

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2012-2.3.1 – Third Implementation Phase of the European
High Performance Computing (HPC) service PRACE

PRACE-3IP

PRACE Third Phase Implementation Project

Grant Agreement Number: RI-312763

D7.2.1

A Report on the Survey of HPC Tools and Techniques

Final

Version: 1.0
Author(s): Michael Lysaght, ICHEC

Bjorn Lindi, SIGMA-NTNU
Vit Vondrak, VSB
John Donners, SURFSARA
Marc Tajchman, GENCI-CEA

Date: 29.04.2013

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-312763
Project Title: PRACE Third Phase Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: < D7.2.1>
Deliverable Nature: <Report >
Deliverable Level:
PU

Contractual Date of Delivery:
30 / 04 / 2013
Actual Date of Delivery:
30 / 04 / 2013

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: A Report on the Survey of HPC Tools and Techniques
ID: D7.2.1
Version: <1.0 > Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D7.2.1.docx

Authorship

Written by: Michael Lysaght, ICHEC
Bjorn Lindi, SIGMA-NTNU
Vit Vondrak, VSB
John Donners, SURFSARA
Marc Tajchman, GENCI-CEA

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 ii

Contributors: Jorge Rodriguez, BSC
Abdou Abdel Rehim, CASTORC
Sami Saarinen, CSC
Iain Bethune, EPCC
Fiona Reid, EPCC
Lorna Smith EPCC
Konstantinos Nikas,
Niko Anastopoulos, GRNET
Emma Hogan, ICHEC
Ben Eagan, ICHEC
Buket Gursoy, ICHEC
Petar Jovanovic, IPB
Dusan Stankovic, IPB
Thomas Ponweiser, JKU
Peter Stadelmeyer, JKU
Nevena Ilieva, NCSA
Valentin Pavlov, NCSA
Henrik Nagel, SIGMA-NTNU
Jan Christian Meyer, SIGMA-NTNU
Chandan Basu SNIC-LiU
Ahmet Duran, ITU-UHeM
Serdar Celebi ITU-UHeM
Mehmet Tuncel ITU-UHeM
Ata Turk, Bilkent-UHeM
Cevdet Aykanat, Bilkent-UHeM
Can Ozturan, Bogazici-UHeM
Agnieszka Kwiecien, WCSS
Mariusz Uchronski, WCSS
Andrew Sunderland, STFC
Xiaohu Guo, STFC
Will Sawyer, CSCS

Reviewed by: Jarno Laitinen, CSC
Florian Berberich, JUELICH

Approved by: MB/TB

ocument Status Sheet

Version Date Status Comments
0.1 11/04/2013 Draft First draft of reports

completed.
0.2 25/04/2013 Draft Response to reviewers

comments
1.0 29/04/2013 Final version

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 iii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-312763. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2013 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-312763 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 iv

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet .. i

ocument Status Sheet ... ii

Document Keywords .. iii

Table of Contents .. iv

List of Figures .. ix

List of Tables ... ix

References and Applicable Documents .. x

List of Acronyms and Abbreviations .. xxiii

Executive Summary .. 1
1 Introduction .. 3
1.1 Purpose of the document .. 3
1.2 On the road to exascale .. 3
1.3 Organization of work .. 6
1.4 Structure of the document .. 7
1.5 Intended Audience .. 7
2 Programming Interfaces and Standards ... 8
2.1 MPI ... 10
2.1.1 Brief overview .. 10
2.1.2 Evidence of use within PRACE ... 11
2.1.3 Evidence of use outside PRACE ... 11
2.1.4 Pros and Cons ... 13
2.1.5 Target systems/architectures .. 14
2.1.6 Conclusion .. 14
2.2 OpenMP ... 14
2.2.1 Brief overview .. 14
2.2.2 Evidence of use within PRACE ... 15
2.2.3 Evidence of use outside PRACE ... 16
2.2.4 Pros and Cons ... 17
2.2.5 Target systems/architectures .. 18
2.2.6 Conclusion .. 18
2.3 OpenCL ... 18
2.3.1 Brief overview .. 18
2.3.2 Evidence of use within PRACE ... 19
2.3.3 Evidence of use outside PRACE ... 20
2.3.4 Pros and Cons ... 20
2.3.5 Target systems/architectures .. 21
2.3.6 Conclusion .. 21
2.4 OpenACC .. 22
2.4.1 Brief overview .. 22
2.4.2 Evidence of use within PRACE ... 22
2.4.3 Evidence of use outside PRACE ... 23
2.4.4 Pros and Cons ... 23
2.4.5 Target systems/architectures .. 25
2.4.6 Conclusion .. 25

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 v

2.5 TBB and Cilk Plus ... 25
2.5.1 Brief overview .. 25
2.5.2 Evidence of use within PRACE ... 27
2.5.3 Evidence of use outside PRACE ... 27
2.5.4 Pros and Cons ... 28
2.5.5 Target systems/architectures .. 29
2.5.6 Conclusion .. 29
2.6 CUDA .. 29
2.6.1 Brief overview .. 29
2.6.2 Evidence of use within PRACE ... 30
2.6.3 Evidence of use outside PRACE ... 31
2.6.4 Pros and Cons ... 31
2.6.5 Target systems/architectures .. 32
2.6.6 Conclusion .. 32
2.7 OmpSs .. 32
2.7.1 Brief overview .. 32
2.7.2 Evidence of use within PRACE ... 33
2.7.3 Evidence of use outside PRACE ... 34
2.7.4 Pros and Cons ... 34
2.7.5 Target systems/architectures .. 35
2.7.6 Conclusion .. 35
2.8 Co‐Array Fortran (CAF) .. 36
2.8.1 Brief overview .. 36
2.8.2 Evidence of use within PRACE ... 36
2.8.3 Evidence of use outside PRACE ... 37
2.8.4 Pros and Cons ... 37
2.8.5 Target systems/architectures .. 38
2.8.6 Conclusion .. 38
2.9 Unified Parallel C (UPC) ... 38
2.9.1 Brief overview .. 38
2.9.2 Evidence of use within PRACE ... 39
2.9.3 Evidence of use outside PRACE ... 39
2.9.4 Pros and Cons ... 40
2.9.5 Target systems/architectures .. 41
2.9.6 Conclusion .. 41
2.10 Chapel .. 42
2.10.1 Brief overview .. 42
2.10.2 Evidence of use within PRACE ... 43
2.10.3 Evidence of use outside PRACE ... 43
2.10.4 Pros and Cons ... 44
2.10.5 Target systems/architectures .. 44
2.10.6 Conclusion .. 44
2.11 X10 ... 45
2.11.1 Brief overview .. 45
2.11.2 Evidence of use within PRACE ... 45
2.11.3 Evidence of use outside PRACE ... 46
2.11.4 Pros and Cons ... 46
2.11.5 Target systems/architectures .. 47
2.11.6 Conclusion .. 47
2.12 Global Arrays Toolkit .. 47
2.12.1 Brief overview .. 47
2.12.2 Evidence of use within PRACE ... 48
2.12.3 Evidence of use outside PRACE ... 49

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 vi

2.12.4 Pros and Cons ... 49
2.12.5 Target systems/architectures .. 50
2.12.6 Conclusion .. 50
3 Debuggers and Profilers .. 51
3.1 TAU .. 53
3.1.1 Brief overview .. 53
3.1.2 Evidence of use within PRACE ... 54
3.1.3 Evidence of use outside PRACE ... 54
3.1.4 Pros and Cons ... 54
3.1.5 Target systems/architectures .. 55
3.1.6 Conclusion .. 56
3.2 Scalasca .. 56
3.2.1 Brief overview .. 56
3.2.2 Evidence of use within PRACE ... 56
3.2.3 Evidence of use outside PRACE ... 57
3.2.4 Pros and Cons ... 57
3.2.5 Target systems/architectures .. 58
3.2.6 Conclusion .. 58
3.3 Vampir .. 59
3.3.1 Brief overview .. 59
3.3.2 Evidence of use within PRACE ... 59
3.3.3 Evidence of use outside PRACE ... 60
3.3.4 Pros and Cons ... 60
3.3.5 Target systems/architectures .. 61
3.3.6 Conclusion .. 61
3.4 TotalView ... 61
3.4.1 Brief overview .. 61
3.4.2 Evidence of use within PRACE ... 62
3.4.3 Evidence of use outside PRACE ... 62
3.4.4 Pros and Cons ... 62
3.4.5 Target systems/architectures .. 63
3.4.6 Conclusion .. 63
3.5 DDT .. 63
3.5.1 Brief overview .. 63
3.5.2 Evidence of use within PRACE ... 63
3.5.3 Evidence of use outside PRACE ... 63
3.5.4 Pros and Cons ... 64
3.5.5 Target systems/architectures .. 64
3.5.6 Conclusion .. 64
3.6 Intel Debugging and Profiling Tools ... 65
3.6.1 Brief overview .. 65
3.6.2 Evidence of use within PRACE ... 65
3.6.3 Evidence of use outside PRACE ... 65
3.6.4 Pros and Cons ... 66
3.6.5 Target systems/architectures .. 67
3.6.6 Conclusion .. 67
3.7 NViDIA NSight ... 68
3.7.1 Brief overview .. 68
3.7.2 Evidence of use within PRACE ... 69
3.7.3 Evidence of use outside PRACE ... 69
3.7.4 Pros and Cons ... 69
3.7.5 Target systems/architectures .. 70
3.7.6 Conclusion .. 70

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 vii

3.8 Other Tools ... 70
3.8.1 Brief overview .. 70
3.8.2 CrayPat and Apprentice2 .. 70
3.8.3 IBM HPCT .. 71
3.8.4 Paraver ... 71
3.8.5 IPM ... 72
3.8.6 OpenSpeedShop ... 72
3.8.7 PAPI .. 72
3.8.8 Temanejo/Ayudame ... 73
4 Scalable Libraries and Algorithms .. 74
4.1 Direct Solvers .. 75
4.1.1 Brief overview .. 75
4.1.2 Evidence of use within PRACE ... 77
4.1.3 Evidence of use outside PRACE ... 78
4.1.4 Conclusion .. 78
4.2 Iterative solvers .. 79
4.2.1 Brief overview .. 79
4.2.2 Evidence of use within PRACE ... 80
4.2.3 Evidence of use outside PRACE ... 81
4.2.4 Conclusion .. 82
4.3 FFT Libraries .. 82
4.3.1 Brief overview .. 82
4.3.2 Evidence of use within PRACE ... 83
4.3.3 Evidence of use outside PRACE ... 84
4.3.4 Pros and Cons ... 85
4.3.5 Target systems/architectures .. 86
4.3.6 Conclusion .. 86
4.4 PETSc .. 86
4.4.1 Brief overview .. 86
4.4.2 Evidence of use within PRACE ... 87
4.4.3 Evidence of use outside PRACE ... 87
4.4.4 Pros and Cons ... 88
4.4.5 Target systems/architectures .. 89
4.4.6 Conclusion .. 89
4.5 Trilinos .. 89
4.5.1 Brief overview .. 89
4.5.2 Evidence of use within PRACE ... 90
4.5.3 Evidence of use outside PRACE ... 90
4.5.4 Pros and Cons ... 90
4.5.5 Target systems/architectures .. 91
4.5.6 Conclusion .. 91
4.6 Zoltan ... 91
4.6.1 Brief overview .. 91
4.6.2 Evidence of use within PRACE ... 92
4.6.3 Evidence of use outside PRACE ... 92
4.6.4 Pros and Cons ... 92
4.6.5 Target systems/architectures .. 93
4.6.6 Conclusion .. 94
4.7 ParMeTiS .. 94
4.7.1 Brief overview .. 94
4.7.2 Evidence of use within PRACE ... 95
4.7.3 Evidence of use outside PRACE ... 95
4.7.4 Pros and Cons ... 95

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 viii

4.7.5 Target systems/architectures .. 96
4.7.6 Conclusion .. 96
4.8 PT‐Scotch .. 96
4.8.1 Brief overview .. 96
4.8.2 Evidence of use within PRACE ... 97
4.8.3 Evidence of use outside PRACE ... 97
4.8.4 Pros and Cons ... 98
4.8.5 Target systems/architectures .. 99
4.8.6 Conclusion .. 99
4.9 NetGen ... 99
4.9.1 Brief overview .. 99
4.9.2 Evidence of use within PRACE ... 99
4.9.3 Evidence of use outside PRACE ... 100
4.9.4 Pros and Cons ... 100
4.9.5 Target systems/architectures .. 101
4.9.6 Conclusion .. 101
5 I/O Management Techniques .. 101
5.1 HDF5 ... 102
5.1.1 Brief overview .. 102
5.1.2 Evidence of use within PRACE ... 102
5.1.3 Evidence of use outside PRACE ... 103
5.1.4 Pros and Cons ... 103
5.1.5 Target systems/architectures .. 104
5.1.6 Conclusion .. 104
5.2 PNetCDF ... 104
5.2.1 Brief description ... 104
5.2.2 Evidence of use within PRACE ... 105
5.2.3 Evidence of use outside PRACE ... 105
5.2.4 Pros and Cons ... 105
5.2.5 Target systems/architectures .. 106
5.2.6 Conclusion .. 106
5.3 XIOS .. 107
5.3.1 Brief description ... 107
5.3.2 Evidence of use within PRACE ... 107
5.3.3 Evidence of use outside PRACE ... 107
5.3.4 Pros and Cons ... 107
5.3.5 Target systems/architectures .. 108
5.3.6 Conclusion .. 108
5.4 ADIOS ... 108
5.4.1 Brief description ... 108
5.4.2 Evidence of use within PRACE ... 109
5.4.3 Evidence of use outside PRACE ... 109
5.4.4 Pros and Cons ... 109
5.4.5 Target systems/architectures .. 110
5.4.6 Conclusion .. 110
5.5 SIONlib ... 110
5.5.1 Brief description ... 110
5.5.2 Evidence of use within PRACE ... 110
5.5.3 Evidence of use outside PRACE ... 111
5.5.4 Pros and Cons ... 111
5.5.5 Target platforms/architectures ... 111
5.5.6 Conclusion .. 112
5.6 Darshan .. 112

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 ix

5.6.1 Brief description ... 112
5.6.2 Evidence of use within PRACE ... 112
5.6.3 Evidence of use outside PRACE ... 113
5.6.4 Pros and Cons ... 113
5.6.5 Target platforms/architectures ... 113
5.6.6 Conclusion .. 114
6 Summary .. 115

List of Figures

Figure 1: Schematic overview of subtasks in Task 7.2 ... 6

List of Tables
Table 1 MPI - Pros and Cons .. 13
Table 2 MPI - Target systems/architectures .. 14
Table 3 OpenMP - Pros and cons .. 18
Table 4 OpenMP - Target systems/architecture .. 18
Table 5 OpenCL - Pros and Cons .. 21
Table 6 OpenCL - Target systems/architectures ... 21
Table 7 OpenACC - Pros and Cons ... 24
Table 8 OpenACC - Target systems/architectures .. 25
Table 9 TBB & Cilk Plus - Pros and Cons .. 29
Table 10 TBB & Cilk Plus - Target systems/architectures ... 29
Table 11 CUDA - Pros and Cons .. 32
Table 12 CUDA - Target structures/architectures ... 32
Table 13 OmpSs - Pros and Cons .. 35
Table 14 OmpSs - Target systems/architectures ... 35
Table 15 CAF - Pros and Cons .. 38
Table 16 CAF - Target systems/architectures ... 38
Table 17 UPC - Pros and Cons .. 41
Table 18 UPC - Target systems/architectures ... 41
Table 19 Chapel - Pros and Cons .. 44
Table 20 Chapel - Target systems/architectures .. 44
Table 21 X10 - Pros and Cons ... 47
Table 22 X10 - Target systems/architectures .. 47
Table 23 Global Arrays Toolkit - Pros and Cons .. 50
Table 24 Global Arrays Toolkit - Target systems/architectures .. 50
Table 25 Debugging and Profiling Tools .. 52
Table 26 TAU - Pros and Cons ... 55
Table 27 TAU - Target systems/Architectures .. 55
Table 28 Scalasca - Pros and Cons .. 58
Table 29 Scalasca - Target systems/architectures ... 58
Table 30 Vampir - Pros and Cons ... 60
Table 31 Vampir - Target systems/architectures ... 61
Table 32 TotalView - Pros and Cons .. 62
Table 33 TotalView - Target systems/architectures .. 63
Table 34 DDT - Pros and Cons ... 64
Table 35 DDT - Target systems/architectures ... 64
Table 36 Intel Debugging and Profiling Tools - Pros and Cons ... 67
Table 37 Intel Debugging and Profiling Tools - Target systems/architecture 67
Table 38 NVIDIA NSight - Pros and Cons ... 70

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 x

Table 39 NVIDIA NSight - Target systems/architectures .. 70
Table 40 Zoltan - Pros and Cons ... 93
Table 41 Zoltan - Target systems/architectures ... 93
Table 42 ParMeTiS - Pros and Cons ... 96
Table 43 ParMeTis - Target systems/architectures ... 96
Table 44 PT SCOTCH - Pros and Cons .. 99
Table 45 PT SCOTCH - Target systems/architectures .. 99
Table 46 NETGEN - Pros and Cons ... 100
Table 47 NETGEN - Target systems/architectures ... 101
Table 48 HDF5 - Pros and Cons ... 104
Table 49 HDF5 - Target systems/architectures ... 104
Table 50 PNetCDF - Pros and Cons .. 106
Table 51 PNetCDF - Target systems/architectures ... 106
Table 52 XIOS - Pros and Cons .. 108
Table 53 XIOS - Target systems/architectures .. 108
Table 54 ADIOS - Pros and Cons ... 110
Table 55 ADIOS - Target systems/architectures ... 110
Table 56 SIONlib - Pros and Cons .. 111
Table 57 SIONlib - Pros and Cons .. 111
Table 58 Darshan - Pros and Cons .. 113
Table 59 Darshan - Target systems/architectures .. 113

References and Applicable Documents

[1] European Exascale Software Initiative (EESI) homesite: http://www.eesi-
project.eu/pages/menu/homepage.php

[2] TEXT exascale project homesite: http://www.project-text.eu/
[3] CRESTA exascale project homesite: http://cresta-project.eu/
[4] DEEP exascale project homesite: http://www.deep-project.eu/deep-

project/EN/Home/home_node.html
[5] Mont-Blanc exascale project homesite: http://www.montblanc-project.eu/
[6] IESP project homesite: http://www.exascale.org/bdec/
[7] US Department of Energy Exascale Worskshop Panel Report (2010), pdf:

http://www.exascale.org/mediawiki/images/4/48/TrivelpieceExascaleWorkshop.pdf
[8] Chapel homesite: http://chapel.cray.com/index.html
[9] B Chamberlian et al, ‘Chapel Support for Heterogeneous Architectures via Hierarchical

Locales’, PGAS-X Workshop, Santa Barbara, USA Oct. 2012, pdf:
http://chapel.cray.com/presentations/ChapelForPGASX-presented.pdf

[10] US Department of Energy Exascale Research Conference 2012 homesite:
http://exascaleresearch.labworks.org/apr2012/conference
[11] MPI: A Message-Passing Interface Standard Version 3.0, pdf: http://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf
[12] OpenMP version 3.0, complete specification, pdf: http://www.openmp.org/mp-

documents/spec30.pdf
[13] NVIDIA CUDA homesite http://www.NVIDIA.com/object/cuda_home_new.html
[14] OpenCL Khronos Group homesite: http://www.khronos.org/opencl/
[15] OpenACC forum website: http://www.openacc-standard.org/
[16] Intel Thread Building Blocks (TBB) homesite: http://threadingbuildingblocks.org/
[17] Cilk Plus homesite: http://cilkplus.org/
[18] Intel SDK for OpenCL Applications 2013, product brief: http://software.intel.com/en-

us/vcsource/tools/opencl-sdk
[19] OmpSs homesite: http://pm.bsc.es/ompss
[20] CoArray Fortran homesite: http://www.co-array.org/

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xi

[21] Unified Parallel C (UPC), ‘official website’, http://upc.gwu.edu/
[22] X10 Programming Language homesite: http://x10-lang.org/
[23] Global Arrays Toolkit homesite: http://www.emsl.pnl.gov/docs/global/
[24] MPI Forum homesite: http://www.mpi-forum.org/
[25] MPICH homesite: http://www.mpich.org/
[26] MVAPICH homesite: http://mvapich.cse.ohio-state.edu/
[27] OpenMPI homesite: http://www.open-mpi.org/
[28] MVAPICH2-X, Unified MPI+PGAS Communication Runtime over OpenFabrics/Gen2

for Exascale Systems’, http://mvapich.cse.ohio-state.edu/overview/mvapich2x/, J. Jose,
M. Luo, S. Sur and D. K. Panda, Unifying UPC and MPI Runtimes: Experience with
MVAPICH, Fourth Conference on Partitioned Global Address Space Programming
Model (PGAS10), Oct. 2010

[29] ‘Introducing OpenSHMEM’, B Chapman et al, published in PGAS '10 Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
article 2, DOI: 10.1145/2020373.2020375

[30] H Wang et al, ‘MVAPICH2-GPU: Optimized GPU to GPU Communication for
InfiniBand Clusters’, Int’l Supercomputing Conference (ISC), June 2011, pdf:
http://nowlab.cse.ohio-state.edu/publications/conf-presentations/2011/hao-isc11-
slides.pdf

[31] NVIDIA GPUDirect, ‘Technical Overview’, https://developer.NVIDIA.com/gpudirect
[32] S Potluri, et al, ‘Intra-MIC MPI Communication using MVAPICH2: Early Experience’,

published in proceedings of TI-HPCS, 2012, http://nowlab.cse.ohio-
state.edu/publications/conf-papers/2012/potluri-tihpcs2012-paper.pdf

[33] PRACE deliverable D6.4, PRACE-PP, ‘Report on Approaches to Petascaling’,
http://www.prace-ri.eu/IMG/pdf/D6-4.pdf

[34] Jean-Marc Molines, Nicole Audiffren and Albanne Lecointre, ‘High resolution ocean
simulations with NEMO modeling system’, PRACE whitepaper, PRACE-1IP, ,
http://www.prace-
ri.eu/IMG/pdf/High_resolution_ocean_simulations_with_NEMO_modeling_system.pdf

[35] WP8 PRACE-2IP F2F /Workshop. Progress reports can be found at:
https://hpcforge.org/plugins/mediawiki/wiki/pracewp8/index.php/F2f5

[36] ‘Four applications sustain 1 PF on Blue Waters’, More information can be found in
pdf: http://www.ncsa.illinois.edu/News/Stories/BW1year/apps.pdf

[37] ‘Record simulations conducted on Lawrence Livermore supercomputer’,
https://www.llnl.gov/news/newsreleases/2013/Mar/NR-13-03-05.html

[38] OSIRIS code overview: http://plasmasim.physics.ucla.edu/codes/osiris
[39] ParaStation MPI, product description in pdf: http://docs.par-tec.com/pdf/SPD-MPI2-

5.0.4en.pdf
[40] The OpenMP API specification for parallel programming homesite:

http://openmp.org/wp/
[41] OpenMP version 4.0, public release candidate: http://www.openmp.org/mp-

documents/OpenMP_4.0_RC2.pdf
[42] Best Practice Guide-Intel Xeon Phi, PRACE website: http://www.prace-ri.eu/Best-

Practice-Guide-Intel-Xeon-Phi
[43] PRACE deliverable D7.5, PRACE-1IP, http://www.prace-ri.eu/IMG/pdf/d7.5_1ip.pdf
[44] Fabio Affinito, Andrew Emerson, Leandar Litov, Peicho Petkov, Rossen Apostolov,

Lilit Axner, Berk Hess, Erik Lindahl and Maria Francesca Iozzi, ‘Performance Analysis
and Petascale Enabling of GROMACS’, PRACE whitepaper, PRACE-1IP , pdf:
http://www.prace-
ri.eu/IMG/pdf/Performance_Analysis_and_Petascaling_Enabling_of_GROMACS.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xii

[45] Michael Lange, Gerard Gorman, Michele Weiland, Lawrence Mitchell and James
Southern, 'Achieving Efficient Strong Scaling with PETSc using Hybrid MPI/OpenMP
Optimisation', preprint pdf: http://arxiv.org/pdf/1303.5275v1.pdf]

[46] Tim Cramer, Dirk Schmidl, Michael Klemmy and Dieter an Mey, ‘OpenMP
Programming on Intel Xeon Phi Coprocessors: An Early Performance Comparison’, ,
Proceedings of the Many-core Applications Research Community (MARC) Symposium
at RWTH Aachen University, 2012, pdf: http://www.lfbs.rwth-
aachen.de/users/stefan/marc2012/07_Cramer.pdf

[47] MALI OpenCL SDK homesite: http://malideveloper.arm.com/develop-for-
mali/sdks/mali-opencl-sdk/

[48] Michael Lysaght, Mariusz Uchronski, Agnieszka Kwiecien, Marcin Gebarowski, Peter
Nash, Ivan Girotto and Ilian T.Todorov, ‘Benchmarking and analysis of DL_POLY 4
on GPU clusters’, PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/benchmarking_and_analysis_of_dl_poly_4_on_gpu_clusters.pdf

[49] PRACE deliverable D9.2.2, ‘ Final Software Evaluation Report’, PRACE-1IP, pdf:
http://www.prace-ri.eu/IMG/pdf/D9-2-2_1ip.pdf

[50] Mariusz Uchronski, Marcin Gebarowski, Agnieszka Kwiecien, ‘Optimization of
SHAKE and RATTLE Algorithms’, PRACE whitepaper,PRACE-2IP, pdf:
http://www.prace-ri.eu/IMG/pdf/optimization_of_shake_and_rattle_algorithms.pdf

[51] B. Bland,’Titan-Early Experience with the Titan System at Oak Ridge National
Laboratory’, SC12 presentation, more details in pdf:
http://developer.download.NVIDIA.com/GTC/PDF/GTC2012/PresentationPDF/Buddy
Bland_Titan_SC12.pdf

[52] W M Brown, A Kohlmeyer, S J Plimpton, and A N Tharrington, 'Implementing
Molecular Dynamics on Hybrid High Performance Computers – Particle-Particle
Particle-Mesh', Computer Physics Communications 183, p4 (2012).

[53] Geryon Library homesite: http://users.nccs.gov/~wb8/geryon/index.htm
[54] VexCL: Vector expression template library for OpenCL, homesite:

https://github.com/ddemidov/vexcl
[55] ADAPT 2013 Workshop, homsite: http://homepages.inf.ed.ac.uk/cdubach/adapt2013/
[56] The OpenACC Application Programming Interface, Version 2.0 Public Comment Draft,

March 13th 2013 http://openacc.org/sites/default/files/OpenACC-2.0-draft.pdf
[57] OpenMP Technical Report 1 on Directives for Attached Accelerators, pdf:

http://www.openmp.org/mp-documents/TR1_167.pdf
[58] Ben Eagan and Gilles Civario, ‘Investigating Performance Benefits from OpenACC

Kernel Directives’, PRACE whitepaper, PRACE-2IP, pdf: http://www.prace-
ri.eu/IMG/pdf/wp64_investigating_openacc.pdf

[59] J M Levesque. R Sankaran and R Grout, ‘Hybridizing S3D into an exascale application
using OpenACC: an approach for moving to multi-petaflops and beyond’, SC '12
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, Salt Lake City, Utah, 2012.

[60] Private Communication with CRESTA team, CRESTA deliverable D3.5.1, ‘Compiler
support for exascale’ - to be published.

[61] Private Communication with CRESTA team- A Feasibility Study on the Hybridisation
of HemeLB, to be published

[62] PRACE deliverable, D9.2.1, ‘First Report on Multi-Petascale to Exascale
Software’PRACE-1IP, http://www.prace-ri.eu/IMG/pdf/d9.2.1_1ip.pdf

[63] Jiri Dokulil, Enes Bajrovic, Siegfried Benkner, Sabri Pllana, Martin Sandrieser, Beverly
Bachmayer ‘Efficient Hybrid Execution of C++ Applications using Intel Xeon Phi
Coprocessor’ preprint at http://arxiv.org/abs/1211.5530

[64] deal.II homesite: : http://www.dealii.org/

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xiii

[65] Trilinos homesite: http://trilinos.sandia.gov/
[66] J. Eisenlor, D. E. Hudak, K. Tomko, and T. C. Prince, ‘Dense linear algebra

factorization in OpenMP and Cilk Plus on Intel MIC: Development experiences and
performance analysis’, In TACC-Intel Highly Parallel Computing Symposium, 2012.

[67] Alexei Strelchenko, Marcus Petschlies and Giannis Koutsou, ‘Extending the QUDA
library for Domain Wall and Twisted Mass fermions’, PRACE whitepaper, PRACE-
1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/extending_the_quda_library_for_domain_wall_and_twisted_mass_fermi
ons.pdf

[68] NVIDIA report on Hyper-Q technology: http://blogs.nvidia.com/2012/08/unleash-
legacy-mpi-codes-with-keplers-hyper-q/

[69] C. Baker, G. Davidson, T. M. Evans, S. Hamilton, J. Jarrell and W. Joubert, 'High
Performance Radiation Transport Simulations - Preparing for TITAN’, Paper at SC12
(2012) pdf: http://conferences.computer.org/sc/2012/papers/1000a069.pdf

[70] Jesus Labarta, ‘StarSs: a Programming Model for the Multicore Era’, PRACE website:
http://www.prace-ri.eu/IMG/pdf/08_starss_jl.pdf

[71] GasNet homesite: http://gasnet.cs.berkeley.edu/
[72] Claudia Rosas, Vladimir Subotic, Jose Carlos Sancho and Jesus Labarta, ‘Analysis and

Optimization of a Hybrid Linear Equation Solver using Task-Based Parallel
Programming Models’, PRACE whitepaper, PRACE-2IP, pdf: http://www.prace-
ri.eu/IMG/pdf/wp61_analysis_and_optimization_of_hybrid_linear_equations_solver_us
ing_task-based_parallel_prog.pdf

[73] J Bueno et al, ‘Productive cluster programming with OmpSs’, Euro-Par 2011 Parallel
Processing, 555-566 (2011)

[74] J Bueno et al, ‘Productive Programming of GPU Clusters with OmpSs’, Parallel &
Distributed Processing Symposium (IPDPS), 2012 IEEE 26th International (2012)

[75] Private Communication with the DEEP team
[76] Fortran Wiki: http://fortranwiki.org/fortran/show/HomePage
[77] Rice University Corray Fortran homesite: http://caf.rice.edu/
[78] CRESTA, Collaborative Research into Exascale Systemware Tools & Applications,

George Mozdzynski (ECMWF) - IS-ENES 2nd HPC workshop;pdf:
https://is.enes.org/the-project/presentation-on-is-enes-slides/is-enes-2nd-hpc-workshop-
presentations-february-2013/session-1-status-of-eu-exascale-
projects/CRESTA.pdf/at_download/file

[79] Unified Parallel C “official website”: http://upc.gwu.edu/
[80] Pierre-Francois Lavallee, Guillaume Colin de Verdiere, Philippe Wautelet, Dimitri

Lecas and Jean-Michel Dupays, ‘Porting and Optimizing HYDRO to new platforms and
programming paradigms - lessons learnt’PRACE whitepaper, PRACE-1IP, pdf:
http://www.prace-ri.eu/IMG/pdf/porting_and_optimizing_hydro_to_new_platforms.pdf

[81] Intel Exascience Lab homesite: http://www.exascience.com/
[82] B. Verleyea et al, 'Implementation of a 2D electrostatic Particle-in-Cell algorithm in

unified parallel C with dynamic load-balancing' Computers & Fluids, 2012, In Press,
http://www.sciencedirect.com/science/article/pii/S0045793012003362

[83] James Dinan, Pavan Balaji, Ewing Lusk, P. Sadayappan, Rajeev Thakur. Proc. 7th
ACM Conf. on Computing Frontiers (CF). Bertinoro, Italy. May 17-19, 2010.

[84] Alan Gray, An Evaluation of UPC in the Ludwig Application, Proceedings of CUG
2009 Conference, Atlanta, Georgia, May 2009, pdf:
http://www2.epcc.ed.ac.uk/~alang/publications/GrayCUG2009.pdf

[85] Albert Sidelnik, Saeed Maleki, Bradford L. Chamberlain, María J. Garzarán, David
Padua, ‘Performance Portability with the Chapel Language’, IPDPS 2012, May 2012,
pdf: http://polaris.cs.uiuc.edu/~asideln2/ipdps12.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xiv

[86] Vassily Litvinov et al, 'Multiresolution Parallel Programming with Chapel', HPC
Advisory Council Conference, Sept. 2012, pdf:
http://www.bsc.es/sites/default/files/public/mare_nostrum/hpcac2012-14_cray.pdf

[87] PRACE deliverable D6.6, PRACE-1IP, ‘Report on petascale software libraries and
programming models’ http://www.prace-ri.eu/IMG/pdf/D6-6.pdf

[88] B Chamberlain et al, 'HPCC Benchmarks in Chapel' pdf:
http://www.hpcchallenge.org/presentations/sc2009/ChapelAtHPCCBOF2009.pdf

[89] IBM DeveloperWorks homesite: http://www.ibm.com/developerworks/
[90] Marc Tajchman, ‘Parallelization Using a PGAS Language such as X10 in HYDRO and

Triton’, PRACE Whitepaper, PRACE-2IP, http://www.prace-
ri.eu/IMG/pdf/wp63_parallelization_using_a_pgas_language_such_as_x10_in_hydro_a
nd_triton.pdf

[91] HPC Challenge homesite: www.hpcchallenge.org
[92] Olivier Tardieu et al, ‘X10 for productivity and performance at scale’ 2012 HPC

Challenge Class 2, pdf: http://www.hpcchallenge.org/presentations/sc2012/x10-
hpcc.pdf

[93] Anuchem homesite: http://cs.anu.edu.au/~Josh.Milthorpe/anuchem.html
[94] Jarek Nieplocha and Bryan Carpenter, ‘ARMCI: A Portable Remote Memory Copy

Library for Distributed Array Libraries and Compiler Run-Time Systems’, Lecture
Notes in Computer Science, Springer, 1999

[95] Pavlov V and Petkov P ‘Data I/O Optimization in GROMACS using Global Arrays
Toolkit’, PRACE Whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Data_IO_Optimization_in_GROMACS_Using_the_Global_Arrays_Tool
kit-2.pdf

[96] Apra, E, Harrison, R, deJong, W et al 2009, 'Liquid Water: Obtaining the Right Answer
for the Right Reasons', in Janet Brown (ed.), Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, Association for Computing
Machinery Inc (ACM), USA, pp. 7pp., 2009

[97] James Dinan et al 'Supporting the Global Arrays PGAS Model Using MPI One-Sided
Communication', Proc. 26th Intl. Parallel and Distributed Processing Symp. (IPDPS).
Shanghai, China. May 2012, pdf:
http://www.mcs.anl.gov/~dinan/pubs/2012/dinan_ipdps12.pdf

[98] B Mohr. 'Survey of System Software Stacks in the IESP Community', link to excel
sheet: http://www.exascale.org/mediawiki/images/0/07/Iesp-sfo-mohr-stack-survey-
2.xls

[99] PRACE deliverable, D6.3.1, PRACE-PP, ‘Report on available Performance Analysis
and Benchmark Tools, Representative Benchmark’, pdf: http://www.prace-
ri.eu/IMG/pdf/D6-3-1.pdf

[100] HOPSA further information: http://www.vi-hps.org/projects/hopsa/overview/
[101] SCORE-P further information: http://www.vi-hps.org/projects/score-p/
[102] DEEP ‘Midterm management report at month 6’, deliverable D1.2, pdf: http://www.fz-

juelich.de/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-
D1.2.pdf?__blob=publicationFile

[103] TAU Profiler homsite: http://www.cs.uoregon.edu/research/tau/home.php
[104] Sameer Shende , ‘Scalability Improvements in the TAU Performance System’ ,

Workshop on Extreme Scale Performance Tools SC’12 , pdf: http://www.vi-
hps.org/upload/program/espt-sc12/vi-hps-espt-SC12-Workshop-Shende.pdf

[105] S. Shende and A. D. Malony, ‘The TAU Parallel Performance System’, International
Journal of High Performance Computing Applications, SAGE Publications, 20(2):287-
331, Summer 2006, pdf:
http://www.cs.uoregon.edu/research/paracomp/papers/ijhpca05.tau/ijhpca_tau.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xv

[106] A D Malony, S Shende, W Spear, S Biersdorff, S Millstein, ‘TAU Performance System
and GPUs’, Keeneland Tutorial, April 14-15, 2011, pdf:
http://www.cc.gatech.edu/~vetter/keeneland/tutorial-2011-04-14/10-tau-gpu-tutorial-
part1.pdf

[107] PAPI homsite: http://icl.cs.utk.edu/papi/
[108] CUPTI: for more information see: http://docs.NVIDIA.com/cuda/cupti/index.html
[109] Orio: An Annotation-Based Empirical Performance Tuning Framework, homesite:

http://trac.mcs.anl.gov/projects/performance/wiki/Orio
[110] Jeffrey Vetter, Allen Malony, Philip Roth, Kyle Spafford, Jeremy Meredith,’Scalable

Heterogeneous Computing on GPU Clusters’, Tutorial at SC12
[111] A. Mametjanov, D. Lowell, C. Ma, B. Norris, ‘Autotuning Stencil-Based Computations

on GPUs’, Preprint ANL/MCS-P2094-0512, May 2012, pdf:
http://www.mcs.anl.gov/uploads/cels/papers/P2094-0512.pdf

[112] Jussi Enkovaara, Martti Louhivuori, Petar Jovanovic, Vladimir Slavnic, Mikael Rannar,
'Optimizing GIPAW', PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Optimizing_GPAW.pdf

[113] Chandan Basu, 'High Resolution EC Earth Porting and Benchmarking on Curie',
PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/High_Resolution_EC_Earth_Porting_and_Benchmarking_on_CURIE.pd
f

[114] A Maloney, ‘Targeting the TAU Performance System for Extreme Scale’, LACSS
2008, pdf: http://www.lanl.gov/conferences/lacss/2008/slides/Malony_lacss_2008.pdf

[115] M Schulz, B Mohr and B Wylie, ‘Supporting Performance Analysis and Optimization
on Extreme-Scale Computer Systems’ Tutorial at SC12

[116] Scalasca homesite: http://www.scalasca.org/
[117] D Bohme, M Geimer, F Wolf and L Arnold, 'Identifying the root causes of wait states in

large-scale parallel applications', Published in Proceedings of the 39th International
Conference on Parallel Processing (ICPP), San Diego, CA, September 2010, pdf:
http://apps.fz-juelich.de/jsc-pubsystem/aigaion/attachments/rootcause.pdf-
c6a59c39c21a36c19dcc01631d0c05f7.pdf

[118] PRACE deliverable, D7.4.1, PRACE-1IP, ‘Applications and user requirements for Tier-
0 systems’, pdf: http://www.prace-ri.eu/IMG/pdf/D7-4-1_1ip.pdf

[119] PRACE deliverable, D7.1.2, 'Applications Enabling for Capability Science', pdf:
http://www.prace-ri.eu/IMG/pdf/d7.1.2_1ip.pdf

[120] T Deloze, Y Hoarau and M Braza, 'Direct Numerical Simulation and Turbulence
Modeling for Fluid-Structure Interaction in Aerodynamics', PRACE whitepaper,
PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Direct_Numerical_Simulation_and_Turbulence_Modeling_for_Fluid.pdf

[121] A Schnurpfeil, A Schiller, F Janetzko, St. Meier and G Sutman, 'Semi-dilute polymer
systems in shear flow - a particle based hydrodynamic approach', PRACE whitepaper,
PRACE-1IP, pdf: http://www.prace-ri.eu/IMG/pdf/Semi-
dilute_polymer_systems_in_shear.pdf

[122] R J. N. Wylie, M Geimer, B Mohr, 'Large-scale Performance Analysis of SWEEP3D
with the Scalasca Toolset', Parallel Processing Letters, Vol. 20, No. 4 (2010) 397–414,
pdf:
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDQQFj
AB&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3
D10.1.1.187.2873%26rep%3Drep1%26type%3Dpdf&ei=S51mUfSyGIKJhQfGj4DICQ
&usg=AFQjCNHqKBA8WyUIi9dS5f9SoX9q7rvrDQ&bvm=bv.45107431,d.ZG4&cad
=rja

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xvi

[123] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E.
Nagel, Felix Wolf: Open Trace Format 2 - The Next Generation of Scalable Trace
Formats and Support Libraries. In Proc. of the Intl. Conference on Parallel Computing
(ParCo), Ghent, Belgium, August 30 – September 2 2011, volume 22 of Advances in
Parallel Computing, pages 481–490, IOS Press, 2012. DOI: 10.3233/978-1-61499-041-
3-481

[124] Private Communication with the DEEP team
[125] M-A Hermanns, S Krishnamoorthy and F Wolf, 'A scalable infrastructure for the

performance analysis of passive target synchronization', Parallel Computing, Vol. 9 (3),
p132 (2013) URL:
http://www.sciencedirect.com/science/article/pii/S0167819112000762

[126] VampirTrace homesite: http://www.tu-
dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_z
ur_unterstuetzung_von_programmierung_und_optimierung/vampirtrace

[127] Vampir homesite: http://www.vampir.eu/
[128] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller,

and W. E. Nagel: The Vampir Performance Analysis Tool-Set, Tools for High-
Performance Computing, pp. 139-155, Springer 2008

[129] Open Trace Format, http://www.tu-
dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/software_werkzeuge_z
ur_unterstuetzung_von_programmierung_und_optimierung/otf, last accessed
21.03.2013

[130] IOFSL homesite: http://www.mcs.anl.gov/research/projects/iofsl/
[131] J. Domke, ‘Trace Based Performance Analysis at Large Scale on Titan’, pdf:

http://www.olcf.ornl.gov/wp-
content/uploads/2012/01/TitanWorkshop2012_Day3_Vampir.pdf

[132] More information can be found on the CRESTA website: http://cresta-
project.eu/systemware/debugging-and-application-performance-tools.html

[133] TotalView homesite: http://www.roguewave.com/products/totalview.aspx
[134] More information can be found here: http://www.roguewave.com/company/news-

events/press-releases/2012/scalability-milestone-for-totalview-debugger.aspx
[135] More information can be found here: http://www-hpc.cea.fr/en/Wotofe/docs/16-1210-

Roguewave.pdf
[136] Allinea DDT homesite http://www.allinea.com/products/ddt/
[137] For more information see: http://content.allinea.com/news/allinea-software-sets-new-

world-record-on-ornl-s
[138] For more information see: http://www.allinea.com/news/bid/88433/Allinea-Software-

Helps-Launch-World-Class-Research
[139] For more information see: http://www.hpcwire.com/hpcwire/2012-05-

14/blue_waters_supercomputer_debugs_with_allinea_ddt.html
[140] Intel Cluster Studio XE 2013, homesite: http://software.intel.com/en-us/intel-cluster-

studio-xe
[141] Private Communication with DEEP team
[142] Intel Success Brief: “Creating a new standard in virtual crash testing”

http://software.intel.com/sites/default/files/Altair_CS_052112.pdf
[143] Intel VTune Amplifier product site: http://software.intel.com/en-us/intel-vtune-

amplifier-xe/
[144] Optimization and Performance Tuning for Intel Xeon Phi Coprocessors, Part 1

http://software.intel.com/en-us/articles/optimization-and-performance-tuning-for-intel-
xeon-phi-coprocessors-part-1-optimization, http://software.intel.com/en-

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xvii

us/articles/optimization-and-performance-tuning-for-intel-xeon-phi-coprocessors-part-
2-understanding

[145] Intel Inspector Product site - http://software.intel.com/en-us/intel-inspector-xe/
[146] Intel Case Study (University of Kyoto) – “Delivering High-Speed Supercomputer

Services”:http://software.intel.com/sites/default/files/kyoto.pdf
[147] Private Communication with Intel Cluster Studio team
[148] ‘Helping bring greater realism to manufacturing simulation’:

http://software.intel.com/sites/default/files/simulia_case_studyV2.pdf
[149] Nvidia Developer Zone site about Nsight http://www.nvidia.com/object/nsight.html
[150] PRACE deliverable D9.2.2, PRACE-1IP, ‘Final Software Evaluation Report’, pdf:

(http://www.prace-ri.eu/IMG/pdf/D9-2-2_1ip.pdf)
[151] ScalaLife project deliverable D6.1, ‘Report on the scalable techniques for life science

software: Performance analysis and first parallel prototypes’, pdf:
http://www.scalalife.eu/system/files/ScalaLife-D6.1-final.pdf

[152] Using perfools for threaded and hybrid codes, Parallel Programming Workshops and
Programming Language Courses, 2011, HLRS, pdf:
https://fs.hlrs.de/projects/par/events/2011/parallel_prog_2011/2011XE6-1/04.2-
Craypat.pdf

[153] IBM's Parallel Environment (PE) Developer Edition, homesite:
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/
Welcome%20to%20High%20Performance%20Computing%20%28HPC%29%20Centr
al/page/Parallel%20Environment%20%28PE%29%20Developer%20Edit

[154] Paraver homesite: http://www.bsc.es/computer-sciences/performance-
tools/paraver/general-overview

[155] Extrae homesite: http://www.bsc.es/computer-sciences/extrae
[156] Private Communication. For more information see: DEEP project deliverable, D5.1,

‘Prototype programming environment in Booster Node’, pdf: http://www.deep-
project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-
D5.1.pdf?__blob=publicationFile

[157] IPM homesite: http://www.ipm2.org
[158] Effective Holistic PerformanceMeasurement at Petascale Using IPM", Karl Fürlinger,

Nicholas J. Wright, and David Skinner. In Proceedings of The Sixteenth IEEE
International Conference on Parallel and Distributed Systems (ICPADS 2010).
Shanghai, China, December 2010.

[159] OpenSpeedShop homesite: http://www.openspeedshop.org/wp/
[160] Jim Galarowicz, “Look for Bottlenecks with OpenSpeedShop”, article in the Internet

magazine “Admin Magazine”, http://www.admin-magazine.com/HPC/Articles/Look-
for-Bottlenecks-with-Open-SpeedShop

[161] Jim Galarowicz, ‘Understanding Performance of Parallel Codes Using OpenSpeedShop
on BG/Q’, ScicomP 2012, Toronto, May 17, 2012,
http://spscicomp.org/wordpress/pages/understanding-performance-of-parallel-codes-
using-openspeedshop/

[162] PAPI homesite: http://icl.cs.utk.edu/papi/
[163] Iain bethune, Adam Carter, Kevin Stratford, Paschalis Korosoglou, ‘CP2K – Scalable

Atomistic Simulation for the PRACE Community’, PRACE-1IP report, 2012, pdf:
http://www.era.lib.ed.ac.uk/bitstream/1842/6545/1/CP2K_-
_Scalable_Atomistic_Simulation_for_the_PRACE_Community.pdf

[164] A short overview of Ayudame/Temanejo, with an explanation of its architecture.•
“Ayudame/Temanejo Manual”, Steffen Brinkmann (HLRS), pdf: http://www.project-
text.eu/sites/default/files/AYUDAME_manual-1.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xviii

[165] User guide for the debugger, including installation, and explanation of its
functionalities. It also includes some examples, pdf: http://www.project-
text.eu/sites/default/files/TEMANEJO_manual-1.pdf

[166] MAGMA Library homesite: http://icl.cs.utk.edu/magma/
[167] PETSc homesite: http://www.mcs.anl.gov/petsc/
[168] ELPA Library homesite: http://elpa.rzg.mpg.de/software
[169] ScaLAPACK homesite: http://www.netlib.org/scalapack/
[170] R. Johanni et al, ‘Scaling of Eigenvalue Solver Dominated Simulations’,Technical

Report FZJ-JSC-IB-2011-02, p. 27-30, April 2011, pdf: http://www2.fz-
juelich.de/jsc/docs/printable/ib/ib-11/ib-2011-02.pdf

[171] A Sunderland, ‘Numerical Library Eigensolver Performance on PRACE Tier-0
Systems’ PRACE whitepaper, PRACE-1IP, http://www.prace-
ri.eu/IMG/pdf/numerical_library_eigensolver_performance_on_prace_tier-
0_systems.pdf

[172] Dongarra, J., Dong, T., Gates, M., Haidar, A., Tomov, S., and Yamazaki, I. ‘MAGMA:
a New Generation of Linear Algebra Library for GPU and Multicore Architectures’,
SC12, Salt Lake City, Utah, November 14, 2012. pdf:
http://icl.cs.utk.edu/projectsfiles/magma/pubs/25-MAGMA_1.3_SC12.pdf

[173] Song, F. and Dongarra, J. "A Scalable Framework for Heterogeneous GPU-Based
Clusters," The 24th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA 2012), ACM, Pittsburgh, PA, USA, June 25, 2012, pdf:
http://icl.cs.utk.edu/news_pub/submissions/spaa12_appendix.pdf

[174] Dongarra, J., Gates, M., Jia, Y., Kabir, K., Luszczek, P., Tomov, S. "MAGMA MIC:
Linear Algebra Library for Intel Xeon Phi Coprocessors," SC12, Salt Lake City, Utah,
November 12-15, 2012, pdf: http://icl.cs.utk.edu/projectsfiles/magma/pubs/24-
MAGMA_MIC_03.pdf

[175] CULA homesite: http://www.culatools.com/
[176] ArrayFire homesite: http://www.accelereyes.com/products/arrayfire
[177] SuperLU homesite: http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
[178] Xiaoye S. Li, ‘An Overview of SuperLU: Algorithms, Implementation, and User

Interface’, Transactions on Mathematical Software, v31, p302 (2005)
[179] MUMPS homesite: http://graal.ens-lyon.fr/MUMPS/index.php?page=home
[180] (Par)METIS homesite: http://www.lrz.de/services/software/mathematik/metis/
[181] PRACE deliverable, D12.2, ‘Exploration of Scalable Numerical Algorithms’ PRACE-

2IP, pdf: http://www.prace-ri.eu/IMG/pdf/D12-2_2ip.pdf
[182] A. Duran, M.S. Celebi, M. Tuncel and B. Akaydin, Design and implementation of new

hybrid algorithm and solver on CPU for large sparse linear systems, PRACE-2IP white
paper 2012, pdf: http://www.prace-ri.eu/IMG/pdf/wp43-newhybridalgorithmfo_lsls.pdf

[183] Xuefei Yuan et al 'Application of PDSLin to the magnetic reconnection problem', 2013
Comput. Sci. Disc. 6 014002, pdf: http://iopscience.iop.org/1749-
4699/6/1/014002/pdf/1749-4699_6_1_014002.pdf

[184] Valeria Simoncini and Daniel B. Szyld, 'Recent computational developments in Krylov
subspace methods for linear systems', Numer. Linear Algebra Appl.vol. 14, p1 (2007)

[185] Hypre homesite: http://acts.nersc.gov/hypre/
[186] Y Shapira, "Algebraic multigrid". Matrix-based multigrid: theory and applications.

Springer. p. 66. (2003)
[187] CRESTA deliverable, D4.1.1, ‘Overview of major limiting factors of existing

algorithms and libraries’, http://cresta-
project.eu/images/docs/deliverables/D4.1.1_Overview_of_major_limiting_factors_of_e
xisting_algorithms_and_libraries.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xix

[188] EESI Report D4.5 ‘Working Group report on numerical libraries, solvers and
algorithms’, pdf:
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC8QFj
AA&url=http%3A%2F%2Fwww.eesi-
project.eu%2Fmodules%2Fdownload_pictures%2Fdlc.php%3Ffile=111%26id=134944
5649%26sid=17&ei=rLFnUZHlOJK5hAeqrIHABA&usg=AFQjCNFXpdaTWCd4wch
ODFKIIfZR_h

[189] DUNE homesite: http://www.dune-project.org/dune.html
[190] FEAST homesite: http://www.feast.tu-dortmund.de/
[191] PSBLAS homesite:http://www.ce.uniroma2.it/psblas/
[192] PARPACK homesite: http://www.caam.rice.edu/~kristyn/parpack_home.html
[193] SLEPc website: http://www.grycap.upv.es/slepc/
[194] V Hernandez, J E Roman, A Tomas and V Vidal, SLEPc Technical Report STR-7

(2007), pdf: http://www.grycap.upv.es/slepc/documentation/reports/str7.pdf
[195] University of Florida Spares Matrix Collection homesite:

http://www.cise.ufl.edu/research/sparse/matrices/
[196] K. Georgiev, N. Kosturski, I. Lirkov, S. Margenov, Y. Vutov, 'Parallel Solvers for

Incompressible Navier-Stokes Equations and Scalable Tools for FEM Applications',
PRACE Whitepaper, PRACE-1IP, pdf: http://www.prace-ri.eu/IMG/pdf/scalable-tools-
for-fem-applications.pdf

[197] Pieter Ghysels, Tom Ashby, Karl Meerbergen, Wim Vanroose, 'Hiding global
communication latency in the GMRES algorithm on massively parallel machines, To
appear in SIAM Journal on Scientific Computing (SISC), pdf:
http://www.exascience.com/wp-content/uploads/2012/02/Ghysels_latency_gmres.pdf

[198] Thomas J. Ashby, Pieter Ghysels, Wim Heirman, Wim Vanroose, 'Implementing
Krylov Methods by Pipelining to Tolerate Global Communication Latency at Extreme
Scales', 12th International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP-12), pdf: http://www.exascience.com/wp-
content/uploads/2012/12/Ashby_ICA3PP-12.pdf

[199] W Hackbusch, 'Hierarchische Matrizen', Springer (2009)
[200] Hlibpro homesite: http://www.hlibpro.com/
[201] M. Berzins, J. Luitjens, Q. Meng, T. Harman, C.A. Wight, and J.R. Peterson. Uintah - a

scalable framework for hazard analysis. In TG ’10: Proceedings of the 2010 TeraGrid
Conference, New York, NY, USA, 2010. ACM.

[202] Schmidt, John, et al, ‘Large scale parallel solution of incompressible flow problems
using uintah and Hypre’, Technical Report UUSCI-2012-002, Scientific Computing and
Imaging Institute, 2012.

[203] I Bush, ‘DaFT: A DaFT (Mixed Radix) FFT for DL_POLY_4’, HECToR dCSE
Technical Report, pdf:
http://www.hector.ac.uk/cse/distributedcse/reports/DL_POLY03/DL_POLY03_domain/
index.html

[204] FFTW homesite: http://www.fftw.org/
[205] A. Sunderland et al, “An Analysis of FFT Performance in PRACE Application Codes”,

PRACE White Paper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/An_Analysis_of_FFT_Performance_in_PRACE_Application_Codes.pdf

[206] FFTE home site: http://www.ffte.jp/
[207] Futher information on cuFFT performance can be found here:

https://developer.nvidia.com/cufft.
[208] Kenneth Czechowski et al. ‘On the communication complexity of 3D FFTs and its

implications for exascale’. In Proceedings of the ACM International Conference on

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xx

Supercomputing, San Servolo Island, Venice, Italy, June 2012. (to appear) pdf preprint:
http://vuduc.org/pubs/czechowski2012-ics-xfft.pdf

[209] D. Stanković, A. Jović, P. Jovanović, D. Vudragović, V. Slavnić, “Enabling FFTE
Library and FFTW3 Threading in Quantum ESPRESSO”, PRACE White paper,
PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/enabling_ffte_library_and_fftw3_threading_in_quantum_espresso.pdf

[210] M. Guarrasi, G. Erbacci and A. Emerson, “Auto-tuning of the FFTW Library for
Massively Parallel Supercomputers”, PRACE whitepaper, PRACE-2IP, pdf:
https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/d895012/Auto-
tuning_of_FFTW_library_for_massively_Parallel_Supercomputers-CINECA-
PRACE2IP-WP12.1.pdf

[211] T. Kozubek, M. Jarosov, M. Mensik and A. Markopoulos, 'Hybrid Total FETI Method',
PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/hybridtotalfetimethod.pdf

[212] T. Kozubek, D. Horak, V. Hapla, 'FETI Coarse Problem Parallelization Strategies and
Their Comparison', PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/feticoarseproblemparallelization.pdf

[213] M Hoemmen, 'A Communication-Avoiding, Hybrid-Parallel, Rank-Revealing
Orthogonalization Method', Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International

[214] E Turan and P Arbenz 'Preconditioning for large scale micro finite element analyses of
3D poroelasticity using Trilinos' European Trilinos User Group Meeting 2012 June 4th -
June 6th, EPFL Lausanne, pdf:
http://trilinos.sandia.gov/events/eurotug_2012/presentations/turan_eurotug.pdf

[215] Zoltan User Guide: http://www.cs.sandia.gov/Zoltan/
[216] Ata Turk, Cevdet Aykanat, G Vehbi Demirci, Sebastian von Alfthan and Ilja Honkonen,

‘Investigation of load balancing scalability in space plasma, Simulations’, PRACE
whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Investigation_of_load_balancing_scalability_in_space_plasma_simulatio
ns.pdf

[217] Sebastian von Alfthan, Dusan Stankovic and Vladimir Slavnic, ‘Scaling Vlasiator using
Hybrid MPI and OpenMP parallelization’, PRACE whitepaper, PRACE-1IP, pdf:,
http://www.prace-
ri.eu/IMG/pdf/Scaling_Vlasiator_using_Hybrid_MPI_and_OpenMP_parallelization.pdf

[218] SuperLU_Dist Version 3.2 documentation. http://crd-legacy.lbl.gov/~xiaoye/SuperLU/ -
superlu_dist

[219] Ali Cevahir, Cevdet Aykanat, Ata Turk, Berkant Barla Cambazoglu: Site-Based
Partitioning and Repartitioning Techniques for Parallel PageRank Computation. IEEE
Trans. Parallel Distrib. Syst. 22(5): 786-802, 2011.

[220] Jeremy T. Bradley, Douglas V. de Jager, William J. Knottenbelt, Aleksandar
Trifunović, Hypergraph Partitioning for Faster Parallel PageRank Computation,
EPEW'05, Proceedings of the 2nd European Performance Evaluation Workshop,
Volume 3670, pp.155–171, 2005.

[221] S.L. Yılmaz, M.B. Nik, M.R.H. Sheikhi, P.A. Strakey, P. Givi, An Irregularly Portioned
Lagrangian Monte Carlo Method for Turbulent Flow Simulation, Journal of Scientific
Computing, vol. 47(1), pp 109-125, 2011.

[222] ParMeTiS Manual, pdf:
http://glaros.dtc.umn.edu/gkhome/fetch/sw/ParMeTiS/manual.pdf

[223] C. Moulinec, A.G. Sunderland, P. Kabelikova, A. Ronovsky, V. Vondrak, A. Turk, C.
Aykanat and C. Theodosiou ‘Optimisation of Code_Saturne for Petascale Simulations’,

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxi

PRACE whitepaper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Optimisation_of_Code_Saturne_for_Petascale_Simulations.pdf

[224] Charles Moulinec, Yoann Audouin and Andrew Sunderland, ‘Optimizing TELEMAC-
2D for Large-scale Flood Simulations’, PRACE whitepaper, PRACE-1IP, pdf:
http://www.prace-ri.eu/IMG/pdf/Optimizing_TELEMAC-2D_for_Large-
scale_Flood_Simulations.pdf

[225] Y Yilmaz, C Ozturan, O Tosun, A Haydar Ozer and S Soner, ‘Parallel Mesh
Generation, Migration and Partitioning for the Elmer Application’ PRACE whitepaper,
PRACE-1IP, pdf:, http://www.prace-
ri.eu/IMG/pdf/Parallel_Mesh_Generation_Migration_and_Partitioning_for_the_Elmer_
Application.pdf

[226] T. Coupez, H. Digonnet, R. Ducloux, Parallel meshing and remeshing, Applied
Mathematical Modelling, Volume 25, Issue 2, pp 153-175, 2000.

[227] François Guibault, “Applying ParMeTiS to Structured Remeshing for Industrial CFD
Applications”, International Journal of High Performance Computing Applications vol.
17, no. 1, pp. 63-76, 2003.

[228] O.B. Fringer, M. Gerritsen, R.L. Street, “An unstructured-grid, finite-volume,
nonhydrostatic, parallel coastal ocean simulator”, Ocean Modelling, Volume 14, Issues
3–4, 2006, Pages 139–173.

[229] PETSc 3.3 Manual, http://www.mcs.anl.gov/petsc/petsc-3.3/docs/manual.pdf
[230] Cruz, F. A., Knepley, M. G. and Barba, L. A, PetFMM—A dynamically load-balancing

parallel fast multipole library. Int. J. Numer. Meth. Engng. 85: 403–428, 2011.
[231] Scotch and PT-Scotch homepage http://www.labri.fr/perso/pelegrin/scotch
[232] PT-Scotch Manual, Version 6.0, (Accessed 23/02/2013),

https://gforge.inria.fr/docman/view.php/248/8261/ptscotch_user6.0.pdf
[233] PRACE deliverable 7.6:, PRACE-1IP, ‘Efficient handling of petascale data’, pdf:

http://www.prace-ri.eu/IMG/pdf/d7.6_1ip.pdf
[234] C. Chevalier and F. Pellegrini. 2008. PT-Scotch: A tool for efficient parallel graph

ordering. Parallel Comput. 34, 6-8 (July 2008), 318-331.
DOI=10.1016/j.parco.2007.12.001, http://dx.doi.org/10.1016/j.parco.2007.12.001

[235] Hom Nath Gharti et al, ‘Application of an elastoplastic spectral-element method to 3D
slope stability analysis’, International Journal for Numerical Methods in Engineering
Volume 91, Issue 1, pages 1–26, 2012

[236] Phil Ridley, Guide to Partitioning Unstructured Meshes for Parallel Computing,
http://www.hector.ac.uk/cse/reports/unstructured_partitioning.pdf

[237] Daniel Peter et al, ‘Forward and adjoint simulations of seismic wave propagation on
fully unstructured hexahedral meshes’, Geophysical Journal International, Volume 186,
Issue 2, pages 721–739, 2011

[238] NetGen homesite: http://www.hpfem.jku.at/netgen/
[239] Parallel NetGen homesite: http://code.google.com/p/parallel-netgen/
[240] Y Yilmaz, Can Ozturan, Oguz Tosun, Ali Haydar Ozer, Seren Soner, ‘Parallel Mesh

Generation, Migration and Partitioning for the Elmer Application’, PRACE whitepaper,
PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Parallel_Mesh_Generation_Migration_and_Partitioning_for_the_Elmer_
Application-2.pdf.

[241] Ioan Raicu et al, 'Towards Loosely Coupled Programming on Petascale Systems', pdf:
http://arxiv.org/ftp/arxiv/papers/0808/0808.3540.pdf

[242] Saman Amarasinghe et al 'ExaScale Software Study: Software Challenges in Extreme
Scale Systems', pdf:
http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report
%20101909.pdf

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxii

[243] HDF5 homesite: http://www.hdfgroup.org/HDF5/
[244] PNetCDF homesite: http://www.mcs.anl.gov/parallel-netcdf
[245] NetCDF Operator (NCO) homepage: http://nco.sourceforge.net/
[246] Climate Data Operators (CDO) homepage: https://code.zmaw.de/projects/cdo
[247] FastBit homesite: https://sdm.lbl.gov/fastbit/
[248] Jack Dongarra et al, 'The International Exascale Software Project Roadmap', pdf:

http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf
[249] Prabhat et al, 'ExaHDF5: An I/O Platform for Exascale Data Models, Analysis and

Performance', SciDac Conference 2011 pdf:
http://www.mcs.anl.gov/uploads/cels/papers/scidac11/final/Prabhat.pdf

[250] A. Mignone, G. Muscianisi, M. Rivi and G. Bodo, ‘I/O Optimization Strategies in the
PLUTO Code’, PRACE white paper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/IO_Optimization_Strategies_in_the_PLUTO_Code.pdf

[251] Raul de la Cruz, Hadrien Calmet and Guillaume Houzeaux, ‘Implementing a
XDMF/HDF5 Parallel File System in Alya’, PRACE white paper, PRACE-1IP, pdf:
http://www.prace-
ri.eu/IMG/pdf/Implementing_a_XDMF_HDF5_Parallel_File_System_in_Alya-2.pdf

[252] Philippe Wautelet and Pierre Kestener, ‘Parallel IO performance and scalability study
on the PRACE CURIE supercomputer’, PRACE white paper, PRACE-1IP, pdf:
http://www.prace-
ri.eu/IMG/pdf/Parallel_IO_performance_and_scalability_study_on_the_PRACE_CURI
E_supercomputer-2.pdf

[253] J. Ruokolainen, P. Raback, M Lyly, T. Kozubek, V. Vondrak, V. Karakasis and G.
Goumas,‘Improving the scalability of Elmer finite element software’, PRACE white
paper, PRACE-1IP, pdf: http://www.prace-
ri.eu/IMG/pdf/Improving_the_scalability_of_Elmer_finite_element_software.pdf

[254] Claudio Gheller, Graziella Ferini, Maciej Cytowski and Franco Vazza ,‘Large Scale
Simulations of the Non-Thermal Universe’, PRACE white paper, PRACE-1IP, pdf:
http://www.prace-ri.eu/IMG/pdf/Large_Scale_Simulations_of_the_Non-
Thermal_Universe.pdf

[255] J Shalf, Howison and Q Koziol, 'Tuning HDF5 for Lustre', SC'09, HDF5 BOF pdf:
http://www.hdfgroup.org/pubs/presentations/LBNL_SC09_HDF5_BoF.pdf

[256] NetCDF homesite: http://www.unidata.ucar.edu/software/netcdf/
[257] R Latham et al 'A case study for scientific I/O: improving the FLASH astrophysics

code', Comput. Sci. Disc. 5 015001 (2012), pdf: http://iopscience.iop.org/1749-
4699/5/1/015001

[258] ‘On Data Intensive Computing and Exascale’, Presentation, IESP,
http://www.exascale.org/mediawiki/images/6/64/Talk-12-Choudhary.pdf

[259] XIOS information can be found here: https://verc.enes.org/computing/hpc-
collaborations/parallel-i-o/workshop-scalable-io-in-climate-
models/presentations/XIOS_Yann_Meurdesoif.ppt

[260] More information can be found at: https://is.enes.org/the-project/presentation-on-is-
enes-slides/is-enes-2nd-hpc-workshop-presentations-february-2013/session-4-report-
from-large-numerical-climate-experiments-on-prace-platforms/Is-
ENES_HPC_masson.pdf/at_download/file

[261] ADIOS homesite: http://www.olcf.ornl.gov/center-projects/adios/
[262] For more information see the HPCWire article: http://www.hpcwire.com/hpcwire/2009-

10-29/adios_ignites_combustion_simulations.html
[263] For more information see the HPCWire article: http://www.hpcwire.com/hpcwire/2009-

07-27/fusion_gets_faster.html
[264] J Tromp et al, 'Seismic Imagining: Modeling earthquakes and Earth's interior based on

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxiii

Exascale simultations of seismic wave propagation', G8 Exascale Projects Workshop,
Salt Lake City, USA 2012 pdf: http://www.agence-nationale-
recherche.fr/Colloques/G8HORCs-
workshop/presentations/05_Session3_G8ExascaleWorkshop_SEISMIC_IMAGING.pdf

[265] SIONLib homesite: http://www.fz-juelich.de/jsc/sionlib
[266] A. Schnurpfeil, A. Schiller, F. Janetzko, St. Meier and G. Sutmann ,’Semi-dilute

polymer systems in shear flow – a particle based hydrodynamics approach’, PRACE
white paper, PRACE-1IP, pdf: http://www.prace-ri.eu/IMG/pdf/Semi-
dilute_polymer_systems_in_shear.pdf

[267] “Parallel task-local I/O”, 25. April 2012, JICS/GRS Workshop on Large-scale
Computer Simulation, Frings and Wolf,
http://computing.ornl.gov/workshops/JICSGRS2012/presentations/w_frings.pdfSIONLI

[268] High-Throughput Parallel-I/O using SIONlib for Mesoscopic Particle Dynamics
Simulations on Massively Parallel Computers”, Freche et al, in “Parallel computing:
From multicores and GPU's to petascale”, Chapman et al Eds.

[269] Darshan homesite: http://www.mcs.anl.gov/research/projects/darshan
[270] Mor info at: http://www.mcs.anl.gov/uploads/cels/papers/ANL:MCS-TM-331.pdf
[271] B Lindi, ‘I/O Profiling with Darshan’, PRACE whitpepaper, PRACE-1IP, pdf:

http://www.prace-ri.eu/IMG/pdf/IO-profiling_with_Darshan-2.pdf
[272] J Donners et al, ‘Performance Analysis of EC-EARTH’, PRACE whitepaper, PRACE-

1IP, pdf: http://www.prace-ri.eu/IMG/pdf/Performance_Analysis_of_EC-EARTH_3-1-
2.pdf

List of Acronyms and Abbreviations

ABINIT Density functional theory package
ACL Adaptive OpenCL
ADIOS Adaptable I/O System
AIX Advanced Interactive eXective
ALYA Computational Mechanics Code
AMBER Molecular simulations programs package
AMG Algebraic MultiGrid
AMR Adaptive Mesh Refinement
ANL Argonne National Laboratory, DOE, Illinois, USA
ANSI American National Standards Institute
API Application Programming Interface
ARM Advanced RISC Machines
ARMCI Aggregate Remote Memory Copy Interface

ARPACK
A collection of Fortran77 subroutines designed to solve large scale eigenvalue
problems

AVX Advanced Vector Instructions
BG/P Blue Gene/P, Second generation of Blue Gene series of supercomputers
Bi-CG Biconjugate gradient stabilized method
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
BSD(BSD-3) Berkley Software Distribution (BSD- 3 clause License)
CABARET Compact Accurately Boundary Adjusting High-Resolution Technique
CAF Co-Array Fortran

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxiv

CAPS A Many-Core Programing Company
CASK Cray Adaptive Sparse Kernels

CASTORC
Computation-based Science and Technology Research Center, The Cyprus
Institute, Cyprus

CCSM Community Climate System Model
CDO Climate Data Operators
CEA Commissariat à l'énergie atomique et aux énergies alternatives (France)
CESM Community Earth Systems Model
CFD Computational Fluid Dynamics
CG Conjugate Gradient
CHAPEL Cascade High-Productivity Language
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CMCC Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy)
CPU Central Processing Unit
CRESTA Collaborative Research into Exascel Systemware, Tools and Applications
CRS Check Point and Restart Service
CSC Finnish IT Centre for Science (Finland)

CSCS
The Swiss National Supercomputing Centre (represented in PRACE by ETHZ,
Switzerland)

cuBLAS CUDA Basic Linear Algebra Subroutines (NVIDIA)
CUDA Compute Unified Device Architecture (NVIDIA)
cuFFT CUDA Fast Fourier Transform Library (NVIDIA)
CUPTI CUDA Profiling Tools Interface (NVIDIA)
cuSPARSE CUDA Sparse Matrix library (NVIDIA)
DAFT Daresbury Advanced Fourier Transform, DL_POLY library
DARPA Defense Advanced Research Projects Agency
DBMS DataBase Management System
DCMF Deep Computing Messaging Framework
DEEP EU Exascale-enabling supercomputing platform project
DFT Discrete Fourier Transform
DGEMM Double precision General Matrix Multiply
DiGPUFFT Distributed GPU FFT
DL_POLY Molecular simulation package
DOD Department of Defence
DOE Department of Energy
DoW Description of Work
DP Double Precision, usually 64-bit floating point numbers
DUNE Distributed and Unified Numeric Environment
EC-EARTH Consortium of national weather services and universities
ECMWF European Centre for Medium-Range Weather Forecasts
EESI European Exascale Software Initiative
ELPA Distributed parallel direct eigenvalue solver for symmetric matrices
ENZO Adaptive mesh refinement simulation code

EPCC
Edinburg Parallel Computing Centre (represented in PRACE by EPSRC,
United Kingdom)

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxv

ERGO
Quantum chemistry programme for large-scale self-consistent field
calculations

ESSL European Severe Storms Laboratory
FD Finite Differences
FE Finite Elements
FEAST Finite Element Analysis and Solution Tools
FEM Finite Element Method
FFT Fast Fourier Transform
FFTE FORTRAN subroutine library for computing FFT
FFTW Fastest Fourier Transform in the West
FLOP FLoating-point Operations Per Second
Fluidity-
ICOM

Finite Element ocean modelling software framework

FV Finite Volumes
FZJ Forschungszentrum Jülich (Germany)
GA Global Arrays
GASNet Global Address Space Network
GCC GNU compiler
GCRM Global cloud-resolving Model
GFLOPS/
Gflop/s

Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per second,
also GF/s

GMRES Generalized Minimal Residual Method
GNU GNU's not UNIX, Unix like operating system
GPFS General Parallel File System
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GRNET Greek Research and Technology Network
GROMACS Molecular dynamics package
GTC GPU Technology Conference
GUI Graphical User Interface
HDF5 Library used to read and write platform-independent files
HECToR High End computing Terascale Resources (British Supercomputer)
HOPSA Holistic Performance System Analysis Project
HPC High Performance Computing
HPCS High Productivity Computing Systems
HPCT High Performance Computing Toolkit
I/O Input/Output
IB InfiniBand
IBM Formerly known as International Business Machines
ICHEC Irish Centre for High End Computing
IDE Integrated Development Environment

IDIRIS
Institut du Développement et des Resources en Informatique Scientifique
(represented in PRACE by GENCI, France)

IESP International Exascale Software Project
IEST Institute of Environmental Sciences and Technology
IFS Integrated Forecast System

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxvi

ILU Incomplete LU-decomposition

INRIA
A public science and technology institution dedicated to computational
sciences, France

IPB Institute of Physics Belgrade, Serbia
IPC Inter Process Communication
iPIC3D Space weather application
IPM Integrated Performance Monitoring
ISO International Organization for Standardization
ITAC Intel Trace Analyser and Collector
JKU Johannes Kepler University, Linz, Austria

LaBRI
Laboratoire Bordelais de Recherche en Informatique, University of Bordeaux,
France

LAMMPS Molecular Dynamics Simulator
LAPACK Linear Algebra PACKage
LB3D Lattice-Boltzmann code
LGPL Lesser General Public License
LLAPI Low Level API
LLNL Lawrence Livermore National Lab
LRZ Leibniz Supercomputing Centre (Garching, Germany)
MAGMA Matrix Algebra on GPU and Multicore Architectures
MIC Many Integrated Core
MIMD Multiple Instruction, Multiple Data
MIPS Microprocessor without Interlocked Pipeline Stages
MIT Massachusetts Institute of Technology
MKL Math Kernel Library (Intel)
MPI Message Passing Interface
MPICH Portable implementation of MPI
MSP Multi-Streaming Processors
MUMPS Massachusetts General Hospital Utility Multi-Programming System
MUSCL Finite Volume method for solving PDEs
MVAPICH MPI software package
NAMD A parallel molecular dynamics code
NCL NCAR Command Language
NCO NetCDF Operator
NCSA National Center for Supercomputing Applications, Illinois, USA

NDA
Non-Disclosure Agreement. Typically signed between vendors and customers
working together on products prior to their general availability or
announcement.

NEC Nippon Denki Kabushiki Gaisha
NEC SX NEC vector supercomputer series
NEMO UCLA cluster
NERSC National Energy Research Scientific Computing Centre, Berkeley, CA, USA
NETGEN Automatic 3D Tetrahedral mesh generator
NSF National Science Foundation
NSMB Navier-Stockes Multi-Block
NTNU Norwegian University of Science and Technology

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxvii

NUMA Non-Uniform Memory Access or Architecture
ODE Ordinary Differential Equations
OLEs Offload Language Extensions, Intel
OOFEM Free Object Oriented Finite Elemenet code
OOP Object-Oriented Programming
OpenACC Open Accelerate
OpenCL Open Computing Language
OpenFOAM Open source CFD software package
OpenFVM CFD solver
OpenMP Open Multi Processing
openSHMEM Open Shared MEMory
ORNL Oak Ridge National Laboratory
OSIRIS PIC code
OTF Open Trace Format
OTF-2 Open Trace Format 2
P3DFFT Parallel Three-Dimensional Fast Fourier Transforms
PAPI Performance Application Programming Interface

ParMeTis
MPI-based parallel library for partitioning and repartitioning unstructured
graphs

ParNCL Parallelized NCL tool
PARPACK Parallel ARPACK
PBB Parallel Building Blocks
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PDC Centre for HPC, Sweden
PDE Partial Differential Equations
PDT Program Database Toolkit
PEPC Pretty Efficient Parallel Coulomb Solver
PerfDMF Performance Data Management Framework
PetFMM Parallel fast multipole library
PETSc Portable, Extensible Toolkit for Scientific computation
PGAS Partitioned Global Address Space
PGI Portland Group, Inc.
PHG Zoltan hypergraph partitioning tool
PIC Particle in Cell
PLASMA Parallel Linear Software for Multicore Architectures
PLUTO Astrophysical fluid dynamics code
PMPI MPI standard profiling interface
PMU Performance Monitoring Unit
PNNL Pacific Northwest National Laboratory
POMP OpenMP Performance Monitoring Interface
POSIX Portable Operating System Interface
PPM Piecewise-Parabolic Method
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PRACE-PP PRACE Preparatory Phase

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxviii

PSC Pittsburgh Supercomputing Centre
PSHM Process SHared Memory
PSNC Poznan Supercomputing and Networking Center, Poland
PT-Scotch Software package and libraries for parallel graph partitioning
PVODE Parallel ODE solver
QE Quantum ESPRESSO
RAMSES Grid-based hydro solver with adaptive mesh refinement
RDMA Remote Direct Memory Access
RISC Reduced instruction set computing
RMA Remote Memory Access
SARA Amsterdam Foundation for Academic Computing, Netherlands
SDK Software Development Kit
SHMEM SHared MEMory
SIGMA-
NTNU

Norwegian Metacenter for Compuational Science

SIMD Single Instruction, Multiple Data
SLEPc Scalable Library for Eigenvalue Problem Compuations
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing
SoC System on a chip
SOR Symmetric Over Relaxation
SP Single Precision, usually 32-bit floating point numbers
SPMD Single Program Multiple Data
SpMV Sparse Matrix-Vector Multiplication
SSD Solid State Disk or Drive
SSE Server Sent Events
SSOR Symmetric Successive Overrelaxation Method

STFC
Science and Technology Facilities Council (represented in PRACE
by EPSRC, United Kingdom)

TACC Texas Advanced Computing Centre
TAU Tuning and Analysis Utilities
TBB Threading Building Blocks, C++ template library
TEXT Towards Exaflop applications

Tier-0/ Tier-1
Denotes the apex of a conceptual pyramid of HPC systems. In this context the
Supercomputing Research Infrastructure would host the Tier-0 systems;
national or topical HPC centres would constitute Tier-1

TSQR Tall and Skinny QR factorization
TUD Technical Universität Dresden
TVD Trusted Virtual Domains
UCLA University of California, Los Angeles
UFL Unified Form Language

UHeM
National Center for High Performance Computing, Istanbul Technical
University (Turkey)

UNIX Unplexed Information and Computing System
UPC Unified Parallel C
UVAS Unified Virtual Address Space

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 xxix

VexCL Vector EXpression template library for openCL
VPIC Vector Particle-In-Cell
VTF Vampir Trace Format
WCSS Wroclaw Centre for Networking and Supercomputing (Poland)
WP Work Package
WRF Weather Research and Forecasting Model

X10
Parallel asynchronous Partitioned Global Address Space language based on
Java and developed by IBM

XIOS Extended Input/output System
XML Extensible Markup Language
XSEDE Extreme Science and Engineering Discovery Environment

ZIH
Centre for Information Services and High Performance Computing, TU
Dresden, Germany

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 1

Executive Summary

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is
to provide applications enabling support for HPC applications codes which are important for
European researchers to ensure that these applications can effectively exploit multi-petaflop
systems. This applications enabling activity will use the most promising tools, algorithms and
standards for optimisation and parallel scaling that have recently been developed through
research and experience in PRACE and other projects.

This deliverable contains a comprehensive survey of the research activity undertaken within
PRACE to date so as to better understand what HPC tools and techniques have been
developed that could be successfully applied to help other applications within WP7
effectively exploit multi-petaflop systems and so see how the various applications
communities have progressed over the last few years within PRACE. As well as surveying the
tools and techniques that have been employed in PRACE, this deliverable also reports on how
tools and techniques are being used in various exascale projects and initiatives outside of
PRACE. This perspective is presented so as to inspire new “forward looking” approaches to
enable European applications on the road to exascale computing.

The survey covers four separate topics that we consider relevant to enable applications on
current multi-petascale systems. We summarize our findings separately by topic:
Programming Interfaces and Standards, Debuggers and Profilers, Scalable Libraries and
Algorithms and I/O Management Techniques.

Programming Interfaces and Standards:

As part of this report we have surveyed thirteen individual programming languages and
standards and report on how they have been used in PRACE to date. While we have found
that, unsurprisingly, the MPI model still dominates within PRACE, evidence suggests that the
most recent version of the standard provides features that are starting to confront the
challenges of exascale computing and which have not yet been exploited within PRACE to
any considerable extent. As a result, we recommend that the latest features of the standard be
exploited during the enablement of applications on multi-petascale systems in WP7.

We have also assessed the wide range of programming models for exploiting heterogeneous
architectures and conclude that the entry of new competitors to the many-core space has
increased the relevance of open standards on the road to exascale (where many-core typically
implies > 50 cores). Indeed, even for GPUs we have found considerable evidence that an open
standards approach, of which OpenACC represents the strongest offering to date, is becoming
more popular both within and outside PRACE and should be considered for enabling
applications within WP7. In terms of more novel approaches to exploiting multi-petascale
systems, we have drawn rich information from the European exascale projects as well as work
being carried out in the US, which includes interesting findings on novel extensions to
OpenMP and the use of Partitioned Global Address Space (PGAS) languages in real
applications, which should inspire WP7.

Debuggers and Profilers

As part of this report, we have surveyed fourteen debugging and profiling tools. We have
found that all of the European exascale projects are concentrating effort into tools for
debugging and performance analyses. This is deemed a necessity for efficient use of multi-
petascale and future exascale systems: If we are to enable applications on such systems, then
we need to have as clear a view as possible of the barriers to achieving performance. In some

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 2

respect, we feel that the European exascale project, DEEP, provides a model for how the
profiling tools should enable applications in WP7. It is worth noting that this type of rigorous
assessment of debugging and profiling tools has rarely been seen in PRACE reports or
whitepapers to date. A substantial effort of training on tools for debugging and performance
analysis has been carried out within PRACE. However, very little is documented on how
successfully these tools have been employed within enabling projects. One of our missions
within WP7 is to fix this discrepancy and to work more closely with tool developers to
understand the full benefits and limits of such tools in extreme cases.

Scalable Libraries and Algorithms

As part of this report we have surveyed a representative collection of libraries and techniques
that currently garner much interest both within and outside PRACE. As a consequence of the
move towards large multi-petascale heterogeneous systems, there is an increasing demand for
new and improved scalable, efficient, and reliable numerical algorithms and libraries that
confront existing and upcoming complexities associated with such systems, including
complex memory hierarchies, the overhead of data movement and fault tolerance. In
particular, we have surveyed very interesting exploratory work that has recently been carried
out in WP12 PRACE-2IP on libraries and algorithms, which we feel should be exploited
further on real applications within WP7. As well as surveying research within PRACE, we
have also looked to the work being carried out in European exascale projects and further
afield to find out more about how such projects are tackling the challenges confronting
libraries and algorithms at extreme scales.

I/O Management Techniques

As part of this report we have surveyed five I/O management techniques. The increasing data
needs of scientific and engineering applications mean that the problems associated with
reading, writing, analysing, storing and sharing large amounts of data are becoming more
relevant to a wider user community within PRACE. While the performance gap between file
systems and compute systems is well known, during our surveying we have found that users
within PRACE have in general not been able to squeeze as much performance from existing
parallel file systems as they have from computational hardware, particularly for the case of
high-level I/O libraries. Deeper investigations into extracting performance from parallel file
systems (with WP7 applications) will be the main focus of our enablement work within WP7.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 3

1 Introduction

1.1 Purpose of the document

The objective of PRACE-3IP Work Package 7 (WP7) ‘Application Enabling and Support’ is
to provide applications enabling support for HPC applications codes which are important for
European researchers to ensure that these applications can effectively exploit multi-petaflop
systems. This applications enabling activity will use the most promising tools, algorithms and
standards for optimisation and parallel scaling that have recently been developed through
research and experience in PRACE and other projects.

There has been significant research activity undertaken both within PRACE and outside
PRACE investigating novel techniques to enable applications on petascale and future exascale
systems. Such activities include, for example, PRACE Work Packages [WP6 (‘Software
Enabling for Petaflop/s Systems’) in PRACE-PP, WP7 (‘Enabling Petascale Applications:
Efficent Use of Tier-0 Systems’) and WP9 (‘Future Technologies’) in PRACE-1IP, WP7
(‘Scaling Applications for Tier-0 and Tier-1 Users’), WP8 (‘Community Codes’), and WP12
(‘Novel Programming Techniques’) in PRACE-2IP], other EU-funded projects (European
Exascale Software Initiative (EESI) [1], Towards Exaflop applications (TEXT) [2],
Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) [3],
Dynamical Exascale Entry Platform (DEEP) [4], Mont-Blanc [5]) and international
collaborations such as the International Exascale Software Project (IESP) [6].

As stated in the Description of Work (DoW), the objective of this deliverable, D7.2.1, is to
survey these activities so as to better understand what software tools, algorithms and
standards have been developed within them that could be successfully applied to help other
applications effectively exploit multi-petaflop systems and so see how the various
applications communities have progressed over the last few years. These techniques will be
used on some of the applications identified in Task 7.1. Through this task, WP7 will pursue
effective engagement and dialogue with major exascale projects. The outputs from this task
will be useful within PRACE, for European HPC users and also more generally.

The survey on HPC tools and techniques presented here reports on four separate topics that
are important to enabling applications within WP7. These are: (1) Programming Interfaces
and Standards, (2) Debuggers and Profilers, (3) Scalable Libraries and Algorithms and finally,
(4) I/O Management Techniques. The report here represents the first phase of T7.2. It should
be stressed that actual implementation (or exploitation) of the tools and techniques reported
here will only occur during the next phase of the task. The purpose of this report is to give a
global picture of how these tools and techniques fared during PRACE projects to date and to
also bring the reader up to date on the latest state of each of the tools and techniques that we
report on. In this way, we hope to provide, primarily WP7 partners, with information that
should hopefully stimulate further interest when considering the tools and techniques for the
exploitation phase of T7.2. We also hope that the report will be of interest to European HPC
users and more generally.

1.2 On the road to exascale

All of the HPC tools and techniques that we survey here are considered to be the state-of-the-
art for enabling applications on current multi-petascale systems. However, it is widely
expected that the exascale systems of the future will be qualitatively different from current
and past computer systems. They will be built using massive multi-core processors with
hundreds of cores per chip, their performance will be driven by parallelism, constrained by
energy, and with all of their parts, will be subject to frequent faults and failures [7]. While the

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 4

focus of WP7 is on enabling European applications for current multi-petascale systems, this is
not to mean that WP7 should ignore the challenges that are expected to confront applications
on the road to exascale. While there still may not be a general consensus on what an exascale
machine in the future will look like, it is becoming increasingly likely that it will share some
of the characteristics of the current No.1 systems in both the Top500 (Titan, Cray XK7) and
Green500 lists (Beacon, Appro GreenBlade), indicating a possible convergence towards
heterogeneous architectures as a means to reach exascale. With this view in mind, there are
opportunities now for WP7 to anticipate and prepare for the challenges that will be faced as
we advance from the petascale era to the exascale frontier.

For example, the main programming environment challenges on the road to exascale are
expected to be within nodes rather than across nodes. The total number of nodes for any given
machine is not changing dramatically, so current practices of using MPI between nodes,
certainly up to the deep petascale, provides one option of utilizing future exascale systems. If
MPI is to be used in the future however, it certainly cannot be used in its current form and, as
is increasingly evidenced by practice on petascale systems both within and outside PRACE,
not on its own. One big challenge for MPI on its own is fault tolerance or resilience.
Currently, a standard MPI implementation will abort the entire computation if any of its ranks
encounters a failure. The traditional handling of these failures is using checkpoint/restart
techniques. However, as the overhead of these implementations grow with core count, such
methods will become highly inefficient. A fault tolerant MPI would enable an application to
recover from failures and continue execution although some parts of the system have been
lost indefinitely. Fortunately, there is much active work in this area within the MPI research
community, some of which has already been accepted as part of the most recent version of the
MPI 3 standard and, as has been found during our surveying, is already being investigated by
on-going projects within PRACE.

While there are a myriad of models to choose from when augmenting the MPI model for
exploiting many-core heterogeneous petascale machines, many of which we characterise in
this report, in terms of key metrics such as performance and productivity, there is as of yet, no
single model that sticks out from above the rest. The fact that there are so many models to
choose from, also begs the question of how best to maintain application robustness on the
road to exascale within WP7. If there is a ‘one-size fits all’ programming model for the future
then maybe it is best represented by a Partitioned Global Address Space (PGAS) language
such as Chapel [8]. Now starting to confront the challenges of exploiting architectures with
deeper memory hierarchies and hybrid CPU/accelerator/coprocessor architectures [9], the
bigger challenge that face such models are in terms of fault tolerance of which we have found
little evidence of initiatives in this area to date. While such problems are being posed to
PGAS development teams, an on-going challenge for WP7 is how best to exploit these
forward looking models within real community applications on the road to exascale.

In considering the best programming models to choose from when enabling applications, a
key and new aspect for WP7 to consider on the road to exascale is the scope of what
enablement experts will require from debugging and profiling tools. Instead of one or two
simple measures of performance, exascale computing will see a broadening of scope as to
what tools report on and what they address. Examples of interest include memory utilization,
temperature, reliability, and power consumption. European HPC applications are large, often
complex and push the limits of language features. Tools deployed must also be robust enough
to handle these codes on heterogeneous systems, but at the same time must be highly usable if
they are to deliver impact in increasing the performance of applications. Fortunately, there are
several debugging and profiling tools that we report on here that are starting to address these
issues. While some of the features might not be highly relevant to applications within WP7
today, they will become increasingly so as we advance to exascale. We feel that T7.2 offers

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 5

an opportunity to work more closely with debugging and profiling tool developers and the
user community to find out how advanced features can properly be exploited to prepare
European applications for multi-petascale and future exascale machines.

As well as programming languages and performance tools, algorithms and libraries must also
be designed to match the complexity of future exascale systems. While there are major
challenges such as energy consumption reduction that algorithms and libraries can
significantly help with on the road to exascale, priorities for applications within WP7 still lie
within the areas of performance and scalability. That is not to say that these problems are
independent of each other. In fact, quite the opposite, in that some of the most interesting
research that we report on here on so-called ‘communication avoiding/hiding algorithms’ will
most likely be of benefit to both the scalability of an application and reduce energy
consumption needs on the system as well. Within PRACE there have been several interesting
“forward looking” initiatives in the area of libraries and algorithms, most recently within
WP12 PRACE-2IP that have looked closely at such issues, as well as others, with exascale in
mind. Beyond scalability and performance, there is the important issue of fault tolerance of
libraries and algorithms that will also need to be addressed as a high priority. While we have
not found much activity within this area in PRACE to date, we suspect that this will become a
more pressing issue as PRACE moves into the deep petascale and future exascale eras.

The increasing data needs of scientific and engineering applications mean that the problems
associated with reading, writing, analysing, storing and sharing large amounts of data are
becoming more relevant to a wider user community within PRACE. This will become
increasingly so as we advance to the exascale era. There is a general consensus that the
current development model of the storage I/O stack of current petascale machines will not
scale to the new levels of concurrency, storage hierarchy, and capacity that will be found on
exascale machines. As the depth of the storage hierarchy increases one of the biggest concerns
is the programmability and performance of the I/O software stack. I/O system optimizations
are often applied independently at each system layer. However, this approach can cause
mismatches between the requirements of different layers (for instance in terms of load,
locality, consistency). Due to this uncoordinated development, understanding the relationships
between optimizations at different layers has become challenging. In this report we
characterise several I/O tools that may help to enable WP7 applications for multi-petascale
sytems, but that will in general need significant improvements in terms of both performance
and resilience in order to prepare European applications for the exascale era. As well as
improving I/O performance for WP7 applications, we hope to provide insight into where
improvements can be made.

In all of the areas we mention above, we intend to liaise closely with the European exascale
projects (CRESTA, DEEP, Mont-Blanc and TEXT), where possible, during the exploitation
phase of T7.2, so as to expose WP7 to some of the advanced tools and techniques that are
being researched and implemented within these projects and in doing so, prepare WP7
applications for the challenges that will be confronted on the road to exascale.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 6

1.3 Organization of work

In order to structure work in WP7, the first goal for all task leaders was to define work plans,
including a proposal for several subtasks. Figure 1 gives a schematic overview of the subtasks
in T7.2

Figure 1: Schematic overview of subtasks in Task 7.2

During the PRACE-3IP kick-off meeting in Paris in September 2012, subtask leaders for T7.2
were identified. The subtask leaders are:

 Subtask 7.2.A ‘Debuggers and Profilers’: Bjorn Lindi (SIGMA-NTNU)
 Subtask 7.2.B: ‘Programming Languages and Standards’: Marc Tajchman (GENCI)
 Subtask 7.2.C: ‘Scalable Libraries and Algorithms’: Vit Vondrak (VSB)
 Subtask 7.2.D: ‘I/O Management Techniques’: John Donners (SURFSARA)

For deliverable D7.2.1, sources of input for the survey on HPC tools and techniques were
identified clearly during and following the PRACE-3IP kick-off meeting. Activities within
PRACE that have employed HPC tools and techniques have generally been well documented
in PRACE deliverables and whitepapers which are available via the PRACE website and
BSCW (The only exception to this rule is detailed reporting on debuggers and profilers,
which has generally been more difficult to come by). Since a considerable amount of enabling
work is still in progress within PRACE-2IP (mainly within WP8 and WP12), efforts were
made to collaborate directly with relevant activities within PRACE-2IP via Face-to-Face
(F2F) meetings and private communications.

While there has been a substantial amount of “exploratory” work on advanced disruptive
technologies already carried out within PRACE (e.g., T7.5-1IP, WP12-2IP WP9-2IP), one of
the objectives of T7.2 is to also survey how “future-looking” HPC tools and techniques have
also been used outside PRACE, with particular emphasis on how such tools and techniques
have been employed to enable “real” applications on multi-petascale systems and to also
survey how European (and international) exascale projects are investigating tools and
techniques for enabling applications on future exascale systems.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 7

In order to identify and obtain relevant sources of input outside PRACE, direct contact was
established with several European exascale projects including the TEXT, CRESTA, DEEP
and Mont-Blanc projects to find out how HPC tools and techniques are currently being
employed within these projects. (On the European level, we have also drawn from the
European Exascale Software Initiative (EESI)). Activities within exascale initiatives outside
Europe have also been surveyed here. Sources of input have included documentation from the
IESP, and the US Department Of Energy (DOE)’s exascale workshops (e.g., the DOE
sponsored Exascale Research Conference 2012 [10])

1.4 Structure of the document

The document presents four subsections which are aligned with the four subtasks within T7.2,
and which will remain in place during the exploitation phase of the task. These are:
Programming Interfaces and Standards, Debuggers and Profilers, Scalable Libraries and
Algorithms and I/O Management Techniques. Within each section, a short introduction is
provided which further details the structure of the individual section. This is followed by a
survey of tools and techniques that are relevant to that particular section. Within each
individual tool/technique assessment, we provide a brief overview of the current state of the
tool, how the tool has been employed in PRACE to date, how it has been employed more
widely (particularly on large-scale systems), a table listing the pros and cons of the
tool/technique, which system/architecture the tool/technique is targeted at and finally a
conclusion section which provides our own indication as to the applicability of the
tool/technique during the T7.2 exploitation phase and beyond.

1.5 Intended Audience

Our objective in preparing this survey is to determine and document the characteristics of the
most promising HPC tools and techniques that may have applicability for petascaling
applications within WP7 PRACE-3IP. Targeted primarily at PRACE partners who will be
involved in the exploitation phase of T7.2, it provides an up to date overview of a selection of
HPC tools and techniques in order to allow for PRACE partners to determine if further
investigation is warranted for the exploitation effort during the second phase of T7.2 and
beyond. We also hope that the report here will be of interest to European HPC users and more
generally.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 8

2 Programming Interfaces and Standards

In this section, we characterize the following novel programming interfaces, languages,
frameworks and standards (hereafter referred to as models) that are of interest to T7.2 in
particular, and the European HPC community more widely, as we move towards the deep
petascale and exascale eras:

 MPI (Message Passing Interface)
 OpenMP (Open Multi Processing)
 OpenCL (Open Computer Language)
 CUDA (Compute Unified Device architecture)
 OpenACC
 Threading Building Blocks (TBB)
 Cilk plus
 OmpSs
 Co-Array FORTRAN (CAF)
 Unified Parallel C (UPC)
 X10
 Chapel
 Global Arrays Toolkit (GA)

For each model, we provide an overview and discuss the model’s present state, how it has
been employed in PRACE to date, how it has been employed more widely, and our views on
the suitability of the model for enabling PRACE application codes during the exploitation
phase of T7.2.

At present, one model still dominates PRACE application codes more than any other, namely,
Single Program Multiple Data (SPMD) message passing using MPI for internode
communication, and increasingly, OpenMP for intra-node parallelism. MPI and OpenMP are
mature standards and widespread expertise on their use can be found within PRACE.
However, both standards are evolving and version 3.0 of MPI [11] and version 3.1 of
OpenMP [12] have recently been ratified, with full implementations now being offered by
several different initiatives. We report on several of the new features offered by both
standards and point to the need to investigate these further as part of the exploitation phase of
T7.2

While combining MPI and OpenMP is still considered to be the hybrid programming method
of choice, the recent advent and rapid adoption of many-core coprocessors/accelerators in the
design of Top500 supercomputers, including PRACE Tier-0 machines (as well as PRACE
prototype architectures) has meant that additional models (albeit still hybrid ones) must
increasingly be considered in order to exploit the full potential of the compute hardware space
on upcoming European multi-petascale systems. To date, the challenge of exploiting such
heterogeneous systems has typically been met within PRACE by augmenting the
MPI/OpenMP hybrid model with an additional third model that targets the Single Instruction
Multiple Data (SIMD) like architecture of GPUs (more accurately defined as Single
Instruction Multiple Thread (SIMT)), thereby forcing the further extraction of hierarchical
levels of parallelism in current PRACE applications. (It should also be mentioned that, as is
the case for all accelerator/coprocessor-based systems, performance is limited by the high
latency penalty of data transfers to and from the attached device, which is connected to the
CPU host through the PCI bus. However, as the technology matures,
accelerators/coprocessors are expected to integrate directly into the motherboard and this
latency penalty will decrease.)

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 9

We have found that by far the most popular programming model for programming GPU
architectures, both within and outside PRACE, is still CUDA [13]. While concerns are often
voiced around the low-level, non-x86-based nature of CUDA, its ease of use and surrounding
ecosystem is continually being improved upon by NVIDIA. While OpenCL [14] does offer an
alternative open standard framework, adoption of the standard is slow, due possibly to its
relatively poor ecosystem in comparison to CUDA, as well as lack of clarity on the level of
long-term support for the standard. One possible solution to these issues is a directive-based
open standards approach of which OpenACC [15] represents the strongest offering to date.
Experience with the transition from vector codes to message passing codes twenty years ago
proves the benefits of common, open standards for programming models. Much greater
productivity was achieved following the widespread adoption of the MPI standard. An open
standard for the utilization of GPUs holds a similar promise. It must be emphasized that
OpenACC is a young standard and as a consequence has not featured much in PRACE
activities to date. However, interest in it is growing and we are happy that we can report on
several interesting cases where it has been employed most recently as part of on-going work
within PRACE 2IP as well as within exascale projects outside PRACE.

With the arrival of Intel’s Many Integrated Core (MIC) coprocessor to the market this year
(2013), this is a particularly interesting time for heterogeneous systems. The Intel MIC is a
component architecture in two of the PRACE prototypes and shares several similarities with
GPUs. Some of the main differences compared to GPUs stem from the fact that the Intel MIC
is an x86-based architecture and so familiar open standards such as OpenMP and MPI can be
used to program the device, which is not the case for GPUs in general. While both of the
aforementioned standards can be used to program the Intel Xeon Phi, it is still unclear which
is the best model for extracting performance and whether different models are better for
different problem cases. In fact, Intel supports several other open standards and libraries for
programming the coprocessor including, TBB [16], Cilk Plus [17] and OpenCL [18], which
are all reported on here.

With regards to the MPI plus X paradigm for programming heterogeneous systems, we also
assess OmpSs [19], which is a programming model being developed at Barcelona
Supercomputing Center (BSC) and is used in both the Mont-Blanc and DEEP exascale
projects and in essence represents an effort to extend the OpenMP model with new directives
to support asynchronous parallelism and heterogeneity (devices like GPUs). However, it can
also be understood as new directives extending other accelerator based APIs, like CUDA or
OpenCL.

Finally, we consider the Partitioned Global Address Space (PGAS) family of languages,
(CAF [20], UPC [21], X10 [22], Chapel [8] and Global Arrays [23]). These models present an
entirely different way of developing large-scale applications, which at the very least promises
more concise and comprehensible code. Advantages of PGAS models pertaining to
performance revolve around single-sided communications as opposed to two-sided MPI
communications, which are prevalent in most applications within PRACE. While having
featured within several PRACE activities, we have found that investigations into PGAS
models have typically been exploratory in nature with no evidence of real applications being
enabled with such models to date. (We have, however, found some exceptions to this within
several of the exascale projects). Just as MPI plus X offers a solution to programming
heterogeneous systems, several investigations are in progress to allow for PGAS languages to
target GPU-based systems as well [9]. While still very much at an early stage of research, the
benefit of a single language that can be used to efficiently target multi-petascale and future
exascale heterogeneous systems in the entirety of their compute hardware space is a welcome
prospect.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 10

2.1 MPI

2.1.1 Brief overview

MPI [24] is still the most widely employed parallel programming model within PRACE and is
generally well grasped within the PRACE community. For this reason we only report on some
of the more novel features offered by the latest MPI 3.0 standard, which was published in
September 2012 [11] and is widely viewed as a major update, positioning MPI for the deep
petascale and future exascale era. We also briefly touch on some novel features not included
in the standard, but are instead offered through various MPI implementations and have been
shown to be particularly beneficial on heterogeneous systems. It should be born in mind that
MPI attracts a huge amount of research interest, and so it would be impossible for us to cover
all of the interesting work being carried out in its various implementations.

In brief, MPI 3.0 offers the following new features to MPI

 Non-blocking and neighbourhood collective operations

 Revamped remote memory access (RMA, a.k.a. “one-sided” operations)

 New Fortran 2008 bindings

 Richer external tool support

 Better support for large counts

 “Matched” probe support

 C const correctness

 Shared memory windows

 Non-blocking communicator creation / duplication

 Countless small grammar fixes, textual cleanups, and clarifications

To our knowledge, both the MPICH [25] MVAPICH [26] implementations of MPI offer the
full set of MPI 3.0 features and OpenMPI [27] offers a subset of the features.

The MPI Forum [24] added support for one-sided communication (also known as remote
memory access, or RMA) in version 2.0 of the MPI standard, to function alongside MPI’s
traditional two-sided and collective communication models. While MPI 2 was effective for a
variety of applications and systems, it has lacked various communication and synchronization
features, and its conservative memory model has limited its ability to efficiently utilize
hardware capabilities, such as cache coherence.

The MPI 3 standard now adds a variety of new atomic operations, synchronization primitives,
window types, and a new memory model that better exposes the capabilities of architectures
with coherent memory subsystems. It is believed that these features will address issues in the
MPI 2 model and greatly improve the performance potential of MPI RMA.

Other important new functionality includes non-blocking collective communication and better
handling of situations arising out of process failures, e.g., an application may choose to be
notified when an error occurs anywhere in the system and an application may ignore failures
that do not impact its MPI requests. There is also the capability to rebuild a communicator
when a process fails or allowing it to continue in a degraded state. MPI processes may also
ignore failures that do not impact its MPI requests. An important new feature is that an
application that does not use collective operations will not require collective recovery.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 11

One of the other interesting initiatives which is being investigated at the moment and which is
not part of the standard, but rather features as part of the MVAPICH implementation, is
MVAPICH2-X [28] which provides a unified high-performance runtime that supports both
MPI and PGAS programming models on InfiniBand clusters. It enables developers to port
parts of large MPI applications that are suited for PGAS programming model. This minimizes
the development overheads that have been a huge deterrent in porting MPI applications to use
PGAS models. The unified runtime also delivers superior performance compared to using
separate MPI and PGAS libraries by optimizing use of network and memory resources.

MVAPICH2-X supports UPC and OpenSHMEM [29] as PGAS models. It can be used to run
pure MPI, pure UPC, pure OpenSHMEM as well as hybrid MPI/OpenMP/PGAS applications.
It takes advantage of the RDMA features offered by the InfiniBand interconnect to support
UPC/OpenSHMEM data transfer and atomic operations. It also provides a high-performance
shared memory channel for multi-core InfiniBand clusters.

Also not part of MPI standard, but which is proving very beneficial when enabling on
heterogeneous systems, is the more optimized support being offered for coprocessors and
accelerators including NVIDIA’s Fermi and Kepler architectures [30] [31] as well as Intel’s
new MIC architecture [32].

Latest release/version: MPI 3.0 (standard now implemented)

2.1.2 Evidence of use within PRACE

MPI is the most widely used parallel programming method within PRACE to date and for this
reason we have only selected a few examples of how it has been employed.

For an interesting in-depth analysis of MPI/OpenMP hybrid parallelisation, the reader is
referred to section 2.4 within deliverable D6.4 in PRACE-PP [33], which focuses on the
hybrid parallelisation of the materials science application, Quantum Espresso (QE). In this
particular study, Fast Fourier Transform (FFT) and Linear Algebra subtasks within Quantum
Espresso were hybridised using OpenMP in combination with MPI. The authors demonstrate
that for large core counts and specific data sets,the hybridised version of QE allowed for
scaling on up to 65,000 cores on a IBM BlueGene/P.

Another interesting investigation was also recently reported in the PRACE-1IP Preparatory
Access whitepaper, ‘High resolution ocean simulations with NEMO modeling system’ [34]
where runs were carried out on the PRACE Tier-0 Bull supercomputer, CURIE, and where
within the NEMO code all MPI_Scatter and MPI_Gather operations were replaced by
MPI_Send and MPI_Receive calls which improved scalability on all platforms. In this
study MPI persistent communication channels were also investigated but without much
performance gain achieved.

More recently, within WP8 PRACE-2IP, PRACE partners have been working on introducing
fault tolerance to the ocean modelling code, NEMO, where plans are afoot to interface with
the new fault tolerant features of MPI 3.0 [35].

2.1.3 Evidence of use outside PRACE

MPI is used extensively on most petascale systems worldwide, so we have selected only a few
examples of where it has demonstrated scalability on a large number of processes.

One of the codes using MPI that is already petascaling is the vector particle-in-cell, VPIC,
code on Blue Waters, the Cray supercomputer at NCSA, Illinois [36], which integrates the
relativistic Maxwell-Boltzmann system in a linear background medium for multiple particle

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 12

species. The science problem in question had a 3,072x3,072x2,464 cell domain with
7.44103x1012 particles and the code was run on 22,528 nodes of the Blue Waters system with
180,224 MPI processes (with 4 OMP threads/rank), and achieved 1.25 PFLOPS sustained.

Another example of an MPI-based code that has demonstrated excellent scalability on
petascale systems is the PPM code [36], (the example of which we give here is also from runs
on Blue Waters). PPM is a hydrodynamics code based on the Piecewise-Parabolic Method
(PPM) Communication primarily involves halo exchanges on a 3D Cartesian mesh which are
overlapped by computations, as is the I/O. In this work a rank re-ordering scheme was
implemented to interleave the I/O server tasks in the MPI rank list. The test case uses a
10,5603 zone mesh and was run across 702,784 cores of Blue Waters system, with 681,472
worker threads organized into eight threads per MPI task. In total, 87,846 MPI ranks were
running on 21,962 nodes with sustained 1.5 PF/s. More than 587 TB of data was saved with
an aggregate of over 17 GB/sec I/O rate. In this example, communication and I/O were
essentially 100% overlapped with computation.

With regards to MPI scalability, at the time of writing it was reported that researchers at
Lawrence Livermore National Laboratory have performed record simulations using all
1,572,864 cores of Sequoia [37] based on IBM BlueGene/Q architecture, and is the first
machine to exceed one million computational cores. The simulations are the largest particle-
in-cell (PIC) code simulations by number of cores ever performed. The code used in these
simulations was OSIRIS [38], an MPI-based PIC code that has also been run on PRACE
systems. OSIRIS obtained 75% efficiency on the full machine.

All the six scientific applications in European exascale project, DEEP are parallelized using
MPI. One of the requirements with respect to the software stack within DEEP is the need for
an MPI layer running through the whole machine, from Cluster to Booster. (The general
purpose Cluster consists of nodes with Intel Xeon processors and InfiniBand network whenas
the Booster nodes contains Intel MIC processors and are connected with special 3D torus
network are suited for highly scalable computation kernel.) This so-called ‘Global MPI’
implementation within DEEP is intended to realise the offload functionality that sends the
highly scalable code parts of the applications and associated data from the Cluster to the
Booster and receives results of these code parts the other way round. For this purpose
MPI_Comm_spawn() will be implemented in ‘ParaStationMPI’ [39] (ParaStation MPI has
been designed to select the most appropriate of all available interconnects at runtime), making
it aware of the underlying resource management and allowing to start offloading-binaries on
the Booster. The offload functionality is a collective operation of all MPI processes running
on the Cluster side and initiating the offload. The MPI process space created on the Booster
side is aware of and connected to the parent MPI processes running on the Cluster, and can
communicate with them.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 13

2.1.4 Pros and Cons

Metric Pros Cons

Scalability MPI can scale up-to several
thousand cores

Memory consumption
increases with cores. At large
scale communication time
becomes dominant

Performance MPI libraries are tuned for
host system and interconnect.
Both inter-node and intra-
node bandwidth/latency are
close to hardware
specifications.

At large scale MPI-only
codes can suffer from
network congestion

Productivity MPI is still the favoured
model for developing
applications for distributed
memory systems. Can be
used with Fortran, C and
C++.

Powerful one-sided
communication features have
been added to MPI 2, but
these are typically underused,
which begs the question as to
their ease-of-use. Such issues
may be rectified by the MPI 3
standard, but at the time of
writing it is too difficult to
say.

Sustainability MPI standard has been
available for last 20 years. It
is supported by a large
number of organizations.

-

Correctness Debugging tools are widely
available for MPI-based
applications, but are mainly
commercial (DDT and
TotalView)

-

Portability MPI codes are portable. In
most cases one does not
require any change in the
source code when moving
from one system to another.

Availability MPI is an open standard and
is available on most modern
supercomputers.

-

Resilience MPI 3.0 standard provides
better fault tolerance features

Application codes need to be
adapted to fault features of
MPI, e.g., if a process dies
due to hardware failure an
MPI program can still run
provided the application
program adjusts itself to the
new situation.

Table 1 MPI - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 14

2.1.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Yes Yes Yes (MPI+X)

Table 2 MPI - Target systems/architectures

2.1.6 Conclusion

Although all the projections of what an exascale machine will look like in the future show that
the MPI-only programming model won’t be sufficient, MPI+X will more than likely remain
the dominant programming model for another few years. Certainly for the moment, there are
few signs of it being usurped from this position on the road to exascale. It can be seen from
our brief report that the MPI forum is starting to address the challenges that MPI will face on
this road, and we believe that the exploitation phase of T7.2 provides PRACE partners with a
very valuable opportunity to investigate new MPI 3.0 features. It is well appreciated that MPI
has many shortcomings when considering new hybrid many-core systems, but it is our
opinion that these shortcomings can only be addressed after properly considering the full
scope of what the new standard has to offer.

2.2 OpenMP

2.2.1 Brief overview

OpenMP [40] is still the model of choice for ‘X’ in the MPI plus X paradigm and, like MPI,
has been widely exploited within PRACE to date. Adding OpenMP threading to an MPI code
is an efficient way to run on multicore processors and nodes like those currently found on all
PRACE systems. Since OpenMP operates in a shared memory space, it is possible to reduce
the memory overhead associated with MPI tasks and reduce the need for replicated data
across tasks. While OpenMP is promoted as being easy to use and allows incremental
parallelisation of codes, naive implementations frequently yield poor performance. In
practice, as with MPI, the same care and attention should be exercised over algorithm and
hardware details when programming with OpenMP.

The last major update to the OpenMP standard resulted in OpenMP 3.0 [12] where the major
new feature was a model for task-based parallel programming. Evidence suggests that this is
still a relatively underused method within PRACE to date. More recently (2011), the OpenMP
ARB released version 3.1. Version 3.1 is a minor release that offers corrections of the 3.0
specification. Here, we mention some of the new features included in OpenMP 3.1 that we
believe should be of interest during the exploitation phase of T7.2.

The OpenMP 3.1 Specification introduces predefined min and max operators for the C and
C++ base languages. With these operators, programmers no longer have to work-around the
lack of these operators and implement reductions themselves. Without lengthy coding
patterns, it now becomes possible to directly use min and max in the reduction clause of a
parallel region or work-sharing construct in C/C++.

The atomic construct has been extended. It now provides support to atomically capture the
value of an updated variable for later reuse. This, for instance, enables programmers to
efficiently implement dynamic scheduling approaches without expensive locking or critical
regions. It is also now possible to read a memory location and to write to a memory location.
The old behaviour of atomic is now made explicit through the introduction of the update
clause for atomic updates of memory locations.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 15

The tasking model has received an update to allow for more efficient coding of task-parallel
applications. With the taskyield construct, OpenMP now supports user-defined
scheduling points to indicate to the OpenMP runtime to suspend one task in favour of other
tasks. As a means for performance optimization, the conditional final clause, the
mergeable clause, and the corresponding calls in the runtime support routines, reduce
overheads that are a result of task creation. When the final clause evaluates to true, a task
may not be scheduled for deferred execution, but instead is immediately executed. This also
applies to all child tasks that might be generated by this task. With the mergeable clause,
programmers can avoid potentially expensive initialization of the task environment. With
these additions, fine-grained task-based programming may benefit from less tasking overhead.

Version 3.1 also includes a variety of minor corrections and additions. The behaviour of
firstprivate was corrected for types with constant qualification and the data
environment of parallel regions in Fortran now support intent(in) for variables. The
descriptions of the examples have been expanded to a large extent and clarifications have
been added.

In the lead up to version 4.0 of OpenMP [41] the OpenMP consortium are working on added
support for SIMD directives, significantly extended support for thread affinity, added UDRs,
sequentially consistent atomics, atomic swap, and added initial support for Fortran 2003.
Other key features that the OpenMP consortium is working on are support for accelerators
(with a possible merge with the OpenACC standard) and improvements in error handling.

It is worth also mentioning that one of the more interesting target architectures for OpenMP is
the new Intel MIC (Xeon Phi) coprocessor, where for the moment Intel recommends OpenMP
(in combination with Intel’s Language Extensions for Offload (LEO)) as a model for
exploiting the many-core device. OpenMP parallelization on an Intel Xeon/MIC coprocessor
platform can be applied in four different programming models that can be realized with
different compiler options: native OpenMP on the Xeon host; serial Xeon host with OpenMP
offload; OpenMP on the Xeon host with OpenMP offload and native OpenMP on the MIC
coprocessor. For more information on how to program the Intel MIC coprocessor using
OpenMP, the reader is referred to the recently produced PRACE ‘Best Practice Guide for the
Intel Xeon Phi’, available on the PRACE website [42].

Latest version/release: v3.1

2.2.2 Evidence of use within PRACE

Since the standard is mature and provides a relatively low barrier to entry for hybrid
programming on large-scale multicore systems, (as well as many-core coprocessors more
recently), OpenMP has been widely used (in combination with MPI) within PRACE to date.
Although easy to pick up quickly it is generally found to be quite difficult to extract the same
level of intra-node performance from an OpenMP shared-memory implementation as that of
an intra-node MPI implementation. Here, we provide only a few examples of how OpenMP is
being and has been employed in PRACE to date.

In WP7 PRACE-1IP, the use of OpenMP in a hybrid scheme was reported in deliverable D7.5
[43] in the work entitled ‘Hybridization of parallel sparse matrix vector multiplication -
BiCGStab algorithm’. In that work, which was carried out and tested on JUGENE, it was
found that adding OpenMP to an MPI-based sparse matrix vector multiplication algorithm
gives better performance only when the granularity of each MPI task is large enough to
exploit shared memory parallelism. Also within PRACE-1IP, the PRACE whitepaper,
‘Performance Analysis and Petascaling Enabling of GROMACS’ [44] reports on the
hybridised version of GROMACS, which was tested on the IBM PLX cluster at CINECA.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 16

The hybrid OpenMP/MPI mode of GROMACS was shown to significantly improve the
scaling of large problem sizes on a large number of cores, typically over 200,000 particles on
over 500 cores. On systems with very fast interconnects such as Cray XE6, LINDGREN
machine at PDC, the hybrid mode was shown to not offer much advantage.

More recently, within WP8 PRACE-2IP, on-going work has focused on developing hybrid
OpenMP/MPI parallelism for Fluidity-ICOM with tests being run on the Cray XE6, HECToR
machine at EPCC [35]. As part of this work, all matrix assembly kernels in Fluidity-ICOM
have now been successfully threaded using OpenMP, where memory bandwidth usage
through NUMA optimisations (e.g., first touch, thread pinning) and using a NUMA aware
heap memory manager have shown to achieve best performance using pure OpenMP within
the NUMA node. In the matrix assembly kernels, the OpenMP parallel algorithm uses graph
colouring to identify independent sets of elements that can be assembled simultaneously with
no race conditions.

Also within WP8 PRACE-2IP, on-going work is being been carried out on hybridising the
ABINIT code using OpenMP in combination with MPI, where the focus has been on the non-
local operator within the many-body Hamiltonian [35]. Tests have been carried out on an Intel
Sandy Bridge-based platform (TGCC-CURIE), where the input data test case was for 107
gold atoms. The calculations were run over 128 MPI processes and good performance gains
were seen when using up to 8 OpenMP threads (85% parallel efficiency), but for more than 8
threads, thread synchronization issues were encountered and performance was seen to
degrade.

With WP8 PRACE-2IP, the OpenMP model is also being implemented in the NEMO code
using both loop-level and tiling/coarse-grained approaches [35]. The effect of array-index
ordering has also been investigated. In NEMO, the 3D arrays have the level/depth index
outermost. The outer loop for the vast majority of loop nests is therefore over this index. It is
this loop that is parallelized in the loop-level approach to using OpenMP. The proposed
approaches have been applied in two different forms of the tracer advection kernel (MUSCL
and TVD) in NEMO and are being evaluated on an IBM Power6 cluster at CMCC, Italy, an
IBM iDataPlex with Intel Westmere CPUs at CINECA, Italy, a dual-socket Intel Sandy
Bridge system at STFC Daresbury, UK and on a Cray XE6 (HECToR), UK.

It should also be mentioned that within WP8 PRACE-2IP, there is some early-stage work
being carried out at CINECA in porting the Quantum Espresso suite of codes to the Intel
Xeon Phi using OpenMP, where early results are showing promise [35].

2.2.3 Evidence of use outside PRACE

On large-scale systems OpenMP is obviously used in a hybrid model with MPI. Interesting
results on the improved scalability achieved by using OpenMP within the Fluidity code [45]
Using large matrices generated by Fluidity, an open source CFD application code, which uses
PETSc as its linear solver engine, the effect of explicit communication overlap using task-
based parallelism was evaluated. The authors also show how to further improve performance
by explicitly load balancing threads within MPI processes. A significant speedup over the
pure-MPI mode (2x speedup on 32,768 cores) and efficient strong scaling of the sparse
matrix-vector multiplication on a Fujitsu PRIMEHPC FX10 and a Cray XE6 (HECToR) was
demonstrated.

Since the Intel MIC architecture is only at an early stage of release, there is not much publicly
available data on how OpenMP is being used to exploit the new architecture. In a recent study
on how OpenMP fares on the Intel MIC architecture, 'OpenMP Programming on Intel Xeon
Phi: An Early Performance comparison’ [46] the overhead of the standard OpenMP constructs

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 17

which use synchronization was shown to be smaller than on large Symmetric Multiprocessing
(SMP) machines, which makes the approach very promising for many HPC applications using
OpenMP. The overhead of the Intel LEO of�oad pragma was also shown to be quite low,
demonstrating that it will not limit scalability. The bandwidth of one MIC coprocessor was
shown to be up to 156 GB/s, which exceeds eight Intel Xeon X7550 processors. With the
Roofline model the authors of this work have predicted a maximum performance of about 20
GFLOPS for the SMXV kernel they use as a benchmark. The authors claim that their early
work on the Intel MIC architecture already demonstrates that scientific OpenMP applications
can run efficiently on the upcoming Intel MIC coprocessor without requiring a major rewrite
of code. It is worth bearing in mind that most information relating to the performance of the
Intel MIC coprocessor has been released very recently after fairly lengthy NDAs, so recent
publicly available results have often been obtained on test systems based on the early Knights
Ferry architecture and are only representative of what can be achieved on the latest Knights
Corner version of the coprocessor.

2.2.4 Pros and Cons

Metric Pros Cons
Scalability Improves scalability of the

code within a node. Good
scalability also demonstrated
on the Intel MIC architecture

Needs to be combined with
other multi-node
parallelization techniques.

Performance Can improve performance of
the application by alleviating
MPI intra-node
communication bottlenecks.
However, OpenMP intra-
node performance is often
seen to be worse than intra-
node MPI performance

cc-NUMA behaviour and
False Sharing can have a
negative impact on
performance. Thread creation
and context switching are
severe overheads.

Productivity Easy to incorporate in the
code, the code may run on
new hardware without a
rewrite (e.g. Intel Xeon MIC
coprocessor). Can be used
with Fortan, C and C++

No major cons, other than
refactoring that may be
needed to extract good
performance.

Sustainability Proved sustainability over the
years, support included for
new platforms and tools.

-

Correctness Debugging tools are
improving (e.g Intel
ThreadChecker).
Multithreaded codes are
notoriously difficult to debug

There is no support for error
handling. Improvements in
error handling are being
proposed for OpenMP 4.0

Portability OpenMP is an open standard
and is portable across many
different architectures.

Using OpenMP on large-
scale systems is possible with
message passing interface
(MPI) – code needs to be
redesigned and rewritten.

Availability Open standard, well
supported by compiler

-

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 18

vendors (e.g. Intel, AMD,
Cray, PGI, NAG). Also
supported by GNU

Resilience - -
Table 3 OpenMP - Pros and cons

2.2.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Yes Yes Yes (MPI+X)

Table 4 OpenMP - Target systems/architecture

2.2.6 Conclusion

OpenMP offers the easiest means of hybridising existing MPI-based codes, a model that is
becoming increasingly important as the core-count on nodes continues to increase. With the
advent of Intel’s Xeon Phi coprocessor, OpenMP is already finding new target architectures in
the many-core space, and could become even more relevant as a standard if plans go ahead to
merge OpenACC into OpenMP 4.0 in the near future. One particular feature supported since
OpenMP 3.0 that we feel has been under-investigated in PRACE so far is task-based
parallelism and we feel that T7.2 offers a valuable opportunity to investigate this new feature
further.

2.3 OpenCL

2.3.1 Brief overview

OpenCL [14] is a parallel programming open standard intended for use with heterogeneous
computing systems. It is similar to CUDA, [13] in that it is able to target graphics processing
units (GPUs). However, OpenCL is more general-purpose than CUDA, with a goal to provide
a standard language to write efficient, portable code for multi- core CPUs, GPUs, Cell-type
architectures and other parallel processors. Programs that utilize OpenCL consist of two parts,
the traditional code (C/C++), and the OpenCL API, which enables the setup and control of
execution kernels performing the computationally intensive work requiring parallelization.
Kernels are written in a subset of the ISO C99 language that is compiled to target a particular
computing device.

OpenCL supports both task and data parallel execution models, while CUDA is primarily
focused on data parallelism. A kernel applies a single stream of instructions to vast quantities
of data. Each piece of data is known as a work-item, and kernels can have a practically
unlimited number of work-items. Kernels form the parallel unit of OpenCL, and they can be
composed into a task via asynchronous command queues.

The standard hasn’t changed since the last release in 2011, but there are more architectures
that it now targets and new tools supporting the development of the code (e.g. Intel SDK
(Software Development Kit) for OpenCL Applications 2013 [18], ARM Mali OpenCL SDK
[47]). For example, OpenCL has been adopted on ARM platforms, including the new ARM
Mali-T6xx GPU series, and is the focus of much work within the European Mont-Blanc
exascale project. During 2013 the Mont-Blanc project is developing the first Mont-Blanc
prototype hardware and in parallel with hardware development, they plan to develop the
required OpenCL support for the embedded GPU in the HPC system software stack, starting
from the OpenCL runtime environment itself as well as higher-level scientific libraries [5].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 19

Intel recently released the new Intel SDK for OpenCL applications [18], which provides a
development environment for OpenCL 1.2 applications across both Intel Xeon processor and
the Intel MIC coprocessor. One of the nice features of OpenCL to point out here is that the
same OpenCL source code written for the Intel Xeon processor can be reused on the Intel
MIC coprocessor with minimum modifications. NVIDIA has not announced any official
statement on further support for OpenCL. However, since late 2010 active support from
NVIDIA for OpenCL has decreased. OpenCL support is still included in the latest NVIDIA
GPU drivers, but in 2012 the code samples were removed from the CUDA SDK, focusing
instead on CUDA.

It is worth pointing out that since OpenCL is built on a subset of ISO C99 there are a number
of restrictions such as no recursion and limited pointers. These restrictions in the kernels can
be limiting. Expanding OpenCL to handle these advanced features (similar to the way CUDA
functionality has grown) would be beneficial.

Latest version/release: v1.2

2.3.2 Evidence of use within PRACE

OpenCL has been investigated within several WP7 and WP9 PRACE-1IP projects. In the
PRACE Whitepaper ‘‘Benchmarking and analysis of DL_POLY 4 on GPU clusters [48],
comparisons were made between a CUDA (v4.0) and OpenCL (v1.1) port of DL_POLY to
GPU architectures. In terms of productivity, it was concluded in that work that the OpenCL
framework required much more effort than CUDA. The authors found that the lack of quality
documentation, flexible debugging tools and the small number of libraries around the
standard made the development process challenging. They also point out that C++ templates
are not supported in OpenCL, which resulted in a far greater number of lines of code
compared to the CUDA version. It should be pointed out that AMD's OpenCL SDK now
supports OpenCL Static C++ Programming Language extensions, which allows for some
C++ features for writing the kernels (inheritance and passing classes instances from the host
to the device). However, documentation is still poor. According to the Khronos website C++
bindings don’t officially support OpenCL 1.2 entry points yet [14].

In deliverable, D9.2.2, in PRACE-1IP section 2 [49], reports on how the performance of
OpenCL was evaluated by porting the EUROBEN mod2am, mod2as and mod2f kernels.
Tests were carried out on several many-core architectures including NVIDIA GTX480,
AMD/ATI Radeon HD 5970, AMD/ATI Radeon HD 5870, NVIDIA Tesla M2050, AMD
Brazos platform (Zacate E-350: CPU 1.6 GHz 2 cores, with AMD Radeon HD 6310 492
MHz), Intel Core i7 CPU 3.20 GHz. Results of the mod2am and mod2f benchmarks, for both
Double Precision (DP) and Single Precision (SP), have shown that OpenCL on the GPU was
2x better than on the CPU for large matrix sizes, but these results should be considered in the
context of the time that they were obtained and the rapid progress that has been made in
many-core technology since then.

OpenCL has also been employed more recently within WP12 PRACE-2IP, where in the
PRACE whitepaper, “Optimization of SHAKE and RATTLE Algorithms” [50] further
enabling and optimisation of DL_POLY algorithms on GPU-based systems was reported.
Development and testing was carried on local WCSS GPU machines (2x GTX480, 2x AMD
Radeon HD 6900 Series) and performance results for the DL_POLY H2O benchmark showed
that the OpenCL implementation ran slower than the CUDA version for the same algorithms
The biggest performance difference between the NVIDIA-CUDA and the NVIDIA-OpenCL
implementations occurs for kernels: k1_th (OpenCL code is 10 times slower than CUDA

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 20

code), and install_red_struct (OpenCL code is 5.5 times slower than CUDA code).
For other kernels OpenCL calls are 2 times slower than equivalent CUDA calls.

2.3.3 Evidence of use outside PRACE

Although several Mont-Blanc application codes are partially ported to OpenCL, these
applications are at a very early stage of testing on the Mont-Blanc prototype system and in
general we found it very difficult to find examples of OpenCL-based petascale applications
running on large-scale systems outside PRACE. We do note that the popular Molecular
Dynamics code, LAMMPS, has been ported to GPUs on the Cray Xk7, Titan machine at
ORNL using both CUDA and OpenCL builds [51] but it is not clear whether performance
results provided are from the CUDA or OpenCL builds of the code. In associated work [52]
more detail is provided on how OpenCL and CUDA are exploited within LAMMPS using the
GERYON library, which provides and API allowing a single code to compile with both
CUDA and OpenCL [53]. Benchmarks were performed on the Keeneland system where at the
time of publication each node contained two 2 Intel Westmere hex-core CPUs and 3 Tesla
M2070 GPUs. For the OpenCL comparisons, device code for both CUDA and OpenCL was
compiled with version 4 of the CUDA toolkit. Performance comparisons of CUDA and
OpenCL were made for the same kernels using the 'rhodopsin' LAMMPS benchmark where it
was shown the accumulated time for host-device data transfer and compute kernel time was
demonstrated to be 24% larger for the OpenCL executable.

One initiative that we do think is worth pointing out is VexCL - vector expression template
library for OpenCL[54]. It has been created for ease of C++ based OpenCL development.
Multi-device and multi-platform computations are supported. Source code of the library is
publicly available under MIT license. VexCL is integrated into odeint - a C++ library for
numerical solution of ordinary differential equations.

2.3.4 Pros and Cons

Metric Pros Cons

Scalability Strong scalability, up to
thousands of concurrent
threads.

Scalability on distributed
memory systems can be
achieved only when external
libraries are used (e.g. MPI).

Performance A fairly low-level API that
consequently has the
potential to extract
performance from multi-
/many-core architectures

Performance is
implementation dependent.
Best performance can only be
achieved when targeting
specific architectures

Some evidence suggests that
OpenCL implementations
tend to underperform when
compared to CUDA, for
kernels solving the same
problem.

Productivity Based on C99. Many
language bindings and
wrappers exist. No direct
support for Fortran.

Architecture based
knowledge is essential.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 21

Ecosystem is quite poor in
comparison to CUDA

Sustainability It seems to be on roadmaps
of major new device and
architectures providers.

Difficult to discern long term
support from several major
vendors

Correctness Debuggers exist (AMD
CodeXL, OpenCL Studio)

-

Portability Many architectures
supported. Portable code.

Availability Open and royalty-free
standard. Support from
several compiler vendors
(e.g., Intel, AMD, CAPS,
NVIDIA, IBM)

-

Resilience - -

Table 5 OpenCL - Pros and Cons

2.3.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes

Table 6 OpenCL - Target systems/architectures

2.3.6 Conclusion

One of the main appeals of OpenCL is that it is an open standard intended for use with a wide
variety of heterogeneous computing systems. Since PRACE uses diverse computing systems,
OpenCL does seem to offer a solution in terms of portability. OpenCL is a shared-memory
programming model, and therefore must be used in conjunction with another model such as
MPI for inter-node parallelism.

Developing efficient OpenCL code is typically found to require more effort than other GPU
frameworks. There are some efforts, besides the new SDKs and tools for code debugging and
analysis, which try to address this issue. During the ADAPT workshop on January 22nd, 2013
ACL (Adaptive OpenCL) was presented [55]. It was proposed for real-time computing
environments of mobile computing, but we feel that the core idea of the algorithm support for
dynamically adapting data-model properties and runtime machine characteristics might be
worth further investigation for heterogeneous and dynamic HPC systems in the future.

OpenCL lives something of a double life between the worlds of HPC and mobile, consumer
computing. What drives both of these areas is that they are equally committed to solving core
problems around heterogeneous computing as is exemplified by the use of OpenCL in the
Mont-Blanc project. In terms of HPC, OpenCL lives somewhat in the shadow of CUDA, but
its relevance may change with the release of the Intel MIC architecture and the support that
Intel puts behind it. We feel that T7.2 should liaise closely with European exascale projects
such as Mont-Blanc project to learn how OpenCL will be exploited during 2013.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 22

2.4 OpenACC

2.4.1 Brief overview

OpenACC [15] is a directive-based open standard supported by NVIDIA, PGI, Cray and
CAPS, designed to simplify parallel programming of heterogeneous CPU/GPU systems. As is
the case for OpenMP, the programmer can annotate C, C++ and Fortran source code to
identify the areas that should be accelerated using #pragma compiler directives and
additional functions, where the the #pragma directive retains the compatibility of the code
when compiling with non-OpenACC compilers. Unlike OpenMP, code can be started not only
on the CPU, but also on the GPU. The latest public comment draft version of the standard,
OpenACC 2.0 [56], was announced in November 12, 2012 at the SC12 Conference but is still
under review. If ratified, version 2.0 will offer a series of new features and capabilities for
better memory usage, data handling and more flexible programming.

OpenACC 2.0 intends to offer new features to deal with what can be a bottleneck in data
management and to increase performance. This is provided through unstructured data
lifetimes, which allow data to exist on the device beyond a kernel or parallel region. This
allows for increased data locality and fewer barriers. There is also a default(none)
clause that can be added to data directives optionally. This ensures that no data is handled
automatically, which can help to isolate reasons for poor performance. Version 2.0 also
intends to allow for nested parallelism, where kernels on the accelerator can generate another
accelerator kernel within. If this takes place entirely on the accelerator, the number of data
transfer events between host and device are reduced. Additionally, the improved readability
added through the use of directives makes any additions to the code simpler. This will be
helpful for implementing changes to code that may be required for exascale execution.

OpenACC runs on multiple hardware platforms and operating systems. It is fully compatible
with the NVIDIA CUDA and GPU libraries. It is interoperable with MPI and OpenMP.
Moreover, it is intended to merge with OpenMP to create a common specification for
accelerators in the future [57].

2.4.2 Evidence of use within PRACE

OpenACC has not been employed in many PRACE projects to date, but indications are that it
is becoming increasingly popular as a means of porting legacy codes to GPU-based systems.
OpenACC has recently been reported on within WP12 PRACE-2IP. The PRACE whitepaper
‘Investigating Performance Benefits from OpenACC Kernel Directives’ [58] reports on how
the performance of matrix-matrix multiplication and classical Gram-Schmidt ortho-
normalisation were analysed for different OpenACC gang and vector sizes by using PGI and
CAPS compilers on different hardware architectures. The authors demonstrated that when
gang and vector sizes are modified to match the architecture, the performance increased
compared to the automatic scheduling parameters. In particular, for a basic hand-coded
DGEMM algorithm the PGI and CAPS compiled versions of the OpenACC-based code show
a speedup of 1.7x and 3.1x respectively. For both applications, the best results were obtained
for different scheduling parameters selected for the PGI and CAPS compiled versions. PGI
and CAPS compiled versions of the two applications were compared with the serial runtime
and OpenMP implementation with four threads. These versions were shown to perform
similarly with the optimal parameters and were also shown to perform better than the serial
and quad-core OpenMP implementations. In particular, for Gram-Schmidt
orthonormalisation, the PGI compiled version achieved a speedup of 1.9x over the
corresponding OpenMP version. For the compiled version with CAPS, tests were also carried

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 23

out on the new NVIDIA K20 architecture. The best performance for this case was obtained
using different gang and vector sizes than were used for NVIDIA M2090 based tests,
demonstrating a clear link to scheduling and architecture. Moreover, a 1.3x improvement was
achieved on the K20 when compared to the M2090.

Work with OpenACC within PRACE is also on-going within WP8 PRACE-2IP as part of
optimisation of the ICON Non-Hydrostatic Solver [35] OpenACC was used in combination
with MPI and performance results were compared between the application running on an Intel
Sandy Bridge node versus the application running on a K20X GPU. The hybrid version of the
code was found to be 2x faster for cases where memory is fully exploited. This work is at an
early stage and the OpenACC version and the authors are currently working on further
optimisations.

2.4.3 Evidence of use outside PRACE

Outside PRACE, OpenACC has also recently garnered much interest as a parallel
programming model particularly with respect to porting large legacy codes to GPU-based
systems. A hybrid MPI/OpenMP/OpenACC version of S3D (a parallel direct numerical
simulation solver for turbulent reacting flows) was developed recently, targeting the Cray
XK7, Titan system at ORNL, where the performance of the OpenACC port has recently been
evaluated. As reported in [59] the performance of the application approximately doubled
when moving from a hybrid OpenMP/MPI implementation to a hybrid
OpenMP/MPI/OpenACC on a GPU-based system. When comparing the
OpenMP/MPI/OpenACC 16 core performance to a 32 Core OpenMP/MPI hybrid
implementation, the performance improved by roughly 1.4x on the GPU-based system,
indicating that OpenACC is showing promise as a directive-based approach for enabling
applications on peta/multi-petascale heterogeneous systems. It should also be pointed out that
the refactoring involved in porting to OpenACC also improved the runtime of the
OpenMP/MPI hybrid code by roughly 12% due to restructuring loops, combining
computation, and restructuring computation.

OpenACC is also being actively investigated within the European CRESTA project where a
recent report [60] demonstrates how OpenACC allowed for the performance of Nek5000
benchmarks to be improved by a factor of 5x-9x over hand optimized serial code using an
NVIDIA C2050 GPU, and 6x-12x over naive code using only five directives. Auto tuning for
optimal gang and vector sizes led to a further 2x improvement depending on matrix size and
shape. While OpenACC is often promoted as an easy means of porting applications to GPUs,
it is not always a trivial task to port legacy code to the GPU. In a separate project within
CRESTA [61], hybridisation of the HemeLB application (similar to the Lattice Boltzman
Ludwig application) was attempted by taking an MPI/OpenMP version of the code and
replacing OpenMP directives with the analogous OpenACC “parallel loop” directive. This
resulted in a number of compiler errors however (PGI compiler v12.3), revealing difficulties
with pointers containing pointers/references to other structures (“deep data structures”), and
difficulties with data management for virtual functions. It was pointed out in this work that
these errors would have also occurred with CUDA, and would require a major code re-write.

2.4.4 Pros and Cons

Metric Pros Cons

Scalability Good scalability can be
obtained. Can be improved
by specifying gang, worker

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 24

and vector clauses, and
nested parallelism introduced
in version 2.0

Performance Achieves good performance
compared to OpenMP by
enabling use of GPUs.
Improved performance with
async clause, new data
clauses and directives in
version 2.0

Requires data management
and movement between the
host and device memory.
Relies on heavily on
compiler.

Productivity Based on compiler directives.
Is intended to be as easy to
use as OpenMP. Easy to
maintain. Compatible with
low-level GPU languages and
libraries

For good performance,
restructuring of code is
generally needed.

Sustainability Full support from PGI, Cray,
CAPS and NVIDIA;
Webinars and a user forum is
available in the official web
site; Integration to OpenMP
with any type of accelerator
support is an ongoing work

Many other competing
emerging GPU programming
models

Correctness TotalView and Allinea DDT
support for Cray CCE 8
compiled programs.
Advantage of compiler
support to detect errors;
Better memory and data
handling in version 2.0 can
reduce errors caused by
incorrect data

Requires effort to decide data
dependencies, and errors with
data can be hard to detect.

Portability Portable across operating
systems, and multi-core
processors such as NVIDIA
and AMD GPUs, and Intel
Xeon Phi

Convergence needed from
compiler vendors

Availability Open standard; Supported by
the latest versions of PGI,
Cray and CAPS compilers;
There is a free 30-day trial of
the PGI Accelerator compiler

Compilers are not open
source

Resilience

Table 7 OpenACC - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 25

2.4.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Unknown Yes Yes Yes Yes

Table 8 OpenACC - Target systems/architectures

2.4.6 Conclusion

Due to its relative ease of use in comparison to both CUDA and OpenCL, OpenACC is
becoming an increasingly popular model for porting legacy applications to GPU-based
systems. The standard is still in its infancy and there are many issues with regards to
implementation that still need to be resolved, which also make it difficult to assess the
performance of the model. Indications are that NVIDA is fully supportive of initiatives in this
area and are also increasing the level of OpenACC material on their website regularly. While
it is generally appreciated that CUDA offers the ability to perform lower-level optimization
for the GPU, OpenACC may be increasingly used as a means of efficiently probing the
potential benefits of porting to GPUs, with CUDA being used in an optional second
optimization stage. In terms of code maintainability, OpenACC is a much more attractive
option than CUDA for large-scale codes. If OpenACC can prove itself over the next year or
two, it may become the model of choice for programming GPUs in the near future. Either
way, it seems likely that OpenACC will be merged in some way with OpenMP. It is
interesting to note that Intel’s Language Extensions for Offloading share similarities with
OpenACC offloading directives and more than likely some sort of convergence will be
reflected in the new OpenMP 4.0 standard in 2013 [57].

2.5 TBB and Cilk Plus

2.5.1 Brief overview

While TBB [16] and Cilk Plus [17] are two very different models for programming x86-based
multi-core (and more recently many-core) shared memory architectures, we group a report on
the two together here for the reason that they are both strongly supported by Intel as models
for programming Xeon- and Xeon Phi- based platforms. According to Intel, in many cases,
the two models can also compliment each other in the same code. The models are based on
the C++ language and do not contain constructs for multiple nodes such that an existing
framework such as MPI would be required for communication across nodes of a platform.
They have also not been widely used to date within and outside PRACE.

TBB:

Threading Building Blocks (TBB) is a C++ template library intended to support task
parallelism without explicitly managing threads. TBB does not implement any vectorization,
which is left instead for the programmer to manage, either with pragmas, compiler flags,
platform-specific or vectorization API calls such as SSE.

There are substantial differences between TBB’s scheduling implementation and Cilk Plus as
Cilk Plus narrowly concerns itself with fork-join thread scheduling, while TBB supports a
very broad range of scheduling constructs. TBB bases its scheduling on a task graph, which is
a directed acyclic graph of tasks, ordered by their execution dependence on other tasks. The
core implementation concept for TBB is that it implements a “work stealing” algorithm to
traverse this task graph in both a breadth-first and depth-first manner simultaneously,
responsively balancing workloads while deferring tasks as little as possible.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 26

TBB contains lower-level and higher-level components. The lower-level components of TBB
include: Task Scheduler, Thread Local Storage, Synchronization Primitives, Memory
Allocation, Threads and others. The higher-level domain of TBB has two elements: Generic
Parallel Algorithms, which are analogous to C++ STL algorithms, and Concurrent
Containers, which are analogous to C++ STL containers.

The lower-level TBB constructs are aimed at allowing TBB programmers flexibility in
making lower-level parallelism choices to optimize performance while preserving a serial
coding style. The higher-level TBB constructs conveniently express and automate many
common tasks. Parallel algorithms such as parallel_for() and
parallel_reduce() allow programmers to express normal serial programming
constructs in a natural way, yet still take advantage of the TBB core task stealing. Similarly,
concurrent containers include C++ constructs, which present the proper interface for use with
parallel algorithms, such as concurrent_vector(). The programmer thinks in terms of
for loops and reductions, while TBB manages the load balancing and task graph.

Other examples of the high-level TBB toolkit include the parallel_pipeline template,
which encourages data locality by passing tasks through a pipeline in chunks rather than
executing each pipeline stage.

Latest version/release: v4.1.3

Cilk Plus:

Cilk Plus is fairly straightforward as an extension of C/C++. The language is meant to be
processor oblivious, which provides the programmer scalability without the need to rewrite
code in order to utilize new architectures with additional cores. As such it is targeted mainly
at legacy code that may be easily parallelized through the aid of the Cilk Plus keywords and
parallel constructs.

The main concept behind the Cilk Plus programming model is work-stealing which is handled
by the Cilk Plus runtime system. Cilk Plus contains only a handful of keywords that control
the bulk of the parallel-related tasks. These are the cilk_spawn, cilk_sync, and
cilk_for keywords. The language provides additional features such as elemental functions
that take advantage of vector operations available on the hardware. Definitions for reductions
are present to simplify certain codes.

The most commonly used keyword in Cilk Plus is cilk_spawn, which is used to branch
parallel sections of code. Each spawn creates a strand of work that is scheduled for a worker
to process. Both the user thread and Cilk threads may be used to perform spawned work, and
the default thread that runs the strand is the parent thread that spawned it. If and only if there
is a larger quantity of work to do, multiple strands are broken up to be processed by other
workers.

Following a cilk_spawn in which there are dependencies on the return from the spawn, the
Cilk Plus program must provide a matching cilk_sync to ensure that the spawned threads
have finished their strands of work before moving forward. This synchronization point is
local, meaning a parent thread may continue once its children threads have all finished, as
opposed to a global synchronization, where all threads must finish. This allows for more fluid
workflow control in a program, especially with respect to task-based parallelism.

The cilk_for keyword is used primarily where there is a higher level of data parallelism,
where the many iterations in a standard for loop are independent of one another, allowing
for parallel execution. One of the key advantages to using the cilk_for keyword, as
opposed to a standard loop with cilk_spawn inside the iteration, is that the cilk_for

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 27

splits up the work using a divide-and-conquer approach. This decreases the overall execution
time because it counters some of the overhead associated with the otherwise serialized
spawning.

Latest version/release: Offered as part of the latest Intel compilers. As of August 2011, Intel
has announced that it is maintaining Cilk Plus as a branch of GCC 4.7. The runtime library is
available dual-licenced, including BSD-3.

2.5.2 Evidence of use within PRACE

Cilk Plus has been reported on within PRACE-1IP, where it was used in a novel approach that
saw it combined with UPC: In the PRACE-1IP deliverable, D7.5, ‘HPC Programming
Techniques’ [43], the section on ‘A cache-oblivious matrix transposition (FFTW)’, describes
how UPC/Cilk Plus was explored an alternative to the de-facto standard programming model
for petascale systems (i.e, the mixed MPI/OpenMP model). UPC/Cilk was evaluated as an
interoperable alternative hybrid model, because it offers a uniform shared-memory
programming interface. UPC was used for the distributed memory parallelization across
multiple nodes, while Cilk was used for the shared-memory parallelization inside the node.
The evaluation revealed speedups of 4x compared to the proprietary Intel (MKL)
implementation using MPI/OpenMP. In general, it was concluded that UPC presents an
efficient, concise and expressive alternative to MPI and mixed UPC/Cilk programming is an
abstract yet efficient tool for large parallel computations.

To our knowledge there has been little documented evidence of TBB being used in PRACE to
date. In the PRACE-1IP deliverable, D9.2.1, ‘First Report on Multi-Petascale to Exascale
Software’ [62], a molecular dynamics algorithm with van der Waals interactions was used for
testing TBB, where tests were carried out on a 4-core Intel Corei7 920 with 8 SMT cores and
4x speedup was achieved for large problem sizes.

2.5.3 Evidence of use outside PRACE

We have found it quite difficult to find evidence of TBB and Cilk Plus being used on large
petascale systems outside PRACE. The only reports that we have found that may be of
interest are those concerning Cilk Plus and TBB being used on the new Intel MIC
architecture.

In a paper entitled, ‘Efficient Hybrid Execution of C++ Applications using Intel Xeon Phi
Coprocessor’ [63] TBB was used in combination with a C++ template library developed at the
university of Vienna to port an SPH code to the Intel Xeon Phi architecture. Performance
gains are demonstrated when using TBB on the Xeon Phi (~27x speedup for 2 Coprocesors in
combination with one Host vs a single core on the Host), but performance gains are difficult
to properly extract due the code not being a pure TBB implementation.

The C++ deal.II ‘Differential Equations Analysis Library’ [64] developed to enable rapid
development of modern finite element codes makes use of TBB in combination with MPI
based libraries such as PETSc and has been shown to scale to ~16,000 cores. The highly
scalable Trilinos multi-physics library [65] also uses TBB, but detailed reporting on how TBB
is implemented in both of these packages is diffult to come by.

In a paper recently written by the Ohio Supercomputer Center in collaboration with Intel [66]
comparisons were made between Cilk Plus and OpenMP on two Intel Knights Ferry (Xeon
Phi) cards where both models were used in dense linear algebra factorization algorithms. Task
parallelism was used for both Cilk Plus and OpenMP and it was demonstrated that at low
thread counts both models performed similarly, but that beyond 30 threads, neither scaled and

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 28

OpenMP performed somewhat better than Cilk Plus. It should be kept in mind that this was an
early stage test on the KNF architecture and the authors indicated that further investigations
were underway.

2.5.4 Pros and Cons

Metric Pros Cons

Scalability Task based parallelism upon
task-stealing scheduler is
meant to be highly scalable
on a growing number of
cores.

Interoperability (calling from
the inside of
functors/lambdas) with
classic paradigms (MPI)
needs to be verified.

Performance The overhead introduced by
the TBB library is low since
its scheduling mechanism is
meant to mask stall latencies.
Cilk Plus performance should
be as good as OpenMP, but
evidence is hard to come by.

Evidence suggests that
OpenMP runtime
outperforms Cilk Plus in
certain situations.

Productivity Development time is low for
people that are not used to
C++ template
metaprogramming, STL
algorithms and iterators.

Cannot be directly used from
codes other than C++.

Sustainability Supported by Intel and
backed-up by a fairly large
community of developers and
users.

Correctness TBB masks all the
complexity of multithreaded
programming, helping write
efficiently scalable, less error
prone codes. Intel debugging
tools are available. TBB is a
library, so should be robust

Portability The current releases have
been successfully ported and
tested on x86, Power and
SPARC architectures, several
operating systems and
compilers. Performance
portability should be high
due to the shared-memory
parallelism paradigm
common to all platforms.
Supported by the GNU
compiler

Availability The TBB library is open-
source (GPL) and publicly
available for download. As of

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 29

August 2011, Intel has
announced that it is
maintaining Cilk Plus as a
branch of GCC 4.7. The
runtime library is available
dual-licenced, including
BSD-3.

Resilience
Table 9 TBB & Cilk Plus - Pros and Cons

2.5.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No No Yes No Yes

Table 10 TBB & Cilk Plus - Target systems/architectures

2.5.6 Conclusion

The high-level nature of TBB is probably not a feature that will attract PRACE WP7 partners
looking to extend or improve existing codes. Most likely it is the lower-level ideas that might
be important. While most reviews of TBB have generally been made in the context of Intel
Xeon-based platforms, it might be worth considering the potential benefits of TBB for the
new Xeon Phi coprocessor. An initial port from OpenMP to TBB might well be
straightforward and worth investigating further, particularly on Xeon Phi-based systems.

Although interesting, particularly with the Xeon Phi architecture in mind, Cilk Plus does not
seem to provide much advantage over OpenMP at the moment. In comparing the keywords in
Cilk Plus and the directives in OpenMP, it is clear that the ease of programming is not a
concern for either, with OpenMP providing additional options in scheduling and allowing for
NUMA effects in some variations. In this sense, Cilk Plus is considerably more limited than
OpenMP. It is, however, worth keeping in mind the success of the novel Cilk Plus/UPC
combination that was reported on in PRACE-1IP.

2.6 CUDA

2.6.1 Brief overview

CUDA [13] is a programming model and instruction set architecture initially released in
November 2006 by NVIDIA to allow for application developers to access GPUs without
having to use graphics application programming interfaces. CUDA comes with a software
environment that supports C and C++, along with Fortran, OpenCL, and DirectCompute.

The core concepts for CUDA revolve around three key abstractions: a hierarchy of thread
groups, shared memories, and barrier synchronization. These abstractions are accessible to the
programmer through a set of language constructs. The result is fine-grained data-
parallelism/thread parallelism nested within coarse-grained data parallelism/task parallelism,
where the coarse-grained data parallelism/task parallelism is solved independently by blocks
of threads. At present, data cannot be shared between GPUs, so a task is limited in size by the
amount of memory on a single GPU.

For well-behaved problems, CUDA performance is seen to be good and facilitates reasonably
easy exploitation of the underlying GPU hardware. However many advanced optimizations

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 30

are required to obtain peak performance. The optimizations require knowledge of the
underlying hardware being used for development and can differ with new hardware
architectures.

The software system has reached a point of reasonable maturity and continues to be widely
adopted. Version 4.0 included easier support for multiple GPUs, as well as a Unified Virtual
Address space between CPUs and GPUs on the same node. CUDA 5.0 (the latest release)
offers two new features that target the new NVIDIA Kepler K20 architecture:

 Hyper-Q is one of the new features of the Kepler architecture. It allows multiple
processes to launch work on a single GPU simultaneously. Since this maximizes the
GPU utilization while decreasing the CPU idle time, it plays a key role in increasing
overall performance.

 CUDA 5.0 allows the K20 GPU to use its parallel processing capability efficiently by
employing a new feature known as ‘dynamic parallelism’. It allows GPU threads to
dynamically spawn new threads without synchronizing with the CPU host.

As part of CUDA 5.0, RDMA (Remote Direct Memory Access) support is added to NVIDIA
GPUDirect technology [31]. It enables direct communication between GPUs and third party
devices such as SSDs, NICs and IB adapters, and allows these devices to directly access GPU
memory without the involvement of the CPU. This reduces MPI_SendRecv latency
between GPUs and demands on system memory bandwidth.

Latest version/release: v5.0

2.6.2 Evidence of use within PRACE

CUDA has been used in several projects within PRACE and in many cases has achieved
significant performance gains over applications running on a single CPU and in some cases
over an entire compute node.

In the PRACE-1IP whitepaper ‘Extending the QUDA library for Domain Wall and Twisted
Mass fermions’ [67] two GPU-enabled operators were analysed. Performance tests were
carried out on NVIDIA M2090 GPUs and a BlueGene/P cluster (IBM PowerPC450) as well
as a M2070 GPU and CrayXE6 “Magny-Cours” 12-core socket. The GPU accelerated
inverter (using mixed precision) on a single M2090 GPU was found to perform better than the
inverter running (in double precision) on 64 BlueGene 4-way nodes for the same tolerance.
The GPU accelerated CG Solver on a single M2070 GPU achieves a speed-up of 4.7x
compared to a single 12-way Magny-Cours CPU socket.

Some of CUDA's more recent features were reported on in PRACE-1IP deliverable, D9.2.2,
‘Final Software Evaluation Report’ [49], where single GPU bandwidth measurements were
made using the STREAM benchmark. Tests were carried out on 8 GPU-based nodes (2
NVIDIA M2070 GPUs per compute node). Each node was equipped with a two-socket
mainboard, with Nehalem Xeon CPUs operating at 2.7GHz. The version of MVAPICH2 used
(1.8a2) incorporates optimized support for GPU to GPU communications via the standard
MPI interface. To our knowledge, the work made the first documented use of GPUDirect
within PRACE to enable peer-to-peer transmission between “peer-accesible-devices” and
CUDA Inter Process Communication (IPC), which allows for the passing of CUDA events
between processes. Use was also made of Unified Virtual Addressing (UVAS).

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 31

2.6.3 Evidence of use outside PRACE

As is the case within PRACE, CUDA has been exploited in various codes running on large
petascale machines, including the Cray XK7 Titan machine at ORNL. Unfortunately, we have
not been able to find many examples of where the new features, namely ‘Hyper-Q’ and
‘Dynamic Parallelism’ offered by the new K20 architecture have been used in real
applications running on petascale systems. One case that we did find was the evaluation of
Hyper-Q in the materials science and computational chemistry code, CP2K [68]. CP2K is
parallelised using MPI and OpenMP and in several components of the code CUDA is used for
acceleration. In the investigation that we refer to [68], a data set of 864 water molecules was
tested. Without Hyper-Q, only one MPI process runs on each GPU. In this case, the workload
is too small for the GPU and there is not much performance improvement over the CPU-only
case. With Hyper-Q, it is possible to use the same number of MPI processes per node as in the
CPU-only case, which means 16 MPI processes per GPU in this instance. This unlocks the
full benefit of the GPU, leading to a speedup of 2.5x. A nice feature of Hyper-Q technology is
that it can be tested relatively quickly as no extra coding effort to enable it is needed. The
only requirement is that you run on a K20 and have the CUDA 5.0 compiler and runtime.

We also mention work on porting Denovo, a code used for radiation transport modelling, to
Titan, which was recently reported in a paper entitled 'High Performance Radiation Transport
Simulations - Preparing for Titan' [69]. In this work the SWEEP kernel was rewritten in C++
and CUDA, where CUDA 4.1 was used for the port to GPUs. It was reported that the GPU
accelerated program runs 40x faster than on a single CPU core. It was also pointed out that
more than 50% of time was spent in coding GPU irrelevant parts of the code and the rest was
spent on CUDA tuning. More recently, the same team reports that the outcomes of DENOVO
sweep redesign have been positive: initial results showed CPU-only code is faster on Cray
XT5 by 2x. At the time of publication, the performance of the code on the XK7 (Opteron +
GPU) exceeded the performance on the XE6 (dual Opteron) by 3.3x.

2.6.4 Pros and Cons

Metric Pros Cons

Scalability Strong scalability, up to
thousands of concurrent
threads.

Scalability on distributed
memory systems can be
achieved only when external
libraries are used (e.g. MPI).

Performance Fairly low-level API that can
extract very good
performance from NVIDIA
hardware.

Productivity Reasonably high
productivity, the CUDA
compiler, math libraries,
tools for debugging and
optimizing, manuals and
other documentation in a
single SDK. Nsight Eclipse
Edition IDE also helps.
Accessible through many
different programming
languages. Direct support for

Low-level control of the GPU
is often required for better
performance

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 32

C, C++ and Fortran (the latter
via the PGI compiler)

Sustainability Strong support from
NVIDIA.

Proprietary framework. How
this fits within exascale
roadmap is difficult to know

Correctness Powerful tools for debugging
and profiling, more efficient
with the NVIDIA Nsight
Eclipse Edition IDE, Kepler
retains the full IEEE-754
compliant single and double
precision arithmetic
introduced in Fermi, in
addition to ECC memory.

Portability Portable between all NVIDIA
devices.

Only runs on NVIDIA GPUs.

Availability Available free on the
NVIDIA website.

Not Open Source

Resilience

Table 11 CUDA - Pros and Cons

2.6.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No Yes No Yes Yes

Table 12 CUDA - Target structures/architectures

2.6.6 Conclusion

CUDA has been in existence since 2006 and is supported by a single vendor, NVIDIA, so the
system has had time to mature. Since some of the new PRACE prototypes will consist of the
latest K20 GPUs, we see the exploitation phase of T7.2 as an opportunity to enable
applications to exploit the full compute resources of these new platforms using some of the
new features being offered by CUDA 5.0, including ‘Hyper-Q’ and ‘Dynamic Parallelism’. It
will be interesting to see what effect direct-based approaches will have on the continued use
of CUDA within PRACE. While it is generally appreciated that CUDA offers the ability to
perform lower-level optimizations for the GPU, OpenACC may be increasingly used as a
means of efficiently probing the potential benefits of porting to GPUs, with CUDA being
used in an optional second optimization stage. If a directive-based approach like OpenACC
can prove itself over the next year or two, it may become the model of choice for
programming GPUs in the near future.

2.7 OmpSs

2.7.1 Brief overview

OmpSs [19] is an effort to integrate features from the StarSs [70] programming model
developed by BSC into a single programming model. In particular, the objective is to extend

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 33

OpenMP with new directives to support asynchronous parallelism and heterogeneity (devices
like GPUs). However, it can also be understood as new directives extending other accelerator
based APIs like CUDA or OpenCL. The OmpSs environment is built on top of the Mercurium
compiler and Nanos++ runtime system [19]. OmpSs takes many of the ideas from the StarSs
model (in particular a similar directive syntax for specifying data dependencies and MPI
communication as tasks), but extends it to support accelerator devices as well as task-based
parallelism across clusters of shared-memory / multi-core systems via a distributed runtime
layer. Numerous other improvements e.g. data dependencies on array sections, tasks around
arbitrary structured blocks, and CUDA device targets have been implemented.

OmpSs currently supports shared memory systems and systems with CUDA GPUs as well as
clusters of these. Support for other accelerator devices (Intel MIC, OpenCL devices) is
planned. The OmpSs runtime is built on top of Nanos++, which can handle communication
between nodes directly (using GASNet [71] allowing task scheduling to take account of
synchronization and communication between nodes, and thus enable efficient programming
on clusters of multi-core (or accelerated) nodes. Alternatively, explicit mixed-mode
programming with OmpSs and MPI is possible using the StarSs model of communication
tasks.

OmpSs is still not widely deployed, but the published work to date indicates that it should be
possible to install on many of the PRACE systems. Development of OmpSs is ongoing,
supported by Mont-Blanc and DEEP and so any attempt to use it in PRACE should
collaborate closely with these projects. (It is expected that work with OmpSs will feature
heavily within the Mont-Blanc project this year.) OmpSs is designed to work with several
tools – Scalasca or Paraver for profiling and performance analysis, Tareador for code analysis
and parallelization, and Temanejo for parallel debugging.

Latest version/release: Regular snapshots of the development version of OmpSs are
available from the OmpSs website. At time of writing the most recent was version ‘0.7a-
2013-02-20’ (for the Nanos++ runtime) and ‘1.99.0-2013-02-20’ for the compiler. A separate
download of a nightly build of the OmpSs Fortran compiler is also available.

2.7.2 Evidence of use within PRACE

OmpSs has not been widely used within PRACE to date. However, most recently in WP12
PRACE-2IP, an investigation into the performance of OmpSs has been reported in the
whitepaper, ‘Analysis and Optimization of a Hybrid Linear Equation Solver using Task-
Based Parallel Programming Models’ [72]. Investigations were carried out on the MinoTauro
system hosted by BSC. The performance of OmpSs was reported, where running on 12
hardware threads was shown to greatly reduce the total execution time of the application (by
up to 80%), in comparison with serial version of the application. Extensive experimentation
using MPI/OmpSs, and final comparisons with original MPI/OpenMP implementations, are
still underway and will be reported within PRACE soon.

The PRACE-1IP deliverable, D9.2.2 ‘Final Software Evaluation Report’ [49] reports on how
OmpSs was used to parallelise the application benchmark, HYDRO. Initially, the
investigators took a C version of HYDRO in the PRACE_HYDRO_V1 package to port to
OmpSs. However, loops proved to be too fine-grain leading to too much overhead. A more
recent version of HYDRO takes a more coarse-grain approach and was selected instead. In
this version, the main iteration loop of the Godunov scheme was parallelized using OmpSs
and was tested on different configurations of numbers of nodes to evaluate the scalability of
the code. Runtime results of the HYDRO with MPI/OmpSs were obtained as a function of the
number of MPI processes. Two threads per MPI process were used in all cases and 6 MPI

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 34

processes were placed per node. It was found that HYDRO scales quite well with the number
of MPI processes. (The execution time was 36 seconds at 35 MPI processes and decreases
down to 7 seconds on 320 MPI processes.). Just as useful as the reporting of performance in
this deliverable is the reporting of recommendations by the authors which are too extensive to
be reported here, but should certainly be consulted during the exploitation phase of T7.2.

2.7.3 Evidence of use outside PRACE

As OmpSs is at an early stage of development, there are few publications yet available
demonstrating the use of OmpSs with real applications. However, the DEEP and Mont-Blanc
projects both propose using OmpSs as part of their prototype exascale platforms. In [73], the
use of OmpSs to implement a number of synthetic benchmarks is reported where tests were
carried out on up to 32 nodes (4 cores per node) on a PowerPC cluster and where overall
performance was generally found to be on a par with MPI, but was significantly faster for the
‘Sparse LU’ problem “…due to the easier expression of complex data dependencies.” The
work in [74] extends the above investigation to a cluster with NVIDIA GPUs where OmpSs
was found to give comparable performance to CUDA but with far less lines of code required.

The Mont-Blanc project is investigating the use of OmpSs to port existing HPC applications
to a low-power exascale architecture based on ARM CPUs. While not yet at a petascale level,
some work has already been done. Selected application kernels have been chosen for detailed
porting and optimization work using OmpSs but results are not yet publicly available.

Finally, the DEEP project proposes a hybrid architecture of standard CPUs and a ‘Booster’
cluster comprising Intel MIC accelerators, using OmpSs as a programming model to manage
task scheduling across these resources in an efficient manner. Within the DEEP project,
OmpSs will serve as an offload abstraction layer to hide the complexity of the MPI offload
functionality from the user. In OmpSs, the developer specifies the input and output data
needed for each task. The execution runtime dynamically calculates the dependency-graph
and schedules the tasks accordingly on the available resources. To offload MPI-tasks, the
developer can also specify the target MPI process in which the task must run, providing an
additional level of flexibility. In DEEP OmpSs will be extended to define the ‘Booster’ as a
destination device in which a given number of nodes will be reserved for the offloaded highly
scalable code parts of the applications. Thus, from the application programmer’s point of
view these offloaded code-parts can be seen as single OmpSs tasks, even if their internal
structure is highly complex and might actually include internal MPI-based communication
operations. The allocation of nodes for these highly scalable code parts will be done statically
at first place and later on dynamically, as the DEEP software environment is further
developed. With the extension OmpSs eases the distribution of work between Cluster and
Booster. However, the application developer is free to use the MPI layer directly and to fully
control the offload functionality by him/herself [75].

2.7.4 Pros and Cons

Metric Pros Cons

Scalability OmpSs is designed
specifically for programming
at the Exascale and
development is closely
coupled to the DEEP and
Mont-Blanc projects, so good
scalability of the runtime

No results at large scale have
yet been published

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 35

should be expected.

Performance Performance is typically
equal to or better than
traditional programming
models (e.g. MPI/OpenMP),
especially where there are
complex dependency patterns
and communication and
computation can be
overlapped.

-

Productivity Porting of real applications to
OmpSs showed that fewer
lines of code were needed
than for CUDA and
CUDA+MPI

-

Sustainability At least in the medium-term
development will be
supported by DEEP and
Mont-Blanc. There is an
effort to include task
dependencies in the OpenMP
4.0 standard, somewhat
similar to what is
implemented in OmpSs.

-

Correctness - -

Portability Supports C, C++ and Fortran
source code

Ports to MIC, ARM and
OpenCL are ongoing but not
yet available.

Availability Nightly builds are available
from BSC website

Currently at ‘alpha’
development stage

Resilience - -

Table 13 OmpSs - Pros and Cons

2.7.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Planned Ongoing Yes

Table 14 OmpSs - Target systems/architectures

2.7.6 Conclusion

By extending the OpenMP directive syntax and implementing a new runtime, OmpSs is a
significant improvement over StarSs, and will make porting of existing applications to this
model much more practical. The planned support of Intel MIC and ARM CPUs are clearly
important as these types of components are likely to feature in future exascale architectures.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 36

Similarly to StarSs, the ability to express complex data dependency patterns in a concise
matter is clearly advantageous for large-scale parallel programming, and the improvements to
both the programming model and runtime in OmpSs make it easier to port real applications
without substantial re-engineering. However, OmpSs is still at an early stage of development
and no results showing petascale performance have yet been published. The ability to manage
parallelism across heterogenous architectures consisting of CPUs and accelerators in a
transparent fashion will be necessary on deep petascale and exascale systems. OmpSs is an
integral part of the DEEP and Mont-Blanc architectures for a future exascale system and we
suggest that if OmpSs is to be exploited in T7.2, partners should work closely with both of
these projects.

2.8 Co-Array Fortran (CAF)

2.8.1 Brief overview

Co-Array Fortran (CAF) [20] [76] is a small set of extensions to the Fortran 90 standard and
subsequently now part of the Fortran 2008 standard [76] for SPMD, parallel processing. CAF
is an example of a PGAS language which supports access to non-local data using a
subscripted array syntax, lightweight and flexible synchronization primitives, pointers, and
dynamic allocation of shared data. An executing CAF program consists of a static collection
of asynchronous process images. Like MPI programs, CAF programs explicitly manage
locality, data and computation distribution. However, CAF is implicitly based on one-sided
communication so that rather than explicitly coding message exchanges to obtain off-
processor data, CAF programs can directly reference off-processor values using subscripted
references. Since both remote data access and synchronization are expressed in the language,
communication and synchronization are amenable to compiler-based optimizing
transformations. CAF is aimed at multi-core multi-node system architecture.

Although now part of the Fortran 2008 standard, CAF compiler support is still lagging. So far
the Cray compiler on Cray systems has the most optimized implementation of CAF. Other
implementations either work on single node (for gfortran) or multiple nodes using MPI (Intel
CAF) or using GASNet (Rice university CAF [77]). These latter two implementations are
currently un-optimized and not ready for large-scale systems. Although the latest version of
the Intel Fortran compiler has support for CAF it currently compiles source code into MPI
executables, which subsequently have to be launched using the Intel MPI runtime. The Rice
University version of CAF is an open-source implementation. However, it should be pointed
out that the Rice University implementation of CAF does not follow the CAF standard
exactly.

Latest version/release: CAF is now part of the Fortran 2008 standard.

2.8.2 Evidence of use within PRACE

Although several PRACE Tier-0 and Tier-1 (Cray-based) systems, including HERMIT,
LINDGREN, MONTE ROSA and HECToR offer CAF supported compilers, CAF-based
development work has not been widely reported within PRACE to date. In PRACE-1IP a
parallel benchmark suite for CAF was developed from scratch and reported on in deliverable
D7.5 ‘HPC Programming Techniques’ [43] in a section entitled, ‘Parallel Benchmark Suite
for Fortran Coarrays’. This benchmark was tested on Cray architectures and a general-purpose
Intel cluster, where the project aimed to see if bottlenecks caused by MPI performance at
large-scale could be solved by using CAF instead. It was shown that under certain problem-
defined conditions, CAF can outperform MPI on platforms with appropriate hardware support

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 37

such as the Cray XE6, which has native compiler support and a communications network
(GEMINI) that is optimized for remote memory access. On Cray systems without hardware
support (e.g. the XT4 with Seastar2+ interconnect) performance was seen to be poorer than
MPI. Anecdotal evidence suggests that performance of CAF on general clusters with recent
Intel compiler CAF support is still quite poor.

2.8.3 Evidence of use outside PRACE

The use of CAF on large real applications is not very common. However there are several
projects in which CAF is being investigated and where some performance gain has been
achieved. The CRESTA [3] project has a CAF co-design team consisting of many active
developers. CRESTA is using global Numerical Weather Prediction software from ECMWF
called the Integrated Forecast System or IFS for testing CAF. The CAF implementation of
IFS was tested on HECToR using the Cray compiler where on 70,000 cores it was found to be
20% faster than the original MPI/OpenMP implementation [78]. The CAF implementation of
IFS actually involves a small part of the code where it has been implemented as a mix of MPI,
OpenMP and CAF. In particular it is, to our knowledge, the first time that coarrays have been
used in a real production application within the context of OpenMP parallel regions. The
purpose of these optimizations is primarily to allow the overlap of computation and
communication, and to reduce the volume of data communicated. It should be pointed out that
if these developments are successful then the IFS model may continue to use the spectral
method to 2030 and beyond on an exascale sized system.

2.8.4 Pros and Cons

Metric Pros Cons

Scalability Based on one-sided
communication. Easy to
overlap computation and
communication

Actual scaling figures for
large number of cores are not
known

Performance Cray CAF is optimized. In
point to point benchmarks it
is faster than MPI.

Other CAF implementations
only provide functionality.
Performance is often poor.

Productivity CAF syntax is very easy-to-
use. CAF programs can be
written faster than MPI
programs.

Not tested much on large
codes.

Sustainability CAF is now part of Fortran
standard. So vendors are
likely to support it.

-

Correctness Commercial debugging tools
such as DDT and TotalView
support debugging of CAF
applications

-

Portability As CAF is part of Fortran
standard it should be portable
as the Fortran code itself

As not many compiler
vendors are supporting full
Fortran 2008 standard
portability is currently an

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 38

issue.

Availability Available mostly on Cray
systems.

Resilience

Table 15 CAF - Pros and Cons

2.8.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No (in dev) No No

Table 16 CAF - Target systems/architectures

2.8.6 Conclusion

It is not clear if CAF alone can be used on a petascale or future exascale system. There are
very few decent CAF installations on general-purpose clusters and the only performing CAF
implementations tend to be found on Cray systems. It has been demonstrated in the CRESTA
project that CAF can be used in hybrid programming together with MPI and OpenMP, which
suggests that CAF is one of the few PGAS languages that can be exploited in an incremental
fashion with legacy code, which is undoubtedly an attractive feature for the exploitation phase
of T7.2. It should also be noted that Intel has indicated support for CAF as a model for
programming the Intel MIC architecuture and is currently developing support.

2.9 Unified Parallel C (UPC)

2.9.1 Brief overview

UPC, or Unified Parallel C [79] is a parallel programming language that is an extension of
ISO C [ISO99]. Additionally, UPC is a PGAS (Partitioned Global Address Space) language
using a globally shared memory programming model which exploits data locality combined
with a distributed memory model for its underlying implementation. The application
developer is presented with a single shared, partitioned address space, where variables may be
directly read and written by any processor, but each variable is physically associated with a
single processor. UPC uses the SPMD model of computation in which the amount of
parallelism is fixed at program startup time, typically with a single thread of execution per
processor. Parallelism is achieved through the use of shared memory and work sharing across
independent UPC threads of execution, hereafter referred to as simply “threads.” Each thread
has its own private memory space, as well as an associated shared memory region of the
global address space that can be accessed by other threads.

The implementation of UPC threads is not restricted to actual user-space threads and the two
are distinct concepts. In the case of Berkeley UPC, UPC applications run on top of GASNet
and GASNet determines the actual thread implementation. Possible GASNet layers include
pthreads, PSHM (process shared memory), MPI (in which the UPC shared memory is actually
implemented via MPI calls), and various network APIs such as Infiniband verbs.

The number of UPC ‘threads’ is fixed at program startup, and does not change during the
code’s execution. This attribute of UPC makes it similar to MPI in that each process or
‘thread’ is alive from inception through exit.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 39

Shared memory variables in UPC form the foundation of UPC’s parallelism. Rather than
exchanging data across threads through explicit communication as in MPI, information is
exchanged primarily through the use of shared memory.

Shared memory variables are declared through the use of the shared qualifier. In UPC, shared
variables are always of global scope and must be declared globally; there is no provision for
local shared variable declarations.
UPC compilers are compliant to a UPC specification that is not part of the ANSI C standard.

Latest version/release: Berkeley UPC v2.16.0

2.9.2 Evidence of use within PRACE

UPC has not been widely used in PRACE to date. UPC was used in PRACE-1IP and was
reported on in the PRACE-1IP whitepaper, ‘Porting and Optimizing HYDRO to new
platforms and programming paradigms - lessons learnt’ [80]. In this project, HYDRO, a 2D
Computational Fluid Dynamics benchmark code, was parallelised using UPC. Tests were
carried out using the Cray UPC compiler on HERMIT and performance was shown to scale
across a number of threads. However, significant degradation occurred in memory accesses
outside the affinity of the threads, especially when accessing memory across nodes.

In the PRACE-1IP, deliverable, D7.5 [43] a report was conducted on ‘A cache-oblivious
matrix transposition (FFTW)’ where the main goal of this work was to explore an alternative
to the de-facto standard programming model for petascale systems, i.e., the mixed
MPI/OpenMP model. The authors evaluated UPC-Cilk as an interoperable alternative hybrid
model, because it offers a uniform shared memory programming interface. UPC was used for
the distributed memory parallelization across multiple nodes, while Cilk was used for the
shared-memory parallelization inside the node. The evaluation revealed speedups up to a
factor of 4x compared to the proprietary Intel (MKL) implementation using MPI/OpenMP. In
general, the authors concluded that UPC presents an efficient, concise and expressive
alternative to MPI and mixed UPC/Cilk programming is an abstract yet efficient tool for large
parallel computations.

2.9.3 Evidence of use outside PRACE

Just as in PRACE, example cases of where UPC has been employed to enable real codes on
large petascale systems have been difficult to find.

There has been some interesting work carried out recently at Intel’s Exascale Science Labs
[81] where a 2D Electrostatic Particle-in-Cell algorithm was implemented in UPC with
dynamic load-balancing [82]. The underlying algorithm that was implemented was the
Conjugate Gradient method and the authors of the work were inspired by recent investigations
showing that UPC can be used efficiently for the development of 1D PIC codes The overall
conclusion made by the authors was that UPC allows for an efficient design and
implementation of the required data structures, but the level of detail provided on the
scalability of the UPC code is quite low, other than that weak scaling on up to 500 “threads”
is shown to be good.

UPC functionality was added to the Ludwig Lattice Boltzmann application [84] and tested on
the X2 component of HECToR on 122 vector processors. Although a full conversion was
beyond the scope of the work, the ability of UPC and MPI to coexist allowed for the key
section of the code to be converted to use UPC rather than MPI communications, and
performance comparisons to be made. The use of UPC reduced complexity by allowing data
structure halo cells and associated message passing halo-swap routines to be replaced by more

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 40

intuitive direct remote memory accesses. A straightforward adaptation involving direct use of
UPC shared data structures was found to perform significantly worse than the MPI version,
but it was found that this was not primarily attributable to communication performance
degradation, but instead to overheads involving shared pointer operations. An optimised
version using regular C pointers (obtained via casting) where possible was found to perform
more comparably to, but still slightly worse than, the MPI version

Finally, in the paper, ‘Hybrid Parallel Programming with MPI and Unified Parallel C’ [83] a
real hybrid of MPI+UPC application with good results was demonstrated. As the authors
underline,

“…this model offers an incremental pathway that allows existing applications to take
advantage of MPI’s locality control and UPC’s global address space. In addition, it can serve
as a test-bed for developing new programming models that aim to combine these features. For
memory-constrained MPI codes, the hybrid model enables the processing of larger problems
by aggregating the memory of several nodes into a single, shared global address space. For
locality-constrained UPC codes, the hybrid model can improve locality through the creation
of UPC groups that are connected with MPI.”

The model was evaluated on two benchmarks, a random access benchmark and the ‘Barnes-
Hut’ n-body simulation. Compared against a baseline execution on 256 cores, it was found
that, for groups that span two cluster nodes, the hybrid random access benchmark yields a
25% improvement in execution time and hybrid Barnes-Hut experiences a 2X speedup. In the
case of Barnes-Hut the cost of hybridization was a 2% increase in code size.

2.9.4 Pros and Cons

Metric Pros Cons

Scalability Good when thread has
affinity to the memory it is
accessing (up to 4K cores).

One may need to employ
practices, which require
explicit knowledge of the
memory model to obtain
good scaling. In such cases,
the benefit of using UPC over
MPI is not obvious.

Performance In the serial sections UPC is
identical to C with the well
known benefits in
performance associated.

Productivity For some simple parallel
applications, implementing
an algorithm in UPC can be
much faster than in MPI.

For complex data accesses,
where threads need to access
non-local data, the developer
may require to explicitly take
care of data accesses, leading
to considerably more
complex code.

Sustainability The first version of UPC was
released in 1999 and
development of UPC
compilers is still ongoing.

Although versions have been
released continuously for
almost 15 years, UPC is still
not considered a mature
programming language for

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 41

parallel architectures.

Correctness C debugging tools can be
used for the serial versions of
the code. There are versions
of the Totalview debugger
(7.0.1 or greater) that will
debug UPC programs on x86
architectures.

Portability Porting from C to UPC can
be trivial for kernels where
threads operate on local data.

For more complex kernels
where threads operate on data
local to other threads, one
may require increased effort
for porting as well as a
detailed understanding of the
application’s details such as
data paths.

Availability A number of open-source and
commercial implementations
are available. The
specification itself has
reached a level of maturity to
allow for several conforming
compilers. Prominent
compilers include the
following: HP UPC
(commercial), Cray UPC
(commercial), GCC UPC
(free), Berkeley UPC (free),
Michigan Tech MuPC (free),
IBM UPC Alpha Edition
(commercial)

Resilience

Table 17 UPC - Pros and Cons

2.9.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No No No

Table 18 UPC - Target systems/architectures

2.9.6 Conclusion

The present nature of the UPC language requires that an entire application be modified if one
small region is to be parallelized. This implies that the time to parallelize a large code with
UPC will always be longer than the time to parallelize with OpenMP, so for the moment we
feel that UPC should be treated with curiosity by PRACE partners, but not as a candidate to
incrementally add new levels of parallelisation to PRACE applications. For those interested in

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 42

investigating further, an excellent paper has been written outlining a successful process of
MPI/UPC hybridisation [83], which was referenced and reported on above.

2.10 Chapel

2.10.1 Brief overview

Chapel (Cascade High-Productivity Language) [8] is a general-purpose parallel programming
language being developed by Cray under the DARPA High Productivity Computing Systems
(HPCS) program. Taken from its name, Chapel’s purpose is to increase programmer
productivity while enhancing code robustness. Chapel’s aim is to support the expression of all
parallelism in an application while targeting all available hardware parallelism with a single,
unified set of language concepts.

Chapel also operates under a multi-resolution philosophy, meaning that programmers can
initially write very abstract code and subsequently add more detail to tune for their target
architecture. Object-oriented design, type inference, and other features allow for rapid
prototyping and code reuse.

Chapel has several general and parallel language constructs that are meant to reduce the
amount of code necessary to express a concept or perform work. Among many others, these
include constructs to deal with the distributed nature of a global-view data structure,
concurrency constructs, and data and task parallelism constructs.

 Data parallelism is generally invoked by the forall keyword where iterations of an
otherwise serial loop may be calculated independently of other iterations. The number
of threads that are used for this all- way parallelism depends on how many cores exist
on a processor, but may be changed through configuration variables. Other methods
for managing data parallelism include reductions, scans, and shorthand forms in
dealing with arrays as a whole.

 Task parallelism is invoked using the begin and cobegin keywords for
unstructured task parallelism and the coforall keyword for structured task
parallelism. In general, there is a distinct thread for each task spawned through a task
parallelism construct, and there may be many more threads than there are cores on a
processor. In the case of structured task parallelism, each iteration is processed as a
separate task from other iterations, and generally, the serial code inside an iteration is
more complex than its data parallel counterpart. Because the threads of a task parallel
region of code may exceed the number of cores in a processor, the kernel may switch
among threads leading to possible issues with concurrency for poorly written codes.

All parallelism in Chapel is implemented using POSIX threads by default, and all
communication is implemented using the portable GASNet communication library [71]
supporting one-sided communication and active messages. As a result of this approach,
Chapel runs on most parallel systems, whether custom or commodity.

The interoperability with other languages is presently not fully functional, and there are issues
with calling Chapel generated code from an external language. Moreover, as Chapel does not
support explicit pointers, it will require a great deal of effort to successfully glue Chapel
together with languages such as C.

There is currently a lot of interest in how PGAS languages will confront the challenges
associated with heterogeneous systems. It is generally appreciated that Chapel’s current
definition of locales is very adept at describing horizontal locality such as that which exists
between nodes of a homogeneous cluster. However, once a system’s compute nodes involve

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 43

NUMA domains or heterogeneous resources, Chapel programmers have no way to target code
to specific processors or memories. To this end, the Chapel team is working on adding a
concept of hierarchical locales to represent architectural substructures or realms of locality
within a node (i.e. vertical locality) [85]. The idea is that a programmer could use Chapel’s
on-clauses to specify that a task should run on a specific processor type or instance, or to
allocate a variable using a specific memory. Beyond this, the Chapel team and others are also
carrying out very interesting work on allowing for Chapel to target GPUs [9].

Latest release/version: Version 1.6.0

2.10.2 Evidence of use within PRACE

Chapel has not been widely employed within PRACE to date. It was first reported within
PRACE-PP in deliverable D6.6, ‘Report on petascale software libraries and programming
models’ [87] where the EUROBEN kernels mod2am (dense matrix-matrix multiply), mod2as
(sparse matrix-vector multiply) and mod2f (1D FFT) were ported to a Cray XT5 (AMD
Barcelona processors at 2.3 GHz, 2 quad-cores per nodes). Version 0.9 of Chapel was used
where performance results for the Chapel port were found to be very poor, however, it was
explicitly noted by the authors of the report that the performance of the Chapel compiler was
very poor and that the Chapel port should only be seen as a proof-of-concept and should not
be used in performance studies at this premature stage.

Chapel has also been more recently reported on within PRACE-1IP in deliverable D9.2.1 [62]
where it was noted that since the initial evaluation of Chapel during PRACE-PP the language
and the compiler/runtime have evolved significantly. One of the most notable areas of
improvement is interoperability with other languages. Chapel now supports calling C
functions, converting to/from C data-types and using native C data-types. In principle, this
permits linking C libraries such as LAPACK, BLAS, or MKL. However, it is unclear as of
now, how regular C functions access distributed data. Chapel has not been designed to
interoperate with other parallel programming models. However, as long as the model is
implemented as a library, such as MPI, Chapel could be used in a hybrid setting. In terms of
performance, the authors of the deliverable note that Remote Memory Accesses are
implemented inefficiently, which is the primary reason why the EUROBEN kernels do not
perform well. At the time of writing of D9.2.1 this situation had not changed since the initial
evaluation. Tests with the Chapel compiler v1.2.1 on the Gemini interconnect of the Cray
XE6 exhibit improved performance due to very low network latency. However, the
benchmarks did still not scale beyond an unacceptably small number of nodes.

2.10.3 Evidence of use outside PRACE

As is the case within PRACE, Chapel has not been widely used on real applications on large –
scale systems around the world to date. Performance measurements with respect to several of
the HPC Challenge benchmarks have been performed. The most current published results
from the challenge are from 2009 by the Chapel team; their entry for class 2 (most
productivity) was awarded “most elegant implementation”. Although the language has
evolved since then, the performance results show that Chapel was comparable to an MPI
version of the code for the Global and EP STREAM Triad benchmarks. Performance on the
Random Access benchmark was not competitive with MPI. In terms of productivity, the paper
noted that Chapel consistently beat MPI in terms of lines of source code (Chapel had far
fewer lines for the same program) [88].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 44

2.10.4 Pros and Cons

Metric Pros Cons

Scalability Task spawning and
synchronization across the
machine seems to be
reasonably efficient.

RMA transfer very
inefficient; does not allow
scaling of communication
intensive applications.
Generally, scaling has been
seen to be poor to date, but is
expected to improve.

Performance Scalar performance has
improved significantly.

-

Productivity Very short, readable code.
Easy to program and
maintain. Clear and powerful
concepts for parallel
programming.

Practically no tools support.

Sustainability Only supported by Cray

Correctness - No support on current
debuggers

Portability Intermediate C Code
generated, can be ported
onto Windows (Cygwin) or
any Unix-like platform. Can
be used with C language, but
interopability at an early
stage

-

Availability Can be used under the terms
of the BSD license and a user
agreement.

-

Resilience - -

Table 19 Chapel - Pros and Cons

2.10.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No On-going
work

No No Yes

Table 20 Chapel - Target systems/architectures

2.10.6 Conclusion

The primary advantages Chapel has over MPI are in programming ease and elegance.
Because it is a multi-resolution language, it allows for quicker prototyping of algorithms, with
architecture specific optimizations added in later. This provides greater code robustness due
to a decreased chance for communication errors. Finally, because Chapel is multi-level, it is

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 45

able to provide homogeneous coding semantics, whereas one may have to add OpenMP to
MPI code to fully utilize processor capabilities. With respect to performance, Chapel
currently lags behind OpenMP and MPI in general, although it is comparable in some cases
and is expected to improve overall as the language progresses. We feel that T7.2 were to
explore the possibilities of exploiting Chapel (this would be difficult with a real application),
it would be interesting to test its current capabilities on heterogeneous systems.

2.11 X10

2.11.1 Brief overview

X10 [22] is a parallel asynchronous Partitioned Global Address Space language based on Java
and developed by IBM. Like Chapel, the X10 project started in 2006 as a response to the
DARPA HPCS program. X10 is called an asynchronous PGAS language because of the
ability to explicitly control concurrency through constructs such as async and finish.

The stated motivation behind X10 is to provide a language that addresses the inherent
complexities of the increasingly popular many-core architectures (of which NVIDIA Kepler
and the Intel MIC are examples) in a single, unified programming model. The goals of the
X10 project are to create a language that is simple (hence its Java base), safe (from design
errors, and through static checking), powerful (capable of expressing typical HPC codes),
scalable, and universal (can be used and deployed on a host of architectures). Using the
X10/CUDA backend, one can identify fragments of an X10 program to run on the GPU. For
ideal workloads, this can give a speedup of up to 30x or more (claimed by X10 developer
team on X10 website [22])..

X10’s asynchronous PGAS framework provides the programmer with greater flexibility than
a standard PGAS model by allowing threads (activities) to be created dynamically and by
making it possible for dynamic load balancing to occur. This means heterogeneous systems
and applications that require load balancing should both be supported, increasing the potential
for adoption.

Like Chapel, X10 should greatly reduce the amount of code required for a particular parallel
application, relative to the amount of code in an MPI-based or MPI/OpenMP code. This is
due to the absence of message passing code, as global memory locations can be addressed as
if they are local.

IBM developerWorks [89] provides an X10 debugger called ‘The IBM Parallel Debugger for
X10 Programming.’ The X10 Parallel Debugger is still a fairly new product, so bugs are to be
expected. However, the goal of the project is to provide a complete parallel debugger for X10
code, so in the long term, it should be robust.

Latest release/version: v2.3.1

2.11.2 Evidence of use within PRACE

X10 has not been widely employed within PRACE to date. It was first reported on within
PRACE-1IP in deliverable D6.6, ‘Report on petascale software libraries and programming
models’ [87], where the EUROBEN kernels mod2am (dense matrix-matrix multiply), mod2as
(sparse matrix-vector multiply) and mod2f (1D FFT) were ported to an IBM pSeries 575 (108
nodes with 32 Power6 cores at 4.7 GHz by node) and where performance results for the X10
port were less than impressive. However, it was explicitly noted by the authors of the report
that the performance of the X10 compiler (v1.7.5) was very poor and that the X10 port should

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 46

only be seen as a proof-of-concept and should not be used in performance studies at this
premature stage.

A more recent investigation of X10 was reported in WP12 PRACE-2IP in the PRACE
whitepaper, ‘Parallelization Using a PGAS Language such as X10 in HYDRO and Triton’
[90]. In that project X10 was used to parallelise two CFD codes, Hydro and Triton and was
tested on the CEA Titane CCRT system (1068 nodes, 2 processors Intel Xeon 5570 by node,
4 cores by processor) Version 2.2.1 of X10 was used, but the test case was too small to obtain
valuable conclusions. The measured compute times showed fair scalability behaviour (over 25
8-way compute nodes) but performance was far worse than the MPI/OpenMP versions of the
codes.

2.11.3 Evidence of use outside PRACE

The X10 development team recently participated in the 2012 HPC Challenge contests [91]. In
this contest, X10 received the “Best Performance” award. Benchmarks were run on up to 55K
cores, and showed good scalability and performance (80%-100% scalability depending on the
benchmark, 40%-80% relative performance vs. reference HPC Challenge implementation).
On one of the benchmarks, X10 code performed significantly better due to the strongly
unbalanced test behaviour [92].

Another interesting use of X10 can be found within Anuchem [93] a collection of
computational chemistry codes written in X10. These codes are experimental in nature and
are not guaranteed to run against the latest stable release of X10. However some components
may be of interest to those considering X10 during the T7.2 exploitation phase. Examples of
implemented algorithms are the parallel fast multi-pole method, or Hartree-Fock method.
Performance studies have used up to 256 cores on the Watson 4P Blue Gene/P system (4
cores by node). The code exhibits close to linear scaling on up to 64 places (strong scaling
experiment for 51000 particles). However, scaling is reduced for more than 64 places because
of the relatively small problem size.

2.11.4 Pros and Cons

Metric Pros Cons

Scalability Low level benchmarks scales
up to ~50K cores, application
tests up to 256 cores

Performance Performance improved a lot
with newest X10 versions

Still behind MPI-based code

Productivity Powerful concepts for
parallel programming.
X10 syntax was simplified in
recent versions.
Dedicated Eclipse framework
version for X10 (with
intelligent editor)

Experience needed in object-
oriented programming. No
clear indication that X10 can
be used with other languages
such as C, C++ and Fortran

Sustainability Specification and
development by IBM only.

Correctness Dedicated parallel debugger

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 47

for X10 developed by IBM

Portability X10 binaries available on
several platforms (Linux X86
– X86_64, Windows with
Cygwin, MacOSX,
BlueGene/P, AIX/Power), or
can be compiled from source
code

Even if X10 tools are
compiled from source code,
some external tools are
available in binary form only

Availability As X10 is managed by IBM
only, availability of X10
follows the language
specification versions

-

Resilience

Table 21 X10 - Pros and Cons

2.11.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes (using
dedicated
gateway)

No No Yes

Table 22 X10 - Target systems/architectures

2.11.6 Conclusion

Like Chapel, programming in X10 would be a radical shift for the majority of PRACE
partners working within WP7. However, this is not necessarily a negative point if the shift
provides benefit in the form of reduced time to code, large reductions in lines of code, and
greater maintainability. Also like Chapel, at present, X10 cannot exist as a secondary
language; while C or C++ object files can be linked into an X10 application, the reverse is not
possible. Like Java or C++ there are characteristics of the language syntax that may make it
more difficult for some programmers to maintain or work with. A solid understanding of
existing classes would be necessary to optimally program and maintain application code, and
in many cases there may be a nontrivial learning curve associated with acquiring this
understanding, especially within the HPC community, where most code is written using C and
Fortran. Beyond productivity considerations, the real issue at the moment when considering
X10 is performance and scalability, which is yet to prove itself within PRACE or on a wider
basis.

2.12 Global Arrays Toolkit

2.12.1 Brief overview

The Global Arrays (GA) Toolkit from Pacific Northwest National Laboratory (PNNL) [23]
provides an efficient and portable "shared-memory" programming interface for distributed-
memory computers. Each process in a MIMD parallel program can asynchronously access
logical blocks of physically distributed dense multi-dimensional arrays, without need for
explicit cooperation by other processes. Unlike other shared-memory environments, the GA
model exposes to the programmer the non-uniform memory access (NUMA) characteristics

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 48

of the high performance computers and acknowledges that access to a remote portion of the
shared data is slower than to the local portion. The locality information for the shared data is
available, and a direct access to the local portions of shared data is provided.

Global Arrays has been designed to complement rather than substitute for the message-
passing programming model. The programmer is free to use both the shared-memory and
message-passing paradigms in the same program, and to take advantage of existing message-
passing software libraries. Global Arrays is compatible with MPI and can be used with
Fortran, C, C++ and Python- based source code. Fortran, C and C++ support is included by
the toolkit natively

GA is aimed explicitly at distributed-memory architectures and its primary goal is to provide
an efficient and portable “shared-memory” programming interface for such systems. GA
does this by exposing a simple structure – a ‘Global Array’, whose storage can potentially
span the whole memory of the distributed system. The programmer is given a uniform API to
access array elements regardless of whether the element in question is stored locally or on
another node. This greatly simplifies the programming model, but more importantly, it
provides a way to work around memory-size bottlenecks in machines with hard memory limit.
For example, an IBM Blue Gene/P system typically has 2 GB of RAM on every node, which
might not be enough for certain tasks. GA allows the programmer to allocate/use arrays much
larger than the 2 GB, where the programmer can, in fact, allocate an array that spans the entire
RAM of the whole machine/partition.

The tool is based on an internal portability layer (ARMCI) [94] with support for a large
selection of architectures, including IBM Blue Gene/P, IBM Blue Gene/L, Cray XT4/XT5,
Infiniband/OpenIB, Myrinet, systems with Qsnet interconnect, IBM SP, etc. The ARMCI
layer is built in the library and there are no additional steps needed in order to use the toolkit,
apart from linking with the appropriate shared static library.

The ARMCI portability layer is specifically optimized for some of these architectures. For
example, on an IBM Blue Gene/P it uses the low-level DCMF (Deep Computing Messaging
Framework) layer to implement one-way data communication instead of relying on MPI to do
this (in fact, MPI on IBM Blue Gene/P is also implemented using DCMF, so GA skips one
layer of complexity and gains a lot of performance). On platforms for which no such low-
level interface is available, the Global Arrays primitives are implemented on top of MPI. This
effectively means that GA is available on every platform for which MPI is available.

The tool has a large selection of supported platforms and specific instructions for compiling
on each of them. Basically, it relies on MPI compiler wrappers and the compiler suites native
for each platform are usually supported.

Latest version/release: v5.1.1

2.12.2 Evidence of use within PRACE

Global Arrays has not been widely used to date within PRACE. However, it was employed in
WP7 PRACE-1IP and reported on in the PRACE whitepaper, ‘Data I/O Optimization in
GROMACS using Global Arrays Toolkit’ [95], where the authors describe how they used
v5.0.2 of the tool to enable GROMACS to scale on an IBM BG/P. The GA toolkit helped in
solving the memory-bottleneck in GROMACS on an IBM Blue Gene/P due to the hard
memory limit of the Blue Gene/P compute nodes having only 2GB RAM (512MB in VN
mode). By using GA the authors showed how GROMACS handled a system with over
2,000,000 atoms in VN mode, a problem that was otherwise not amenable to execution on
such a system.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 49

2.12.3 Evidence of use outside PRACE

A GA-based parallel implementation of NWChem coupled cluster calculations was performed
at 1.39 PFLOPS using over 223,000 processors on ORNL's JAGUAR system, an achievement
that won the Gordon Bell Finalist at SC09 [96].

While we found it quite difficult to find other examples of how Global Arrays is being
exploited outside PRACE, we point the reader to an interesting article on how Global Arrays
parallel programming model has recently been implemented using MPI’s RMA functionality.
This implementation was achieved by porting GA’s low-level ARMCI PGAS runtime system
to MPI’s one-sided API where similar performance to the conventional ARMCI-based
implementation was achieved [97].

2.12.4 Pros and Cons

Metric Pros Cons

Scalability The tool mainly uses one-
sided communication
patterns, which show
excellent scalability. On
architectures that offer low-
level access to internal
messaging framework, it
would surpass plain MPI.

-

Performance Excellent performance –
SC09 Gordon Bell finalist,
achieving 1.39 petaFLOPS
on Jaguar (Cray XT5)

In order to achieve
transparent one-sided
communication, a separate
thread has to be used to
advance the messaging state.
On architectures that allow
spawning limited number of
threads (e.g. IBM Blue
Gene), this can be viewed as
one less worker thread and
thus poorer performance.

Productivity Offers shared-memory
programming model in
distributed-memory
architectures, which greatly
simplifies certain tasks and
thus improves productivity.
Excellent high-level
abstraction leading to easy to
use, but powerful API.

-

Sustainability The project is actively being
developed and supported
with new version appearing
every 6 months or so.

-

Correctness The package comes with its -

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 50

own sanity-test routines that
are performed during build
time. The results usually
show no major show-
stopping bugs and raise the
confidence level regarding
the correctness of the
package.

Portability The package is portable and
supported on many high-
performance architectures
and clusters (Cray, IBM Blue
Gene, special support for
Infiniband and Myrinet, etc.)
For those architectures that
expose low-level messaging
frameworks, such libraries
are used as optimizations. On
others, GA is built on top of
one-sided MPI
communication primitives, so
the overall portability is not
lesser than that of MPI.
Supports Fortran, C/C++ and
Python source code

-

Availability Complete source code and
documentation freely
available at PNNL website.

-

Resilience - -

Table 23 Global Arrays Toolkit - Pros and Cons

2.12.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No No Not sure Yes

Table 24 Global Arrays Toolkit - Target systems/architectures

2.12.6 Conclusion

For distributed-memory systems the Global Arrays Toolkit demonstrates at least as good
scalability and performance as plain MPI. Its added benefit is that it adds a simplified
programming model and also been shown to solve memory bottleneck issues on large-scale
systems (e.g. IBM Blue Gene). If however future exascale systems are built on top of
coprocessors/acceletors, Global Arrays Toolkit may be less beneficial in its current state.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 51

3 Debuggers and Profilers

A wide range of tools for debugging and performance analysis exists. A survey of system
software stacks in the IESP [98] community lists approximately forty different tools for
debugging and performance analyses. This survey is by no means exhaustive, as there are
many additional tools both from vendors and Open Source initiatives that offer improved
capabilities either for debugging or performance improvement.

The tools covered in this report are either on the IESP list or they have been covered by
PRACE on an earlier occasion, especially in PRACE-PP as described in deliverable, D6.3.1.
‘Report on available Performance Analysis and Benchmark Tools, Representative
Benchmark’ [99]. Several tools described in D6.3.1 (DewizPat, Allinea OPT, IBM VPA) are
no longer available or do not exist as distinct products; some have been replaced by other
products, others are merged into existing ones. The trend of merging of tools continues both
in Open Source projects and commercial products. It is more and more challenging to
maintain these tools due to the increasing complexity of the runtime environments.

The increasing complexity of the runtime environment is caused by the developments in
hardware. Most current HPC-systems have CPUs with many cores and several CPUs on each
node. This has led to hybrid codes where MPI is used for inter-node communication and
OpenMP is used for intra-node communication and parallelism. A tool only addressing intra-
node parallelism will not catch the whole picture; likewise will a tool only focusing on
internode communication not get a complete view. Tools developed at HPC research centres
have tried to accommodate for this, as these tools incorporate all levels of parallelism. Tools
developed by hardware vendors are often to the contrary more intra-node focused.

It is more than likely that the next generation of HPC-systems will have coprocessors or
accelerators within a node, like the newly installed STAMPEDE at TACC (Texas Advanced
Computing Centre) and Titan at ORNL (Oak Ridge National Laboratory). This adds a new
runtime environment to the node and yet another level of complexity. Very few tools can
accommodate for this development. It is a daunting task to reliably analyse an execution
environment with inter-node parallelism and two separate, but co-functioning intra-node
threaded runtime environments. While the hardware vendors offer tools for analysing and
debugging kernels executing on the coprocessor, it is in most cases the HPC research centres
that develop tools, which can give a holistic view of the hierarchy of runtime environments.

All of the European exascale projects (TEXT, CRESTA, DEEP, Mont Blanc) are putting
effort into tools for debugging and performance analyses. This is deemed a necessity for
efficient use of upcoming exascale architectures. Ayudame/Temanejo has been developed in
TEXT. Vampir is further developed as part of CRESTA. Support for OmpSs/ Intel Xeon Phi
and OmpSs/ARM in Scalasca is developed as part of DEEP and Mont Blanc, respectively. In
addition there is the Holistic Performance System Analysis project (HOPSA) [100]. The
product of this project is the SCORE-P [101] measurement structure. This structure is shared
by the tools Scalasca, Vampir, Tau and Periscope. A common measurement structure benefits
both profiling tools developers and users. The developers can concentrate more of their
resources on the analysis part of the specific tool instead of the measurement framework,
while the users will experience increased operability between the tools as well as fewer
learning curves.

We feel that the tools in the SCORE-P project are among the most natural to use in the
exploitation phase, together with tools for analysing coprocessors and accelerators.

DEEP has analysed the space weather application iPIC3D. With the tool Scalasca, the
behaviour of the different parts of the application has been identified. Some of these parts can

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 52

be accelerated by being partly moved to the “Booster” part of the DEEP architecture [102].
During the exploitation phase T7.2 should strive to establish similar insight as often as
possible.

It is worth noting that this type of analysis has rarely been seen in PRACE reports or
whitepapers to date. A substantial effort of training on tools for debugging and performance
analysis has been carried out within PRACE. However, very little is documented on how
successfully these tools have been employed within enabling projects. One of our missions for
the exploitation phase is to fix this discrepancy and provide good examples of debugging and
performance analyses with the different tools chosen.

In this section we report on the following debugging and profiling tools that we feel represent
the state of the art and should be of interest during the exploitation phase of T7.2:

Tool Category Scalability Sustainability Portability Availability # of
arch
s

Tau Scalable OSS 131000 NSF, DOE,
DOD,
research
centers

Large range
of systems

Open
source

5

Scalasca Scalable OSS 274912 FZ Jülich,
user groups

IBM BG,
Cray XT,
Linux

Open
source

2

Vampir Scalable OSS 200448 Dresden
University,
LLNL

Large range
of systems

Open
source

5

TotalView Scalable ISV 786432 Wide use,
vendor
support

Linux, AIX,
Solaris

Commerc
ial

5

Allinea DDT Scalable ISV 200000 ORNL,
vendor
support

Linux Commerc
ial

5

Intel tools Workstation Vendor
support

x86 systems Commerc
ial

1

NVIDIA
NSight

Workstation Vendor
support

CUDA
systems

Free 3

IBM HPCT Vendor tools Vendor
support

IBM systems Commerc
ial

CrayPat/Appre
ntice2

Vendor tools Vendor
support

Cray systems Commerc
ial

Paraver/Extrae Other Linux, GPU,
Xeon Phi

IPM Other Linux, GPU

OpenSpeedsho
p

Other Large range
of systems

PAPI Other Linux kernel Linux Open
source

Temanejo/Ayu
dame

Other Mont Blanc
project

StarSS/Omp
SS programs

Open
source

Table 25 Debugging and Profiling Tools
(OSS: Open Source Software, ISV: Independent Software Vendor, archs: Hardware Architectures)

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 53

3.1 TAU

3.1.1 Brief overview

The development of Tuning and Analysis Utilities (TAU) [103] started in the nineties. The
ambition for TAU has, from the very start, been to grow with the developments in hardware,
making a tool that survived several hardware generations. Consequently, there is continuous
on-going work to accommodate for the changes in large-scale system architectures [104].

TAU has developed a very rich set of features that can be utilized at varying degrees of
invasiveness both for profiling and trace logging. Three methods for instrumentation are
available to a user: library preloading, complier directives and source code transformation.
Each method offers an increase in features at the expense of binary or source code
modification [105]. Binary modification is done with recompilation through TAU supplied
scripts. Source code is also modified with supplied scripts.

TAU can be used on applications developed with the programming languages C, C++,
Fortran, Java and Python. The utilities offered are performance monitoring, performance data
mining, parallel profile analysis and program analysis. All these utilities have different
interfaces such that the analyses can be done with a graphical user interface or by scripts. Data
mining can be done with R, Weka or Octave/Matlab. Measured data can be stored in a DBMS
through the toolkit TAUdb, formerly known as Performance Data Management Framework
(PerfDMF). Collected data can be processed with other analysis tools like Vampir, Scalasca
or Paraver.

TAU is very portable and it is available on a range of platforms. It has been used on all
generations of both Cray XT/XE and IBM BlueGene machines. It supports the latest
generations of both platforms that include the Cray Cascade prototype with Intel Sandy
Bridge and IBM Blue Gene/Q [103].

Here we list some of the features that we think should be of interest to PRACE partners
during the exploitation phase of T7.2:

 Modules from different programming languages can be instrumented, i.e. a Python
based program using FORTRAN made object modules.

 Both source (PDT) and binary rewriting capabilities, with support for logging time
spent in application routines and outer-loops.

 I/O characterizations with peak read and write bandwidth as well as total volume.
Time spent in I/O-phase can be measured

 Memory usage can be instrumented with detection of peak heap memory usage.
Allocation and de-allocation of memory can be tracked.

 Support for debugging capabilities with callstack, memory leak detection, and runtime
bounds checking

 Performance database technology to store performance data, cross experiment and
data mining tool (PerfExplorer)

 ParaProf offers 3D visual browser. 3D communication pattern or 3D topology can be
viewed

 Automatic performance measurement system on BG/P

TAU has been extended to support heterogeneous platforms [106]. It supports the Intel Xeon
Phi in the native, offload and the host mode. This includes support for event based sampling,
and the commonly used instrumentation techniques (PDT, MPI, and linker).

Measurements can be conducted both with profiling and trace logging of kernel invocations
on an accelerator. Both PAPI [107] and CUPTI [108] can be utilized. CUPTI can be used with

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 54

library preloading. Calls to OpenCL can also be intercepted in this way. Accelerator code
generation capabilities with PGI or HMPP are also supported.

As of version 2.21.2 TAU can track the memory usage for the lifetime of CUDA kernels
(CUDA v4.1 and later). This involves the whole memory hierarchy of registers and both local
and shared memory can be tracked.

TAU can also be combined with the auto-tuning framework Orio [109][110]. Orio can
empirically execute thousands of accelerator kernels over a large set of different parameters.
By instrumenting the kernels, TAU’s data mining capabilities can be used for finding the
most efficient set of parameters for a given kernel. An exploration of acceleration kernels
carried out with Orio using PETSc has shown a 1.5 - 2x performance improvement for certain
methods compared to implemented libraries like CUBLAS [111].

Latest version/release: v2.22.1.

3.1.2 Evidence of use within PRACE

Information on experience with TAU is generally quite scarce within PRACE. However, the
survey carried out in PRACE-PP [99] shows that at the time TAU was installed on three
PRACE partner sites. This number has undoubtedly increased significantly in the intervening
period as TAU has become increasingly recognized as a tool that scales well and offers a
large amount of versatility and functionality. In WP7 PRACE-1IP, TAU was reported on in
the PRACE whitepaper, ‘Optimizing GPAW’ [112] where profiling and tracing on up to 1024
cores was carried out using TAU. Also, in WP7 PRACE-1IP, TAU was reported on in the
PRACE whitepaper, ‘High Resolution EC Earth porting and benchmarking on Curie’ [113]
where EC-EARTH was profiled on 394 cores using the TAU tool. In both cases, not a lot of
detail was provided on how successfully TAU was employed.

3.1.3 Evidence of use outside PRACE

Just as is the case within PRACE we found it quite difficult to find reported examples of
where TAU has been used to date with real applications on large-scale systems. TAU was
used in a recent performance profiling of the S3D combustion modelling code on Intrepid
(IBM BG/P) in the US. Data was collected for S3D on up to 12,000 cores using the C2H4
benchmark where the goal was to evaluate the scaling properties of code regions and the
scalability of MPI operations with the S3D code. The full power of the TAU profiler is well
demonstrated in the work where the bimodal behaviour in MPI_Wait calls with the code
were discovered as well as other metrics of interest such as memory usage, flop/s and issues
with PAPI counters on BG/P [114].

3.1.4 Pros and Cons

Metric Pros Cons

Scalability TAU has been used to
conduct a full profile of the
application Pflotran executed
on 131 000 cores [115].

Performance TAU has a throttling
mechanism for managing the
output stream. One can also
choose a lightweight

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 55

management core which
reduces the overhead by
50% compared to TAU’s
default core. Reducing
overhead is a target: the MPI
wrapper interposition library
is now using a more efficient
data structure for tracking
asynchronous communication
events.

Productivity Profiling can be done without
any binary or source code
modifications. As increased
level of detail is needed,
binaries or source code is
modified with supplied
scripts. Profiling level is
controlled by the user in
separate files. Different
utilities may have varying
degrees of threshold before
they can be used usefully.

TAU is in essence a
collection of tools more than
a tool in itself. Experience is
needed to gain results with
the utilities available. It can
produce a large volume of
profiling and trace logging
data.

Sustainability The development of TAU has
been funded by major US
funding bodies (NSF, DOE,
DOD). The project has a
range of US and Europe
research centres as partners.

Correctness

Portability It is very portable and has
been continuously ported to
new platforms for more than
twenty years. Can be used on
Fortran, C and C++
applications

Availability Open Source BSD license

Resilience

Table 26 TAU - Pros and Cons

3.1.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes

Table 27 TAU - Target systems/Architectures

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 56

3.1.6 Conclusion

TAU is a tool that has evolved for use on multi-petascale systems. It has been used on large
core counts and has demonstrated an on-line analysis capability on large core counts. The
visual tool ParaProf support 3D-views of torus and communication patterns for the major
multi-petascale platforms. The TAU development team usually ensures that TAU is available
at early stages of new platforms, as exemplified with the Cray Cascade prototype. TAU is
being further developed to support new threading technologies, like the new generations of
NVIDIA GPUs and Intel Xeon Phi. With its long traction, and continued support from its
funding bodies, it is strongly expected that TAU will continue to be available for forthcoming
multi-petascale systems. In this sense, it also shows potential for enabling applications on
future exascale systems.

3.2 Scalasca

3.2.1 Brief overview

Scalasca [116] is, as the name suggests, a profiling tool for scalable performance analysis. It
is specifically designed for large-scale high performance computing systems. Scalasca utilizes
the inherent parallelism in HPC systems by letting each process maintain a trace log of logged
events. The trace logs are written to a few files in a parallel file system. The analyses are done
post-mortem, but with the same amount of processes as the instrumented simulation. This
provides a good analysis capacity and ability to handle a large volume of trace logs. Scalasca
is targeted at MPI applications written in C/C++ or Fortran. It uses PMPI, the profiling API of
the MPI standard to profile MPI applications. OpenMP-based code can be analysed with a
source pre-processor which instruments parallel regions in the application source code. It is
also possible to profile hybrid codes.

Scalasca’s distinctive features are:

 A summary-report, which identifies the most time-consuming call paths.
 Performance evaluation over the whole length of a simulation.
 Delay and wait state analysis. Wait states are often caused by load imbalance and

cause delay. What causes wait stats and consequently delays can be identified [117].

It is available on Cray XT, IBM BlueGene and common Linux versions. Scalasca uses the
format Open Trace Format 2 (OTF-2), which is a common trace log format also used by
Vampir and Tau.

Latest version/release: v1.4.2.

3.2.2 Evidence of use within PRACE

At the time of writing the PRACE-1IP survey (D7.4.1) [118] reported that Scalasca was
installed on six PRACE partner systems. As is the case for TAU, this number has most likely
risen in the intervening period as Scalasca becomes recognized as a highly scalable tool with
an easy to understand interface. Scalasca has been used in several PRACE projects including
PRACE ‘Type-C Preparatory Access projects’ as well as petascaling community codes in
PRACE-1IP and 2IP.

The project PRACE Preparatory Access Type C project “Shocks: Understanding Relativistic
Plasmas Acceleration Systems”, which was reported in the PRACE deliverable ‘Applications
Enabling for Capability Science’ [119] used Scalasca with the PSC code on CURIE to

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 57

successfully highlight global communication hotspots, which were subsequently reduced
leading to an overall performance improvement of 14.9%.

The project described in the PRACE whitepaper “Direct Numerical Simulation and
Turbulence Modelling for Fluid Structure Interaction in Aerodynamics” [120] used Scalasca
on CURIE and JADE to study three different load-balancing strategies for the application
“Navier-Stokes Multi-Block” (NSMB). Scalasca was used by the authors to provide insight
into the behaviour of the application as different strategies were investigated.

The PRACE whitepaper, “Semi-dilute polymer systems in shear flow - a particle based
hydrodynamic approach” [121] reports on the use of Scalasca on the application MP2C on the
systems JUGENE and JUROPA. The goal of the project was to reduce communication
overhead on large core counts as scaling was deteriorating beyond 262,000 cores. Better
scaling for lower core counts was achieved by hybridizing the code with OpenMP. Scalasca
was successfully used to identify the proportion of communication vs. computation within the
code.

3.2.3 Evidence of use outside PRACE

Scalasca is in use at several larger HPC-labs, including FZJ. The IESP survey [98] hows that
it is installed in two sites in the US and 12 in Europe. In XSEDE it is available on KRAKEN,
NCSA FORGE and BLACKLIGHT.

A trace analysis of a case executing on 294,912 processes on Blue Gene/Q is documented
[122]. This was carried out with Scalasca 1.2 applied on the code Sweep3D. The analysis
collected 790 GB of trace logs. To run the analysis with a rerun of the simulation took more
than two hours. The instrumented Sweep3D application, which generated the trace logs, had
an execution time of fifty minutes in comparison to the execution time for the un-
instrumented application of ten minutes. This illustrates to some extent a contradiction with
trace analysis of applications at scale. While the tool allow tracing of an application at large
scale with real data sets running for hours, the time consumption and data volume produced
can become impracticably large for a user to handle, however, this issue is currently being
actively addressed by the Scalasca team [123].

In the course of the European exascale DEEP project, Scalasca was used to analyse the 6
prototype applications on a regular cluster to help to decide which kernels will be offloaded to
the Booster Nodes. Further, Scalasca will be ported to the Intel Xeon Phi platform and, once
available, to the DEEP System. In that way it can be used to monitor the application
performance at all stages of the project [124].

3.2.4 Pros and Cons

Metric Pros Cons

Scalability Excellent: scales to at least
300,000 cores

The volume of trace logs
become large with a large
number of processes

Performance The tool has good
performance as the analyses
are done in parallel.

Productivity The tool is developed with
large-scale simulations in
mind. It makes use of the

Analyses are based on
processing trace logs. Trace
logs of large scale long

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 58

system resources available on
a HPC system for logging,
storage and analyses.

running real applications can
get so large that they
influence node behaviour and
the simulation under
observation.

Sustainability It is maintained by
Forschüngszentrum Jülich
and it is continuously
improved with input from a
broad user group both in
Europe and USA.

Correctness

Portability It is developed for use on
IBM Blue Gene and Cray
XT. It is reported used on a
range of other platforms,
especially medium sized
HPC Linux clusters. Can be
used on Fotran, C/C++
applications

Availability The software is available for
free download under the BSD
open-source.

Resilience

Table 28 Scalasca - Pros and Cons

3.2.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Under
development

Under
development

Under
development

Under
developement

Table 29 Scalasca - Target systems/architectures

3.2.6 Conclusion

Scalasca has shown that it is an applicable profiling tool when considering the largest scales
currently possible. It scales in its use from 1000 cores to close to 300,000 cores. Development
of Scalasca continues with the purpose of meeting the needs of the HPC community as
exascale technology make its inroads. Although the Scalasca project will specifically target
large-scale parallel applications, the project recognizes that it faces several challenges,
including the fact that collation time increases with increasing number of threads, the time
needed for analysis is proportional to the number of threads and the behaviour of the
application will become more dynamic and unpredictable as processes and threads are created
and destroyed. One interesting initiative by the Scalasca team to note that may be of interest
during the exploitation phase of T7.2 is the capability being introduced to profile one-sided
communications [125].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 59

3.3 Vampir

3.3.1 Brief overview

The Vampir tool-set is a set of programs to trace high performance computing workloads, and
present the captured information in a graphical interface. It consists of an instrumentation
component called VampirTrace [126], and two visualisation applications called Vampir [127]
and VampirServer [127]. The former is freely available, while the latter two are commercially
licensed from TU Dresden.

Vampir is aimed at highly parallel computing platforms, which manifests itself in three
particular design objectives [128]. Exploiting distributed memory for analysis tasks, real-time
processing of long-running workloads with high degrees of parallelism, limiting data
processing at the client end to a volume which is independent of the amount of captured event
trace data.

The software architecture of the Vampir tools separate the work of capturing traces of
program event information and the work of visualizing it.

VampirTrace captures event logs in Open Trace Format (OTF), developed in a collaboration
between TU Dresden, University of Oregon, and Lawrence Livermore National Labs. It is a
successor to the previously used Vampir Trace Format (VTF). The visualization tools are also
compatible with trace files captured by performance monitoring with Tau or KOJAK [129].

The visualization components of Vampir focus on presenting captured data as time line
displays of events from large numbers of participating processes, with global, summary,
counter and process time lines. In order to capture the event information required to produce
these visualizations, VampirTrace caters to four methods of instrumentation, from compiler
instrumentation, through source-to-source instrumentation, library instrumentation, and
manual source instrumentation.

The scalability of the Vampir approach is connected to the management of the large volumes
of data produced by these methods when applied on large-scale systems. The primary
mechanisms for restricting event data is the capability of grouping and filtering functions
according to their names or categories, allowing subsequent analysis to relate to aggregate
statistics, or cross-sections of the available data with respect to a particular library. The
categorization is configurable, but includes MPI calls, OpenMP calls and I/O functions by
default, as these are tightly connected to the available methods for instrumentation. Exclusion
lists for filtering are configurable by providing ignored functions in text format at the time of
execution.

VampirTrace is capable of tracing GPU accelerated applications and generates exact time
stamps for all GPU related events

Latest release/version: Vampir v8.0, VampirTrace v5.14.3

3.3.2 Evidence of use within PRACE

While Vampir is frequently presented at PRACE-training sessions and is also often mentioned
in PRACE deliverables, there are very few cases where Vampir is reported as being used. In
PRACE-1IP deliverable D6.3.1,’Report on available Performance Analysis and Benchmark
Tools, Representative Benchmark’ [99], both a LINPACK benchmark on 64 MPI processes
the GYRE benchmark of NEMO were profiled with Vampir on HECTOR, but unfortunately
very few details of how successfully Vampir was used are provided in the deliverable.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 60

3.3.3 Evidence of use outside PRACE

The Survey of System Software Stacks in the IESP Community [98] presented at the IESP
workshop in 2011 counts 7 installations of Vampir and 9 installations of VampirTrace, of
which were 5 in Europe.

A prototype of Vampir using the I/O Forward Scalability Layer (IOFSL) library [130] has
recently been used to trace over 200,000 processes on Titan[131].Without the IOFSL library,
tracing produces too many files which prohibits scaling beyond 8000 processes.

The new exascale prototypes of the TU Dresden Vampir and VampirTrace performance
monitoring and analysis tools have been released. The new features include the possibility of
applying filtering techniques before loading performance data to drastically reduce memory
needs during the performance analysis. The initial evaluation study of the development
environment is targeted at the European CRESTA project applications to determine how the
development environment could be coupled into a production suite for exascale computing
[132].

3.3.4 Pros and Cons

Metric Pros Cons

Scalability Distributed software
architecture permits large-
scale operation.

Dependency on availability
of data distributed across
entire platform affects
possibility for offline/post-
mortem analysis

Performance Low overhead per-event
facilitates real-time tracking

Buffering technique depends
on surplus memory

Productivity Black-box instrumentation
available through automatic
instrumentation

Large-scale workloads likely
to require manual
instrumentation to customize
analysis for buffering
constraints

Sustainability Actively developed as Open
Source and commercial
projects

Correctness
Portability It is ported to range of

platforms: Linux (IA32,
x86_64, IA64, PPC/32,
PPC/64), Sun Solaris
(SPARC/32, SPARC/64,
x86_64), IBM AIX (PPC),
SGI IRIX (MIPS), Mac OS
X. Can be used on Fortran,
C/C++ applications

Availability Instrumentation tool is open
source and freely available

Visualization tools require
commercial licenses

Resilience
Table 30 Vampir - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 61

3.3.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes.
(Support for
CUPTI under
development)

Compatible
at source

level using
OpenMP
POMP

interface

Not sure Yes

Table 31 Vampir - Target systems/architectures

3.3.6 Conclusion

Vampir addresses the challenge of petascale profiling with hierarchal parallelism. Profiling
tools addressing threads are often developed by vendors offering the threading technology.
These do not show the total call stack and messaging that goes on in an MPI-application
utilizing accelerator/coprocessors. It is the intent of the developers that VampirTrace will
accommodate for threading technologies and address the hierarchy of parallelism in newer
MPI-applications like MPI-applications with OpenACC enabling. While evidence of multi-
petascale use of Vampir is hard to come by, at least in a PRACE context, the tool will be
further developed. In the CRESTA-project, ZIH and other partners will jointly develop the
scalable measurement environment used by Vampir as an Open Source project. Current
research activities for performance analysis focus on pattern processing, GPGPU computing,
scalability, and energy aware performance optimization. Hence, it is likely that it will feature
as a tool on the road to exascale.

3.4 TotalView

3.4.1 Brief overview

Rogue Wave's TotalView [133] is a debugging tool for parallel computing. It supports scalar,
multi-threaded and large-scale parallel applications. It supports debugging of memory errors,
leaks and diagnosis of programs like deadlocks and race conditions. It contains a Replay
Engine that allows stepping backwards through programs from the point where it crashed to
the point where the problems started. TotalView supports the programming models: MPI,
OpenMP, hybrid multi-threaded codes, CUDA, OpenACC, C, C++, Fortran. TotalView
supports the platforms: Linux (including Blue Gene), Unix and Mac OS X. TotalView has
specifically been designed for debugging on large-scale systems and Rogue Wave are
currently working as co-design partners at various US DOE labs including with Livermore
National Lab (LLNL) Sequoia team.

Using the RealplayEngine feature [133], TotalView can be made to store the history of a
running program, so that it becomes possible to step backwards through a program from the
point where a problem is detected to the point where the cause of the problem is. This can be
important when searching for bugs that are difficult to reproduce, but it is highly unlikely that
this feature will ever work on peta- or exascale systems, because of the amount of data that
has to be stored for each process. TotalView also has some very nice batch scripting features
designed for debugging in a batch environment, which allows users to define the events to act
on and the actions to take when an event occurs.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 62

3.4.2 Evidence of use within PRACE

TotalView is widely used within PRACE. It is for instance used at CINECA, CSC, EPCC,
IDRIS, Jülich, LRZ, NTNU, and SARA. Unfortunately, we found it very difficult to find
more information about how the debugger was used in practice on real applications on large-
scale PRACE systems.

3.4.3 Evidence of use outside PRACE

Although it is widely appreciated that TotalView scales to many thousands of cores, we found
it difficult to find concrete documentation on real cases of where the debugger has been used
on real applications on multi-petascale machines. The Rogue Wave developers are involved
in co-design partnerships with Lawrence Livermore National Lab (LLNL) who manage the
million plus core IBM BG/Q Sequoia machine. Recently a hybrid MPI/OpenMP Jacobi
benchmark code was debugged over 512 - 65,000 compute nodes (on up to 121,072 CPU
cores) on the Sequoia system using TotalView [134]. In a separate announcement at SC12,
Rogue Wave claim that TotalView has successfully scaled across 786,432 cores [135] on the
Sequoia machine, but little detail can be found on which application it was used.

3.4.4 Pros and Cons

Metric Pros Cons

Scalability Has debugged jobs as large
as 786,432 processes.
Petascale capability is, most
likely, available today.

Performance Normal debugging has a low
impact on application at
runtime.

Reverse Debugging has a
high negative impact.

Productivity Has a built-in memory
debugger. Supports a wide
variety of programming
models.

Reverse Debugging only
works well with few
processes.

Sustainability Widely used and regularly
updated. Commercial product
with strong support

-

Correctness - -
Portability Supports Linux, AIX, and

SPARC Solaris. Can be used
to debug Fortran, C/C++
code. Can also be used on
PGAS languages, as well as
accelerator-based
applications

-

Availability - Commercial
Resilience - -
Table 32 TotalView - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 63

3.4.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes No Yes

Table 33 TotalView - Target systems/architectures

3.4.6 Conclusion

TotalView is a professional debugging tool that specifically is aimed at the High Performance
Computing market. It is designed for debugging programs running on very large
supercomputers and has been successfully tested on 768,432 processes until now. TotalView
state that they are working closely together with IBM to provide debugging facilities on
IBM's Blue Gene systems, so petascale debugging is therefore, most likely, available today.
However, the RealplayEngine is clearly aimed at small systems, for which it is practically
possible to record the history for each process.

3.5 DDT

3.5.1 Brief overview

DDT [136] is a commercial debugger produced by Allinea Software, primarily for debugging
parallel MPI or OpenMP programs, including those running on clusters of Linux machines,
but also used by many for scalar code in C, C++ and Fortran 90. Allinea claims that it was the
first debugger to be able to debug a petascale system - having debugged 220,000 processes,
over 2 Petaflops, on a Cray XT5 at Oak Ridge National Laboratories [137]. The debugger has
logarithmic performance for most collective debugging operations, due to using a tree
architecture across the machine network to control the many single-process debuggers. It
features a complete memory debugging tool, which can be used to detect memory leaks, or
reading and writing beyond the bounds of arrays. Allinea DDT includes support for Intel
Xeon Phi coprocessors and IBM Blue Gene. The debugger is also able to debug GPU
software written for CUDA applications. Allinea has applied a co-design methodology,
working closely with compiler vendors that support the languages for machines such as Titan
and Blue Waters [138][139].

3.5.2 Evidence of use within PRACE

The use of Allinea DDT appears to be increasing within PRACE. According to the PRACE-
1IP deliverable, D7.4.1 [118], from 2011 DDT was in use at 6 PRACE partners in 2011.
However, at the time of writing, DDT appears to be in use at, at least, 10 locations: BSC,
CEA, CINECA, EPCC, GENCI, IDRIS, ICHEC, Jülich Supercomputing Centre, NTNU, and
PDC. Unfortunately, as is the case with most of the debugging and profiling tools used within
PRACE to date, very little information is documented as to the successful use of DDT during
development.

3.5.3 Evidence of use outside PRACE

By employing sophisticated tree topologies, Allinea, working along with ORNL, deployed the
first petascale-level debugger, DDT, for Jaguar. Field-tested on development codes at ORNL,
DDT has been shown to scale up to over 200,000 cores [137].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 64

Within the European exascale project, CRESTA, the Allinea DDT debugger is being extended
to provide a unified interface, to improve scalability, and to include a new disruptive
technology based on statistical analysis of run-time behaviour of the application for anomalies
detection [132].

3.5.4 Pros and Cons

Metric Pros Cons

Scalability Delivers petascale debugging
today. Has debugged jobs as
large as 200,000 processes.

Exascale debugging is future
work.

Performance Logarithmic performance for
most collective debugging
operations.

-

Productivity Has a built-in memory
debugger. Supports a wide
variety of programming
models.

-

Sustainability Widely used and regularly
updated. Commercially
supported.

-

Correctness - -

Portability Supports Linux and has been
demonstrated to work on a
wide variety of large-scale
platforms. Can be used to
debug Fortran, C/C++, PGAS
and accelerator-based
applications

-

Availability Commercial

Resilience Part of on-going co-design
research with exascale
projects such as CRESTA.

Table 34 DDT - Pros and Cons

3.5.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes

Table 35 DDT - Target systems/architectures

3.5.6 Conclusion

DDT now has features that are specifically targeting debugging of petascale simulations. The
response times of DDT are now short enough for making petascale debugging practically
possible and the GUI has features that are specifically designed for giving an overview of

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 65

large amounts of data as well as the state of a large numbers of threads/processes. The fact
that the developers of DTT have continued to show a quick response to the fast pace of
changing hardware on large-scale heterogeneous systems, indicates that DDT will feature
heavily as a debugging tool on the road to exascale. Although DDT's current feature-set will
not be sufficient on an exascale system, DDT is actively working on new features such as
fault-tolerance as part of co-design teams within the US DOE and European exascale projects.

3.6 Intel Debugging and Profiling Tools

3.6.1 Brief overview

In this subsection we provide an overview of debugging and profiling tools provided by Intel.
In particular the tools of the Intel Cluster Studio XE 2013 [140] are discussed. With regard to
multi-petascale (and future exascale systems), tools for debugging and profiling on the new
Intel Xeon Phi coprocessors are of particular interest. As is to be expected, Intel tools already
support Intel Xeon Phi (with some minor exceptions) [140]. However, since by design, the
Intel Xeon Phi coprocessor more or less emulates a normal x86-based cluster node, porting
other tools to run natively on Intel Xeon Phi is technically quite straight-forward. Moreover,
this has already successfully been demonstrated in the case of Scalasca and Paraver,
TotalView and DDT [141].

3.6.2 Evidence of use within PRACE

Currently no concrete applications of Intel tools within PRACE are documented. However
this does not necessarily mean that they have not been used at all within PRACE. At least
according to PRACE-1IP deliverable, D7.4.1 [118], it is known that Intel tools are installed
on at least two PRACE systems.

3.6.3 Evidence of use outside PRACE

Unfortunately, we found it very difficult to find documental evidence of how Intel tools are
being used on petascale systems. Intel tools have typically proven to be useful on smaller
scales. For example they were successfully applied for optimizing a crash test simulation code
running on 128 nodes with 1024 cores [142].

Intel Trace Analyzer and Collector (ITAC):

Intel Trace Analyzer and Collector (ITAC) is a pair of tools for profiling and correctness
checking of MPI applications. The current product version is v8.1 and is included in the
Cluster Studio product package. The Intel Trace Collector detects up to 50 different runtime
errors (e.g. deadlocks, data corruption and errors with MPI parameters, data types, buffers,
communicators, point-to-point messages and collective operations) and provides a full stack
trace for those errors. Application trace data can be collected by, either relinking the
application with the Intel Trace Collector Profiling library, or usage of special shared libraries
(when using a dynamically linked MPI library.

The Intel Trace Analyzer is a customizable GUI for viewing generated trace files and
provides different analysis views (‘event timeline’, ‘communication matrix’, ‘function
profile’, etc.).

With ITAC it is neither sensible nor possible to show all events of a trace file on the timeline.
Sampling resolution depends on the current timeline view range. Events can be aggregated by
function groups (the coarsest level distinguishes between MPI and application functions) and

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 66

process groups (individual processes or grouped by node – further levels of hierarchies will be
possible in future). Not all events can be displayed. However, interesting events can be
tagged. In the timeline the regions containing tagged events are highlighted so that the user
knows where to zoom. Trace data can be filtered by certain functions, messages and/or
collective operations.

Intel VTune:

Intel VTune Amplifier [143] is a profiling tool where analyses are based either on event-based
sampling or user-mode sampling. Event-based sampling collects system-wide profiling data
through the ‘Performance Monitoring Unit ‘(PMU) of Intel processors. User-mode sampling
uses the software collector for gathering profiling data and is also available on Intel-
compatible processors. In both cases, no recompilation of the application is necessary, but
including debugging symbols is recommended. VTune Amplifier can be used to analyze
intra-process performance of MPI applications. Typically, only a selected representative small
subset of MPI processes (ranks) are run under control of the VTune Amplifier.

Hardware profiling is supported for the new Intel Xeon Phi and can be launched from the
graphical user interface. It can collect lightweight hotspots and advanced event data and has
time markers for correlation of data across multiple cards. Software collection (e.g., locks and
waits analysis) is not supported on the Intel Xeon Phi. More details on MIC support for
VTune Amplifier can be found in [144].

Intel Inspector:

Intel Inspector [145] is a dynamic memory and threading error checking tool for serial and
multithreaded applications. It can also be used to visualize and manage static analysis results
created by Intel compilers. Intel Inspector provides a GUI as well as a command line interface
for build process integration and for tracing MPI applications.

3.6.4 Pros and Cons

Metric Pros Cons

Scalability An application (128 nodes,
1024 cores) is known where
Intel tools have successfully
been used for optimization.

ITAC: Trace data has to be
collected to one host for local
analysis.

VTune, Inspector: Only for
intra node profiling;
Dynamically spawned MPI
processes currently not
supported.

Performance VTune: Little overhead (~2%
for event-based sampling at
1ms, ~5% for user-mode
sampling at 10ms).

Inspector: Overhead ranges
between 2 and 320 times
depending on use-case and
analysis depth and is well-
adjustable.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 67

Productivity Generally good usability and
strong and helpful concepts
for analysis of large
applications.

Sustainability Currently there is no
indication, that Intel will stop
developing and supporting
Intel Cluster Studio in future.

Correctness Intel tools are generally well
tested. Issues and known
limitations are well
documented in the release
notes.

Portability VTune: Can also be used on
Intel-compatible processors
(but only user-mode
sampling available)

Inspector: No particular
constraints (available for
Windows and Linux
platforms).

ITAC: Trace collector runs
only on Intel processor
architectures

Availability Commercial products.

Resilience ITAC: A failsafe version of
the Trace Collector library is
available, allowing to trace
also failing MPI applications.

Table 36 Intel Debugging and Profiling Tools - Pros and Cons

3.6.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No No Yes No Yes

Table 37 Intel Debugging and Profiling Tools - Target systems/architecture

3.6.6 Conclusion

ITAC is a good tool for analysis of MPI applications running on clusters equipped with Intel-
processors. Additionally to collecting and viewing trace data, the user can also greatly benefit
from the MPI correctness checking features offered. Several HPC facilities and applications at
smaller scales (not yet petascale, but some of them at least near to petascale) are known,
where Trace Analyzer and Collector (and Intel tools in general) have been used and where
they have proven to be beneficial. Currently, the fact that trace files need to be collected to the
one host system for analysis is a limiting factor for scalability. Intel already has ideas to
address this problem, but at the current stage they are very careful about making any
disclosures. Also other ideas (like recognition for certain communication patterns) are under
discussion for future program versions.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 68

Intel VTune Amplifier is a mature tool for profiling applications on Intel (or Intel-compatible)
architectures. Because Intel VTune was originally designed for SMP machines, it is an
important challenge for Intel to further improve the tool’s support for MPI application
profiling. Recent developments have already addressed this issue and further improvements
are forthcoming [147]. As well as optimizing the MPI-level of an HPC application, intra-
process optimization is important for achieving best possible performance. Since this is also
true for future multi-petascale and exascale systems, VTune Amplifier will also be of
relevance to HPC applications at that scale.

Intel Inspector is a good tool for finding threading and memory errors on the intra-node level,
which might otherwise be hard to find. Static code analysis can reveal bugs, which potentially
can stay dormant for a long time until showing up the first time in a production run. Also
dynamic code analysis can reveal more errors than those, which actually occurred during the
test run (e.g. potential data races can be detected even if the test execution went well). As
Intel is continuously developing their tools further, there is good reason for assuming that
Intel Inspector and ITAC (as well as successors) will be relevant for future multi-petascale
and exascale systems. Today, Intel Inspector in conjunction with ITAC has already shown
potential for HPC applications on smaller scales [148].

3.7 NViDIA NSight

3.7.1 Brief overview

NVIDIA Nsight Eclipse Edition [149] is a full-featured IDE that provides an all-in-one
integrated environment to edit, build, debug and profile CUDA-C applications. As it is based
on Eclipse it supports standard IDE features, along with CUDA aware code completion and
refactoring, and project templates. It supports simultaneous debugging of both CPU and GPU
code and inspection of variables across CUDA threads. The profiler supports automated
analysis of system optimization opportunities, highlights potential performance problems, and
integrates the “nvprof” command-line profiler to enable visualization of profile data collected
from headless compute nodes. As a development environment it is primarily aimed at x86
architecture workstations with CUDA GPUs.

The primary intent of this tool is to support development of CUDA applications in the code
implementation, debugging and optimization phases, and it's meant to be used on developer's
workstation with one or more CUDA cards. It has no use case for running on multiple
compute nodes. However, “nvprof” can be used to collect profile information from compute
nodes, and its profile outputs can be visualized by Nsight.

The Visual Studio plugin edition is at version 3.0 and Eclipse edition is version 5.0 at the time
of writing. Both work with the CUDA 5.0 Toolkit, and Eclipse edition comes bundled in it by
default. This tool was previously known as NVIDIA Parallel Nsight and it was available only
on Windows platforms.

The profiling component can now collect events and metrics for all CUDA contexts in a
multi-context application. In previous releases, the profiling component and the command-
line profiler could collect events and metrics for only a single context per application. The
latest version also allows profiling of concurrent kernel executions, which helps to examine
issues regarding computation and communication overlapping, which is significant for
achieving higher performance.

Latest release/version: v5.0 (Eclipse edition)

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 69

3.7.2 Evidence of use within PRACE

In PRACE-1IP Deliverable 9.2.2 ‘Final Software Evaluation Report’ [150]. Nsight was used
on an isolated Windows 7 node on the GPU cluster at PSNC. An older version of the Visual
Studio plugin edition was used, and some limitations regarding kernel debugging were
pointed out. The tool was used to test CUDA and OpenCL sections of code in NAMD, a
parallel molecular dynamics code, which performs simulations of large biomolecular systems.

3.7.3 Evidence of use outside PRACE

The tool does not have features that aim at cluster deployment. It is relatively newly ported to
platforms other than Windows, so its deployment is relatively limited. It is a tool targeted at
workstations, which helps developers organize their projects, develop code, debug and profile
so its use on multi-petascale systems is only indirect. ‘ScalaLife’ is a European FP7 project
focused on software for life sciences, which collaborates with PRACE. Its Deliverable 6.1
mentions the use of Nsight in section 5.1.1 with regard to work carried out on extending
ERGO for GPUs. It is interesting to note that in that work it was reported that the code was
compiled using Visual Studio specifically for the reason that the Nsight profiler could be used
[151].

3.7.4 Pros and Cons

Metric Pros Cons

Scalability Can support multiple CUDA
contexts, and can support
profiling of overlapping
computation and
communication in the code.

Meant to work on single
workstation. Although it is
documented that parallel MPI
jobs can be profiled using
nvprof component, it is not
documented that profiling
information is aggregated
automatically (each profile is
contained in a separate file).

Performance It introduces no significant
profiling overhead.

-

Productivity Greatly helps the developer
with code completion, inline
documentation, advanced
code navigation, refactoring,
syntax colouring, code
folding, variable inspection
features. Also profiling and
debugging environment is
fully integrated.

A limitation inherited from
cuda-dbg is that it can debug
kernels running on a single
GPU system only if no X11
server is running.

Sustainability NVIDIA directly supports the
development of the tool.

-

Correctness - -

Portability Visual Studio plugin edition
runs on Windows, and

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 70

Eclipse edition runs on Linux
and Mac OS X.

Availability It is freely downloadable
from NVIDIA's Developer
Zone site. Eclipse edition is
included in Mac and Linux
distributions of the CUDA
Toolkit from version 5.

-

Resilience

Table 38 NVIDIA NSight - Pros and Cons

3.7.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No Yes No No Yes

Table 39 NVIDIA NSight - Target systems/architectures

3.7.6 Conclusion

NVIDIA’s NSight covers most of the debugging and profiling tasks needed for CUDA
development. It also gives great support to the developer in terms of code completion, inline
documentation and other features of an advanced IDE, which makes it a good environment
for development, debugging and profiling of CUDA code, and as such it can be used for
applications targeted at multi-petascale and exascale systems, although for cluster-class
debugging, NVIDIA points to Allinea's DDT or Rogue Wave's TotalView.

3.8 Other Tools

3.8.1 Brief overview

In this subsection we provide a very brief overview of other tools that we think are worth
considering during the exploitation phase of T7.2. As is the case for the tools above,
information about how PRACE partners have fared with the tools to date is quite sparse, but
where possible we have included as much information as we could gather from the sources of
input.

3.8.2 CrayPat and Apprentice2

The Cray Performance Analysis Tool, CrayPat [152] is the primary analysis tool on Cray
supercomputers. It allows developers to perform trace experiments with function granularity.
CrayPat supports programs written in Fortran, C and C++ with MPI, SHMEM, Pthreads,
OpenACC and OpenMP.

Cray Apprentice2 is a GUI-based post-execution performance analysis tool that takes CrayPat
performance data as input. Cray Apprentice2 provides call-graph-based profile information
and timeline-based trace visualizations.

In PRACE D6.2.1 “Report on available Performance Analysis and Benchmark Tools,
Representative Benchmark” [99] says about CrayPat: “It is versatile and is shown to be able

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 71

to analyze parallel software running on several thousands of CPUs. Because of this
scalability, and the highly controllable degree of invasiveness, CrayPat is well suited for
analysis of large parallel programs.”

3.8.3 IBM HPCT

The IBM High Performance Computing Toolkit (HPCT) [153] is a suite of performance-
related tools and libraries to assist in application tuning. This toolkit is an integrated
environment for performance analysis of sequential and parallel applications using the MPI
and OpenMP paradigms.

Currently, it is highly unlikely that HPCT will function properly when profiling a full
petascale program. HPCT contains e.g. the tool hpmcount, which can provide hardware
performance counters information and derived hardware metrics. This tool sends as default its
output to standard output, but it is with the “-o” option possible to create a separate file for
each process. However, this simple approach will most likely create a very high overhead,
when profiling a petascale program running on e.g. 100,000 processes.

The HPCT has been mentioned in the PRACE D6.3.1 “Report on available Performance
Analysis and Benchmark Tools, Representative Benchmark” [99]. However, it is unclear
whether IBM's High Performance Computing Toolkit scales up to the number of processes
that a full petascale simulation would use. There does not appear to be any on-going work on
adapting IBM's High Performance Computing Toolkit to exascale systems.

Latest version/release:

3.8.4 Paraver

Paraver [154] is a very configurable visualization and analysis tool, which was developed to
have a qualitative global perception of an application's behaviour by visual inspection.
Expressive power, flexibility and the capability of efficiently handling large traces are key
features addressed in the design of Paraver. Its power is based on two main pillars. Firstly, its
trace format has no semantics, so extending the tool to support new performance data or new
programming models requires no changes to the visualizer. Secondly, the metrics are not
hardwired within the tool but are instead instrumented on the fly. To compute these, the tool
offers a large set of time functions, a filter module, and a mechanism to combine two time
lines. This approach allows for the displaying of a huge number of metrics. Paraver is aimed
at any kind of cluster. The tool can analyse traces from very different kind of systems,
including GPUs or Xeon Phi.

Extrae [155] is the package used to generate trace files, which are often subsequently analysed
by Paraver. Extrae is a tool that uses different interposition mechanisms to inject probes into
the target application so as to gather information regarding the application performance. The
Extrae instrumentation package can instrument a wide range of parallel programming models,
including MPI, OpenMP, CUDA, pthreads or OmpSs.

Paraver shows potential for getting real performance data from multi-petascale systems, as it
has already been proved in large Tier-0 systems. Indeed, similar performance should be
obtained in future exascale systems. These tools have been demonstrated to be very useful for
performance analysis studies within the European exascale DEEP project, giving much more
details about the applications behaviour than most performance tools. Within DEEP, Extrae
has been ported to the Intel MIC, and both Extrae and Paraver have been used to understand
the performance behaviour of the project applications [156].

Latest version/release: Paraver v4.4.0

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 72

3.8.5 IPM

The Integrated Performance Monitoring (IPM) tool [157] is a lightweight profiler. It is easy to
use and it is not intrusive as some of its features are a small memory footprint and low CPU-
usage. The low overall cost of using IPM can be illustrated by the fact that NERSC has
collected more than 310K batch job performance profiles over a 6 years period by the use of
IPM on their machines. IPM is open source, portable and it has been installed on several
PRACE systems. Currently IPM is undergoing a redesign in the name of IPM2. The new
version is enabled for OpenMP and file I/O. Support for MPI-IO, CUDA GPU and network
interface counts for Infiniband hardware is under development.

IPM was used in PRACE PP on the application ECHAM5 as part of the investigation for the
initial PRACE Application Benchmark Suite [99]. The profiling of ECHAM5 has the peculiar
finding of showing faster computation when IPM is used compared to a computation where it
is not used at low core count (2916 cores and 3600 cores). IPM has been installed on at least
five sites in PRACE [99].

The ease of use and its portability make IPM an attractive starting point for any type of
profiling. With the new features planned for IPM2, the tool shows potential for being
applicable to applications on future multi-petascale and exascale systems [158].

Latest release/version: v0.983

3.8.6 OpenSpeedShop

OpenSpeedShop [159] is an open source multiplatform Linux performance tool targeted at
performance analysis of applications running on both a single node and on large-scale IA64,
IA32, EM64T, AMD64, IBM Power PC, Cray, and IBM Blue Gene platforms.
OpenSpeedShop operates on existing application binaries, so there is no need to recompile the
application being analysed. OpenSpeedShop uses both statistical sampling and traditional
tracing techniques to record performance information. OpenSpeedShop is targeted at
performance analysis of applications running on both a single node and on large-scale
platforms [160].

According to information published by The Krell Institute, the “current version of
OpenSpeedShop does not scale to the necessary level needed for BG/Q machines”. The Krell
Institute is working on addressing the scalability of OpenSpeedShop [161].

OpenSpeedShop has been installed on supercomputers at a number of laboratories in USA,
such ANL, LLNL, and Sandia NL. No evidence has been found for the use of
OpenSpeedShop within PRACE, except in tutorials.

Latest release/version: v2.02

3.8.7 PAPI

PAPI provides the tool designer and application engineer with a consistent interface and
methodology for use of the performance counter hardware found in most major
microprocessors. PAPI enables software engineers to see, in near real time, the relation
between software performance and processor events [162].

PAPI runs on most modern processors and operating systems of interest to HPC, including
IBM POWER4-7, Cray XT{3-6}, XE{5,6}, IBM Blue Gene, x86_64 (Intel, AMD), ARM,
MIPS, UltraSparc I, II & III, Intel Xeon Phi. PAPI is being used on all major supercomputers
and by many performance tools.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 73

PAPI was used by the authors of the PRACE-1IP report “CP2K – Scalable Atomistic
Simulation for the PRACE Community”, where they tested the CP2K code on the PRACE
CURIE supercomputer [163].

PAPI is a cross-platform interface to the hardware performance counters available on modern
microprocessors and it does not contain the mechanisms for collecting this information across
the many thousands of processes that a petascale simulation may run on. This task is left for
profiling tools that make use of PAPI. PAPI is the underlying API for many open-source
performance tools, such as TAU, Scalasca, and Vampir. It is has therefore been widely used
on multi-petascale systems to date.

Latest release/version: v5.1.0

3.8.8 Temanejo/Ayudame

Temanejo is an extensible, scalable debugger for the StarSs/OmpSs programming model,
whereas Ayudame is a library, which communicates between the StarSs/OmpSs runtime and
Temanejo [164]. The tool is aimed at any kind of cluster. It is intended for exascaling
applications, thus for large-scale systems. As of today, all the work related to
Ayudame/Temanejo has only been implemented in the TEXT project and Mont-Blanc project
[165].

Latest release/version: v5.1.0

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 74

4 Scalable Libraries and Algorithms

In this section, we characterize the following scalable libraries and algorithms (hereafter
referred to as tools) that are of interest to T7.2 in particular, and the European HPC
community more widely, as we move towards the deep petascale and exascale eras:

• Direct Solvers
• Iterative Solvers
• FFT Libraries
• PETSc
• Trilinos
• Zoltan
• ParMetis
• PT-Scotch
• NetGen

For each tool, we provide an overview and discuss the tool’s present state, how it has been
employed in PRACE to date, how it has been employed more widely, and our views on the
suitability of the tool for enabling PRACE application codes during the exploitation phase of
T7.2.

The list above is roughly divided into three areas of focus, namely scalable numerical
algorithms/methods (Direct Solvers, Iterative Solvers and FFT Libraries), higher-level
libraries and other, mesh/graph partitioning, tools NetGen). The list by no means represents
an exhaustive survey of scalable libraries and algorithms, but rather tries to seek a balance
between assessing what has been investigated in PRACE to date and what is currently being
investigated elsewhere (specifically within exascale projects) with the same set of tools. In
carrying out our assessments we have drawn valuable information from each of the European
exascale projects, and in particular the CRESTA project [3], which has a significant co-design
focus.

As a consequence of the move towards large multi-petascale heterogeneous systems, there is
an increasing demand for new and improved scalable, efficient, and reliable numerical
algorithms and libraries that confront existing and upcoming complexities associated with
such systems, including complex memory hierarchies, the overhead of data movement and
fault tolerance.

One such representative library that we would like to mention here, due to the fact that it
confronts the challenges posed by heterogeneous systems from several different angles, is the
dense linear algebra MAGMA library [166], the development of which is being led by the
Innovative Computing Lab (ICL) at the University of Tennessee. During our survey we have
found that several initiatives in both the development and exploitation of MAGMA have
already been taken within PRACE, particularly most recently within PRACE 2IP (WP8 and
WP12). The MAGMA library not only targets new heterogeneous architectures including
GPUs (and most recently Intel’s Xeon Phi coprocessor), but also employs innovative and
forward looking methods for reducing the barriers that are faced when trying to scale both
within and across nodes.

An interesting effort within MAGMA, which we believe PRACE enablement projects should
take inspiration from is the substitution of the widely used fork–join model with a higher-
level directed acyclic graph (DAG) model, which goes some way to reducing synchronization
points, a well known barrier to the scalability of many algorithms. Indeed, as we have found
from our survey, synchronization avoiding algorithms are being increasingly investigated

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 75

both within and outside PRACE and we are happy to report on several other initiatives that
have recently been taken within PRACE in this area.

A closely related area of research is being actively pursued in the area of communication
avoiding (CA) algorithms, where global communication, in particular, is known to be a severe
barrier when trying to scale across large core counts (see reports on FFT libraries in section
4.3). We report here on how communication avoiding algorithms have been investigated
within WP12 PRACE-2IP using the PETSc framework [167], which is increasingly being
employed as a higher-level library for solving PDEs. Indeed, PETSc is representative of the
type of high-level libraries that are being increasingly leveraged within PRACE applications
due to the ease of use in harnessing underlying message-passing-based infrastructure.

Within this section we also report on graph partitioning and mesh generation libraries where
the former are mostly used for domain decomposition, used by iterative or hybrid solvers, as
well as for the computation of fill-reducing or block-preserving orderings required by direct
or hybrid solvers.

Finally, there are also many issues regarding the reduced reliability of hardware expected to
have an important impact on libraries and algorithms on the road to exascale. This is certainly
the case for fault tolerance and resilience. However, these issues are still very new to the
PRACE community and in general we have not found many examples of initiatives within
PRACE in this area to date, an issue that we feel needs to be rectified preparing quickly if we
are to prepare applications for future multi-petascale and exascale machines.

4.1 Direct Solvers

4.1.1 Brief overview

In this report we provide a brief overview of the state of the art in direct linear algebra
methods, where we cover direct methods for solving both dense and sparse problems. We feel
that applying a simple metrics table here, as was done in other reports, is a challenging and
somewhat futile exercise as in most cases it is very hard to sum up metrics such as scalability
when reporting on such a broad class of algorithms. Instead, where possible, we will provide
details on metrics when discussing the individual libraries and algorithms that we report on
throughout. We focus first on dense linear algebra solvers and then on sparse solvers.

Dense solvers:

As well as libraries targeted at multi-/many-core platforms, there have been other recent
initiatives at improving the performance of distributed ScaLAPACK-like libraries, which
include the ELPA library [168]. ELPA is a new efficient distributed parallel direct eigenvalue
solver for symmetric matrices. It contains both an improved one-step ScaLAPACK type
solver (ELPA1) and the two-step solver ELPA2. While ELPA uses the same matrix layout as
ScaLAPACK [169] the actual parallel linear algebra routines are completely rewritten.
ELPA1 implements the same linear algebra as traditional solutions (reduction to tridiagonal
form by Householder transforms, divide & conquer solution, eigenvector backtransform). In
ELPA2, the reduction to tri-diagonal form and the corresponding back-transformation are
replaced by a two-step version, giving an additional significant performance improvement.

ELPA is a Fortran-based MPI-only implementation. Once compiled, ELPA library routines
can be linked to from C, C++, Fortran. It will thus work both in a single-node, shared memory
environment, as well as large clusters of separate nodes. ELPA has proven to be a scalable
and well performing solver for all matrix sizes tested between 2,500 and 100,000 and tests
have demonstrated good scaling on over 290,000 processor cores on JUGENE [170].
Generally ELPA2 is found to be superior to ELPA1 except for small matrix sizes [171].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 76

According to the ELPA website, as of February 2013, a CUDA version of ELPA is in
preparation in collaboration with NVIDIA [168].

The MAGMA library [166] is a dense linear algebra library that targets GPUs and more
recently Intel’s Xeon Phi architecture. It can be called from Fortran and C/C++ code. The
libraries are a work in progress and not all features are available for all target architectures.
The most mature version of the library is that targeted at NVIDIA GPUs (MAGMA 1.3),
which is developed using CUDA. For this version, over 80 hybrid algorithms have been
developed (a total of 320 routines), including one-sided factorizations, linear system solvers,
as well as two-sided factorizations and eigenproblem solvers. This version of the library also
features a subset of BLAS and auxiliary routines in CUDA. MAGMA uses a hybridization
methodology where algorithms of interest are split into tasks of varying granularity and their
execution scheduled over the available hardware components. Scheduling can be static or
dynamic. In either case, small non-parallelizable tasks are scheduled on the CPU, and larger
more parallelizable ones, often Level 3 BLAS, are scheduled on the GPU. For eigenproblem
solvers in MAGMA, current results demonstrate that MAGMA with 1 GPU can be 12x faster
than Intel's MKL on state-of-art multicore systems [172]. A scalable multi-GPU version of
MAGMA is currently being developed using the StarPU runtime system and is showing very
promising results [173]. More recently, MAGMA MIC [174] has been developed, which is
targeted at shared memory systems featuring Intel Xeon Phi coprocessors and includes many
one-sided factorizations. For a full set of performance results the reader is referred to the
following report [174]. MAGMA MIC v1.0 (Beta) was released in March 2013, which is an
update on v0.3 and includes several new functionalities including added multiple MIC
factorization routines.

As is to be expected, both Intel and NVIDIA have implemented optimised versions of
mathematical software, particularly the BLAS and LAPACK libraries within their own
commercial libraries for their respective many-core offerings. In the case of Intel, all routines
of interest are available as their libraries are based on the well-known MKL. There are three
ways in which the MKL libraries may be used: ‘Host’ - running purely on the host, without
reference to the Xeon Phi coprocessor, ‘Auto Offload’ - running on the host and automatically
offloading data for execution on the Xeon Phi and ‘Native’ - running purely on the Xeon Phi.
In the case of NVIDIA, there are NVIDIA-developed BLAS libraries such as CUBLAS,
which have demonstrated impressive performance on the new K20 architecture as well third-
party commercial libraries such as CULA [175] and Array Fire [176].

Sparse solvers:

There are in fact not many general purpose distributed memory sparse solvers. SuperLU [177]
is one of the most widely used direct sparse solvers and performs a LU decomposition for
large, sparse, symmetric/non-symmetric systems of linear equations on both shared memory
architectures as well as distributed memory architectures. The library is written in C and is
callable from either C or Fortran. It is freely available from Lawrence Berkeley National
Laboratory. While SuperLU_MT is targeted at shared memory parallel machines,
SuperLU_DIST is designed for large-scale distributed memory systems [178].
SuperLU_MT has three major steps including sparsity ordering, factorization that arranges
partial pivoting, symbolic factorization and numerical factorization which are performed in an
alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for
factorization, SuperLU_MT uses BLAS 2.5 with multiple matrix vector multiplications.
SuperLU_DIST uses static pivoting instead of partial pivoting for numerical stability due to
numerical pivoting being complicated on distributed memory architecture (this method is in
contrast to that found in MUMPS [179]).

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 77

MUMPS [179] is a freely available package with Fortran and C interfaces for solving systems
of linear equations of the form Ax = b, where A is a square sparse matrix that can be either
unsymmetric, symmetric positive definite, or general symmetric on distributed memory
computers. MUMPS implements a direct method based on a multifrontal approach, which
performs a LU factorization in the unsymmetric case and a LDLT factorisation in the
symmetric case. MUMPS exploits both parallelism arising from sparsity in the matrix A and
from dense factorizations kernels. The main features of the MUMPS package include the
solution of the transposed system, input of the matrix in assembled format (distributed or
centralized) or elemental format, error analysis, iterative refinement, scaling of the original
matrix, out-of-core capability, parallel analysis, detection of null pivots, basic estimate of rank
deficiency and null space basis for symmetric matrices, and computation of a Schur
complement matrix. MUMPS offers several built-in ordering algorithms, a tight interface to
some external ordering packages such as METIS [180], and the possibility for the user to
input a given ordering. Finally, MUMPS is available in various arithmetics (real or complex,
single or double precision). A parallel analysis and an out-of-core functionality are also
available. The parallel version of MUMPS requires MPI, BLAS, BLACS, and ScaLAPACK,
but it has its limitations: MUMPS itself is parallelized only using the MPI model. Hybrid MPI
with threading parallelization is available via shared memory BLAS implementations, but
MUMPS does not currently include any explicit hybrid parallelization targeted at
heterogeneous systems.

Latest release/version: LAPACK 3.4.2, ScaLAPACK 2.0.2, PLASMA 2.4.6, and MAGMA
1.3, MUMPS v4.10.0, SuperLU v4.3, ELPA v2013.02.BETA

4.1.2 Evidence of use within PRACE

In the PRACE-1IP whitepaper, ‘Numerical Library Eigensolver Performance on PRACE
Tier-0 Systems’ [171], the parallel performance of several established as well as newly
developed parallel dense symmetric eigensolver numerical library routines on PRACE Tier-0
systems are analysed. The performance results from the new ELPA software package are
particularly impressive. Not only are the routines significantly faster than their ScaLAPACK
counterparts, but also the scalability is better throughout. A two-fold to three-fold advantage
in performance rendered by ELPA over ScaLAPACK was measured on both JUGENE and
CURIE for a range of problem sizes, which would likely impact the performance of many
PRACE applications significantly. Moreover, as the authors of the whitepaper point out,
ELPA is also designed to be a ‘drop-in’ substitute for ScaLAPACK e.g., it uses the same
block-cyclic data distribution and therefore applying it to application codes with existing
ScaLAPACK interfaces should be straightforward. The authors also point out that at this stage
it is not clear which of the two ELPA eigensolvers performs best, though a pattern evident in
these benchmarks is that the one-stage solution performs best on smaller datasets whilst the
two-stage approach scales better and is more efficient on larger test cases

In work produced recently in PRACE-2IP and reported on in D12.2 ‘Exploration of Scalable
Numerical Algorithms’ [181] and written in collaboration with the Innovative Computing Lab
at the University of Tennessee ‘A Hybrid Hermitian General Eigenvalue Solver’ reports on
the development of single node hybrid general eigenvalue solvers where development and
testing was carried out on the Castor cluster at CSCS (Each node is a dual 6-core Intel Xeon
5650 with two NVIDIA M2090s). Results of the hybrid algorithms compared with a shared
memory library (MKL) and a distributed memory library (ELPA) show that for the two
algorithms investigated (one- and two-sided algorithms), the MAGMA implementations
outperform both the MKL and ELPA libraries on a single node by factor of 2x-3x.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 78

In WP12 PRACE-2IP there have been several projects to improve direct solvers, including
SuperLU, which are reported on in deliverable D12.2 [181] in PRACE-2IP. Work on
developing a hybrid SuperLU algorithm utilizing the MPI/OpenMP hybrid programming
approach as well as investigations into porting SuperLU to GPUs are reported in PRACE-2IP
deliverable 12.2. It is expected that the hybrid algorithm utilizing the MPI+X programming
model within SuperLU_MCDT (Many Core Distributed) by ITU-UHeM [182] to solve large
sparse linear systems will reduce the communication overhead associated with MPI so that
better scalability can be achieved.

4.1.3 Evidence of use outside PRACE

The MAGMA libraries are increasingly being used within petascale codes both within and
outside PRACE. A very large selection performance tests for various subroutines are
available on the MAGMA websites [166].

Interesting work has recently been carried out at Lawrence Berkley Lab into developing an
alternative hybrid solver to SuperLU (PDSLin) [183]. The developers of PDSLin point out
that for small system sizes, a direct solver such as SuperLU can be employed to obtain an
accurate solution as long as the condition number is bounded by the reciprocal of the floating-
point machine precision. However, SuperLU scales effectively only to hundreds of processors
or less. In PDSLin, the SuperLU_DIST 2.4 is used as a direct solver for interior subdomains
and the Schur complement systems are solved using a preconditioned Krylov method in
PETSc. It was shown in [183] that PDSLin significantly outperforms SuperLU_DIST on high
core counts (2048 cores).

4.1.4 Conclusion

In terms of dense solvers, we feel that ELPA shows real promise and should be further
investigated as an alternative to ScaLAPACK within PRACE applications. We also believe
that MAGMA is one of the most promising libraries containing dense direct solvers with
impressive performance and indications of long-term sustainability. The library targets all
accelerators/coprocessor architectures and is also fully portable in its OpenCL form.
Distributed-memory versions of the library are also currently in progress and should be
investigated as alternatives to ScaLAPACK, possibly during the exploitation phase of T7.2

In terms of sparse solvers, MUMPS appears to be a very robust and efficient direct solver for
medium-sized distributed or centralized sparse linear systems arising for instance from
discretization of PDE problems. Regarding large-scale problems, MUMPS will not be usable
as a standalone solver of the original linear system. However, MUMPS will still be a very
important tool for the robust and efficient solution of auxiliary medium-sized distributed and
centralized sparse linear systems arising in higher level methods like FETI domain
decomposition methods, and will in turn extend their scalability. MUMPS has many unique
features such as the detection of null pivots, rank deficiency, etc. that can be very helpful in
higher level scalable methods. While both SuperLU_DIST and SuperLU_MCDT show
promise as dense sparse solvers, like all the other libraries mentioned here, improvements,
such as synchronization reduction, data movement minimization and fault tolerance need to
be included in the library in order for SuperLU_MCDT to enable applications on future multi-
petascale and exascale systems.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 79

4.2 Iterative solvers

4.2.1 Brief overview

In this report we provide a brief overview of the state of the art in iterative methods. For the
same reasons as were applied to direct solvers, we will only provide details on metrics when
discussing the individual algorithms that we report on throughout.

Iterative algorithms have become the de-facto approach for the solution of sparse linear
systems of equations on large-scale parallel systems due to their amenability to
parallelization. All iterative algorithms used for the solution of linear systems require a
number of global synchronization operations (e.g., MPI_ALLREDUCE) for computing global
scalars as well as a number of local synchronization operations due to the point-to-point
communications incurred by the sparse matrix-vector operations. These local and global
synchronization operations create barriers beyond which computation cannot proceed until all
participating processors have reached that point.

The most prominent iterative method for solving sparse systems of linear equations is the
Krylov subspace method [184]. There are many different variants of the method (CG, Bi-CG,
GMRES, etc), so that almost any system of linear equations can be approximately solved.
However, in cases where the condition number of the matrix involved in the system of
equations gets too large or the matrix becomes nearly ill conditioned, Krylov methods tend to
be very slow in convergence. This lack of robustness makes it less likely that Krylov methods
can be used in isolation within real applications. The common solution to this problem is the
use of preconditioning. Unfortunately, finding a good preconditioner to solve a given sparse
linear system is often viewed as a combination of art and science. There are many varieties of
preconditioners to choose from including ILU, Jacobi, SOR, and SSOR precondtioners [184].

Libraries that provide robust collections of iterative methods as well as associated
infrastructure (e.g., preconditioners) are becoming increasingly popular within and outside
PRACE. PETSc [167], Trilinos [65] and Hypre [185] are particularly representative of such
offerings. PETSc and Trilinos are high-level libraries for solving PDEs and multi-physics
problems that consists of many different variants of Krylov subspace-based solvers. Due to
them both being particularly high-level, we provide a separate report on each in section 4.4
[185] and section 4.5 respectively.

Hypre [185] is a library for solving large, sparse linear systems of equations on massively
parallel computers. The main features of this library include scalable preconditioners (several
families of preconditioned algorithms focused on the scalable solution of very large sparse
linear systems) and the implementation of a suite of common iterative methods (Krylov-
based). With exascale in mind, the developers of Hypre have begun to focus on a hybrid
(MPI/OpenMP) programming model for BoomerAMG which is an Algebraic MultiGrid
(AMG) method [186] within Hypre that has garnered a lot interest and has been investigated
both within PRACE and within European exascale projects (CRESTA) recently [187].

Other high level libraries that are explicitly mentioned in the ESSI ‘Working Group Report on
Numerical Libraries and Algorithms’ [188] that we would like to mention briefly here are:

 DUNE, the Distributed and Unified Numerics Environment [189] is a modular toolbox
for solving partial differential equations (PDEs) with grid-based methods. It supports
the easy implementation of methods like Finite Elements (FE), Finite Volumes (FV),
and also Finite Differences (FD).

 FEAST, Finite Element Analysis and Solution Tools with significant exploitation of
CPU/GPU computing [190].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 80

 deal.II, a C++ program library targeted at the solution of PDE’s using adaptive finite
elements. Hybrid parallelization by MPI and Intel’s Threading Build Blocks (TBB).
For its creation, the principal authors of Deal.II received the 2007 J.H. Wilkinson
Prize for Numerical Software [64].

 MLD2P4/PSBLAS. These two tightly related projects provide parallel sparse matrix
tools, Krylov solvers for linear systems and algebraic multilevel preconditiones in
Fortran 95/2003 [191].

As well as solving systems of linear equations it should also be pointed out that iterative
solvers are used to solve large sparse eigenproblems where only a small number of
eigensolutions are required with respect to the matrix size. There are several MPI-based
iterative eigensolvers, including PARPACK [192] and more recently, SLEPc [193]. SLEPc is
a particularly interesting example as it is built on top of PETSc and leverages much of its
infrastructure. Indications are that in most cases SLEPc outperforms PARPACK and has a
broader selection of algorithms to choose from due to its underlying structure being based on
PETSc [194].

4.2.2 Evidence of use within PRACE

A significant amount of “forward-looking” investigations into iterative algorithms was carried
out recently in WP12 PRACE-2IP within the task ‘Exploration of Scalable Numerical
Algorithms’. In the project, ‘Asynchronous Algorithms for Large Sparse Linear Systems’,
reported on within PRACE-2IP Deliverable D12.2 [181], investigations were made into
asynchronous implementations of the Jacobi method, where one traditional synchronous and
two asynchronous variants of the method were implemented using three programming
models: MPI, SHMEM and OpenMP, and where the performance of these implementations
was investigated on HECToR. Results showed that SHMEM can provide a more efficient
implementation of asynchronous message-passing than MPI, and that for problems that
require high core counts, asynchronous algorithms can outperform their synchronous
counterparts by 10%. The authors of the report point out that the OpenMP implementation
was found to give good performance for asynchronous algorithms and was also very easy to
program compared to MPI and SHMEM. The authors also suggest that OpenMP might be
applicable in a hybrid model with MPI, particularly since they found that the asynchronous
implementation of the Jacobi method in OpenMP to be 33% faster than the synchronous
equivalent. The authors also point out that asynchronous algorithms are expected to be more
tolerant to faults, which could be a major advantage when designing applications on the road
to exascale.

In a separate project reported on in PRACE-2IP Deliverable D12.2 [181] ‘Implementation
and Performance Evaluation of the CA-CG Algorithm on Massively Parallel HPC Clusters’
investigations were carried out into an emerging class of communication-avoiding Krylov
subspace (Conjugate Gradient [CG]) methods which seek to reduce the amount of global
synchronization points within iterative methods. The investigations were carried out by
evaluating the feasibility of implementing the ‘CA-CG’ algorithm and testing its overall
performance on a set of benchmark platforms. The framework used for the implementation of
the algorithm was the one provided by PETSc (reported on section 4.4 PETSc) and
performance comparisons were made between the standard CG algorithm and the
communication-avoiding version of the algorithm within the PETSc library. The two
algorithms were tested on a selected set of sparse positive definite matrices taken from the
UFL [195] database, where calculations were carried out on the PLX and FERMI clusters at
CINECA. The authors report that in many cases, non-negligible increases in performance
were found.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 81

Finally, in the PRACE-1IP whitepaper, ‘Parallel Solvers for Incompressible Navier-Stokes
Equations and Scalable Tools for FEM Applications’ [196] the Hypre library was tested on
variants of 1D, 2D and 3D domain partitioning for the 3D test problems of computational
fluid dynamics (CFD) where the Algebraic MultiGrid (AMG) method BoomerAMG within
Hyper was employed. For more details on the performance obtained, including scalability, the
reader is referred to the whitepaper.

4.2.3 Evidence of use outside PRACE

Research into iterative methods is a huge area of activity and we do not in any way attempt to
provide a global picture of all of the efforts being pursued within the confines of this report.
Suffice to say that one increasing area of focus is on communication avoiding iterative
algorithms as has been evidenced by the recent exploratory work carried out within WP12
PRACE-2IP. Such algorithms are the focus of recent investigations at Intel’s ExaScience Lab
[81] where very recently [197], a pipelined version of the GMRES algorithm was derived in
which the communication cost can be hidden by using non-blocking all-reduce operations. At
the time of publication (April 2012) it was noted by the authors that no complete
implementation of the MPI 3.0 standard was available (the standard had not been published at
that stage), so technical hurdles meant that the pipelined version of GMRES was only
investigated by using an analytical performance model which predicted that speedups of 3.5X
for the pipelined algorithm compared to the standard GMRES, for solving a problem with
N=20003 unknowns on 200,000 nodes could be achieved. A detailed investigation of the
impact of global communication latency on Krylov methods at extreme scales has also been
reported by the same group [198].

We do not attempt to report here in any great detail on preconditioners (which are closely
associated with iterative methods), but as pointed out in D4.1.1 of the CRESTA project [187]
the new theory of hierarchical matrices (H-Matrix method [199]) promises to be one of the
most interesting ways of finding effective preconditioners for iterative methods. There are
several libraries for solving these systems of linear equations using ‘H-Matrix’ methods on
shared memory systems (according to CRESTA developers, H-Libpro [200] is the one of the
best implementations). Currently, work is underway to develop an H-matrix library that uses
MPI. The CRESTA project, also wants to try to apply this new theory to solve systems of
linear equations.

Work at the University of Utah demonstrated that the use of the direct solver library, Hypre,
combined with the Uintah Software framework [201] to solve incompressible fluid flow
problems resulted in “better than expected” weak scaling [202]. The tests were run on the
Kraken Cray XT5 system made up of 112896 2.6 GHz AMD Opteron cores, and the Titan
Cray XK6 system, with 299,008 cpu cores and 18,600 GPUs, as well as Titan’s predecessor
Jaguar (Cray XT5). On the Jaguar system, a Weak Scaling Taylor Green Vortex showed the
time per iteration increased from 1s with 192 cores to 5s with 196k cores. The Titan system
for the same test (CPU cores only) showed the time per iteration increased from 1s with 192
cores, to roughly 1.5s with 131k cores. In both cases, weak scaling was seen to be quite
successful, especially when run on Titan. On the Kraken, a linear solver and red-black Gauss
Seidel were run with a variety of hypre options for a Helium plume. These results showed that
with the correct Hypre options, scalability on the order of log(p) was achievable where p is
the number of cores.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 82

4.2.4 Conclusion

Iterative methods, particularly Krylov subspace-based methods are fundamental algorithms to
many PRACE applications and have therefore received a considerable amount of attention
within PRACE projects to date. Very interesting exploratory work into communication
avoiding Conjugate Gradient algorithms has recently been carried out in WP12 PRACE-2IP
and is an active focus of research in many exascale projects in both Europe and the US. With
new implementations of the MPI 3.0 standard available (and on the horizon), which now offer
non-blocking communications, there is good reason for PRACE partners to investigate these
forward looking algorithms in more detail during the enablement of applications on PRACE
systems in T7.2.

4.3 FFT Libraries

4.3.1 Brief overview

The FFT method is fundamental to many PRACE applications. In practice most codes that
perform FFTs perform transformations on large multi-dimensional datasets. In this case it is
convenient to implement the overall transform as a series of data redistributions between
different data decompositions with each of the active dimensions in turn being local to a node.
Between each of the redistributions the local active dimension is transformed using a non-
distributed FFT library. The convenience of this approach is that it allows distributed FFT
implementations to be built out of optimized single node FFT libraries and highly optimized
MPI collectives. However, in common with all implementations, the overall performance is
largely limited by data movements. Many highly optimized node-local FFT libraries exist (see
below). However, for distributed memory applications the performance of the inter-node data
communications is far more significant for overall performance than the performance of the
underlying node-local FFT library, so the choice of which underlying FFT library is largely
irrelevant and the performance of the MPI collectives dominate the performance.

Although multi-node FFT libraries do exist (and have been investigated within PRACE), most
applications do not employ them. Instead, each application implements multi-node FFTs out
of a combination of node-local FFT libraries and MPI collectives. Most of the multi-node
FFT libraries only support a limited range of input and output data decompositions that
typically don’t correspond to the data decompositions required by the real application (an
exception to this rule is the DaFT library [203] within DL_POLY which has been investigated
within PRACE-1P). Such implementations also typically have no performance advantage
over what is generally obtained by application specific implementations built out of the same
underlying libraries. Most applications use the collective call MPI_ALLTOALL due to the fact
that this global communication pattern is known by all participating processors, allowing
greater scope for optimisation. The MPI_ALLTOALLV collective allows greater flexibility
in data decomposition and may be used by applications where load imbalance considerations
are more important than the absolute performance of the FFT.

There are several popular FFT libraries that we report on briefly here:

FFTW [204] is a freely available library callable from C and Fortran codes for computing the
discrete Fourier transform (DFT) in arbitrary dimension, of arbitrary input size, and of both
real and complex data. It works best on arrays of sizes with small prime factors, with powers
of 2 being optimal and large primes being worst case. FFTW, being free software, is the FFT
library of choice for most applications, as its performance is claimed to be typically superior
to that of other publicly available FFT software, and is even competitive with vendor-tuned
codes (to justify its name "Fastest Fourier Transform in the West") but in contrast to the latter

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 83

FFTW is portable. FFTW makes use of several variants of the Cooley–Tukey FFT algorithm,
Rader's, Bluestein's and prime-factor FFT algorithms. It supports SSE/SSE2/Altivec, since
version 3.0. and since version 3.3.1 supports AVX and ARM Neon. In the investigated
version (3.3.1), which is the first version to support parallel MPI 3D FFTs, only slab
decompositions were supported.

FFTW is portable to any platform with a C compiler. It is not tuned to a fixed machine;
instead, it uses a planner to adapt its algorithms to the hardware in order to maximize
performance.

The recent upgrades of FFTW include:

 Adapting the number of cores involved in the DFT execution to the size of the index
involved in the domain decomposition (especially useful in 2D DFT problems);

 Domain decomposition algorithm 2DDD instead of Slab (scaling N3 vs. N with the
system size) for 3D arrays, thus providing a nearly ideal scalability at least up to
several thousands of cores (also for relatively small data arrays);

FFTW has been shown to perform very well on 1024 cores within PRACE [205].

FFTE [206] is a freely available FORTRAN (77 and 90) subroutine library (callable from C
and Fortran) for computing the FFT in one, two and three dimensions. It includes complex,
mixed-radix and parallel transforms. FFTE is open source, highly portable, but comes with
little documentation. The developers claim it is typically faster than other publically available
FFT implementations, and is even competitive with vendor-tuned libraries. The assessed
version (v5.0) supports both slab and pencil decompositions. FFTE also supports Intel’s
SSE2/SSE3 instructions.

FFTE is targeted at shared and distributed memory parallel computers. (OpenMP, MPI and
OpenMP/MPI) but efforts on performance improvement are highly desirable due to the fact
that, in general, FFT libraries do not scale well beyond a few hundred cores. Also, the index
involved in the parallel domain decomposition may impose a limit on the maximum number
of usable cores. FFTE does not scale as well as FFTW but outperforms FFTW in absolute
computing time [205].

There are also several GPU-based FFT libraries worth mentioning, including NVIDIA’s
cuFTT. The NVIDIA CUDA Fast Fourier Transform library (cuFFT) provides a simple
interface for computing FFTs up to 10x faster than the MKL as reported on the NVIDIA
developer website [207] DiGPUFFT [208] adds cuFFT support inside of P3DFFT, for GPU-
accelerated 3D FFT computations. It has only been tested with P3DFFT 2.4 and CUFFT from
CUDA Toolkit 3.2 and is reported on within the PRACE-1IP whitepaper, ‘An Analysis of
FFT Performance in PRACE Application Codes’ [205] ,which indicates that except for large
sized dimensions the benefits of using a GPU-based distributed FFT implementation are
currently negligible.

Latest release/version: FFTE: 5.0, FFTW: 3.3.3, cuFFT: available as part of the CUDA 5.0
Toolkit.

4.3.2 Evidence of use within PRACE

The PRACE-1IP whitepaper, “An Analysis of FFT Performance in PRACE Application
Codes” [205] reports on the assessment of the suitability, performance and scalability of
various implementations of FFT for large-scale PRACE applications including Quantum
ESPRESSO and DL_POLY. The FFTs investigated are both in-code implementations

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 84

(typically distributed) as well as various third-party numerical libraries, where in both cases
underlying algorithms were implemented in both serial and parallel form. The
implementations of FFTs investigated range from pure MPI, OpenMP versions for multicore,
hybrid (MPI/OpenMP) as well as GPU-based implementations. The overall conclusion is that
the scalability of parallel 3D FFTs remains inherently limited, owing to the all-to-all
communications involved. Likewise the variety of data decompositions supported by the
available libraries is also limited.

The PRACE-1IP whitepaper, “Enabling FFTE Library and FFTW3 Threading in Quantum
ESPRESSO” [209] reports on the work that was carried out on enabling support for the FFTE
library for the main FFT operation in Quantum ESPRESSO, as well as enabling threading
support for the FFTW3 library already supported in Quantum ESPRESSO. The work on
enabling these libraries was motivated by the excellent performance results of the FFTE
library described in [205] and by the expectation that the hybrid approach with FFTW3 in
Quantum ESPRESSO would achieve better performance compared to the existing MPI
implementation. However, this expectation could not be confirmed. In the case of the FFTE
extension, a performance benefit may only be significant when a large charge density mesh is
required by the physical system. The QE FFTW3 hybrid explicit and implicit extensions
illustrated better performance compared to the internal QE FFTW hybrid approach, but were
shown to be perform worse than the pure MPI version. It is suspected that the overhead
related to thread management outweighs the benefits of reduced MPI communication, up to a
certain number of MPI processes. However, this situation may change dependening on the
configuration of the problems analysed.

More recently in WP12 PRACE-2IP, the whitepaper, ‘Autotuning of the FFTW Library for
Massively Parallel Supercomputers’ [210], reports on the work on improving the performance
of the FFTW library by refining its auto-tuning mechanisms. The major bottlenecks of the
current FFTW implementation are identified, as well as the influence of the domain
decomposition algorithms on the performance. An improved performance of the autotuning
mechanism is achieved by a new parallel domain decomposition, which is detailed further in
the whitepaper.

4.3.3 Evidence of use outside PRACE

The European exascale project, CRESTA, has carried out investigations into FFT libraries
and suggests that the ultimate limiting factor in the performance of the distributed FFT
operation is the performance of the MPI_ALLTOALL operation and this is in turn limited by
non-pipelined message latencies. The CRESTA team point out that, in principle, it is possible
to use single sided communications to overlap some of the data movement with the
calculation of the local FFTs. However this requires the use of many small messages and
would therefore also be very sensitive to communication latency. For the IFS and GROMACS
co-design application, CRESTA has undertaken some detailed scalability analysis and these
codes currently require MPI_ALLTOALL calls that consume an increasing fraction of time as
the core count or model complexity increases. The non-blocking collectives that will be
developed and implemented in later phases of the CRESTA project are likely to help with this
issue. One particular approach that is currently under investigation is changing algorithms to
use single-sided non-blocking communication that CRESTA expect will give opportunities
for increased scalability [187].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 85

4.3.4 Pros and Cons

 Pros Cons
Scalability FFTW

Better scalability with MPI-
ony implementation than
FFTE

Only scales to a few
thousand cores at most

FFTE
In all hybrid combinations
scales better than in pure MPI
(CURIE)

Only scales to a few
thousand cores at most

Performance FFTW Shows excellent scaling on
JUGENE

Hybrid performance is still
considerably poorer than
MPI-only version

 FFTE Implemented in QE, FFTE
library slightly outperforms
FFTW3 for different number
of MPI processes, the
difference diminishing for
higher number of MPI
processes;
The FFTE serial mode
performance benefit could be
significant for large charge
density meshes.

Productivity FFTW Library calls that are easy to
implement. Callable from
Fortran and C code. Wrappers
and bindings exist for many
other languages

 FFTE Library calls that are easy to
implement. Callable from
Fortran and C code

Sustainability FFTW
On-going further
development (new versions)
with new features. Active
community

-

 FFTE
Last release is from Nov.
2011. Long term support
for library is unclear

Correctness FFTW
-

 FFTE -
Portability FFTW

Any platform with a C
compiler; both C and
FORTRAN interfaces

-

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 86

 FFTE
Highly portable

Availability FFTW
Free software. Extensive
documentation

-

 FFTE
Open source Almost no documentation

Resilience
- -

4.3.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Yes Yes Yes

4.3.6 Conclusion

As the CRESTA investigations into FFT methods point out, the major bottleneck in
distributed FFT implementations is the MPI_ALLTOALL communication overhead, which
becomes particularly problematic on large core counts. This problem can be alleviated
somewhat by using hybrid MPI+OpenMP methods, but further optimisations are badly
needed, as FFTs form the basis of many popular applications running on large-scale PRACE
systems. In order to push FFT methods further along the road to exascale, we agree with
CRESTA that further investigations should be made into non-blocking collective
communications within in-code FFT implementations, possibly via the new MPI 3.0 standard
features now becoming available. If FFT methods are to be investigated further in T7.2, we
recommend that PRACE partners work closely with CRESTA and other European exascale
projects to learn more about how their efforts in this area are progressing and if any non-
blocking implementations are ready to be exploited in real applications.

4.4 PETSc

4.4.1 Brief overview

PETSc [167] the Portable, Extensible Toolkit for Scientific computation, provides sets of
tools for the parallel (as well as serial), numerical solution of PDEs that require solving large-
scale, sparse nonlinear systems of equations. PETSc includes nonlinear and linear equation
solvers that employ a variety of Newton techniques and Krylov subspace methods. PETSc
provides several parallel sparse matrix formats, including compressed row, block compressed
row, and block diagonal storage. The table below gives an overview of the main numerical
components of the PETSc library. PETSc is designed to facilitate extensibility. Thus, users
can incorporate customized solvers and data structures when using the package. PETSc also
provides an interface to several external software packages including BlockSolve95, ESSL,
Matlab, ParMeTis, PVODE, and SPAI. PETSc is fully usable from Fortran, C and C++, and
runs on most UNIX based-systems. PETSc has several features that make it very convenient
for the application programmer. Users can create complete application programs for the
parallel solution of nonlinear PDEs without writing much explicit message-passing code

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 87

themselves. Parallel vectors and sparse matrices can be easily and efficiently assembled
through the mechanisms provided by PETSc. Furthermore, PETSc enables a great deal of
runtime control for the user without any additional coding cost. The runtime options include
control over the choice of solvers, preconditioners and problem parameters as well as the
generation of performance logs. PETSc supports MPI, shared memory pthreads, and NVIDIA
GPUs.

PETSc consists of a series of libraries that implement the high-level components required for
linear algebra in separate classes: ‘Index Sets’, ‘Vectors’ and ‘Matrices’; ‘Krylov Subspace
Methods’ and ‘Pre-conditioners’; and ‘Non-linear Solvers’ and ‘Time Steppers’. The Vector
and Matrix classes represent the lowest level of abstraction and are the core building blocks of
most of the functionalities. PETSc uses a MPI/OpenMP/Pthreads model where the Krylov
subspace methods and the pre-conditioners have not been threaded explicitly, but are instead
threaded implicitly through the ‘Mat’ and ‘Vec’ classes. Other frequently used pre-
conditioners, such as Symmetric Over Relaxation (SOR) or Incomplete LU-decomposition
(ILU), have not been threaded yet due to their complex data dependencies. These may require
a redesign of the algorithms to improve parallel efficiency.

PETSc is part of many high-level application codes like FLLOP, libMesh, Deal.II,
PETScFEM, OpenFVM, OOFEM, etc.

Latest release/version: v3.3

4.4.2 Evidence of use within PRACE

As well as being leveraged by many PRACE application codes, PETSc is also becoming
increasingly popular as an enablement tool.

In the PRACE whitepaper, ‘Hybrid Total FETI Method’ [211], an implementation of the
PETSc library was shown to scale on up to 7700 cores with 75% efficiency. Furthermore,
within this project, a linear elasticity problem with more than 200 million degrees of freedom
was solved in 126 seconds. Also, in the whitepaper ‘FETI Coarse Problem Parallelization
Strategies and Their Comparison’ [212], the PETSc library was used for different strategies
for the coarse problem solution of an engineering problem with approximately 100 million
degrees of freedom. The algorithm was tested on up to 5000 cores.

More recently in WP8 PRACE-2IP, on-going work on the enablement of Fluidity-ICOM, a
Finite Element ocean modeling software framework, is using the PETSc ‘OpenMP
development branch’, where the Krylov-based algorithm was tested on up to 32K cores. In
this work it was found that the sparse matrix vector multiply kernels of the algorithm can
scale up to 32K cores with up to 85% efficiency on HECToR. This is on-going work and
further details will become available towards the end of PRACE-2IP.

4.4.3 Evidence of use outside PRACE

The PETSc webite [167] provides reasonably good updates on where and how PETSc is being
used as well as how it is scaling on large-scale machines worldwide. In the CRESTA project,
PETSc has been studied in detail as part of co-design efforts on the ELMFIRE application.
The CRESTA developers have analyzed benchmark results on the examples for a matrix size
of 108x108 to determine the most important challenges of an exascale Conjugate-Gradient-like
calculation (Bone Matrix was used for the tests). Runtime measurements were carried out on
the Cray XE6 system at HLRS and calculations were initially done in double precision with
64-bit representation for the matrix indices. Close to ideal scaling was demonstrated on up to
9280 cores, but the achieved performance was no more 1.5% of the theoretical peak

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 88

performance. This was explained by the matrix not consisting of blocks as well as the CRS
format was not being optimal for the matrix vector multiplication. The increased overhead of
MPI_ALLREDUCE calls within the iterative algorithm in PETSc is clearly identified as a
bottleneck as the core count is increased and further work is being currently carried out into
alleviating such global communication bottlenecks via non-blocking one-sided
communications [187].

4.4.4 Pros and Cons

Metric Pros Cons

Scalability Scalability of PETSc library
was tested on very large
problems and the library
scaled up to ten thousands
cores (processes) with
negligible lost of efficiency.

Performance Performance depends on the
algorithm used. But generally
it is observed that
performance of algorithms
implemented in PETSc is
very good.

Productivity PETSc includes a large suite
of parallel linear, nonlinear
equation solvers and ODE
integrators that are easily
used in application codes
written in C, C++, Fortran
and now Python. PETSc is
relatively well documented
and easy to learn. It uses only
essential level of object
orientation so that it is
understandable for
programmers not used to the
object-oriented paradigm.

Documentation of more
advanced features is
sometimes very minimal and
one has to browse through
the code.

Sustainability Long-term project with stable
codebase and rapidly
evolving development
branch. Since 1990
developed by Argonne NL.
PETSc is part of number of
SW projects and many of
projects interface PETSc.

Correctness Good error checking system,
large test suite

Portability All significant platforms –
see above

No information about Intel
MIC portability

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 89

Availability Open source, directly
downloadable software, often
preinstalled on HPC systems

Resilience Application-specific

4.4.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Development Unknown Yes

4.4.6 Conclusion

PETSc has strong potential for enabling applications on future multi-petascale and exascale
systems, but several features expected from exascale libraries need to be implemented in the
library (communication reducing algorithms, error resilience, fault tolerance etc.) As PETSc
interfaces with several widely used numerical libraries (MUMPS, Hypre, SuperLU, METIS),
its scalability is strongly dependent on the scalability of these libraries also. It is interesting to
note that CRESTA chose the PETSc library as being representative of iterative methods and
was chosen for further research on exascale co-design efforts. Indications are that PETSc is
well supported by the DOE in the US and will continue to make inroads on building in
features that will be important on the road to exascale.

4.5 Trilinos

4.5.1 Brief overview

Trilinos [65] is a collection of packages intended for a solution of large-scale complex
multiphysics engineering and scientific problems. It is based mainly on C++ and the focus is
given on modern object-oriented design, modularity and extensibility. Trilinos provides
packages with basic linear algebra objects and routines, packages for iterative and direct
solvers; preconditioners; nonlinear, transient and optimization solvers; eigensolvers;
discretization and mesh generation tools; load balancing tools etc. Some packages also
provide users with basic tools like I/O support, performance measurement or BLAS/LAPACK
wrappers. Overall, there are more than 50 packages in Trilinos. Algorithms implemented in
Trilinos can run in both serial and parallel manner. Although some of the packages lack
extensive documentation, the core packages are relatively well documented as well as a
shared memory parallelization using pthreads, Intel TBB and NVIDIA/CUDA. A hybrid
MPI-shared memory and MPI-GPU parallelization is supported as well. Trilinos has been
selected by Cray as a part of its ‘Application Developer’s Environment’. The Cray version of
Trilinos also includes a set of Cray Adaptive Sparse Kernels (CASK) that performs SpMV
and includes optimized versions of single- and multiple-vector matrix vector multiplies.
Modern algorithms such as communication avoiding GMRES and communication avoiding
hybrid-parallel orthogonalization TSQR have been implemented within the latest versions of
the library (namely to the Belos packages). Fault-tolerant solvers are also in development
[213].

Latest release/version: v11.0.3

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 90

4.5.2 Evidence of use within PRACE

Although there have been training events on Trilinos within PRACE, we have found no
evidence of Trilinos being used in PRACE to date

4.5.3 Evidence of use outside PRACE

The Trilinos website [65] provides up-to-date information on where and how the library is
being used. However, we have found it very difficult to find Trilinos being used in any real
applications to date. In [214] Trilinos was used for parallel modeling of bone structure on a
Cray XT system and scaled on up to 4000 cores, with tests being carried out for over one
billion degrees of freedom.

4.5.4 Pros and Cons

Metric Pros Cons

Scalability The scalability of some
Trilinos based codes has been
shown up to thousands of
cores.

Performance The performance depends on
the used architecture as well
as the underlying low level
LA routines. Generally the
performance of the Trilinos
based codes is considered to
be good.

Productivity The object-oriented design
and the modularity of the
code allow a relatively easy
code development. The most
important packages are well
documented. There are
numerous tutorials on the
project webpage and
European Trilinos User
Groups Meetings are
organized annualy.
ForTrilinos provides object-
oriented Fortran interfaces to
Trilinos C++ packages

Some packages have poor or
confusing documentation.
The high number of packages
can be confusing. Another
confusing factor for some
people may be the object-
oriented design.

Sustainability Trilinos has been developed
since 1998 under Sandia
National Laboratory and is
one of the most used
scientific libraries nowadays.
The changes in API between
releases are usually not very
significant and the code is

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 91

relatively sustainable (when
compared e.g. to PETSc)

Correctness -

Portability Portable to UNIX and
Windows systems, hybrid
architectures, NVIDIA
GPUs.

Availability Downloadable from project
site. Most packages under
BSD and LGPL licences.

Resilience -

4.5.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes Yes Unknown Unknown Yes

4.5.6 Conclusion

Although we could not find any evidence of Trilinos being used in PRACE to date, it appears
to be a very powerful high-level library, which should be of interest to the PRACE
community. The object oriented and templated design of the packages within Trilinos allows
relatively easy development of codes for various types of architectures. Many modern
techniques for improving scalability on future multi-petascale and exascale machines, such as
communication reducing algorithms, have already been implemented into the framework
which gives more reason to investigate the library further, possibly during the exploitation
phase of T7.2.

4.6 Zoltan

4.6.1 Brief overview

Zoltan is a collection of data management services for unstructured, adaptive and dynamic
applications. It includes a suite of parallel partitioning algorithms, data migration tools,
parallel graph colouring tools, distributed data directories, unstructured communication
services, and dynamic memory management tools [215]. The Zoltan Library contains a
number of tools as listed below:

 Dynamic load balancing and parallel repartitioning algorithms, including geometric,
hypergraph and graph partitioning methods.

 Data migration tools for moving data from old partitions to new one.
 Parallel graph colouring tools with both distance-1 and distance-2 colouring.
 Distributed data directories: scalable (in memory and computation) algorithms for

locating needed off-processor data.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 92

Zoltan runs on distributed-memory architectures. Zoltan requires MPI libraries and an ANSI
C compiler. It has been tested on multiple architectures and is known to scale up to thousands
of cores. Zoltan colouring algorithms are extended with new recoloring capabilities, providing
lower numbers of colours at small additional cost. Also Zoltan's hierarchical partitioning is
improved for better efficiency. Zoltan has support for 64-bit identifiers. Zoltan also can make
use of ParMeTiS and PT-Scotch. If one chooses to do so, these libraries must be complied
beforehand and their paths should be supplied to Zoltan during compilation. This feature of
Zoltan enables a fair and fast comparison of ParMeTiS, PT-Scotch and Zoltan hypergraph
partitioning tool (PHG). One can also use Zoltan with Fortran applications via the supplied
interfaces.

Latest release/version: v3.6

4.6.2 Evidence of use within PRACE

Zoltan is already installed as a loadable module on HECToR and has been tested on JUGENE
and CURIE [216] as well other supercomputing systems [217]. Among the PRACE supported
applications, Vlasiator [217] uses Zoltan for distributing 3-D spatial grid elements as the
communication pattern in Vlasiator is best modelled via hypergraph models.

4.6.3 Evidence of use outside PRACE

SuperLU_DIST: (Sparse Direct Solver and Preconditioner Distributed memory version) will
be using Zoltan to perform parallel symbolic analysis to determine the nonzero structures of L
and U factors [218]].

As PageRank [219] [220] is computed via iterative sparse-matrix-vector-multiplication
operations and since these kinds of operations are best modelled via hypergraphs, Zoltan is
used in parallel partitioning/distribution/redistribution of PageRank computations.

In flow simulations [221], as the simulation proceeds, spatial distribution of the computational
load changes in a transient manner following the change in chemical state, and this change is
unpredictable over a long interval. Therefore, adaptive schemes are devised by repeated
partitioning and migration of data. Zoltan is used in these kinds of applications for its
repartitioning and migration routines.

4.6.4 Pros and Cons

Metric Pros Cons

Scalability Zoltan contains routines for
partitioning with fixed vertices.

Zoltan data migration codes
are written in a generic
mode but thus not
optimized for very large
core counts. Data migration
times in Zoltan can be very
high.

Performance Zoltan supports parallel
hypergraph partitioning thus
enabling correct communication
modelling for various
communication patterns. For
these kinds of applications, the

Zoltan has a data-structure
neutral design and an
object-based interface,
which causes extra data
structure conversion costs
prior to partitioning,

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 93

performance obtained from the
application after partitioning is
better with Zoltan when
compared with ParMeTiS or PT-
Scotch.

ordering, colouring
operations.

Productivity Zoltan's data-structure neutral
design allows it to be used by a
variety of applications without
imposing restrictions on
application data structures.

Its object-based interface
provides a simple way for
application developers to use the
library and researchers to make
new capabilities available under
a common interface.

Can be called from Fortran and
C code

Sustainability Zoltan is maintained within the
Trilinos package of Sandia
National Labs. The tool is
upgraded periodically and there
is a strong community behind it.
Any questions about the tool are
directly and immediately
answered by the developers.

Correctness - -

Portability Ports to MIC, ARM, and
GPU are not expected to be
available anytime soon.

Availability Zoltan source code and binaries
are publicly available from
http://www.cs.sandia.gov/Zoltan/

Resilience - -

Table 40 Zoltan - Pros and Cons

4.6.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown No

Table 41 Zoltan - Target systems/architectures

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 94

4.6.6 Conclusion

In conclusion, Zoltan with its ease of programming, support for hypergraph partitioning, fixed
vertices, and colouring, shows potential for enabling applications on multi-petascale systems,
especially if your applications communication pattern is best modelled via hypergraphs.
Unfortunately, Zoltan has higher memory usage than other partitioning tools. It has relatively
high data conversion preprocessing overheads. Its data migration routines seem to be not very
efficient and they are amenable to improvement. Zoltan lacks support for hybrid systems and
topology-aware routines. Due to these reasons, the current version of Zoltan seems to be not
ready for enabling applications on future exascale systems. However, a new release of Zoltan
is reported to be under development and many of these issues are expected to be addressed in
this new version.

4.7 ParMeTiS

4.7.1 Brief overview

ParMeTiS [180] is an MPI-based parallel library that implements the multi-level paradigm for
partitioning and repartitioning unstructured graphs and for computing fill-reducing orderings
of sparse matrices. ParMeTiS is particularly suited for parallel numerical simulations
involving large unstructured meshes. In this type of computation, ParMeTiS reduces the time
spent in communication by computing mesh decompositions such that the numbers of
interface elements are minimized [222].

In particular, ParMeTiS provides the following functionality:

 Partition unstructured graphs and meshes.
 Repartition graphs that correspond to adaptively refined meshes.
 Partition graphs for multi-phase and multi-physics simulations.
 Improve the quality of existing partitionings.
 Compute fill-reducing orderings for sparse direct factorization.
 Construct the dual graphs of meshes.

ParMeTiS is copyrighted by the Regents of the University of Minnesota. It can be freely used
for educational and research purposes by non-profit institutions and US government agencies
only. Other organizations are allowed to use ParMeTiS only for evaluation purposes, and any
further uses will require prior approval [222].

ParMeTiS runs on distributed-memory architectures. It is only dependent on MPI libraries
and should be able to run on any parallel architecture without much trouble. It has been tested
on multiple architectures and is known to scale up to thousands of cores. The v4.0 release
allows full support of 64 bit architectures that enables large-scale partitioning. It utilizes the
latest version of MeTiS (v5.0), which allows for better support of multi-constraint
partitioning. The v4.0 release has much lower memory requirements when compared with
older releases. Multiple vertex weights/balance constraints are supported for most of the
routines. This allows ParMeTiS to be used to partition graphs for multi-phase and multi-
physics simulations. Support for 64 bit architectures by explicitly defining the width of the
scalar “integer” data type used to store the adjacency structure of the graph. There has
recently been complete re-write of its internal memory management, which has resulted in
lower memory requirements.

ParMeTiS compiles with any C compiler (including Intel compilers). It also has bindings for
FORTRAN so can be integrated into FORTRAN codes easily. It can be run independently so

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 95

that it can be called easily from other programs by means of system() or popen() system
calls, or be piped together on a single shell command line.

Latest release/version: v4.02

4.7.2 Evidence of use within PRACE

Both MeTiS and ParMeTiS are already available as loadable modules in all HPC platforms at
LRZ. Par-MeTiS has been tested and is known to perform well on PRACE systems such as
CURIE, JUGENE and Hector as well other supercomputing systems. The previous versions
(3.X) of ParMeTiS partitioning tool is successfully used in applications such as Code Saturne
[223], Telemac-2D [224] and Elmer [225].

4.7.3 Evidence of use outside PRACE

MeTiS/ParMeTiS have been used in the parallelization of large number of applications
including mesh partitioning and repartitioning [226] for CFD computations [227] and ocean
simulations [228] and in generic libraries such as PETSc [229]. Some of the large-scale
applications using ParMeTiS include PetFMM, A dynamically load-balancing parallel fast
multipole library [230], uses ParMeTiS for mesh partitioning. SuperLU_Dist uses ParMeTiS
to perform parallel symbolic analysis to determine the nonzero structures of L and U [218].

4.7.4 Pros and Cons

Metric Pros Cons

Scalability
ParMeTiS is significantly faster
than the other successful graph
partitioning tools that adopt multi-
level paradigm.

ParMeTiS can generate partitions
with prescribed uneven part
weights and thus can specify the
target sub-domain weights for
each of the sub-domains and for
each balance constraint. So
ParMeTiS is very suitable for
load-balancing on heterogeneous
systems.

When the number of parts
increases over 32K parts,
ParMeTiS is reported to
produce empty parts.

Currently ParMeTiS does
not have threading support.
However, this is expected
to change in the next
release.

Performance Partitioning quality in terms of
edge-cutsize minimization is very
good.

Partitioning quality in
terms of load balancing is
generally inferior to PT-
Scotch

Currently does not support
topology-aware routines
for partitioning.

Productivity Developing codes with
MeTiS/ParMeTiS is quite simple.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 96

ParMeTiS contains many
beneficial distributed graph
handling tools such as dual graphs
constructing routines.

Sustainability Maintained at Karypis Lab of
Minnesota University, the tool is
upgraded periodically and there
seems to be a significant
community behind it.

Can be called from Fortran and C
code.

Correctness - -

Portability Ports to MIC, ARM, and
GPU are not expected to be
available anytime soon.

Availability ParMeTiS source code and
binaries are publicly available
from
http://glaros.dtc.umn.edu/gkhome/

Resilience
-

-

Table 42 ParMeTiS - Pros and Cons

4.7.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown No

Table 43 ParMeTis - Target systems/architectures

4.7.6 Conclusion

In conclusion, ParMeTiS with its good edge-cutsize reduction, fast partitioning time, multi-
constraint support that enables partitioning of graphs for multi-phase and multi-physics
computations, uneven partitioning capability that enables load-balancing on heterogeneous
systems, and repartitioning and topology-aware routines, shows potential for enabling
applications on multi-petascale and future exascale systems.

4.8 PT-Scotch

4.8.1 Brief overview

PT-Scotch [231] is a software package that implements the multi-level paradigm to compute
parallel static mappings/partitions and parallel sparse matrix block orderings of distributed
graphs. (PT-Scotch also contains repartitioning routines, topology-aware partitioning
heuristics and supports fixed vertices). PT-Scotch is distributed as free software. PT-Scotch is
mainly used for workload distribution in the parallelization of applications on distributed
memory architectures [232].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 97

The sequential version of PT-Scotch (called Scotch), is known to scale partition counts of
128K and beyond on a single fat node (128GB RAM) [233]. For graph/mesh sizes of billions
of cells, sequential partitioning with Scotch becomes infeasible. PT-Scotch (Parallel Threaded
Scotch) developed at LaBRI of INRIA, provides efficient parallel tools to partition graphs
with sizes up to a billion vertices, distributed over a thousand processors [234]. PT-Scotch is
known to bipartition, in 76 seconds, a 3D graph of more than 2.4 billion vertices and 7.3
billion edges, distributed across 2048 processors [235].

Distinctive features of PT-Scotch as a partitioning tool are as follows: It uses low-memory
and provides well-balanced partitions for large number of partition counts. It makes use of
both thread parallelism and process parallelism. However, the edge-cutsize quality of PT-
Scotch can sometimes be inferior to other parallel partitioning tools such as ParMeTiS. PT-
Scotch is runs on shared-memory as well as distributed-memory architectures. It is only
dependent on MPI libraries and should be able to run on any parallel architecture without
much trouble. PT-Scotch requires MPI and POSIX libraries. It can make use of multiple cores
in a node of the parallel system via effective threading. It has been tested on multiple
architectures and is known to scale up to thousands of cores.

The new release (v6.0) of Scotch contains multi-threaded, shared memory algorithms in the
(formerly) sequential parts of the library. New features such as topology-aware partitioning
options are also added into the library in this release. Also PT-Scotch API now exposes many
distributed graph handling routines with this release.

In the new release (v6.0) of Scotch, topology-aware partitioning options are embedded into
the library. This option is a key feature of success for exascale computing. Unfortunately, to
our knowledge, there is still no application that tests and evaluates this feature of PT-Scotch
even under petascale settings. This can be considered for a possible enabling work for future
T7.2c studies.

PT-Scotch compiles best with GCC compiler but can be compiled with other C compilers.
The various routines implemented in ParMeTiS can be accessed from a C, C++, or Fortran
program by using the supplied library. It can be run independently so it can be called easily
from other programs by means of system() or popen() system calls, or be piped together
on a single shell command line.

Latest release/version: v6.0

4.8.2 Evidence of use within PRACE

Scotch and PT-Scotch are already available as loadable modules in CURIE. PT-Scotch has
been tested and is known to perform well on PRACE systems such as CURIE, JUGENE and
HECToR as well other supercomputing systems such as Argonne‘s IBM Blue Gene/P or IBM
POWER 7 systems. The previous versions (5.X) of PT-Scotch partitioning tool has been
successfully used in applications such as Code Saturne [223], Vlasiator [217], and Telemac-
2D [224]. In most of these applications, both ParMeTiS and PT-Scotch are tried and
compared, and the superior load-balancing and inferior edge-cut minimization properties of
PT-Scotch when compared with Par-MeTiS have been reported.

4.8.3 Evidence of use outside PRACE

PT-Scotch/Scotch has been used in the parallelization of many applications in diverse areas
including CFD, Seismology and FEM [235] (in mesh partitioning). Some applications that use
PT-Scotch are: CABARET (Compact Accurately Boundary Adjusting high-Resolution
Technique) finite volume code that is used for accurately resolving turbulent flow structures

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 98

in high-fidelity CFD simulations [236] is tested on HECToR. Scotch was reported to lead to
slightly better parallel performance than that of MeTiS. SPECFEM3D is used for simulating
forward and adjoint seismic wave propagation on fully unstructured hexahedral meshes of
arbitrary shaped model domains [237]. Scotch is used in load balancing parallel simulations in
SPECFEM3D.

4.8.4 Pros and Cons

Metric Pros Cons

Scalability Good scalability in terms of parallel
partitioning: Can partition on thousands
of nodes.

Good scalability in terms of graph size:
Can partition graphs with billions of
vertices and edges.

Good scalability in terms of the number
of final parts: Can partition into hundred
thousands of parts.

Good scalability in terms of memory
usage when the number of parts
increases.

PT-Scotch usually runs
slower than ParMeTiS

PT-Scotch is not
suitable for generating
prescribed imbalanced
partitions. So PT-
Scotch is not very
suitable for load-
balancing on
heteregoneous systems.

Performance Partitioning quality in terms of load-
balancing is very good.

Supports topology-aware routines for
partitioning.

Partitioning quality in
terms of edge cutsize is
generally inferior to
ParMeTiS

Productivity Developing codes with PT-Scotch is
simple.

Distributed graph
handling routines of
PT-Scotch are not as
versatile as those of
ParMeTiS. However,
the new release of PT-
Scotch contains a
number of beneficial
routines for this
purpose.

Sustainability Maintained at LaBRI of INRI, the tool is
upgraded periodically and there seems to
be a significant community behind it.

Correctness - -

Portability

Ports to MIC, ARM,
and GPU are not
expected to be available
anytime soon.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 99

Availability PT-Scotch source code and binaries are
publicly available from
http://www.labri.fr/perso/pelegrin/scotch/

Resilience
-

-

Table 44 PT SCOTCH - Pros and Cons

4.8.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes No Unknown Unknown Support for
hybrid
systems

Table 45 PT SCOTCH - Target systems/architectures

4.8.6 Conclusion

In conclusion, PT-Scotch with its good load balancing, low-memory usage and scalability
properties shows great potential for enabling applications on multi-petascale systems.
Similarly, due to its topology-aware routines, PT-Scotch shows potential for enabling
applications on future exascale systems, as well.

4.9 NetGen

4.9.1 Brief overview

NetGen is a sequential and automatic 3D tetrahedral mesh generator. It can generate volume
meshes as well as surface meshes. It is available as LGPL open source software at [238] and
has a wide user base. It employs the advancing front technique and also implements mesh
optimization to improve mesh quality. A parallelized version of NetGen [239] was developed
independently recently by Bogazici University on top of the sequential NetGen using MPI
libraries and the C++ language.

Latest release/version: v5.0

4.9.2 Evidence of use within PRACE

In the PRACE whitepaper, 'Parallel Mesh Generation, Migration and Partitioning for the
Elmer Application' [240] two kinds of methods were implemented in the parallelised
NETGEN: (i) Geometry decomposition based method and (ii) Refinement based method.
Geometry decomposition methods that use decoupled sequential mesh generators may not be
suitable when run on large numbers of processors. This is mainly due to the difficulty of
automating geometry decomposition. On the other hand, if a proper geometric decomposition
is made, then a high quality mesh generation can be done. Therefore, automatic geometry
decomposition can be used on a small number of processors and perhaps with a user assisted
geometry decomposition in a semi-automatic manner on larger numbers of cores. Refinement
based methods allow for the fast generation of billions of elements on distributed machines.
In the investigation reported in the whitepaper an example was run on the CURIE system,

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 100

where 1.4 billion elements were generated in approximately 50 seconds on 1000 compute
cores. Mesh migration routines were implemented to redistribute mesh data structures.

4.9.3 Evidence of use outside PRACE

We have found no evidence of NetGen being employed outside PRACE to date.

4.9.4 Pros and Cons

Metric Pros Cons

Scalability Refinement based methods
are scalable. Mesh migration
routines implemented also
scaled. Tests using up to 1K
cores were performed.

Geometry decomposition
based methods are not
scalable

Performance There is inverse relationship
between mesh quality and
parallel runtime/scalability
performance.

Productivity Callable from Fortran and C Installation of NETGEN on
supercomputer systems
requires a lot of time mainly
due to problems related to
installation of specific X
libraries.

Sustainability Sequential NETGEN was
first released in 2003. It has
been improved over the
years. The latest version 5.0
was released in Nov. 2012.

Parallel NETGEN was
developed on top of
sequential NETGEN during
PRACE-1IP WP7.6 Elmer
application support activity in
a short period of time. It has
not been worked on since the
end of WP7.6 task.

Correctness Sequential version works
robustly and is used
worldwide by many users.

Parallelized version has not
been tested exhaustively.

Portability UNIX systems Sequential NETGEN uses
some specific X libraries
which caused porting
problems to IBM Blue
Gene/P JUGENE system

Availability Both sequential and
parallelized versions are open
and available under LGPL
license

Resilience -

Table 46 NETGEN - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 101

4.9.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes No No No No No

Table 47 NETGEN - Target systems/architectures

4.9.6 Conclusion

Parallel mesh generation offers a solution for cases where mesh problems with greater than
109 elements will not fit the memory of a single node and the time to generate the mesh
becomes significant. The parallelized version of NETGEN implements an “owner updates”-
based mesh migration algorithm [239], which has demonstrated good parallel performance
within PRACE [240]. The usual features expected from exascale libraries such as
communication reduction, error resilience and fault tolerance must be addressed in the future.
A possible suggestion is that such issues can start to be addressed by developing a non-MPI,
workflow version of Bogazici University’s NETGEN-based parallelized mesh generation
routines. A workflow system like Falkon [241] can be used for this purpose.

5 I/O Management Techniques

In this section, we characterize the following I/O Management tools that are of interest to
T7.2 in particular, and the European HPC community more widely, as we move towards the
deep petascale and exascale eras:

 HDF5
 PNetCDF
 XIOS
 ADIOS
 SIONlib
 Darshan

While the first five tools listed above can be classified as high-level I/O libraries, the final
tool in the list, Darshan, is an I/O profiling tool. For each tool, we provide an overview and
discuss the tool’s present state, how it has been employed in PRACE to date, how it has been
employed more widely, and our views on the suitability of the tool for enabling PRACE
application codes during the exploitation phase of T7.2.

The increasing data needs of scientific and engineering applications mean that the problems
associated with storing, reading, analysing and sharing large amounts of information are
becoming more relevant to a wider user community within PRACE and will become even
more so on the road to exascale [242]. While the performance gap between file systems and
compute systems is well known, during our surveying we have found that users within
PRACE have in general not been able to squeeze as much performance from existing parallel
file systems as they have from computational hardware. For example, in real applications, the
use of high-level, parallel I/O libraries such HDF5 [243] and PnetCDF [244], which we report
on here, often only reach write speeds that are not much higher than the performance of a
single hard disk. It is becoming increasingly recognised that in many cases, this problem has
less to do with the capabilities of the software and hardware, and more to do with the myriad
of software layers, tunable parameters and different file system settings that users are
confronted with.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 102

While several very promising parallel tools have emerged within scientific communities that
traditionally deal with post-processing of huge datasets (e.g. NCO [245] CDO [246], FastBit
[247]) these tools are quite domain-specific and are consequently not discussed in more detail
here. However, at the same time, we feel that PRACE should be inspired by such initiatives
within these domains and aim to become an infrastructure that supports the complete
workflow from numerical experiment to publication, where I/O tools are an integral part of
that workflow. To reinforce this message, we feel it appropriate to quote from the IESP
roadmap [248] on this topic:

“Traditionally, I/O has been considered as a separate activity that is performed before or
after the main simulation or analysis computation, or periodically for activities such as
check-pointing, but still as separate overhead. File systems, which have mainly been adapted
from the legacy (sequential) file systems with overly constraining semantics, are not scalable.
I/O should be considered an integral activity to be optimized while architecting the system
and the underlying software.”

Several tools that we mention here are available on current PRACE systems, while some are
still under development and aim to overcome some of the bottlenecks that are related to I/O
on multi-petascale and future exascale systems. While we have naturally included ease of use
for post processing and visualization as important characteristics in considering the tool’s
exploitation within T7.2, the most important prerequisites that we consider are the potential
for scalability and performance on current PRACE Tier-0 systems as well as future multi-
petascale/exascale systems. With the IESP view in mind, deeper investigations into extracting
performance (with real applications) from parallel file systems will be the main focus of this
subtask during the exploitation phase of T7.2.

5.1 HDF5

5.1.1 Brief overview

HDF5 [243] is a library used to read and write platform-independent files. The generic file
format includes meta-data for all variables to produce self-describing files. The metadata can
describe different aspects of the variables: authorship, type, shape, creation date, etc. This
metadata functionality is shared with other, high-level file formats like NetCDF and BP. It
supports large-scale parallel file systems (e.g., Lustre and GPFS) by using MPI-I/O calls for
parallel file access, but can also be used without MPI-I/O as a serial library. The library is
well maintained and there is an on-going research effort to prepare HDF5 for exascale [249].
The library is freely available as open source and runs on all PRACE platforms. The HDF5
library contains a nice suite for conversion, and compression and it is a suitable file format to
be post-processed by e.g. visualization tools.

Latest version/release: 1.8.10-patch1

5.1.2 Evidence of use within PRACE

The HDF5 library is part of the PRACE ‘Common Production Environment’ and is therefore
available across all PRACE Tier-0 systems. The library is used across a wide range of
scientific domains (astrophysics, multi-physics, CFD) and has been used widely within
PRACE to date:

The HDF5 library was implemented for the static grid version of the PLUTO astrophysical
fluid dynamics code [250]. Unfortunately, it was found to be significantly slower than
synchronous I/O on JUGENE, which was probably due to overhead or the incompatibility

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 103

between GPFS and HDF5. The performance is approximately 0.5GB/s for 500-10k cores.
However, the introduction of the HDF5 file format for a static grid represents an improvement
for PLUTO both in term of portability and also for post-processing and visualization.

In other work in PRACE-1P, a parallel implementation of HDF5 for the computational
mechanics code, ALYA [251], was compared to the original, serial I/O method on both
CURIE and JUGENE. Results showed an improvement in performance of over a factor of 3x
in some cases.

Another interesting study within PRACE-1IP [252] compared the performance of different
I/O methods and found that POSIX I/O (one file per process) was in almost all cases by far
the fastest method on CURIE, with MPI-I/O catching up at higher core counts (4096 cores),
while HDF5 and pNetCDF performed much more poorly in comparison.

The HDF5 library has also been adopted in the ENZO [253] and LB3D codes [254]. The
LB3D code developers reported that they can write a multi-gigabyte dataset in the order of a
second, which is negligible to the computational effort. Data can be compressed using internal
filters, so one can still access the data without uncompressing, transparently.

5.1.3 Evidence of use outside PRACE

HDF5 is widely used outside PRACE and is deployed on multi-petascale systems throughout
the world. HDF5 is the most commonly used parallel I/O library in both DOE SC and DOE
SciDAC applications and there is a very active research effort in the US focused on preparing
HDF5 for future exascale systems. The ExaHDF5 [249] project aims to enhance HDF5 for
Exascale platforms. Its goals are aimed at improving HDF5 performance on existing
platforms by removing collective restrictions for metadata modifications, adding metadata
and raw data indexing, adding support for asynchronous parallel I/O, designing and
implementing file system autotuning mechanisms and supporting “ordered updates” in
parallel. Early efforts have already demonstrated 8x-10x improvement in speedup and scaling
to 32,000 processors [255].

5.1.4 Pros and Cons

Metric Pros Cons

Scalability Better performance than
master-I/O because of less
communication.

Scalability is usually poor
without a good understanding
of the HDF5 structure and the
underlying file system.

Performance Performance can be up to
27GB/s (using 120k cores),
or 90% of the theoretical
peak.

Can be as low as 200MB/s
(using a few thousand cores
without further scalability)

Productivity The library is platform-
independent and the files
contain metadata to describe
them. Many advanced
analysis programs support
reading and writing HDF5.

Sustainability HDF5 is well supported and
widely used. Several projects

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 104

are underway to improve
HDF5.

Correctness Release versions are
available on the web and are
often included in linux
distros.

Portability Available on all PRACE
platforms.

Availability Open and royalty-free.

Resilience Work is ongoing to improve
fault-tolerance by changing
the software and the file
format.

Table 48 HDF5 - Pros and Cons

5.1.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A

Table 49 HDF5 - Target systems/architectures

5.1.6 Conclusion

Several efforts by the US DOE are on-going to improve the performance of HDF5 on multi-
petascale machines and to adapt the library for exascale. The HDF5 library has shown the
ability to scale and perform well enough for multi-petascale simulations. The advantages of
HDF5 are that files in the HDF5 format are platform-independent and suitable for high-
quality visualizations using the VisIt and ParaView tools. It is the only file format that allows
for complex data types like structures and a hierarchical organization of variables. The major
downside is the disparity between the presented performance results for some applications
and the achieved results in some of the PRACE projects. We believe that one interesting area
of focus during the exploitation phase of T7.2 could be on the tuning of applications with
HDF5 on parallel file systems of specific PRACE platforms.

5.2 PNetCDF

5.2.1 Brief description

Parallel NetCDF (PNetCDF) [244] is a library that implements the Unidata NetCDF3 file
format, but provides parallel I/O capabilities using MPI-I/O. The API is an extended version
of the NetCDF3 [256] API that supports C and Fortran. The NetCDF3 standard defines a file
format for array-oriented data that is platform-independent and self-describing. A file contains
dimensions, variables and attributes. Files can be appended efficiently with the use of an
unlimited axis, for example to add another snapshot periodically. Many tools can read the
NetCDF3 file format and can often interpret the data if the metadata for the variables uses the
right naming and attribute conventions (e.g. wind speed on a longitude-latitude grid). The
format provides enough flexibility for most scientific applications. Due to this combination of

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 105

functionality and simplicity, it is very popular in the climate community. It is not compatible
with the NetCDF4 standard. The library is freely available as open source.

Latest version/release: v1.3.1

5.2.2 Evidence of use within PRACE

The PnetCDF library has primarily been used in US-based weather (WRF) and climate
(CCSM/CESM) models, but only received minimal adoption in European models. The
European exception is the RAMSES astrophysics code, which implemented several different
output options, including PnetCDF. The molecular dynamics package AMBER also included
an output option for PnetCDF, but this option seems to be little used. The PnetCDF library is
probably mostly used by the PRACE allocations that use the US-based weather and climate
models for their simulations.

The IO performance of PnetCDF was tested on the CURIE system using both the IOR
benchmark suite and the RAMSES astrophysics code [252]. For the RAMSES code, the
performance is usually well below 1 GB/s. Only for read operations with the
romio_cb_read (flag to control collective buffering) MPI-I/O file hint disabled, does the
read performance reach almost 2 GB/s. The read performance with IOR is also optimal when
using this hint for HDF5, MPI-IO and PnetCDF, reaching more than 12GB/s for PnetCDF.
This shows that the right settings are critical to reach a good performance, which is probably
very system-dependent.

5.2.3 Evidence of use outside PRACE

Since the PnetCDF library was developed in the US, most of the use cases are also for US-
based models.

In a study for the optimization of I/O for the FLASH code [257]. MPI derived datatypes were
used to write non-contiguous parts of the memory to a contiguous PnetCDF file using only
one call to the PnetCDF library. The routine MPI_Type_create_subarray was used to
exclude guardcells (or “ghost” or “halo” cells), while the routines MPI_Type_indexed and
MPI_Type_create_resized were used to combine mesh variables at different memory
locations into one variable for writing. Furthermore, they implemented “non-blocking” I/O
[257], which combines writes from different calls to the PnetCDF library.

The I/O in the GCRM (global cloud-resolving model) application was optimized using
PnetCDF on the Cray XE6 system “Hopper” using Lustre at NERSC [258]. By saving all
variables into one file, a maximum performance of 24GB/s was reached using 40,960 MPI
processes.

5.2.4 Pros and Cons

Metric Pros Cons

Scalability Excellent scaling up to 40k
cores for some applications

Scalability is usually poor
without a good understanding
of the PnetCDF structure, the
MPI-IO library and the
underlying parallel file
system.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 106

Performance Performance can be up to
24GB/s,

Can be as low as 200MB/s.

Productivity The library is platform-
independent and the files
contain metadata to describe
them. Many advanced
analysis programs support
reading and writing the
NetCDF-3 format.

Sustainability PnetCDF is developed at
Argonne National Laboratory
(ANL) and is supported
software.

Correctness Release versions are
available on the internet.
Development branches can
be checked out with svn.

Portability Available on some PRACE
platforms (e.g. HERMIT and
MareNostrum).

Availability Open and royalty-free.

Resilience

Table 50 PNetCDF - Pros and Cons

5.2.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A

Table 51 PNetCDF - Target systems/architectures

5.2.6 Conclusion

It has been demonstrated that the PnetCDF library can reach a performance that is close to the
theoretical peak of the file system on petascale systems, using tens of thousands of MPI tasks.
It gives the user a range of tuning options to reach a better performance. The flat file format is
one of its strengths, but also a major weakness. Models that use regular, structured grids could
benefit from this library, and a large collection of analysis tools can readily read and interpret
the output files. The NetCDF format is less well suited for use with VisIt and ParaView. It is
less well suited to modern numerical methods like non-structured grids and adaptive mesh
refinement.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 107

5.3 XIOS

5.3.1 Brief description

XIOS [259] is an I/O library with integrated processing in development by the NEMO ocean
model team. It is a library that allows flexible, parallel I/O by using XML files to define the
variables that should be written to file. In the XML file, operations (e.g. time averaging and
slicing) can be defined for variables. Output variables are processed locally and then sent to
separate I/O tasks to be written to disk. The extra library in-between the user and the disk
system is an extra complication in case of performance problems. The library is written in
C++ and provides an API for Fortran-90. XIOS uses the NetCDF-4 format and library, which
is in turn built on top of the HDF5 library and its dependencies. Although the NetCDF-4
format supports hierarchical data structures and complex variables, it is not clear if these are
supported by XIOS. Other file formats could be used, but are not yet implemented (XIOS has
recently been implemented in the ocean model NEMO 3.4). Different processing capabilities
are in development, e.g. spatial operations and adding or multiplying two variables. The long-
term plans for XIOS include the possibility for input e.g. to manage asynchronous reading.
The library is freely available as open source and runs on several PRACE platforms.

Latest version/release: v1.0 (subversion)

5.3.2 Evidence of use within PRACE

The XIOS library has not been used widely to date within PRACE, but interest in the library
is increasing and it is currently being used within the WP8 PRACE-2IP work package. XIOS
is under development by ICHEC where a "memory proxy" XIOS server is being developed to
enable XIOS performance on nodes with low memory, by using extra nodes as buffers
between the compute and I/O nodes [35].

5.3.3 Evidence of use outside PRACE

The Pulsation project runs a high-resolution configuration of the NEMO ocean model in
combination with the WRF atmospheric model on the CURIE system. The XIOS library has
been used for output with 128 XIOS servers and reached a writing performance of about
3.5GB/s when writing in parallel to a single file [260].

5.3.4 Pros and Cons

Metric Pros Cons

Scalability The number of parallel I/O
tasks can be freely chosen to
balance performance,
communication and node
usage. Data movement is
reduced through on-line,
client-side data processing

Performance Performance is proven up to
3.5GB/s on the CURIE
PRACE platform.

Options to tweak
performance of the
underlying HDF5-library are
not directly available.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 108

Productivity I/O can be easily adjusted
through an XML-file. Output
is in NetCDF4, which is
widely supported.

Library is now targeted to
climate and weather codes.

Sustainability XIOS is developed and
adopted by the NEMO team.
Plans for wider adoption in
climate and weather codes
improve sustainability.

Code is mostly commented in
French.

Correctness Output files are well-
structured and contain the
necessary metadata.

Portability For now only tested on the
CURIE system with Lustre.

Availability Open and royalty-free. Code
is available through an svn
repository.

Resilience

Table 52 XIOS - Pros and Cons

5.3.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A

Table 53 XIOS - Target systems/architectures

5.3.6 Conclusion

One of the greatest advantages of XIOS is its flexibility to change the output of variables of a
simulation without recompiling: writing only sub-regions, changing the frequency of output
per variable or not writing a variable at all can be done through editing an XML file. This
seems to be especially valuable for models with many variables and many users, so output can
be filtered for each purpose. Most exascale reports mention the need for data reduction
through online post-processing, which is one of the main advantages of this library. The XIOS
library uses the NetCDF4 layer for its I/O and it therefore inherits its strong and weak points.
However, unlike NetCDF4, it allows a user to easily vary the number of processes for I/O,
circumventing the I/O scalability problems when using master I/O or I/O from every task.

5.4 ADIOS

5.4.1 Brief description

Essentially, ADIOS (Adaptable I/O System) [261] is componentization of I/O transport
methods. It uses an XML-file to describe the data and the layout of variables in the code.
ADIOS then translates this XML-file into include files for the application. The I/O can be
changed by modification of the XML-files and recompiling the application with the newly
translated ‘include’ files. The approach is less flexible than XIOS, due to the needed

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 109

recompilation. Different I/O formats and libraries can be used: parallel HDF5 or NetCDF4,
one file per process, MPI-IO, the own BP format or the data can be directly connected to
advanced visualization software. The own BP file format is specially optimized for HPC
workloads and is resilient to failures in compute nodes and the file system. The library
contains routines to give hints that can be used to optimize asynchronous I/O operations. I/O
is throttled to be finished in time for the next phase of I/O, but doesn't need to be faster. This
can optimize the overlap of computation, communication and I/O. Furthermore, on most
systems the file system is shared between many jobs and it is important to use the resource as
efficiently as possible, and still keep an interactive response.

Latest version/release: v1.4.1

5.4.2 Evidence of use within PRACE

We found no evidence of ADIOS being used within PRACE to date

5.4.3 Evidence of use outside PRACE

The combustion code, S3D, uses ADIOS [262]. The fusion particle code GTC [263] runs on
more than 120,000 cores on the Jaguar system. The implementation of the ADIOS library
doubled the performance of the GTC model with a write performance of 80GB/s and a read
performance close to the peak of the I/O system. The developers of the SPECFEM3D
GLOBE model are busy implementing ADIOS [264] to reduce the writing of 40 files per
process to 1 file per process, to reduce the burden of metadata operations

5.4.4 Pros and Cons

Metric Pros Cons

Scalability Used for simulations on
120,000 cores.

No online post-processing
capabilities to reduce data.

Performance Great read and write
performance (80GB/s on
Jaguar XT5) is easy for the
internal BP format,

Problematic for all other
formats (NetCDF4, HDF5).

Productivity Easy to implement. BP files
can be read by VisIt (from
v2.0). Fortran90, Java and
NumPy bindings. Told to
convert to HDF5 and
NetCDF4.

Besides VisIt, no tools can
natively read BP files.

Sustainability

Correctness

Portability Fully supported on IBM
BG/P, Cray XT, Linux
clusters and Mac OSX.

Availability Open and royalty-free.
Source code is available
online. Installed on e.g. the

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 110

CURIE system.

Resilience ADIOS's BP file format is
resilient to failures in the
compute nodes and the file
system.

Table 54 ADIOS - Pros and Cons

5.4.5 Target systems/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Unknown N/A N/A N/A N/A

Table 55 ADIOS - Target systems/architectures

5.4.6 Conclusion

The ADIOS library has been shown to reach excellent performance for petascale applications
when the internal BP format is being used. Other file format backends will have different
performance and scalability characteristics that are also described in this report. If the limited
support by other tools of the BP file format is no problem, the ADIOS library could be a good
candidate. The ADIOS library is the only library that has a file format with resilience features
built into production software. As with most other software except XIOS, data reduction by
online post-processing is missing from the ADIOS library, which for the moment seems to be
an essential part of exascale I/O.

5.5 SIONlib

5.5.1 Brief description

SIONlib [265] is a scalable I/O library for the parallel access to files local to every process.
The library not only supports writing and reading binary data to or from several thousands of
processors into a single or a small number of physical files but also provides for global open
and close functions to access SIONlib files in parallel. SIONlib provides different interfaces:
parallel access using MPI, OpenMP, or their combination and sequential access for post-
processing utilities. Each process involved in I/O gets assigned a number of file blocks to
which it has exclusive access. The explicit allocation of file blocks to processes eliminates
performance problems due to file locking. Another advantage of the SIONlib library is that
POSIX I/O calls can be used as-is and the code only needs to be changed to open and close
files and to ensure that enough blocks are available for the I/O that each process wants to
write. Only the open and close calls are collective operations, while all other operations can
be done independently or even asynchronously.

Latest version/release: v1.3p5

5.5.2 Evidence of use within PRACE

The SIONlib library has been used in a PRACE project with the MP2C code [266] although
there is no further discussion why this library was chosen, or what its performance is like.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 111

5.5.3 Evidence of use outside PRACE

An in-depth discussion of MP2C and SIONlib can be found in [267]. The original application
used master I/O, which is inherently unscalable. The advantages of SIONlib were the
relatively small code changes needed and its resulting performance. The SIONlib library has
been implemented in several other models mainly for checkpoint-restart files and sometimes
also for result files and post-processing [268]

5.5.4 Pros and Cons

Metric Pros Cons

Scalability Expected good scaling.
Reduction of excessive file
metadata operations.

Performance Read performance of
35GB/s, write performance
of over 25GB/s on JUGENE.

Productivity Applications using POSIX or
ANSI-C I/O don't need to be
rewritten drastically to profit
from parallel I/O systems.
Both Fortran and C
supported.

Files are not platform-
independent, no variable
metadata, not structured and
not supported by any analysis
tools.

Sustainability FZJ and German Research
School for Simulation
Sciences (GRS) maintain this
library.

Correctness Release versions are
available on the internet.

Portability Can be used on block-based
file systems, e.g. Lustre and
GPFS.

Limited availability.
Available on JUQUEEN and
JUROPA.

Availability Open and royalty-free.

Resilience Usually less relevant, files
are written once, but not
updated.

Table 56 SIONlib - Pros and Cons

5.5.5 Target platforms/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A

Table 57 SIONlib - Pros and Cons

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 112

5.5.6 Conclusion

The SIONlib library avoids potential performance bottlenecks by explicating the blocked
nature of the filesystem. The SIONlib library is well suited for temporary files and situations
without an established tool-chain for post-processing that expects certain file formats.
Another advantage is that applications already using POSIX I/O calls don't need to be
rewritten radically to parallelise their I/O. As noted in the introduction, the IESP Roadmap
expects check-pointing as a technique likely to continue on exascale systems. The SIONlib
library seems ideally suited for this purpose. Checkpoints are usually written in one go and
resilience of the library is therefore less critical. As soon as a checkpoint is written
successfully, older checkpoints can be removed.

5.6 Darshan

5.6.1 Brief description

Darshan is a light-weight profiling tool that can be used to characterize I/O-load at petascale
[269]. It gives an accurate picture of the I/O-access pattern, how read/write and metadata
operations are performed by the application. Further, it characterizes the access pattern within
file and files, describing whether the access is MPI-based or POSIX. All this is done with a
minimum of overhead. Reduction, compression and storage are performed at the moment
when MPI_Finalize is called. Darshan is designed to reflect application I/O behaviour
while being transparent to users. Since it has the ambition to be a Petascale characterization
tool, it also must have strong scaling properties. It is implemented as set of user space
libraries. These are linked into the application during the linking phase. The application’s I/O-
calls are substituted with calls to the darshan libraries. No application source code
modification is necessary. During execution of the application, Darshan collects statistics that
are stored in a file record per process. As the application ends its computation by a call to
MPI_Finalize, a shutdown routine is executed to gather all the Darshan file records. The
overhead introduce is negligible as profile data produced is small on smaller computations.
On larger computations (petascale), the time used for handling Darshan profile data is small
compared to the overall shutdown time of the computation. Accordingly, Darshan does not
influence the computation. The profile achieved will be representative for the application’s
I/O behaviour. Darshan is supported on the IBM Blue Gene and the Cray XE6 platforms, but
it works on most Linux platforms. It supports the PGI, Cray, Intel and GNU compilers as well
as static and dynamic linking [270]. This tool does not have an API but depends on MPI. It
therefore works with C, C++ and all Fortran flavors.

Latest version/release: 2.2.4

5.6.2 Evidence of use within PRACE

Darshan has been used in several studies within PRACE to date. Darshan was used to better
understand the I/O of the OpenFOAM application [271] and the I/O of the EC-EARTH
climate model has also been analysed with Darshan [272]. A climate model often consists of
multiple components (e.g. atmosphere and ocean) that are each developed independently.
Each component can consist of hundreds or thousands of subroutines and it is not easy to find
the I/O strategy that has been used in each component. Darshan was proven to be a valuable
tool for finding the non-trivial pattern of I/O in this project [272].

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 113

5.6.3 Evidence of use outside PRACE

As Darshan was specifically designed with petascale systems in mind, it has been used on
several large-scale systems throughout the world.

In a study for the optimization of I/O for the FLASH code [270] the Darshan tool was used to
measure the access size when using the PnetCDF library. The results show that there is a shift
from writes of 4MB when using the standard file layout to writes of 16MB when using an
experimental file layout. Larger disk writes are more efficient for the file system. The authors
suggested that the Darshan tool could give more information about the two-phase collective
I/O optimisations specifically the time spent in I/O versus the amount of time spent re-
arranging the data. The Darshan report gives an overview of the files that are created or read,
the amount and size of data and metadata operations during the simulation and also which
tasks are involved.

5.6.4 Pros and Cons

Metric Pros Cons

Scalability Negligible overhead for I/O
intensive jobs with 65,536
processes.

Performance Negligible overhead, even for
very large file counts.

Productivity Quick overview of the
amount of I/O, files and the
processes involved.

Little information on the I/O
behaviour in time. Only for
MPI applications.

Sustainability Developed at ANL, Financed
by a DOE project. Not known
what happens when the
project ends.

Correctness A release version is available,
but also the latest unstable
branch can be checked out
with svn.

Portability Supported on BlueGene and
Cray platforms. Intel linux
clusters usually work as well.

Availability Source downloadable from
internet.

Compilation needed.

Resilience The application needs to
complete successfully to be
able to generate a report.

Table 58 Darshan - Pros and Cons

5.6.5 Target platforms/architectures

X86 IBM GPU MIC ARM Heterogeneous

Yes Yes N/A N/A N/A N/A

Table 59 Darshan - Target systems/architectures

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 114

5.6.6 Conclusion

Darshan has been developed with petascale systems in mind and its performance and
scalability is therefore excellent. Its statistical analysis is also useful at scale. It is useful for
applications with an unknown I/O profile, to get a quick overview of when, where and how
much I/O is done. Another use case is the investigation of parallel I/O, to see how well the I/O
is coalesced into larger chunks. Resilience could be improved by relaxing the condition that
the application needs to complete successfully. One useful and relatively easy improvement
could be some subroutine calls that can be added to the application by the developer to start
the analysis and generate the report at arbitrary points in the code.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 115

6 Summary

The survey has covered four separate topics that we consider relevant to enable applications
on current multi-petascale systems. We summarize our findings separately by topic:
programming languages and standards, debuggers and profilers, scalable libraries and
algorithms and I/O management techniques. Conclusions for each individual tool can be
found in the invidual reports, so here we list only what we think are the most salient points
when considering the tools for enablement.

Programming Languages and Standards:

As part of this report we have surveyed thirteen individual programming languages and
standards and report on how they have been used in PRACE to date.

 It can be seen from our brief report that the MPI forum is starting to address the
challenges that MPI will face on this road, and we believe that the exploitation phase
of T7.2 provides PRACE partners with a very valuable opportunity to investigate new
MPI 3.0 features.

 OpenMP offers the easiest means of hybridising existing MPI-based codes, a model
that is becoming increasingly important as the core-count on nodes continues to
increase. With the advent of Intel’s Xeon Phi coprocessor, OpenMP is already finding
new target architectures in the many-core space, and could become even more relevant
as a standard if plans go ahead to merge OpenACC into OpenMP 4.0 in the near
future.

 Since some of the new PRACE prototypes will consist of the latest K20 GPUs we see
the exploitation phase of T7.2 as a great opportunity to enable applications to exploit
the full compute resources of these new platforms using some of the new features
being offered by NVIDIA CUDA 5.0, including ‘Hyper-Q’ and ‘Dynamic Parallelism’

 Developing efficient OpenCL code is typically found to require more effort than other
GPU frameworks. There are some efforts, besides the new SDKs and tools for code
debugging and analysis, which try to address this issue. Its relevance may change with
the release of the Xeon Phi architecture and the support that Intel puts behind it and
for this reason we feel that T7.2 should liaise closely with European exascale projects
such as Mont-Blanc project to learn how OpenCL will be exploited there during 2013.

 The high-level nature of TBB is probably not a feature that will attract WP7 partners
looking to extend or improve existing codes. Most likely it is the lower-level ideas that
might be important. While most reviews of TBB have generally been made in the
context of Intel Xeon-based platforms, it might be worth considering the potential
benefits of TBB for the new Xeon Phi coprocessor. An initial port from OpenMP to
TBB might well be straightforward and worth investigating further, particularly on
Xeon Phi-based systems.

 Although interesting, particularly with the Xeon Phi architecture in mind, Cilk Plus
does not seem to provide much advantage over OpenMP at the moment. In comparing
the keywords in Cilk Plus and the directives in OpenMP, it is clear that the ease of
programming is not a concern for either, with OpenMP providing additional options in
scheduling and allowing for NUMA effects in some variations. In this sense, Cilk Plus
is considerably more limited than OpenMP. It is, however, worth keeping in mind the
success of the novel Cilk Plus/UPC combination that was reported on in PRACE-1IP.

 Due to its relative ease of use in comparison to both CUDA and OpenCL, OpenACC
is becoming an increasingly popular model for porting legacy applications to GPU-
based systems. The standard is still in its infancy and there are many issues with

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 116

regards to implementation that still need to be resolved, which also make it difficult to
assess the performance of the model. While it is generally appreciated that CUDA
offers the ability to perform lower-level optimization for the GPU, OpenACC may be
increasingly used as a means of efficiently probing the potential benefits of porting to
GPUs, with CUDA being used in an optional second optimization stage.

 The improvements to both the programming model and runtime in OmpSs make it
easier to port real applications without substantial re-engineering. However, OmpSs is
still at an early stage of development and no results showing petascale performance
have yet been published. The ability to manage parallelism across heterogenous
architectures consisting of CPUs and accelerators in a transparent fashion will be
necessary on deep petascale and exascale systems. OmpSs is an integral part of the
DEEP and Mont-Blanc architectures for a future exascale system and we suggest that
if OmpSs is to be exploited in T7.2, partners should work closely with both of these
projects.

 While we have seen evidence of the exploitation of MPI/PGAS hybrid models, we
have found it quite difficult to ascertain whether there has been any genuine benefit to
such approaches over the more conventional MPI/OpenMP approach. If such an
approach is to be pursued during the exploitation phase of the T7.2, then we
recommend that WP7 partners work closely with European exascale projects, where
deeper investigations into such hybrid models are already underway as part co-design
initiatives on production codes.

Debuggers and Profilers:

As part of this report, we have surveyed 14 debugging and profiling tools. We have found that
all of the European exascale projects are concentrating effort into tools for debugging and
performance analyses.

In some respect, we feel that the DEEP project provides a model for how the exploitation
phase should be conducted within T7.2. DEEP has analysed the space weather application
iPIC3D. With the tool Scalasca, the behaviour of the different parts of the application has
been identified. Some of these parts can be accelerated by being partly moved to the DEEP-
architectures “Booster” part.

We also feel that T7.2 should work closely with tool developers to learn how they can be used
more effectively to enable applications within WP7, particulary in extreme cases.

 The TAU development team usually ensures that TAU is available at early stages of
new platforms, as exemplified with the Cray Cascade prototype. TAU is being further
developed to support new threading technologies, like the new generations of NVIDIA
GPUs and Intel Xeon Phi. With its long traction, and continued support from its
funding bodies, it is strongly expected that TAU will continue to be available for
forthcoming multi-petascale systems. In this sense it also shows potent

 Scalasca has shown that it is an applicable profiling tool when considering the largest
scales currently possible. It scales in its use from 1000 cores to close to 300,000 cores.
Development of Scalasca continues with the purpose of meeting the needs of the HPC
community as exascale technology make its inroads.

 While evidence of multi-petascale use of Vampir is hard to come by, at least in a
PRACE context, the tool will be further developed. In the CRESTA-project, ZIH and
other partners will jointly develop the scalable measurement environment used by
Vampir as an Open Source project.

 TotalView is a professional debugging tool that specifically is aimed at the High
Performance Computing market. It is designed for debugging programs running on
very large supercomputers and has been successfully tested on 768,432 processes until

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 117

now. TotalView state that they are working closely together with IBM to provide
debugging facilities on IBM's Blue Gene systems, so petascale debugging is available
today. Although TotalView’s current feature-set will not be sufficient on an exascale
system, RogueWave is actively working on new features such as fault-tolerance as
part of co-design teams within the US DOE.

 DDT now has features that are specifically targeting debugging of petascale
simulations. The response times of DDT are now short enough for making petascale
debugging practically possible and the GUI has features that are specifically designed
for giving an overview of large amounts of data as well as the state of a large numbers
of threads/processes. The fact that the developers of DTT have continued to show a
quick response to the fast pace of changing hardware on large-scale heterogeneous
systems, indicates that DDT will feature heavily as a debugging tool on the road to
exascale. Although DDT's current feature-set will not be sufficient on an exascale
system, Allinea is actively working on new features such as fault-tolerance as part of
co-design teams within the US DOE and European exascale projects.

 Intel tools are excellent for debugging and profiling Intel Xeon and more recently
Xeon Phi platforms on small scale, but there is very little evidence of their use on
large mult-petascale systems and what Intel’s long term aims are for their tool sets on
such systems.

Scalable Libraries and Algorithms:

As part of this report we have surveyed a representative collection of libraries and techniques
that currently garner much interest both within and outside PRACE. As a consequence of the
move towards large multi-petascale heterogeneous systems, there is an increasing demand for
new and improved scalable, efficient, and reliable numerical algorithms and libraries that
confront existing and upcoming complexities associated with such systems, including
complex memory hierarchies, the overhead of data movement and fault tolerance.

 In terms of dense solvers, we feel that ELPA shows real promise and should be
investigated further as an alternative to ScaLAPACK within PRACE applications. We
also believe that MAGMA is one of the most promising libraries containing dense
direct solvers with impressive performance and indications of long-term sustainability.
The library targets all accelerators/coprocessor architectures and is also fully portable
in its OpenCL form Distributed-memory versions of the library are also currently in
progress and should be investigated as alternatives to ScaLAPACK, possibly during
the exploitation phase of T7.2

 In terms of sparse solvers, MUMPS appears to be a very robust and efficient direct
solver for medium-sized distributed or centralized sparse linear systems arising for
instance from discretization of PDE problems. Regarding large-scale problems,
MUMPS will not be usable as a standalone solver of the original linear system.
However, MUMPS will still be a very important tool for the robust and efficient
solution of auxiliary medium-sized distributed and centralized sparse linear systems
arising in higher level methods like FETI domain decomposition methods, and will in
turn extend their scalability. MUMPS has many unique features such as the detection
of null pivots, rank deficiency, etc. that can be very helpful in higher-level scalable
methods.

 While both SuperLU_DIST and SuperLU_MCDT show promise as dense sparse
solvers, like all the other libraries mentioned here, improvements, such as
synchronization reduction, data movement minimization and fault tolerance need to be
included in the library in order for SuperLU_MCDT to enable applications on future
multi-petascale and exascale systems. An interesting alternative to investigate is the
PDSLin library.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 118

 Iterative methods, particularly Krylov subspace-based methods are fundamental
algorithms to many PRACE applications and have therefore received a considerable
amount of attention within PRACE projects to date. Very interesting exploratory work
into communication avoiding Conjugate Gradient algorithms has recently been carried
out in PRACE-2IP (WP12) and is an active focus of research in many exascale
projects in both Europe and the US. With new implementations of the MPI 3.0
standard available (and on the horizon), which now offer non-blocking
communications, there is good reason for PRACE partners to investigate these
forward looking algorithms in more detail during the enablement of applications on
PRACE systems in T7.2.

 As the CRESTA investigations into FFT methods point out, the major bottleneck in
distributed FFT implementations is the MPI_ALLTOALL communication overhead,
which becomes particularly problematic on large core counts. This problem can be
alleviated somewhat by using hybrid MPI+OpenMP methods, but further
optimisations are badly needed, as FFTs form the basis of many popular applications
running on large-scale PRACE systems. In order to push FFT methods further along
the road to exascale, we agree with CRESTA that further investigations should be
made into non-blocking collective communications within in-code FFT
implementations, possibly via the new MPI 3.0 standard features now becoming
available. If FFT methods are to be investigated further in T7.2, we recommend that
PRACE partners work closely with CRESTA and other European exascale projects to
learn more about how their efforts in this area are progressing and if any non-blocking
implementations are ready to be exploited in real applications.

 PETSc has strong potential for enabling applications on future multi-petascale and
exascale systems, but several features expected from exascale libraries need to be
implemented in the library (communication reducing algorithms, error resilience, fault
tolerance etc.) As PETSc interfaces with several widely used numerical libraries
(MUMPS, Hypre, SuperLU, METIS), its scalability is strongly dependent on the
scalability of these libraries also. It is interesting to note that CRESTA chose the
PETSc library as being representative of iterative methods and was chosen for further
research on exascale co-design efforts. Indications are that PETSc is well supported by
the DOE in the US and will continue to make inroads on building in features that will
be important on the road to exascale.

 Although we could not find any evidence of Trilinos being used in PRACE to date, it
appears to be a very powerful high-level library which should be of interest to the
PRACE community. The object oriented and templated design of the packages within
Trilinos allows relatively easy development of codes for various types of architectures
(mainly because of the Kokkos core kernels package. Many modern techniques for
improving scalability on future multi-petascale and exascale machines, such as
communication reducing algorithms, have already been implemented into the
framework which gives more reason to investigate the library further, possibly during
the exploitation phase of T7.2.

 Several partitioning and mesh generation methods have also been reported on here, all
of which show promise for high scalability on the road to exascale.

I/O Management Techniques:

As part of this report we have surveyed five I/O management techniques. The increasing data
needs of scientific and engineering applications mean that the problems associated with
reading, writing, analysing, storing and sharing large amounts of data are becoming more
relevant to a wider user community within PRACE.

D7.2.1 A Report on the Survey of HPC Tools and Techniques

PRACE-3IP - RI-312763 29.04.2013 119

 Several efforts by the US DOE are on-going to improve the performance of HDF5 on
multi-petascale machines and to adapt the library for exascale. The HDF5 library has
shown the ability to scale and perform well enough for multi-petascale simulations.
The advantages of HDF5 are that files in the HDF5 format are platform-independent
and suitable for high-quality visualizations using the VisIt and ParaView tools. It is
the only file format that allows for complex data types like structures and a
hierarchical organization of variables. The major downside is the disparity between
the presented performance results for some applications and the achieved results in
some of the PRACE projects. We believe that one interesting area of focus during the
exploitation phase of T7.2 could be on the tuning of applications with HDF5 on
parallel file systems of specific PRACE platforms.

 It has been demonstrated that the PnetCDF library can reach a performance that is
close to the theoretical peak of the file system on petascale systems, using tens of
thousands of MPI tasks. It gives the user a range of tuning options to reach a better
performance. The flat file format is one of its strengths, but also a major weakness.
Models that use regular, structured grids could benefit from this library, and a large
collection of analysis tools can readily read and interpret the output files. The NetCDF
format is less well suited for use with VisIt and ParaView. It is less well suited to
modern numerical methods like non-structured grids and adaptive mesh refinement.

 The ADIOS library has been shown to reach excellent performance for petascale
applications when the internal formats are used. Other file format back-ends will have
different performance and scalability characteristics that are also described in this
report. If the limited support by other tools of the BP file format is no problem, the
ADIOS library could be a great candidate. The ADIOS library is the only library that
has a file format with resilience features built into production software. Data reduction
by online post-processing is missing from the ADIOS library, which seems to be an
essential part of exascale I/O.

 The SIONlib library avoids potential performance bottlenecks by explicating the
blocked nature of the filesystem. The SIONlib library is well suited for temporary files
and situations without an established tool-chain for post-processing that expects
certain file formats. Another advantage is that applications already using POSIX I/O
calls don't need to be rewritten radically to parallelise their I/O. As noted in the
introduction, the IESP Roadmap expects check-pointing as a technique likely to
continue on exascale systems. The SIONlib library seems ideally suited for this
purpose. Checkpoints are usually written in one go and resilience of the library is
therefore less critical. As soon as a checkpoint is written successfully, older
checkpoints can be removed.

 Darshan has been developed with petascale systems in mind and its performance and
scalability is therefore excellent. Its statistical analysis is also useful at scale. It is
useful for applications with an unknown I/O profile, to get a quick overview of when,
where and how much I/O is done. Resilience could be improved by relaxing the
condition that the application needs to complete successfully. One useful and
relatively easy improvement could be some subroutine calls that can be added to the
application by the developer to start the analysis and generate the report at arbitrary
points in the code.

