

SEVENTH FRAMEWORK PROGRAMME
 Research Infrastructures

INFRA-2012-2.3.1 – Third Implementation Phase of the European
High Performance Computing (HPC) service PRACE

PRACE-3IP

PRACE Third Implementation Phase Project

Grant Agreement Number: RI-312763

D7.1.2

Final Report on Applications Enabling

Final

Version: 1.0
Author(s): Alexander Schnurpfeil, FZJ; Xu Guo, EPCC; Maciej Szpindler, ICM
Date: 23.06.2014

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-312763
Project Title: PRACE Third Implementation Phase Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: D7.1.2
Deliverable Nature: Report
Deliverable Level:
PU / *

Contractual Date of Delivery:
30 / June / 2014
Actual Date of Delivery:
30 / June / 2014

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: PRACE Third Implementation Phase Project
ID: D7.1.2
Version: 1.0 Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2010
File(s): D7.1.2.docx

Authorship

Written by: Alexander Schnurpfeil, FZJ; Xu Guo,
EPCC; Maciej Szpindler, ICM

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 ii

Contributors: Petri Nikunen, CSC
Markus Rampp, RZG
Evghenii Gaburov, SURFSara
Cevdet Aykanat, BILKENT
Eva Casoni, BSC
Jacques David, CEA
Gunduz V. Demirci, BILKENT
John Donners, SURFsara
Andrew Emerson, CINECA
David Emerson, STFC
Hans Eide, UiO
Georgios Fanourgakis, CASTORC
Damyan Grancharov, NCSA
Massimiliano Guarrasi, CINECA
Guillaume Houzeaux, BSC
Nevena Ilieva, NCSA
Maria Francesca Iozzi,UiO
Mohammad Jowkar, BSC
Christos Kannas, CASTORC
Tomáš Karásek, VSB
Klaus Klingmueller, CASTORC
Soon-Heum Ko, LiU
Elena Lilkova, NCSA
Leandar Litov, NCSA
Stoyan Markov, NCSA
Charles Moulinec, STFC
Peicho Petkov, NCSA
Martin Plummer, STFC
Thomas Ponweiser, JKU
Thomas Röblitz, UiO
Ole Widar Saastad, UiO
Katerina Michalickova, UiO
Nikolay Aleksandrov Vazov, UiO
Georgios Magklaras, UiO
Reha Oğuz Selvitopi, BILKENT
Peter Stadelmeyer, JKU
Andrew Sunderland, STFC
Ilian Todorov, STFC
Ata Turk, BILKENT
Francesco, Savladore, CINECA
Maciej Cytowski, ICM
Mikael Rännar, SNIC-UmU
Carlo Cavazzoni, CINECA
Volker Weinberg, LRZ
Anupam Karmakar, LRZ
Luis Fazendeiro, SNIC-Chalmers
Jeroen Engelberts, SURFsara
Vegard Eide, NTNU
Alexandra Charalampidou, GRNET
Marcin, Lawenda, ICM,
Joerg Hertzer, HLRS
Miroslaw Kupczyk, PSNC

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 iii

Reviewed by: Iva Nikolova, NCSA; Dietmar Erwin, FZJ
Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 07/May/2014 Draft Set up structure of this

Document
0.2 20/May/2014 Draft Chapters 2, 3 and 4

included
0.3 27/May/2014 Draft Projects reports included
0.4 03/June/2014 Draft After task-internal

reviews
0.5 22/June/2014 Draft After project-internal

review
1.0 23/June/2014 Final Version

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-312763. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2014 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-312763 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 iv

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. iii

Document Keywords .. iii

Table of Contents ... iv

List of Figures .. v

List of Tables ... vi

References and Applicable Documents .. viii

List of Acronyms and Abbreviations ... x

Executive Summary .. 1

1 Introduction ... 1

2 T7.1.A Petascaling & Optimisation Support for Preparatory Access Projects – Preparatory
Access Calls .. 3

2.1 Cut-off statistics ... 3

2.2 Review Process ... 5

2.3 Assigning of PRACE collaborators .. 6

2.4 Monitoring of projects .. 6

2.5 Hand-over between PRACE-2IP and PRACE-3IP PA type C projects ... 7

2.6 PRACE Preparatory Access type C projects covered in the 3IP extension 7

2.7 Dissemination ... 9

2.8 Cut-off March 2013 ... 9
2.8.1 Enabling Xnavis (URANS solver for fluid-dynamics) for massively parallel simulations of wind
farms, 2010PA1461 ... 10
2.8.2 Scalability analysis, OpenMP hybridization and I/O optimization of a code for Direct
Numerical Simulation of a real wing, 2010PA1454 .. 13
2.8.3 Next generation pan-European coupled Climate-Ocean Model - Phase 1 (ECOM-I),
2010PA1470 .. 14
2.8.4 Increasing the QUANTUM ESPRESSO capabilities II: towards the TDDFT simulation of
metallic nanoparticles, 2010PA0633... 16
2.8.5 Scalability of gyrofluid components within a multi-scale framework, 2010PA1505 19
2.8.6 Direct numerical simulation of a high-Reynolds-number homogeneous shear turbulence,
2010PA1492 .. 21
2.8.7 Massively Parallel Multiple Sequence Alignment Method Based on Artificial Bee Colony,
2010PA1467 .. 24

2.9 Cut-off June 2013 .. 27
2.9.1 Optimization of PIERNIK for the multiscale simulations of high-redshift disk galaxies,
2010PA1757 .. 27
2.9.2 URANIE, 2010PA1527 ... 32

2.10 Cut-off September 2013 .. 35
2.10.1 Parsek2D-MLMD, 2010PA1802 .. 35

3 T7.1.B Application Support for DECI Projects .. 39
3.1 T7.1.B Overview in the 2nd Year of PRACE-3IP .. 39

3.1.1 Technical Evaluations .. 39
3.1.2 Technical Support for the Accepted DECI Projects ... 40
3.1.3 Coordination and Collaboration .. 41

3.2 Technical Support for DECI-9 in the 2nd Year of PRACE-3IP ... 41

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 v

3.2.1 Planck-LFI2 .. 42

3.3 Technical Support for DECI-10 in the 2nd Year of PRACE-3IP ... 44
3.3.1 DNSTF .. 44
3.3.2 HYDRAD .. 47

3.4 Technical Support for DECI-11 ... 50
3.4.1 Planck-LFI3 .. 50

3.5 The following DECI calls .. 51

4 T7.1.C Applications for Major Socio-economic Challenges .. 51
4.1 Work scope ... 51

4.2 Work organization... 52
4.2.1 Contributions .. 53
4.2.2 Tier-0 resources access .. 55

4.3 Approach for socio-economic applications enabling .. 56

4.4 Detailed report on application enabling .. 59
4.4.1 PR2 ... 59
4.4.2 PR4 ... 60
4.4.3 PR5 ... 62
4.4.4 PR6 ... 65
4.4.5 PR7 ... 69
4.4.6 PR8 ... 72
4.4.7 PR9 ... 74
4.4.8 PR11 ... 78
4.4.9 PR12 ... 81
4.4.10 PR14 ... 85
4.4.11 PR15 ... 89

5 Summary .. 93
5.1 Preparatory Access Type C .. 93

5.2 Technical support for DECI ... 95

5.3 Socio-economic application support .. 95

6 Annex .. 97
6.1 DECI Projects .. 97

6.1.1 DECI-9 Project List .. 97
6.1.2 DECI-10 Project List .. 99
6.1.3 DECI-11 Project List .. 101
6.1.4 DECI-12 Project List .. 103

List of Figures
Figure 1: Number of Submitted and accepted proposals for PA type C per Cut-off. 4
Figure 2: Amount of PMs assigned to PA type C projects per Cut-off. .. 4
Figure 3: Number of projects per scientific field. ... 5
Figure 4: Elapsed times vs. number of compute nodes. .. 12
Figure 5: Efficiency vs. number of compute nodes. .. 12
Figure 6: Thread scaling of the HBM model 2.8-v2, OpenMP version of the application tested with
myov3 case on the one node of Blue Gene/Q. Performance comparison between XL Fortran and GNU
Fortran based applications. .. 16
Figure 7: (a) Overall wall-clock time for the various versions of the code on SuperMUC. (b) Time
spent in the MPI functions (from the Scalasca analysis). (c) Comparison of the weak scaling of the
MGU version of GEM on SuperMUC (LRZ) and on JUQUEEN (JSC). ... 20
Figure 8: 1 (top), 2 (bottom left) and 3 (bottom right). ... 23

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 vi

Figure 9: Relative speedups obtained via MPI only and hybrid MPI/OpenMP implementation. 106
compared to 107 iterations. .. 27
Figure 10: Strong scalability of jeans problem. The blue curve shows the effect of our optimization. 30
Figure 11: Strong scalability of sedov problem using AMR method. .. 31
Figure 12: Performance improvement obtained by using SFC for domain decomposition. 31
Figure 13: Weak scaling curve for Jeans problem using 643 cells per process. 32
Figure 14: Single job execution times in different run strategies. .. 34
Figure 15: Execution time in seconds for two-level MLMD simulations (straight line) with the old (v0)
and new (v1) version of the code. The execution times of one-level simulations with resolution equal
to the refined grid resolution are plotted in dashed lines. The y-axis is in log scale: notice the code
speed up between v0 and v1. ... 37
Figure 16: Weak scaling tests for the old code version (v0), the new code version without sub-cycling
(v1, NS) and the new code version with sub-cycling and Time Ratio between the grid TR=6 (v1, TR6).
A logarithmic scale is used in the y-axis. Notice the code speed up of a factor 10 between the old and
the new version of the code. Sub-cycling improves scalability. ... 38
Figure 17: NSCOUETTE scaling up to 20,000 cores on Hydra @ RZG. ... 49
Figure 18: Snapshot of NSCOUETTE simulations of turbulence in Keplerian flows. 50
Figure 19: Results of the first experiment. .. 62
Figure 20: Results of the second experiment. ... 62
Figure 21: Elapsed Time in Kohn-Sham Matrix Construction for Hybrid Simulation of Titin molecule.
Time measured at the 2nd Iteration. .. 65
Figure 22: Elapsed Time in Kohn-Sham Matrix Construction for Hybrid Simulation of Insulin
molecule. Time measured at the 2nd Iteration. ... 65
Figure 23: Speed-up obtained from Stage 1 parallelisation of the 1024 geometry calculations. 68
Figure 24: Speed-up upon number of threads for the system of 46336 atoms. The hybridized
parallelization involved a load of 16 OpenMP threads per MPI task. ... 71
Figure 25: Execution time on 8 MPI tasks with 16 OpenMP threads each versus system size. 72
Figure 26: Monitoring of thread activity and memory consumption for an alignment job on CURIE. 74
Figure 27: Solid beam consisting of homogeneous elastic material. The ratio between the number of
cells in the solid and fluid mesh is approximately 1:50. ... 75
Figure 28: Total runtime for FSI operations for uniform diffusivity. Scalability is considerably
improved when using a modified version of OpenFOAM’s Pstream library (right) instead of the
original one (left). .. 77
Figure 29: Scalability of mesh generation and CFD simulation. .. 78
Figure 30: Running time of building decision tree with increasing number of cores. 80
Figure 31: Decision tree build execution time dissection.. 81
Figure 32: Mesh Multiplication scheme in Alya. .. 83
Figure 33: Master-Slave strategy. ... 84
Figure 34: Scalabilty of Alya code. ... 85
Figure 35: Coupling between incompressible and solid modules in Alya. ... 85
Figure 36: Projected total speedup of EMAC assuming different GPU speedups. 87
Figure 37: Processing of the chemical kinetic system in MECCA/EMAC. .. 88
Figure 38: Time spent by Delft3D subroutines in the sediment transport model as obtained by
Scalasca. .. 92
Figure 39: Performance of Sediment transport benchmark on FERMI. We plot the Execution time vs
the number of cores. .. 92
Figure 40: Timeline of the PA C projects. .. 93

List of Tables
Table 1: Projects which were established in PRACE-3IP but will be finalised in the extension phase of
PRACE-3IP. .. 9
Table 2: Code general features for χnavis. .. 10
Table 3: Scalability analysis using different architectures. Detailed information is given in the text. . 13
Table 4: Code general features for the Direct Numerical Simulation of a real wing code. 13

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 vii

Table 5: Scalability and performance comparison of pure-MPI and MPI/OpenMP versions of the code.
 ... 14
Table 6: Code general features for HBM. .. 15
Table 7: Code general features for Quantum ESPRESSO. ... 17
Table 8: Summary of test results on molecular (Test1) and Au nanoparticle (Test 2). 18
Table 9: Weak speed-up obtained. .. 18
Table 10: Performance of the cp kernel with W256 dataset. 2048 cores, 512 tasks, 4 threads per task.
 ... 19
Table 11: Code general features for GEM. ... 19
Table 12: Code general features for SHEAR. ... 22
Table 13: Code general features for MSA_BG. .. 25
Table 14: Relative speedup of hybrid implementation for problem size of 106 iterations. 26
Table 15: Relative speedup of hybrid implementation for problem size of 107 iterations. 26
Table 16: Configuration alternatives for benchmarking the hybrid MPI/OpenMP implementation. 26
Table 17: Code general features for PIERNIK. ... 29
Table 18: Code general features for URANIE. ... 33
Table 19: Code general features for Parsek2D-MLMD. ... 35
Table 20: DECI calls in PRACE-3IP. ... 39
Table 21: DECI enabling projects in the 2nd year of PRACE-3IP. .. 40
Table 22: Code general features for CosmoMC. ... 42
Table 23: Code general features for LevelS. ... 43
Table 24: Code general features for Slilab. ... 45
Table 25: Strong scaling results of Slilab with #dimensions=256. ... 46
Table 26: Strong scaling results of Slilab with #dimensions=128. ... 47
Table 27: Code general features of NSCOUETTE. .. 48
Table 28: Socio-economic challenges and associated applications enabling projects. 53
Table 29: White papers on the applications and socio-economic challenges. 54
Table 30: T7.1C efforts summary. .. 55
Table 31: Tier-0 allocations granted. .. 55
Table 32: Code general features for TELEMAC suite. ... 59
Table 33: TOMAWAC: 5th LEVEL – 7,200 time-steps – 6.21 s per time-step (MARENOSTRUM) 60
Table 34: TOMAWAC-TELEMAC-3D-SISYPHE: 5th LEVEL – 1,200 time-steps (ARCHER) 60
Table 35: Code general features for URANIE (2). .. 61
Table 36: Code general features for LSDALTON. ... 63
Table 37: Code general features for UKRmol. .. 66
Table 38: Speed-up obtained from Stage 1 parallelisation of the 1024 geometry calculations............. 67
Table 39: Speed-up obtained from Stage 2 parallelisation of the scattering energy clusters. 69
Table 40: Code general features for DL_POLY. ... 69
Table 41: Code general features for bioinformatics workflow. ... 73
Table 42: Code general features for OpenFOAM. .. 75
Table 43: Code general features for MR-MPI library. ... 79
Table 44: Code general features for Alya. ... 81
Table 45: Code general features for EMAC model. .. 86
Table 46: Code general features for DELF3D and associated coupled codes. 89
Table 47: Successive results of optimization strategies. ... 90
Table 48: Future plans of finalized PA C projects. ... 94
Table 49: DECI-9 project list. ... 99
Table 50: DECI-10 project list. ... 101
Table 51: DECI-11 project list. ... 103
Table 52: DECI-12 project list. ... 104

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 viii

References and Applicable Documents

[1] http://www.prace-project.eu

[2] http://www.prace-project.eu/IMG/pdf/d7.1.pdf

[3] http://www.prace-ri.eu/IMG/pdf/wp121.pdf

[4] http://www.prace-ri.eu/IMG/pdf/wp122.pdf

[5] http://www.prace-ri.eu/IMG/pdf/wp123.pdf

[6] http://www.prace-ri.eu/IMG/pdf/wp124.pdf

[7] http://www.prace-ri.eu/IMG/pdf/wp125.pdf

[8] http://www.prace-ri.eu/IMG/pdf/wp126.pdf

[9] http://www.prace-ri.eu/IMG/pdf/wp127.pdf

[10] http://www.prace-ri.eu/IMG/pdf/wp115.pdf

[11] http://www.prace-ri.eu/IMG/pdf/wp116.pdf

[12] PRACE RI webpage for white papers: http://www.prace-ri.eu/white-papers?lang=en
[13] http://www.prace-ri.eu/IMG/pdf/wp167.pdf

[14] http://www.prace-ri.eu/IMG/pdf/wp168.pdf

[15] http://www.prace-ri.eu/IMG/pdf/wp169.pdf

[16] http://www.prace-ri.eu/IMG/pdf/wp170.pdf

[17] http://www.prace-ri.eu/IMG/pdf/wp171.pdf

[18] http://www.prace-ri.eu/IMG/pdf/wp172.pdf

[19] http://www.prace-ri.eu/IMG/pdf/wp173.pdf

[20] http://www.prace-ri.eu/IMG/pdf/wp174.pdf

[21] http://www.prace-ri.eu/IMG/pdf/wp175.pdf

[22] http://www.prace-ri.eu/IMG/pdf/wp177.pdf

[23] https://software.intel.com/sites/products/documentation/hpc/mkl/mklman/GUID-
2C5C30E9-2B33-4F4E-AD5D-94398CA57FAD.htm

[24] D7.1.1 Applications Addressing Major Socio-economic Challenges (25.05.2013),
http://www.prace-ri.eu/IMG/pdf/d7.1.1.pdf

[25] UKRmol: J. M. Carr, P. G. Galiatsatos, J. D. Gorfinkiel, A. G. Harvey, M. A. Lysaght,
D. Madden, Z. Mašín, M. Plummer, J. Tennyson, and H. N. Varambhia, Eur. Phys. J. D 66,
58 (2012)

[26] A. Dora, L. Bryjko, T. van Mourik and J. Tennyson, J. Chem. Phys. 146 (2012) 024324

[27] Z. Masin and J. D. Gorfinkiel, J. Chem. Phys. 137, 204312 (2012).

[28] Atomic, Molecular, Optical and Positron Physics Group, University College London,
http://www.ucl.ac.uk/phys/amopp

[29] P. Petkov, S. Markov, I. Todorov, “Development of AGBNP2 Implicit Solvent Model
Library for MD Simulations”, PRACE White Paper, http://www.prace-
ri.eu/IMG/pdf/wp111.pdf

[30] G. Houzeaux, J. Principe, “A Variational Subgrid Scale Model for Transient
Incompressible Flows”, Int. J. Comp. Fluid Dyn., 22(3), 135–152, 2008.

[31] G. Houzeaux, R. Aubry, M. Vázquez, “Extension of fractional step techniques for
incompressible flows: The preconditioned Orthomin(1) for the pressure Schur complement”,
Computers & Fluids, 44, 297–313, 2011.

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 ix

[32] R. Lohner, F. Mut, J. Cebral, R. Aubry, G. Houzeaux, “Deflated Preconditioned
Conjugate Gradient Solvers for the Pressure-Poisson Equation: Extensions and
Improvements”, Int. J. Num. Meth. Eng., 87(1-5), 2-14, 2010.

[33] K. S. Mujumdar and V. V. Ranade, “Simulation of rotary cement kilns using a one
dimensional model”, Chem. Eng. Res. Des., vol. 84, pp. 165–177, 2006.

[34] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation, Taylor &
Francis, 2004.

[35] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied
Mathematics, 2003.

[36] G. Lapenta, J. Brackbill, P. Ricci, Kinetic approach to microscopic-macroscopic
coupling in space and laboratory plasmas, Physics of plasmas 13 (2006) 055904.

[37]] H. Vu, J. Brackbill, Celest1d: an implicit, fully kinetic model for low-frequency,
electromagnetic plasma simulation, Computer physics communications 69 (1992) 253-276.

[38] A. Beck, M. Innocenti, G. Lapenta, S. Markidis, Multi-level multi-domain algorithm
implementation for two-dimensional multiscale particle in cell simulations, Journal of
Computational Physics (2013).

[39] https://code.google.com/p/likwid/

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 x

List of Acronyms and Abbreviations

AISBL Association International Sans But Lucratif
 (legal form of the PRACE-RI)
AMD Advanced Micro Devices, Inc.
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BILKENT Bilkent University (Turkey)
BLAS Basic Linear Algebra Subprograms
BSC BarcelonaSupercomputing Center (Spain)
BSCW Basic Support for Cooperative Work; a web based system that
offers shared workspaces
CaSToRC Computation-based Science and Technology Research Center

(Cyprus)
CEA Commissariat à l’EnergieAtomique (represented in PRACE by GENCI,

France)
CHALMERS Chalmers University of Technology (Sweden)
CaSToRC Computation-based Science and Technology Research Center
CINECA Consorzio Interuniversitario, the largestItaliancomputing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE

by ETHZ, Switzerland)
CUDA Compute Unified Device Architecture
DECI Distributed European Computing Initiative
DEISA Distributed European Infrastructure for Supercomputing

Applications. EU project by leading national HPC centres.
DGEMM Double precision General Matrix Multiply
DP Double Precision, usually 64-bit floating point numbers
DPMDB DECI Project Management Database; a web-based application to

view and edit details of DECI proposals and projects
EC European Community
EPCC Edinburg Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
FFT Fast Fourier Transform
FPU Floating-Point Unit
FZJ Forschungszentrum Jülich (Germany)
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GÉANT Collaboration between National Research and Education Networks to

build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de CalculIntensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPU Graphic Processing Unit

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 xi

GRNET Greek Research and Technology Network (Greek)
HDF5 Hierarchical Data Format
HLRS Höchstleistungsrechenzentrum Stuttgart (Germany)
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing
IBM Formerly known as International Business Machines
ICHEC Irish Centre for High-End Computing (represented in PRACE by NUI

Galway)
ICM Interdisciplinary Centre for Mathematical and Computational Modelling

(Warsaw, Poland)
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
I/O Input/Output
IP Implementation Project
IPB Institute of Physics, Belgrad (Serbia)
ISC International Supercomputing Conference; European equivalent to

the US based SC0x conference. Held annually in Germany.
JKU Johannes Kepler University (Linz, Austria)
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LiU Linköping University (Sweden)
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LU Lund University (Sweden)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MKL Math Kernel Library (Intel)
MPI Message Passing Interface
NCSA National Centre for Supercomputing Applications (Sofia, Bulgaria)
NCF Netherlands Computing Facilities (Netherlands)
NIIF National Information Infrastructure Development Institute (Hungary)
NTNU Norges teknisk-naturvitenskapelige universitet (Norway)
NUI National University of Ireland
NUMA Non-Uniform Memory Access or Architecture
OpenCL Open Computing Language
OpenMP Open Multi-Processing
OS Operating System
PA Preparatory Access
PA C Preparatory Access Type C
PDC Center for High Performance Computing, at KTH (represented in

PRACE by SNIC, Sweden)
PETSc Portable, Extensible Toolkit for Scientific Computation
PGI Portland Group, Inc.
PI Principal Investigator
PM Person month
POSIX Portable OS Interface for UNIX

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 xii

PPM Portable pixmap format
PPR Project Proposal and Reporting
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PRACE-2IP Second implementation phase of PRACE
PRACE-3IP Third implementation phase of PRACE
PRACE-RI PRACE Research Infrastructure
PSNC Poznan Supercomputing and Networking Centre (Poland)
QCD Quantum Chromodynamics
RAM Random Access Memory
RI Research Infrastructure
ROMIO High-Performance, Portable MPI-IO Implementation
RZG Rechenzentrum Garching (Garching Computing Centre, of the Max 

Planck Society, represented in PRACE by GCS, Germany)
SE Scientific Evaluation
SHMEM Share Memory access library (Cray)
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SPH Smoothed Particle Hydrodynamics
SSC PRACE Scientific Steering Committee
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
SURFsara Dutch national High Performance Computing & e-Science Support
 Center
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TDDFT Time-Dependent Density Functional Theory
TE Technical Evaluation
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

Tier-1 See Tier-0
UHeM Istanbul Technical University National Center for High Performance

Computing (=UYBHM)
UiO Universitetet i Oslo (represented in PRACE by SIGMA, Norway)
UmU Umea universitet (Sweden)
UU Uppsala University (Sweden)
VSB-TUO Vysoká škola báňská – Technická univerzita Ostrava (Technical

University of Ostrava, Czech Republic)
WCSS Wroclaw Centre for Networking and Supercomputing (Poland)
WP Work Package
VTK The Visualization Toolkit

D7.1.2 Final Report on Applications Enabling

PRACE-3IP - RI-312763 23.06.2014 xiii

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

1

Executive Summary

Task T7.1 “Scaling and Optimisation of Applications Codes” in Work Package 7 of PRACE-
3IP aims to provide application enabling support for the HPC applications which are
important for the European researchers to ensure the applications can effectively exploit
multi-petaflop systems. There were three activities in T7.1:

T7.1.A Petascaling & Optimisation Support for Preparatory Access Projects: this activity
provided code enabling and optimisation to European researchers as well as industrial projects
to make their applications ready for Tier-0 systems. Projects can continuously apply for such
services via the Preparatory Access Call Type C (PA C) with a cut-off every three months for
evaluation of the proposals. Five Preparatory Access Calls have been carried out in PRACE-
3IP and a total of 10 PA C projects have finished their work. The report focused on the
optimization work and results gained by the completed projects in PRACE-3IP. The statistics
about the PA C calls in PRACE-3IP as well as a description of the call organization itself is
also included. The results of the completed projects have also been documented in white
papers which were published on the PRACE-RI website [12].

T7.1.B Applications Support for DECI Projects: this activity in PRACE-3IP continued
providing the technical support to DECI projects on Tier-1 systems since August 2013 after
the PRACE-2IP ended. 15 partner sites were involved providing 73 PMs in total for the DECI
technical support. In the 2nd year of PRACE-3IP, 180 Technical Evaluations (TEs) were
performed, 119 for DECI-11 and 61 for DECI-12 applications. Technical support was
provided for 31 DECI-9 and 37 DECI-10 projects which started in PRACE-2IP and were
continued in PRACE-3IP. Full support was provided for 52 DECI-11 projects, and the
starting assistance was provided for the 34 DECI-12 projects. Application enabling support
was provided for four of the DECI projects and the enabling work done are reported in this
deliverable.

T7.1.C Major socio-economic challenges and associated applications: this activity focused
on enabling applications addressing key socio-economic challenges. The identified challenges
included safe and environmental-friendly energy production, rational drug design, sustainable
food supply, future aircraft transportation, ‘big data’ management and processing,
understanding of climate change and natural environment protection. Eleven projects have
been completed to address the given challenges and support over 20 recognised community
codes. The enabling work focused on: application suites enabling for a multi-discipline
modelling with coupling separate codes on the selected HPC platforms, improving
computational kernels and scalable implementations. Following on the D7.1.1 in PRACE-3IP
which reported on the identification of the challenges and codes, this deliverable includes the
reporting on the completed projects as well as indications for future improvements and
potential benefits for the application communities. Results and outcomes of these projects
have also been presented with more technical details in the dedicated white papers.

1 Introduction

Computational simulations have proved to be a promising way to find answers to research
problems from a wide range of scientific fields. However, complex problems often imply high
demands regarding the needed computation time which cannot be satisfied by conventional
computer systems. Instead, supercomputers are the method of choice in today’s simulations.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

2

PRACE offers a wide range of different Tier-0 and Tier-1 architectures to the scientific
community as well as to industrial projects. The efficient usage of such systems places high
demands on the used software packages and in many cases advanced optimization work has to
be applied to the codes to make best use of the provided supercomputers. The complexity of
supercomputers requires a high level of experience and advanced knowledge of different
kinds of concepts regarding programming techniques, parallelization strategies, etc. Such
demands often cannot be covered by the applicants themselves but special assistance of
supercomputing experts is needed. PRACE offers such a service through the Preparatory
Access Call type C (PA C) for Tier-0 systems. PA C is managed by Task 7.1.A “Petascaling
and Optimization Support for Preparatory Access Projects”. This includes: the evaluation of
the PA C proposals and the assignment of PRACE experts to these proposals. Furthermore,
the support work itself is performed and monitored within this task. Section 2.1 gives a more
detailed description and shows statistics on the usage of PA C in PRACE-3IP. The review
process, the assignment of PRACE experts to the projects, and the monitoring of the support
work is explained. Finally, the work done within the projects along with the outcome of the
optimization work is presented in Section 2.8, Section 2.9 and Section 2.10.

In order to cover the users’ needs regarding computation time and application support on
Tier-1 systems the “Distributed European Computing Initiative (DECI)” has been integrated
into PRACE since PRACE-2IP as a follow-on activity to the previous successful “DEISA
Extreme Computing Initiative”. This is managed by task 7.1.B “Applications Support for
DECI Projects”. T7.1.B continues the support for DECI projects after PRACE-2IP ended
since August 2013, and mainly focuses on providing the technical/enabling support for the
accepted DECI projects. The work done and the outcome is summarized in Section 0,
including a brief overview of T7.1.B (Section 3.1), the technical support and applications
enabling reporting for the DECI-9/DECI-10/DECI-11 enabling projects (Section 3.2, Section
3.3, and Section 3.4). Furthermore, general information on the following DECI calls is given
in this section.

Finally, the current deliverable describes task 7.1.C “Socio-economic challenges” of WP7.1.
This task focuses on the identification of applications which could potentially benefit from
using HPC systems whereby it addresses key socio-economic challenges. It concentrates on
enabling identified applications for efficient HPC systems usage or improving performance
and scalability of the codes already used on HPC platforms for a specific purpose that
answers the need of a given socio-economic problem. In addition to that, major socio-
economic challenges which should be supported with PRACE infrastructure have been
defined. These challenges are representing the fields having substantial impact on our live,
society and economy. The following areas have been defined: Energy Sources and
Management, Life Sciences and Medicine, Climate Change, Big Data, Environment
Protection, and Engineering. Section 4 contains the description of the application support
projects, the final report on the enabling of the selected applications and summarizes overall
achievements and outcomes from the technical perspective and benefits for addressed
scientific problem representing socio-economic challenge. Section 4.4 covers the overall
description of the addressed socio-economic challenges including the summary of the
selection process and reports in details the enabling projects associated with the selected set of
application codes.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

3

2 T7.1.A Petascaling & Optimisation Support for Preparatory
Access Projects – Preparatory Access Calls

Access to PRACE Tier-0 systems is managed through PRACE regular calls which are issued
twice a year. To apply for Tier-0 resources the application must meet technical criteria
concerning scaling capability, memory demands, and runtime set up. There are many
important scientific and industrial applications which do not meet these criteria. To support
the researchers PRACE offers the opportunity to test and optimize their applications on the
envisaged Tier-0 system prior to applying for a regular production project. This is the purpose
of the Preparatory Access Call. The PA Call is a continuous call with a cut-off every three
months for evaluation of the proposals. Therefore, new projects obtain access for preparatory
purposes to PRACE Tier-0 systems each quarter. It is possible to choose between three
different types of access:

 Type A is meant for code scalability tests to include the outcome in the proposal for a
future PRACE Regular Call. Users receive a limited number of core hours, the
allocation period is two months.

 Type B is intended for code development and optimization by the user. Users get also
a small number of core hours; the allocation period is 6 months.

 Type C is also designed for code development and optimization with the core hours
and the allocation period being the same as for Type B. The important difference is
that Type C projects get special support by PRACE to support the optimization
requests. In addition to access to the Tier-0 systems the applicants apply for 1 to 6
PMs of supporting work to be performed by PRACE experts.

All Tier-0 systems are available for PA. Currently these are the following systems:

 CURIE, BULL Bullx cluster at GENCI-CEA, France (thin, fat, and hybrid nodes are
available)

 FERMI, IBM Blue Gene/Q at CINECA, Italy
 HERMIT, CRAY XE6 at GCS-HLRS, Germany
 JUQUEEN, IBM Blue Gene/Q at GCS-JSC, Germany
 MARENOSTRUM, IBM System X iDataplex at BSC, Spain
 SUPERMUC, IBM System X iDataplex at GCS-LRZ, Germany

2.1 Cut-off statistics

In PRACE-3IP four cut-offs for PA took place. Here, suitable projects are identified by a
technical review process and experts from the PRACE project are assigned to these projects to
support the optimization work. Despite the fact that Cut-off March 2013 took place in
PRACE-2IP it is included in the presented statistics because the projects were taken over from
PRACE-3IP by the end of PRACE-2IP and a considerable amount of work was carried out in
the frame of the current implementation phase.

This section gives an overview on the outcome of the projects at each cut-off. The five cut-
offs took place on the following dates: March 1st 2013, June 3rd 2013, September 2nd 2013,
December 2nd 2013 and March 3rd 2014.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

4

Figure 1 presents the number of proposals and the number of projects which have been
accepted for each Cut-off. In total 18 out of 22 proposals were accepted.

In Figure 2 the amount of PMs assigned to the projects per Cut-off is shown. In total 53 PMs
are made available to the projects in PRACE-3IP.

Since projects from Cut-off December 2013 and June 2014 go beyond the lifetime of

The original schedule foresaw that WP7 would end in project month M24. To bridge the gap
till the start of a planned follow-on project it was decided and included in a Contract
Amendment that the work will be extended to M31 within the available resources. The period
after M24 will be referred to a 3IP extension period - for short, although no extension for the
PRACE project as such is needed; it has a duration of 48 month.

PMs dedicated to these projects will partly be used up in PRACE-3IP as well as in the 3IP
extension phase.

Finally, it is also worth to give an overview about the scientific areas which are covered by
the supported projects. This information is given in Figure 3.

Figure 2: Amount of PMs assigned to PA type C projects per Cut-off.

Figure 1: Number of Submitted and accepted proposals for PA type C per Cut-off.

0

2

4

6

8

10

12

Mar‐13 Jun‐13 Sep‐13 Dec‐13 Mar‐14

Proposals

Applied

Accepted

0

2

4

6

8

10

12

14

16

Mar‐13 Jun‐13 Sep‐13 Dec‐13 Mar‐14

Provided support by PRACE

PMs

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

5

2.2 Review Process

The management of the review procedure, the assignment of PRACE collaborators and the
supervision of the PA C projects are handled by task 7.1.A. In this section the review process
for the preparatory access proposals of Type C is explained.

All preparatory access proposals undergo a technical review performed by technical staff of
the hosting sites to ensure that the underlying codes are principally able to run on the
requested system. In parallel, all projects are additionally reviewed by work package 7 in
order to assess their optimization requests. Each proposal is assigned to two WP7 reviewers.
The review is performed by PRACE partners who all have a strong background in
supercomputing. Currently a list of 37 experts is maintained and the task leader has the
responsibility to contact them to launch the review process. As the procedure of reviewing
proposals and establishing the collaboration of submitted projects and PRACE experts takes
place four times a year it is necessary to keep the review process timely and efficient. A close
collaboration between AISBL, T7.1.A and the hosting sites is important in this context. The
review process for technical and WP7 review is limited to two weeks. In close collaboration
with AISBL and the hosting sites the whole procedure from PA cut-off to project start on
PRACE supercomputing systems is carried out in less than six weeks.

Based on the proposals the Type C reviewers need to focus on the following aspects:

 Does the project require support for achieving production runs in the chosen
architecture?

 Are the performance problems and their underlying reasons well understood by the
applicant?

 Is the amount of support requested reasonable for the proposed goals?
 Will the code optimisation be useful for a broader community, and is it possible to

integrate the development results achieved during the project in the main release of the
code(s)?

 Will there be restrictions in disseminating the results achieved during the project?

0

1

2

3

4

5

6

7

Scientific Areas

Figure 3: Number of projects per scientific field.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

6

Additionally, the task leader decides on the question whether the level and type of support
requested is still available within PRACE. Finally the recommendation from WP7 to accept or
reject the proposal is made.

Based on the provided information from the reviewers the Board of Directors has the final
decision on whether proposals are approved or rejected. The outcome is communicated to the
applicant through AISBL. Approved proposals receive the contact data of the assigned
PRACE collaborators, refused projects are provided with further advice on how to address the
rejection reasons.

2.3 Assigning of PRACE collaborators

To ensure the success of the projects it is essential to assign suitable experts from the PRACE
project. This means based on the described optimization issues and support requests from the
proposal experts are chosen who are most familiar with the subject.

This is done in two steps: First, summaries of the proposals describing the main optimization
issues are distributed via corresponding mailing list. Here, personal data are explicitly
removed from the reports to keep the anonymity of the applicants. Interested experts can get
in touch with the task leader offering to work on one or more projects.

In case the response is not sufficient to cover the support requests of the projects, the task
leader contacts the experts directly and asks them to contribute. In order to identify suitable
collaborators a list of experts is maintained along with their special fields of expertise.

There is one exception to the procedure in the case when a proposal has a close connection to
a PRACE site which e.g. already worked on the code: In this case this site is asked first if they
are able to continue this collaboration in the context of the new PA C project.

This procedure has proved to be extremely successful; only one proposal from Cut-off March
2014 had to be refused due to lack of suitable support so far.

To be able to manage the whole review process within six weeks the assignment of PRACE
experts takes place concurrently with the review process. This has shown to be a suitable
approach. The overhead resulting in the assignment of projects that are rejected in the end is
negligible.

After the review process described in section 2.2 is finished the support experts are introduced
to the PIs and can start the work on the projects. The role of the PRACE collaborator includes
the following tasks:

 Preparing a detailed work plan together with the applicant,
 Participating in the optimization work,
 Reporting the status report in the phone conference every second month,
 Participating in the writing of the final report together with the PI (the PI has the main

responsibility for this report), due at project end and requested by the PRACE office,
 Writing a white paper containing the results which is published on the PRACE web

site.

2.4 Monitoring of projects

Another task is the supervision of the Type C projects. This turns out to be a challenge as the
projects’ lifetimes (six months) and the intervals of the cut-offs (3 months) differ. This means
that projects do not necessarily start and end at the same time but overlaps exist, i.e. at each
point in time different projects might be in different states. Therefore, a phone conference

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

7

take place in task 7.1.A every two month to discuss the status of running projects, to give
advice on how to proceed with new projects and to manage the finalization and reporting of
finished projects.

The conference call addresses all PRACE collaborators who are involved in these projects.
All the project relevant information is maintained on a PRACE wiki page which is available
to all PRACE collaborators.

Additionally the T7.1.A task leader is available to address urgent problems and additional
phone conferences are held in such cases.

Bi-yearly a WP7 Face-to-Face meeting is scheduled. This meeting gives all involved
collaborators the opportunity to discuss the status of the projects and to exchange their
experiences.

2.5 Hand-over between PRACE-2IP and PRACE-3IP PA type C projects

The support for Preparatory Access Type C projects has been and is part of all PRACE
projects (PRACE-1IP, -2IP, -3IP, 3IP Extension). For the hand-over between the projects the
tasks decided on the following exact dates.

The hand-over between PRACE-2IP and PRACE-3IP PA type C projects took place right at
the end of PRACE-2IP, August 31, 2013. The cut-off which took place in March 2013 was
still under the responsibility of T7.1 in PRACE-2IP. Because the approved projects ran until
October 2013, i.e. beyond PRACE-2IP, PRACE-3IP-experts were also needed to support
these projects. The optimization work was started in PRACE-2IP but finished in PRACE-3IP.
For these projects an interim report was given in deliverable D7.1 [2]. The final results are
described in this deliverable.

2.6 PRACE Preparatory Access type C projects covered in the 3IP extension

Projects from Cut-off December 2013 and beyond will not finish their work within PRACE-
3IP as they were only recently established. Instead the subsequent deliverable D7.1.3 will
cover the final reports of these projects. Currently projects from Cut-off December 2013 and
Cut-off March 2014 are affected by this arrangement. These projects are listed in Table 1.

Cut‐offs December 2013/March 2014

Title Development of a package for computer aided drug design

Project leader Miroslav Rangelov

PRACE expert Joerg Hertzer

PRACE facility HERMIT, JUQUEEN

PA number 2010PA2141

Project's start 03-Feb-14

Project's end 02-Aug-14

Title
Very high resolution Earth System Model (CESM) energy flux
and wind stress sensitivity experiments

Project leader Markus Jochum

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

8

Cut‐offs December 2013/March 2014

PRACE expert Mads Ruben Burgdorff Kristensen

PRACE facility FERMI, JUQUEEN

PA number 2010PA2066

Project's start 03-Feb-14

Project's end 02-Aug-14

Title
Improving the scalability of the overlapping fragments method
code for electronic structure of organic materials

Project leader Nenad Vukmirovic

PRACE expert Petar Jovanovic

PRACE facility CURIE TN, HERMIT

PA number 2010PA2132

Project's start 03-Feb-14

Project's end 02-Aug-14

Title Parallel mesh partitioning in Alya

Project leader Guillaume Houzeaux

PRACE expert Mohammad Jowkar

PRACE facility MARENOSTRUM

PA number 2010PA2171

Project's start 15-Apr-14

Project's end 14-Oct-14

Title
HORSE: High-order method for a new generatiOn of LaRge
eddy Simulation solvEr

Project leader Jean-François Boussuge

PRACE expert Adrien Assange

PRACE facility CURIE TN

PA number 2010PA2194

Project's start 21-Apr-14

Project's end 20-Oct-14

Title
Performance of the post-Wannier Berry-phase code for the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

9

Cut‐offs December 2013/March 2014

anomalous Hall conductivity calculations

Project leader Malgorzata Wierzbowska

PRACE expert Thomas Ponweiser

PRACE facility SUPERMUC

PA number 2010PA2231

Project's start 30-Apr-14

Project's end 29-Oct-14

Title Memory optimization for the Octopus scientific code

Project leader Angel Rubio

PRACE expert Alexandra Charalampidou

PRACE facility MARENOSTRUM

PA number 2010PA2216

Project's start 15-Apr-14

Project's end 14-Oct-14

Table 1: Projects which were established in PRACE-3IP but will be finalised in the extension phase of
PRACE-3IP.

2.7 Dissemination

The task uses different channels for dissemination. For each Preparatory Access call the
PRACE sites are asked to distribute an email to their users to advertise preparatory access and
especially the possibility of dedicated support via PA C. A template for this email was created
in PRACE-2IP.

In the PRACE annual report for 2013 Preparatory Access Type C again was highlighted as
unique opportunity to improve code performance and for getting ready for production usage
on PRACE Tier-0 resources.

Also each successfully completed project should be made known to the public and therefore
the PRACE collaborators are asked to write a white paper about the optimization work carried
out. These white papers are published on the PRACE web site [1] and are also referenced in
this deliverable.

2.8 Cut-off March 2013

This and the two following sections describe the optimization work carried out on the
Preparatory Projects type C. The projects are listed in accordance with the cut-off dates they
appeared. General information regarding the optimization work done in addition to the gained
results is presented here using the recommended evaluation form. The application evaluation
form ensures a consistent and coherent presentation not only of those projects which were
managed in the frame of PA C but also those ones which ran under DECI (T7.1.B) and socio-

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

10

economic challenges (7.1.C) as well. In addition to that the white papers created by these
projects are referenced so that the interested reader is able to get further information.

Projects from the March 2013 cut-off started in PRACE-2IP, but the final work has been
taken over by PRACE-3IP after the end of PRACE-2IP.

2.8.1 Enabling Xnavis (URANS solver for fluid-dynamics) for massively parallel
simulations of wind farms, 2010PA1461

Code general features
Name χnavis

Scientific field Computational Fluid Dynamics

Short code description χnavis is a general purpose solver for Computational Fluid
Dynamics (CFD) developed at CNR-INSEAN. The solver is based
on the finite volume discretization of the unsteady incompressible
Navier-Stokes equations. The code is based on a multi-block
approach; complex geometries and multiple bodies in relative
motion are handled employing an in-house dynamical overlapping
grid approach. Different CFD simulation types are implemented
(RANS, LES, DES, DDES) as well as many of the most popular
turbulence models (e.g. Boussinesq, k-ɛ, k-ɷ, Spalart-Almaras).

The code has been validated in a number of simulations, mainly in
the framework of naval hydrodynamics i , aerodynamics ii and
renewable energyiii and it has been proven to scale when running
on order of hundreds of cores (i.e. Tier-1 platforms).

Programming
language

Fortran

Supported compilers Intel, GNU, IBM XL

Parallel
implementation

Hybrid MPI and OpenMP: the blocks are statically assigned to the
available MPI processes while the computational work within each
block is spread among the available OpenMP threads.

Accelerator support N/A

Libraries N/A

Building procedure Makefile (different options available, e.g. compiler, optimization
and debugging enabling)

Web site N/A

Licence Restricted (subject to an agreement with CNR-INSEAN that
regulates the use of the code and the extension of the license)

Table 2: Code general features for χnavis.

Main objectives:
The objective of this work is to make the entire operating sequence required to run χnavis
capable of exploiting massively-parallel architectures, such as PRACE Tier-0 ones. The main
tasks are summarized as follows.

1) Load Balancing pre-processor: development of an automatic tool to assign blocks to
processes

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

11

2) Overset pre-processor: refactoring to minimize the usage of memory and MPI
parallelization

3) Parallel I/O: implementing MPI-I/O to reduce the number of files and possibly improve the
I/O performances

4) Main solver performances: assess the scalability of the main χnavis solver on a Tier-0
architecture (Blue Gene/Q)

Accomplished work:
1) Load Balancing pre-processor: an automatic load balance pre-processor has been

developed from scratch using an object-oriented programming style (Fortran 2003).
The tool allows to handle the blocks/processes assignment procedure and it is crucial
when dealing with huge grids.

2) Overset: the problem was again the use of large grids, which causes troubles in terms
of memory requirement and wall clock time required. To overcome these problems an
efficient parallel version of the overset pre-processor has been successfully developed.

3) MPI-I/O: Effort has been put for implementing the MPI - I/O operation onto the
Fortran code. Now all processors may access a single file for reading its own partition
and writing the solution at those blocks.

4) Analysis of the scalability properties of the parallel code on large and medium grids,
with fixed or moving grids, has been performed. This work is mandatory for the
application to a regular PRACE call.

Main results:
The automatic load balance pre-processor LoadBalance has been proven to be effective and
reliable. Large number of grid blocks as well as high number of MPI processes may be
efficiently handled and the procedure may be completely automatic. When running the tool,
additional options may be set to optimize the block split/assignment algorithm, though. In
particular, LoadBalance has been able to achieve satisfactory balancing (below 5%) with a
total workload ranging from 10 to 80 million of cells, with a total number of blocks ranging
from 50 to 500 and with a number of (MPI) processes up to 256. It is worth noting that that
the load balance tool enabled a very efficient use of the Blue Gene/Q architecture. In fact,
LoadBalance has been able to successfully balance a production-sized numerical grid over
256 MPI processes that allow the use of 256*16 = 4096 cores. During the strong and weak
scaling analysis LoadBalance has been extensively used providing well balanced distribution
as the satisfactory scaling performances demonstrate.

The parallelization of the overset pre-processor allowed to reach two targets which are
fundamental when running very large simulations. Using the refactored version of the overset
code, since it can run on several processors and since each process is now asked to construct
topology and cell dependencies only for a subset of the grid, we have circumvented the
problem of the huge amount of memory requested during the pre-processing phase. This was
a problem that cannot be solved on a serial machine (unless the use of a machine with order of
hundred GBs of RAM). Secondly, the required wall clock time requested on this phase may
be significantly reduced increasing the number of computing nodes which may be employed
by the final MPI version of the overset pre-processor.

The implemented parallel I/O allowed the use of single input and output files, avoiding the
generation of input and output files for each processor, which can be unaffordable when a
large number of processors is used. Unfortunately, the current implementation does not show
any significant improvement in terms of I/O CPU time, some issues must be investigated and
will be a matter of near future activities.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

12

We performed a first strong scaling analysis based on an 80 million of grid point case with
fixed grids. The analysis has been executed on FERMI (Blue Gene/Q at CINECA). Since
each node of FERMI has 16 cores we used 16 OpenMP threads (using 32 or 64 threads to
exploit FERMI hardware threads gives no significant performance gain using χnavis) while
the MPI processes are distributed one per each FERMI node. As a test case, we simulated 10
temporal iterations and used 3 multi-grid levels. The results of the analysis are provided in the
figures below reporting the elapsed times (Figure 4) and the efficiencies (Figure 5) against the
number of computing nodes.

Figure 4: Elapsed times vs. number of compute nodes.

Figure 5: Efficiency vs. number of compute nodes.

The elapsed times are given in seconds. The efficiency is based on the 8 nodes case. The
value of efficiency is very good when using 32 nodes (512 cores), good at 128 nodes (2048
cores) and fairly good at 256 nodes (4096 cores). In this test case, the moving grids algorithm
has not been activated. We decided to repeat the scaling analysis considering a moving grid
case: the largest size having moving grids we simulated was an 11 million grid points. The
results are very close to that of the fixed grid case. We also performed a weak scaling analysis
to evaluate the performance trend when enlarging the grids. The results of the weak scaling
analysis are very good, since the elapsed times are nearly constant as expected in the ideal
case.

To have a complete overview of the code/machine performances, we also addressed a
scalability analysis using Intel Sandy - Bridge architectures; this test can be of paramount
importance for take into consideration different Tier-0 architectures. We tested the code with
two different types of Sandy-Bridge nodes: the first type is a 2 eight - core Intel(R) Xeon(R)
CPU E5 - 2658 2.10 GHz Dual socket, the second one is a 2 eight - core Intel(R) Xeon(R)
CPU E5 - 2687W 3. 10 GHz. The performances of the runs highlighted a performance gain
close to 10 for the 3.1 GHz nodes and 6.5 for the 2.1GHz.

Machine Elapsed Time
(seconds)

FERMI Blue Gene/Q 264

Dual Sandy-Bridge E5-2687W 3.1 GHz 26

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

13

Dual Sandy-Bridge CPU E5-2687W 2.1 GHz 39

Table 3: Scalability analysis using different architectures. Detailed information is given in the text.

Finally, we proved the scalability of χnavis for the current sizes to be sufficient to allow for an
efficient usage of a Tier-0 architecture.

The project also published a white paper which can be found online under [3].

2.8.2 Scalability analysis, OpenMP hybridization and I/O optimization of a code
for Direct Numerical Simulation of a real wing, 2010PA1454

Code general features

Name Direct Numerical Simulation of a real wing code (no acronym)

Scientific field Engineering and energy

Short code
description

The code used in this work is an in-house, highly validated,
compressible Navier-Stokes solver based on a finite volume second-
order space discretization with an optional hybrid WENO
discretization of the convective terms that is activated in
computations involving the presence of shock waves. A third-order
low-storage explicit Runge-Kutta scheme is used to advance the
equations in time. The code is written in Fortran programming
language. The key feature of the code is its capability of preserving
the global kinetic energy at discrete level in the limit case of
vanishing viscosity and exact time integration, which makes the
computation extremely robust without the addition of any form of
artificial viscosity or filtering procedure.

The initial parallelization relied on a Cartesian decomposition
strategy, whereby the computational domain was split in the three
coordinate directions. Communication between neighbouring blocks
was handled by means of an efficient MPI parallelization.

Programming
language

Fortran

Supported compilers GNU, IBM

Parallel
implementation

MPI/OpenMP

Accelerator support None

Libraries None

Building procedure Basic Makefile compilation

Web site None

Licence not assigned

Table 4: Code general features for the Direct Numerical Simulation of a real wing code.

Main objectives:
The main objective of the project was to develop a new MPI/OpenMP hybrid version of a
MPI parallelized code for direct numerical simulations of a real wing. The code was already

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

14

ported to the IBM Blue Gene/Q architecture and showed good scalability. The main
bottleneck recognized by the PI of the project was related to limited in-node performance of
the code while using all available hardware threads (64) per node. The hybridization of the
code was expected to overcome those scalability issues.

Accomplished work:
The main goal was fully achieved – the full MPI/OpenMP parallelization of the code was
developed. The increase of performance was confirmed with a series of scalability tests with
various problem sizes on the FERMI system. The new hybrid MPI/OpenMP version of the
code is currently in use for production runs.

Main results:
We have successfully implemented a hybrid MPI/OpenMP version of an existing flow solver
for direct numerical simulations of turbulent flows. The final version of the code was
extensively tested and is now used for production runs on the FERMI system. The hybrid
MPI/OpenMP version of the code outperformed the pure-MPI implementation. The code can
now take full advantage of the SMT mechanisms of the IBM Power A2 processor
architecture. This was confirmed by a series of performance tests, from which the largest and
most representative one was constructed on a grid of size 4096x384x2048. Table 5 below
shows the achieved performance.

The project also published a white paper which can be found online under [4].

2.8.3 Next generation pan-European coupled Climate-Ocean Model - Phase 1
(ECOM-I), 2010PA1470

Code general features
Name HBM

Scientific field Earth Sciences and Environment

Short code description HBM (HIROMB-BOOS Model) is the ocean circulation model
actively developed by the Danish Meteorological Institute (DMI).
The application code is proprietary to DMI and not publicly
available. The model code is written in free format standard
Fortran95 and has been parallelized using OpenMP, MPI and more
recently also OpenACC.

Programming
language

FORTRAN 90

Supported compilers xlf90, gfortran

Table 5: Scalability and performance comparison of pure-MPI and MPI/OpenMP versions
of the code.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

15

Parallel
implementation

MPI, OpenMP

Accelerator support No support for GPU

Libraries

Building procedure autoconf, make

Web site No public version available

Licence MoU agreement between DMI and respective PRACE partner

Table 6: Code general features for HBM.

Main objectives:
The goals of the ECOM-I project was to reduce the runtime of 10-day forecast from 16 hours
(current level) to 2 hours. The scalability should go from current 900 cores to as many cores
as possible. The goals will be reached by optimizing parallel computing and I/O, two-nesting
as well as halo-communication in MPI.

Accomplished work:
PRACE experts working with the ECOM-I project were contributing to the benchmarking of
the model code and scaling performance on the selected PRACE Tier-0 systems, particularly
the Blue Gene/Q architecture.

A module for the small benchmark was created with routines for saving and retrieving data
for each of the two target routines. The save routines automatically save all needed fields into
separate files for each domain and the arguments to the routine are an id and a number to
indicate in which time step to save. The benchmark can be used for several tasks, including
validating new versions of the routines and tuning of different settings.

The application code has been ported to the Blue Gene/Q system and both threaded and
mixed threaded parallel versions scaling have been tested.

Main results:
The model application is implemented and proved to preserve bit-reproducible results with a
serial, threaded (OpenMP), parallelized (MPI) and mixed (OpenMP+MPI) builds and across
different architectures. After initial difficulties managing bit-reproducibility on the Blue
Gene/Q system, eventually all the problems have been fixed and the code successfully ported
to the FERMI system and other smaller systems to assert versatility. Both XL and GNU
compiled versions of the application preserve bit-reproducibility. Although it has been shown
that the results on the Blue Gene/Q platform are not bit-wise consistent with the x86-based
systems it has been agreed that the differences are related to hardware floating point
implementation and are acceptable after discussion with the model developers.

Figure 6 shows results of the OpenMP thread scaling on the one compute node of the Blue
Gene/Q system. The twofold scaling curve reflects the underlying hardware configuration of
the system. When the application is running with 1 to 16 threads, each thread is using a
physical CPU core exclusively. Further increasing the number of threads employs SMT
hardware support with threads sharing the CPU resources. For this reason performance for
more than 16 threads is lower but the application still benefits from larger thread count. This
is visible on the scaling curve. For up to 16 threads almost linear scaling is achieved and
further scaling results in the speedup of a factor 2.5 in the application runtime for 64 threads
compared to 16 threads (the XL compiler case).

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

16

Figure 6: Thread scaling of the HBM model 2.8-v2, OpenMP version of the application tested with myov3
case on the one node of Blue Gene/Q. Performance comparison between XL Fortran and GNU Fortran
based applications.

The threaded parallel (OpenMP+MPI) version of the code has been compiled with the XL
compiler only because the GNU Fortran compiler shows lower performance of the model
code with OpenMP enabled on Blue Gene/Q platform.

For the OpenMP+MPI runtime mode it was decided to use one MPI process per Blue Gene/Q
node and 16 OpenMP threads on each node. This approach provides optimal resource
utilization because of the Blue Gene/Q memory node allocation limitations and demonstrated
good performance of the OpenMP threaded version of the model code. While each MPI
application process allocates substantial amounts of memory it is not possible to use the
maximal thread number per node without the code rearrangement. Initial scaling tests with
improved code version for threaded parallel (MPI+OpenMP) mode show also optimal scaling
for small node counts.

The project also published a white paper which can be found online under [5].

2.8.4 Increasing the QUANTUM ESPRESSO capabilities II: towards the
TDDFT simulation of metallic nanoparticles, 2010PA0633

Code general features
Name Quantum ESPRESSO
Scientific field Material Science, Quantum Chemistry
Short code description QUANTUM ESPRESSO is an integrated suite of computer codes

for electronic-structure calculations and materials modelling, based
on density-functional theory, plane waves, and pseudopotentials
(norm-conserving, ultrasoft, and projector-augmented wave).
QUANTUM
ESPRESSO stands for opEn Source Package for Research in
Electronic Structure, Simulation, and Optimization. It is freely
available to researchers around the world under the terms of
the GNU General Public License. QUANTUM ESPRESSO builds
upon newly restructured
electronic-structure codes that have been developed and tested by

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 5 6 7 8 12 16 20 24 28 32 36 40 44 48 52 56 60 62 64

Ti
m
e
 f
o
r
6
 h
rs
 s
im

u
la
ti
o
n
 [
se
c]

Number of threads

OpenMP scaling of the myov3 case on Blue Gene/Q node

XL compiler

GNU compiler

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

17

some of the original authors of novel electronic-structure
algorithms and applied in the last twenty years by some of
the leading materials modeling groups worldwide. Innovation and
efficiency are still its main focus, with special attention paid to
massively parallel architectures, and a great effort being devoted to
user friendliness. QUANTUM ESPRESSO is evolving towards a
distribution of independent and inter-operable codes in the spirit of
an open-source project, where researchers active in the field of
electronic-structure calculations are encouraged to participate in the
project by contributing their own codes or by implementing their
own ideas into existing codes.

Programming
language

Mainly Fortran 95 with some ancillary subroutines in C

Supported compilers Any working Fortran 95 and C compiler (compilation is regularly
checked against gnu, pgi, intel, IBM xl compiler suites)

Parallel
implementation

MPI and OpenMP

Accelerator support Yes, for Nvidia card, activities are undergoing to support Xeon PHI
Libraries Blas, lapack and FFT (with interface driver for fftw, mkl, acml,

essl, ecc...)
Building procedure Autotools suite (configure and make)
Web site www.quantum-espresso.org
Licence GPL
Table 7: Code general features for Quantum ESPRESSO.

Main objectives:
Implement novel strategies for reducing the memory requirements and improving the weak
scalability of turboTDDFT, which is a planewave pseudopotential TDDFT code, included in
the QUANTUM ESPRESSO package. The final goal is to obtain a net improvement of the
code capabilities and to be able to study the plasmonic properties of metal nanoparticle (Ag,
Au) and their dependence on the size of the system under test. This project is a preliminary,
but necessary step for the simulation of a hybrid systems composed of metal nanoparticles
and molecular antenna coupled by plasmonic interactions.

Accomplished work:
 QUANTUM ESPRESSO (QE) is a suite of inter-operable codes with two main

kernels: pwscf, for total energy ground state simulations; and cp, for Car-Parrinello
like simulations. All other kernels are for computation of ground state properties, post-
process like analysis or correction to the DFT approximations for more accurate
results. TurboTDDFT is one of these kernels, mainly meant to compute optical
properties. It requires, as a pre-process step, a pwscf ground simulation for the ground
state.

 Usually new parallelization paradigms are first introduced and validated in cp and
pwscf main kernels and then ported to other kernels. Following this pattern in this
work we have implemented in TurboTDDFT a parallelization technique already
validated in cp and pwscf, named “task grouping”. Task grouping was first
implemented in cp kernel code to exploit the extreme parallelism of the Blue Gene
architecture, and then ported on pwscf.

 Task group is a key technique to allow the 3D parallel FFT implemented in plane
wave DFT codes like QE or CPMD, to scale beyond the number of “planes” in the z

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

18

direction of the domain. Due to the specific characteristic of the reciprocal basis set
(determined by the kinetic energy cut-off) the 3D FFT it is parallelized by scattering z
columns (all points in the domain having the same values for x and y coordinate) in
reciprocal space, and distributing the z “planes” (all point having the same value for z)
in real space. Task group, as the name says, groups together many electronic bands
(each one requiring a forward and backward 3D FFT) to be processed at the same time
by a group of processor rather than a single task, and allowing for a greater scalability.
The groups are implemented using communicators. With this implementation the new
limit to the scalability is given by the number of z “planes” multiplied by the number
of task group.

Main results:
The scalability we were targeting within this project was the weak scalability on a real
dataset, allowing to run large systems with many electrons. We chose two test cases: one
molecule (Test1) and one Au nanoparticle (Test2). Test1 involved 59 atoms, 109 electronic
bands and 98385 basis vectors. Test2 involved 92 atoms, 506 electronic bands and 219223
basis vector. The number of atoms plays a minor role in determining the size and the wall
time, what counts are the number of electronic bands and the number of basis vectors. To
make things more complex, the algorithm does not scale linearly with the number of basis
vectors and number of bands (but superlinear), so we have only a rough estimate of the weak
scalability. If we neglect for the purpose of the present benchmark this non-linearity of the
algorithm, we observe (see Table 8) that Test2 is 10.2 times larger than Test1.

Test case
name

Test case size Number of
core

Wall
time

size / size
Test1

cpu hours / Test1
cpu hours

Test1 98385 * 109 1024 43 min 1 1
Test2 219223 * 506 2048 296 min 10.2 13.7
Table 8: Summary of test results on molecular (Test1) and Au nanoparticle (Test 2).

As can be seen from the above results, the computational resources required by the large test
case Test2 is 13.7 times larger than the computational resources required by Test1, being
Test2 10.2 times larger than Test1, and considering that the algorithm is superlinear, we can
conclude that the turboTDDFT code with new task group parallelization scale fairly well with
real case datasets.

Data set Test case
size

Number
of cores

Wall clock
time

Speed-up vs
the first one

Number
of Nodes

Number of
process

Test1 10723965 1024 43min 1 64 256

Test2 110926838 2048 296min 1.5 128 512

Table 9: Weak speed-up obtained.

HERMIT specific issues

Several test runs have been performed (using cp kernel and W256, 256 water molecule,
dataset) to find out the best combination of compilers, libraries and execution environment.
As the compiler we used Intel suite (through the ftn Cray wrapper) with an optimization level
O2 (in QE performances mainly depends on libraries); as the library for linear algebra we
used Cray scilib, for the FFT we used a custom 3D FFT linked with FFTW (version 2.5). But
the most important issues we discover about the performance on HERMIT, is related to the
task/thread affinity (QE best perform and scale with a combination of 4 to 8 thread per tasks).
To make the code perform at best we need to explicitly specify “-cc numa_node” on the aprun

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

19

command line. In table below we report the performance registered for two run with and
without the “-cc numa_node” flag:

Launch command Recorded time

aprun -n 512 -N 8 -d 4 ./cp.x -ntg 4 -nbgrp 2
-input cp.in > h2o.out.test.11 2>&1

4m19.80s CPU 6m 0.14s WALL

aprun -n 512 -N 8 -d 4 -cc numa_node
./cp.x -ntg 4 -nbgrp 2 -input cp.in >
h2o.out.test.11 2>&1

7m54.39s CPU 2m13.18s WALL

Table 10: Performance of the cp kernel with W256 dataset. 2048 cores, 512 tasks, 4 threads per task.

The project also published a white paper which can be found online under [6].

2.8.5 Scalability of gyrofluid components within a multi-scale framework,
2010PA1505

Code general features
Name GEM

Scientific field Plasma Physics

Short code
description

GEM is a 3D MPI-parallelised gyrofluid code used in theoretical
plasma physics at the Max Planck Institute for Plasma Physics, IPP,
at Garching. Germany. The code GEM addresses electromagnetic
turbulence in tokamak plasmas. Its main focus is on the edge layer
in which several poorly understood phenomena are observed in
experiments. The code is written in Fortran/MPI and is based on the
electromagnetic gyrofluid model. It can be used with different
geometries depending on the targeted use case. The code has been
run up to now on conventional tokamak cases like the ASDEX-
Upgrade at the IPP in Garching.

Programming
language

Fortran

Supported compilers Intel, IBM xl and other well-known compilers

Parallel
implementation

MPI

Accelerator support No

Libraries Fftw3, mkl

Building procedure make

Web site http://solps-mdsplus.aug.ipp.mpg.de/wsvn/GEM(Z/R)

Licence IPP

Table 11: Code general features for GEM.

Main objectives:
The main goal of this project was to improve the parallel weak scalability of the application
GEM optimising the communication scheme to larger tokamak cases.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

20

Accomplished work:
Since the main bottleneck of the code is the solver, we have particularly focused on its
improvement. Various versions of the MPI-parallelised code have been set up for the weak
scaling analysis. In most cases the I/O routines were eliminated to solely concentrate on the
solver features. The Scalasca utility has been used to analyse the runtime behaviour of the
code and to filter out the suboptimal routines. The dummy version functioning as a baseline
for our measurements uses no boundary or sum information. The CG version implements a
conjugate-gradient method for the solver iteration. Furthermore, two different Multigrid
versions have been analysed: the MGV version (Multigrid with V-cycle scheme) and the
MGU version (Multigrid with U-cycle scheme) which has been developed within this project.

Figure 7: (a) Overall wall-clock time for the various versions of the code on SuperMUC. (b) Time spent in
the MPI functions (from the Scalasca analysis). (c) Comparison of the weak scaling of the MGU version of
GEM on SuperMUC (LRZ) and on JUQUEEN (JSC).

Main results:
Scaling measurements have been done on the HPC systems SUPERMUC (IBM System x
iDataPlex) at LRZ and JUQUEEN (IBM Blue Gene/Q) at Jülich Supercomputing Centre
(JSC) to benchmark the performance of GEM. A comparison of the performance of the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

21

various versions on SUPERMUC is shown in Figure 7 (a). Detailed performance analysis
using the Scalasca tool revealed that the scalability of the dominating MPI routines
determines the scalability of the entire code, as shown in Figure 7 (b). This is very significant
for the CG solver due to its heavy usage of the MPI_Allreduce function. Here the MGU
version shows best scalability. Finally, Figure 7 (c) presents the good weak scaling behaviour
of the MGU version (excluding the I/O) up to 32.768 cores on SUPERMUC(IBM System x
iDataPlex) at LRZ and up to 131.072 cores on JUQUEEN (IBM Blue Gene/Q) at Jülich
Supercomputing Centre. As the code has not been optimised for in-order architectures like
JUQUEEN and because of differences in clock-speeds, task-binding etc. the overall
performance on JUQUEEN is worse than on SUPERMUC. However, scaling is slightly better
on JUQUEEN.

The main conclusion is that the goal of running larger systems commensurate with the ITER
tokamak edge pedestal layer region with similar wall-clock time with the same number of grid
points per core as standard cases was achieved (in principle, since actual runs require
production resources). The diagnostic tool Scalasca greatly helped filtering out the suboptimal
options. With the help of Scalasca a version of the code has been found for which acceptable
weak scaling is confirmed. Currently the physics content of the code is extended to treat real
stratification. The relevance of the results obtained is essentially the demonstration of
feasibility of planned large-system runs. The improvement of the I/O scheme using systems
such as the ADIOS library [http://adiosapi.org/] and possible extension to a hybrid
MPI/OpenMP scheme are being explored. This new version of the code is planned to be used
in a future large-scale project at LRZ to simulate turbulences in the ITER reactor-plasma
experiment currently under construction in Cadarache, France.

The project also published a white paper which can be found online under [7].

2.8.6 Direct numerical simulation of a high-Reynolds-number homogeneous
shear turbulence, 2010PA1492

Code general features
Name SHEAR

Scientific field Fluid Dynamics (Turbulence)

Short code
description

Turbulence is often induced by shear. One important problem in the
study of fluid mechanics is to find the interaction between the mean
flow and the kinetic energy of the turbulent fluctuations. The
simplest flow in which to analyse this interaction is the so-called
homogeneous shear turbulence (HST) which has a constant velocity
gradient. The logarithmic layer of general wall-bounded turbulent
flows has been investigated for a long time, but the mechanisms of
how large-scale motions are generated and collapse into smaller
eddies are not well understood. These multi-scale interactions
among eddies are of great interest. The objective is to investigate if
HST contains the basic energy-production and momentum-transfer
characteristics of general turbulent shear flows. To do so, the key
point is to achieve a high enough Reynolds number to include a
sufficient range of scales. Preliminary tests have been run to
determine the necessary test box sizes and Reynolds numbers. To
be able to run the required simulations the model code needs to be
ported to larger machine systems. Data from the computations will
be compared with those of turbulent wall-bound flows at high

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

22

Reynolds numbers, and the results will be made available to the
community.

The SHEAR code is written to do direct numerical simulation of
homogeneous shear turbulence of logarithmic layers. The code is a
modification of an earlier model code written for turbulent channel
flow. In the model, the governing equations of velocities for an
incompressible flow are reduced to yield a fourth-order equation for
the normal velocity component, and a second-order equation for the
normal vorticity component. The third-order explicit Runge-Kutta
method is applied and explicit time stepping is adopted. The model
uses Fourier-expansions in the streamwise and spanwise directions,
and compact finite differences in the shear direction. Domain
decompositions are done in two ways: in the xz-plane for
performing fast Fourier transformations along the x- and z-axis, and
in the xy-plane to perform the derivatives using compact finite
differences along the y-axis. In all of the computation, these
domains must be transposed to each other by using two collective
transposing algorithms. The baseline code is parallelised using MPI
and OpenMP. The fast Fourier transformations and computing
derivatives are done independently for each MPI process.

Programming
language

Fortran90

Supported compilers gfortran, Intel Fortran, IBM XLF (maybe more; tested with these)

Parallel
implementation

Hybrid: OpenMP and MPI

Accelerator support N/A

Libraries HDF5, MPI, FFTW and ESSL

Building procedure Makefile

Web site http://torroja.dmt.upm.es/

Licence Private (contact Prof. Javier JIMÉNEZ
(jimenez@torroja.dmt.upm.es))

Table 12: Code general features for SHEAR.

Targets and accomplished work:
For this project, the scalability was increased for the Blue Gene/Q. Besides, general
improvements to the code were made for parallel I/O, Fourier transformations and
communication. These improvements were implemented by Siwei Dong (Fluid Dynamics
Group, School of Aeronautics, Universidad Politecnica de Madrid). He was assisted by
Vegard Eide (Norwegian University of Science and Technology) and Jeroen Engelberts
(SURFsara, Amsterdam, the Netherlands).

Main objectives:
The goal of this project was to improve the performance of the SHEAR code on the Blue
Gene/Q architecture focusing on the following tasks:

 Implement parallel I/O using the HDF5 library

 Investigate scalability of the communication using MPI_ALLTOALLV when data
need to be transposed

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

23

 Test scalability of 1-D and 2-D FFT using the FFTW library

Accomplished work:
The hybrid MPI/OpenMP SHEAR code is ported to the Blue Gene/Q system architecture.
Parallel I/O using HDF5 is implemented for the output of restart data. The parallel I/O
performance on JUQUEEN is however not very good. This may be due to I/O-related
problems on the system as reported by the Jülich support team. The code shows good intra-
node thread scaling running on physical cores but can only obtain approximately a 1.5 speed-
up from utilising hyper-threading. Inter-node strong scaling is good up to 1K nodes, while
drop-off in efficiency when increasing the number of nodes further can be accounted for by
the size of the test case, and also network congestion of the Blue Gene/Q system. Weak
scaling is very good.

Main results:

Scaling

Scalability testing is done running a test case of 3072x2048x1536 grid points. Multi-threading
performance is tested using 512 nodes, with one MPI task per node, and changing the number
of threads from 1 to 64, see Figure 8 (top). The Scalability up to16 threads, i.e. running on
physical cores, is nearly linear. Increasing the number of threads further, i.e. utilizing hyper-
threading, scalability decreases. Tracing of the code has shown that this is because of the
FFTs that obtain only a speedup of x1.3 from x2 or x4 hyper-threading using FFTW.

Figure 8: 1 (top), 2 (bottom left) and 3 (bottom right).

Strong scaling is obtained running on 128 to 1K nodes with 1 MPI task and 64 threads per
node, see Figure 8 (bottom left). The results show that efficiency drops to 87.5% when
running on 1K nodes. This is due to the communication time that does not change going from
512 to 1K nodes, and the amount of computation for the test case may not be large enough to
compensate for this.

Weak scaling was tested running on 128, 256, 512 and 1K nodes with a constant work load of
9M grid points per node, showing a nearly perfect scaling, see Figure 8 (bottom right).

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

24

Parallel I/O

Parallel I/O has in the scope of this project been implemented using the HDF5 library.

Despite specific Blue Gene/Q tuning settings, initial runs on the JUQUEEN system show that
I/O performance is not very good, achieving only 1-2 GB/s when writing data. Additional
tuning of the HDF5 I/O was investigated testing different file access settings. Detailed results
are reported in [1].

The I/O performance of the SHEAR code on JUQUEEN can still not be considered very well.
The support team in Jülich has reported that they have been and are still investigating I/O-
related problems on JUQUEEN. This is still an open issue.

MPI

The communication when transposing data in SHEAR was done using calls to the
MPI_ALLTOALLV function. This function was used since MPI tasks can have different
message sizes if the global dataset cannot be evenly distributed among the processes. But test
runs on JUQUEEN show that the performance using this function is not good, causing poor
scalability of the code. The execution time using MPI_ALLTOALLV has increased
dramatically from earlier test runs. A request regarding this has been issued to the Jülich
support team. The code was rewritten to use MPI_ALLTOALL instead by padding smaller
messages with extra bytes so that each process will send the same amount of data. Detailed
results are reported in [1].

FFTW

The Fast Fourier Transforms of the SHEAR code can be done by either 1D or 2D FFT using
functions from the FFTW library. The 1D FFT can use both the basic and advanced interface
implemented in FFTW. Results show that using the basic interface in the 1D FFT is faster
than the advanced interface, and also faster than the 2D FFT. The FFT in the SHEAR code is
multi-threaded by hand. Testing the OpenMP version of the FFTW library did not improve
performance. More details are presented in [1].

Estimation of reworking of the code

The modifications were minor. It is estimated that less than 20% of the code was modified for
this enabling and optimization project.

The project also published a white paper which can be found online under [8].

2.8.7 Massively Parallel Multiple Sequence Alignment Method Based on
Artificial Bee Colony, 2010PA1467

Code general features
Name MSA_BG

Scientific field Bioinformatics, Life Science

Short code
description

Multiple sequence alignment (MSA) is an important method for
biological sequences analysis and involves more than two biological
sequences, generally of the protein, DNA, or RNA type. The
innovative parallel algorithm MSA_BG for multiple alignments of
biological sequences was proposed as a result of a previous PRACE
study. The MSA_BG algorithm is iterative and based on the concept
of Artificial Bee Colony metaheuristics and the concept of

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

25

algorithmic and architectural spaces correlation. The Artificial Bee
Colony (ABC) algorithm is an optimization algorithm based on the
intelligent foraging behaviour of honey bee swarm.

Programming
language

C++

Supported compilers GNU, IBM XL

Parallel
implementation

Hybrid MPI/OpenMP

Accelerator support No

Libraries No external dependencies on third party libraries

Building procedure Makefile (no auto tools)

Web site -

Licence -

Table 13: Code general features for MSA_BG.

Main objectives:
The project focuses on performance investigation and improvement of the multiple biological
sequence alignment software MSA_BG on the Blue Gene/Q supercomputer JUQUEEN. The
main objective is refactoring of the parallel implementation by applying hybrid MPI &
OpenMP code development on top of the initial MPI implementation.

Accomplished work:
 The application was ported on the JUQUEEN supercomputer and numerous

experiments have been conducted. Profiling and benchmark tests were performed in
order to evaluate the performance of the application.

 Hybrid MPI/OpenMP parallelization on the top of the MPI only code has been
developed.

 The advantages of this approach were showcased through the results of benchmark
tests that were performed on JUQUEEN.

The experimental results show that the hybrid parallel implementation provides considerably
better performance than the original code.

Main results:
Benchmark tests have been conducted on the JUQUEEN supercomputer in order to measure
and tune the performance of the application. The experiments that are presented use various
numbers of computing nodes, MPI processes and hybrid MPI/OpenMP configurations. The
conditions of termination for these tests are 106 and 107 iterations which refer to attempts for
improvement of each sequence alignment quality. The input file that was used contains 149
sequences with a maximum length of 1036 nucleotides.

#NODES #MPI processes #OMP threads Wall time
(seconds)

relative speedup

32

2048 - 33.25 1.00
1024 2 31.69 1.05
512 4 14.91 2.23
256 8 15.06 2.21
128 16 14.23 2.34

64

4096 - 20.30 1.00
2048 2 26.39 0.77
1024 4 9.57 2.12
512 8 8.89 2.28

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

26

256 16 8.75 2.32

128

8192 - 16.13 1.00
4096 2 24.95 0.65
2048 4 7.42 2.18
1024 8 6.55 2.46
512 16 6.21 2.60

256

16384 - 13.03 1.00
4096 4 6.06 2.15
2048 8 5.14 2.53
1024 16 4.89 2.66

Table 14: Relative speedup of hybrid implementation for problem size of 106 iterations.

#NODES #MPI processes #OMP threads Wall time
 (seconds)

relative speedup

32

2048 - 269.75 1.00
1024 2 127.22 2.12
512 4 111.31 2.42
256 8 110.58 2.44
128 16 113.39 2.38

64

4096 - 138.44 1.00
2048 2 74.12 1.87
1024 4 57.73 2.40
512 8 57.09 2.43
256 16 58.29 2.37

128

8192 - 75.23 1.00
4096 2 48.79 1.54
2048 4 31.05 2.42
1024 8 30.41 2.47
512 16 30.92 1.38

256

16384 - 42.71 1.00
4096 4 18.18 2.35
2048 8 17.34 2.46
1024 16 17.24 2.48

Table 15: Relative speedup of hybrid implementation for problem size of 107 iterations.

Table 14 and Table 15 present the speedup achieved when allocating a constant number of
nodes with a different set of MPI ranks per node and OpenMP threads. The speedup is
normalized to the MPI only version corresponding wall time for the same number of nodes,
using 64 MPI tasks per node.

The smallest allocation unit on the JUQUEEN system is 32 compute nodes (512 processor
cores) and the maximum number of ranks per node is 64. The number of tasks (ranks per
node) needs to be chosen as a power of 2. The set up that was used for benchmark tests using
the hybrid MPI/OpenMP implementation has been chosen in accordance to the configurations
listed in Table 14.

Configuration Number #Ranks per Node #OpenMP Threads

1 32 2
2 16 4
3 8 8
4 4 16

Table 16: Configuration alternatives for benchmarking the hybrid MPI/OpenMP implementation.

According to the results obtained from the benchmark tests, the setup that uses 16 MPI
processes per node with 4 OpenMP threads (configuration number 2) seems to indicate a

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

27

threshold regarding performance. When increasing the number of threads further for a
constant number of nodes, performance may still increase, but not significantly.

Figure 9: Relative speedups obtained via MPI only and hybrid MPI/OpenMP implementation. 106
compared to 107 iterations.

Figure 9 presents the gain of using the hybrid MPI/OpenMP implementation in comparison to
exploiting the full node using only MPI processes. The red bars represent runs using the
hybrid MPI/OpenMP implementation (with configuration number 2), while the blue bars refer
to runs using the MPI only implementation, occupying 64 processes per node. Corresponding
runs that use the 16 cores available on each node are used as a base in order to normalize the
relative speedup. Therefore, in case a configuration is used that occupies 16 MPI tasks per
node, there would be two options: either to use 4 times more MPI processes or exploiting the
remaining tasks on each node with OpenMP threads.

The project also published a white paper which can be found online under [9].

2.9 Cut-off June 2013
2.9.1 Optimization of PIERNIK for the multiscale simulations of high-redshift

disk galaxies, 2010PA1757

Code general features
Name Optimization of PIERNIK for the multiscale simulations of high-

redshift disk galaxies -

Scientific field radio astronomy

Short code
description

Main aim of this project was to prepare PIERNIK MHD code for
large scale simulations of multiphysics phenomena in gaseous disks
of galaxies, active galactic nuclei, and planet forming circumstellar
disks. In our studies we focused on the case of galactic disks, which

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

28

involve many physical ingredients and processes, such as magnetic
field generation, cosmic-ray transport and gravitational instability
induced star formation. In such cases we need to resolve multiscale
environment ranging from parsec scale, gravitationally bound star
forming regions, up to tenths of kpc long cosmic-ray driven
outflows.

Programming
language

C/C++, Fortran, python

Supported compilers gcc 4.5, Cray compiler
openmpi-1.4.2
hdf5-1.8.5
fortran 2003 compiler (>=gfortran-4.7, >=ifort-13.1)

Parallel
implementation

Message Passing Interface (MPI)

Accelerator support Code optimized for Cray compiler

Libraries git
python 2.7
HDF5 (>=1.8.8, --enable-shared --enable-fortran --enable-
fortran2003 --enable-parallel)
yt for visualization
FFTW (>=3.0, optional, for selfgravity)
Lapack (optional, for selfgravity)
matplotlib (optional, visualization)
IDL (optional, visualization)

Building procedure The following applications are required by PIERNIK:
gcc 4.5, openmpi-1.4.2, hdf5-1.8.5

The following tools are required by gcc 4.5:
ampfr-3.0.0, mpc-0.8.2, gmp-5.0.1

gmp-5.0.1 installation:
./configure --prefix=${HOME}/SVN/local --host=x86_64-redhat-
linux –build=x86_64- redhat-linux
make
make install

mpfr-3.0.0 installation:
./configure --prefix=${HOME}/SVN/local --host=x86_64-redhat-
linux –build=x86_64- redhat-linux --with-
gmp=${HOME}/SVN/local
make
make install

mpc-0.8.2 installation:
./configure --prefix=${HOME}/SVN/local --host=x86_64-redhat-
linux --build=x86_64-redhat-linux --with-
gmp=${HOME}/SVN/local --with-mpfr=${HOME}/SVN/local --
with-mpc=${HOME}/SVN/local
make
make install

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

29

gcc 4.5 installation:
export PATH=$PATH:${HOME}/SVN/local/bin
export LD_LIBRARY_PATH=${HOME}/SVN/local/lib
./configure --prefix=${HOME}/SVN/local --host=x86_64-redhat-
linux –build=x86_64- redhat-linux --with-
gmp=${HOME}/SVN/local --with-mpfr=${HOME}/SVN/local –
with-mpc=${HOME}/SVN/local --disable-altivec --disable-fixed-
point --without-ppl –without-cloog --disable-lto --enable-nls --
without-included-gettext --with-system-zlib –disable- checking
--disable-werror --enable-secureplt --enable-multilib --enable-
libmudflap –disable- libssp --enable-libgomp --enable-cld --
disable-libgcj --enable-languages=c,c++,fortran --enable-shared --
enable-threads=posix --enable-__cxa_atexit --enable-clocale=gnu
make -j3
make install

openmpi-1.4.2 installation:
./configure --prefix=${HOME}/SVN/local --with-openib --with-tm
–enable-fortran --enable-io-romio CC=gcc-4.5.0 CXX=g++-4.5.0
F77=gfortran-4.5.0 FC=gfortran-4.5.0
make -j3
make install

hdf5 installation:
./configure --enable-shared --enable-parallel --enable-hl --enable-
fortran CC=/home/users/trojan/reef/SVN/local/bin/mpicc
FC=/home/users/trojan/reef/SVN/local/bin/mpif90 --
prefix=${HOME}/SVN/local
make
make install

Web site http://piernik.astri.umk.pl/doku.php

Licence GNU General Public License

Table 17: Code general features for PIERNIK.

Main objectives:
The aim of this project was to increase the performance of the PIERNIK code in a case where
the computational domain is decomposed into large number of smaller grids and each
concurrent process is assigned a significant number of those grids. These optimizations enable
the PIERNIK to efficiently run on Tier-0 machines.

Accomplished work:

The following actions were undertaken to optimize the code:

1. The first step in reducing the MPI overhead relies on the identification group of
processes running on the same computational node and converting MPI calls into
direct memory access.

2. We implemented coalescing of MPI messages wherever it was applicable, i.e. all
messages exchanging in one step between a pair of processes are now put into the
common buffer and only one message is sent. This implementation significantly
decreased fragmentation of the communication.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

30

3. Additionally, in order to decrease the number of MPI messages we have implemented
domain decomposition using the Morton space-filling curve (SFC), which provides
high "localization", i.e. neighbouring grids are located on the same processes as much
as possible. When carefully implemented, the properties of SFC can allow for fast
neighbour searching. This is essential for reducing costs of AMR bookkeeping.

4. Finally, we changed AMR so that it became more selective. It doesn't refine the full
block at once, but only the required regions are covered by finer grid blocks. This
greatly improves the performance of initial iterations of the grid structure and saves
some blocks from unnecessary refinements during the regular refinement update.

Main results:

Optimization results

Figure 10: Strong scalability of jeans problem. The blue curve shows the effect of our optimization.

Strong scalability curves (Figure 10) for the uniform grid of moderate sizes (5123 red, green
and blue, 10243 yellow) are taken as reference for optimization. Black lines are ideal scaling
curves for each of those runs taking into account the ratio of the total number of cells
(including guardcell layers) to the number of physically valid cells. Dashed black line shows
ideal speed-up. The red curve shows PIERNIK's performance for many grids (of equal cell
size without AMR) per computational process before the optimization, the blue curve reflects
results of the optimization. The main improvement apparent for the runs on 32 to 256 cores
results from the conversion of MPI calls into direct memory access within processes running
on the same node. The reduced efficiency of computations on 2048-4096 cores for the 5123
run should be understood as limitation for the total size of the grid processed by a single core.
The present computationally inexpensive MHD algorithm the code scales very well on up to
8192 cores, taking into consideration that one single core processes more than 643 cells, even
if they are distributed in many blocks.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

31

Figure 11: Strong scalability of sedov problem using AMR method.

The strong scaling curve (Figure 11) in the AMR run showing improvement in performance
after implementation of domain decomposition using the Morton space-filling curve. Figure
12 displays the wall-time spent on grid operation (total time minus time spent on the hydro
algorithm).

Figure 12: Performance improvement obtained by using SFC for domain decomposition.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

32

Figure 13: Weak scaling curve for Jeans problem using 643 cells per process.

 As was shown in Figure 11, Figure 12 and Figure 13 several improvements were
achieved. Overall the performance of non-uniform and adaptive meshes, that are
strictly necessary for the fulfilling scientific goals of the project, was significantly
improved. Additionally we have ported the code to the latest Cray compilers which
will allow to utilize PIERNIK on the broader range of HPC sites.

 Performed optimization greatly improved scalability of the code nearly reaching the
reference performance in the situation when each computational process is assigned
only one big chunk of the computational domain. Moreover, utilization of the Morton
Space Filling Curve resulted in significant reduction of the time spent on grid
operation, which was dominant in simulations using Adaptive Mesh Refinement.

 The scalability of the PIERNIK code is predominantly dependent on the number of
grid cells attributed to every MPI process. For big meshes of the overall size 10243 the
code scales very well with respect to the ideal scaling curve (including the overhead of
boundary conditions) up to 4096 CPU cores and shows further speed-up by 50% at
8192 cores. The essential gain in scalability has been achieved for meshes divided into
a large number of small blocks, typical for intense use of the AMR technique in multi-
scale astrophysical simulations. The strong scalability improvement resulting from the
work performed within the current project varies in the range of 10% - 20% for 32-
1024 CPU cores.

The project also published a white paper which can be found online under [10].

2.9.2 URANIE, 2010PA1527

Code general features
Name URANIE

Scientific field Information analysis, machine learning, nuclear power

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

33

Short code
description

URANIE is a sensitivity and uncertainty analysis platform based on
the ROOT framework (http://root.cern.ch) . It is developed at CEA,
the French Atomic Energy Commission (http://www.cea.fr).

Programming
language

C/C++

Supported compilers Gcc

Parallel
implementation

MPI (OpenMPI)

Accelerator support No

Libraries ROOT, nlopt, pcl, swig, parmentis, cppunit, libxslt, opt

Building procedure make {-with params}

Web site http://sourceforge.net/projects/uranie

Licence GNU Library or Lesser General Public License version 3.0
(LGPLv3)

Table 18: Code general features for URANIE.

Main objectives:
Based on the URANIE’s inner architecture where a single simulation (job) is indivisible the
project's main objective was to investigate and possibly solve the threads bottleneck problem
in one of the URANIE’s launching strategies (system-based strategy).

In URANIE, the number of possible simulations is linearly correlated with the number of
processor cores used. In this way increasing the range of input variables causes the number of
hardware resources required also needs to be increased. The most used ratio is either 1 or 2 (a
single simulation uses 2 cores).

In the system-based strategy based on the fork mechanism provided by the Linux kernel:

 A single job is allocated.
 The master node runs a control process.
 The control process launches children of the control process, each child running a

mpirun script which runs one computation in the DOE (Design of Experiments), the
control process checks for the state of the children in order to decide when to run new
children.

This gives good flexibility and good performance on hundreds of processors, but the
bottleneck on the master node can become a problem on large runs. Also, this strategy gives
little control on the placement of processes in the context of coupled simulations.

Accomplished work:
The main work was carried out on CURIE and focused on providing mechanism to lower the
single simulation execution time.

In the meantime the source code tracking revealed some serious errors that changed the logic
in one of the most important parts of the application.

With system-based strategy we conducted many test runs in which the odd situation was
observed. After increasing the number of jobs above the experimental limit (approximately
450) many launched child processes started to become zombies, so that master process which
normally waited for their children to complete, could wait forever because it would never
receive the proper terminate signal from them.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

34

The above was strongly related to the problem tracked in the source code. Originally the
software authors did not check the return value and error code given by fork() function which
was called by master process in the loop limited by number of DOEs. In such cases, when -1
was returned (fork() did not succeeded) the processes with such IDs were still added to the list
of running processes, whereas they should have not. This was, in turn, causing other troubles
when calling waitpid() function on running threads invalid PIDs (-1) which were completely
changing the logic of this part of the code.

It turned out spawning children processes above the limit caused fork() to return errno equal
to EAGAIN which literally meant it was not possible to create a new process because the
caller's RLIMIT_NPROC resource limit was encountered. In this case it was decided to
programmatically call setrlimit function increasing maximum number of threads
(setrlimit(RLIMIT_NPROC, …)) in one hand and decreasing the maximum size of the
process stack setrlimit(RLIMIT_STACK,…) on the other hand. This helped sometimes a bit
to increase the initial experimental limit but not much and not in each test-run case.

Main results:
After analysis of the source code and architecture we found out there is strong linear
correlation between number of jobs (simulations) and number of cores used. Then, we
focused on optimizing a single job execution time which finally succeeded. Some major
logical errors have also been spotted and fixed. In the result we can observe the single job
execution time is minimized when number of cores used is maximized at the same time.

The timing characteristics are presented on Figure 14. It is difficult to calculate the speedup
for given configurations because, as it was written above, the number of simulations is strictly
related to the number of processor cores (and also threads) used. For a single simulation there
would be only a single processor used. However, we believe this will not make any sense.
Moreover, the speedup and efficiency that can be observed in this specific case are not
consequent to the strict definitions and formulas known in HPC. Due to URANIE’s internal

Figure 14: Single job execution times in different run strategies.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

35

architecture it was decided to normalize the above times to receive a single job execution (for
different setups) time. Afterwards it can be noticed that increasing number of simulations
(jobs) along with number of cores make the single job execution time shorter.

The project also published a white paper which can be found online under [11].

2.10 Cut-off September 2013
2.10.1 Parsek2D-MLMD, 2010PA1802

Code general features
Name Parsek2D‐MLMD

Scientific field Astrophysics

Short code
description

Parsek2D-MLMD allows the simulation of astrophysical and space
plasmas. It is based on the Implicit Moment Particle In Cell (PIC)
code Parsek2D and implements a novel adaptive technique, the
Multi Level Multi Domain (MLMD) method, for electromagnetic
plasma simulations.

Programming
language

C / C++

Supported compilers GNU, Intel

Parallel
implementation

MPI

Accelerator support (none)

Libraries HDF5

Building procedure make

Web site https://github.com/KulMari/Parsek2D_MLMD

Licence

Table 19: Code general features for Parsek2D-MLMD.

Main objectives:
The field of the application is space plasma physics. Kinetic simulations of plasmas are
extremely challenging because processes develop on multiple scales, from the ion (large,
slow) to the electron (small, fast) scales. To our knowledge, Parsek2D-MLMD is the only
semi-implicit adaptive code for plasma simulations. The main scientific case of interest is
magnetic reconnection in space. A higher resolution grid is required to resolve the electron-
scale physics developing in a small region centred around the X point. We routinely perform
realistic mass ratio simulations of reconnection, while usually low mass ratios are used to
artificially reduce the problem size. According to tests, our MLMD simulations are 70 time
faster than simulations done using the higher resolution on the entire domain.

The technical goal of the project was to restructure the code in order to be able to perform in
an acceptable amount of time a simulation of the desired size (about 100x100 ion skin depths)
and with high Refinement Factors (the jump in resolution between the grids) of the order of
12-14 (to have appropriate resolution on the refined grid). We have achieved a very
satisfactory speed up of about a factor 10 between the code version used at the beginning of
the project and the current one.

Accomplished work:

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

36

During the project, two main lines of work emerged: one more related to the specifics of the
MLMD algorithm and another more technical and more clearly related to HPC optimization
activities.

The two main algorithmic developments have been understanding the role of the smoothing in
the MLMD system and implementing time sub cycling. This last activity required a big effort
for implementation and testing; both activities had deep impact for speed up.

Smoothing is a very powerful tool in Particle-In-Cell simulations, where it is usually used to
suppress numerical instabilities and in particular the Finite Grid Instability, an aliasing
instability which arises when physical quantities are sampled on low-resolution grids [34]. It
became recently clear that smoothing is fundamental in the MLMD system to control
numerical noise on the refined grid. Smoothing has to be applied in a specific sequence with
respect to MLMD operations to avoid the formation of artefacts on the coarse grid. Starting
using smoothing had the positive effect of allowing to increase the stopping criterion in the
GMRES iterative field solver [35] (from 10−6 to 10−3) and to decrease the number of inner
iterations used in the particle mover (from 7 to 3) [36]. A very demanding stopping criterion
for the field solver and a very high number of inner iterations for the mover were used to try
to reduce the noise on the refined grid and to limit the development of artefacts on the coarse
grid. Using smoothing as an alternative to allowed to reduce both the communication
requirements (the GMRES solver performs most of the communication, both Point to Point
and global, in single-grid PIC codes) and, most importantly, the execution times (the particle
mover is the most computationally expensive block in single grid PIC codes) of the code.

Sub-cycling reduces the execution time of simulations and improves scalability with respect
to cases when it is not applied. Sub-cycling means using a different time step for the coarse
and the refined grid. In the original version of the code, the time step common to all the levels
of the MLMD simulation was chosen to resolve the faster physics captured by the refined
grid, at the cost of over-resolving the coarse grid. Using a higher time step on the coarse grid
does not degrade the physical outcome of the simulation. Actually, it has the positive effect of
allowing both of the grids to work in a “healthier” regime. Implicit Moment Method Particle
In Cell simulations are supposed to respect the following constraint: ε ൏ v୲୦,ୣ Δt Δx⁄ ൏ 1,
where ε	 ൎ 0.1 (but it can be lower if smoothing is applied), v୲୦,ୣ is the average thermal
velocity for electrons, Δx is the spatial resolution and Δt is the time step. A grid over-resolved
in time may develop the Finite Grid Instability. Conversely, a grid under-resolved in time may
incur into accuracy problems [37]. Using high Refinement Factors between the grids expose
the coarse grid to the former risk, the refined grid to the latter. For this reason, the time step
has to be different on two levels simulated. In the new version of the code, the Time Ratio TR
between the time steps in two grids can be chosen as an input parameter. TRs up to six have
been successfully used in magnetic reconnection simulations. The refined grid executes TR
cycles for each cycle (”iteration”) that the coarse grid executes. In this way the number of
computational operations on the coarse grid decreases. The reason for the better performance
with sub-cycling lies in the reduction of the necessary MLMD operations: C2R (Coarse to
Refined) and R2C (Refined to Coarse) communication is executed only one time every TR
cycles, rather than every cycle. This reduces communication overhead and waiting times on
the refined grid. In particular, PRA particle splitting and communication operations on the
refined grid (very time consuming operations, as shown by HPCToolkit profiles) are executed
only one time each TR cycles, with a positive effect on scalability and execution time. The
physical significance of the simulation is preserved, execution time is saved and scalability is
improved; on the negative side, however, it has to be remarked that the coarse grid cores wait
idle for quite a long amount of time while the refined grid executes higher frequency cycles.
Sub-cycling has thus the effect of improving code scalability and performances at the expense

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

37

of a higher load imbalance. Load imbalance can however be reduced with massive code
restructuring operations which has not been undertaken (for lack of CURIE time and also
because the project outcome was already very satisfactory) under the current project.

The main technical optimization improvements done in this project have been the elimination
of unnecessary synchronization points within the levels and between the levels, the resizing of
vectors used for MLMD operations, the improvement of particle communication, the
elimination of indirection (mostly in the mover), the introduction of a new structure for field
and particle moment arrays and of pre-screening before the execution of expensive function.
Notice that most of the optimization activities performed affect intra-grid rather than inter-
grid operations; for this reason, also the execution times of simulations with one single level
have been notably speeded up.

Main results
The main result obtained within the project is for sure the speed up of the code, which is
almost of a factor ten with respect with the original execution time. To show the code speed
up, the same approach adopted in Beck et al. [38] is used to evaluate code performances: the
execution time of a two level MLMD simulation with a certain RF between the grids is
compared with the execution time of a single-level simulation having the same domain size
and entirely solved with the MLMD refined grid resolution. The same test is repeated for the
code before and after optimization. Since the aim of the MLMD algorithm is to reduce
resource consumption while delivering the same level of relevant physical information, this is
our most relevant performance metric. The same test cases as in Beck et al. are used here. The
MLMD simulations are quite small in size to make the comparison with the fully resolved
simulations achievable with moderate resources. Two PRA cells per side are used in the
MLMD simulation with the new code version, while one was used in Beck et al. for the old
code version. Using 2 PRA cells rather than one makes the tests with the new code version
more challenging.

Figure 15: Execution time in seconds for two-level MLMD simulations (straight line) with the old (v0) and
new (v1) version of the code. The execution times of one-level simulations with resolution equal to the
refined grid resolution are plotted in dashed lines. The y-axis is in log scale: notice the code speed up
between v0 and v1.

Figure 15 shows the execution times in seconds on a logarithmic scale as a function of the RF
for the full resolution (dash-dotted line) and the MLMD case (straight line). Red is the old
code version, blue is the new one. Notice that a significant amount of time is saved if a
MLMD rather than a full resolution simulation is done. Notice also the significant speed-up

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

38

between v0 and v1, achieved during this project, which amounts to almost one order of
magnitude.

The second result obtained is that the memory consumption of the application, one of the
main concerns in the proposal, has been reduced. Now, we are not forced anymore to use a
very high number of cores for our simulations due to high memory requirements.

Figure 16: Weak scaling tests for the old code version (v0), the new code version without sub-cycling (v1,
NS) and the new code version with sub-cycling and Time Ratio between the grid TR=6 (v1, TR6). A
logarithmic scale is used in the y-axis. Notice the code speed up of a factor 10 between the old and the new
version of the code. Sub-cycling improves scalability.

Third, sub-cycling has been implemented. This has been the biggest algorithmic
improvement. Sub-cycling allows to reduce again the execution time of simulations without
losing physical information and also improves code scalability, which however was not the
main aim of the current project (see Figure 16).

The project is currently preparing a white paper which will be published online at [1].

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

39

3 T7.1.B Application Support for DECI Projects

Distributed European Computing Initiative (DECI), the follow-on activity to the previous
DEISA Extreme Computing Initiative, has been integrated into PRACE since PRACE-2IP
and continued in PRACE-3IP. The purpose of DECI is to provide the European researchers
with the opportunities to access the significant resources on Tier-1 systems across different
European countries for their world leading scientific research and simulations. Whilst the
DECI process management was covered in WP2, T7.1.B in WP7 was responsible for
providing the technical support for DECI projects and focused on the application enabling
support for the DECI projects which stated such requirements in their proposals. This section
provides an overview of the work and the outcome in the 2nd year of PRACE-3IP. It also
includes the application enabling for the DECI projects during this period.

3.1 T7.1.B Overview in the 2nd Year of PRACE-3IP

T7.1.B provided the technical support for the DECI projects of the following DECI calls in
the 2nd year of PRACE-3IP.

DECI Calls Open
Date

Closing
Date

Allocation
Starting Date

Received
Proposals
(TEs)

Accepted
Projects

Enabling
Projects

DECI-9
(Started in
PRACE-2IP)

17 Apr
2012

30 May
2012

1 Nov 2012 45 31 1

DECI-10
(Started in
PRACE-2IP)

5 Nov
2012

14 Dec
2012

1 May 2013 85 37 2

DECI-11 8 May
2013

10 Jun
2013

1 Nov 2013 119 52 1

DECI-12

18 Dec
2013

20 Jan
2014

1 May 2014 61 34 No
enabling
project

Table 20: DECI calls in PRACE-3IP.

3.1.1 Technical Evaluations

In the 2nd year of PRACE-3IP, T7.1.B continued providing the Technical Evaluations for the
DECI proposals, including 119 TEs for DECI-11 and 61 TEs for DECI-12.

Technical Evaluations (TEs) aimed to provide technical inputs during the review process for
the DECI proposals, including the evaluation of whether the applications were suitable to run
on the Tier-1 systems, as well as the identification of the technical requirements from the
proposed DECI projects. The DECI TEs started as soon as possible after the DECI calls were
closed and were usually completed within around 2-3 weeks depending on the amount of the
received DECI proposals. The TE for each proposal was to be completed by their DECI home
site, which is usually the DECI site from their own country. If the proposal was from a
country which has not been involved in PRACE/DECI, one DECI partner site would be
assigned to be the home site for this proposal in such case and responsible for its TE.

In the 2nd year of PRACE-3IP, all the TEs were completed using the online PPR (Project
Proposal and Report) tool for DECI. When the TEs were completed, all the DECI

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

40

applications together with the TE reports were then available for the next step, the Scientific
Evaluations (SEs). At the same time, the DECI home sites were also responsible to input and
update the proposal information in the DECI Process Management DataBase (DPMDB)
where the status of all the DECI projects and proposals are kept. The system assignments for
the accepted DECI projects were based on the TE results and comments.

3.1.2 Technical Support for the Accepted DECI Projects

T7.1.B continued providing the technical support for the accepted DECI projects in the 2nd
year of PRACE-3IP. This included the continued support for DECI-9 and DECI-10 projects
which have been started in PRACE-2IP and also the full support for all the DECI-11 projects.
Although DECI-12 projects have started within PRACE-3IP and the TEs and the starting
assistances have been completed for the DECI-12 projects, there will be no enabling support
for DECI-12 projects after the PRACE-3IP ended.

Similar to the previous DECI support in PRACE-2IP, T7.1.B in PRACE-3IP helped the DECI
users to get access to their assigned Tier-1 systems at the starting stage of their DECI project.
The home sites arranged initial meetings with their PIs, to explain all necessary information to
the DECI PIs and users. It was also the stage at which the DECI sites should capture the user
requirements of the environments, software installed, etc. on the assigned system and provide
technical assistance where needed. The initial meetings were in the forms of face-to-face
meetings, telcons, videoconferences, or email guidance only, as requested by the DECI PIs
and users. A full instruction on the initial meetings and assistance guidance for helping the
DECI users to get start with their DECI projects has been listed on the PRACE WP7 wiki
page.

T7.1.B provided the technical supports for all the ongoing DECI projects where there were
any issues raised via the PRACE support system for DECI users (TTS), or if there were any
queries received directly by the DECI sites. Besides, T7.1.B focused on providing the
enabling support to the DECI projects which required such assistance in their proposals. The
enabling support, which was usually involved 1-6 PMs from the DECI sites, included all
aspects of applications enabling such as porting code to the Tier-1 systems, performance
benchmarking and profiling, optimisation, and further code development, etc. In the 2nd year
of PRACE-3IP. The enabling support for the DECI projects is shown in the Table below.
Detailed reporting on the applications enabling can be found in the following sections 3.2, 3.2
and 3.4.

 Project Home
site

Exec Site Enabling
Site

Architectures Enabling
Efforts

DECI-9 Planck-
LFI2

CSC CSC CSC Louhi XT@CSC,
Sisu@CSC

1-3 PMs

DECI-10 DNSTF PDC EPCC PDC,
SURFsara

HECToR
XE6@EPCC,
ARCHER@EPCC

1-3 PMs

DECI-10 HYDRAD RZG RZG,
VSB-TUO

RZG Hydra@RZG,
Anselm@VSB-
TUO

1-3 PMs

DECI-11 Planck-
LFI3

CSC CSC CSC Sisu@CSC 1-3 PMs

Table 21: DECI enabling projects in the 2nd year of PRACE-3IP.

Before the end of each DECI project, the home site will send the closing instructions to the
PIs. A final report was expected for each DECI project from the DECI PI, to summarise the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

41

scientific, technical, and algorithmic results of the DECI project, and document the relevance
of the PRACE infrastructure. All final reports were expected from the DECI PIs within 3
months after the original deadline of the projects. Any data collection should be completed
within the 3-month period as well.

Besides the final reports from the DECI PIs, the technical support for DECI by was also
reported. Brief summaries of the technical support for DECI-9 / DECI-10 / DECI-11 are
included in this deliverable. White papers were usually contributed by the DECI sites which
implemented the applications enabling for DECI projects, to share more technical details and
experience of the work done. The white papers are available on the PRACE website [12]. In
the 2nd year of PRACE-3IP, one white paper for the DECI-10 enabling project, DNSTF, is
under preparation during this deliverable writing. The white paper will be available on the
PRACE website in June 2014.

3.1.3 Coordination and Collaboration

Fifteen partner sites are involved providing 73 PMs in total for the DECI technical support1.
In order to track the DECI support progress and discuss plans or issues met. T7.1.B held
monthly telcons on every 3rd Friday of each month. The monthly telcons were merged with
the WP2-T7.1.B videoconferences since March 2014, in order to avoid duplication of effort.

T7.1.B worked in close collaboration with WP2. Whilst WP2 was responsible for the DECI
process management, T7.1.B focused on providing the technical support. As mentioned in
section 3.1.1, the DECI proposals together with the TEs would be passed to WP2 for SEs. The
final system assignment was done by WP2. It was the responsibility of WP2 to track the
DECI projects’ progress, but in the case that any issues were met by DECI projects, WP2
would raise the issues with T7.1.B for providing the technical support for the technical
questions.

There were several tools used for DECI support and DECI process management:

 BSCW-DECI folders: to keep documents for DECI available for PRACE-3IP partners.
There are certain folders for the final PIs’ reports storage.

 DPMDB: the database used for the DECI projects information storage and progress
tracking. T7.1.B was responsible to input the DECI projects information after TEs.

 WP7 PRACE Wiki: the task internal wiki page to provide useful information on the
DECI support, such as workflow, guidance on the initial meetings with PIs, etc.

 TTS: the query tickets system which DECI users are encouraged to submit queries to.
This aims to help users to get responses more efficiently and effectively.

In the 2nd year of PRACE-3IP, T7.1.B had two sessions at the WP7 Face-to-Face meetings in
Dublin (Dec, 2013) and Daresbury (May, 2014), to report on the progress and discuss the next
step work plans, etc.

3.2 Technical Support for DECI-9 in the 2nd Year of PRACE-3IP

All the 31 DECI-9 projects started from 1 November 2012 in PRACE-2IP. T7.1.B continued
the support for all DECI-9 projects since August 2013 after the end of PRACE-2IP. There
was one DECI-9 enabling project, Planck-LFI2, as reported in the following subsection.

1	There	are	more	DECI	sites	in	total,	but	part	of	them	only	provides	the	Tier‐1	resources	or	only	involved	
in	the	DECI	process	management	task	in	WP2.	

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

42

3.2.1 Planck-LFI2

The DECI-9 project, Planck-LFI2 (Planck LFI data analysis for second release), has CSC as
the home site / exec site / enabling site. The project was assigned to Louhi XT@CSC and
Sisu@CSC. This project required 1-3 PMs for the enabling efforts. The enabling work done
by CSC was for the two main codes, CosmoMC and LevelS.

Applications Reporting for Planck-LFI2 - CosmoMC

Code general features
Name CosmoMC

Scientific field Astro Sciences (cosmology)

Short code
description

CosmoMC is a parallel sampling code for exploring cosmological
parameter space. It uses the Markov Chain Monte Carlo method to
find which theoretical model fits best to the given cosmological
data.

Programming
language

Fortran 2003/2008

Supported compilers Intel

Parallel
implementation

MPI, OpenMP

Accelerator support None

Libraries GSL optional

Building procedure Edit makefile, then run “make”.

Web site http://cosmologist.info/cosmomc/

Licence Free of charge until January 2015 on conditions that: (1) Any
publication using results of the code are submitted to arXiv at the
same time as, or before, submitting to a journal. arXiv must be
updated with a version equivalent to that accepted by the journal on
journal acceptance. (2) If the user identifies any bugs they must be
reported as soon as confirmed.

Table 22: Code general features for CosmoMC.

Targets and accomplished work
There were two issues that needed our attention: building CosmoMC to use the Gnu Scientific
Library (GSL) and to enable OpenMP threads.

Main objectives:
The initial plan was to only build CosmoMC to use the Gnu Scientific Library (GSL). Few
months after that was done, the version of the CosmoMC changed, and the new version had to
be built for the execution machine. This didn’t succeed until the execution machine was
changed. On the new machine there was a new problem: the parallel launcher, aprun, cannot
place threads well into cores if a program is built with the Intel compiler (as it is in this case).
Different ways to bind threads with CPU cores were tried to relieve the problem.

Accomplished work:
First, in October 2012, CosmoMC was configured to use the GSL library. It took some time to
realise that none of the GSL versions available on execution platform (Cray XT Louhi) were

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

43

compatible with the compiler that was in use (Intel). The solution was to install a custom
version of GSL in the user’s application directory.

Second, in December 2012, it turned out that the newest version of CosmoMC required a
newer version of the Intel compiler than was available. The requirement set in because the
new version of the software was written in Fortran 2008. Using a different compiler collection
wasn’t an option because they don’t support the application’s requirements any better. This
was a difficult problem because no further compiler updates were to be installed on the old
system. The solution was to move CosmoMC simulations to the successor of Louhi (Cray
XC30 Sisu) once it was available. The new system had the newest possible compiler
collections from all vendors, so the problem was easily solved that way. CSC gave assistance
with this in January 2013. In March 2013, a problem turned up: CosmoMC could not be run in
hybrid MPI–OpenMP mode. The parallel launcher, aprun, cannot place threads well into
cores if a program is built with the Intel compiler (as it is in this case). Different ways to bind
threads with CPU cores were tried, but the performance is still far from satisfactory. The
problem is acknowledged by Cray. In April 2013, a workaround was developed, which solved
the problem in case of one MPI task per socket (two per node). This meant that CosmoMC
can be run in hybrid MPI–OpenMP mode, which speeds up the investigators’ work. More
MPI tasks wouldn’t have made the same effect: they only add more statistics, but do not make
computations any faster. Until the end of the project, the CosmoMC computations were run
using eight OpenMP threads per one MPI task. This was not optimal according to earlier
experience: four threads would have performed better, but could not be used.

Main results:
Performance data was not recorded. The only objective was to build the software, with the
features requested by the research team.

Application Reporting for Planck-LFI2 - LevelS

Code general features
Name LevelS

Scientific field Astro Sciences (cosmology)

Short code description LevelS is a code for simulating cosmological data that will be
collected by the detectors in the Planck HFI and LFI instruments.

Programming
language

C++, Fortran 95

Supported compilers All

Parallel
implementation

mpibatch script

Accelerator support None

Libraries cfitsio, FFTW

Building procedure Edit makefile, then run “make”.

Web site None

Licence Proprietary to Planck collaboration

Table 23: Code general features for LevelS.

Targets and accomplished work
In May 2013 one of the applications (LevelS) started to fail although it worked fine in
February of the same year.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

44

Main objectives:
The objective was to make LevelS work again.

Accomplished work:
Substantial of effort was used to spot the error, first by CSC and later by Cray’s applications
support. The cause of the problem was finally simple: the application was not started with the
parallel launcher aprun, but with the “system” command on the compute node, through the
mpibatch script. In such a case, there are three ways to compile the application:

 load the craype-target-native module before compiling the code;
 add the -target=native option to the cc, CC, or ftn command; or
 call the underlying compiler directly (gcc, gfortran, icc, ifort, craycc, crayCC, crayftn).

Main results:
Performance data was not recorded.

3.3 Technical Support for DECI-10 in the 2nd Year of PRACE-3IP

All 37 DECI-10 projects started from 1 May 2013 in PRACE-2IP. T7.1.B continued the
support for all DECI-10 projects since August 2013 after the end of PRACE-2IP. There were
two DECI-10 enabling projects, DNSTF and HYDRAD, as reported in the following
subsection.

3.3.1 DNSTF

The DECI-10 project DNSTF (Direct numerical simulation of finite size fibres in turbulent
flow) has PDC as the home site and EPCC as the exec site. Both PDC and SURFsara
contributed to the enabling support. The Tier-1 systems assigned to this project included
HECToR @ EPCC, and ARCHER @ EPCC after HECToR finishing the service time. The
enabling effort requested was 1-3 PMs.
Code general features
Name Slilab

Scientific field Lattice-Boltzmann method for the Solid-liquid interaction

Short code description The Slilab code is based on the Palabos library, an open-source
based on the lattice Boltzmann method. It has been developed for
years, partly at the University of Geneva, and is proven to simulate
accurately flow in complex geometries.

Programming
language

C++

Supported compilers GNU, Intel

Parallel
implementation

MPI

Accelerator support NA

Libraries Boost, Eigen3, XmlTiny

Building procedure NA

Web site www.palabos.org

Licence GNU Affero General Public License

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

45

Table 24: Code general features for Slilab.

Main objectives:
The objective is to parallelize Slilab code with OpenMP for a shared-memory execution
model, when focusing on the multiphase phase flow simulation, as fiber suspensions in
turbulent channel flow etc. In such problems the motion of the “second phase - fibre” is
frequently crossed over the distributed domain boundary of the “first phase - fluid”, which in
turn reduces the balance of MPI processing. Addition of OpenMP parallelization allows to
minimize the number of MPI ranks in favor of single-node parallelism, therefore mitigating
MPI imbalance.

Accomplished work:
We successfully parallelized Slilab code with OpenMP for a shared-memory execution
model, when combined with its MPI parallelism allows us to run the code with hybrid
parallelisation strategies to maximise the performance.

We identified serial bottlenecks with the help of Intel VTune Amplifier that required
parallelization with OpenMP. All but one of the bottlenecks—the hotspot—allowed
straightforward parallelisation with “#pragma omp parallel [collapse(2)]” clauses. Some of
the functions make use of “static” variable which generated race conditions, but these were
lifted by promoting these variables to become private for each thread. In addition, in the
hotspot loop we also attempted the 2D parallelization strategy instead of original 1D which
would, theoretically, allow it to scale to hundreds of thread, for example, on Intel XeonPhi.
Finally, we also made the application NUMA-aware, thus allowing it to scale on multiple
socket/CPUs on a single computing node.

Main results:

1. Compiler nuances
Most of the OpenMP parallelization, once the hotspots were identified, was straightforward.
However, there were several nuances due to a partial compiler supports for OpenMP thread
private variables. In particular, some of the functions used “static” variables to store data
between invocations. However, when these functions were called from within parallel loops,
race conditions produced erroneous results. A natural way to solve this was to use “#pragma
omp threadprivate” clause for these variables. However, the variables were not of a plain-old-
data type but rather C++ template classes. We found that while Intel C++ compiler [14.0.2]
could digest such thread private variables, the GNU C++ compiler [4.8.1] generated a
compiler error. A work around was to use C++11 “thread_local” keyword with GNU C++,
which proved to work fine. However, Intel C++ compiler was unable to process this, and
generated compiler errors instead. As a result, we opted for a compile-time conditional rules,
such that with Intel C++ compiler the code used “#pragma omp threadprivate” clause after
variable declaration, while with GNU C++ compiler the code takes advantage of C++11
“thread_local” keyword during variable declaration.

2. Scalability results
Here we present single-node code performance and scalability. Due to the bandwidth-bound
nature of the application, it makes no sense to study its speed-up with the core count. The
reason is that memory bandwidth is a resource shared by all cores on a CPU, and adding cores
to the application above certain threshold wouldn’t provide any additional bandwidth. As
such there is not any fundamental reason to expect linear application speed-up with the core
count. It is important, however, to study application scalability as CPUs are added to the
application. In particular, we test the code scalability on a 4-socket node with Sandy Bridge
CPUs. Each CPU adds bandwidth to the system, therefore, in ideal case, the performance of

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

46

the code should scale linearly with the number of CPU used. We also measure the memory
bandwidth the application attains, and observer whether it scales linearly with CPU count. In
addition, this bandwidth can be compared to the maximal practically achievable bandwidth
which can be obtained with the Stream benchmark. To measure the bandwidth we used
likwid-perfctr [39].

For the benchmarks we use Intel C++ compiler 14.0.2 and Intel MPI 4.1.0.24. We tested the
code on a system equipped with 4x Sandy Bridge E5-4650 CPUs and four-channel 1600MHz
DDR3 memory with peak bandwidth of 51.2GB/s per CPU. However, the maximal
practically achievable bandwidth, which we measured with the Stream benchmark, is 35.2,
69.8, 104 and 138 GB/s for 1, 2, 3 and 4 CPUs.

We use the following environmental variables:

export OMP_SCHEDULE=static
export KMP_AFFINITY=compact,verbose
export I_MPI_PIN=1
export I_MPI_PIN_DOMAIN=omp:compact

These settings guarantee that the threads and processes will be closely packed together, and
not spread across different CPUs. In particular, with 8 cores and 8 threads per CPU (8c8t for
short), which also means that the system has no hyperthreading (HT) enabled, an application
using with 8 threads and processes in total will only utilize resources of the CPU0. However,
with 16 and 24 threads and processes, the application will also use CPU1, and CPU1 & CPU2
respectively.

To execute a hybrid version of the code, we use the following execution command:
OMP_NUM_THREADS=#threads mpirun –np #ranks ./cavity3d
#dimension

Here, “#threads” is the number of OpenMP threads per MPI rank, “#rank” is the number
of MPI ranks, and “#dimension” is the problem size meaning that a three-dimensional box
of size (#dimension)3 is simulated.

Here we report strong scaling results for problem size of 128 and 256, running on from 1 to 4
CPUs.

#dimensions = 256:

#threads #ranks core/rank/Socket Bandwidth [GB/s] Mups2 Speed-up
8 1 8c1r1S 22.0 32.7 1.00
1 8 8c8r1S 22.3 30.9 0.94
16 1 16c1r2S 44.1 63.6 1.95
1 16 16c16r2S 45.4 58.0 1.77
24 1 24c1r3S 41.3 54.8 1.68
1 24 24c24r3S 70.0 83.7 2.55
4 6 24c6r3S 65.4 85.9 2.62
32 1 32c1r4S 84.8 119 3.63
1 32 32c32r4S 89.7 120 3.67
4 8 32c8r4S 87.9 118 3.61

Table 25: Strong scaling results of Slilab with #dimensions=256.

#dimensions = 128:

2	Mups:	Mega‐updates	per	second,	i.e.	the	so‐called	“science	rate”	of	the	application.	This	is	a	metric	how	
many	cells	are	updated	per	second	in	the	lattice‐boltzman	method.		

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

47

#threads #ranks core/rank/Socket Bandwidth [GB/s] Mups Speed-up
8 1 8c1r1S 21.5 30.6 1.00
1 8 8c8r1S 18.4 31.4 1.03
16 1 16c1r2S 37.8 54.6 1.78
1 16 16c16r2S 37.1 55.5 1.81
24 1 24c1r3S 34.5 48.3 1.58
1 24 24c24r3S 57.5 76.4 2.50
4 6 24c6r3S 55.7 77.5 2.53
32 1 32c1r4S 67.7 94.5 3.09
1 32 32c32r4S 76.9 103 3.37
4 8 32c8r4S 63.1 115 3.76

Table 26: Strong scaling results of Slilab with #dimensions=128.

4. Discussion

We successfully parallelized Slilab with OpenMP for shared-memory execution model.
Since the application is already MPI parallel, it allows us to maximise application
performance by exploring treads/rank parameter space. We see from the tables that a hybrid
parallelization approach allows us to achieve over 90% of parallel efficiency when scaled to 4
sockets on single node. Furthermore, if the problem per node is large enough, as with
#dimensions=256, the pure OpenMP shows best result, which also demonstrates NUMA-
awareness of the code; in particular, the bandwidth utilized by the code on 4S is nearly 4x of
the 1S bandwidth for #dimensions=256 case. The pure OpenMP performance is less
satisfactory with smaller problem sizes. The primary reason is due to the remaining serial
bottlenecks in the code that become further exposed. In principle, with additional efforts,
these bottlenecks could also be parallelised to improve pure OpenMP scalability on smaller
problems. However, we observe that is not required because when combined with MPI, the
results demonstrate satisfactory scalability even on smaller problem sizes.

We were also able to test-drive this application on Intel XeonPhi with pure OpenMP using
240 threads on 60 Xeon Phi core. The performance was comparable to a single Sandy Bridge
CPU. From our experience, this is not a bad result for an out-of-the-box code; however, this
means there is at least 2x potential for improvement. The two basic reasons for this result is
due to a) serial bottleneck of the OpenMP code which is much more exposed on XeonPhi than
Xeon, and b) the compiler is unable to auto-vectorize the code that further aggravate single-
threaded code; a XeonPhi core can be up to 10x slower than a Xeon core. We expect up to 3x
speed-up on XeonPhi compared to a single Sandy Bridge-class CPU once these problems are
solved.

3.3.2 HYDRAD

The DECI-10 project HYDRAD (Hydrodynamic stability of rotating flows in accretion disks)
has RZG as the home site / exec site / enabling site. It also has VSB-TUO as one other exec
site. The tier-1 systems assigned to this project included Hydra @ RZG and Anselm @ VSB-
TUO. The enabling effort requested was 1-3 PMs.

Code general features
Name NSCOUETTE

Scientific field Hydrodynamics

Short code description The NSCOUETTE code implements a hybrid-parallel direct-
numerical-simulation (DNS) method for turbulent Taylor-Couette

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

48

flow. The Navier-Stokes equations are discretized in cylindrical
coordinates with the spectral Fourier-Galerkin method in the axial
and azimuthal directions, and high-order finite differences in the
radial direction. Time is advanced by a second-order, semi-implicit
projection scheme, which requires the solution of five
Helmholtz/Poisson equations, avoids staggered grids and renders
very small slip velocities. Nonlinear terms are computed with the
pseudo-spectral method. The code is parallelized using a hybrid
MPI-OpenMP strategy, which is simpler to implement, reduces
inter-node communications and can more efficient, compared to a
flat MPI parallelization concerning memory, message sizes
(latency) and MPI overhead at large core counts. A strong scaling
study shows that the hybrid code maintains very good scalability up
to more than 20,000 processor cores and thus allows to perform
simulations at higher resolutions than previously feasible, and
opens up the possibility to simulate turbulent Taylor-Couette flows
at Reynolds numbers up to O(105). This enables to probe
hydrodynamic turbulence in Keplerian flows in experimentally
relevant regimes, e.g. in accretion processes in weakly-ionized
astrophysical disks. (see arXiv:1311.2481 for a detailed description
of the code and benchmarks)

Programming
language

FORTRAN

Supported compilers ifort (Intel), gfortran (GCC), XLF (IBM)

Parallel
implementation

hybrid MPI/OpenMP

Accelerator support no

Libraries BLAS, LAPACK (MKL, ACML, ...), FFTW (MKL or FFTW),
pHDF5

Building procedure make

Web site -

Licence -

Table 27: Code general features of NSCOUETTE.

Accomplished work:
 Implementation, validation and benchmarking of the new, fully thread-safe DFTs from

MKL/11.1 versus the original FFTW routines (leading to a 5%-10% performance
improvement, depending on the setups)

 Benchmarking of MKL transposition routines mkl_?omatcopy 3 versus the
FORTRAN90 intrinsic transpose (a performance anomaly of was detected in
mkl_?omatcopy from MKL/11.0 and was reported to Intel. The problem has been
fixed in MKL/11.1 so that mkl_?omatcopy is now consistently at least as fast as the
FORTRAN90 intrinsic)

3		‘?’	denotes	the	datatypes:	s=real,	d=double	precision,	c=complex,	and	z=double	complex[23]	

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

49

 Algorithmic optimization of the computational performance and memory requirements
of NSCOUETTE (leading to optimization of the “single-thread” performance and
hence time-to-solution by a factor of 2 to 4, depending on the setup)

 Visualization of simulation results (basic enabling of the user for the VisIT and
Paraview tools and remote visualization, production of a movie for analysis and
dissemination)

Main results:
1) High-level optimization

For project HYDRAD a number of high-level optimizations were performed for the
NSCOUETTE code in addition to standard application enabling. First, for the discrete Fourier
Transform (DFT) the performance of the new, fully thread-safe implementation (which is a
requirement for usage in NSCOUETTE) from the latest Intel Math Kernel Library (MKL,
release 11.1) was evaluated against FFTW which has been used by default. With the DFTs
from MKL, the overall performance was increased by 5% to 10%, depending on the setup.

The major task was the reorganization of the NSCOUETTE code such that LU
decompositions for solving the five linear systems (which consumed more than 50% of the
total runtime) are pre-computed once, at the beginning of a simulation. By this measure the
overall computational performance per core could be nearly doubled for the typical matrix
dimensions used (in the order of a thousand). The new implementation was thoroughly
validated also by the original authors of the code and it has been used in production since the
end of 2013. The optimizations enabled the scientists to run production applications at a
higher radial resolution (factor 2-4). This, in turn, revealed a number of new "hotspots" in the
profiling which were targeted for optimization as a next step. Specifically, a number of
matrix-vector operations on the (banded) finite-difference coefficient matrices now take
advantage of banded BLAS routines, replacing dense matrix-vector operations which were
originally implemented and which had played a sub-dominant role for the overall computing
time budget in the original version of the code and with smaller matrices.

Figure 17: NSCOUETTE scaling up to 20,000 cores on Hydra @ RZG.

These algorithmic optimizations make the global transposition (implemented with
MPI_Alltoall and local transposes) become even more dominant in the overall computing
time and hence formal scalability at high core counts has actually deteriorated compared to

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

50

the original code version. Nevertheless, the new version has been shown to scale up to more
than 20,000 cores on Hydra @RZG (cf. Figure 17). Most importantly, however, the overall
computational performance (in terms of time to solution for a given number of cores) could
be improved by more than a factor of four for a given numerical resolution as a result of the
optimizations reported here. This also allows the scientists to perform simulations with a
significantly larger number of grid points with the same computing time budget.

2) Visualization and dissemination

For one of the highly resolved NSCOUETTE simulations of turbulence in Keplerian flows a
movie was produced from more than 500 output files, generated by parallel HDF5 I/O. The
visualization shows the evolution of turbulent vortices (Figure 18 is a snapshot from this
movie showing a volume rendering of the streamwise vorticity, as a common measure for the
strength of turbulence, produced with VisIT). The material was provided to PRACE for
dissemination at ISC’14, SC’14, and for the PRACE web.

Figure 18: Snapshot of NSCOUETTE simulations of turbulence in Keplerian flows.

3.4 Technical Support for DECI-11

The DECI-11 call was launched on 8 May 2013 and closed on 10 June 2013. There were 119
proposals received and T7.1.B provided the TEs for all the DECI-11 proposals using the
online PRACE PPR tool for DECI. 52 out of the 119 DECI-11 proposals were accepted. The
accepted projects started from 1 November 2013 with a length of 1 year for the project time,
i.e. the due date for the DECI-11 projects will be 30 October 2014. There was one DECI-11
enabling project, Planck-LFI3, as reported in the following subsection.

3.4.1 Planck-LFI3

Planck-LFI3 is the continued project for the DECI-9 project Planck-LFI2. CSC is the home
site / exec site / enabling site for this project. The Tier-1 system assigned to this project is
Sisu @ CSC. The enabling effort requested was 1-3 PMs. There has been no enabling
progress implemented so far, but the project is planning to check the performance of the codes
after the second phase of the Sisu@CSC upgrad in July, and optimise the code where
necessary.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

51

3.5 The following DECI calls

The DECI-12 call was launched on 18 December 2013 and closed on 20 January 2014. There
were 61 proposals received and T7.1.B provided all the TEs for the DECI-12 proposals using
the online PRACE PPR tool for DECI. 34 out of the 61 DECI-12 proposals were accepted.
The accepted DECI-12 projects started from 1 May 2013 with a length of 1 year for the
project time, i.e. the due date for the DECI-12 projects will be 30 April 2015. Due to the time
scale of DECI-12 and PRACE-3IP, there will be no enabling effort available to support
DECI-12 projects. T7.1.B was only responsible for providing the starting assistances for the
DECI-12 projects.

At the time of this deliverable writing, DECI-13 is under planning as well but the timescale
has not been confirmed yet. There will be no enabling support from T7.1.B for DECI-13.

4 T7.1.C Applications for Major Socio-economic Challenges

HPC techniques used for scientific computations have enabled several breakthrough research
discovery and design innovations. Use of computing capabilities opens also new perspectives
in solving key socio-economic challenges. Most of these problems are founded on in complex
multi-discipline research areas that require a lot of investments and effective tools to be
addressed. The PRACE HPC infrastructure delivers substantial computing capabilities and
specialized applications that combined together are key factor for addressing socio-economic
challenges that transform our ecosystem, economy, environment and everyday life.

Support for application codes addressing key socio-economic challenges and related scientific
problem has been provided as a part of PRACE-3IP Project application support services task
of Work Package 7. The overall approach for this task included: socio-economic challenges
identification and associated application selection, required technical support for selected
codes definition and actual enabling work targeting selected HPC systems. Representative set
of applications has been evaluated and selected as a target of enabling for effective use on the
PRACE HPC systems. This report contains complete descriptions of the enabling process for
the selected application codes addressing identified socio-economic challenges. Report on the
challenges identification and selection process has been included in the PRACE-3IP
deliverable D7.1.1 Applications Addressing Major Socio-economic Challenges [24].

4.1 Work scope

Using numerous PRACE documentation and inputs from different European initiatives target
scientific areas representing key socio-economic challenges have been defined. These have
included following domains: Energy Sources and Management, Life Sciences and Medicine,
Climate Change, Big Data, Environment Protection, and Engineering. With the help of
PRACE Scientific Steering Committee evaluation and selection process of scientific problems
representing socio-economic challenges have been completed resulting in a set of
representative challenges in:

 Safe and Environmental-friendly energy production,
 Rational drug design,
 Sustainable food supply,
 Future aircraft transportation,
 ‘Big data’ management and processing,
 Understanding of climate change,
 Natural environment protection.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

52

For each challenge a representative problem has been defined and an underlying scientific
case extracted. These details have been evaluated with respect to scientific importance and
representativeness using the input from the PRACE Scientific Steering Committee (SSC)
members. For a given scientific case a suitable application or suite of applications has been
selected with primary technical issues to be addressed. This leads to technical case
formulation. On a basis of high-level socio-economic challenges and precisely defined
scientific cases, technical cases for the associated application codes have been proposed. The
proposals have been grouped in application enabling projects with project leader from
PRACE WP7 members. Proposals were ranked using input from the SSC members. The
evaluation ranking has been then approved by the PRACE PMO leading to the list of 12
socio-economic application enabling projects.

4.2 Work organization

Table 28 summarizes all application enabling projects grouped by a respective socio-
economic challenge. The application codes are listed together with the project leader
responsible for technical case definition and enabling work. Using this table plans for the
enabling of the selected codes have been coordinated. For a complete description of
identification and selection of these codes and initial goals for the application enabling please
refer to the PRACE-3IP deliverable D7.1.1.

Socio-economic challenge Project

Number
Project
Leader

Associated
applications

Safe and Environmental-friendly
energy production

PR2

Charles
Moulinec
(STFC DL)

TOMAWAC,
TELEMAC-3D,
Sisyphe (coupled)

PR4
Jacques David
(CEA)

URANIE

Rational drug design

PR5
Soon-Heum
Ko (LiU)

LSDALTON

PR7
Nevena Ilieva-
Litova
(NCSA)

DL_POLY_4

Sustainable food supply PR8
Thomas
Röblitz (UiO)

Bio Informatics
applications workflow

Future aircraft transportation PR9

Peter
Stadelmeyer
(JKU), Tomáš
Karásek (VSB)

OpenFOAM, Elmer

‘Big data’ management and
processing

PR11
Cevdet
Aykanat
(BILKENT)

Pegasus, Mahout

Multiscale modelling of the human PR6 Andrew PFARM

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

53

Socio-economic challenge Project
Number

Project
Leader

Associated
applications

cells and organs Sunderland
(STFC DL)

PR12
Eva Casoni
(BSC)

Alya Red

PR13 - NEST

Understanding of climate change PR14
Klaus
Klingmueller
(CASTORC)

EMAC/ ECHAM,
MESSy
(coupled)

Natural environment protection PR15

John Donners
(SURFsara),
Massimiliano
Guarrasi
(CINECA)

Delft3D, Delft3D-
DELWAQ, Delft3D-
SWAN (coupled)

Table 28: Socio-economic challenges and associated applications enabling projects.

Each project focused on either one particular application code that need to be enabled for a
given scientific case or on enabling a set of codes that need to be coupled for efficient use on
HPC systems. All projects, with one exception, have reached the final enabling targets and
detailed reports from these projects are included in this document.

Work on the project related to human neural system (project number 13, PR13) and
associated application NEST (NEural Simulation Tool) has been cancelled. On the early stage
of the project, the availability of scientific experts was not guaranteed. Because of high risk of
the failure, it was decided to discontinue this project.

For each project technical goals have been defined and subsequent steps periodically updated
during the work progress. Around 20 contributors were involved in this application support
task. To coordinate work and track progress monthly teleconferences with all project leaders
have been organized. Additionally, every quarter the project's progress were evaluated and a
written report requested. Accordance to the enabling plans has been discussed with projects
leaders. Evaluation steps have been also the subject of WP7 periodic face-to-face meetings
where project leaders were delivering presentation on project progress on the dedicated
session.

4.2.1 Contributions

A number of PRACE partners were contributing to the projects on “socio-economic
applications” enabling. Project leaders were chosen from PRACE application experts in WP7
and all other members invited to contribute. Project leaders were coordinating contributions
and enabling work. Responsibility for the external communication with experts and
application community were on the project leader. It was agreed that leaders also deliver
presentations and talks on the face-to-face session, quarterly progress report and a final report.
Moreover, it was decided that each project will be completed with detailed technical report in
a form of the PRACE white paper. Table 29 lists ten White papers already published on the
PRACE web site. Details on the eleventh project focused on GPU accelerated version of the
application for climate chemistry (PR14) is reported in the section 4.4 without a dedicated
white paper.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

54

 White paper title Authors

WP167
[13]

Impact and optimum placement of off-shore
energy generating platforms

C. Moulinec, D.R. Emerson
(STFC DL)

WP168
[14]

Simulation Scaling in Nuclear Energy:
Implementing Parallel Execution Framework for
URANIE

J. David, V. Bergeaud (CEA)

WP169
[15]

Enabling Large-Molecule Simulations of
Biological Interest through LSDALTON's DFT
Method

Soon-Heum Ko (LiU)

WP170
[16]

Development of an Advanced Implicit Solvent
Model in DL_POLY

N. Ilieva, P. Petkov, I. Todorov,
D. Grancharov, E. Lilkova
(NCSA)

WP171
[17]

Scaling of Biological Data Workflows to Large
HPC Systems - A Case Study in Marine
Genomics

T. Röblitz (UiO)

WP172
[18]

Fluid-Structure Simulations with OpenFOAM for
Aircraft Designs

P. Stadelmeyer, T. Ponweiser
(JKU), T. Karásek (VSB)

WP173
[19]

Petascaling Machine Learning Applications with
MR-MPI

C. Aykanat (BILKENT)

WP174
[20]

HPC Programming to Generate Electron-
molecule Resonance Data for DNA Radiation
Damage Studies

A. Sunderland, M. Plummer
(STFC DL)

WP175
[21]

Multidisciplinary Coupling in Cardiac
Computational Mechanics

E. Casoni, M. Vázquez, G.
Houzeaux (BSC)

WP177
[22]

Optimization of a Coupled Simulation with
Delft3D-FLOW and SWAN for Informed
Decision Making

J. Donners (SURFsara), M.
Guarrasi, A. Emerson (CINECA)

Table 29: White papers on the applications and socio-economic challenges.

Technical support for applications including code porting, performance optimization,
profiling, scalability enabling, I/O tuning and identification and fixing of bottlenecks was
performed by either project leader or his contributors. There were also substantial efforts on
optimized or accelerator enabled computational modules, routines or kernels development
reported. Summary of the efforts used for the identification, selection and support work
reported by the project leaders is presented in Table 30. A number of external collaboration
efforts have been also established including inputs from University scientists and code
developers community experts. These contributions have been used to design the projects
objectives and verifying the outcomes of technical work performed.

Socio-economic challenge
Project
Number

Total PM

Safe and Environmental-friendly energy production
PR2 4 PM (STFC)

PR4 2 PM (CEA)

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

55

Socio-economic challenge
Project
Number

Total PM

Rational drug design
PR5 4.5 PM (LiU)

PR7 4 PM (NCSA)

Sustainable food supply PR8 13 PM (UiO)

Future aircraft transportation PR9
9 PM (JKU)

4 PM (VSB)

‘Big data’ management and processing PR11 5 PM (BILKENT)

Multiscale modelling of the human cells and organs
PR6 3.5 PM (STFC)

PR12 9 PM (BSC)

Understanding of climate change PR14 6.5 PM (CASTORC)

Natural environment protection PR15
2 PM (SURFsara)

7 PM (CINECA)

Total (including coordination) 80 PM

Table 30: T7.1C efforts summary.

4.2.2 Tier-0 resources access

Following internal PRACE guidelines on Tier-0 systems, Preparatory Access framework has
been used for Tier-0 systems access, using the Type B procedure. Type B access is granted
without support from PRACE experts. It was decided that for each six-month access period a
cumulative application for resources will be submitted. The reasons for such approach were:
formalities reduction and balance of the core hours share between the projects. Three cut off
periods from January 2013 to June 2014 for Tier-0 systems access were used (11th cut off –
granted 15th January 2013, 13th cut off – granted 15th July 2013, 15th cut off - granted 15th
January 2014), what secured contiguous access to the systems and uninterrupted work
progression. Before each cut off project leaders were requested to estimate required core
hours and define target systems. Applications for resources were then coordinated by the task
leader. Table 31 summarizes granted core hours and systems eventually used for the
applications enabling.

System Budget [core hours]
11th Cut Off 13th Cut Off 15th Cut Off

CURIE TN
200.000

365.000
450.000

CURIE FN 35.000
CURIE HYBRID - - 100.000
MARENOSTRUM - 100.000 100.000
JUQUEEN 250.000 500.000 250.000
FERMI 250.000 250.000 250.000

Total 700.00 1.250.000 1.150.000
Table 31: Tier-0 allocations granted.

For each access period a given core hours allocation was available and the distribution among
projects was agreed. While each project used a different work plan and also specific tasks,

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

56

core hours were distributed not equally but rather on demand. This approach helped to spend
core hours practically and respect the needs all of all contributors.

Not only Tier-0 systems were used while significant amount of work was first focused on
application refactoring. At this stage, Tier-0 capabilities were not required and smaller Tier-1
or local systems were used. It was not monitored and considered as partners’ contribution.

4.3 Approach for socio-economic applications enabling

General approach applied to application codes identified as addressing socio-economic
challenges was problem driven. Each project was focused on addressing a particular scientific
case rather than entire application scope. Starting point for the enabling work was a precise
scientific case and the scope of the application use corresponding to the given challenge. With
scientific input and application expertise, project leaders have been then responsible for
detailed technical case definition. Additional input from external collaborators including
expert scientists, application developers or community experts was used.

Following list presents support approach for considered socio-economic challenges
explaining scientific and technical goals and methods applied. Changes to the initial plan and
application study, if any, have been explained in the remarks description. Detailed evaluation
reports for application codes listed here are included in the next section of this deliverable.

 Safe and Environmental-friendly energy production (PR2 and PR4)

 Scientific case: Study the impact and optimum placement of off-shore energy
generating platforms and to simulate the placement of marine turbines in coastal
waters.

 Technical case: Triple coupling of wave propagation, three-dimensional
hydrodynamics and sediment transport distribution application modules for large
scale simulations of a local (0.1 to 1 meter) and a distant (1 to 10 km) impact.

 General approach: Application coupling, mesh multiplication, code scaling
improvement.

 Applications supported: TELEMAC suite.

 Scientific case: Study of a nuclear reactors safety parameters using numerical
simulations with Verification and Validation and Uncertainties Quantification
analysis.

 Technical case: Scalability and portability improvement for parallel coupled
simulations with URANIE framework.

 General approach: Runtime tuning and scaling enabling.

 Application supported: URANIE uncertainty quantification (VVUQ) platform.

 Rational drug design (PR5 and PR7)
 Scientific case: Large scale molecular simulations using linear-scaling Density

Functional Theory (DFT).
 Technical case: Improvement of DFT application code performance with applying

density fitting (DF) scheme and auxiliary density matrix method (ADMM).
 General approach: application refactoring, performance tuning, scaling tests and

improvement.

 Applications supported: LSLDATON (Linear Scaling DALTON).

 Scientific case: Enabling large scale periodic boundary-free simulations with
implicit solvent model in molecular dynamics of protein salvation processes.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

57

 Technical case: Integration of advanced implicit solvent model library AGBNP2
with molecular dynamics application DL_POLY.

 General approach: application development and refactoring.

 Applications supported: DL_POLY_4.

 Sustainable food supply (PR8)
 Scientific case: Investigation of the genomic basis of phenotypic traits using fish

genomes for analysis of feed efficiency, growth, age at maturation, disease
resistance and product quality.

 Technical case: Implement scalable HPC workflow for the analysis of sequenced
data.

 General approach: Application workflow design and implementation, scalability
enabling.

 Applications supported: Bioinformatics workflow consisting of codes: bwa,
cutadapt, FastQC, GATK, mapdamage, picard-tools, SAMtools, sysstat.

 Future aircraft transportation (PR9)
 Scientific case: Multi-physics simulations for aeronautics design using fluid-

structure interactions (FSI) .
 Technical case: Implementation of a partitioned, strongly coupled solver for

transient FSI simulations with independent meshes for the fluid and solid domains
using OpenFOAM application.

 General approach: computational kernel development, scalability enabling.

 Applications supported: OpenFOAM.

 Remarks: General assumption has been made on computing fluid-structure
interactions with two independent meshes and this entirely using OpenFOAM
application. It turned out that the solution of CSM, where Elmer application usage
was considered, has a very minor influence on the overall runtime or the
scalability. The two most important tasks regarding performance are updates of
fluid mesh and solution of CFD part. It was decided to concentrate work on those
two performance bottlenecks, which are related to OpenFOAM only. Using
OpenFOAM's functionality to handle several independent meshes simultaneously,
no change in initial goal of coupling two independent models was required.

 ‘Big data’ management and processing (PR11)
 Scientific case: Study large-scale machine learning problems with Map/Reduce

parallel programming paradigm.
 Technical case: Enabling of processing of terabytes of data on Tier-0 HPC systems

using Map/Reduce parallel programming paradigm on fundamental data mining
approaches.

 General approach: Enabling algorithms implementation and scalability test for
Tier-0 systems.

 Applications supported: MR-MPI library.

 Remarks: Initial analysis have investigated Mahout and Pegasus which run in a
distributed fashion using MapReduce paradigm. These tools use Hadoop
MapReduce and for communication, utilize RPC calls using slow UDP/TCP which
hinder scalability in Tier-0 HPC systems. According to later analysis, it has been
found that these tools (Mahout and Pegasus) do not fit HPC systems neither in
terms of efficiency nor scaling for more than a few hundreds of cores. For this
reason, it was decided to switch to more efficient tool MR-MPI which is
specifically tailored for such systems, and implemented the above mentioned

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

58

machine learning algorithms. That approach enabled scaling of the algorithms up
to 2000 processors for the MR-MPI-based implementation on Tier-0 HPC system.

 Multiscale modelling of the human cells and organs (PR6 and PR12)
 Scientific case: Study of the DNA oxidative damages and RNA damages caused

by strand breaks and associated electrons resonances.
 Technical case: Replace a serial propagator (coupled PDE solver) with a parallel

equivalent module in the electron-molecule collision package for more detailed
resonance formation studies. Compute more detailed representations of electrons
trapped in quasi-bound resonances which are associated with strand breaks in
DNA molecules.

 General approach: Replace a serial propagator (coupled PDE solver) with a
parallel equivalent module in the electron-molecule collision package for more
detailed resonance formation studies.

 Applications supported: Resonance Finding and Resonance Fitting TIMEDEL
code.

 Remarks: The original goals of the project were to incorporate parts of the highly
parallelised external region PFARM code into the TIMEDEL modules. However,
on subsequent analysis of the serial modules it became clear that this was probably
too much of an undertaking for the relatively limited effort associated with this
project. A more pragmatic approach subsequently has been undertaken, where
more straightforward, yet still effective parallelisation, have been applied to the
original TIMEDEL application code.

 Scientific case: Simulation of the cardiac mechanics at organ level with a focus on

the cardiovascular mechanisms and their physiological models.
 Technical case: Development of the fluid-electro-mechanical coupling in the high

performance computational biomechanics simulation tool to simulate cardiac
mechanics.

 General approach: Computational modules coupling, application refactoring,
scaling improvements.

 Applications supported: Alya and Iris mesh generator.

 Understanding of climate change (PR14)
 Scientific case: Simulate the atmospheric chemistry as a part of climate modelling.
 Technical case: Enable GPU acceleration for atmospheric chemistry sub-model.
 General approach: Code refactoring.

 Applications supported: KPP (Kinetic PreProcessor), EMAC chemistry-climate
model, MECCA (Module Efficiently Calculating the Chemistry of the
Atmosphere).

 Natural environment protection (PR15)
 Scientific case: Simulate Study lake environment with interactive lake design

approach.
 Technical case: Enable a coupled software application to simulate the different

aspects of a lake, ranging from the optical properties of the water to safety
concerns.

 General approach: Enabling of the interactive application code for HPC usage,
code refactoring and porting.

 Applications supported: Delft3D-FLOW, Delft3D-WAVE and SWAN.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

59

4.4 Detailed report on application enabling

This section contains complete and unified reports on projects supporting selected application
codes. For specific details on technical work done and more in-depth study of the results
please refers to the corresponding PRACE white paper (see Table 29:).

4.4.1 PR2

Code general features
Name The TELEMAC-MASCARET suite

Scientific field Hydrodynamics, Wave propagation, Sediment transport

Short code description TELEMAC-MASCARET is an integrated suite of solvers used to
simulate free-surface flows, in 1-D, 2-D or 3-D.

Programming
language

Fortran 90, Python, Perl

Supported compilers GNU, Intel, XL

Parallel
implementation

MPI

Accelerator support N/A

Libraries METIS and ParMETIS

Building procedure The code might be built using Python all the way, or Perl and
Makefile.

Web site http://www.opentelemac.org

Licence GPL

Table 32: Code general features for TELEMAC suite.

Main objectives:
This project aims at preparing the hydrodynamic TELEMAC-MASCARET suite of solvers for
large scale simulations, involving wave propagation, three-dimensional hydrodynamics and
sediment transport distribution. The triple coupling TOMAWAC-TELEMAC-3D-SISYPHE has
been tested for large meshes (over 10 million elements).

Accomplished work:
The TELEMAC-MASCARET suite was ported onto the MARENOSTRUM Tier-0 system
(Bull) and the ARCHER Tier-1 system (Cray XC30) using the Intel compiler on both
machines. A significant part of the work consisted of testing first TOMAWAC's performance
in parallel, before focusing on the triple coupling. An issue was raised in SISYPHE, in the
BEDLOAD_DIFFIN subroutine, where the boundary conditions are set. The case where an
element has only one node as a physical boundary but where the edge containing this node is
an interface node was not taken into account. This is now fixed.

The TELEMAC-MASCARET suite allows serial pre-processing (using a tool call PARTEL) or
parallel (using tools called PARTEL_PRELIM and PARTEL_PARA). Serial pre-processing
was used except for the largest meshes, where parallel pre-processing was required. The
parallel pre-processing stage did not support double precision input before this project. This
has been implemented in PARTEL_PRELIM and PARTEL_PARA.

Main results:

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

60

The main results are presented for the largest mesh of 10,454,016 elements and 5,248,620
nodes. The number of targeted processors is 1,024 – 2,048. First results (see Table 33) show
that TOMAWAC’s speed-up is super-linear up to 2048 cores on MARENOSTRUM (4,17
from 512 to 2,048 cores).

Number of cores Time (s) Speed-up Efficiency

512 8,671 1.00 100

1024 2,936 2.95 147

2048 2,076 4.17 104

Table 33: TOMAWAC: 5th LEVEL – 7,200 time-steps – 6.21 s per time-step (MARENOSTRUM)

Table 34 shows the performance of the triple coupling TOMAWAC-TELEMAC-3D-SISYPHE
obtained for the same mesh as the one used to test TOMAWAC. Results are obtained on
ARCHER system. A speed-up of 1.59 is observed from 768 to 1,536 cores, but of 1.60 only
going from 768 to 3,072 cores. A CrayPat performance analysis tool showed that the
collective MPI_ALLTOALLV, used in the method of characteristics, was a dominating scaling
obstacle for a large number of cores (3,072). This explained why the speed-up was not better
than 1.60 going from 768 to 3,072 cores.

Number of Cores Time (s) Speed-up Efficiency

768 1,819 1.00 100

1,536 1,144 1.59 78

3,072 1,139 1.60 40

Table 34: TOMAWAC-TELEMAC-3D-SISYPHE: 5th LEVEL – 1,200 time-steps (ARCHER)

The coupling between the three codes was only running in serial at the beginning of the
project because TOMAWAC was not running in parallel. During the project we received a new
parallel version provided by the main developers, EDF, and the coupling was claimed to work
on 128 processors.

This was tested for small cases, and a few bugs were corrected. Then following the objectives
of the project to enable larger simulations (several millions of elements going from a few
kilometres to a few centimetres), larger meshes were created. Testing and debugging were
carried out to lead to a simulation of up to 10 million 2-D elements on up to 3,072 cores.
Demonstrating that this size of mesh is currently achievable by the code, including pre- and
post-processing should encourage the users to run the TELEMAC suite using at least Tier-1
machines.

4.4.2 PR4

Code general features
Name URANIE

Scientific field Information analysis, machine learning, nuclear power

Short code
description

Uranie is a sensitivity and uncertainty analysis platform based on
the ROOT framework (http://root.cern.ch) . It is developed at CEA,
the French Atomic Energy Commission (http://www.cea.fr).

Programming
language

C/C++

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

61

Supported compilers GCC

Parallel
implementation

MPI (OpenMPI)

Accelerator support No

Libraries ROOT, nlopt, pcl, swig, parmentis, cppunit, libxslt, opt

Building procedure make {-with params}

Web site http://sourceforge.net/projects/uranie

Licence GNU Library or Lesser General Public License version 3.0
(LGPLv3)

Table 35: Code general features for URANIE (2).

Main objectives:
While URANIE is well suited for launching many instances of serial codes, it suffers from a
lack of scalability and portability when used for coupled simulations and/or parallel codes.
Aim is to enhance this launching mechanism to support a wider variety of applications, with
target of 100’s to 1000’s, possibly 10_000’s cores.

Accomplished work:
Three strategies are studied:

 “system launcher” mechanisms: using mpirun for the initial resource allotment,
launching of a monitor, which will manage parallel tasks using low level basic system
mechanisms such as fork-exec for secondary launching of the individual simulation-
point process,

 generic MPI launching: using mpirun plus generic MPI library, including sub-
parallelism such as OpenMP or fork-exec as suitable for the individual simulation-
point process,

 SLURM “step” launching: using srun for sub-partitioning the resources then mpirun
as above.

With that in mind, two experiments have been done on the flowrate “toy” code. The first
experiment was involving a number of jobs equal to the number of allocated cores; this is a
straightforward set-up. On the second one, the number of jobs was doubled, in order to enable
better compute resources usage by some over-allocation. In both experiments, the output files
have a limited size (a few thousand bytes). The number of cores was doubled incrementally
from 16 to 2048.

Main results:
On the first experiment, the scalability is good for all three strategies up to 512 cores; it
degrades for the SLURM based one beyond that number Figure 19 shows results for
“straightforward njobs=ncores (weak scalability)” approach of performance for the three
strategies (time in minutes - lower is better).

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

62

Figure 19: Results of the first experiment. Figure 20: Results of the second experiment.

The second experiment shows the limits of the two first strategies which are based on
scheduling on the master node via system-level mechanisms: they require heavy scheduling
tasks to define which jobs have stopped and which should be restarted. In that respect, the
SLURM based one is more robust than the first strategy. MPI-based strategy which involves
message passing for scheduling is much more robust and efficient for this test case, achieving
very good scalability up to 2048 nodes. Figure 20 shows “over-allocation njobs=2*ncores
(weak scalability)” case performance for the three strategies (time in minutes - lower is
better)”.

Further experiments with larger output files suggest that the key factor to the limitation of the
scalability is the intensity of the I/O workload.

4.4.3 PR5

Code general features
Name LSDALTON (Linear Scaling DALTON)

Scientific field Quantum Chemistry

Short code
description

LSDALTON was born with the ultimate research goal of linear-
scaling Density Functional Theory (DFT) in order to treat large
molecular systems. LSDALTON has therefore served as a
framework to test and develop new linear-scaling methods. The
novelty of the LSDALTON program have made it fairly easy to
fully exploits the latest Fortran programming schema and tune it for
modern computing architectures.

LSDALTON does not follow point group symmetry, which enables
this code to be applied to analyses of large molecular systems.
LSDALTON does however exploit integral-screening techniques
which become increasingly important with molecular size, in
combination with integral-acceleration techniques and highly
efficient integral approximations. LSDALTON is fully atomic-
orbital (AO) based, allowing for asymptotic linear-scaling treatment
of large molecular systems in wave-function optimization,
molecular gradients and various response-function calculations.

Programming
language

Fortran

Supported compilers Intel, GNU and PGI compilers

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

63

Parallel
implementation

MPI and OpenMP

Accelerator support N/A

Libraries Linear algebra libraries (either ScaLAPACK or LAPACK/BLAS)

Building procedure (Configuration in case of MPI+OpenMP, 64-bit Integer,
ScaLAPACK)
./setup --fc=mpif90 --cc=mpicc --cxx=mpicxx \
--int64 -DCPP="-DHAVE_NO_LSEEK64" --type=release \
--mpi --omp --scalapack --blacs=openmpi \
build-dir

(Compilation)
cd build-dir; make

(Imposed Flags in Intel Compiler)
Fortran: -w -fpp -assume byterecl -DVAR_IFORT -openmp -
parallel -i8 -O3 -xW –ip
C: -g -wd981 -wd279 -wd383 -vec-report0 -wd1572 -wd1777 -
restrict -DRESTRICT=restrict -openmp -O3 -ip

Web site http://www.daltonprogram.org/

Licence Free distribution to individuals upon the personal licence
agreement; Site licences on the condition of keeping the source
code confidential; Benchmark licences valid for a restricted period
of time. All license agreement forms are applied from their
homepage.

Table 36: Code general features for LSDALTON.

Main objectives:
In this work we aimed for examining the performance of linear-scaling DFT method in the
LSDALTON code to enable the simulation of large biological molecules. We made an
intensive investigation on the code performance at various MPI runs sizes and for different
molecules. We primarily focused on finding obstacles associated with density-fitting (DF) and
auxiliary-density-matrix method (ADMM), because these two approximations are essential
for achieving highly efficient computations of large biological molecules in Tier-0 scale.

Accomplished work:
The main effort was towards enabling large molecular simulations with the latest LSDALTON
implementation. Debugger (Allinea DDT) and memory monitoring tools (in-built
implementation and system-provided statistics tool) reported that a significantly large amount
of memory is allocated to internal tensor structure and Kohn-Sham matrices in case of
applying DF scheme. The former is probably relieved by addressing a light-weight tensor
structure at future release of the code, whilst the latter is hard to resolve without a new
scheme. Therefore, we have focused on finding the right build environment (composition of
compiler, MPI and linear algebra library) that entirely supports 64-bit integer formulation.

While compilers are highly matured to provide true 64-bit integer, MPI and linear algebra
packages cause trouble. Intel MPI fails to perform the message passing over 2 GB array since
the message size parameter is fixed as 32-bit integer. Bullxmpi on CURIE defines Fortran
integers as 32-bit, thus naturally leads to the failure in handling large size arrays. The open-
source OpenMPI library fully supports message passing of large datasets if it is installed with
64-bit integer representation. In view of linear algebra libraries, both open-source

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

64

ScaLAPACK and the encapsulated one in Intel MKL package fail to allocate large arrays in
excess of 32-bit integer range. Intel MKL’s LAPACK/BLAS interface was stable regardless
of matrix size.

On top of the compiler chain, we evaluated the performances of DF scheme and ADMM
approximation by solving three biological molecular structures of valinomycin, titin and
insulin. On valinomycin simulation who consumes ~2.5 GB memory space per MPI rank, the
performance gain by ScaLAPACK has been primarily investigated. On titin (16 GB memory
allocation per MPI rank) and insulin (62 GB memory allocation per MPI rank) simulations,
we focused on comparing performances by DF, ADMM with DF, and non-DF DFT
calculations.

Main results:
Valinomycin results show that the scalability is improved by using ScaLAPACK library. In
the example of DF calculation, speed-up at 32 (MPI rank) × 8 (OpenMP thread) cores is 10.41
(w. ScaLAPACK) and 8.76 (w. LAPACK/BLAS) in comparison to 2×8 cores. That was the
same in other schemes and in pure MPI computation. The effect was stronger at larger
numbers of CPU cores.

Notable performance improvements are observed with DF and ADMM, without noticeable
degradation of the convergence criteria. In all three cases, the runtime for a single Kohm-
Sham matrix construction iteration was shorter with DF and further accelerated with ADMM.
In view of scalability, the tendency reverses: the best speed-up is achieved at non-DF
calculation. As observed from Figure 21 and Figure 22 below, non-DF calculation shows the
speed-up of 7.71 (comparing between 64×8 cores and 4×8 cores) in titin simulation and 6.38
(comparing between 128×16 and 8×16 cores) in insulin simulation. They decrease to 6.23 and
3.57, respectively, with the DF scheme. That is indeed natural because the DF scheme reduces
large amount of computation by replacing a product operation between single particle basis
set functions with the auxiliary basis set. Since the amount of computation has decreased, DF
scheme is more dominated by communication overhead at large number of cores. While the
calculation with DF still shows the similar scalability pattern to non-DF calculation at small
number of CPU cores, DF with ADMM shows a highly non-scalable performance gain. It
results that DF-ADMM provides the best performance at small number of CPU cores while
DF run overtakes at large number of CPU cores (1024 in titin and 4096 in insulin). All three
models are overwhelmed by communication overhead at the largest number of cores (2048 in
titin and 4096 in insulin) simulations. Since insulin is considered as the largest biological
application in view of memory requirement, 2K cores seem a limit of a reasonable parallel
computation size.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

65

Figure 21: Elapsed Time in Kohn-Sham Matrix
Construction for Hybrid Simulation of Titin
molecule. Time measured at the 2nd Iteration.

Figure 22: Elapsed Time in Kohn-Sham Matrix
Construction for Hybrid Simulation of Insulin
molecule. Time measured at the 2nd Iteration.

DF and ADMM introduce extra overhead at the non-iterative part of the code. It is natural
since these schemes allocate extra matrix components for auxiliary basis set and resultant cost
for broadcasting also increases. Thus, large gain on Kohn-Sham matrix construction with DF
and DF-ADMM lessens in view of total simulation time. Still, DF-ADMM calculation with
32×8 cores was shortest and the gap is expected to increase in insulin calculation.
Furthermore, this gain by using DF or DF-ADMM scheme will increase by redesigning
internal tensor structure to a lighter fashion.

4.4.4 PR6

Code general features
Name TIMEDEL in UKRmol

Scientific field Electron-atom, electron-molecule scattering resonance finding and
fitting program, DNA & RNA base molecule radiation damage.

Short code
description

The specific part of UKRmol adapted is the module TIMEDEL,
which explores and illuminates resonance features of electron
molecule interactions. This module is called for a range of
molecular geometries and sets of incident electron energies. The full
R-matrix simulation takes place in several separate stages.
Configuration space is divided into two regions by a sphere, which
contains all the ‘target’ electrons. A full CI calculation involving
continuum states and orbitals as well as bound states and orbitals
takes place within the sphere. This is independent of scattering
energy and is performed once for each geometry: it principally
involves the setting-up and diagonalization of a large Hamiltonian
matrix.

 The outer region calculations take place separately and quite
possibly on another machine. The theory is of one electron moving
in a multichannel potential arising from all of the CI states and
channels included in the inner region calculation. Various options
may be chosen to calculate collision parameters and other quantities.
The TIMEDEL module can be run as a self-contained outer region

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

66

package, particularly for the intense resonance fitting tasks of
interest to our collaborators, and this is how we use it here. This
code development facilitates a more detailed representation of
electrons trapped in quasi-bound ‘resonances’ on the base
components of DNA, which are implicated in cell damage.

Programming
language

C, Fortran 77/95/2003

Supported compilers Intel, IBM, GNU, Cray

Parallel
implementation

Outer MPI-based parallel harness to control task scheduling.

MPI in code.

Accelerator support None at present – though calls to serial linear algebra operations
could be replaced by calls to accelerator-enabled library routines.

Libraries Lapack or vendor specific equivalent (IBM Essl, Cray LibSci, Intel
MKL).

Building procedure Compile outer, util libraries and harness wrapper from Fortran & C
source code, then link together with the top level code
(outermpi.f03)

mpixlf2003_r -O3 -qfixed -o outermpi outermpi.f03 c_wrapper.o
chdir_c.o -louter -lutil –llapack

Web site http://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-out/

Licence GNU General Public License (GPL)

Table 37: Code general features for UKRmol.

Targets and accomplished work
This project has optimized and parallelised the resonance modules of the UKRmol [25]
package, which will provide enhanced computational resources for collaborating research
groups to study biological molecular resonance formation in much more detail than current
initial (though impressive) calculations ([26],[27]) on DNA and RNA base molecules. In
addition to the main thrust of this work on applications directly related to cell radiation
damage and strand-breaking, the general application of the enhanced package will have
impact in other socio-economic fields (for example, dissociative recombination studies
relevant to atmospheric and aeronautical physics and chemistry). The parallelisation work has
taken place in two stages, each of which is summarised in the following sections. Parallel
performance tests have been undertaken on the JUQUEEN IBM Blue Gene/Q system and the
Hartree Centre systems (IBM Blue Gene/Q and IBM iDataplex).

High-level parallelization

Main objectives:

For detailed resonance searches the large number of energies involved means that calculations
for each geometry are quite extensive. Our collaborators were previously running in serial
mode, which for the detailed resonance mapping required would have taken far longer than is
practical (for example, for a PhD student, or indeed a fixed-term PDRA). The objective was
to parallelize the code such that full calculations for large numbers of geometries could be
performed in a short or at least manageable time. To this end the first stage objective was to
speed-up significantly the process of finding and fitting of resonance from large-scale
scattering calculations by distributing different molecular geometries amongst MPI tasks

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

67

within a large-scale parallel job. The software development was designed to make this
procedure as automatic and efficient as possible for users across a range of target high-end
parallel platforms.

Accomplished work:

The first stage of the optimization work introduced an overall parallelism for these
calculations with a parallel harness to run distinct geometries and ranges, invoking the serial
code simultaneously for each dataset in separate folders. Several sets of scripts and codes
were developed for the control programs, as our two alternative target hardware platforms
(IBM Blue Gene/Q and IBM iDataplex) necessitated different approaches:

 MPI-based C control program incorporating the exec() family of Linux functions
which enable the replacement of current process images with new process images.

 MPI-based Fortran 2003 control program with iso_c_binding calls to C functions for
command line operations.

The first approach is suitable for most HPC systems with Linux kernels operating on the
application nodes. However IBM utilize a ‘Lightweight Compute Node Kernel’ on the Blue
Gene application nodes that does not support the required functions, hence the development
of the second approach for this and other platforms.

Main Results:

The parallel code has been tested on a relatively simple and known case (e-N2+ dissociative
recombination resonances) in conjunction with scientists from the AMOPP research group at
University College London (UCL) [28]. The performance results for runs on up to 1024 cores
are sampled from datasets across the full geometry range in order to be as representative as
possible of the varying computational loads associated with each geometry.

The high-level parallelisation involves looping over data representing 1024 different
geometries for dissociative e-N2+ scattering calculations. In each case the number of
geometries increases with core count and therefore it is the weak scaling properties of this
approach that are reported in Table 38 and represented graphically in Figure 23.

Number
of Blue
Gene/Q

Cores Used

Number
of Blue
Gene/Q

Nodes Used

Geometry
Calculations
(full energy

range)

Time to
Completion

(secs)

Time
taken

relative to
16 core

case

16 1 16 4781 1

64 4 64 6637 1.39

256 16 256 7106 1.49

1024 64 1024 7839 1.64
Table 38: Speed-up obtained from Stage 1 parallelisation of the 1024 geometry calculations.

For this large-scale dataset, the approach scales well up to 1024 cores on the IBM Blue
Gene/Q, with the 1024 geometry calculation time around 64% slower than the 16-geometry
calculation. Analysis has shown that it is the varying computational load across geometries
that most impacts upon parallel efficiency at higher core counts. The parallelisation
mechanism has been achieved with minimal reworking to the original code and is applicable
generally to application codes that perform large numbers of (mostly) independent tasks to
generate ‘mapping’ data. Studies have also been made to devise a ‘production’ job submission
algorithm that can optimize the ratio of cores used for the ‘external’ harnessing and the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

68

‘internal’ programmed parallelisation with final verification tests on a DNA/RNA base
(adenine, guanine, uracil) to be set up following this project. The parallelised code will then
be used to enable new more realistic and detailed DNA/RNA base resonance studies, which
are planned but are not currently feasible.

Figure 23: Speed-up obtained from Stage 1 parallelisation of the 1024 geometry calculations.

Low-level parallelization

Main objectives:

The second part of the parallelisation work aimed to introduce lower-level parallelisation to
inner loops in the TIMEDEL module suitable for either MPI or OpenMP parallelisation. An
analysis of the code identified the automated resonance search as having a suitable loop
structure for MPI parallelisation.

Accomplished work:

MPI-based parallelisation work has been applied to the energy grid in TIMEDEL, which is
sub-divided into clusters of energies in which resonances are expected, in particular around
the thresholds for inelastic collisions into excited states of the molecule. The different clusters
have been distributed across MPI tasks. It is also possible to input targeted grids of energies at
which an earlier run has located evidence of resonances.

Main Results:

The dataset used is the dissociative e-N2+ scattering calculation that provides four clusters of
scattering energies per geometry when run over the required energy range for this problem.
The testing was undertaken on an IBM iDataplex machine at the Hartree Centre, UK, which
comprises of 512 nodes each with two 8 core 2.6 GHz Intel SandyBridge processors making
8,192 cores in total. The nodes each have 32 GB of memory.

The parallel performance results demonstrate good scaling across the four clusters of energies
for our dataset on a single node of the IBM iDataplex. The number of clusters remains the
same across all geometries and they can be pre-determined with a short pre-processing step
before embarking on a large-scale parallel run. However the number of energies per cluster
does vary and this evidently has a significant impact on load-balancing the computations
efficiently between the MPI tasks.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

69

Number of MPI
Tasks

Elapsed Time for
Calculation (1

Geometry with 4
Energy Clusters) (secs)

Speed-up

1 3690.8 1

2 2171.4 1.7

4 1117.0 3.3

Table 39: Speed-up obtained from Stage 2 parallelisation of the scattering energy clusters.

The two developments for parallelisation described here will be combined, in order to extend
parallel scaling further, as follow-up work given the relatively limited resources (3.5 PMs)
available for this project. We have also identified further parts of the code that may be
parallelized.

4.4.5 PR7

Code general features
Name DL_POLY_4

Scientific field Computational Chemistry, Physics, Materials

Short code
description

DL_POLY_4 is a classical molecular dynamics (MD) engine. It is
written in modularised Fortran90 with parallelisation based on equi-
spatial domain decomposition which implemented by the use of MPI.
DL_POLY_4 has no library dependencies and also utilises parallel
I/O strategies for writing and reading trajectory data.

DL_POLY is a general purpose program targeting simulations of the
microevolution of model systems with very large number of
particles. Due to its generic definition of interactions and the wealth
of available algorithmic forms for them DL_POLY possesses a great
flexibility in acceptance of force-fields of any nature and can be used
for simulation of all phases and materials; e.g. metals, ceramics,
liquids, gasses, bio-minerals, polymers and bio-molecules; including
mixtures of them should interaction parameters be available.

Programming
language

Fortran 90

Supported compilers GNU, Intel, PGI, Cray

Parallel
implementation

MPI (initial OpenMP parallezation)

GPU support CUDA port available but without maintenance

Libraries None

Building procedure Makefile (no auto tools)

Web site http://www.ccp5.ac.uk/DL_POLY_4/

Licence STFC Daresbury Laboratory – free of cost to academia

Table 40: Code general features for DL_POLY.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

70

Main objectives:
So far when studying bimolecular systems, DL_POLY only supported explicit solvent
simulations under periodic boundary conditions. The motivation to integrate the AGBNP2
implicit solvation model was not only to enable DL_POLY_4 with an advanced implicit
solvation methodology but also to provide a unique method for calculations of hydration
energies. The PRACE-2IP library [29], implementing the AGBNP2 implicit solvent model,
was integrated into the DL_POLY_4 molecular dynamics package targeting to speed up the
time to solution and/or reduce the computational cost for protein solvation processes.
Generally, implicit solvent models lighten the computational loads by reducing the degrees of
freedom of the model, removing those of the solvent and thus only concentrating on the
protein dynamics that is facilitated by the absence of friction with solvent molecules.
Furthermore, periodic boundary conditions are no longer formally required, since long-range
electrostatic calculations cannot be applied to systems with variable dielectric permittivity.
The AGBNP2 implicit solvation model improves the conformational sampling of the protein
dynamics by including the influence of solvent accessible surface and water-protein hydrogen
bonding effects as interactive force corrections to the atoms of protein surface. This requires
the development of suitable bookkeeping data structures, in accordance with the domain
decomposition framework of DL_POLY, with dynamically adjustable inter-connectivity to
describe the protein surface. The work also required the use of advanced b-tree search
libraries as part of the AGBNP library, in order to reduce the memory and compute
requirements, and the automatic derivation of the van der Waals radii of atoms from the self-
interaction potentials.

Accomplished work:
The previously developed Fortran90 code of the AGBNP2 library was incorporated in a local
version of the DL_POLY_4.05.1 source code. The integration complied with most of the data
structures already available in the code. It was designed to stand alone as complementary and
independently as possible. Configuration related input data, such as number of atoms, atomic
positions, atom names and major Verlet neighbour listings, are imported from DL_POLY’s
config_module. Interaction parameters had to be created on parsing short-range interaction
parameters in order to define specific epsilon and sigma in a Lennard-Jones casting for all
possible kinds of short-range interaction. These were incorporated in the vdw_module and
then used as input from there. Working precision and some relevant constants needed for the
calculations within the AGBNP2 library are used from the setup_module. The
agbnp2_module contains the AGBNP2 library adapted in a manner commensurate with the
MPI framework of DL_POLY_4’s domain decomposition so that it included its original
OpenMP parallelism within each MPI domain task. The work on integrating the AGBNP2
library within DL_POLY_4.05.1 included the following optimisation and adaptation tasks:

 Arrays referring to neighbour lists (doublets, triplets, quadruplets) were modified to
match the look up style in DL_POLY. List ends were hardcoded in the 0th element of
the list in order to optimise multiply nested do loops for look up and add up functions
when calculating contributions;

 The DL_POLY’s Verlet neighbour list (VNL), which is unordered and single-sided,
had to be split into two lists for the AGBNP2 library:
 a very short range one for neighbours up to 3 Angstroms distance so that the

search over possible doublets, triplets and quadruplets is minimised as based on
cross-sectioning of spheres with Born radii (< 3 Angstroms) of the species
involved in the multiplets; and

 a complementary list for neighbours from 3 Angstroms to the full range of the non-
bonded cut-off. This list is needed for applying corrections to the GB energy
calculations.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

71

 The split of this list involved changes to the original AGBNP2 library in terms of
loops optimisations as otherwise the library would not have worked at all for
architectures with small memory per core allowance and as we found worked very
slowly due to the excessive search over the long VNL as supplied originally by
DL_POLY.

 DL_POLY was enabled to provide the Lennard-Jones’s characteristic length (sigma)
and energy (epsilon) values as required by the OPLSAA force-field for calculations.
As DL_POLY has no force-filed of its own a number of routines and modules had to
be adapted so that this was possible for all possible short-range potentials forms (about
10 different potentials, available in DL_POLY), including numerical search for
potentials supplied in a tabulated form.

 All force pre-calculations in the library had to be modified to include interactions of
halo atoms with domain atoms according to the domain decomposition of DL_POLY.
This involved selective extension of do loops over ranges of domain and halo.

 All full force calculations and their contribution had to be carefully filtered so that
only qualifying atoms on the domain had the application and correction forces and
energies added despite that domain atoms may interact with halo ones. This was
necessary to ensure that energy contributions are not miscounted (the potential energy
does not drift) and no total force is generated in the system (the kinetic energy does
not lead the system to overheating).

For the purposes of demonstrating performance and scalability, a model system from our own
research (the antimicrobial peptide magainine) was enlarged to a size of 46336 atoms and
scaled up by a factor of two, to 92672 atoms, and by a factor of four, to 185344 atoms, using
the NFOLD system enlarging routines of DL_POLY_4.

Main results:
The performance speed-up as function of number of threads for the system consisting of
46336 atoms is shown in Figure 24. As one can see, the performance scalability is close to
ideal. We expect that this performance could be sustained up to about 1024 threads before the
systems size to MPI tasks (domains) ratio puts DL_POLY_4 in unfavorable regimes of
performance with respect to the cut-off employed. It is worth noting that system sizes are
small due to the absence of discrete water molecules and that plays a limiting factor on the
size of the MPI tasks before time spent in communication prevails over compute time.

Figure 24: Speed-up upon number of threads for the system of 46336 atoms. The hybridized
parallelization involved a load of 16 OpenMP threads per MPI task.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

72

Figure 25 presents the performance scaling of the implementation within DL_POLY_4 by

system size for a fixed compute resource. It plots the average execution time per time-step on
8 nodes (128 threads) for the three systems of sizes 46336, 92672 and 185344 atoms. It is
worth mentioning that in this specific version of DL_POLY_4 there is no OpenMP parallelism
outside the AGBNP2 model library. Thus, the most compute intensive task within
DL_POLY_4, the creation of the Verlet neighbour-list structures, is not OpenMP parallelized
and hence the executions times are larger than those expected for this system sizes. It is the
domination of this task that in fact leads to the super scaling observed in the figure. It is solely
due the decreasing compute cost of the linked-cells construction pre-factor with respect to the
cost for building up the Verlet neighbour list as the system size increases.

4.4.6 PR8

Code general features
Name Socio-economic challenge on enabling bioinformatics workflows

Scientific field Marine Genomics

Short code description The tools perform different bioinformatics tasks on sequences and
reference genomes such as indexing, alignment, trimming, quality
checking.

Programming
language

Bash, Perl, Python, Java, C

Supported compilers Mostly script languages, various compilers for bioinformatics tools

Parallel
implementation

Threading, simultaneous execution of workflow instances and jobs

Accelerator support -

Libraries None for the workflow execution, various for the bioinformatics
tools

Building procedure Ant, configure/make for bioinformatics tools

Web site -

Figure 25: Execution time on 8 MPI tasks with 16 OpenMP threads each versus
system size.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

73

Licence -

Table 41: Code general features for bioinformatics workflow.

Main objectives:
The main objective was to enable biological workflows on large HPC systems.

Accomplished work:
We implemented two example workflows on the PRACE Tier-0 machine CURIE by writing
job scripts for individual steps of a workflow. Each job is based on a template that integrates
the actual workload and monitoring to capture various performance metrics. About a thousand
jobs were ran and analyzed, which led to several improvements to lower the overall resource
consumption (mainly disk space related). We also implemented the use cases on an easy-to-
use portal, the Lifeportal (UiO, Norway), which is linked to the Tier-1 cluster ABEL (UiO,
Norway).

Main results:
We successfully enabled example workflows to run fully automated on the PRACE Tier-0
system CURIE. With the given resource limits on the system (300 concurrent jobs) we could
demonstrate a “speed-up” of about 10-100. The reference value for the speed-up is the
number of concurrent jobs a scientist is able to manage in a traditional non-HPC setup
(estimated at 10), i.e., where biological workflows are usually executed on a single large
server. This reference value is usually not limited by the performance of a machine, but rather
by the tedious, manual coordination work. Higher speed-ups are easily possible by lifting the
resource consumption limits. Our approach to enable the use cases was unique in the sense,
that we did not modify any of the application codes. In case we observed performance issues
with an application, we contacted the developers to let them improve the code themselves.
Most applications we used are single-threaded and ran quite short. The tools for compute
intensive tasks, especially alignment, support multi-threading. We ran several tests with the
maximum available number of processors in a single node, 128 on the fat nodes. Figure 26
shows the number of active threads and their aggregate memory consumption for an
alignment job on CURIE. The graphs show the monitoring data of the first three hours of a
job running three days in total. The main reason for using these high numbers of cores was to
limit the runtime of a job below the runtime limit of three days. Since, the jobs did only
require a fraction of the main memory of those nodes (32 GB of 512 GB, cf. second vertical
axis in Figure 26), it would be a much better use of the resources to lift the runtime limit, and
to use one of the thin nodes of CURIE (providing 64 GB of memory).

In order to reuse our results, we recommend a systematic procedure to scale the execution of a
large number of workflow instances to a large HPC system.

 A description of the workflow is needed plus a comprehensive list of all needed
software packages. This information should reveal possibilities for scaling at the level
of individual steps and among independent steps of a workflow.

 Scalability goals need to be defined: how many workflows shall be executed (in total,
simultaneously), what is the range for the size of input data (single workflow instance,
all workflow instances).

 Information about the possible target systems’ configuration and environment, and
their resource management system as well as limits for resource consumption is
needed.

 The software packages need to be tested on the target system to verify they function
correctly and, more importantly, to determine their resource consumption. If a tool
consumes too much resources alternatives may be considered or the developers of

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

74

them can improve them. Usually, the vast number of aspects to be considered in the
scaling will limit ability of users to tweak specific tools themselves.

 Selecting or implementing a framework for executing a single workflow instance and
orchestrating multiple workflow instances as well as the logistics for transferring data
to and from the HPC system. The decision for a framework may limit the available
target systems, and vice-versa.

 Incrementally implement and run a single workflow. Then, run multiple workflows to
observe if any resource consumption limits (number of jobs, runtime, file system
quota) are hit. Improve the workflow or the orchestration of several workflows if
necessary to achieve the defined scalability goals.

All the details about the use cases being studied, the implementation challenges, the
implementation itself, the findings and lessons learned are documented in white paper
“Scaling Biological Data Workflows to Large HPC Systems – A Case Study in Marine
Genomics” [17].

4.4.7 PR9

Code general features
Name OpenFOAM

Scientific field Computational fluid dynamics, solid dynamics, electromagnetics

Short code description OpenFOAM (Open Field Operation and Manipulation) is a general
purpose finite-volume simulation framework developed by
OpenCFD Ltd at ESI Group and distributed by the OpenFOAM
Foundation. It has an extensive range of features to solve anything
from complex fluid flows involving chemical reactions, turbulence
and heat transfer, to solid dynamics and electromagnetics. Instead
of being a monolithic system OpenFOAM is designed as a highly
customizable library where users can implement their own solution
sequences using pre-defined program blocks.

Programming C++

 0

 16

 32

 48

 64

 80

 96

 112

 128

start 00:30 01:00 01:30 02:00 02:30 03:00

 0

 4

 8

 12

 16

 20

 24

 28

 32

N
um

be
r

of
 t

hr
ea

ds

R
SS

 M
EM

 (
G

B
)

Job runtime (hh:mm)

#threads agg rss mem

Figure 26: Monitoring of thread activity and memory consumption for an alignment
job on CURIE.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

75

language
Supported compilers GNU (version 4.5.0), Intel (version 14.0.1), LLVM Clang (version

3.4)

Parallel
implementation

MPI

Accelerator support None

Libraries SCOTCH

Building procedure Wmake

Web site http://www.openfoam.org

Licence GNU general public licence (GPL)

Table 42: Code general features for OpenFOAM.

Task 1: Implementation and performance improvement of fluid-structure
interaction solver
To evaluate and optimize new aircraft designs, e.g. with respect to fuel-efficiency and noise-
reduction, high-fidelity simulations are needed that cover multiple disciplines and accurately
model the interactions between them. The goal of this task is to use OpenFOAM for
simulating fluid-structure interactions (FSI) and analyse its scaling characteristics.

Accomplished work:
On the basis of OpenFOAM a partitioned, strongly coupled solver for transient fluid-structure
simulations with independent meshes for the fluid and solid domains has been implemented.
For several variants of solvers overall scalability analyses have been performed using a solid
3D beam. The beam has a quadratic cross section, is fixed at one end and surrounded by fluid
(see Figure 27). For the work described in this section we wanted to focus as much as possible
on computation and communication performance and therefore we defined the test cases in
such a way that I/O operations are minimized (i.e. only write final result data).

Figure 27: Solid beam consisting of homogeneous elastic material. The ratio between

the number of cells in the solid and fluid mesh is approximately 1:50.

Profiling with HPCToolkit showed that the computation of mesh deformations of the fluid
domain, as currently implemented in OpenFOAM, is a major limiting factor. By changing the
implementation of OpenFOAM’s inter-process communication class Pstream from point-to-
point MPI communication routines to collective MPI communication routines its strong
scaling behaviour could be enhanced considerably (a 61 million cells example shows good
scaling at least up to 4096 processes). The changes will be reported to the developers of the
official OpenFOAM release in order to discuss how the implementation of inter-process
communication can be improved in future releases.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

76

Main results:
We implemented an FSI solver icoFsiFoam, which – in terms of OpenFOAM – defines two
computational regions, one for the fluid domain and one for the solid domain. Each domain
has its own independent mesh, where the fluid mesh is defined as a dynamic mesh allowing
transient mesh deformations. The time step loop contains an inner loop for the strong-
coupling formulation which has the following structure:

 Set interface displacement of fluid mesh (result of CSM computation). This step
requires interpolation of displacement data from the solid domain to the fluid domain.

 Compute mesh deformation of fluid mesh using one of OpenFOAM’s mesh motion
solvers.

 Solve fluid fields using a pressure implicit scheme with splitting of operators (PISO)
scheme.

 Set interface pressure respectively forces for solid mesh (result of CFD computation).
This step requires interpolation of pressure data from the fluid domain to the solid
domain.

 Solve solid fields using a homogenous linear elastic material model.

One of our key findings is that performance and scalability of icoFsiFoam highly depend on
the selected method for updating the fluid mesh. Mesh update is done by solving cell-centred
Laplacian for the motion displacement (displacementLaplacianFvMotionSolver class). From
the different variants that OpenFOAM offers, we used the uniform diffusivity model (as an
example of a computationally simple method) and the quadratic inverse distance diffusivity
model (as an example of a computationally complex method).

The interpolation and data transfer between meshes in icoFsiFoam either relies on patch to
patch interpolation or on an arbitrary mesh interface (AMI). Patch to patch interpolation
requires that all cells adjacent to the coupling interface are assigned to one process, whereas
AMI allows distributing the coupling interface for both regions among multiple MPI
processes, i.e. using an m to n communication pattern. For investigating strong scaling
behaviour we used a mesh of the 3D beam case with 61 million cells and run 5 time steps.

For AMI and uniform diffusivity Figure 28 compares the scalability behaviour of the different
FSI operations when using OpenFOAM’s original Pstream class or a modified variant which
will be discussed in detail below. Using the original Pstream class, except for the CFD (Fluid)
computation, we observe no scaling from 1024 to 2048 processes. For 4096 processes we do
not have measurements available because the configured wall clock limit of 90 minutes was
reached before the first of the 5 simulation time steps had finished. In contrast to that, on the
right side of Figure 28 we see a good overall scalability up to 4096 processes when using our
modified version of the Pstream class.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

77

Figure 28: Total runtime for FSI operations for uniform diffusivity. Scalability is considerably improved
when using a modified version of OpenFOAM’s Pstream library (right) instead of the original one (left).

Within OpenFOAM, inter-process communication is implemented in such a way that every
MPI process writes output data into dedicated binary buffers (PsteamBuffers class). The
actual data transfer is delayed to a collective synchronization point, when all MPI processes
call the method PstreamBuffers::finishedSends(). After that, every MPI process reads back
the input data from binary buffers.

The method PstreamBuffers::finishedSends() delegates the data transfer to the method
Pstream::exchange(). Surprisingly, the hotspot within Pstream::exchange() is not the transfer
of the actual messages, but the transfer of the message sizes, which is done by the function
combineReduce(). Two things are worth mentioning:

 More data than necessary is transferred: combineReduce() replicates the complete
matrix of message sizes on all processors, although in general only one row of this
matrix is really relevant to a given processor.

 The implementation is not optimal: combineReduce() emulates a collective operation
by using MPI point-to-point communication routines rather than using appropriate
collective communication MPI routines directly.

In order to address these two observations, we changed the implementation of
Pstream::exchange() in the following way. For the problem at hand, namely the transfer of
message sizes, the most natural approach is to use the collective communication routine
MPI_Alltoall. We added a wrapper method for MPI_Alltoall to the class Upstream and
replaced the function call combineReduce() in the method Pstream::exchange() by a call to
the new method Upstream::alltoall(). This way every MPI process receives just the data
needed.

Task 2: Scaling analyses of the individual sub-computations for full aircraft
model
The main objective of this sub task was to analyse scaling capabilities of different
OpenFOAM solvers that are used as building blocks for computing fluid-structure interactions
(FSI). Analysis was done using a full aircraft model and original OpenFOAM sources, i.e. no
modifications as described in the previous section were done. Scalability on full model is
necessary for identification of bottlenecks of FSI simulation since mesh generation or re-
meshing during simulation is an important part of whole simulation and should not be
omitted.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

78

Accomplished work:
Scalability tests for fluid and structural solvers were performed for several models with
different mesh sizes. CFD tests with fixed meshes (icoFoam) and moving ones
(pimpleDMyFoam) were performed on models consisting of 105, 235 and 845 million of cells
respectively 185 million of cells. The structural solver (solidDisplacementFoam) was tested
on a model with 5 million of cells. All tests were performed on system Anselm at VSB TU
Ostrava, Czech Republic and PRACE Tier-0 system CURIE.

Main results:
Analysis of obtained results shows that a main bottleneck for CFD simulations is in mesh
generation with snappyHexMesh (Figure 29) which will affect performance of a coupled
simulation whenever re-meshing during simulation due to large mesh distortion is necessary.

Figure 29: Scalability of mesh generation and CFD simulation.

Another conclusion made from performed scalability tests is that also the CFD simulation
with a fixed mesh is not scaling that good for the selected example when more than 1024
cores are used. Although one of our main objectives was to use as many cores as possible it is
clear that using more than 1024 cores is not very economical in terms of computational
resources consumed.

To test the hypothesis that bad scalability of CFD with 235 million cells is due to the small
number of cells per core we created a mesh consisting of 845 million of cells using 1024 and
2048 cores. Scalability tests showed bad scalability and the time needed to run 1000 time
steps on 2048 cores was about 20% longer than the time on 1024 cores.

4.4.8 PR11

Code general features
Name Petascaling Machine Learning Applications with MR-MPI

Scientific field Computer Science, Numerical Algebra

Short code description The codes are developed using MR-MPI. MR-MPI is a library that
enables efficient utilization of MapReduce paradigm for scientific
computing community. The developed codes contain three widely
used algorithms in machine learning applications. Namely, these
are all-pairs similarity search, all-pairs shortest path and decision

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

79

trees. Contrary to the conventional MapReduce paradigm in which
the underlying system consists of commodity machines and the
nodes in the distributed environment communicate with remote
procedure calls, the developed code is tuned to run on a high
performance computing environment by using fast MPI primitives.
Besides, efficient data structures that enable working on contiguous
chunks of data are utilized. This feature is specific to MR-MPI and
it allows fast processing of data as opposed to other MapReduce
implementations tailored for distributed settings.

Programming
language

C++

Supported compilers GNU, Intel, IBM

Parallel
implementation

MPI

Accelerator support None

Libraries MR-MPI

Building procedure Makefile

Web site http://mapreduce.sandia.gov/

Licence GPL

Table 43: Code general features for MR-MPI library.

Main objectives:
 Assess and show applicability and usability of the MapReduce paradigm on high

performance systems for basic and widely used machine learning algorithms and
applications.

 Implementation of machine learning applications in parallel using MapReduce
paradigm and message passing interface for communication. For this purpose, use and
exploit an efficient tool that is specifically tailored for that purpose.

 Investigation and implementation of optimization techniques that are commonly
adopted in scientific computing community to the selected machine learning
applications.

 Scale the targeted machine learning applications to a few thousands of cores.

Accomplished work:
 Implementation of all-pairs shortest path (APSP) algorithm. There are two basic

algorithms we have implemented using the Map/Reduce paradigm for solving this
problem. The first one is the Repeated Squaring method and the second one is the
Floyd-Warshall algorithm which uses a dynamic programming formulation.

 Implementation of the algorithm for solving all-pairs similarity search (APSS)
problem. This problem is defined as finding all vector pairs the similarities of which
are above a given similarity threshold.

 Implementation of building of the decision trees. The Map/Reduce-based construction
of the decision tree from a given input set is performed in multiple Map/Reduce
iterations, where in each iteration a single level of the tree is formed.

 Detailed large-scale experiments on the IBM Blue Gene/Q JUQUEEN Tier-0 system
and the SGI Altix 8600 VILJE Tier-1 system up to 4K processors. Demonstration of
the available potential of the MapReduce paradigm for high performance computing
aimed at machine learning applications.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

80

 Dissection of the obtained runtimes to investigate the bottlenecks and figure out the
hindrances that prevent scalability. For this reason, the different stages of the
implemented algorithms are grouped and traced to measure the time spent in each
stage.

Main results:
We present the speedup results on an SGI Altix 8600 machine for building of the decision
tree. The used dataset consist of a real-life trace with 500,000 records and 90 attributes. Our
test is based on regression trees. The codes are developed from scratch with calls to the MR-
MPI library. We have experimented from 64 to 2048 processors, doubling the processor count
while fixing the dataset (strong scaling). We present the obtained running times in Figure 30.

Figure 30: Running time of building decision tree with increasing number of cores.

Up to 1024 cores, we almost get linear speedup. The performance starts to deteriorate at 2048
processors, which is due to the increasing communication requirements. Even though decision
tree building algorithm is highly iterative and sequential in nature due to dependencies
between successive levels of the tree, the execution times show that a fast and optimized
MapReduce library can attain quite good performance.

We also present the runtime dissection of the decision tree building in Figure 31 to reveal the
hindrances to achieve a fine scalability performance. With increasing number of processors,
the time spent in the collate stage increases while the time spent in the map stage decreases.
At 2048 cores, they almost become equal. This indicates that communication requirements of
the parallel decision tree building algorithm become bottleneck in obtaining a scalable
performance.

0

20

40

60

80

100

120

140

160

180

200

220

64 128 256 512 1024 2048

Ti
m
e
 (
se
co
n
d
s)

Number of cores

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

81

Figure 31: Decision tree build execution time dissection.

4.4.9 PR12

Code general features
Name Alya

Scientific field Multiphysics

Short code
description

The Alya System, which was developed at the Barcelona
Supercomputing Center (BSC), is a Computational Mechanics
(CM) code with two main features. Firstly, it is specially designed
to run with the highest efficiency standards in large-scale
supercomputing facilities. Secondly, it is capable of solving
different physics problems, each one with its own modelling
characteristics, in a coupled way. These two main features are
intimately related, which means that any complex coupled
problems solved by Alya will still be solved efficiently.

Programming
language

Fortran90

Supported compilers ifort, gfortran, xlf

Parallel
implementation

MPI, OpenMP

Accelerator support None

Libraries METIS, HDF5

Building procedure Automatic makefile generator

Web site http://www.bsc.es/computer-applications/alya-system

Licence BSC proprietary

Table 44: Code general features for Alya.

The main features of Alya code are:

1

10

100

1000

10000

100000

1000000

64 128 256 512 1024 2048

Ti
m
e
 (
m
ili
se
co
n
d
s
‐‐
lo
g
sc
al
e
)

Number of cores

model‐comm

map

collate

reduce

partial‐stat‐comm

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

82

 Space discretization is based on unstructured meshes, with several types of elements
(hexaedra, tetraedra, prisms, pyramids... linear, quadratic...) implemented.

 Both explicit and implicit time advance schemes are programmed.
 Depending on the case, staggered or monolithic schemes are programmed. However,

staggered schemes with coupling iterations are preferred for large multi-physics
problems.

 Parallelization is based on mesh partitioning (METIS) and MPI tasks, which is
specially well-suited for distributed memory machines. On top of that, some heavy
weight loops are parallelized using OpenMP threads. Both layers can be used at the
same time in a hybrid scheme.

 Alya sparse linear algebra solvers are specifically developed, with a tight integration
with the overall parallelization scheme. There are no third-parties solver libraries
required.

 Alya includes some geometrical tools which operate on the meshes for smoothing,
domain decomposition or mesh sub-division. In particularly, the latter is a key tool for
large-scale simulations.

Main objectives:
 Solve multi-physics problems in a coupled way.
 Run with the highest efficiency standards in large-scale supercomputing facilities.

Accomplished work:
There are different physical modules within Alya that are contained in the PRACE benchmark
suite. These modules solve incompressible and compressible flows, solid mechanics,
chemical reactions and excitable media problems. This Work Package focuses on the
incompressible, the solid mechanics and the electrical ones. This section summarizes the
numerical models and strategies employed in the incompressible, the solid mechanics and the
electrical modules.

Discretization method

The numerical model is a stabilized finite element method for the incompressible module, a
standard Galerkin method for large deformation framework for the solid module and a
standard Galerkin method for the electrical module (since it only solves a Poisson equation).
The stabilization of the incompressible module is based on the Variational MultiScale (VMS)
method. The formulation is obtained by splitting the unknowns into grid scale and subgrid
scale components. In the present formulation of Alya, the subgrid scale is, in addition, tracked
in time and in space, thereby giving more accuracy and more stability to the numerical model
[30].

Solution strategy

The discretization of the system of equations obtained, either in fluid or solid, computational
mechanical yields a coupled algebraic system to be solved at each linearization step within a
time loop. Algebraic solvers to solve this coupled system are not robust enough; an iterative
strategy should be applied. For incompressible flows the Orthomin method for the Schur
complement of the pressure [31] is used, and for solid mechanics a classical Newton-Raphson
strategy is used. At each linearization step it is necessary to solve the momentum equation
twice and the continuity equation once. The GMRES, the BICGSTAB method (diagonal and
Gauss-Seidel preconditioners) and the Deflated Conjugate Gradient [32] together with a
linelet preconditioner are implemented, among others.

Mesh Multiplication

In Peta-scale applications, the pre- and post-process tasks are becoming a bottleneck in the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

83

complete simulation cycle. Techniques like parallel I/O have been introduced to mitigate
these effects in post-processing, but these are only effective within a limited range. Mesh
multiplication (MM) was introduced as an alternative. This technique consists of refining the
mesh uniformly, recursively, on-the-fly and in parallel. For tetrahedra, hexahedra and prisms,
each level multiplies the number of elements by eight, while a pyramid is divided into ten
new elements. This technique is also very useful for studying mesh convergence as well as
weak and strong scalability. Figure 32 sketches the recursive MM algorithm. As an example
of the efficiency of the algorithm, a mesh of 3 billion elements was obtained in 1 second on
16384 CPUs, starting from a mesh of 3 million elements.

Figure 32: Mesh Multiplication scheme in Alya.

Parallelization

The parallelization is based on a master-slave strategy for distributed memory
supercomputers, mainly using MPI as the message-passing library. The master reads the mesh
and performs the partition of the mesh into sub-meshes, or sub-domains, using METIS (an
automatic graph partitioning library). Each process will then be in charge of a sub-domain.
These sub-domains are the slaves. The slaves build the local element matrices and the local
right-hand sides, and are in charge of solving the resulting system solution in parallel.

In the assembling tasks, no communication is needed between the slaves, and the scalability
depends only on the load balancing. In the iterative solvers, the scalability depends on the size
of the interfaces and on the communication scheduling.

As mentioned previously, the momentum and continuity equations are solved with
unsymmetric and symmetric iterative solvers respectively. During the execution of the
iterative solvers, two main types of communications are required:

 global communications via MPI_AllReduce, which are used to compute residual
norms and scalar products, and

 point-to-point communications via MPI_SendRecv, which are used when sparse
matrix-vector products are calculated.

All solvers need both these types of communications, but, when using complex solvers like
the Deflated Conjugate Gradients, additional operations may be required, such as the
MPI_AllGather functions. In the current implementation of Alya, the solution obtained in

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

84

parallel is, up to round-off errors, the same as the sequential one all the way through the
computation. This is because the mesh partition is only used for distributing work without in
any way altering the actual sequential algorithm. This would not be the case if one considered
more complex solvers, like the primal/dual Schur complement solvers, or more complex
preconditioners, like linelet or block LU.

Figure 33 is a schematic flowchart for the execution of a simulation using Alya. The tasks that
the master process is responsible for are shown on the left side of the figure with a grey
background. The master process performs the first steps of the execution, namely reading the
file and partitioning the mesh. Afterwards, the master sends the corresponding sub-domain
information to each slave process; then the master and the slaves enter the time and
linearization loops, represented as one single loop.

Figure 33: Master-Slave strategy.

Hybrid parallelization exploits the thread-level parallelism of multi-core architectures,
combining MPI tasks with OpenMP threads. The space mesh is partitioned, distributing each
partition among the MPI tasks. Then, loops on elements (i.e. assembly loops) and nodes (i.e.
solver loops) are threaded using OpenMP. Hybrid parallelization is especially well suited for
the current trend of supercomputers, which are large clusters of multi-core processors. The
strategy is assessed through transient non-linear solid mechanics problems, both for explicit
and implicit schemes, running on thousands of cores.

Scalability

Figure 34 shows the strong scalability and efficiency for the kiln example [33]. The plots
show the total scalability, measured summing up the CPU times for all the Physical problems
solved, namely low Mach, temperature and chemical reactions. In this example we show the
results for two meshes: 528M (called DIV2) and 4.22B elements (called DIV3). For DIV2
(labelled “DIV2 Ref 1K”) the scalability is measured all the way from 1024 up to 100K cores,
with the sweet spot around 16K mean elements per core. Beyond that point, efficiency falls
below 0.80. For DIV3, i.e. the largest mesh, we run the last three points of the plot, 32768,
65536 and 100000 cores, using as the scalability normalizing value the CPU time obtained for
32768 (labelled “DIV3 Ref 32K”). In order to be fair with the comparison, we have added the
scalability and efficiency plots for DIV2, but now normalizing with 32768 instead of 1024
(labelled “DIV2 Ref 32K”). As expected, “DIV2 Ref 32K” is very close to a translation
upwards of “DIV2 Ref 1K”. On the other hand, “DIV3 Ref 32K” presents a much better

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

85

scalability and efficiency, with a sustained large efficiency up to 100.000 cores.

Figure 34: Scalabilty of Alya code.

Coupling

A general coupling strategy for multi-physics problems is implemented in Alya. The basic
idea is to have independent codes, one for each physical problem, and communicate the
coupling variables using MPI. Usually, the multi-physics problems involve different space
and time scales, which can lead to situations in which optimised algorithms for the individual
problems are useless in the coupled one. Thus, different coupling algorithms and relaxation
schemes are considered and tested. In this approach, and in order to have a general scheme, it
is of prime importance to exchange the information in the proper section of the code at the
right time. Different kind of couplings leads to different kind of information exchange. In
some cases the information needs to be exchanged only in a contact surface, while in others it
is necessary to exchange information in the whole domain. Also, it has to be taken into
account if the information is going to be used as a source term, as a boundary condition or as
part of the matrix in the target code.

A possible coupling scheme for a Fluid-Structure Interaction (FSI) problem is shown in
Figure 35.

Figure 35: Coupling between incompressible and solid modules in Alya.

4.4.10 PR14

Code general features

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

86

Name	 EMAC, KPP

Scientific	field	 Climate science

Short	code	
description	

The atmospheric chemistry model EMAC combines the global
circulation model ECHAM and the Modular Earth Submodel
System (MESSy). It is used and developed at many European
institutions to study a wide range of problems in climate and
environmental sciences.

Presently, EMAC is a classic distributed memory application
exclusively relying on the Message Passing Interface (MPI) for
parallelisation. It runs on large clusters of nodes with a lot of
memory and powerful processors such as IBM POWER and Intel
Xeon. Each node processes one or more vertical columns of the
three dimensional matrix representing the atmosphere, so that the
parallelisation is limited by the horizontal resolution.

Programming	
language	

Fortran, C

Supported	
compilers	

Intel, IBM, Lahey, GCC

Parallel	
implementation	

MPI

Accelerator	support	 None

Libraries	 MPI, NetCDF

Building	procedure	 Autotools

Web	site	 http://www.messy-interface.org

http://people.cs.vt.edu/~asandu/Software/Kpp/

Licence	 MPI-M Software License Agreement, MESSy Software Licence
Agreement, GPL

Table 45: Code general features for EMAC model.

Main objectives:
The main goal of this project is to allow EMAC to take advantage of recent and forthcoming
Peta-scale machines to significantly increase the detail and precision of chemistry-climate
simulations. More specifically, the objective is to exploit GPU accelerators on accelerated
clusters. A large number of such hybrid systems is already accessible for production runs,
e.g., the PRACE Tier-0 system CURIE and the CY-TERA machine at the Cyprus Institute,
but also in future this architecture will likely play a leading role in high performance
computing, paving the way to Exa-scale computing.

Accomplished work:
We have evaluated different approaches to enable GPU acceleration in the EMAC chemistry-
climate model. As method of choice we have identified extending the Kinetic PreProcessor
(KPP) to generate CUDA code for solving the chemical kinetic equations. The
implementation of this most important milestone towards a GPU accelerated EMAC is one of
the main accomplishments of our project, which is also to the benefit of other applications
relying on KPP. To allow performance improvements beyond accelerated chemistry, we have
additionally ported the EMAC model to the PGI compiler which enables an easy acceleration
of further sub-models using OpenACC directives.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

87

	
Figure 36: Projected total speedup of EMAC assuming different GPU speedups.

Main results:

Application architecture development

In a typical EMAC simulation, computing the atmospheric chemistry processes is one of the
computationally most intensive tasks, sometimes requiring up to 90 % of the total computing
time. For this reason, our efforts focus on accelerating the chemistry, which promises the
largest overall performance gains. Compared to the evaluation on the CPU, offloading the
chemical kinetics to GPUs yields large speedup factors. Figure 36 shows the projected total
speedup of EMAC resulting from typical speedups of GPU accelerated chemical kinetics
(GPU performance / CPU core performance = 10, 15, 20 and 25) depending on the fraction of
CPU time spent on the chemical kinetic system (50 %, 70 % and 90 %) and the number of
GPUs available per CPU core. Further GPU acceleration of other parts of the model might be
achieved in future using OpenACC directives.

The components involved in the process illustrated in Figure 37. The system is defined in the
domain specific KPP language which is translated to Fortran or C code by the Kinetic
PreProcessor KPP. The code is then optimised and integrated into MECCA and EMAC by the
KPP Post-Processor KP4.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

88

	
Figure 37: Processing of the chemical kinetic system in MECCA/EMAC.

In this project, both approaches have been pursued and evaluated. Refining KP4 to introduce
CUDA calls into the KPP output promises quick success. On the downside, the result of this
effort is exclusively to the benefit of EMAC and depends heavily on both, the KPP and the
EMAC version. As on top of that the already complex post-processing by KP4 would be
supplemented by a further post-processing layer, our study concludes that a tolerably clean
and foresighted implementation of this approach is not feasible. Hence, our focus shifted to
modifying KPP. This approach is much more ambitious, however the result is not only a
cleaner, easier maintainable implementation of GPU acceleration, but moreover it is of more
general interest.

GPU enabled KPP

KPP is used in many atmospheric chemistry related applications other than EMAC. All these
applications could benefit from enabling KPP to produce GPU accelerated code.

We have developed a GPU enabled KPP replacement based on the open source code of the
original KPP (version 2.2.3). As GPU programming model we use Nvidia's Compute Unified
Device Architecture (CUDA). The source code of our KPP replacement is available under
GPL from a public Bitbucket repository. The basic functionality is implemented and the
repository will track further additions and improvements. So far, the development has been
focused on profiling the KPP generated code and identifying computational bottlenecks
which are overcome by offloading to GPUs. The development of future versions will focus on
performance optimisations, aiming at offloading as much of the workload as possible to
GPUs.

Even though a still young project, our GPU enabled KPP version has already sparked the
interest of other projects relying on KPP. Their inquiries underline the general interest in an
open source GPU enabled KPP alternative and further justify switching from the post-
processor (KP4) oriented to the more ambitious KPP oriented approach to enabling GPU
acceleration in EMAC.

OpenACC development enabling

On the long term, when the optimal speedup of the chemical kinetics computation is
approached, the overall speedup of EMAC is limited by the remaining non-accelerated sub-

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

89

models. To achieve further speedup, additional computationally expensive sub-models like
the aerosol sub-model GMXe could be addressed similarly.

As most convenient way to do so, we have identified the use of OpenACC compiler
directives. They are well supported by the PGI compiler from Nvidia, however, so far, this
compiler has not been used for EMAC development. Introducing a new compiler for
compiling EMAC with its more than one million lines of code is highly non-trivial but has
been accomplished as part of our project to enable future OpenACC programming. Indeed,
several problems were encountered, most of them related to the PGI compiler itself. The main
problem is the compiler's naming convention for functions in object files. We have discussed
possible solutions with PGI but for downward compatibility the problems will not be resolved
on compiler level. However, a workaround is the renaming of the affected subroutines and
modules in the source code, which enables future use of OpenACC directives to accelerate
EMAC.

4.4.11 PR15

Code general features
Name Delft3D-FLOW & SWAN, coupled with Delft3D-WAVE

Scientific field Environmental sciences

Short code description Delft3D is a world leading 3D modelling suite used to investigate
hydrodynamics, sediment transport and morphology and water
quality for fluvial, estuarine and coastal environments. As of 1
January 2011, the Delft3D flow (FLOW), morphology (MOR) and
waves (WAVE) modules are available as open source. Delft3D
has over 350k lines of code and is developed by Deltares. Delft3D-
FLOW computes circulation with to the shallow water equations;
SWAN computes wave heights and frequencies.

Programming
language

Fortran 90, C, and C++

Supported compilers GNU, INTEL, IBM

Parallel
implementation

Delft3D-FLOW uses MPI, SWAN uses either MPI or OpenMP.

GPU support No

Libraries MPI, netcdf, expat, pthreads, Autotools, Libtool

Building procedure configure & make

Web site Delft3D: http://oss.deltares.nl/web/delft3d,

SWAN: http://www.swan.tudelft.nl/

Licence Delft3D: GPL, SWAN: GPL

Table 46: Code general features for DELF3D and associated coupled codes.

Task 1: Coupled simulation with Delft3D-FLOW & SWAN for informed decision
making
The design process of a lake and its environment asks for an interactive approach in which
different aspects (economical, engineering, recreational, safety for flooding, ecology) from
different stakeholders can be combined. For this purpose, for Lake Marken in the

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

90

Netherlands, a multidisciplinary coupled model exists. However, the current runtime for a
scenario with the model is four days, so interactive sessions (that combines drawing measures
with calculations effects with the model with stakeholders) are not feasible yet.

The two main objectives of the project are:

 Reduction runtime from 4 days to less than 1 hour.

 Interactive design sessions in visualization room with high bandwidth connection to
HPC facilities.

Accomplished work:
The applications Delft3D-FLOW and SWAN are used to simulate respectively water flow and
water waves. These two applications have been coupled with Delft3D-WAVE and the
combination of these 3 executables has been optimized on the Tier-1 Bull cluster
CARTESIUS. The runtime could be decreased with a factor 4 with hardly any additional
hardware. Over 80% of the total runtime consists of unnecessary I/O operations for the
coupling, of which 70% could be removed. Both I/O optimizations and replacement with MPI
were used. As a result, we must conclude that it is not possible to use this coupled model as a
tool in an interactive design session that cannot last more than 1 working day. However, the
interactive design session with a more simplified model, learned us that the simplified model
is of value for the design process. We think we can further improve this by making the
transition for modelling with the simplified model and the more detailed model more flexible.

Main results:
The initial simulations were run on 1 node: Delft3D-FLOW is run with 6 MPI processes,
SWAN is run with 24 OpenMP threads. Both models run concurrently, not side-by-side.
Several optimizations were made and overall results are summarized in Table 47.

Test
Estimated remaining
runtime

Remarks

0. Initial performance 4 days 18 hours

1. Delft3D-FLOW with 12 MPI processes
(disc.)

4 days 8 hours Failure after
880 time steps

2. Use of ramdisk (/dev/shm) for I/O 3 days 2 hours

3. Use of FORT_BUFFERED=true 3 days 0 hours

4.Use of KMP_AFFINITY=compact,0,0 2 days 19 hours

5. SWAN with NetCDF for hotstart data
(disc.)

2 days 16 hours

6. SWAN with MPI for hotstart data 2 days 3 hours

7. Delft3D-FLOW with 11 MPI processes 2 days 0 hours

8. SWAN with 32 threads on fat node 1 day 21 hours

9. WAVE-FLOW coupling through MPI 1 day 6 hours

Table 47: Successive results of optimization strategies.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

91

Over 80% of the runtime is spent in unnecessary I/O that is used to couple the different
applications. The optimization of the I/O has resulted in more than 69% performance
improvement, without increasing the number of cores used for the simulation. Another 5%
performance improvement was reached with scaling up the application to use as many cores
as possible on the one node of Tier-1 system CARTESIUS. It is expected that the runtime can
be reduced to about 12 hours with further removal and optimization of the I/O. SWAN can
scale to about 100 MPI processes for this particular case, but it was not yet ready to be used in
this coupled simulation. Refactoring of the code was the introduction of a few well-placed
MPI calls, to show the optimization potential.

Task 2: Porting Delft3D/Flow on FERMI Blue Gene/Q system
Port the Delft3D code on massively parallel architectures such as the Blue Gene/Q
architecture, and test it, in order to have its scalability and found its performance issue. This
work will be preparatory for an extensive work aimed to overcome the parallel bottlenecks of
the Delft3D code.

Accomplished work:
 Some improvement and modification on the code were made. For a detailed list

please refer to the related white paper [22]. Some of the more important changes are
listed below:
 Conversion of all auxiliary files (e.g. headers or include files) from DOS format to

UNIX.
 Installation of the last version of autotools currently available (Libtool 2.4.2

Autoconf 2.69, Automake 1.13.2) on FERMI system in order to avoid all possible
compatibility problems.

 Installation of the EXPAT library to enable some I/O procedures of the code (in
particular those used for reading XML files).

 The code was compiled and tested using both IBM XL and GNU compilers. To
ensure a sufficient compatibility with some platform specific options it was
necessary to write a more complex configure procedure.

 Creation of a Static linking procedure in order to overcome the limitation due to
the incompatibility of Blue Gene/Q compilers and dynamic linking. This change
was particularly complicated because the use of libtool creates a series of bugs in
linking that we eventually resolved using the “--all-static” flag (only during the
linking procedure).

 Declaration of some new environment variables in order to prevent crashing of the
compilation or execution procedure (e.g. ac_cv_func_malloc_0_nonnull=yes ;
ac_cv_func_realloc_0_nonnull=yes ;).

 Remove all the C-style comments in the config.h files included in pre-processable
FORTRAN files, since they are not recognized by IBM FORTRAN compilers.

 Separate compilation for the version_number.exe utility. Indeed, although it is
necessary to compile the code for the execution on the back-end nodes (the nodes
on which the code will run), the version_number.exe executable must be compiled
using the front-end tool chain.

 The common.am file was modified removing all reference to DelftOnLine.
 Some modifications were necessary also on the configure.ac file in order to resolve

a compilation problem related to pre-processing.
 A new rdtsc function was created to provide some architecture-dependent

information.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

92

 Some files (iniid.f90, rdgrid.f90, strgrd.F90 inicut.f90 and inigrd.f90) was
modified to allow the creation of more than 1000 temporary files that are
necessary to increase the maximum number of useable cores up to 10,000.

 The –DPTR8 flag was added to the compilation procedure to enforce the use of 8
byte file pointers. This flag solves a problem with the NEFIS library that on Blue
Gene/Q systems creates files larger than 4 exabytes (presumably due to corrupt i-
node data).

 In order to port the code on FERMI Blue Gene/Q the code was first ported and tested
on two Tier-1 systems: the PLX and the EURORA hybrid clusters.

 The code was tested on FERMI using a small size problem of sediment transport. The
complete results of this benchmark phase were reported in the related white paper.

Main results:
After a significant porting effort, the Delft3D-FLOW application has been benchmarked on
the IBM Blue Gene/Q Tier-0 system FERMI - to our knowledge the first time that this has
been achieved. Thanks to our benchmarks we found that some of the major bottlenecks of the
flow module of the Delft3D code are related to the sediment transport routines as we can see
from Figure 38.

Figure 38: Time spent by Delft3D subroutines in
the sediment transport model as obtained by
Scalasca.

Figure 39: Performance of Sediment transport
benchmark on FERMI. We plot the Execution time
vs the number of cores.

In Figure 39 we plot the total execution time for a 2000 time step integration. It can be seen
that the benchmark does not scale well, even if the execution time decreases up to 128 cores.
The overhead for performing sediment transport is significant and sensitive to the number of
processes, since the solution of the ADI-solver depends on the process count which cascades
into changes in sediment transport and resulting height changes that feed back to the
circulation, even for short simulations like these. This affects the reliability of the results,
although we do not know to what extent.

Given the current limited parallel scalability of the code with MPI this porting is only really
relevant for models which are large enough to utilize at least 1024 cores but with further
improvements in the OpenMP parallelisation it may be possible to extend the utility of the
application to smaller datasets.

Time spent

erosed

bott3d

adi

tritra

taubot

other
0

2000

4000

6000

8000

10000

0 50 100 150

Ex
e
cu
ti
o
n
 t
im

e
 (
se
c)

N. of cores

Real Timing Perfect Scaling

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

93

5 Summary

Three parallel sub-tasks on application enabling in Work Package 7 of PRACE-3IP have been
described including final reports on the supported applications. These three activities have
been organized into support projects formed on a basis of either scaling and optimisation
support for Preparatory Access, application support for DECI or for applications addressing
major socio-economic challenges.

5.1 Preparatory Access Type C

Task 7.1.A successfully performed four cut-offs for preparatory access including the
associated review process and the support for the approved projects.

In total 17 Type C Preparatory Access projects have been supported by T7.1.A. The timeline
of these projects is shown in the Gantt-chart in Figure 40. The chart shows the run time of
each project with start date and end date in PRACE-3IP. PRACE-3IP took over responsibility
for running PA C projects from PRACE-2IP on August 31, 2013. Projects which started in the
frame of PRACE 3IP but will finalize in the extension phase of 3IP are not reported in the
current deliverable but will be covered by deliverable D7.1.3 which is due in the beginning of
next year.

Usually the projects run for six months. Some projects received a prolongation; this is
possible on special request, mainly in case of technical system problems. The reason for the
slightly different start dates within one cut-off is that each hosting member finally decides on
the exact start date of the projects at their local site. Also the PI can choose a slightly later
start date.

For the finalized PA C projects ten white papers were created and published. The detailed
optimization work has been described in section 2.8, section 2.9 and section 2.10.

2010PA1461

2010PA1454

2010PA1470

2010PA0633

2010PA1505

2010PA1492

2010PA1467

2010PA1757

2010PA1527

2010PA1802

2010PA2141

2010PA2066

2010PA2132

2010PA2171

2010PA2194

2010PA2231

2010PA2216

2IP 3IP 3IP
Extension

Figure 40: Timeline of the PA C projects.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

94

The main goal of T7.1.A is to enable codes for the provided Tier-0 systems. Table 48 reflects
the success of T7.1.A in this regard. Two out of ten projects already successfully applied for
the PRACE Regular call and therefore continue their work on Tier-0 systems. In addition, half
of the finalized projects plan to carry on their work on Tier-0 systems and corresponding
applications are currently in progress. For the remaining three projects no further information
regarding future plans are available yet.

The Preparatory Access to Tier-0 services and especially the support by PRACE experts are
invaluable for the scientists to use and effectively exploit the resources of PRACE.

Project number Title PRACE Tier-0 regular
access

2010PA1461

Enabling Xnavis (URANS
solver for fluid-dynamics)
for massively parallel
simulations of wind farms.

Application in preparation

2010PA1454

Scalability analysis,
OpenMP hybridization and
I/O optimization of a code
for Direct Numerical
Simulation of a real wing

N/A

2010PA1470

PA1470 Next generation
pan-European coupled
Climate-Ocean Model -
Phase 1 (ECOM-I)

Application in preparation

2010PA0633

Increasing the QUANTUM
ESPRESSO capabilities II:
towards the TDDFT
simulation of metallic
nanoparticles

Awarded regular project
access (6th call)

2010PA1505
Scalability of gyrofluid
components within a multi-
scale framework

Application in preparation

2010PA1492

Direct numerical simulation
of a high-Reynolds-number
homogeneous shear
turbulence

Awarded regular project
access (8th call)

2010PA1467

Massively Parallel Multiple
Sequence Alignment Method
Based on Artificial Bee
Colony

Application in preparation

2010PA1757

Optimization of PIERNIK
for the multiscale
simulations of high-redshift
disk galaxies.

N/A

2010PA1527 URANIE N/A
2010PA1802 Parsek2D-MLMD Application in preparation
Table 48: Future plans of finalized PA C projects.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

95

5.2 Technical support for DECI

In the 2nd year of PRACE-3IP, T7.1.B continued providing technical support for DECI. The
technical evaluations (TEs) were provided for 119 DECI-11 proposals and 61 DECI-12
proposals by the DECI partner sites. All of the180 TEs were completed using the online
PRACE PPR tool for DECI.

T7.1.B provided the technical support for all ongoing DECI projects in the 2nd year of
PRACE-3IP, including the continued support for 31 DECI-9 projects and 37 DECI-10
projects since August after the PRACE-2IP ended, the full support for 52 DECI-11 projects,
and the starting assistance for the 34 accepted DECI-12 projects. The technical support
included providing technical assistance for DECI users to get access to their assigned Tier-1
systems, providing closing instructions for their projects, providing solutions whenever any
technical issues were raised by the DECI users, and most importantly, providing applications
enabling support as required by the DECI projects. There were 4 DECI enabling projects
supported during this period, including the DECI-9 project Planck-LFI2, the DECI-10 project
DNSTF, the DECI-10 project HYDRAD, and the DECI-11 project Planck-LFI3. A total of 4-
12 PMs enabling efforts were contributed by DECI partner sites for the enabling projects
listed above. One white paper for the enabling work done on the DECI-10 project DNSTF
will be available in end June 2014. Due to the timescale of DECI-12 and PRACE-3IP, no
enabling support is available for the DECI-12 projects.

T7.1.B involves 15 partner sites providing 73 PMs in total for the DECI technical support.
Monthly telcons and face-to-face sessions were arranged for the subtask progress reporting
and discussions. T7.1.B also worked together with WP2 in close collaboration. WP2 was
responsible for the DECI process management, while T7.1.B focused on the technical support
and applications enabling provided to the DECI projects. The joint videoconference on every
3rd Friday of each month has been started since March 2014, for T7.1.B and WP2 to discuss
DECI projects and DECI support in a more efficient way.

5.3 Socio-economic application support

Support for application codes addressing key socio-economic challenges resulted in 11
successful projects. Each project aimed at supporting the given challenge with enabling
identified application for efficient Tier-0 HPC systems usage. More than 20 representative
application codes received technical support from selected PRACE experts.

Wide range of socio-economic areas has been addressed including BLA. BLA resulting with
application codes contributing to solution of these problems. Key results of the enabling work
include:

 application suites enabled for a multi-discipline modelling with coupling separate
codes together on the selected HPC platforms in cardiac mechanics and environmental
studies,

 improved computational kernels for fluid-structure interactions in aeronautics design
process and large scale - free of periodic boundary conditions - molecular dynamics,

 scalable implementation of the HPC workflow for genomic data analysis, improved
linear-scaling of the widely used DFT code,

 improved runtime of the coupled software application to simulate the different aspects
of a lake, ranging from the optical properties of the water to safety concerns allowing
interactive decision making,

 Big Data processing approach using HPC implementation of MapReduce
programming paradigm.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

96

Applications used for solving problems classified as socio-economically relevant have been
enabled for selected PRACE Tier-0 systems including IBM Blue Gene/Q JUQUEEN and
FERMI systems, IBM iDataPlex MARENOSTRUM and Bullx CURIE. Nature of the
problem studied and associated technical case have been considered for careful target system
choice. Each project has addressed appropriate Tier-0 system and also a number of smaller
Tier-1 systems have been used for preliminary enabling work.

Technical support and preceding selection process gathered 13 PRACE partners with 80 PMs
in total for applications enabling. PRACE SSC members were also involved in selection
evaluation phase.

Each of the reported projects has been completed giving clear indications for a future
improvements and possible benefits for application community. For a number of projects
natural continuation perspectives have been identified being an impulse for a further
improvements and innovations for HPC contribution to socio-economic challenges needs.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

97

6 Annex

6.1 DECI Projects

A complete list of DECI projects for each DECI calls in PRACE-3IP is provided below. Lists
include the projects in DECI-9, DECI-10, DECI-11 and DECI-12. Technical support for all
listed the DECI projects were provided in T7.1.B in PRACE -3IP since August 2013 after
PRACE-2IP ended.

6.1.1 DECI-9 Project List

4		0~1	PMs	indicates	that	the	DECI	project	requested	no	technical	support	or	very	small	amount	of	efforts	
for	regular	technical	support	only.	

PRACE Site
(home)

Project name
PRACE Site
(exec)

Machine(s)
Enabling
work (PMs)

BSC COIMBRALATT PDC
Lindgren (XE6
12C@2.1)

0 ~ 14

ICREIMUTANTS EPCC

HeCToR XE6
(XE6 16C@2.3)

0 ~ 1

SpEcBNS RZG

Hydra (Sandy
Bridge@2.6)

0 ~ 1

CINECA DOPE CINECA
PLX (Intel
Westmere
EX@2.4)

0 ~ 1

GPCR4D EPCC

HeCToR XE6
(XE6 16C@2.3)

0 ~ 1

iMIG BSC

MinoTauro (XEON
E5649@2.53 +
GPU (NVIDIA
Tesla))

0 ~ 1

CINES AuPd-Seg RZG
Hydra (Sandy
Bridge@2.6)

0 ~ 1

FORSQUALL EPCC

HeCToR XE6
(XE6 16C@2.3)

0 ~ 1

IONGATE UIO

Abel (Sandy
Bridge@2.6)

0 ~ 1

NPR-LQCD CINECA

PLX (Intel
Westmere
EX@2.4)

0 ~ 1

CSC NMRCONF CSCS Rosa (XT5 CSCS) 0 ~ 1
CompSym CSCS Rosa (XT5 CSCS) 0 ~ 1

Planck-LFI2 CSC

Sisu (Sandy
Bridge@2.6) Louhi
XT (XT5 DC@2.3)

1 ~ 3

CSCS LCRR EPCC
ICE-Advance
(BGQ)

0 ~ 1

PDC Lindgren (XE6

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

98

12C@2.1)

EPCC LBSCOM CSC

Louhi XT (XT5
DC@2.3) Sisu
(Sandy
Bridge@2.6)

0 ~ 1

EPCC

HeCToR XE6
(XE6 16C@2.3)

ESM4OED EPCC

HeCToR XE6
(XE6 16C@2.3)

0 ~ 1

FZJ TB-Drugs-In_silico CINECA
PLX (Intel
Westmere
EX@2.4)

0 ~ 1

MoMoGal EPCC

HeCToR XE6
(XE6 16C@2.3)

0 ~ 1

UIO

Abel (Sandy
Bridge@2.6)

ICHEC Reactive_Ceria FZJ
JuRoPA (Intel
Nehalem@2.93)

0 ~ 0

Si-Interfaces CINES

JADE-Harpertown
(Intel
Harpertown@3)

0 ~ 0

SPH-WEC CSCS Rosa (XT5 CSCS) 0 ~ 1

NCSA

EA ECNIS
(BGP@0.85)

NCSA AIMD-PAF EPCC
ICE-Advance
(BGQ)

0 ~ 1

PDC CoStAFuM RZG
Hydra (Sandy
Bridge@2.6)

0 ~ 1

UIO

Abel (Sandy
Bridge@2.6)

DifVib EPCC

ICE-Advance
(BGQ)

0 ~ 1

PDC

Lindgren (XE6
12C@2.1)

HydFoEn UHEM

Karadeniz (Intel
Nehalem@2.93)

0 ~ 1

RZG GanDaLF UIO
Abel (Sandy
Bridge@2.6)

0 ~ 1

PTACRB ICHEC

Stokes (Intel
Westmere
EP@2.67) Fionn-
thin (Fionn-thin)

0 ~ 1

SURFsara SPSC FZJ
JuRoPA (Intel
Nehalem@2.93)

0 ~ 1

UHEM HiSSor EPCC
ICE-Advance
(BGQ)

0 ~ 1

RZG

Hydra (Sandy
Bridge@2.6)

VSB-TUO MPI-FETI EPCC
HeCToR XE6
(XE6 16C@2.3)

0 ~ 0

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

99

6.1.2 DECI-10 Project List

PRACE
Site (home)

Project name
PRACE Site
(exec)

Machine(s)
Enabling
work (PMs)

BSC AIDMP FZJ
JuRoPA (Intel
Nehalem@2.93)

0 ~ 1

fplb WCSS

Supernova
(XEON
X5650@2.67)

0 ~ 1

Novel_Anticoagulants CINECA

PLX (Intel
Westmere
EX@2.4)

0 ~ 1

SPAITAC EPCC

HeCToR XE6
(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

0 ~ 1

CINECA ERPP CYFRONET
Zeus BigMem
(AMD
6276@2.3)

0 ~ 1

MOTUS ICM

Boreasz
(P7@3.83)

0 ~ 1

CSC CONVDYN13 RZG
Hydra (Sandy
Bridge@2.6)

0 ~ 1

HIV1-GSL EPCC

HeCToR XE6
(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

0 ~ 1

HyVaMPI UIO

Abel (Sandy
Bridge@2.6)

0 ~ 1

NANODROPS EPCC

HeCToR XE6
(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

0 ~ 1

EPCC Dissipative_Phenomena EPCC
Blue Joule (BGQ)
Archer (Sandy
Bridge@2.6)

0 ~ 1

GalChem SURFsara

Cartesius
(Cartesius)

0 ~ 1

Galsim CSC

Sisu (Sandy
Bridge@2.6)

0 ~ 1

HIGHERFLY EPCC HeCToR XE6 0 ~ 1

NPT_MC UHEM

Karadeniz (Intel
Nehalem@2.93)

0 ~ 1

UIO

Abel (Sandy
Bridge@2.6)

Table 49: DECI-9 project list.

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

100

(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

InterDef SURFsara

Cartesius
(Cartesius)

0 ~ 1

JOSEFINA PDC

Lindgren (XE6
12C@2.1)

0 ~ 1

WISER EPCC

HeCToR XE6
(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

0 ~ 1

FZJ INPHARMA EPCC
HeCToR XE6
(XE6 16C@2.3)

0 ~ 0

LargeRB2013 EPCC Blue Joule (BGQ) 0 ~ 1

MoDSS RZG

Hydra (Sandy
Bridge@2.6)

0 ~ 1

ICHEC APOP20X3 PSNC
Cane (Intel
Harpertown@2.5)

0 ~ 0

RODCS CSCS

Rosa (XT5
CSCS)

0 ~ 1

waveclim CSCS

Rosa (XT5
CSCS)

0 ~ 1

ICM CELESTE CSCS
Rosa (XT5
CSCS)

0 ~ 1

PDC DNSTF EPCC

HeCToR XE6
(XE6 16C@2.3)
Archer (Sandy
Bridge@2.6)

1 ~ 3

LipoSim PDC

Lindgren (XE6
12C@2.1)

0 ~ 1

MEGAREACT UIO

Abel (Sandy
Bridge@2.6)

0 ~ 1

PLANETESIM-2 FZJ

JuRoPA (Intel
Nehalem@2.93)

0 ~ 1

RZG HYDRAD RZG
Hydra (Sandy
Bridge@2.6)

1 ~ 3

VSB-TUO

Anselm (E5-
2665-8@2.4)

PTACRB-2 ICHEC

Fionn-thin
(Fionn-thin)

0 ~ 1

CYFRONET

Zeus BigMem
(AMD
6276@2.3)

SURFsara DIVI SURFsara
Cartesius
(Cartesius)

0 ~ 1

ICHEC

Stokes (Intel
Westmere
EP@2.67) Fionn-
thin (Fionn-thin)

SCosPtS CSC Sisu (Sandy 0 ~ 1

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

101

Bridge@2.6)

TheoMoMuLaM UIO

Abel (Sandy
Bridge@2.6)

0 ~ 1

UHEM GREENLIGNITE not assigned not assigned 0 ~ 1

WIND-FORECAST CYFRONET

Zeus (XEON
E5645@2.40)

0 ~ 1

VSB-TUO EXC-XMCD PSNC
Chimera (Intel
Westmere
EX@2.67)

0 ~ 1

TransMem SURFsara

Cartesius
(Cartesius)

0 ~ 1

Table 50: DECI-10 project list.

6.1.3 DECI-11 Project List

PRACE
Site (home)

Project name
PRACE Site
(exec)

Machine(s)
Enabling
work (PMs)

BSC ceriahydro FZJ
JuRoPA (Intel
Nehalem@2.93)

0 ~ 1

ConfTransHSP90 BSC

MinoTauro (XEON
E5649@2.53 +
GPU (NVIDIA
Tesla))

0 ~ 1

WHALE RZG

Hydra (Sandy
Bridge@2.6)

0 ~ 1

CINECA ATPSYNS EPCC
Archer (Sandy
Bridge@2.6)

0 ~ 1

HyDiG NIIF

NIIFI SC (NIIF-
NIIFI SC)

0 ~ 1

SCENE EPCC Blue Joule (BGQ) 0 ~ 1

CSC DyNet PSNC
Chimera (Intel
Westmere
EX@2.67)

0 ~ 1

EERSC RZG

Hydra (Sandy
Bridge@2.6)

0 ~ 1

gklocsoc PDC

Lindgren (XE6
12C@2.1)

0 ~ 1

Planck-LFI3 CSC

Sisu (Sandy
Bridge@2.6)

1 ~ 3

Syndecan EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

CSCS ClChannels PDC
Lindgren (XE6
12C@2.1)

0 ~ 1

CROWDING CSC

Sisu (Sandy
Bridge@2.6)

0 ~ 1

EPCC ASTROGKS ICHEC
Fionn-thin (Fionn-
thin)

0 ~ 1

BRAFKIN CSC

Sisu (Sandy
Bridge@2.6)

0 ~ 1

CBCAGE EPCC Blue Joule (BGQ) 0 ~ 1

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

102

ECG-MD EPCC Blue Joule (BGQ) 0 ~ 1

EMMA EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

FRAPLAWI PDC

Lindgren (XE6
12C@2.1)

0 ~ 1

GGOA EPCC Blue Joule (BGQ) 0 ~ 1
TLRSimSys CSCS Rosa (XT5 CSCS) 0 ~ 1

UltraFOx EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

FZJ FFF2 CINECA
PLX (Intel
Westmere EX@2.4)

0 ~ 0

GraFI PDC

Lindgren (XE6
12C@2.1)

0 ~ 0

ICHEC ELECNANO CINECA
PLX (Intel
Westmere EX@2.4)

0 ~ 1

IIPDRS PDC

Lindgren (XE6
12C@2.1)

0 ~ 0

Photocatalyst WCSS

Supernova (XEON
X5650@2.67)

0 ~ 1

ICM GPCR-SWITCH IPB
PARADOX (Sandy-
bridge@2.6GHz +
Nvidia M2090)

0 ~ 0

IDRIS CompClay VSB-TUO
Anselm (E5-2665-
8@2.4)

0 ~ 1

HTMTCC PSNC

Chimera (Intel
Westmere
EX@2.67)

0 ~ 1

UIO

Abel (Sandy
Bridge@2.6)

Meso-NH-4-DRIHM CYFRONET #NAME? 0 ~ 1

SPOC-MULOR PSNC

Chimera (Intel
Westmere
EX@2.67)

0 ~ 1

UnMAD EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

IPB CMBE ICHEC
Fionn-hybrrid
(Fionn-hybrid)

0 ~ 1

NIIF ProPep CSCS Rosa (XT5 CSCS) 0 ~ 1

NIIF

NIIFI SC (NIIF-
NIIFI SC)

PDC FLOCS EPCC
Archer (Sandy
Bridge@2.6)

0 ~ 1

GSTP FZJ

JuRoPA (Intel
Nehalem@2.93)

0 ~ 1

PSNC abinitio-nanocarbon FZJ
0 (no results) - (no
results)

0 ~ 1

MAPLER CASTORC

0 (no results) - (no
results)

0 ~ 1

RZG GraSiC-1 RZG
Hydra (Sandy
Bridge@2.6)

0 ~ 1

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

103

VSB-TUO

Anselm (E5-2665-
8@2.4)

NaUSIKAS SURFsara

Cartesius
(Cartesius)

0 ~ 1

SURFsara FSTRAP EPCC
Archer (Sandy
Bridge@2.6)

0 ~ 1

LESPVC SURFsara

Cartesius
(Cartesius)

0 ~ 1

OXYN-LED CYFRONET

Zeus BigMem
(AMD 6276@2.3)

0 ~ 1

TECHAR ICM Boreasz (P7@3.83) 0 ~ 1

thermospin EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

UIO N-MILiB UIO
Abel (Sandy
Bridge@2.6)

0 ~ 1

WeSearch UIO 0 (no results) 0 ~ 1

VSB-TUO ELTUNBIO PSNC
Cane (Intel
Harpertown@2.5)

0 ~ 1

PROS-HIFU WCSS

Supernova (XEON
X5650@2.67)

0 ~ 1

WCSS Mechanic-Kepler CYFRONET
Zeus BigMem
(AMD 6276@2.3)

0 ~ 1

PIERNIK-SI SURFsara

Cartesius
(Cartesius)

0 ~ 1

ICHEC

Fionn-thin (Fionn-
thin)

Table 51: DECI-11 project list.

6.1.4 DECI-12 Project List

PRACE Site
(home)

Projectname
PRACE Site
(exec)

Machine(s)
Enabling
work (PMs)

BSC
COIMBRALATT
2

CSC
Sisu (Sandy
Bridge@2.6)

0 ~ 1

PRIMO ICHEC

Fionn-thin (Fionn-
thin)

0 ~ 1

WCSS

Supernova (XEON
X5650@2.67)

CINECA MoTOFET CYFRONET 0 (no results) 0 ~ 1
MUPPIBOX NIIF 0 (no results) 0 ~ 1
TCSF CYFRONET 0 (no results) 0 ~ 1

CSC ALLOTRANS EPCC
Archer (Sandy
Bridge@2.6)

0 ~ 1

complexIdyn PDC

Lindgren (XE6
12C@2.1)

0 ~ 1

PlanckLFI4 CSC

Sisu (Sandy
Bridge@2.6)

1 ~ 3

EPCC DynaMITE not assigned not assigned 0 ~ 1
fusionFEM not assigned not assigned 0 ~ 1

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

104

GalChem2 not assigned not assigned 0 ~ 1
LocalUniverse not assigned not assigned 0 ~ 1
NANOMOF not assigned not assigned 0 ~ 1
nanostrain not assigned not assigned 0 ~ 1
NAV not assigned not assigned 0 ~ 1
OSFMO not assigned not assigned 0 ~ 1
QMC-H2 not assigned not assigned 0 ~ 1
TOACD not assigned not assigned 0 ~ 1

GRNET CepFlow not assigned not assigned 0 ~ 1
ELSOC not assigned not assigned 0 ~ 1
Multi2D not assigned not assigned 0 ~ 1

NANOGRAPHE
NE

not assigned not assigned 0 ~ 1

HLRS MoMoGal2 SURFsara Cartesius (Cartesius) 0 ~ 1

CYFRONET

Zeus BigMem
(AMD 6276@2.3)

PDC DNSTF2 CSC
Sisu (Sandy
Bridge@2.6)

3 ~ 6

EXODUS CASTORC Cy-Tera (Cy-Tera) 0 ~ 1

CYFRONET

Zeus BigMem
(AMD 6276@2.3)

FENICS PDC

Lindgren (XE6
12C@2.1)

3 ~ 6

MicroMagNum ICHEC

Fionn-thin (Fionn-
thin)

0 ~ 1

ParaWEM EPCC

Archer (Sandy
Bridge@2.6)

1 ~ 3

PDC

Lindgren (XE6
12C@2.1)

VFEH EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

SURFsara ACEID EPCC
Archer (Sandy
Bridge@2.6)

0 ~ 1

GLAM EPCC

Archer (Sandy
Bridge@2.6)

0 ~ 1

scHeaTrans SURFsara Cartesius (Cartesius) 0 ~ 1

VSB-TUO

Anselm (E5-2665-
8@2.4)

TheDeNoMO SURFsara Cartesius (Cartesius) 0 ~ 1
UHEM APGTBL NIIF 0 (no results) 0 ~ 1

Table 52: DECI-12 project list.

i	R.	Muscari,	M.	Felli,	and	A.	Di	Mascio.	Analysis	of	the	flow	past	a	fully	appended	hull	with	propellers	by	computational	and	
experimental	fluid	dynamics.	Journal	of	Fluids	Engineering,	133(6),	2011.	
D.	Durante,	R.	Broglia,	R.	Muscari,	and	A.	Di	Mascio.	Numerical	Simulations	of	a	turning	circle	manoeuvre	for	a	fully	appended	hull.	In	
Proc.	of	28th	Symposium	on	Naval	Hydrodynamics,	Pasadena,	California,	2010.	

D7.1.2 PRACE-3IP

PRACE-3IP - RI-312763 23.06.2014

105

S.	Zaghi,	R.	Broglia,	and	A.	Di	Mascio.	Analysis	of	the	interference	effects	for	highspeed	catamarans	by	model	tests	and	numerical	
simulations.	Ocean	Engineering,	38(1718):2110‐‐2122,	2011.	
R.	Muscari,	A.	Di	Mascio,	and	R.	Verzicco.	Modeling	of	vortex	dynamics	in	the	wake	of	a	marine	propeller.	caf,	73(0):65‐‐79,	2013.	
A.	Di	Mascio,	R.	Broglia,	and	R.	Muscari.	On	the	Application	of	the	One‐Phase	Level	Set	Method	for	Naval	Hydrodynamic	Flows.	
Computer	and	Fluids,	36(5):868‐‐886,	2007.	
ii	A.	Di	Mascio,	S.	Zaghi,	R.	Muscari,	R.	Broglia,	B.	Favini,	and	A.	Scaccia.	On	the	Aerodynamic	Heating	of	VEGA	Launcher:	Compressible	
Chimera	Navier‐Stokes	Simulation	with	Complex	Surfaces.	In	7th		European	Aerothermodynamics	Symposium,	Brugge,	Belgium,	9‐
12	Maggio,	2011.	
iii	S.	Zaghi,	R.	Muscari,	and	A.	Di	Mascio.	Cnr‐insean:	Numerical	simulations	of	wind	turbines	by	means	of	dynamic	overset	grids.	In	
"Blind	test	2"	Workshop	Calculations	for	two	wind	turbines	in	line,	Trondheim,	Norway,	2012.	

