gain results with 
the utilities available. It can 
produce a large volume of 
profiling and trace logging 
data. 

Sustainability The development of TAU has 
been funded by major US 
funding bodies (NSF, DOE, 
DOD). The project has a 
range of US and Europe 
research centres as partners. 

 

Correctness   

Portability It is very portable and has 
been continuously ported to 
new platforms for more than 
twenty years. Can be used on 
Fortran, C and C++ 
applications 

 

Availability Open Source BSD license  

Resilience   

Table 26 TAU - Pros and Cons 

3.1.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes 

Table 27 TAU - Target systems/Architectures 
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3.1.6 Conclusion 

TAU is a tool that has evolved for use on multi-petascale systems. It has been used on large 
core counts and has demonstrated an on-line analysis capability on large core counts. The 
visual tool ParaProf support 3D-views of torus and communication patterns for the major 
multi-petascale platforms. The TAU development team usually ensures that TAU is available 
at early stages of new platforms, as exemplified with the Cray Cascade prototype. TAU is 
being further developed to support new threading technologies, like the new generations of 
NVIDIA GPUs and Intel Xeon Phi. With its long traction, and continued support from its 
funding bodies, it is strongly expected that TAU will continue to be available for forthcoming 
multi-petascale systems. In this sense, it also shows potential for enabling applications on 
future exascale systems.  

3.2 Scalasca 

3.2.1 Brief overview 

Scalasca [116] is, as the name suggests, a profiling tool for scalable performance analysis. It 
is specifically designed for large-scale high performance computing systems. Scalasca utilizes 
the inherent parallelism in HPC systems by letting each process maintain a trace log of logged 
events. The trace logs are written to a few files in a parallel file system. The analyses are done 
post-mortem, but with the same amount of processes as the instrumented simulation. This 
provides a good analysis capacity and ability to handle a large volume of trace logs. Scalasca 
is targeted at MPI applications written in C/C++ or Fortran. It uses PMPI, the profiling API of 
the MPI standard to profile MPI applications. OpenMP-based code can be analysed with a 
source pre-processor which instruments parallel regions in the application source code. It is 
also possible to profile hybrid codes. 

Scalasca’s distinctive features are: 

 A summary-report, which identifies the most time-consuming call paths. 
 Performance evaluation over the whole length of a simulation.  
 Delay and wait state analysis. Wait states are often caused by load imbalance and 

cause delay. What causes wait stats and consequently delays can be identified [117]. 

It is available on Cray XT, IBM BlueGene and common Linux versions. Scalasca uses the 
format Open Trace Format 2 (OTF-2), which is a common trace log format also used by 
Vampir and Tau. 

Latest version/release: v1.4.2.  

3.2.2 Evidence of use within PRACE 

At the time of writing the PRACE-1IP survey (D7.4.1) [118] reported that Scalasca was 
installed on six PRACE partner systems. As is the case for TAU, this number has most likely 
risen in the intervening period as Scalasca becomes recognized as a highly scalable tool with 
an easy to understand interface. Scalasca has been used in several PRACE projects including 
PRACE ‘Type-C Preparatory Access projects’ as well as petascaling community codes in 
PRACE-1IP and 2IP. 

The project PRACE Preparatory Access Type C project “Shocks: Understanding Relativistic 
Plasmas Acceleration Systems”, which was reported in the PRACE deliverable ‘Applications 
Enabling for Capability Science’ [119] used Scalasca with the PSC code on CURIE to 
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successfully highlight global communication hotspots, which were subsequently reduced 
leading to an overall performance improvement of 14.9%. 

The project described in the PRACE whitepaper “Direct Numerical Simulation and 
Turbulence Modelling for Fluid Structure Interaction in Aerodynamics” [120] used Scalasca 
on CURIE and JADE to study three different load-balancing strategies for the application 
“Navier-Stokes Multi-Block” (NSMB). Scalasca was used by the authors to provide insight 
into the behaviour of the application as different strategies were investigated.  

The PRACE whitepaper, “Semi-dilute polymer systems in shear flow - a particle based 
hydrodynamic approach” [121] reports on the use of Scalasca on the application MP2C on the 
systems JUGENE and JUROPA. The goal of the project was to reduce communication 
overhead on large core counts as scaling was deteriorating beyond 262,000 cores. Better 
scaling for lower core counts was achieved by hybridizing the code with OpenMP. Scalasca 
was successfully used to identify the proportion of communication vs. computation within the 
code. 

3.2.3 Evidence of use outside PRACE 

Scalasca is in use at several larger HPC-labs, including FZJ. The IESP survey [98] hows that 
it is installed in two sites in the US and 12 in Europe. In XSEDE it is available on KRAKEN, 
NCSA FORGE and BLACKLIGHT. 

A trace analysis of a case executing on 294,912 processes on Blue Gene/Q is documented 
[122]. This was carried out with Scalasca 1.2 applied on the code Sweep3D. The analysis 
collected 790 GB of trace logs. To run the analysis with a rerun of the simulation took more 
than two hours. The instrumented Sweep3D application, which generated the trace logs, had 
an execution time of fifty minutes in comparison to the execution time for the un-
instrumented application of ten minutes. This illustrates to some extent a contradiction with 
trace analysis of applications at scale. While the tool allow tracing of an application at large 
scale with real data sets running for hours, the time consumption and data volume produced 
can become impracticably large for a user to handle, however, this issue is currently being 
actively addressed by the Scalasca team [123]. 

In the course of the European exascale DEEP project, Scalasca was used to analyse the 6 
prototype applications on a regular cluster to help to decide which kernels will be offloaded to 
the Booster Nodes. Further, Scalasca will be ported to the Intel Xeon Phi platform and, once 
available, to the DEEP System. In that way it can be used to monitor the application 
performance at all stages of the project [124]. 

3.2.4 Pros and Cons 

Metric Pros Cons 

Scalability Excellent: scales to at least 
300,000 cores 

The volume of trace logs 
become large with a large 
number of processes 

Performance The tool has good 
performance as the analyses 
are done in parallel. 

 

Productivity The tool is developed with 
large-scale simulations in 
mind. It makes use of the 

Analyses are based on 
processing trace logs. Trace 
logs of large scale long 
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system resources available on 
a HPC system for logging, 
storage and analyses. 

running real applications can 
get so large that they 
influence node behaviour and 
the simulation under 
observation. 

Sustainability It is maintained by 
Forschüngszentrum Jülich 
and it is continuously 
improved with input from a 
broad user group both in 
Europe and USA. 

 

Correctness   

Portability It is developed for use on 
IBM Blue Gene and Cray 
XT. It is reported used on a 
range of other platforms, 
especially medium sized 
HPC Linux clusters. Can be 
used on Fotran, C/C++ 
applications 

 

Availability The software is available for 
free download under the BSD 
open-source. 

 

Resilience   

Table 28 Scalasca - Pros and Cons 

3.2.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Under 
development 

Under 
development 

Under 
development 

Under 
developement 

Table 29 Scalasca - Target systems/architectures 

3.2.6 Conclusion 

Scalasca has shown that it is an applicable profiling tool when considering the largest scales 
currently possible. It scales in its use from 1000 cores to close to 300,000 cores. Development 
of Scalasca continues with the purpose of meeting the needs of the HPC community as 
exascale technology make its inroads. Although the Scalasca project will specifically target 
large-scale parallel applications, the project recognizes that it faces several challenges, 
including the fact that collation time increases with increasing number of threads, the time 
needed for analysis is proportional to the number of threads and the behaviour of the 
application will become more dynamic and unpredictable as processes and threads are created 
and destroyed. One interesting initiative by the Scalasca team to note that may be of interest 
during the exploitation phase of T7.2 is the capability being introduced to profile one-sided 
communications [125]. 
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3.3 Vampir 

3.3.1 Brief overview 

The Vampir tool-set is a set of programs to trace high performance computing workloads, and 
present the captured information in a graphical interface. It consists of an instrumentation 
component called VampirTrace [126], and two visualisation applications called Vampir [127] 
and VampirServer [127]. The former is freely available, while the latter two are commercially 
licensed from TU Dresden. 

Vampir is aimed at highly parallel computing platforms, which manifests itself in three 
particular design objectives [128]. Exploiting distributed memory for analysis tasks, real-time 
processing of long-running workloads with high degrees of parallelism, limiting data 
processing at the client end to a volume which is independent of the amount of captured event 
trace data. 

The software architecture of the Vampir tools separate the work of capturing traces of 
program event information and the work of visualizing it. 

VampirTrace captures event logs in Open Trace Format (OTF), developed in a collaboration 
between TU Dresden, University of Oregon, and Lawrence Livermore National Labs. It is a 
successor to the previously used Vampir Trace Format (VTF). The visualization tools are also 
compatible with trace files captured by performance monitoring with Tau or KOJAK [129]. 

The visualization components of Vampir focus on presenting captured data as time line 
displays of events from large numbers of participating processes, with global, summary, 
counter and process time lines. In order to capture the event information required to produce 
these visualizations, VampirTrace caters to four methods of instrumentation, from compiler 
instrumentation, through source-to-source instrumentation, library instrumentation, and 
manual source instrumentation. 

The scalability of the Vampir approach is connected to the management of the large volumes 
of data produced by these methods when applied on large-scale systems. The primary 
mechanisms for restricting event data is the capability of grouping and filtering functions 
according to their names or categories, allowing subsequent analysis to relate to aggregate 
statistics, or cross-sections of the available data with respect to a particular library. The 
categorization is configurable, but includes MPI calls, OpenMP calls and I/O functions by 
default, as these are tightly connected to the available methods for instrumentation. Exclusion 
lists for filtering are configurable by providing ignored functions in text format at the time of 
execution. 

VampirTrace is capable of tracing GPU accelerated applications and generates exact time 
stamps for all GPU related events 

Latest release/version: Vampir v8.0, VampirTrace v5.14.3  

3.3.2 Evidence of use within PRACE 

While Vampir is frequently presented at PRACE-training sessions and is also often mentioned 
in PRACE deliverables, there are very few cases where Vampir is reported as being used. In 
PRACE-1IP deliverable D6.3.1,’Report on available Performance Analysis and Benchmark 
Tools, Representative Benchmark’ [99], both a LINPACK benchmark on 64 MPI processes 
the GYRE benchmark of NEMO were profiled with Vampir on HECTOR, but unfortunately 
very few details of how successfully Vampir was used are provided in the deliverable. 
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3.3.3 Evidence of use outside PRACE 

The Survey of System Software Stacks in the IESP Community [98] presented at the IESP 
workshop in 2011 counts 7 installations of Vampir and 9 installations of VampirTrace, of 
which were 5 in Europe.  

A prototype of Vampir using the I/O Forward Scalability Layer (IOFSL) library [130] has 
recently been used to trace over 200,000 processes on Titan[131].Without the IOFSL library, 
tracing produces too many files which prohibits scaling beyond 8000 processes. 

The new exascale prototypes of the TU Dresden Vampir and VampirTrace performance 
monitoring and analysis tools have been released. The new features include the possibility of 
applying filtering techniques before loading performance data to drastically reduce memory 
needs during the performance analysis. The initial evaluation study of the development 
environment is targeted at the European CRESTA project applications to determine how the 
development environment could be coupled into a production suite for exascale computing 
[132]. 

3.3.4 Pros and Cons 

Metric Pros Cons 

Scalability Distributed software 
architecture permits large-
scale operation.  

Dependency on availability 
of data distributed across 
entire platform affects 
possibility for offline/post-
mortem analysis 

Performance Low overhead per-event 
facilitates real-time tracking 

Buffering technique depends 
on surplus memory 

Productivity Black-box instrumentation 
available through automatic 
instrumentation 

Large-scale workloads likely 
to require manual 
instrumentation to customize 
analysis for buffering 
constraints 

Sustainability Actively developed as Open 
Source and commercial 
projects 

 

Correctness   
Portability It is ported to range of 

platforms: Linux (IA32, 
x86_64, IA64, PPC/32, 
PPC/64), Sun Solaris 
(SPARC/32, SPARC/64, 
x86_64), IBM AIX (PPC), 
SGI IRIX (MIPS), Mac OS 
X. Can be used on Fortran, 
C/C++  applications 

 

Availability Instrumentation tool is open 
source and freely available 

Visualization tools require 
commercial licenses 

Resilience   
Table 30 Vampir - Pros and Cons 
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3.3.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes. 
(Support for 
CUPTI under 
development)

Compatible 
at source 

level using 
OpenMP 
POMP 

interface 

Not sure Yes 

Table 31 Vampir - Target systems/architectures 

3.3.6 Conclusion 

Vampir addresses the challenge of petascale profiling with hierarchal parallelism. Profiling 
tools addressing threads are often developed by vendors offering the threading technology. 
These do not show the total call stack and messaging that goes on in an MPI-application 
utilizing accelerator/coprocessors. It is the intent of the developers that VampirTrace will 
accommodate for threading technologies and address the hierarchy of parallelism in newer 
MPI-applications like MPI-applications with OpenACC enabling. While evidence of multi-
petascale use of Vampir is hard to come by, at least in a PRACE context, the tool will be 
further developed. In the CRESTA-project, ZIH and other partners will jointly develop the 
scalable measurement environment used by Vampir as an Open Source project. Current 
research activities for performance analysis focus on pattern processing, GPGPU computing, 
scalability, and energy aware performance optimization. Hence, it is likely that it will feature 
as a tool on the road to exascale. 

3.4 TotalView 

3.4.1 Brief overview 

Rogue Wave's TotalView [133] is a debugging tool for parallel computing. It supports scalar, 
multi-threaded and large-scale parallel applications. It supports debugging of memory errors, 
leaks and diagnosis of programs like deadlocks and race conditions. It contains a Replay 
Engine that allows stepping backwards through programs from the point where it crashed to 
the point where the problems started. TotalView supports the programming models: MPI, 
OpenMP, hybrid multi-threaded codes, CUDA, OpenACC, C, C++, Fortran. TotalView 
supports the platforms: Linux (including Blue Gene), Unix and Mac OS X. TotalView has 
specifically been designed for debugging on large-scale systems and Rogue Wave are 
currently working as co-design partners at various US DOE labs including with Livermore 
National Lab (LLNL) Sequoia team.  

Using the RealplayEngine feature [133], TotalView can be made to store the history of a 
running program, so that it becomes possible to step backwards through a program from the 
point where a problem is detected to the point where the cause of the problem is. This can be 
important when searching for bugs that are difficult to reproduce, but it is highly unlikely that 
this feature will ever work on peta- or exascale systems, because of the amount of data that 
has to be stored for each process. TotalView also has some very nice batch scripting features 
designed for debugging in a batch environment, which allows users to define the events to act 
on and the actions to take when an event occurs. 
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3.4.2 Evidence of use within PRACE 

TotalView is widely used within PRACE. It is for instance used at CINECA, CSC, EPCC, 
IDRIS, Jülich, LRZ, NTNU, and SARA. Unfortunately, we found it very difficult to find 
more information about how the debugger was used in practice on real applications on large-
scale PRACE systems. 

3.4.3 Evidence of use outside PRACE 

Although it is widely appreciated that TotalView scales to many thousands of cores, we found 
it difficult to find concrete documentation on real cases of where the debugger has been used 
on real applications on multi-petascale machines. The Rogue Wave developers are involved 
in co-design partnerships with Lawrence Livermore National Lab (LLNL) who manage the 
million plus core IBM BG/Q Sequoia machine. Recently a hybrid MPI/OpenMP Jacobi 
benchmark code was debugged over 512 - 65,000 compute nodes (on up to 121,072 CPU 
cores) on the Sequoia system using TotalView [134]. In a separate announcement at SC12, 
Rogue Wave claim that TotalView has successfully scaled across 786,432 cores [135] on the 
Sequoia machine, but little detail can be found on which application it was used. 

3.4.4 Pros and Cons 

Metric Pros Cons 

Scalability Has debugged jobs as large 
as 786,432 processes. 
Petascale capability is, most 
likely, available today. 

 

Performance Normal debugging has a low 
impact on application at 
runtime. 

Reverse Debugging has a 
high negative impact. 

Productivity Has a built-in memory 
debugger. Supports a wide 
variety of programming 
models. 

Reverse Debugging only 
works well with few 
processes. 

Sustainability Widely used and regularly 
updated. Commercial product 
with strong support 

- 

Correctness - - 
Portability Supports Linux, AIX, and 

SPARC Solaris. Can be used 
to debug Fortran, C/C++ 
code. Can also be used on 
PGAS languages, as well as 
accelerator-based 
applications 

- 

Availability - Commercial 
Resilience - - 
Table 32 TotalView - Pros and Cons 
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3.4.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes No Yes 

Table 33 TotalView - Target systems/architectures 

3.4.6 Conclusion 

TotalView is a professional debugging tool that specifically is aimed at the High Performance 
Computing market. It is designed for debugging programs running on very large 
supercomputers and has been successfully tested on 768,432 processes until now. TotalView 
state that they are working closely together with IBM to provide debugging facilities on 
IBM's Blue Gene systems, so petascale debugging is therefore, most likely, available today. 
However, the RealplayEngine is clearly aimed at small systems, for which it is practically 
possible to record the history for each process. 

3.5 DDT 

3.5.1 Brief overview 

DDT [136] is a commercial debugger produced by Allinea Software, primarily for debugging 
parallel MPI or OpenMP programs, including those running on clusters of Linux machines, 
but also used by many for scalar code in C, C++ and Fortran 90. Allinea claims that it was the 
first debugger to be able to debug a petascale system - having debugged 220,000 processes, 
over 2 Petaflops, on a Cray XT5 at Oak Ridge National Laboratories [137]. The debugger has 
logarithmic performance for most collective debugging operations, due to using a tree 
architecture across the machine network to control the many single-process debuggers. It 
features a complete memory debugging tool, which can be used to detect memory leaks, or 
reading and writing beyond the bounds of arrays. Allinea DDT includes support for Intel 
Xeon Phi coprocessors and IBM Blue Gene. The debugger is also able to debug GPU 
software written for CUDA applications. Allinea has applied a co-design methodology, 
working closely with compiler vendors that support the languages for machines such as Titan 
and Blue Waters [138][139]. 

3.5.2 Evidence of use within PRACE 

The use of Allinea DDT appears to be increasing within PRACE. According to the PRACE-
1IP deliverable, D7.4.1 [118], from 2011 DDT was in use at 6 PRACE partners in 2011. 
However, at the time of writing, DDT appears to be in use at, at least, 10 locations: BSC, 
CEA, CINECA, EPCC, GENCI, IDRIS, ICHEC, Jülich Supercomputing Centre, NTNU, and 
PDC. Unfortunately, as is the case with most of the debugging and profiling tools used within 
PRACE to date, very little information is documented as to the successful use of DDT during 
development. 

3.5.3 Evidence of use outside PRACE 

By employing sophisticated tree topologies, Allinea, working along with ORNL, deployed the 
first petascale-level debugger, DDT, for Jaguar. Field-tested on development codes at ORNL, 
DDT has been shown to scale up to over 200,000 cores [137]. 
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Within the European exascale project, CRESTA, the Allinea DDT debugger is being extended 
to provide a unified interface, to improve scalability, and to include a new disruptive 
technology based on statistical analysis of run-time behaviour of the application for anomalies 
detection [132]. 

3.5.4 Pros and Cons 

Metric Pros Cons 

Scalability Delivers petascale debugging 
today. Has debugged jobs as 
large as 200,000 processes. 

Exascale debugging is future 
work. 

Performance Logarithmic performance for 
most collective debugging 
operations. 

- 

Productivity Has a built-in memory 
debugger. Supports a wide 
variety of programming 
models. 

- 

Sustainability Widely used and regularly 
updated. Commercially 
supported. 

- 

Correctness - - 

Portability Supports Linux and has been 
demonstrated to work on a 
wide variety of large-scale 
platforms. Can be used to 
debug Fortran, C/C++, PGAS 
and accelerator-based 
applications 

- 

Availability  Commercial 

Resilience Part of on-going co-design 
research with exascale 
projects such as CRESTA. 

 

Table 34 DDT - Pros and Cons 

3.5.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes 

Table 35 DDT - Target systems/architectures 

3.5.6 Conclusion 

DDT now has features that are specifically targeting debugging of petascale simulations. The 
response times of DDT are now short enough for making petascale debugging practically 
possible and the GUI has features that are specifically designed for giving an overview of 
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large amounts of data as well as the state of a large numbers of threads/processes. The fact 
that the developers of DTT have continued to show a quick response to the fast pace of 
changing hardware on large-scale heterogeneous systems, indicates that DDT will feature 
heavily as a debugging tool on the road to exascale. Although DDT's current feature-set will 
not be sufficient on an exascale system, DDT is actively working on new features such as 
fault-tolerance as part of co-design teams within the US DOE and European exascale projects. 

3.6 Intel Debugging and Profiling Tools 

3.6.1 Brief overview 

In this subsection we provide an overview of debugging and profiling tools provided by Intel. 
In particular the tools of the Intel Cluster Studio XE 2013 [140] are discussed. With regard to 
multi-petascale (and future exascale systems), tools for debugging and profiling on the new 
Intel Xeon Phi coprocessors are of particular interest. As is to be expected, Intel tools already 
support Intel Xeon Phi (with some minor exceptions) [140]. However, since by design, the 
Intel Xeon Phi coprocessor more or less emulates a normal x86-based cluster node, porting 
other tools to run natively on Intel Xeon Phi is technically quite straight-forward. Moreover, 
this has already successfully been demonstrated in the case of Scalasca and Paraver, 
TotalView and DDT [141]. 

3.6.2 Evidence of use within PRACE 

Currently no concrete applications of Intel tools within PRACE are documented. However 
this does not necessarily mean that they have not been used at all within PRACE. At least 
according to PRACE-1IP deliverable, D7.4.1 [118], it is known that Intel tools are installed 
on at least two PRACE systems. 

3.6.3 Evidence of use outside PRACE 

Unfortunately, we found it very difficult to find documental evidence of how Intel tools are 
being used on petascale systems. Intel tools have typically proven to be useful on smaller 
scales. For example they were successfully applied for optimizing a crash test simulation code 
running on 128 nodes with 1024 cores [142]. 

Intel Trace Analyzer and Collector (ITAC): 

Intel Trace Analyzer and Collector (ITAC) is a pair of tools for profiling and correctness 
checking of MPI applications. The current product version is v8.1 and is included in the 
Cluster Studio product package. The Intel Trace Collector detects up to 50 different runtime 
errors (e.g. deadlocks, data corruption and errors with MPI parameters, data types, buffers, 
communicators, point-to-point messages and collective operations) and provides a full stack 
trace for those errors. Application trace data can be collected by, either relinking the 
application with the Intel Trace Collector Profiling library, or usage of special shared libraries 
(when using a dynamically linked MPI library. 

The Intel Trace Analyzer is a customizable GUI for viewing generated trace files and 
provides different analysis views (‘event timeline’, ‘communication matrix’, ‘function 
profile’, etc.).  

With ITAC it is neither sensible nor possible to show all events of a trace file on the timeline. 
Sampling resolution depends on the current timeline view range. Events can be aggregated by 
function groups (the coarsest level distinguishes between MPI and application functions) and 



D7.2.1 A Report on the Survey of HPC Tools and Techniques 
 

PRACE-3IP - RI-312763  29.04.2013 66

process groups (individual processes or grouped by node – further levels of hierarchies will be 
possible in future). Not all events can be displayed. However, interesting events can be 
tagged. In the timeline the regions containing tagged events are highlighted so that the user 
knows where to zoom. Trace data can be filtered by certain functions, messages and/or 
collective operations. 
 

Intel VTune: 

Intel VTune Amplifier [143] is a profiling tool where analyses are based either on event-based 
sampling or user-mode sampling. Event-based sampling collects system-wide profiling data 
through the ‘Performance Monitoring Unit ‘(PMU) of Intel processors. User-mode sampling 
uses the software collector for gathering profiling data and is also available on Intel-
compatible processors. In both cases, no recompilation of the application is necessary, but 
including debugging symbols is recommended. VTune Amplifier can be used to analyze 
intra-process performance of MPI applications. Typically, only a selected representative small 
subset of MPI processes (ranks) are run under control of the VTune Amplifier. 

Hardware profiling is supported for the new Intel Xeon Phi and can be launched from the 
graphical user interface. It can collect lightweight hotspots and advanced event data and has 
time markers for correlation of data across multiple cards. Software collection (e.g., locks and 
waits analysis) is not supported on the Intel Xeon Phi. More details on MIC support for 
VTune Amplifier can be found in [144]. 

Intel Inspector: 

Intel Inspector [145] is a dynamic memory and threading error checking tool for serial and 
multithreaded applications. It can also be used to visualize and manage static analysis results 
created by Intel compilers. Intel Inspector provides a GUI as well as a command line interface 
for build process integration and for tracing MPI applications. 

3.6.4 Pros and Cons 

Metric Pros Cons 

Scalability An application (128 nodes, 
1024 cores) is known where 
Intel tools have successfully 
been used for optimization. 

ITAC: Trace data has to be 
collected to one host for local 
analysis. 

VTune, Inspector: Only for 
intra node profiling; 
Dynamically spawned MPI 
processes currently not 
supported. 

Performance VTune: Little overhead (~2% 
for event-based sampling at 
1ms, ~5% for user-mode 
sampling at 10ms). 

Inspector: Overhead ranges 
between 2 and 320 times 
depending on use-case and 
analysis depth and is well-
adjustable. 
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Productivity Generally good usability and 
strong and helpful concepts 
for analysis of large 
applications. 

 

Sustainability Currently there is no 
indication, that Intel will stop 
developing and supporting 
Intel Cluster Studio in future. 

 

Correctness Intel tools are generally well 
tested. Issues and known 
limitations are well 
documented in the release 
notes. 

 

Portability VTune: Can also be used on 
Intel-compatible processors 
(but only user-mode 
sampling available)  

Inspector: No particular 
constraints (available for 
Windows and Linux 
platforms). 

ITAC: Trace collector runs 
only on Intel processor 
architectures  

Availability Commercial products.  

Resilience ITAC: A failsafe version of 
the Trace Collector library is 
available, allowing to trace 
also failing MPI applications. 

 

Table 36 Intel Debugging and Profiling Tools - Pros and Cons 

3.6.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No No Yes No Yes 

Table 37 Intel Debugging and Profiling Tools - Target systems/architecture 

3.6.6 Conclusion 

ITAC is a good tool for analysis of MPI applications running on clusters equipped with Intel-
processors. Additionally to collecting and viewing trace data, the user can also greatly benefit 
from the MPI correctness checking features offered. Several HPC facilities and applications at 
smaller scales (not yet petascale, but some of them at least near to petascale) are known, 
where Trace Analyzer and Collector (and Intel tools in general) have been used and where 
they have proven to be beneficial. Currently, the fact that trace files need to be collected to the 
one host system for analysis is a limiting factor for scalability. Intel already has ideas to 
address this problem, but at the current stage they are very careful about making any 
disclosures. Also other ideas (like recognition for certain communication patterns) are under 
discussion for future program versions.  
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Intel VTune Amplifier is a mature tool for profiling applications on Intel (or Intel-compatible) 
architectures. Because Intel VTune was originally designed for SMP machines, it is an 
important challenge for Intel to further improve the tool’s support for MPI application 
profiling. Recent developments have already addressed this issue and further improvements 
are forthcoming [147]. As well as optimizing the MPI-level of an HPC application, intra-
process optimization is important for achieving best possible performance. Since this is also 
true for future multi-petascale and exascale systems, VTune Amplifier will also be of 
relevance to HPC applications at that scale. 

Intel Inspector is a good tool for finding threading and memory errors on the intra-node level, 
which might otherwise be hard to find. Static code analysis can reveal bugs, which potentially 
can stay dormant for a long time until showing up the first time in a production run. Also 
dynamic code analysis can reveal more errors than those, which actually occurred during the 
test run (e.g. potential data races can be detected even if the test execution went well). As 
Intel is continuously developing their tools further, there is good reason for assuming that 
Intel Inspector and ITAC (as well as successors) will be relevant for future multi-petascale 
and exascale systems. Today, Intel Inspector in conjunction with ITAC has already shown 
potential for HPC applications on smaller scales [148]. 

3.7 NViDIA NSight 

3.7.1 Brief overview 

NVIDIA Nsight Eclipse Edition [149] is a full-featured IDE that provides an all-in-one 
integrated environment to edit, build, debug and profile CUDA-C applications. As it is based 
on Eclipse it supports standard IDE features, along with CUDA aware code completion and 
refactoring, and project templates. It supports simultaneous debugging of both CPU and GPU 
code and inspection of variables across CUDA threads. The profiler supports automated 
analysis of system optimization opportunities, highlights potential performance problems, and 
integrates the “nvprof” command-line profiler to enable visualization of profile data collected 
from headless compute nodes. As a development environment it is primarily aimed at x86 
architecture workstations with CUDA GPUs. 

The primary intent of this tool is to support development of CUDA applications in the code 
implementation, debugging and optimization phases, and it's meant to be used on developer's 
workstation with one or more CUDA cards. It has no use case for running on multiple 
compute nodes. However, “nvprof” can be used to collect profile information from compute 
nodes, and its profile outputs can be visualized by Nsight. 

The Visual Studio plugin edition is at version 3.0 and Eclipse edition is version 5.0 at the time 
of writing. Both work with the CUDA 5.0 Toolkit, and Eclipse edition comes bundled in it by 
default. This tool was previously known as NVIDIA Parallel Nsight and it was available only 
on Windows platforms. 

The profiling component can now collect events and metrics for all CUDA contexts in a 
multi-context application. In previous releases, the profiling component and the command-
line profiler could collect events and metrics for only a single context per application. The 
latest version also allows profiling of concurrent kernel executions, which helps to examine 
issues regarding computation and communication overlapping, which is significant for 
achieving higher performance. 

Latest release/version: v5.0 (Eclipse edition) 
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3.7.2 Evidence of use within PRACE 

In PRACE-1IP Deliverable 9.2.2 ‘Final Software Evaluation Report’ [150]. Nsight was used 
on an isolated Windows 7 node on the GPU cluster at PSNC. An older version of the Visual 
Studio plugin edition was used, and some limitations regarding kernel debugging were 
pointed out. The tool was used to test CUDA and OpenCL sections of code in NAMD, a 
parallel molecular dynamics code, which performs simulations of large biomolecular systems. 

3.7.3 Evidence of use outside PRACE 

The tool does not have features that aim at cluster deployment. It is relatively newly ported to 
platforms other than Windows, so its deployment is relatively limited. It is a tool targeted at 
workstations, which helps developers organize their projects, develop code, debug and profile 
so its use on multi-petascale systems is only indirect. ‘ScalaLife’ is a European FP7 project 
focused on software for life sciences, which collaborates with PRACE. Its Deliverable 6.1 
mentions the use of Nsight in section 5.1.1 with regard to work carried out on extending 
ERGO for GPUs. It is interesting to note that in that work it was reported that the code was 
compiled using Visual Studio specifically for the reason that the Nsight profiler could be used 
[151].  

3.7.4 Pros and Cons 

Metric Pros Cons 

Scalability Can support multiple CUDA 
contexts, and can support 
profiling of overlapping 
computation and 
communication in the code. 

Meant to work on single 
workstation. Although it is 
documented that parallel MPI 
jobs can be profiled using 
nvprof component, it is not 
documented that profiling 
information is aggregated 
automatically (each profile is 
contained in a separate file).  

Performance It introduces no significant 
profiling overhead. 

- 

Productivity Greatly helps the developer 
with code completion, inline 
documentation, advanced 
code navigation, refactoring, 
syntax colouring, code 
folding, variable inspection 
features. Also profiling and 
debugging environment is 
fully integrated. 

A limitation inherited from 
cuda-dbg is that it can debug 
kernels running on a single 
GPU system only if no X11 
server is running. 

Sustainability NVIDIA directly supports the 
development of the tool. 

- 

Correctness - - 

Portability Visual Studio plugin edition 
runs on Windows, and 
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Eclipse edition runs on Linux 
and Mac OS X. 

Availability It is freely downloadable 
from NVIDIA's Developer 
Zone site. Eclipse edition is 
included in Mac and Linux 
distributions of the CUDA 
Toolkit from version 5. 

- 

Resilience   

Table 38 NVIDIA NSight - Pros and Cons 

3.7.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No Yes No No Yes 

Table 39 NVIDIA NSight - Target systems/architectures 

3.7.6 Conclusion 

NVIDIA’s NSight covers most of the debugging and profiling tasks needed for CUDA 
development. It also gives great support to the developer in terms of code completion, inline 
documentation and other features of an advanced IDE, which makes it a good environment 
for development, debugging and profiling of CUDA code, and as such it can be used for 
applications targeted at multi-petascale and exascale systems, although for cluster-class 
debugging, NVIDIA points to Allinea's DDT or Rogue Wave's TotalView. 
 

3.8 Other Tools 

3.8.1 Brief overview 

In this subsection we provide a very brief overview of other tools that we think are worth 
considering during the exploitation phase of T7.2. As is the case for the tools above, 
information about how PRACE partners have fared with the tools to date is quite sparse, but 
where possible we have included as much information as we could gather from the sources of 
input. 

3.8.2 CrayPat and Apprentice2 

The Cray Performance Analysis Tool, CrayPat [152] is the primary analysis tool on Cray 
supercomputers. It allows developers to perform trace experiments with function granularity. 
CrayPat supports programs written in Fortran, C and C++ with MPI, SHMEM, Pthreads, 
OpenACC and OpenMP. 

Cray Apprentice2 is a GUI-based post-execution performance analysis tool that takes CrayPat 
performance data as input. Cray Apprentice2 provides call-graph-based profile information 
and timeline-based trace visualizations. 

In PRACE D6.2.1 “Report on available Performance Analysis and Benchmark Tools, 
Representative Benchmark” [99] says about CrayPat: “It is versatile and is shown to be able 
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to analyze parallel software running on several thousands of CPUs. Because of this 
scalability, and the highly controllable degree of invasiveness, CrayPat is well suited for 
analysis of large parallel programs.”  

3.8.3 IBM HPCT 

The IBM High Performance Computing Toolkit (HPCT) [153] is a suite of performance-
related tools and libraries to assist in application tuning. This toolkit is an integrated 
environment for performance analysis of sequential and parallel applications using the MPI 
and OpenMP paradigms. 

Currently, it is highly unlikely that HPCT will function properly when profiling a full 
petascale program. HPCT contains e.g. the tool hpmcount, which can provide hardware 
performance counters information and derived hardware metrics. This tool sends as default its 
output to standard output, but it is with the “-o” option possible to create a separate file for 
each process. However, this simple approach will most likely create a very high overhead, 
when profiling a petascale program running on e.g. 100,000 processes. 

The HPCT has been mentioned in the PRACE D6.3.1 “Report on available Performance 
Analysis and Benchmark Tools, Representative Benchmark” [99]. However, it is unclear 
whether IBM's High Performance Computing Toolkit scales up to the number of processes 
that a full petascale simulation would use. There does not appear to be any on-going work on 
adapting IBM's High Performance Computing Toolkit to exascale systems. 

Latest version/release: 

3.8.4 Paraver 

Paraver [154] is a very configurable visualization and analysis tool, which was developed to 
have a qualitative global perception of an application's behaviour by visual inspection. 
Expressive power, flexibility and the capability of efficiently handling large traces are key 
features addressed in the design of Paraver. Its power is based on two main pillars. Firstly, its 
trace format has no semantics, so extending the tool to support new performance data or new 
programming models requires no changes to the visualizer. Secondly, the metrics are not 
hardwired within the tool but are instead instrumented on the fly. To compute these, the tool 
offers a large set of time functions, a filter module, and a mechanism to combine two time 
lines. This approach allows for the displaying of a huge number of metrics. Paraver is aimed 
at any kind of cluster. The tool can analyse traces from very different kind of systems, 
including GPUs or Xeon Phi.  

Extrae [155] is the package used to generate trace files, which are often subsequently analysed 
by Paraver. Extrae is a tool that uses different interposition mechanisms to inject probes into 
the target application so as to gather information regarding the application performance. The 
Extrae instrumentation package can instrument a wide range of parallel programming models, 
including MPI, OpenMP, CUDA, pthreads or OmpSs. 

Paraver shows potential for getting real performance data from multi-petascale systems, as it 
has already been proved in large Tier-0 systems. Indeed, similar performance should be 
obtained in future exascale systems. These tools have been demonstrated to be very useful for 
performance analysis studies within the European exascale DEEP project, giving much more 
details about the applications behaviour than most performance tools. Within DEEP, Extrae 
has been ported to the Intel MIC, and both Extrae and Paraver have been used to understand 
the performance behaviour of the project applications [156].  

Latest version/release: Paraver v4.4.0 
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3.8.5 IPM 

The Integrated Performance Monitoring (IPM) tool [157] is a lightweight profiler. It is easy to 
use and it is not intrusive as some of its features are a small memory footprint and low CPU-
usage. The low overall cost of using IPM can be illustrated by the fact that NERSC has 
collected more than 310K batch job performance profiles over a 6 years period by the use of 
IPM on their machines. IPM is open source, portable and it has been installed on several 
PRACE systems. Currently IPM is undergoing a redesign in the name of IPM2. The new 
version is enabled for OpenMP and file I/O. Support for MPI-IO, CUDA GPU and network 
interface counts for Infiniband hardware is under development. 

IPM was used in PRACE PP on the application ECHAM5 as part of the investigation for the 
initial PRACE Application Benchmark Suite [99]. The profiling of ECHAM5 has the peculiar 
finding of showing faster computation when IPM is used compared to a computation where it 
is not used at low core count (2916 cores and 3600 cores). IPM has been installed on at least 
five sites in PRACE [99]. 

The ease of use and its portability make IPM an attractive starting point for any type of 
profiling. With the new features planned for IPM2, the tool shows potential for being 
applicable to applications on future multi-petascale and exascale systems [158].  

Latest release/version: v0.983  

3.8.6 OpenSpeedShop 

OpenSpeedShop [159] is an open source multiplatform Linux performance tool targeted at 
performance analysis of applications running on both a single node and on large-scale IA64, 
IA32, EM64T, AMD64, IBM Power PC, Cray, and IBM Blue Gene platforms. 
OpenSpeedShop operates on existing application binaries, so there is no need to recompile the 
application being analysed. OpenSpeedShop uses both statistical sampling and traditional 
tracing techniques to record performance information. OpenSpeedShop is targeted at 
performance analysis of applications running on both a single node and on large-scale 
platforms [160]. 

According to information published by The Krell Institute, the “current version of 
OpenSpeedShop does not scale to the necessary level needed for BG/Q machines”.  The Krell 
Institute is working on addressing the scalability of OpenSpeedShop [161]. 

OpenSpeedShop has been installed on supercomputers at a number of laboratories in USA, 
such ANL, LLNL, and Sandia NL. No evidence has been found for the use of 
OpenSpeedShop within PRACE, except in tutorials.  
 
Latest release/version: v2.02 

3.8.7 PAPI 

PAPI provides the tool designer and application engineer with a consistent interface and 
methodology for use of the performance counter hardware found in most major 
microprocessors. PAPI enables software engineers to see, in near real time, the relation 
between software performance and processor events [162]. 

PAPI runs on most modern processors and operating systems of interest to HPC, including 
IBM POWER4-7, Cray XT{3-6}, XE{5,6}, IBM Blue Gene, x86_64 (Intel, AMD), ARM, 
MIPS, UltraSparc I, II & III, Intel Xeon Phi. PAPI is being used on all major supercomputers 
and by many performance tools.  
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PAPI was used by the authors of the PRACE-1IP report “CP2K – Scalable Atomistic 
Simulation for the PRACE Community”, where they tested the CP2K code on the PRACE 
CURIE supercomputer [163].  

PAPI is a cross-platform interface to the hardware performance counters available on modern 
microprocessors and it does not contain the mechanisms for collecting this information across 
the many thousands of processes that a petascale simulation may run on. This task is left for 
profiling tools that make use of PAPI. PAPI is the underlying API for many open-source 
performance tools, such as TAU, Scalasca, and Vampir. It is has therefore been widely used 
on multi-petascale systems to date. 

Latest release/version: v5.1.0 

3.8.8 Temanejo/Ayudame 

Temanejo is an extensible, scalable debugger for the StarSs/OmpSs programming model, 
whereas Ayudame is a library, which communicates between the StarSs/OmpSs runtime and 
Temanejo [164]. The tool is aimed at any kind of cluster. It is intended for exascaling 
applications, thus for large-scale systems. As of today, all the work related to 
Ayudame/Temanejo has only been implemented in the TEXT project and Mont-Blanc project 
[165].  

Latest release/version: v5.1.0 
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4 Scalable Libraries and Algorithms 

In this section, we characterize the following scalable libraries and algorithms (hereafter 
referred to as tools) that are of interest to T7.2 in particular, and the European HPC 
community more widely, as we move towards the deep petascale and exascale eras: 
 
• Direct Solvers 
• Iterative Solvers 
• FFT Libraries 
• PETSc 
• Trilinos 
• Zoltan 
• ParMetis 
• PT-Scotch 
• NetGen 
 
For each tool, we provide an overview and discuss the tool’s present state, how it has been 
employed in PRACE to date, how it has been employed more widely, and our views on the 
suitability of the tool for enabling PRACE application codes during the exploitation phase of 
T7.2. 

The list above is roughly divided into three areas of focus, namely scalable numerical 
algorithms/methods (Direct Solvers, Iterative Solvers and FFT Libraries), higher-level 
libraries and other, mesh/graph partitioning, tools NetGen). The list by no means represents 
an exhaustive survey of scalable libraries and algorithms, but rather tries to seek a balance 
between assessing what has been investigated in PRACE to date and what is currently being 
investigated elsewhere (specifically within exascale projects) with the same set of tools. In 
carrying out our assessments we have drawn valuable information from each of the European 
exascale projects, and in particular the CRESTA project [3], which has a significant co-design 
focus. 

As a consequence of the move towards large multi-petascale heterogeneous systems, there is 
an increasing demand for new and improved scalable, efficient, and reliable numerical 
algorithms and libraries that confront existing and upcoming complexities associated with 
such systems, including complex memory hierarchies, the overhead of data movement and 
fault tolerance.  

One such representative library that we would like to mention here, due to the fact that it 
confronts the challenges posed by heterogeneous systems from several different angles, is the 
dense linear algebra MAGMA library [166], the development of which is being led by the 
Innovative Computing Lab (ICL) at the University of Tennessee. During our survey we have 
found that several initiatives in both the development and exploitation of MAGMA have 
already been taken within PRACE, particularly most recently within PRACE 2IP (WP8 and 
WP12). The MAGMA library not only targets new heterogeneous architectures including 
GPUs (and most recently Intel’s Xeon Phi coprocessor), but also employs innovative and 
forward looking methods for reducing the barriers that are faced when trying to scale both 
within and across nodes.  

An interesting effort within MAGMA, which we believe PRACE enablement projects should 
take inspiration from is the substitution of the widely used fork–join model with a higher-
level directed acyclic graph (DAG) model, which goes some way to reducing synchronization 
points, a well known barrier to the scalability of many algorithms. Indeed, as we have found 
from our survey, synchronization avoiding algorithms are being increasingly investigated 
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both within and outside PRACE and we are happy to report on several other initiatives that 
have recently been taken within PRACE in this area.  

A closely related area of research is being actively pursued in the area of communication 
avoiding (CA) algorithms, where global communication, in particular, is known to be a severe 
barrier when trying to scale across large core counts (see reports on FFT libraries in section 
4.3). We report here on how communication avoiding algorithms have been investigated 
within WP12 PRACE-2IP using the PETSc framework [167], which is increasingly being 
employed as a higher-level library for solving PDEs. Indeed, PETSc is representative of the 
type of high-level libraries that are being increasingly leveraged within PRACE applications 
due to the ease of use in harnessing underlying message-passing-based infrastructure.  

Within this section we also report on graph partitioning and mesh generation libraries where 
the former are mostly used for domain decomposition, used by iterative or hybrid solvers, as 
well as for the computation of fill-reducing or block-preserving orderings required by direct 
or hybrid solvers. 

Finally, there are also many issues regarding the reduced reliability of hardware expected to 
have an important impact on libraries and algorithms on the road to exascale. This is certainly 
the case for fault tolerance and resilience. However, these issues are still very new to the 
PRACE community and in general we have not found many examples of initiatives within 
PRACE in this area to date, an issue that we feel needs to be rectified preparing quickly if we 
are to prepare applications for future multi-petascale and exascale machines. 

4.1 Direct Solvers 

4.1.1 Brief overview 

In this report we provide a brief overview of the state of the art in direct linear algebra 
methods, where we cover direct methods for solving both dense and sparse problems. We feel 
that applying a simple metrics table here, as was done in other reports, is a challenging and 
somewhat futile exercise as in most cases it is very hard to sum up metrics such as scalability 
when reporting on such a broad class of algorithms. Instead, where possible, we will provide 
details on metrics when discussing the individual libraries and algorithms that we report on 
throughout. We focus first on dense linear algebra solvers and then on sparse solvers.  

Dense solvers: 

As well as libraries targeted at multi-/many-core platforms, there have been other recent 
initiatives at improving the performance of distributed ScaLAPACK-like libraries, which 
include the ELPA library [168]. ELPA is a new efficient distributed parallel direct eigenvalue 
solver for symmetric matrices. It contains both an improved one-step ScaLAPACK type 
solver (ELPA1) and the two-step solver ELPA2. While ELPA uses the same matrix layout as 
ScaLAPACK [169] the actual parallel linear algebra routines are completely rewritten. 
ELPA1 implements the same linear algebra as traditional solutions (reduction to tridiagonal 
form by Householder transforms, divide & conquer solution, eigenvector backtransform). In 
ELPA2, the reduction to tri-diagonal form and the corresponding back-transformation are 
replaced by a two-step version, giving an additional significant performance improvement.  

ELPA is a Fortran-based MPI-only implementation. Once compiled, ELPA library routines 
can be linked to from C, C++, Fortran. It will thus work both in a single-node, shared memory 
environment, as well as large clusters of separate nodes. ELPA has proven to be a scalable 
and well performing solver for all matrix sizes tested between 2,500 and 100,000 and tests 
have demonstrated good scaling on over 290,000 processor cores on JUGENE [170]. 
Generally ELPA2 is found to be superior to ELPA1 except for small matrix sizes [171]. 
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According to the ELPA website, as of February 2013, a CUDA version of ELPA is in 
preparation in collaboration with NVIDIA [168].  

The MAGMA library [166] is a dense linear algebra library that targets GPUs and more 
recently Intel’s Xeon Phi architecture. It can be called from Fortran and C/C++ code. The 
libraries are a work in progress and not all features are available for all target architectures. 
The most mature version of the library is that targeted at NVIDIA GPUs (MAGMA 1.3), 
which is developed using CUDA. For this version, over 80 hybrid algorithms have been 
developed (a total of 320 routines), including one-sided factorizations, linear system solvers, 
as well as two-sided factorizations and eigenproblem solvers. This version of the library also 
features a subset of BLAS and auxiliary routines in CUDA. MAGMA uses a hybridization 
methodology where algorithms of interest are split into tasks of varying granularity and their 
execution scheduled over the available hardware components. Scheduling can be static or 
dynamic. In either case, small non-parallelizable tasks are scheduled on the CPU, and larger 
more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU. For eigenproblem 
solvers in MAGMA, current results demonstrate that MAGMA with 1 GPU can be 12x faster 
than Intel's MKL on state-of-art multicore systems [172]. A scalable multi-GPU version of 
MAGMA is currently being developed using the StarPU runtime system and is showing very 
promising results [173]. More recently, MAGMA MIC [174] has been developed, which is 
targeted at shared memory systems featuring Intel Xeon Phi coprocessors and includes many 
one-sided factorizations. For a full set of performance results the reader is referred to the 
following report [174]. MAGMA MIC v1.0 (Beta) was released in March 2013, which is an 
update on v0.3 and includes several new functionalities including added multiple MIC 
factorization routines.  

As is to be expected, both Intel and NVIDIA have implemented optimised versions of 
mathematical software, particularly the BLAS and LAPACK libraries within their own 
commercial libraries for their respective many-core offerings. In the case of Intel, all routines 
of interest are available as their libraries are based on the well-known MKL. There are three 
ways in which the MKL libraries may be used:  ‘Host’ - running purely on the host, without 
reference to the Xeon Phi coprocessor, ‘Auto Offload’ - running on the host and automatically 
offloading data for execution on the Xeon Phi and ‘Native’ - running purely on the Xeon Phi. 
In the case of NVIDIA, there are NVIDIA-developed BLAS libraries such as CUBLAS, 
which have demonstrated impressive performance on the new K20 architecture as well third-
party commercial libraries such as CULA [175] and Array Fire [176]. 

Sparse solvers: 

There are in fact not many general purpose distributed memory sparse solvers. SuperLU [177] 
is one of the most widely used direct sparse solvers and performs a LU decomposition for 
large, sparse, symmetric/non-symmetric systems of linear equations on both shared memory 
architectures as well as distributed memory architectures. The library is written in C and is 
callable from either C or Fortran. It is freely available from Lawrence Berkeley National 
Laboratory. While SuperLU_MT is targeted at shared memory parallel machines, 
SuperLU_DIST is designed for large-scale distributed memory systems [178]. 
SuperLU_MT has three major steps including sparsity ordering, factorization that arranges 
partial pivoting, symbolic factorization and numerical factorization which are performed in an 
alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for 
factorization, SuperLU_MT uses BLAS 2.5 with multiple matrix vector multiplications. 
SuperLU_DIST uses static pivoting instead of partial pivoting for numerical stability due to 
numerical pivoting being complicated on distributed memory architecture (this method is in 
contrast to that found in MUMPS [179]). 
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MUMPS [179] is a freely available package with Fortran and C interfaces for solving systems 
of linear equations of the form Ax = b, where A is a square sparse matrix that can be either 
unsymmetric, symmetric positive definite, or general symmetric on distributed memory 
computers. MUMPS implements a direct method based on a multifrontal approach, which 
performs a LU factorization in the unsymmetric case and a LDLT factorisation in the 
symmetric case. MUMPS exploits both parallelism arising from sparsity in the matrix A and 
from dense factorizations kernels. The main features of the MUMPS package include the 
solution of the transposed system, input of the matrix in assembled format (distributed or 
centralized) or elemental format, error analysis, iterative refinement, scaling of the original 
matrix, out-of-core capability, parallel analysis, detection of null pivots, basic estimate of rank 
deficiency and null space basis for symmetric matrices, and computation of a Schur 
complement matrix. MUMPS offers several built-in ordering algorithms, a tight interface to 
some external ordering packages such as METIS [180], and the possibility for the user to 
input a given ordering. Finally, MUMPS is available in various arithmetics (real or complex, 
single or double precision). A parallel analysis and an out-of-core functionality are also 
available. The parallel version of MUMPS requires MPI, BLAS, BLACS, and ScaLAPACK, 
but it has its limitations: MUMPS itself is parallelized only using the MPI model. Hybrid MPI 
with threading parallelization is available via shared memory BLAS implementations, but 
MUMPS does not currently include any explicit hybrid parallelization targeted at 
heterogeneous systems. 
 
Latest release/version: LAPACK 3.4.2, ScaLAPACK 2.0.2, PLASMA 2.4.6, and MAGMA 
1.3, MUMPS v4.10.0, SuperLU v4.3, ELPA v2013.02.BETA 

4.1.2 Evidence of use within PRACE 

In the PRACE-1IP whitepaper, ‘Numerical Library Eigensolver Performance on PRACE 
Tier-0 Systems’ [171], the parallel performance of several established as well as newly 
developed parallel dense symmetric eigensolver numerical library routines on PRACE Tier-0 
systems are analysed. The performance results from the new ELPA software package are 
particularly impressive. Not only are the routines significantly faster than their ScaLAPACK 
counterparts, but also the scalability is better throughout. A two-fold to three-fold advantage 
in performance rendered by ELPA over ScaLAPACK was measured on both JUGENE and 
CURIE for a range of problem sizes, which would likely impact the performance of many 
PRACE applications significantly. Moreover, as the authors of the whitepaper point out, 
ELPA is also designed to be a ‘drop-in’ substitute for ScaLAPACK e.g., it uses the same 
block-cyclic data distribution and therefore applying it to application codes with existing 
ScaLAPACK interfaces should be straightforward. The authors also point out that at this stage 
it is not clear which of the two ELPA eigensolvers performs best, though a pattern evident in 
these benchmarks is that the one-stage solution performs best on smaller datasets whilst the 
two-stage approach scales better and is more efficient on larger test cases 

In work produced recently in PRACE-2IP and reported on in D12.2 ‘Exploration of Scalable 
Numerical Algorithms’ [181] and written in collaboration with the Innovative Computing Lab 
at the University of Tennessee ‘A Hybrid Hermitian General Eigenvalue Solver’ reports on 
the development of single node hybrid general eigenvalue solvers where development and 
testing was carried out on the Castor cluster at CSCS (Each node is a dual 6-core Intel Xeon 
5650 with two NVIDIA M2090s). Results of the hybrid algorithms compared with a shared 
memory library (MKL) and a distributed memory library (ELPA) show that for the two 
algorithms investigated (one- and two-sided algorithms), the MAGMA implementations 
outperform both the MKL and ELPA libraries on a single node by factor of 2x-3x. 
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In WP12 PRACE-2IP there have been several projects to improve direct solvers, including 
SuperLU, which are reported on in deliverable D12.2 [181] in PRACE-2IP. Work on 
developing a hybrid SuperLU algorithm utilizing the MPI/OpenMP hybrid programming 
approach as well as investigations into porting SuperLU to GPUs are reported in PRACE-2IP 
deliverable 12.2. It is expected that the hybrid algorithm utilizing the MPI+X programming 
model within SuperLU_MCDT (Many Core Distributed) by ITU-UHeM [182] to solve large 
sparse linear systems will reduce the communication overhead associated with MPI so that 
better scalability can be achieved. 

4.1.3 Evidence of use outside PRACE 

The MAGMA libraries are increasingly being used within petascale codes both within and 
outside PRACE. A very large selection performance tests for various subroutines are 
available on the MAGMA websites [166]. 

Interesting work has recently been carried out at Lawrence Berkley Lab into developing an 
alternative hybrid solver to SuperLU (PDSLin) [183]. The developers of PDSLin point out 
that for small system sizes, a direct solver such as SuperLU can be employed to obtain an 
accurate solution as long as the condition number is bounded by the reciprocal of the floating-
point machine precision. However, SuperLU scales effectively only to hundreds of processors 
or less. In PDSLin, the SuperLU_DIST 2.4 is used as a direct solver for interior subdomains 
and the Schur complement systems are solved using a preconditioned Krylov method in 
PETSc. It was shown in [183] that PDSLin significantly outperforms SuperLU_DIST on high 
core counts (2048 cores). 

4.1.4 Conclusion 

In terms of dense solvers, we feel that ELPA shows real promise and should be further 
investigated as an alternative to ScaLAPACK within PRACE applications. We also believe 
that MAGMA is one of the most promising libraries containing dense direct solvers with 
impressive performance and indications of long-term sustainability. The library targets all 
accelerators/coprocessor architectures and is also fully portable in its OpenCL form. 
Distributed-memory versions of the library are also currently in progress and should be 
investigated as alternatives to ScaLAPACK, possibly during the exploitation phase of T7.2 

In terms of sparse solvers, MUMPS appears to be a very robust and efficient direct solver for 
medium-sized distributed or centralized sparse linear systems arising for instance from 
discretization of PDE problems. Regarding large-scale problems, MUMPS will not be usable 
as a standalone solver of the original linear system. However, MUMPS will still be a very 
important tool for the robust and efficient solution of auxiliary medium-sized distributed and 
centralized sparse linear systems arising in higher level methods like FETI domain 
decomposition methods, and will in turn extend their scalability. MUMPS has many unique 
features such as the detection of null pivots, rank deficiency, etc. that can be very helpful in 
higher level scalable methods. While both SuperLU_DIST and SuperLU_MCDT show 
promise as dense sparse solvers, like all the other libraries mentioned here, improvements, 
such as synchronization reduction, data movement minimization and fault tolerance need to 
be included in the library in order for SuperLU_MCDT to enable applications on future multi-
petascale and exascale systems. 
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4.2 Iterative solvers 

4.2.1 Brief overview 

In this report we provide a brief overview of the state of the art in iterative methods. For the 
same reasons as were applied to direct solvers, we will only provide details on metrics when 
discussing the individual algorithms that we report on throughout.  

Iterative algorithms have become the de-facto approach for the solution of sparse linear 
systems of equations on large-scale parallel systems due to their amenability to 
parallelization. All iterative algorithms used for the solution of linear systems require a 
number of global synchronization operations (e.g., MPI_ALLREDUCE) for computing global 
scalars as well as a number of local synchronization operations due to the point-to-point 
communications incurred by the sparse matrix-vector operations. These local and global 
synchronization operations create barriers beyond which computation cannot proceed until all 
participating processors have reached that point. 

The most prominent iterative method for solving sparse systems of linear equations is the 
Krylov subspace method [184]. There are many different variants of the method (CG, Bi-CG, 
GMRES, etc), so that almost any system of linear equations can be approximately solved. 
However, in cases where the condition number of the matrix involved in the system of 
equations gets too large or the matrix becomes nearly ill conditioned, Krylov methods tend to 
be very slow in convergence. This lack of robustness makes it less likely that Krylov methods 
can be used in isolation within real applications. The common solution to this problem is the 
use of preconditioning. Unfortunately, finding a good preconditioner to solve a given sparse 
linear system is often viewed as a combination of art and science. There are many varieties of 
preconditioners to choose from including ILU, Jacobi, SOR, and SSOR precondtioners [184]. 

Libraries that provide robust collections of iterative methods as well as associated 
infrastructure (e.g., preconditioners) are becoming increasingly popular within and outside 
PRACE. PETSc [167], Trilinos [65] and Hypre [185] are particularly representative of such 
offerings. PETSc and Trilinos are high-level libraries for solving PDEs and multi-physics 
problems that consists of many different variants of Krylov subspace-based solvers. Due to 
them both being particularly high-level, we provide a separate report on each in section 4.4 
[185] and section 4.5 respectively.  

Hypre [185] is a library for solving large, sparse linear systems of equations on massively 
parallel computers. The main features of this library include scalable preconditioners (several 
families of preconditioned algorithms focused on the scalable solution of very large sparse 
linear systems) and the implementation of a suite of common iterative methods (Krylov-
based). With exascale in mind, the developers of Hypre have begun to focus on a hybrid 
(MPI/OpenMP) programming model for BoomerAMG which is an Algebraic MultiGrid 
(AMG) method [186] within Hypre that has garnered a lot interest and has been investigated 
both within PRACE and within European exascale projects (CRESTA) recently [187]. 

Other high level libraries that are explicitly mentioned in the ESSI ‘Working Group Report on 
Numerical Libraries and Algorithms’ [188] that we would like to mention briefly here are: 

 DUNE, the Distributed and Unified Numerics Environment [189] is a modular toolbox 
for solving partial differential equations (PDEs) with grid-based methods. It supports 
the easy implementation of methods like Finite Elements (FE), Finite Volumes (FV), 
and also Finite Differences (FD). 

 FEAST, Finite Element Analysis and Solution Tools with significant exploitation of 
CPU/GPU computing [190].  
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 deal.II, a C++ program library targeted at the solution of PDE’s using adaptive finite 
elements. Hybrid parallelization by MPI and Intel’s Threading Build Blocks (TBB). 
For its creation, the principal authors of Deal.II received the 2007 J.H. Wilkinson 
Prize for Numerical Software [64]. 

 MLD2P4/PSBLAS. These two tightly related projects provide parallel sparse matrix 
tools, Krylov solvers for linear systems and algebraic multilevel preconditiones in 
Fortran 95/2003 [191]. 

As well as solving systems of linear equations it should also be pointed out that iterative 
solvers are used to solve large sparse eigenproblems where only a small number of 
eigensolutions are required with respect to the matrix size. There are several MPI-based 
iterative eigensolvers, including PARPACK [192] and more recently, SLEPc [193]. SLEPc is 
a particularly interesting example as it is built on top of PETSc and leverages much of its 
infrastructure. Indications are that in most cases SLEPc outperforms PARPACK and has a 
broader selection of algorithms to choose from due to its underlying structure being based on 
PETSc [194]. 

4.2.2 Evidence of use within PRACE 

A significant amount of “forward-looking” investigations into iterative algorithms was carried 
out recently in WP12 PRACE-2IP within the task ‘Exploration of Scalable Numerical 
Algorithms’. In the project, ‘Asynchronous Algorithms for Large Sparse Linear Systems’, 
reported on within PRACE-2IP Deliverable D12.2 [181], investigations were made into 
asynchronous implementations of the Jacobi method, where one traditional synchronous and 
two asynchronous variants of the method were implemented using three programming 
models: MPI, SHMEM and OpenMP, and where the performance of these implementations 
was investigated on HECToR. Results showed that SHMEM can provide a more efficient 
implementation of asynchronous message-passing than MPI, and that for problems that 
require high core counts, asynchronous algorithms can outperform their synchronous 
counterparts by 10%. The authors of the report point out that the OpenMP implementation 
was found to give good performance for asynchronous algorithms and was also very easy to 
program compared to MPI and SHMEM. The authors also suggest that OpenMP might be 
applicable in a hybrid model with MPI, particularly since they found that the asynchronous 
implementation of the Jacobi method in OpenMP to be 33% faster than the synchronous 
equivalent. The authors also point out that asynchronous algorithms are expected to be more 
tolerant to faults, which could be a major advantage when designing applications on the road 
to exascale. 

In a separate project reported on in PRACE-2IP Deliverable D12.2 [181] ‘Implementation 
and Performance Evaluation of the CA-CG Algorithm on Massively Parallel HPC Clusters’ 
investigations were carried out into an emerging class of communication-avoiding Krylov 
subspace (Conjugate Gradient [CG]) methods which seek to reduce the amount of global 
synchronization points within iterative methods. The investigations were carried out by 
evaluating the feasibility of implementing the ‘CA-CG’ algorithm and testing its overall 
performance on a set of benchmark platforms. The framework used for the implementation of 
the algorithm was the one provided by PETSc (reported on section 4.4 PETSc) and 
performance comparisons were made between the standard CG algorithm and the 
communication-avoiding version of the algorithm within the PETSc library. The two 
algorithms were tested on a selected set of sparse positive definite matrices taken from the 
UFL [195] database, where calculations were carried out on the PLX and FERMI clusters at 
CINECA. The authors report that in many cases, non-negligible increases in performance 
were found.  
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Finally, in the PRACE-1IP whitepaper, ‘Parallel Solvers for Incompressible Navier-Stokes 
Equations and Scalable Tools for FEM Applications’ [196] the Hypre library was tested on 
variants of 1D, 2D and 3D domain partitioning for the 3D test problems of computational 
fluid dynamics (CFD) where the Algebraic MultiGrid (AMG) method BoomerAMG within 
Hyper was employed. For more details on the performance obtained, including scalability, the 
reader is referred to the whitepaper. 

4.2.3 Evidence of use outside PRACE 

Research into iterative methods is a huge area of activity and we do not in any way attempt to 
provide a global picture of all of the efforts being pursued within the confines of this report. 
Suffice to say that one increasing area of focus is on communication avoiding iterative 
algorithms as has been evidenced by the recent exploratory work carried out within WP12 
PRACE-2IP. Such algorithms are the focus of recent investigations at Intel’s ExaScience Lab 
[81] where very recently [197], a pipelined version of the GMRES algorithm was derived in 
which the communication cost can be hidden by using non-blocking all-reduce operations. At 
the time of publication (April 2012) it was noted by the authors that no complete 
implementation of the MPI 3.0 standard was available (the standard had not been published at 
that stage), so technical hurdles meant that the pipelined version of GMRES was only 
investigated by using an analytical performance model which predicted that speedups of 3.5X 
for the pipelined algorithm compared to the standard GMRES, for solving a problem with 
N=20003 unknowns on 200,000 nodes could be achieved. A detailed investigation of the 
impact of global communication latency on Krylov methods at extreme scales has also been 
reported by the same group [198]. 

We do not attempt to report here in any great detail on preconditioners (which are closely 
associated with iterative methods), but as pointed out in D4.1.1 of the CRESTA project [187] 
the new theory of hierarchical matrices (H-Matrix method [199]) promises to be one of the 
most interesting ways of finding effective preconditioners for iterative methods. There are 
several libraries for solving these systems of linear equations using ‘H-Matrix’ methods on 
shared memory systems (according to CRESTA developers, H-Libpro [200] is the one of the 
best implementations). Currently, work is underway to develop an H-matrix library that uses 
MPI. The CRESTA project, also wants to try to apply this new theory to solve systems of 
linear equations. 

Work at the University of Utah demonstrated that the use of the direct solver library, Hypre, 
combined with the Uintah Software framework [201] to solve incompressible fluid flow 
problems resulted in “better than expected” weak scaling [202]. The tests were run on the 
Kraken Cray XT5 system made up of 112896 2.6 GHz AMD Opteron cores, and the Titan 
Cray XK6 system, with 299,008 cpu cores and 18,600 GPUs, as well as Titan’s predecessor 
Jaguar (Cray XT5). On the Jaguar system, a Weak Scaling Taylor Green Vortex showed the 
time per iteration increased from 1s with 192 cores to 5s with 196k cores. The Titan system 
for the same test (CPU cores only) showed the time per iteration increased from 1s with 192 
cores, to roughly 1.5s with 131k cores. In both cases, weak scaling was seen to be quite 
successful, especially when run on Titan. On the Kraken, a linear solver and red-black Gauss 
Seidel were run with a variety of hypre options for a Helium plume. These results showed that 
with the correct Hypre options, scalability on the order of log(p) was achievable where p is 
the number of cores. 
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4.2.4 Conclusion 

Iterative methods, particularly Krylov subspace-based methods are fundamental algorithms to 
many PRACE applications and have therefore received a considerable amount of attention 
within PRACE projects to date. Very interesting exploratory work into communication 
avoiding Conjugate Gradient algorithms has recently been carried out in WP12 PRACE-2IP 
and is an active focus of research in many exascale projects in both Europe and the US. With 
new implementations of the MPI 3.0 standard available (and on the horizon), which now offer 
non-blocking communications, there is good reason for PRACE partners to investigate these 
forward looking algorithms in more detail during the enablement of applications on PRACE 
systems in T7.2. 

4.3 FFT Libraries 

4.3.1 Brief overview 

The FFT method is fundamental to many PRACE applications. In practice most codes that 
perform FFTs perform transformations on large multi-dimensional datasets. In this case it is 
convenient to implement the overall transform as a series of data redistributions between 
different data decompositions with each of the active dimensions in turn being local to a node. 
Between each of the redistributions the local active dimension is transformed using a non-
distributed FFT library. The convenience of this approach is that it allows distributed FFT 
implementations to be built out of optimized single node FFT libraries and highly optimized 
MPI collectives. However, in common with all implementations, the overall performance is 
largely limited by data movements. Many highly optimized node-local FFT libraries exist (see 
below). However, for distributed memory applications the performance of the inter-node data 
communications is far more significant for overall performance than the performance of the 
underlying node-local FFT library, so the choice of which underlying FFT library is largely 
irrelevant and the performance of the MPI collectives dominate the performance.  

Although multi-node FFT libraries do exist (and have been investigated within PRACE), most 
applications do not employ them. Instead, each application implements multi-node FFTs out 
of a combination of node-local FFT libraries and MPI collectives. Most of the multi-node 
FFT libraries only support a limited range of input and output data decompositions that 
typically don’t correspond to the data decompositions required by the real application (an 
exception to this rule is the DaFT library [203] within DL_POLY which has been investigated 
within PRACE-1P). Such implementations also typically have no performance advantage 
over what is generally obtained by application specific implementations built out of the same 
underlying libraries. Most applications use the collective call MPI_ALLTOALL due to the fact 
that this global communication pattern is known by all participating processors, allowing 
greater scope for optimisation. The MPI_ALLTOALLV collective allows greater flexibility 
in data decomposition and may be used by applications where load imbalance considerations 
are more important than the absolute performance of the FFT. 

There are several popular FFT libraries that we report on briefly here: 

FFTW [204] is a freely available library callable from C and Fortran codes for computing the 
discrete Fourier transform (DFT) in arbitrary dimension, of arbitrary input size, and of both 
real and complex data. It works best on arrays of sizes with small prime factors, with powers 
of 2 being optimal and large primes being worst case. FFTW, being free software, is the FFT 
library of choice for most applications, as its performance is claimed to be typically superior 
to that of other publicly available FFT software, and is even competitive with vendor-tuned 
codes (to justify its name "Fastest Fourier Transform in the West") but in contrast to the latter 
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FFTW is portable. FFTW makes use of several variants of the Cooley–Tukey FFT algorithm, 
Rader's, Bluestein's and prime-factor FFT algorithms. It supports SSE/SSE2/Altivec, since 
version 3.0. and since version 3.3.1 supports AVX and ARM Neon. In the investigated 
version (3.3.1), which is the first version to support parallel MPI 3D FFTs, only slab 
decompositions were supported. 

FFTW is portable to any platform with a C compiler. It is not tuned to a fixed machine; 
instead, it uses a planner to adapt its algorithms to the hardware in order to maximize 
performance. 

The recent upgrades of FFTW include: 

 Adapting the number of cores involved in the DFT execution to the size of the index 
involved in the domain decomposition (especially useful in 2D DFT problems); 

 Domain decomposition algorithm 2DDD instead of Slab (scaling N3 vs. N with the 
system size) for 3D arrays, thus providing a nearly ideal scalability at least up to 
several thousands of cores (also for relatively small data arrays);  

FFTW has been shown to perform very well on 1024 cores within PRACE [205]. 

FFTE [206] is a freely available FORTRAN (77 and 90) subroutine library (callable from C 
and Fortran) for computing the FFT in one, two and three dimensions. It includes complex, 
mixed-radix and parallel transforms. FFTE is open source, highly portable, but comes with 
little documentation. The developers claim it is typically faster than other publically available 
FFT implementations, and is even competitive with vendor-tuned libraries. The assessed 
version (v5.0) supports both slab and pencil decompositions. FFTE also supports Intel’s 
SSE2/SSE3 instructions.  

FFTE is targeted at shared and distributed memory parallel computers. (OpenMP, MPI and 
OpenMP/MPI) but efforts on performance improvement are highly desirable due to the fact 
that, in general, FFT libraries do not scale well beyond a few hundred cores. Also, the index 
involved in the parallel domain decomposition may impose a limit on the maximum number 
of usable cores. FFTE does not scale as well as FFTW but outperforms FFTW in absolute 
computing time [205]. 

There are also several GPU-based FFT libraries worth mentioning, including NVIDIA’s 
cuFTT. The NVIDIA CUDA Fast Fourier Transform library (cuFFT) provides a simple 
interface for computing FFTs up to 10x faster than the MKL as reported on the NVIDIA 
developer website [207] DiGPUFFT [208] adds cuFFT support inside of P3DFFT, for GPU-
accelerated 3D FFT computations. It has only been tested with P3DFFT 2.4 and CUFFT from 
CUDA Toolkit 3.2 and is reported on within the PRACE-1IP whitepaper, ‘An Analysis of 
FFT Performance in PRACE Application Codes’ [205] ,which indicates that except for large 
sized dimensions the benefits of using a GPU-based distributed FFT implementation are 
currently negligible. 

Latest release/version: FFTE: 5.0, FFTW: 3.3.3, cuFFT: available as part of the CUDA 5.0 
Toolkit. 

4.3.2 Evidence of use within PRACE 

The PRACE-1IP whitepaper, “An Analysis of FFT Performance in PRACE Application 
Codes” [205] reports on the assessment of the suitability, performance and scalability of 
various implementations of FFT for large-scale PRACE applications including Quantum 
ESPRESSO and DL_POLY. The FFTs investigated are both in-code implementations 
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(typically distributed) as well as various third-party numerical libraries, where in both cases 
underlying algorithms were implemented in both serial and parallel form. The 
implementations of FFTs investigated range from pure MPI, OpenMP versions for multicore, 
hybrid (MPI/OpenMP) as well as GPU-based implementations. The overall conclusion is that 
the scalability of parallel 3D FFTs remains inherently limited, owing to the all-to-all 
communications involved. Likewise the variety of data decompositions supported by the 
available libraries is also limited. 

The PRACE-1IP whitepaper, “Enabling FFTE Library and FFTW3 Threading in Quantum 
ESPRESSO” [209] reports on the work that was carried out on enabling support for the FFTE 
library for the main FFT operation in Quantum ESPRESSO, as well as enabling threading 
support for the FFTW3 library already supported in Quantum ESPRESSO. The work on 
enabling these libraries was motivated by the excellent performance results of the FFTE 
library described in [205] and by the expectation that the hybrid approach with FFTW3 in 
Quantum ESPRESSO would achieve better performance compared to the existing MPI 
implementation. However, this expectation could not be confirmed. In the case of the FFTE 
extension, a performance benefit may only be significant when a large charge density mesh is 
required by the physical system. The QE FFTW3 hybrid explicit and implicit extensions 
illustrated better performance compared to the internal QE FFTW hybrid approach, but were 
shown to be perform worse than the pure MPI version. It is suspected that the overhead 
related to thread management outweighs the benefits of reduced MPI communication, up to a 
certain number of MPI processes. However, this situation may change dependening on the 
configuration of the problems analysed. 

More recently in WP12 PRACE-2IP, the whitepaper, ‘Autotuning of the FFTW Library for 
Massively Parallel Supercomputers’ [210], reports on the work on improving the performance 
of the FFTW library by refining its auto-tuning mechanisms. The major bottlenecks of the 
current FFTW implementation are identified, as well as the influence of the domain 
decomposition algorithms on the performance. An improved performance of the autotuning 
mechanism is achieved by a new parallel domain decomposition, which is detailed further in 
the whitepaper. 

4.3.3 Evidence of use outside PRACE 

The European exascale project, CRESTA, has carried out investigations into FFT libraries 
and suggests that the ultimate limiting factor in the performance of the distributed FFT 
operation is the performance of the MPI_ALLTOALL operation and this is in turn limited by 
non-pipelined message latencies. The CRESTA team point out that, in principle, it is possible 
to use single sided communications to overlap some of the data movement with the 
calculation of the local FFTs. However this requires the use of many small messages and 
would therefore also be very sensitive to communication latency. For the IFS and GROMACS 
co-design application, CRESTA has undertaken some detailed scalability analysis and these 
codes currently require MPI_ALLTOALL calls that consume an increasing fraction of time as 
the core count or model complexity increases. The non-blocking collectives that will be 
developed and implemented in later phases of the CRESTA project are likely to help with this 
issue. One particular approach that is currently under investigation is changing algorithms to 
use single-sided non-blocking communication that CRESTA expect will give opportunities 
for increased scalability [187]. 
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4.3.4 Pros and Cons 

  Pros Cons 
Scalability FFTW 

Better scalability with MPI-
ony implementation than 
FFTE 

Only scales to a few 
thousand cores at most 

FFTE 
In all hybrid combinations 
scales better than in pure MPI 
(CURIE) 

Only scales to a few 
thousand cores at most 

Performance FFTW Shows excellent scaling on 
JUGENE 

Hybrid performance is still 
considerably poorer than 
MPI-only version 

 FFTE Implemented in QE, FFTE 
library slightly outperforms 
FFTW3 for different number 
of MPI processes, the 
difference diminishing for 
higher number of MPI 
processes; 
The FFTE serial mode 
performance benefit could be 
significant for large charge 
density meshes. 

 

Productivity FFTW Library calls that are easy to 
implement. Callable from 
Fortran and C code. Wrappers 
and bindings exist for many 
other languages 

 

 FFTE Library calls that are easy to 
implement. Callable from 
Fortran and C code 

 

Sustainability FFTW 
On-going further 
development (new versions) 
with new features. Active 
community 

- 

 FFTE  
Last release is from Nov. 
2011. Long term support 
for library is unclear 

Correctness FFTW  
- 

 FFTE  - 
Portability FFTW 

Any platform with a C 
compiler; both C and 
FORTRAN interfaces 

- 
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 FFTE 
Highly portable 

 

Availability FFTW 
Free software. Extensive 
documentation 

- 

 FFTE 
Open source Almost no documentation 

Resilience  
- - 

 

4.3.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes 

 

4.3.6 Conclusion 

As the CRESTA investigations into FFT methods point out, the major bottleneck in 
distributed FFT implementations is the MPI_ALLTOALL communication overhead, which 
becomes particularly problematic on large core counts. This problem can be alleviated 
somewhat by using hybrid MPI+OpenMP methods, but further optimisations are badly 
needed, as FFTs form the basis of many popular applications running on large-scale PRACE 
systems. In order to push FFT methods further along the road to exascale, we agree with 
CRESTA that further investigations should be made into non-blocking collective 
communications within in-code FFT implementations, possibly via the new MPI 3.0 standard 
features now becoming available. If FFT methods are to be investigated further in T7.2, we 
recommend that PRACE partners work closely with CRESTA and other European exascale 
projects to learn more about how their efforts in this area are progressing and if any non-
blocking implementations are ready to be exploited in real applications. 

4.4 PETSc 

4.4.1 Brief overview 

PETSc [167] the Portable, Extensible Toolkit for Scientific computation, provides sets of 
tools for the parallel (as well as serial), numerical solution of PDEs that require solving large-
scale, sparse nonlinear systems of equations. PETSc includes nonlinear and linear equation 
solvers that employ a variety of Newton techniques and Krylov subspace methods. PETSc 
provides several parallel sparse matrix formats, including compressed row, block compressed 
row, and block diagonal storage. The table below gives an overview of the main numerical 
components of the PETSc library. PETSc is designed to facilitate extensibility. Thus, users 
can incorporate customized solvers and data structures when using the package. PETSc also 
provides an interface to several external software packages including BlockSolve95, ESSL, 
Matlab, ParMeTis, PVODE, and SPAI. PETSc is fully usable from Fortran, C and C++, and 
runs on most UNIX based-systems. PETSc has several features that make it very convenient 
for the application programmer. Users can create complete application programs for the 
parallel solution of nonlinear PDEs without writing much explicit message-passing code 
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themselves. Parallel vectors and sparse matrices can be easily and efficiently assembled 
through the mechanisms provided by PETSc. Furthermore, PETSc enables a great deal of 
runtime control for the user without any additional coding cost. The runtime options include 
control over the choice of solvers, preconditioners and problem parameters as well as the 
generation of performance logs. PETSc supports MPI, shared memory pthreads, and NVIDIA 
GPUs. 

PETSc consists of a series of libraries that implement the high-level components required for 
linear algebra in separate classes: ‘Index Sets’, ‘Vectors’ and ‘Matrices’; ‘Krylov Subspace 
Methods’ and ‘Pre-conditioners’; and ‘Non-linear Solvers’ and ‘Time Steppers’. The Vector 
and Matrix classes represent the lowest level of abstraction and are the core building blocks of 
most of the functionalities. PETSc uses a MPI/OpenMP/Pthreads model where the Krylov 
subspace methods and the pre-conditioners have not been threaded explicitly, but are instead 
threaded implicitly through the ‘Mat’ and ‘Vec’ classes. Other frequently used pre-
conditioners, such as Symmetric Over Relaxation (SOR) or Incomplete LU-decomposition 
(ILU), have not been threaded yet due to their complex data dependencies. These may require 
a redesign of the algorithms to improve parallel efficiency. 

PETSc is part of many high-level application codes like FLLOP, libMesh, Deal.II, 
PETScFEM, OpenFVM, OOFEM, etc. 

Latest release/version: v3.3 

4.4.2 Evidence of use within PRACE 

As well as being leveraged by many PRACE application codes, PETSc is also becoming 
increasingly popular as an enablement tool. 

In the PRACE whitepaper, ‘Hybrid Total FETI Method’ [211], an implementation of the 
PETSc library was shown to scale on up to 7700 cores with 75% efficiency. Furthermore, 
within this project, a linear elasticity problem with more than 200 million degrees of freedom 
was solved in 126 seconds. Also, in the whitepaper ‘FETI Coarse Problem Parallelization 
Strategies and Their Comparison’ [212], the PETSc library was used for different strategies 
for the coarse problem solution of an engineering problem with approximately 100 million 
degrees of freedom. The algorithm was tested on up to 5000 cores.  

More recently in WP8 PRACE-2IP, on-going work on the enablement of Fluidity-ICOM, a 
Finite Element ocean modeling software framework, is using the PETSc ‘OpenMP 
development branch’, where the Krylov-based algorithm was tested on up to 32K cores. In 
this work it was found that the sparse matrix vector multiply kernels of the algorithm can 
scale up to 32K cores with up to 85% efficiency on HECToR. This is on-going work and 
further details will become available towards the end of PRACE-2IP. 

4.4.3 Evidence of use outside PRACE 

The PETSc webite [167] provides reasonably good updates on where and how PETSc is being 
used as well as how it is scaling on large-scale machines worldwide. In the CRESTA project, 
PETSc has been studied in detail as part of co-design efforts on the ELMFIRE application. 
The CRESTA developers have analyzed benchmark results on the examples for a matrix size 
of 108x108 to determine the most important challenges of an exascale Conjugate-Gradient-like 
calculation (Bone Matrix was used for the tests). Runtime measurements were carried out on 
the Cray XE6 system at HLRS and calculations were initially done in double precision with 
64-bit representation for the matrix indices. Close to ideal scaling was demonstrated on up to 
9280 cores, but the achieved performance was no more 1.5% of the theoretical peak 
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performance. This was explained by the matrix not consisting of blocks as well as the CRS 
format was not being optimal for the matrix vector multiplication. The increased overhead of 
MPI_ALLREDUCE calls within the iterative algorithm in PETSc is clearly identified as a 
bottleneck as the core count is increased and further work is being currently carried out into 
alleviating such global communication bottlenecks via non-blocking one-sided 
communications [187]. 

4.4.4 Pros and Cons 

Metric Pros Cons 

Scalability Scalability of PETSc library 
was tested on very large 
problems and the library 
scaled up to ten thousands 
cores (processes) with 
negligible lost of efficiency.   

 

Performance Performance depends on the 
algorithm used. But generally 
it is observed that 
performance of algorithms 
implemented in PETSc is 
very good. 

 

Productivity PETSc includes a large suite 
of parallel linear, nonlinear 
equation solvers and ODE 
integrators that are easily 
used in application codes 
written in C, C++, Fortran 
and now Python. PETSc is 
relatively well documented 
and easy to learn. It uses only 
essential level of object 
orientation so that it is 
understandable for 
programmers not used to the 
object-oriented paradigm.  

Documentation of more 
advanced features is 
sometimes very minimal and 
one has to browse through 
the code. 

Sustainability Long-term project with stable 
codebase and rapidly 
evolving development 
branch. Since 1990 
developed by Argonne NL. 
PETSc is part of number of 
SW projects and many of 
projects interface PETSc. 

 

Correctness Good error checking system, 
large test suite 

 

Portability All significant platforms – 
see above 

No information about Intel 
MIC portability 
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Availability Open source, directly 
downloadable software, often 
preinstalled on HPC systems 

 

Resilience Application-specific  

 

4.4.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Development Unknown Yes 

 

4.4.6 Conclusion 

PETSc has strong potential for enabling applications on future multi-petascale and exascale 
systems, but several features expected from exascale libraries need to be implemented in the 
library (communication reducing algorithms, error resilience, fault tolerance etc.) As PETSc 
interfaces with several widely used numerical libraries (MUMPS, Hypre, SuperLU, METIS), 
its scalability is strongly dependent on the scalability of these libraries also. It is interesting to 
note that CRESTA chose the PETSc library as being representative of iterative methods and 
was chosen for further research on exascale co-design efforts. Indications are that PETSc is 
well supported by the DOE in the US and will continue to make inroads on building in 
features that will be important on the road to exascale. 

4.5 Trilinos 

4.5.1 Brief overview 

Trilinos [65] is a collection of packages intended for a solution of large-scale complex 
multiphysics engineering and scientific problems. It is based mainly on C++ and the focus is 
given on modern object-oriented design, modularity and extensibility. Trilinos provides 
packages with basic linear algebra objects and routines, packages for iterative and direct 
solvers; preconditioners; nonlinear, transient and optimization solvers; eigensolvers; 
discretization and mesh generation tools; load balancing tools etc. Some packages also 
provide users with basic tools like I/O support, performance measurement or BLAS/LAPACK 
wrappers. Overall, there are more than 50 packages in Trilinos. Algorithms implemented in 
Trilinos can run in both serial and parallel manner. Although some of the packages lack 
extensive documentation, the core packages are relatively well documented as well as a 
shared memory parallelization using pthreads, Intel TBB and NVIDIA/CUDA. A hybrid 
MPI-shared memory and MPI-GPU parallelization is supported as well. Trilinos has been 
selected by Cray as a part of its ‘Application Developer’s Environment’. The Cray version of 
Trilinos also includes a set of Cray Adaptive Sparse Kernels (CASK) that performs SpMV 
and includes optimized versions of single- and multiple-vector matrix vector multiplies. 
Modern algorithms such as communication avoiding GMRES and communication avoiding 
hybrid-parallel orthogonalization TSQR have been implemented within the latest versions of 
the library (namely to the Belos packages). Fault-tolerant solvers are also in development 
[213]. 

Latest release/version: v11.0.3 
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4.5.2 Evidence of use within PRACE 

Although there have been training events on Trilinos within PRACE, we have found no 
evidence of Trilinos being used in PRACE to date 

4.5.3 Evidence of use outside PRACE 

The Trilinos website [65] provides up-to-date information on where and how the library is 
being used. However, we have found it very difficult to find Trilinos being used in any real 
applications to date. In [214] Trilinos was used for parallel modeling of bone structure on a 
Cray XT system and scaled on up to 4000 cores, with tests being carried out for over one 
billion degrees of freedom.  

4.5.4 Pros and Cons 

Metric Pros Cons 

Scalability The scalability of some 
Trilinos based codes has been 
shown up to thousands of 
cores. 

 

Performance The performance depends on 
the used architecture as well 
as the underlying low level 
LA routines. Generally the 
performance of the Trilinos 
based codes is considered to 
be good. 

 

Productivity The object-oriented design 
and the modularity of the 
code allow a relatively easy 
code development. The most 
important packages are well 
documented. There are 
numerous tutorials on the 
project webpage and 
European Trilinos User 
Groups Meetings are 
organized annualy. 
ForTrilinos provides object-
oriented Fortran interfaces to 
Trilinos C++ packages 

Some packages have poor or 
confusing documentation. 
The high number of packages 
can be confusing. Another 
confusing factor for some 
people may be the object-
oriented design. 

Sustainability Trilinos has been developed 
since 1998 under Sandia 
National Laboratory and is 
one of the most used 
scientific libraries nowadays. 
The changes in API between 
releases are usually not very 
significant and the code is 
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relatively sustainable (when 
compared e.g. to PETSc) 

Correctness -  

Portability Portable to UNIX and 
Windows systems, hybrid 
architectures, NVIDIA 
GPUs. 

 

Availability Downloadable from project 
site. Most packages under 
BSD and LGPL licences. 

 

Resilience -  

 

4.5.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Unknown Unknown Yes 

 

4.5.6 Conclusion 

Although we could not find any evidence of Trilinos being used in PRACE to date, it appears 
to be a very powerful high-level library, which should be of interest to the PRACE 
community. The object oriented and templated design of the packages within Trilinos allows 
relatively easy development of codes for various types of architectures. Many modern 
techniques for improving scalability on future multi-petascale and exascale machines, such as 
communication reducing algorithms, have already been implemented into the framework 
which gives more reason to investigate the library further, possibly during the exploitation 
phase of T7.2. 

4.6 Zoltan 

4.6.1 Brief overview 

Zoltan is a collection of data management services for unstructured, adaptive and dynamic 
applications. It includes a suite of parallel partitioning algorithms, data migration tools, 
parallel graph colouring tools, distributed data directories, unstructured communication 
services, and dynamic memory management tools [215]. The Zoltan Library contains a 
number of tools as listed below: 

 Dynamic load balancing and parallel repartitioning algorithms, including geometric, 
hypergraph and graph partitioning methods. 

 Data migration tools for moving data from old partitions to new one. 
 Parallel graph colouring tools with both distance-1 and distance-2 colouring. 
 Distributed data directories: scalable (in memory and computation) algorithms for 

locating needed off-processor data. 
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Zoltan runs on distributed-memory architectures. Zoltan requires MPI libraries and an ANSI 
C compiler. It has been tested on multiple architectures and is known to scale up to thousands 
of cores. Zoltan colouring algorithms are extended with new recoloring capabilities, providing 
lower numbers of colours at small additional cost. Also Zoltan's hierarchical partitioning is 
improved for better efficiency. Zoltan has support for 64-bit identifiers. Zoltan also can make 
use of ParMeTiS and PT-Scotch. If one chooses to do so, these libraries must be complied 
beforehand and their paths should be supplied to Zoltan during compilation. This feature of 
Zoltan enables a fair and fast comparison of ParMeTiS, PT-Scotch and Zoltan hypergraph 
partitioning tool (PHG). One can also use Zoltan with Fortran applications via the supplied 
interfaces.  

Latest release/version: v3.6 

4.6.2 Evidence of use within PRACE 

Zoltan is already installed as a loadable module on HECToR and has been tested on JUGENE 
and CURIE [216] as well other supercomputing systems [217]. Among the PRACE supported 
applications, Vlasiator [217] uses Zoltan for distributing 3-D spatial grid elements as the 
communication pattern in Vlasiator is best modelled via hypergraph models. 

4.6.3 Evidence of use outside PRACE 

SuperLU_DIST: (Sparse Direct Solver and Preconditioner Distributed memory version) will 
be using Zoltan to perform parallel symbolic analysis to determine the nonzero structures of L 
and U factors [218]]. 

As PageRank [219] [220] is computed via iterative sparse-matrix-vector-multiplication 
operations and since these kinds of operations are best modelled via hypergraphs, Zoltan is 
used in parallel partitioning/distribution/redistribution of PageRank computations. 

In flow simulations [221], as the simulation proceeds, spatial distribution of the computational 
load changes in a transient manner following the change in chemical state, and this change is 
unpredictable over a long interval. Therefore, adaptive schemes are devised by repeated 
partitioning and migration of data. Zoltan is used in these kinds of applications for its 
repartitioning and migration routines. 

4.6.4 Pros and Cons 

Metric Pros Cons 

Scalability Zoltan contains routines for 
partitioning with fixed vertices. 
  

Zoltan data migration codes 
are written in a generic 
mode but thus not 
optimized for very large 
core counts. Data migration 
times in Zoltan can be very 
high.  

Performance Zoltan supports parallel 
hypergraph partitioning thus 
enabling correct communication 
modelling for various 
communication patterns. For 
these kinds of applications, the 

Zoltan has a data-structure 
neutral design and an 
object-based interface, 
which causes extra data 
structure conversion costs 
prior to partitioning, 
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performance obtained from the 
application after partitioning is 
better with Zoltan when 
compared with ParMeTiS or PT-
Scotch. 
 

ordering, colouring 
operations.  
 
 

Productivity Zoltan's data-structure neutral 
design allows it to be used by a 
variety of applications without 
imposing restrictions on 
application data structures.  
 
Its object-based interface 
provides a simple way for 
application developers to use the 
library and researchers to make 
new capabilities available under 
a common interface. 

Can be called from Fortran and 
C code 

 

Sustainability Zoltan is maintained within the 
Trilinos package of Sandia 
National Labs. The tool is 
upgraded periodically and there 
is a strong community behind it. 
Any questions about the tool are 
directly and immediately 
answered by the developers. 

 

Correctness - - 

Portability  Ports to MIC, ARM, and 
GPU are not expected to be 
available anytime soon. 

Availability Zoltan source code and binaries 
are publicly available from 
http://www.cs.sandia.gov/Zoltan/

 

Resilience - - 

Table 40 Zoltan - Pros and Cons 

4.6.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown No 

Table 41 Zoltan - Target systems/architectures 
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4.6.6 Conclusion 

In conclusion, Zoltan with its ease of programming, support for hypergraph partitioning, fixed 
vertices, and colouring, shows potential for enabling applications on multi-petascale systems, 
especially if your applications communication pattern is best modelled via hypergraphs. 
Unfortunately, Zoltan has higher memory usage than other partitioning tools. It has relatively 
high data conversion preprocessing overheads. Its data migration routines seem to be not very 
efficient and they are amenable to improvement. Zoltan lacks support for hybrid systems and 
topology-aware routines. Due to these reasons, the current version of Zoltan seems to be not 
ready for enabling applications on future exascale systems. However, a new release of Zoltan 
is reported to be under development and many of these issues are expected to be addressed in 
this new version. 

4.7 ParMeTiS 

4.7.1 Brief overview 

ParMeTiS [180] is an MPI-based parallel library that implements the multi-level paradigm for 
partitioning and repartitioning unstructured graphs and for computing fill-reducing orderings 
of sparse matrices. ParMeTiS is particularly suited for parallel numerical simulations 
involving large unstructured meshes. In this type of computation, ParMeTiS reduces the time 
spent in communication by computing mesh decompositions such that the numbers of 
interface elements are minimized [222]. 

In particular, ParMeTiS provides the following functionality: 

 Partition unstructured graphs and meshes. 
 Repartition graphs that correspond to adaptively refined meshes. 
 Partition graphs for multi-phase and multi-physics simulations. 
 Improve the quality of existing partitionings. 
 Compute fill-reducing orderings for sparse direct factorization. 
 Construct the dual graphs of meshes.  

ParMeTiS is copyrighted by the Regents of the University of Minnesota. It can be freely used 
for educational and research purposes by non-profit institutions and US government agencies 
only. Other organizations are allowed to use ParMeTiS only for evaluation purposes, and any 
further uses will require prior approval [222]. 

ParMeTiS runs on distributed-memory architectures. It is only dependent on MPI libraries 
and should be able to run on any parallel architecture without much trouble. It has been tested 
on multiple architectures and is known to scale up to thousands of cores. The v4.0 release 
allows full support of 64 bit architectures that enables large-scale partitioning. It utilizes the 
latest version of MeTiS (v5.0), which allows for better support of multi-constraint 
partitioning. The v4.0 release has much lower memory requirements when compared with 
older releases. Multiple vertex weights/balance constraints are supported for most of the 
routines. This allows ParMeTiS to be used to partition graphs for multi-phase and multi-
physics simulations. Support for 64 bit architectures by explicitly defining the width of the 
scalar “integer” data type used to store the adjacency structure of the graph. There has 
recently been complete re-write of its internal memory management, which has resulted in 
lower memory requirements. 

ParMeTiS compiles with any C compiler (including Intel compilers). It also has bindings for 
FORTRAN so can be integrated into FORTRAN codes easily. It can be run independently so 
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that it can be called easily from other programs by means of system() or popen() system 
calls, or be piped together on a single shell command line. 

Latest release/version: v4.02 

4.7.2 Evidence of use within PRACE 

Both MeTiS and ParMeTiS are already available as loadable modules in all HPC platforms at 
LRZ. Par-MeTiS has been tested and is known to perform well on PRACE systems such as 
CURIE, JUGENE and Hector as well other supercomputing systems. The previous versions 
(3.X) of ParMeTiS partitioning tool is successfully used in applications such as Code Saturne 
[223], Telemac-2D [224] and Elmer [225]. 

4.7.3 Evidence of use outside PRACE 

MeTiS/ParMeTiS have been used in the parallelization of large number of applications 
including mesh partitioning and repartitioning [226] for CFD computations [227] and ocean 
simulations [228] and in generic libraries such as PETSc [229]. Some of the large-scale 
applications using ParMeTiS include PetFMM, A dynamically load-balancing parallel fast 
multipole library [230], uses ParMeTiS for mesh partitioning. SuperLU_Dist uses ParMeTiS 
to perform parallel symbolic analysis to determine the nonzero structures of L and U [218]. 

4.7.4 Pros and Cons 

Metric Pros Cons 

Scalability  
ParMeTiS is significantly faster 
than the other successful graph 
partitioning tools that adopt multi-
level paradigm. 

ParMeTiS can generate partitions 
with prescribed uneven part 
weights and thus can specify the 
target sub-domain weights for 
each of the sub-domains and for 
each balance constraint. So 
ParMeTiS is very suitable for 
load-balancing on heterogeneous 
systems.  

 
When the number of parts 
increases over 32K parts, 
ParMeTiS is reported to 
produce empty parts.  

Currently ParMeTiS does 
not have threading support. 
However, this is expected 
to change in the next 
release.  

Performance Partitioning quality in terms of 
edge-cutsize minimization is very 
good. 

 

Partitioning quality in 
terms of load balancing is 
generally inferior to PT-
Scotch 
 
Currently does not support 
topology-aware routines 
for partitioning. 

Productivity Developing codes with 
MeTiS/ParMeTiS is quite simple.  
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ParMeTiS contains many 
beneficial distributed graph 
handling tools such as dual graphs 
constructing routines. 

Sustainability Maintained at Karypis Lab of 
Minnesota University, the tool is 
upgraded periodically and there 
seems to be a significant 
community behind it. 

Can be called from Fortran and C 
code. 

 

Correctness - - 

Portability  Ports to MIC, ARM, and 
GPU are not expected to be 
available anytime soon. 

Availability ParMeTiS source code and 
binaries are publicly available 
from 
http://glaros.dtc.umn.edu/gkhome/

 
 
 

Resilience  
- 
 

 
- 

Table 42 ParMeTiS - Pros and Cons 

4.7.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown No 

Table 43 ParMeTis - Target systems/architectures 

4.7.6 Conclusion 

In conclusion, ParMeTiS with its good edge-cutsize reduction, fast partitioning time, multi-
constraint support that enables partitioning of graphs for multi-phase and multi-physics 
computations, uneven partitioning capability that enables load-balancing on heterogeneous 
systems, and repartitioning and topology-aware routines, shows potential for enabling 
applications on multi-petascale and future exascale systems. 

4.8 PT-Scotch 

4.8.1 Brief overview 

PT-Scotch [231] is a software package that implements the multi-level paradigm to compute 
parallel static mappings/partitions and parallel sparse matrix block orderings of distributed 
graphs. (PT-Scotch also contains repartitioning routines, topology-aware partitioning 
heuristics and supports fixed vertices). PT-Scotch is distributed as free software. PT-Scotch is 
mainly used for workload distribution in the parallelization of applications on distributed 
memory architectures [232]. 
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The sequential version of PT-Scotch (called Scotch), is known to scale partition counts of 
128K and beyond on a single fat node (128GB RAM) [233]. For graph/mesh sizes of billions 
of cells, sequential partitioning with Scotch becomes infeasible. PT-Scotch (Parallel Threaded 
Scotch) developed at LaBRI of INRIA, provides efficient parallel tools to partition graphs 
with sizes up to a billion vertices, distributed over a thousand processors [234]. PT-Scotch is 
known to bipartition, in 76 seconds, a 3D graph of more than 2.4 billion vertices and 7.3 
billion edges, distributed across 2048 processors [235]. 

Distinctive features of PT-Scotch as a partitioning tool are as follows: It uses low-memory 
and provides well-balanced partitions for large number of partition counts. It makes use of 
both thread parallelism and process parallelism. However, the edge-cutsize quality of PT-
Scotch can sometimes be inferior to other parallel partitioning tools such as ParMeTiS. PT-
Scotch is runs on shared-memory as well as distributed-memory architectures. It is only 
dependent on MPI libraries and should be able to run on any parallel architecture without 
much trouble. PT-Scotch requires MPI and POSIX libraries. It can make use of multiple cores 
in a node of the parallel system via effective threading. It has been tested on multiple 
architectures and is known to scale up to thousands of cores. 

The new release (v6.0) of Scotch contains multi-threaded, shared memory algorithms in the 
(formerly) sequential parts of the library. New features such as topology-aware partitioning 
options are also added into the library in this release. Also PT-Scotch API now exposes many 
distributed graph handling routines with this release. 

In the new release (v6.0) of Scotch, topology-aware partitioning options are embedded into 
the library. This option is a key feature of success for exascale computing. Unfortunately, to 
our knowledge, there is still no application that tests and evaluates this feature of PT-Scotch 
even under petascale settings. This can be considered for a possible enabling work for future 
T7.2c studies. 

PT-Scotch compiles best with GCC compiler but can be compiled with other C compilers. 
The various routines implemented in ParMeTiS can be accessed from a C, C++, or Fortran 
program by using the supplied library. It can be run independently so it can be called easily 
from other programs by means of system() or popen() system calls, or be piped together 
on a single shell command line. 

Latest release/version: v6.0 

4.8.2 Evidence of use within PRACE 

Scotch and PT-Scotch are already available as loadable modules in CURIE. PT-Scotch has 
been tested and is known to perform well on PRACE systems such as CURIE, JUGENE and 
HECToR as well other supercomputing systems such as Argonne‘s IBM Blue Gene/P or IBM 
POWER 7 systems. The previous versions (5.X) of PT-Scotch partitioning tool has been 
successfully used in applications such as Code Saturne [223], Vlasiator [217], and Telemac-
2D [224]. In most of these applications, both ParMeTiS and PT-Scotch are tried and 
compared, and the superior load-balancing and inferior edge-cut minimization properties of 
PT-Scotch when compared with Par-MeTiS have been reported. 

4.8.3 Evidence of use outside PRACE 

PT-Scotch/Scotch has been used in the parallelization of many applications in diverse areas 
including CFD, Seismology and FEM [235] (in mesh partitioning). Some applications that use 
PT-Scotch are: CABARET (Compact Accurately Boundary Adjusting high-Resolution 
Technique) finite volume code that is used for accurately resolving turbulent flow structures 
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in high-fidelity CFD simulations [236] is tested on HECToR. Scotch was reported to lead to 
slightly better parallel performance than that of MeTiS. SPECFEM3D is used for simulating 
forward and adjoint seismic wave propagation on fully unstructured hexahedral meshes of 
arbitrary shaped model domains [237]. Scotch is used in load balancing parallel simulations in 
SPECFEM3D. 

4.8.4 Pros and Cons 

Metric Pros Cons 

Scalability Good scalability in terms of parallel 
partitioning: Can partition on thousands 
of nodes.  

Good scalability in terms of graph size: 
Can partition graphs with billions of 
vertices and edges. 

Good scalability in terms of the number 
of final parts: Can partition into hundred 
thousands of parts. 

Good scalability in terms of memory 
usage when the number of parts 
increases.  

PT-Scotch usually runs 
slower than ParMeTiS  

PT-Scotch is not 
suitable for generating 
prescribed imbalanced 
partitions. So PT-
Scotch is not very 
suitable for load-
balancing on 
heteregoneous systems. 

Performance Partitioning quality in terms of load-
balancing is very good. 

Supports topology-aware routines for 
partitioning. 

Partitioning quality in 
terms of edge cutsize is 
generally inferior to 
ParMeTiS  

 

Productivity Developing codes with PT-Scotch is 
simple.  

 

 

Distributed graph 
handling routines of 
PT-Scotch are not as 
versatile as those of 
ParMeTiS. However, 
the new release of PT-
Scotch contains a 
number of beneficial 
routines for this 
purpose. 

Sustainability Maintained at LaBRI of INRI, the tool is 
upgraded periodically and there seems to 
be a significant community behind it.  

 

Correctness - - 

Portability  
 
 

Ports to MIC, ARM, 
and GPU are not 
expected to be available 
anytime soon. 
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Availability PT-Scotch source code and binaries are 
publicly available from 
http://www.labri.fr/perso/pelegrin/scotch/ 

 

Resilience  
- 
 

 
- 

Table 44 PT SCOTCH - Pros and Cons 

4.8.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown Support for 
hybrid 
systems 

Table 45 PT SCOTCH - Target systems/architectures 

4.8.6 Conclusion 

In conclusion, PT-Scotch with its good load balancing, low-memory usage and scalability 
properties shows great potential for enabling applications on multi-petascale systems. 
Similarly, due to its topology-aware routines, PT-Scotch shows potential for enabling 
applications on future exascale systems, as well. 

4.9 NetGen 

4.9.1 Brief overview 

NetGen is a sequential and automatic 3D tetrahedral mesh generator. It can generate volume 
meshes as well as surface meshes. It is available as LGPL open source software at [238] and 
has a wide user base. It employs the advancing front technique and also implements mesh 
optimization to improve mesh quality. A parallelized version of NetGen [239] was developed 
independently recently by Bogazici University on top of the sequential NetGen using MPI 
libraries and the C++ language. 

Latest release/version: v5.0 

4.9.2 Evidence of use within PRACE 

In the PRACE whitepaper, 'Parallel Mesh Generation, Migration and Partitioning for the 
Elmer Application' [240] two kinds of methods were implemented in the parallelised 
NETGEN: (i) Geometry decomposition based method and (ii) Refinement based method. 
Geometry decomposition methods that use decoupled sequential mesh generators may not be 
suitable when run on large numbers of processors. This is mainly due to the difficulty of 
automating geometry decomposition. On the other hand, if a proper geometric decomposition 
is made, then a high quality mesh generation can be done. Therefore, automatic geometry 
decomposition can be used on a small number of processors and perhaps with a user assisted 
geometry decomposition in a semi-automatic manner on larger numbers of cores. Refinement 
based methods allow for the fast generation of billions of elements on distributed machines. 
In the investigation reported in the whitepaper an example was run on the CURIE system, 
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where 1.4 billion elements were generated in approximately 50 seconds on 1000 compute 
cores. Mesh migration routines were implemented to redistribute mesh data structures. 

4.9.3 Evidence of use outside PRACE 

We have found no evidence of NetGen being employed outside PRACE to date. 

4.9.4 Pros and Cons 

Metric Pros Cons 

Scalability Refinement based methods 
are scalable.  Mesh migration 
routines implemented also 
scaled. Tests using up to 1K 
cores were performed. 

Geometry decomposition 
based methods are not 
scalable 

Performance There is inverse relationship 
between mesh quality and 
parallel runtime/scalability 
performance. 

 

Productivity Callable from Fortran and C Installation of NETGEN on 
supercomputer systems 
requires a lot of time mainly 
due to problems related to 
installation of specific X 
libraries. 

Sustainability Sequential NETGEN was 
first released in 2003. It has 
been improved over the 
years. The latest version 5.0 
was released in Nov. 2012.  

Parallel NETGEN was 
developed on top of 
sequential NETGEN during 
PRACE-1IP WP7.6 Elmer 
application support activity in 
a short period of time. It has 
not been worked on since the 
end of WP7.6 task. 

Correctness Sequential version works 
robustly and is used 
worldwide by many users.  

Parallelized version has not 
been tested exhaustively. 

Portability UNIX systems Sequential NETGEN uses 
some specific X libraries 
which caused porting 
problems to IBM Blue 
Gene/P JUGENE system  

Availability Both sequential and 
parallelized versions are open 
and available under LGPL 
license 

 

Resilience -  

Table 46 NETGEN - Pros and Cons 
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4.9.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes No No No No No 

Table 47 NETGEN - Target systems/architectures 

4.9.6 Conclusion 

Parallel mesh generation offers a solution for cases where mesh problems with greater than 
109 elements will not fit the memory of a single node and the time to generate the mesh 
becomes significant. The parallelized version of NETGEN implements an “owner updates”-
based mesh migration algorithm [239], which has demonstrated good parallel performance 
within PRACE [240]. The usual features expected from exascale libraries such as 
communication reduction, error resilience and fault tolerance must be addressed in the future. 
A possible suggestion is that such issues can start to be addressed by developing a non-MPI, 
workflow version of Bogazici University’s NETGEN-based parallelized mesh generation 
routines. A workflow system like Falkon [241] can be used for this purpose. 

5 I/O Management Techniques 

In this section, we characterize the following I/O Management tools that are of interest to 
T7.2 in particular, and the European HPC community more widely, as we move towards the 
deep petascale and exascale eras: 

 HDF5 
 PNetCDF 
 XIOS 
 ADIOS 
 SIONlib 
 Darshan 

While the first five tools listed above can be classified as high-level I/O libraries, the final 
tool in the list, Darshan, is an I/O profiling tool. For each tool, we provide an overview and 
discuss the tool’s present state, how it has been employed in PRACE to date, how it has been 
employed more widely, and our views on the suitability of the tool for enabling PRACE 
application codes during the exploitation phase of T7.2. 

The increasing data needs of scientific and engineering applications mean that the problems 
associated with storing, reading, analysing and sharing large amounts of information are 
becoming more relevant to a wider user community within PRACE and will become even 
more so on the road to exascale [242]. While the performance gap between file systems and 
compute systems is well known, during our surveying we have found that users within 
PRACE have in general not been able to squeeze as much performance from existing parallel 
file systems as they have from computational hardware. For example, in real applications, the 
use of high-level, parallel I/O libraries such HDF5 [243] and PnetCDF [244], which we report 
on here, often only reach write speeds that are not much higher than the performance of a 
single hard disk. It is becoming increasingly recognised that in many cases, this problem has 
less to do with the capabilities of the software and hardware, and more to do with the myriad 
of software layers, tunable parameters and different file system settings that users are 
confronted with. 
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While several very promising parallel tools have emerged within scientific communities that 
traditionally deal with post-processing of huge datasets (e.g. NCO [245] CDO [246], FastBit 
[247]) these tools are quite domain-specific and are consequently not discussed in more detail 
here. However, at the same time, we feel that PRACE should be inspired by such initiatives 
within these domains and aim to become an infrastructure that supports the complete 
workflow from numerical experiment to publication, where I/O tools are an integral part of 
that workflow. To reinforce this message, we feel it appropriate to quote from the IESP 
roadmap [248] on this topic: 

“Traditionally, I/O has been considered as a separate activity that is performed before or 
after the main simulation or analysis computation, or periodically for activities such as 
check-pointing, but still as separate overhead. File systems, which have mainly been adapted 
from the legacy (sequential) file systems with overly constraining semantics, are not scalable. 
I/O should be considered an integral activity to be optimized while architecting the system 
and the underlying software.” 

Several tools that we mention here are available on current PRACE systems, while some are 
still under development and aim to overcome some of the bottlenecks that are related to I/O 
on multi-petascale and future exascale systems. While we have naturally included ease of use 
for post processing and visualization as important characteristics in considering the tool’s 
exploitation within T7.2, the most important prerequisites that we consider are the potential 
for scalability and performance on current PRACE Tier-0 systems as well as future multi-
petascale/exascale systems. With the IESP view in mind, deeper investigations into extracting 
performance (with real applications) from parallel file systems will be the main focus of this 
subtask during the exploitation phase of T7.2. 

5.1 HDF5 

5.1.1 Brief overview 

HDF5 [243] is a library used to read and write platform-independent files. The generic file 
format includes meta-data for all variables to produce self-describing files. The metadata can 
describe different aspects of the variables: authorship, type, shape, creation date, etc. This 
metadata functionality is shared with other, high-level file formats like NetCDF and BP. It 
supports large-scale parallel file systems (e.g., Lustre and GPFS) by using MPI-I/O calls for 
parallel file access, but can also be used without MPI-I/O as a serial library. The library is 
well maintained and there is an on-going research effort to prepare HDF5 for exascale [249]. 
The library is freely available as open source and runs on all PRACE platforms. The HDF5 
library contains a nice suite for conversion, and compression and it is a suitable file format to 
be post-processed by e.g. visualization tools.  

Latest version/release: 1.8.10-patch1 

5.1.2 Evidence of use within PRACE 

The HDF5 library is part of the PRACE ‘Common Production Environment’ and is therefore 
available across all PRACE Tier-0 systems. The library is used across a wide range of 
scientific domains (astrophysics, multi-physics, CFD) and has been used widely within 
PRACE to date: 

The HDF5 library was implemented for the static grid version of the PLUTO astrophysical 
fluid dynamics code [250]. Unfortunately, it was found to be significantly slower than 
synchronous I/O on JUGENE, which was probably due to overhead or the incompatibility 
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between GPFS and HDF5. The performance is approximately 0.5GB/s for 500-10k cores. 
However, the introduction of the HDF5 file format for a static grid represents an improvement 
for PLUTO both in term of portability and also for post-processing and visualization. 

In other work in PRACE-1P, a parallel implementation of HDF5 for the computational 
mechanics code, ALYA [251], was compared to the original, serial I/O method on both 
CURIE and JUGENE. Results showed an improvement in performance of over a factor of 3x 
in some cases. 

Another interesting study within PRACE-1IP [252] compared the performance of different 
I/O methods and found that POSIX I/O (one file per process) was in almost all cases by far 
the fastest method on CURIE, with MPI-I/O catching up at higher core counts (4096 cores), 
while HDF5 and pNetCDF performed much more poorly in comparison. 

The HDF5 library has also been adopted in the ENZO [253] and LB3D codes [254]. The 
LB3D code developers reported that they can write a multi-gigabyte dataset in the order of a 
second, which is negligible to the computational effort. Data can be compressed using internal 
filters, so one can still access the data without uncompressing, transparently. 

5.1.3 Evidence of use outside PRACE 

HDF5 is widely used outside PRACE and is deployed on multi-petascale systems throughout 
the world. HDF5 is the most commonly used parallel I/O library in both DOE SC and DOE 
SciDAC applications and there is a very active research effort in the US focused on preparing 
HDF5 for future exascale systems. The ExaHDF5 [249] project aims to enhance HDF5 for 
Exascale platforms. Its goals are aimed at improving HDF5 performance on existing 
platforms by removing collective restrictions for metadata modifications, adding metadata 
and raw data indexing, adding support for asynchronous parallel I/O, designing and 
implementing file system autotuning mechanisms and supporting “ordered updates” in 
parallel. Early efforts have already demonstrated 8x-10x improvement in speedup and scaling 
to 32,000 processors [255]. 

5.1.4 Pros and Cons 

Metric Pros Cons 

Scalability Better performance than 
master-I/O because of less 
communication. 

Scalability is usually poor 
without a good understanding 
of the HDF5 structure and the 
underlying file system. 

Performance Performance can be up to 
27GB/s (using 120k cores), 
or 90% of the theoretical 
peak. 

Can be as low as 200MB/s 
(using a few thousand cores 
without further scalability) 

Productivity The library is platform-
independent and the files 
contain metadata to describe 
them. Many advanced 
analysis programs support 
reading and writing HDF5. 

 

Sustainability HDF5 is well supported and 
widely used. Several projects 
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are underway to improve 
HDF5. 

Correctness Release versions are 
available on the web and are 
often included in linux 
distros.  

 

Portability Available on all PRACE 
platforms. 

 

Availability Open and royalty-free.  

Resilience Work is ongoing to improve 
fault-tolerance by changing 
the software and the file 
format. 

 

Table 48 HDF5 - Pros and Cons 

5.1.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A 

Table 49 HDF5 - Target systems/architectures 

5.1.6 Conclusion 

Several efforts by the US DOE are on-going to improve the performance of HDF5 on multi-
petascale machines and to adapt the library for exascale. The HDF5 library has shown the 
ability to scale and perform well enough for multi-petascale simulations. The advantages of 
HDF5 are that files in the HDF5 format are platform-independent and suitable for high-
quality visualizations using the VisIt and ParaView tools. It is the only file format that allows 
for complex data types like structures and a hierarchical organization of variables. The major 
downside is the disparity between the presented performance results for some applications 
and the achieved results in some of the PRACE projects. We believe that one interesting area 
of focus during the exploitation phase of T7.2 could be on the tuning of applications with 
HDF5 on parallel file systems of specific PRACE platforms. 

 

5.2 PNetCDF 

5.2.1 Brief description 

Parallel NetCDF (PNetCDF) [244] is a library that implements the Unidata NetCDF3 file 
format, but provides parallel I/O capabilities using MPI-I/O. The API is an extended version 
of the NetCDF3 [256] API that supports C and Fortran. The NetCDF3 standard defines a file 
format for array-oriented data that is platform-independent and self-describing. A file contains 
dimensions, variables and attributes. Files can be appended efficiently with the use of an 
unlimited axis, for example to add another snapshot periodically. Many tools can read the 
NetCDF3 file format and can often interpret the data if the metadata for the variables uses the 
right naming and attribute conventions (e.g. wind speed on a longitude-latitude grid). The 
format provides enough flexibility for most scientific applications. Due to this combination of 
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functionality and simplicity, it is very popular in the climate community. It is not compatible 
with the NetCDF4 standard. The library is freely available as open source. 

Latest version/release: v1.3.1 

5.2.2 Evidence of use within PRACE 

The PnetCDF library has primarily been used in US-based weather (WRF) and climate 
(CCSM/CESM) models, but only received minimal adoption in European models. The 
European exception is the RAMSES astrophysics code, which implemented several different 
output options, including PnetCDF. The molecular dynamics package AMBER also included 
an output option for PnetCDF, but this option seems to be little used. The PnetCDF library is 
probably mostly used by the PRACE allocations that use the US-based weather and climate 
models for their simulations. 

The IO performance of PnetCDF was tested on the CURIE system using both the IOR 
benchmark suite and the RAMSES astrophysics code [252]. For the RAMSES code, the 
performance is usually well below 1 GB/s. Only for read operations with the 
romio_cb_read (flag to control collective buffering) MPI-I/O file hint disabled, does the 
read performance reach almost 2 GB/s. The read performance with IOR is also optimal when 
using this hint for HDF5, MPI-IO and PnetCDF, reaching more than 12GB/s for PnetCDF. 
This shows that the right settings are critical to reach a good performance, which is probably 
very system-dependent. 

5.2.3 Evidence of use outside PRACE 

Since the PnetCDF library was developed in the US, most of the use cases are also for US-
based models. 

In a study for the optimization of I/O for the FLASH code [257]. MPI derived datatypes were 
used to write non-contiguous parts of the memory to a contiguous PnetCDF file using only 
one call to the PnetCDF library. The routine MPI_Type_create_subarray was used to 
exclude guardcells (or “ghost” or “halo” cells), while the routines MPI_Type_indexed and 
MPI_Type_create_resized were used to combine mesh variables at different memory 
locations into one variable for writing. Furthermore, they implemented “non-blocking” I/O 
[257], which combines writes from different calls to the PnetCDF library. 

The I/O in the GCRM (global cloud-resolving model) application was optimized using 
PnetCDF on the Cray XE6 system “Hopper” using Lustre at NERSC [258]. By saving all 
variables into one file, a maximum performance of 24GB/s was reached using 40,960 MPI 
processes. 

5.2.4 Pros and Cons 

 
Metric Pros Cons 

Scalability Excellent scaling up to 40k 
cores for some applications  

Scalability is usually poor 
without a good understanding 
of the PnetCDF structure, the 
MPI-IO library and the 
underlying parallel file 
system.  
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Performance Performance can be up to 
24GB/s, 

Can be as low as 200MB/s. 

Productivity The library is platform-
independent and the files 
contain metadata to describe 
them. Many advanced 
analysis programs support 
reading and writing the 
NetCDF-3 format. 

 

Sustainability PnetCDF is developed at 
Argonne National Laboratory 
(ANL) and is supported 
software. 

 

Correctness Release versions are 
available on the internet. 
Development branches can 
be checked out with svn. 

 

Portability Available on some PRACE 
platforms (e.g. HERMIT and 
MareNostrum). 

 

Availability Open and royalty-free.  

Resilience   

Table 50 PNetCDF - Pros and Cons 

5.2.5 Target systems/architectures 

 
X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A 

Table 51 PNetCDF - Target systems/architectures 

5.2.6 Conclusion 

It has been demonstrated that the PnetCDF library can reach a performance that is close to the 
theoretical peak of the file system on petascale systems, using tens of thousands of MPI tasks. 
It gives the user a range of tuning options to reach a better performance. The flat file format is 
one of its strengths, but also a major weakness. Models that use regular, structured grids could 
benefit from this library, and a large collection of analysis tools can readily read and interpret 
the output files. The NetCDF format is less well suited for use with VisIt and ParaView. It is 
less well suited to modern numerical methods like non-structured grids and adaptive mesh 
refinement. 
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5.3 XIOS 

5.3.1 Brief description 

XIOS [259] is an I/O library with integrated processing in development by the NEMO ocean 
model team. It is a library that allows flexible, parallel I/O by using XML files to define the 
variables that should be written to file. In the XML file, operations (e.g. time averaging and 
slicing) can be defined for variables. Output variables are processed locally and then sent to 
separate I/O tasks to be written to disk. The extra library in-between the user and the disk 
system is an extra complication in case of performance problems. The library is written in 
C++ and provides an API for Fortran-90. XIOS uses the NetCDF-4 format and library, which 
is in turn built on top of the HDF5 library and its dependencies. Although the NetCDF-4 
format supports hierarchical data structures and complex variables, it is not clear if these are 
supported by XIOS. Other file formats could be used, but are not yet implemented (XIOS has 
recently been implemented in the ocean model NEMO 3.4). Different processing capabilities 
are in development, e.g. spatial operations and adding or multiplying two variables. The long-
term plans for XIOS include the possibility for input e.g. to manage asynchronous reading. 
The library is freely available as open source and runs on several PRACE platforms. 

Latest version/release: v1.0 (subversion) 

5.3.2 Evidence of use within PRACE 

The XIOS library has not been used widely to date within PRACE, but interest in the library 
is increasing and it is currently being used within the WP8 PRACE-2IP work package. XIOS 
is under development by ICHEC where a "memory proxy" XIOS server is being developed to 
enable XIOS performance on nodes with low memory, by using extra nodes as buffers 
between the compute and I/O nodes [35]. 

5.3.3 Evidence of use outside PRACE 

The Pulsation project runs a high-resolution configuration of the NEMO ocean model in 
combination with the WRF atmospheric model on the CURIE system. The XIOS library has 
been used for output with 128 XIOS servers and reached a writing performance of about 
3.5GB/s when writing in parallel to a single file [260]. 

5.3.4 Pros and Cons 

Metric Pros Cons 

Scalability The number of parallel I/O 
tasks can be freely chosen to 
balance performance, 
communication and node 
usage. Data movement is 
reduced through on-line, 
client-side data processing 

 

Performance Performance is proven up to 
3.5GB/s on the CURIE 
PRACE platform. 

Options to tweak 
performance of the 
underlying HDF5-library are 
not directly available. 
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Productivity I/O can be easily adjusted 
through an XML-file. Output 
is in NetCDF4, which is 
widely supported. 

Library is now targeted to 
climate and weather codes. 

Sustainability XIOS is developed and 
adopted by the NEMO team. 
Plans for wider adoption in 
climate and weather codes 
improve sustainability. 

Code is mostly commented in 
French. 

Correctness Output files are well-
structured and contain the 
necessary metadata. 

 

Portability  For now only tested on the 
CURIE system with Lustre. 

Availability Open and royalty-free. Code 
is available through an svn 
repository. 

 

Resilience   

Table 52 XIOS - Pros and Cons 

5.3.5 Target systems/architectures 

 
X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A 

Table 53 XIOS - Target systems/architectures 

5.3.6 Conclusion 

One of the greatest advantages of XIOS is its flexibility to change the output of variables of a 
simulation without recompiling: writing only sub-regions, changing the frequency of output 
per variable or not writing a variable at all can be done through editing an XML file. This 
seems to be especially valuable for models with many variables and many users, so output can 
be filtered for each purpose. Most exascale reports mention the need for data reduction 
through online post-processing, which is one of the main advantages of this library. The XIOS 
library uses the NetCDF4 layer for its I/O and it therefore inherits its strong and weak points. 
However, unlike NetCDF4, it allows a user to easily vary the number of processes for I/O, 
circumventing the I/O scalability problems when using master I/O or I/O from every task. 

5.4 ADIOS 

5.4.1 Brief description 

Essentially, ADIOS (Adaptable I/O System) [261] is componentization of I/O transport 
methods. It uses an XML-file to describe the data and the layout of variables in the code. 
ADIOS then translates this XML-file into include files for the application. The I/O can be 
changed by modification of the XML-files and recompiling the application with the newly 
translated ‘include’ files. The approach is less flexible than XIOS, due to the needed 
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recompilation. Different I/O formats and libraries can be used: parallel HDF5 or NetCDF4, 
one file per process, MPI-IO, the own BP format or the data can be directly connected to 
advanced visualization software. The own BP file format is specially optimized for HPC 
workloads and is resilient to failures in compute nodes and the file system. The library 
contains routines to give hints that can be used to optimize asynchronous I/O operations. I/O 
is throttled to be finished in time for the next phase of I/O, but doesn't need to be faster. This 
can optimize the overlap of computation, communication and I/O. Furthermore, on most 
systems the file system is shared between many jobs and it is important to use the resource as 
efficiently as possible, and still keep an interactive response. 

Latest version/release: v1.4.1 

5.4.2 Evidence of use within PRACE 

We found no evidence of ADIOS being used within PRACE to date 

5.4.3 Evidence of use outside PRACE 

The combustion code, S3D, uses ADIOS [262]. The fusion particle code GTC [263] runs on 
more than 120,000 cores on the Jaguar system. The implementation of the ADIOS library 
doubled the performance of the GTC model with a write performance of 80GB/s and a read 
performance close to the peak of the I/O system. The developers of the SPECFEM3D 
GLOBE model are busy implementing ADIOS [264] to reduce the writing of 40 files per 
process to 1 file per process, to reduce the burden of metadata operations 

5.4.4 Pros and Cons 

Metric Pros Cons 

Scalability Used for simulations on 
120,000 cores. 

No online post-processing 
capabilities to reduce data. 

Performance Great read and write 
performance (80GB/s on 
Jaguar XT5) is easy for the 
internal BP format,  

Problematic for all other 
formats (NetCDF4, HDF5). 

Productivity Easy to implement. BP files 
can be read by VisIt (from 
v2.0). Fortran90, Java and 
NumPy bindings. Told to 
convert to HDF5 and 
NetCDF4. 

Besides VisIt, no tools can 
natively read BP files. 

Sustainability   

Correctness   

Portability Fully supported on IBM 
BG/P, Cray XT, Linux 
clusters and Mac OSX. 

 

Availability Open and royalty-free. 
Source code is available 
online. Installed on e.g. the 
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CURIE system. 

Resilience ADIOS's BP file format is 
resilient to failures in the 
compute nodes and the file 
system. 

 

Table 54 ADIOS - Pros and Cons 

5.4.5 Target systems/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Unknown N/A N/A N/A N/A 

Table 55 ADIOS - Target systems/architectures 

5.4.6 Conclusion 

The ADIOS library has been shown to reach excellent performance for petascale applications 
when the internal BP format is being used. Other file format backends will have different 
performance and scalability characteristics that are also described in this report. If the limited 
support by other tools of the BP file format is no problem, the ADIOS library could be a good 
candidate. The ADIOS library is the only library that has a file format with resilience features 
built into production software. As with most other software except XIOS, data reduction by 
online post-processing is missing from the ADIOS library, which for the moment seems to be 
an essential part of exascale I/O. 

5.5 SIONlib 

5.5.1 Brief description 

SIONlib [265] is a scalable I/O library for the parallel access to files local to every process. 
The library not only supports writing and reading binary data to or from several thousands of 
processors into a single or a small number of physical files but also provides for global open 
and close functions to access SIONlib files in parallel. SIONlib provides different interfaces: 
parallel access using MPI, OpenMP, or their combination and sequential access for post-
processing utilities. Each process involved in I/O gets assigned a number of file blocks to 
which it has exclusive access. The explicit allocation of file blocks to processes eliminates 
performance problems due to file locking. Another advantage of the SIONlib library is that 
POSIX I/O calls can be used as-is and the code only needs to be changed to open and close 
files and to ensure that enough blocks are available for the I/O that each process wants to 
write. Only the open and close calls are collective operations, while all other operations can 
be done independently or even asynchronously. 

Latest version/release: v1.3p5 

5.5.2 Evidence of use within PRACE 

The SIONlib library has been used in a PRACE project with the MP2C code [266] although 
there is no further discussion why this library was chosen, or what its performance is like. 
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5.5.3 Evidence of use outside PRACE 

An in-depth discussion of MP2C and SIONlib can be found in [267]. The original application 
used master I/O, which is inherently unscalable. The advantages of SIONlib were the 
relatively small code changes needed and its resulting performance. The SIONlib library has 
been implemented in several other models mainly for checkpoint-restart files and sometimes 
also for result files and post-processing [268] 

5.5.4 Pros and Cons 

Metric Pros Cons 

Scalability Expected good scaling. 
Reduction of excessive file 
metadata operations. 

 

Performance Read performance of 
35GB/s, write performance 
of over 25GB/s on JUGENE. 

 

Productivity Applications using POSIX or 
ANSI-C I/O don't need to be 
rewritten drastically to profit 
from parallel I/O systems. 
Both Fortran and C 
supported. 

Files are not platform-
independent, no variable 
metadata, not structured and 
not supported by any analysis 
tools. 

Sustainability FZJ and German Research 
School for Simulation 
Sciences (GRS) maintain this 
library. 

 

Correctness Release versions are 
available on the internet. 

 

Portability Can be used on block-based 
file systems, e.g. Lustre and 
GPFS. 

Limited availability. 
Available on JUQUEEN and 
JUROPA. 

Availability Open and royalty-free.  

Resilience Usually less relevant, files 
are written once, but not 
updated. 

 

Table 56 SIONlib - Pros and Cons 

5.5.5 Target platforms/architectures 

 
X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A 

Table 57 SIONlib - Pros and Cons 
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5.5.6 Conclusion 

The SIONlib library avoids potential performance bottlenecks by explicating the blocked 
nature of the filesystem. The SIONlib library is well suited for temporary files and situations 
without an established tool-chain for post-processing that expects certain file formats. 
Another advantage is that applications already using POSIX I/O calls don't need to be 
rewritten radically to parallelise their I/O. As noted in the introduction, the IESP Roadmap 
expects check-pointing as a technique likely to continue on exascale systems. The SIONlib 
library seems ideally suited for this purpose. Checkpoints are usually written in one go and 
resilience of the library is therefore less critical. As soon as a checkpoint is written 
successfully, older checkpoints can be removed. 

5.6 Darshan 

5.6.1 Brief description 

Darshan is a light-weight profiling tool that can be used to characterize I/O-load at petascale 
[269]. It gives an accurate picture of the I/O-access pattern, how read/write and metadata 
operations are performed by the application. Further, it characterizes the access pattern within 
file and files, describing whether the access is MPI-based or POSIX. All this is done with a 
minimum of overhead. Reduction, compression and storage are performed at the moment 
when MPI_Finalize is called. Darshan is designed to reflect application I/O behaviour 
while being transparent to users. Since it has the ambition to be a Petascale characterization 
tool, it also must have strong scaling properties. It is implemented as set of user space 
libraries. These are linked into the application during the linking phase. The application’s I/O-
calls are substituted with calls to the darshan libraries. No application source code 
modification is necessary. During execution of the application, Darshan collects statistics that 
are stored in a file record per process. As the application ends its computation by a call to 
MPI_Finalize, a shutdown routine is executed to gather all the Darshan file records. The 
overhead introduce is negligible as profile data produced is small on smaller computations. 
On larger computations (petascale), the time used for handling Darshan profile data is small 
compared to the overall shutdown time of the computation. Accordingly, Darshan does not 
influence the computation. The profile achieved will be representative for the application’s 
I/O behaviour. Darshan is supported on the IBM Blue Gene and the Cray XE6 platforms, but 
it works on most Linux platforms. It supports the PGI, Cray, Intel and GNU compilers as well 
as static and dynamic linking [270]. This tool does not have an API but depends on MPI. It 
therefore works with C, C++ and all Fortran flavors. 

Latest version/release: 2.2.4 

5.6.2 Evidence of use within PRACE 

Darshan has been used in several studies within PRACE to date. Darshan was used to better 
understand the I/O of the OpenFOAM application [271] and the I/O of the EC-EARTH 
climate model has also been analysed with Darshan [272]. A climate model often consists of 
multiple components (e.g. atmosphere and ocean) that are each developed independently. 
Each component can consist of hundreds or thousands of subroutines and it is not easy to find 
the I/O strategy that has been used in each component. Darshan was proven to be a valuable 
tool for finding the non-trivial pattern of I/O in this project [272]. 



D7.2.1 A Report on the Survey of HPC Tools and Techniques 
 

PRACE-3IP - RI-312763  29.04.2013 113

5.6.3 Evidence of use outside PRACE 

As Darshan was specifically designed with petascale systems in mind, it has been used on 
several large-scale systems throughout the world. 

In a study for the optimization of I/O for the FLASH code [270] the Darshan tool was used to 
measure the access size when using the PnetCDF library. The results show that there is a shift 
from writes of 4MB when using the standard file layout to writes of 16MB when using an 
experimental file layout. Larger disk writes are more efficient for the file system. The authors 
suggested that the Darshan tool could give more information about the two-phase collective 
I/O optimisations specifically the time spent in I/O versus the amount of time spent re-
arranging the data. The Darshan report gives an overview of the files that are created or read, 
the amount and size of data and metadata operations during the simulation and also which 
tasks are involved. 

5.6.4 Pros and Cons 

Metric Pros Cons 

Scalability Negligible overhead for I/O 
intensive jobs with 65,536 
processes. 

 

Performance Negligible overhead, even for 
very large file counts. 

 

Productivity Quick overview of the 
amount of I/O, files and the 
processes involved. 

Little information on the I/O 
behaviour in time. Only for 
MPI applications. 

Sustainability  Developed at ANL, Financed 
by a DOE project. Not known 
what happens when the 
project ends. 

Correctness A release version is available, 
but also the latest unstable 
branch can be checked out 
with svn. 

 

Portability Supported on BlueGene and 
Cray platforms. Intel linux 
clusters usually work as well. 

 

Availability Source downloadable from 
internet. 

Compilation needed. 

Resilience  The application needs to 
complete successfully to be 
able to generate a report. 

Table 58 Darshan - Pros and Cons 

5.6.5 Target platforms/architectures 

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A 

Table 59 Darshan - Target systems/architectures 
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5.6.6 Conclusion 

Darshan has been developed with petascale systems in mind and its performance and 
scalability is therefore excellent. Its statistical analysis is also useful at scale. It is useful for 
applications with an unknown I/O profile, to get a quick overview of when, where and how 
much I/O is done. Another use case is the investigation of parallel I/O, to see how well the I/O 
is coalesced into larger chunks. Resilience could be improved by relaxing the condition that 
the application needs to complete successfully. One useful and relatively easy improvement 
could be some subroutine calls that can be added to the application by the developer to start 
the analysis and generate the report at arbitrary points in the code. 
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6 Summary 

The survey has covered four separate topics that we consider relevant to enable applications 
on current multi-petascale systems. We summarize our findings separately by topic: 
programming languages and standards, debuggers and profilers, scalable libraries and 
algorithms and I/O management techniques. Conclusions for each individual tool can be 
found in the invidual reports, so here we list only what we think are the most salient points 
when considering the tools for enablement. 

 
Programming Languages and Standards: 

As part of this report we have surveyed thirteen individual programming languages and 
standards and report on how they have been used in PRACE to date.  

 It can be seen from our brief report that the MPI forum is starting to address the 
challenges that MPI will face on this road, and we believe that the exploitation phase 
of T7.2 provides PRACE partners with a very valuable opportunity to investigate new 
MPI 3.0 features. 

 OpenMP offers the easiest means of hybridising existing MPI-based codes, a model 
that is becoming increasingly important as the core-count on nodes continues to 
increase. With the advent of Intel’s Xeon Phi coprocessor, OpenMP is already finding 
new target architectures in the many-core space, and could become even more relevant 
as a standard if plans go ahead to merge OpenACC into OpenMP 4.0 in the near 
future. 

 Since some of the new PRACE prototypes will consist of the latest K20 GPUs we see 
the exploitation phase of T7.2 as a great opportunity to enable applications to exploit 
the full compute resources of these new platforms using some of the new features 
being offered by NVIDIA CUDA 5.0, including ‘Hyper-Q’ and ‘Dynamic Parallelism’ 

 Developing efficient OpenCL code is typically found to require more effort than other 
GPU frameworks. There are some efforts, besides the new SDKs and tools for code 
debugging and analysis, which try to address this issue. Its relevance may change with 
the release of the Xeon Phi architecture and the support that Intel puts behind it and 
for this reason we feel that T7.2 should liaise closely with European exascale projects 
such as Mont-Blanc project to learn how OpenCL will be exploited there during 2013. 

 The high-level nature of TBB is probably not a feature that will attract WP7 partners 
looking to extend or improve existing codes. Most likely it is the lower-level ideas that 
might be important. While most reviews of TBB have generally been made in the 
context of Intel Xeon-based platforms, it might be worth considering the potential 
benefits of TBB for the new Xeon Phi coprocessor. An initial port from OpenMP to 
TBB might well be straightforward and worth investigating further, particularly on 
Xeon Phi-based systems. 

 Although interesting, particularly with the Xeon Phi architecture in mind, Cilk Plus 
does not seem to provide much advantage over OpenMP at the moment. In comparing 
the keywords in Cilk Plus and the directives in OpenMP, it is clear that the ease of 
programming is not a concern for either, with OpenMP providing additional options in 
scheduling and allowing for NUMA effects in some variations. In this sense, Cilk Plus 
is considerably more limited than OpenMP. It is, however, worth keeping in mind the 
success of the novel Cilk Plus/UPC combination that was reported on in PRACE-1IP. 

 Due to its relative ease of use in comparison to both CUDA and OpenCL, OpenACC 
is becoming an increasingly popular model for porting legacy applications to GPU-
based systems. The standard is still in its infancy and there are many issues with 
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regards to implementation that still need to be resolved, which also make it difficult to 
assess the performance of the model. While it is generally appreciated that CUDA 
offers the ability to perform lower-level optimization for the GPU, OpenACC may be 
increasingly used as a means of efficiently probing the potential benefits of porting to 
GPUs, with CUDA being used in an optional second optimization stage. 

 The improvements to both the programming model and runtime in OmpSs make it 
easier to port real applications without substantial re-engineering. However, OmpSs is 
still at an early stage of development and no results showing petascale performance 
have yet been published. The ability to manage parallelism across heterogenous 
architectures consisting of CPUs and accelerators in a transparent fashion will be 
necessary on deep petascale and exascale systems. OmpSs is an integral part of the 
DEEP and Mont-Blanc architectures for a future exascale system and we suggest that 
if OmpSs is to be exploited in T7.2, partners should work closely with both of these 
projects. 

 While we have seen evidence of the exploitation of MPI/PGAS hybrid models, we 
have found it quite difficult to ascertain whether there has been any genuine benefit to 
such approaches over the more conventional MPI/OpenMP approach. If such an 
approach is to be pursued during the exploitation phase of the T7.2, then we 
recommend that WP7 partners work closely with European exascale projects, where 
deeper investigations into such hybrid models are already underway as part co-design 
initiatives on production codes. 

Debuggers and Profilers: 

As part of this report, we have surveyed 14 debugging and profiling tools. We have found that 
all of the European exascale projects are concentrating effort into tools for debugging and 
performance analyses. 

In some respect, we feel that the DEEP project provides a model for how the exploitation 
phase should be conducted within T7.2. DEEP has analysed the space weather application 
iPIC3D. With the tool Scalasca, the behaviour of the different parts of the application has 
been identified. Some of these parts can be accelerated by being partly moved to the DEEP-
architectures “Booster” part. 

We also feel that T7.2 should work closely with tool developers to learn how they can be used 
more effectively to enable applications within WP7, particulary in extreme cases.  

 The TAU development team usually ensures that TAU is available at early stages of 
new platforms, as exemplified with the Cray Cascade prototype. TAU is being further 
developed to support new threading technologies, like the new generations of NVIDIA 
GPUs and Intel Xeon Phi. With its long traction, and continued support from its 
funding bodies, it is strongly expected that TAU will continue to be available for 
forthcoming multi-petascale systems. In this sense it also shows potent 

 Scalasca has shown that it is an applicable profiling tool when considering the largest 
scales currently possible. It scales in its use from 1000 cores to close to 300,000 cores. 
Development of Scalasca continues with the purpose of meeting the needs of the HPC 
community as exascale technology make its inroads. 

 While evidence of multi-petascale use of Vampir is hard to come by, at least in a 
PRACE context, the tool will be further developed. In the CRESTA-project, ZIH and 
other partners will jointly develop the scalable measurement environment used by 
Vampir as an Open Source project. 

 TotalView is a professional debugging tool that specifically is aimed at the High 
Performance Computing market. It is designed for debugging programs running on 
very large supercomputers and has been successfully tested on 768,432 processes until 
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now. TotalView state that they are working closely together with IBM to provide 
debugging facilities on IBM's Blue Gene systems, so petascale debugging is available 
today. Although TotalView’s current feature-set will not be sufficient on an exascale 
system, RogueWave is actively working on new features such as fault-tolerance as 
part of co-design teams within the US DOE. 

 DDT now has features that are specifically targeting debugging of petascale 
simulations. The response times of DDT are now short enough for making petascale 
debugging practically possible and the GUI has features that are specifically designed 
for giving an overview of large amounts of data as well as the state of a large numbers 
of threads/processes. The fact that the developers of DTT have continued to show a 
quick response to the fast pace of changing hardware on large-scale heterogeneous 
systems, indicates that DDT will feature heavily as a debugging tool on the road to 
exascale. Although DDT's current feature-set will not be sufficient on an exascale 
system, Allinea is actively working on new features such as fault-tolerance as part of 
co-design teams within the US DOE and European exascale projects. 

 Intel tools are excellent for debugging and profiling Intel Xeon and more recently 
Xeon Phi platforms on small scale, but there is very little evidence of their use on 
large mult-petascale systems and what Intel’s long term aims are for their tool sets on 
such systems. 

Scalable Libraries and Algorithms: 

As part of this report we have surveyed a representative collection of libraries and techniques 
that currently garner much interest both within and outside PRACE. As a consequence of the 
move towards large multi-petascale heterogeneous systems, there is an increasing demand for 
new and improved scalable, efficient, and reliable numerical algorithms and libraries that 
confront existing and upcoming complexities associated with such systems, including 
complex memory hierarchies, the overhead of data movement and fault tolerance. 

 In terms of dense solvers, we feel that ELPA shows real promise and should be 
investigated further as an alternative to ScaLAPACK within PRACE applications. We 
also believe that MAGMA is one of the most promising libraries containing dense 
direct solvers with impressive performance and indications of long-term sustainability. 
The library targets all accelerators/coprocessor architectures and is also fully portable 
in its OpenCL form Distributed-memory versions of the library are also currently in 
progress and should be investigated as alternatives to ScaLAPACK, possibly during 
the exploitation phase of T7.2 

 In terms of sparse solvers, MUMPS appears to be a very robust and efficient direct 
solver for medium-sized distributed or centralized sparse linear systems arising for 
instance from discretization of PDE problems. Regarding large-scale problems, 
MUMPS will not be usable as a standalone solver of the original linear system. 
However, MUMPS will still be a very important tool for the robust and efficient 
solution of auxiliary medium-sized distributed and centralized sparse linear systems 
arising in higher level methods like FETI domain decomposition methods, and will in 
turn extend their scalability. MUMPS has many unique features such as the detection 
of null pivots, rank deficiency, etc. that can be very helpful in higher-level scalable 
methods.  

 While both SuperLU_DIST and SuperLU_MCDT show promise as dense sparse 
solvers, like all the other libraries mentioned here, improvements, such as 
synchronization reduction, data movement minimization and fault tolerance need to be 
included in the library in order for SuperLU_MCDT to enable applications on future 
multi-petascale and exascale systems. An interesting alternative to investigate is the 
PDSLin library. 
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 Iterative methods, particularly Krylov subspace-based methods are fundamental 
algorithms to many PRACE applications and have therefore received a considerable 
amount of attention within PRACE projects to date. Very interesting exploratory work 
into communication avoiding Conjugate Gradient algorithms has recently been carried 
out in PRACE-2IP (WP12) and is an active focus of research in many exascale 
projects in both Europe and the US. With new implementations of the MPI 3.0 
standard available (and on the horizon), which now offer non-blocking 
communications, there is good reason for PRACE partners to investigate these 
forward looking algorithms in more detail during the enablement of applications on 
PRACE systems in T7.2. 

 As the CRESTA investigations into FFT methods point out, the major bottleneck in 
distributed FFT implementations is the MPI_ALLTOALL communication overhead, 
which becomes particularly problematic on large core counts. This problem can be 
alleviated somewhat by using hybrid MPI+OpenMP methods, but further 
optimisations are badly needed, as FFTs form the basis of many popular applications 
running on large-scale PRACE systems. In order to push FFT methods further along 
the road to exascale, we agree with CRESTA that further investigations should be 
made into non-blocking collective communications within in-code FFT 
implementations, possibly via the new MPI 3.0 standard features now becoming 
available. If FFT methods are to be investigated further in T7.2, we recommend that 
PRACE partners work closely with CRESTA and other European exascale projects to 
learn more about how their efforts in this area are progressing and if any non-blocking 
implementations are ready to be exploited in real applications. 

 PETSc has strong potential for enabling applications on future multi-petascale and 
exascale systems, but several features expected from exascale libraries need to be 
implemented in the library (communication reducing algorithms, error resilience, fault 
tolerance etc.) As PETSc interfaces with several widely used numerical libraries 
(MUMPS, Hypre, SuperLU, METIS), its scalability is strongly dependent on the 
scalability of these libraries also. It is interesting to note that CRESTA chose the 
PETSc library as being representative of iterative methods and was chosen for further 
research on exascale co-design efforts. Indications are that PETSc is well supported by 
the DOE in the US and will continue to make inroads on building in features that will 
be important on the road to exascale. 

 Although we could not find any evidence of Trilinos being used in PRACE to date, it 
appears to be a very powerful high-level library which should be of interest to the 
PRACE community. The object oriented and templated design of the packages within 
Trilinos allows relatively easy development of codes for various types of architectures 
(mainly because of the Kokkos core kernels package. Many modern techniques for 
improving scalability on future multi-petascale and exascale machines, such as 
communication reducing algorithms, have already been implemented into the 
framework which gives more reason to investigate the library further, possibly during 
the exploitation phase of T7.2. 

 Several partitioning and mesh generation methods have also been reported on here, all 
of which show promise for high scalability on the road to exascale. 

I/O Management Techniques:  

As part of this report we have surveyed five I/O management techniques. The increasing data 
needs of scientific and engineering applications mean that the problems associated with 
reading, writing, analysing, storing and sharing large amounts of data are becoming more 
relevant to a wider user community within PRACE. 
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 Several efforts by the US DOE are on-going to improve the performance of HDF5 on 
multi-petascale machines and to adapt the library for exascale. The HDF5 library has 
shown the ability to scale and perform well enough for multi-petascale simulations. 
The advantages of HDF5 are that files in the HDF5 format are platform-independent 
and suitable for high-quality visualizations using the VisIt and ParaView tools. It is 
the only file format that allows for complex data types like structures and a 
hierarchical organization of variables. The major downside is the disparity between 
the presented performance results for some applications and the achieved results in 
some of the PRACE projects. We believe that one interesting area of focus during the 
exploitation phase of T7.2 could be on the tuning of applications with HDF5 on 
parallel file systems of specific PRACE platforms. 

 It has been demonstrated that the PnetCDF library can reach a performance that is 
close to the theoretical peak of the file system on petascale systems, using tens of 
thousands of MPI tasks. It gives the user a range of tuning options to reach a better 
performance. The flat file format is one of its strengths, but also a major weakness. 
Models that use regular, structured grids could benefit from this library, and a large 
collection of analysis tools can readily read and interpret the output files. The NetCDF 
format is less well suited for use with VisIt and ParaView. It is less well suited to 
modern numerical methods like non-structured grids and adaptive mesh refinement. 

 The ADIOS library has been shown to reach excellent performance for petascale 
applications when the internal formats are used. Other file format back-ends will have 
different performance and scalability characteristics that are also described in this 
report. If the limited support by other tools of the BP file format is no problem, the 
ADIOS library could be a great candidate. The ADIOS library is the only library that 
has a file format with resilience features built into production software. Data reduction 
by online post-processing is missing from the ADIOS library, which seems to be an 
essential part of exascale I/O. 

 The SIONlib library avoids potential performance bottlenecks by explicating the 
blocked nature of the filesystem. The SIONlib library is well suited for temporary files 
and situations without an established tool-chain for post-processing that expects 
certain file formats. Another advantage is that applications already using POSIX I/O 
calls don't need to be rewritten radically to parallelise their I/O. As noted in the 
introduction, the IESP Roadmap expects check-pointing as a technique likely to 
continue on exascale systems. The SIONlib library seems ideally suited for this 
purpose. Checkpoints are usually written in one go and resilience of the library is 
therefore less critical. As soon as a checkpoint is written successfully, older 
checkpoints can be removed. 

 Darshan has been developed with petascale systems in mind and its performance and 
scalability is therefore excellent. Its statistical analysis is also useful at scale. It is 
useful for applications with an unknown I/O profile, to get a quick overview of when, 
where and how much I/O is done. Resilience could be improved by relaxing the 
condition that the application needs to complete successfully. One useful and 
relatively easy improvement could be some subroutine calls that can be added to the 
application by the developer to start the analysis and generate the report at arbitrary 
points in the code. 


