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Executive Summary 

This document presents the main achievements of the extension of Work Package 8 
‘Community Code Scaling’, which focuses on the re-design and refactoring of a number of 
codes for scientific numerical applications, in order to effectively run on coming generations 
of supercomputing architectures, optimally exploiting their innovative features. The extension 
was conceived in order to further enhance the results exploiting the developed competencies, 
skills and synergies. A subset of codes originally in WP8 underwent further refactoring. For 
each code, the results are summarised (the details are given in the corresponding papers, 
official documentation and related web sites, in particular the WP8 wiki pages: 
http://prace2ip-wp8.hpcforge.org). The main outcomes of the overall WP8 work are discussed 
and best practices for the development of scientific numerical applications on HPC systems 
are presented. 

 

1 Introduction  

During its one-year extension, work package 8 (hereafter WP8) re-design and refactoring 
programme was continued and finalised, exploiting the working methodology implemented in 
the first two years of the project. Such methodology was designed to support science by 
enabling numerical applications and simulation codes for coming generations of High 
Performance Computing (HPC) architectures. This was based on a close synergy between 
scientists, code developers and HPC experts, as extensively described in deliverables [4], [5], 
[6] and [7]. Figure 1 shows how the extension (Task 4) was integrated in WP8 as a natural 
improvement and completion of the previous work. 

 
Figure 1: Sketch of the working methodology adopted for WP8 and its one-year extension (Task 4). 
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During Task 4 the focus was on a number of “success stories,” in order to further enhance the 
quality, the effectiveness and the efficiency of the developed software and its readiness for the 
new HPC architectures that the PRACE RI will deploy as Tier-0 or Tier-1 systems. The codes 
have been selected according to the achieved outcomes of the first two years, the proposed 
objectives, and the available resources. The codes selected for further refactoring are listed in 
Table 1. The results were presented at the final Face to Face workshop held at CINECA 
(Bologna) on April 28 and 29, 2014. During the workshop the outcomes of the project were 
analysed and discussed with the community members and the final steps of WP8 assessed. 

In this document, Section 2 will be dedicated to give, for each of the selected codes, a short 
description of its main features (details can be found in deliverables [2] and [3]), a summary 
of the work accomplished during the extension and the main achievements. In Section 3, 
based on the whole WP8 experience, we will provide a number of best practices finalised to 
facilitate and improve any further work in the field. The deliverable is completed by Section 4 
with the summary and the conclusions.  

Code name Scientific Domain Responsible partner 

EAF-PAMR Astrophysics UC-LCA 

OASIS Climate ICHEC 

I/O Services Climate ICHEC 

ICON Climate ETH 

Fluidity/ICOM Climate STFC 

Quantum ESPRESSO Material Science CINECA 

SIESTA Material Science BSC 

EXCITING/ELK Material Science ETH 

PLQCD Particle Physics CASTORC 

ELMER Engineering VSB-TUO 

ALYA/CODE_SATURNE Engineering STFC 

PFARM Astrophysics STFC 

RAMSES Astrophysics ETH 

Table 1: List of the codes selected for Task 4 (left column), corresponding scientific domain (central 
column) and responsible PRACE partner (right column). 
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2 Refactoring Work on Selected Codes and Results 

In this Section we summarise the main accomplishments of the refactoring program during 
the work package extension for each of the codes selected for the WP8’s extension (additional 
details on the work plan can be found in Deliverable 8.4.1 [8]). 

2.1 EAF-PAMR  

2.1.1 Overview and workplan 

The Eborae Astrophysics Fluid-Parallel AMR (EAF-PAMR) Code originally developed by de 
Avillez, for dynamical studies of the interstellar medium in galaxies, solves the HD and MHD 
equations in a parallel fashion and uses a hybrid block-based AMR (van der Holst & Keppens 
2007) algorithm, where the grids are generated on the fly according to the combined 
refinement criteria based on density, pressure and vorticity gradients. The code was rewritten 
to include OpenCL extensions (dubbed EAF-PAMR OCL module developed under PRACE-
2IP WP8) and an atomic and molecular plasma emission module tracing the thermal evolution 
of the plasmas - the EA+MPEC module. 

The EAF-OCL module, written in OpenCL, includes OpenMP directives to allow cross-
platform calculations using several devices (e.g., GPGPUs) in the same machine. The code is 
a Piecewise Parabolic Method (PPM) based approximate Riemann solver for the 
hydrodynamics and magnetic components. PPM increases drastically the accuracy of the 
simulations regarding other popular algorithms, especially in problems where the evolution of 
shocks is very important for the dynamics of the problem, e.g., supernova driven shocks and 
the dynamics of the interstellar medium in star-forming galaxies. A further setup was the 
coupling of a thermal module into the EAF-OCL code. The thermal module, dubbed 
E+AMPEC code, deals with the ionisation structure of a plasma, tracing in a time-dependent 
fashion ionisation, heating and cooling processes resulting from the collective effects of two-
particle processes, photoionisation due to an external field, inner-shell photoionisation 
followed by the ejection of photoelectrons through Auger and Coster-Kronig processes. These 
photoelectrons redistribute energy into excitation, heating, etc as a secondary process.  

The work plan for the extension period comprised:  

 Implementation of MHD algorithms in OpenCL - Implementation of the PPM and 
TVD MHD methods of Dai & Woodward (1998) and Ryu & Jones (1995), 
respectively. The latter requires the setup of a cleaning scheme for the divergence of 
the magnetic field. 

 Implementation of thermal evolution of plasma and secondary heating modules - 
Incorporation of the thermal evolution of the plasma, calculated with the EA+MPEC 
module, into the EAF-OCL code.  

 Hybridisation - Implementation and testing of a hybrid OpenCL plus OpenMP/MPI 
calls to take advantage of multiple devices in the host machine.  

 Comparisons between GPU and Xeon Phi Coprocessor. 

2.1.2 Results 

The main results achieved during the extension period comprise: 

 Implementation of an OpenCL version of the MHD PPM based algorithm of Dai & 
Woodward and of the TVD based method of Ryu & Jones. The latter method is 
accompanied by a cleaning algorithm for the divergence of the magnetic field. Both 
methods rely on dimensional splitting.  
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 OpenCL porting of a specifically developed atomic and molecular plasma emission 
module (EA+MPECp; “p” stands for PRACE) for thermal and dynamical simulations 
of astrophysical plasmas.  

 Setup of a hybrid OpenCL plus OpenMP (in the host machine) to system to split the 
jobs into different compute devices in the same host. Tests carried out with the hybrid 
setup show an increase in speed up of 65% regarding a OpenCL code without any 
OpenMP directives in the host machine.  

 Modifications in the variables declarations, by including them into structures, lead to 
reductions in computing time by 40%.  

 OpenCL granularity has to be adapted according to the problem at use, e.g., dynamical 
calculations require a work-item granularity, while for the thermal calculations the 
fine-grained granularity is the most adequate.  

2.1.3 Impact and Summary 

The major impacts of the work developed in the WP8 comprise: 

 Assessment of the advantages in using OpenCL based software to model astrophysical 
fluids, in particular in terms of acceleration of the simulations using GPGPUs and 
CoProcessors. 

 Assessment on the advantages in spending a long time porting existing software into 
OpenCL vs. keeping the existing software and running it in the traditional way using 
CPUs or using directives like OpenACC 

Activities done with the Communities: 

 Presentation of talks at international workshops and summer schools on the usage of 
GPGPUs and OpenCL programming, e.g., “Parallel High Performance Computing 
using Accelerators”, University of Minho, Portugal, 25-27 July 2014. 

 Training courses on OpenCL and applications to astrophysics fluid dynamics. 

o Computational Astrophysics Ph.D. program course on OpenMP/MPI and 
OpenCL programming (6 ECTS; 30 hours), University of Évora, Portugal 
(May 2014) 

o Publication of papers in Astronomy & Astrophysics and Computer Physics 
Communications related to: 

“EAF-PAMR OpenCL MHD based code” (Computer Physics Communications; 
Carvalho, Correia, & de Avillez) 
“An OpenCL module for MHD simulations of the ISM” (Astronomy & Astrophysics; 
Correia, & de Avillez) 
“The atomic and molecular plasma emission module for HD and MHD simulations of 
the interstellar medium in galaxies” (Astronomy & Astrophysics; de Avillez) 

2.2 Couplers: OASIS 

2.2.1 Overview and workplan 

OASIS is the most widely used coupler for European climate models, used in 6 of the 7 Earth 
System Models (ESMs) in ENES to exchange and interpolate coupling fields between 
individual air, ocean, sea-ice, etc. components. The previous version, OASIS3, was seen to 
have major limitations due to a “pseudo-parallel” implementation and was the major 
bottleneck for high-resolution runs. The current work was to optimise and test the new 
OASIS3-MCT release using the EC-Earth climate model as a test case. 
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2.2.2 Results 

In the extension, previous work on scaling OASIS3-MCT2 which had been delayed due to 
staffing issues was completed. OASIS3-MCT2 was tested against EC-Earth3 on Hermit at 
11,500 cores and profiling and analysis was done. Testing was done using model 
configurations up to T2047 (10km) on nodes with 32GB and 64GB of memory (previous 
work had shown problems with certain memory sizes). Linear scaling was seen up to 8440 
MPI processes for the largest test case, T2047-ORCA025L46. Analysis shows that linear 
scaling in MPI processes should continue should larger configurations for the climate models 
become available (EC-Earth is aiming for O(1km) horizontal resolution). Scalability of EC-
Earth3 should also benefit by concurrent work within PRACE on Nemo OpenMP 
improvements. At tested resolutions, OASIS3-MCT was seen to be < 1% of the total runtime.  

 
Figure 2: T2047-ORCA025L46 EC-Earth3 Scaling Results on Hermit using OASIS3-MCT2. Results are 
presented using a total processes per NEMO process ratio of 3, 8 and 12. (a) presents runtime [minutes] 
and [b] presents speedup. 

2.2.3 Impact and Summary 

 EC-Earth3 ported to use OASIS3-MCT2 
 Bug reports and fixes communicated through the project lifetime to the main OASIS3 

developers at CERFACS 
 OASIS3-MCT2 code was reintroduced to the community at the dev.ec-earth.org wiki 

where it is now reintegrated to the mainstream branch for EC-Earth3 
 Work presented at EC-Earth conference, Reading UK, in February 2014  
 OASIS3 and coupling now no longer a bottleneck in EC-Earth. Climate models 

expected to scale to > 50,000 cores when all current changes merged; bottleneck 
moves to I/O and post-processing. 

2.3 Input/Output: CDI, XIOS  

2.3.1 Overview and workplan 

The aim of this work in WP8 was to create a single I/O library for climate models that scaled 
optimally for I/O writing to exascale sizes (i.e. hardware bandwidth limited), and 
postprocessing from climate models, based on the XIOS “XML I/O Server” from IPSL/CEA 
and CDI from DKRZ. This allows for both NetCDF and GRIB2 output formats respectively. 
This was to be implemented and tested in the EC-Earth climate model. The XIOS I/O library 
is already used in the Nemo ocean component of EC-Earth; the work involved adding it to the 
IFS (Integrated Forecasting System) atmosphere component, with additional changes to 
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ensure it is possible to output “CMOR” (Climate Model Output Rewriter) compatible output 
from XIOS to avoid the need for later offline processing.  

Due to staffing issues, work planned for WP8 was not completed until the project extension. 
Within the extension, the XIOS interface for IFS was completed and GRIB writing was added 
to XIOS, and the memcache layer added to XIOS in WP8 was tested and evaluated.  

2.3.2 Results 

The main achievements at the end of the WP extension can be summarized as follows: 

 Within the IFS atmosphere code there are several I/O methods, but they are not well 
factorized for adding or adapting to new formats. The iostream_mix module was 
refactored to provide a generic I/O interface. This module was chosen to allow post-
processing within IFS to be turned off; IFS has a processing module called FullPos, 
which contains its own I/O output module (used within the Arpege configuration of 
the IFS/Arpege codebase, used by CNRM and Meteo France), but adding XIOS here 
would require FullPos to be used. Refactoring the iostream_mix module enables 
FullPos to be turned off in favour of the postprocessing within XIOS which is more 
flexible. 

 iostream_mix was refactored into an abstract I/O layer which now calls either the 
original I/O implementation moved to gribio_api_interface.F90 (for GRIB2 output) or 
the XIOS interface in xios_api_interface.F90 (for NetCDF output). Shared code was 
moved to iostream_common.F90.  

 Following changes in the CDI project upstream, it became apparent that there would 
be little demand for a CDI interface to XIOS. Hence the initial plan of calling XIOS 
via a CDI interface from IFS was dropped, and cdi_api_interface.F90 was dropped in 
favour of using the xios_api_interface.F90 as described above. 

 Currently XIOS provides writing only (input functionality is being added by CEA). 
This is not a major issue for climate models as input is minimal except at start-up; IFS 
within EC-Earth2 did I/O in GRIB2 format, while the preferred format for climate 
results is NetCDF; this was achieved by postprocessing offline. XIOS outputs in 
NetCDF. In the new implementation, the existing gribio interface is currently used for 
input, and either gribio or XIOS may be selected for output.  

 XIOS was extended to write using GRIB2 format using the grib_encode() methods 
used in CDI and the ECMWF grib library. The current implementation uses a single 
I/O node for GRIB writing; parallel grib writing was postponed to later work to use a 
planned redesign of XIOS communications. 

 In WP8, we added a “memcache” layer to XIOS to handle cases with large numbers of 
clients. This layer acts as a buffer to cope with the case where there are a large number 
of clients (tens of thousands) and a small number of memory constrained I/O servers. 
In this case the model may stall as the I/O servers cannot buffer results for writing to 
disk, so the clients cannot execute the next timestep but must pause to wait for IO. In 
this case, the “memcache” layer adds extra nodes between the client and I/O server 
nodes to allow this buffering. The current solution in XIOS is to add extra I/O nodes, 
but this reaches the limit of scalability at ~10-20 I/O servers, as memory is needed on 
each client for each server connection, and in the current design each client connects 
to all servers.  

 A memcache layer added to XIOS was designed to involve minimal changes in the 
design. Memcache nodes sit between the clients and writer (I/O server) nodes, acting 
as servers to the clients, and clients to the servers, buffering communications in 
memory as needed.  
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 The memcache was tested on Hermit with ~1000 clients and up to 10 I/O nodes doing 
writing, and up to 5 memcache nodes per I/O server. In practice the results were 
mixed. Analysis of benchmark and profiling runs showed that for short runs, 
filesystem `noise’ dominated, making long runs of at least 10-20 minutes desirable for 
benchmarking; better results were achievable by adding more I/O nodes than adding 
memcache nodes for less than ~10-20 I/O nodes (depending on system). This analysis 
implied longer runs of at least 5-10,000 client nodes would be needed to see benefits 
of the memcache as currently implemented. 

 Nevertheless, at a design review meeting in January 2014 in Dublin it was agreed that 
the memcache approach had merit, but required a redesign of the XIOS internal 
communications patterns to exploit fully. A redesign where clients / servers write to a 
specified set of nodes (either I/O or memcache) rather than the writing task being split 
across all I/O / memcache nodes. This would have two benefits: firstly it would 
minimise the nxm communications problem, and secondly it is required for GRIB 
writing for large files. GRIB requires files to be written in horizontal layers while 
clients have vertical slices: this needs a transposition of the 3-D matrices to be done 
before writing, which ceases to be possible as the model resolution goes to O(1km). 
Hence it is planned that the memcache layer be used and adapted to make GRIB 
transposition possible. 

 Previous experience with the CMIP5 climate project showed that post-procesing 
climate model (offline) output took as much time, if not more, than the original model 
computation; the additional steps also led to much error in the process. XIOS enables 
post-processing to be done on-line as the model runs, avoiding extra input-process-
output steps. Hence it was strongly desirable that the output was written in CMOR-
compatible format. To this end, changes were made to XIOS to allow global attributes 
to be provided in the NetCDF output, and variable names from the models adapted to 
desired output conventions using an include file in the XIOS XML file “iodef.xml”. A 
unique UUID can also be generated by the model (IFS or Nemo) and passed via 
namelist parameter as a global attribute and included in the output. This enables output 
to be CMOR-compliant. One feature remains to be completed which is the appending 
of new time series to an existing NetCDF file; this is being added by CEA. 

2.3.3 Impact and Summary 

 XIOS interface implemented in IFS; GRIB interface implemented for XIOS. 
 IFS changes on the development branch of EC-Earth3 at the community site dev.ec-

earth.org. 
 Changes presented at EC-Earth semiannual conference, Reading, UK in February 

2014 
 The work in the project is being further developed to be used in the cy38 configuration 

of IFS/Arpege used in CNRM / Meteo France. Other projects such as the TM5 
atmospheric chemistry component are now being ported to use XIOS, along with 
plans for the next-generation model at UK Met Office, and there is a convergence 
towards a single I/O library across climate models in Europe. 
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2.4 ICON  

2.4.1 Overview and work plan 

The Icosahedral Non-Hydrostatic (ICON) model is a climate model jointly developed by the 
German Weather Service (DWD) and the Max Planck Institute for Meteorology (MPI-M). It 
is intended to replace the popular ECHAM model in the next several years. Broadly speaking, 
ICON consists of a non-hydrostatic dynamical core (NHDC), which calculates the motion of 
the atmosphere, and physical parameterisations („Physics“), which calculate the influence of 
phenomena occurring on a sub-grid scale. ICON employs an icosahedral mesh (and its 
hexagonal-pentagonal dual) as well as static grid refinement to enhance resolution in 
geographical areas of interest. 

The work plan for the ICON extension consisted of: 

 One-week visit to DWD German Weather Service to plan the implementation and 
propose a validation strategy. This visit took place Jul. 22-26, 2013. 

 Participation in the OpenACC consortium, and presentation of the OpenACC needs of 
the ICON NHDC, in particular for derived types. The OpenACC meeting took place 
Sep. 24-26, 2013. 

 Code changes to allow the use of the Cray CCE deep copy of derive type instances 
to/from the accelerator, with the help from Cray. 

 A validation framework to compare results on accelerator to those from a single CPU 
node 

 Augmentation of NHDC kernels to utilise OpenACC in the framework agreed upon 
with DWD.  

 Augmentation of ICON trunk communication modules to utilise OpenACC.  
 Performance optimisation and tuning.  
 Periodic merging of trunk into development branch. 
 Final NHDC performance evaluation, dissemination of results, possible publication. 

Final update of trunk. 

2.4.2 Results 

In the WP8 extension, we introduced the modifications from the test-bed into to actual ICON 
development trunk, along with mechanisms to validate the accelerated code with respect to a 
version run on CPUs. All the performed tests show that the developed version of the code 
gives commensurate performance and scalability improvement to that of the testbed code, as 
reported in document D8.3 (see Figure 3). Note that the utilisation of the Cray CCE deep copy 
required extensive workarounds, and caused extensive delays.  

We have validated numerous components of the dynamical core in the trunk, and have 
illustrated that it can run with local refinement to the grid. We have agreed with the ICON 
community on the process for integrating OpenACC code into the development trunk. 
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Figure 3: ICON’s performance for several resolutions. A speedup of roughly 2x is measured for the 
configurations of interest, where the problem size first fits into system memory (left-hand side of graphs). 

2.4.3 Impact and Summary 

The ICON extension of WP8 proved that the techniques used in the testbed (result of WP8 
first two years) could be adopted in the development trunk, albeit with some difficulty, and 
provide similar results. 

The extension's main impact was that the OpenACC effort was accepted by the ICON 
development team, and its inclusion into the trunk seems assured through an iterative process 
agreed upon with the ICON community. Thus this project started the process toward realising 
a community-accepted accelerator-enabled version of ICON. 

The accelerated work was presented at the following venues during the extension period: 

 Using GPUs for ICON: An MPI and OpenACC Implementation; Heterogeneous 
Multi-Core 3 Workshop (http://data1.gfdl.noaa.gov/multi-core), Boulder, CO, USA, 
19-20.9.2013. Presentation. 

 Using GPUs for ICON: An MPI and OpenACC Implementation; OpenACC Face-to-
Face Meeting, Oak Ridge National Laboratory, 24-26.9.2013. Presentation. 

 Multi-node OpenACC Implementation of the ICON Non-hydrostatic Dynamical Core; 
Institute for Atmospheric and Climate Science, ETH Zurich, Switzerland, 27.1.2014. 
Presentation. 

 Towards a Multi-node OpenACC Implementation of the ICON Model; European 
Geophysical Union (EGU), 28.4 - 2.5.2014, Lugano, Switzerland. Presentation. 

 Towards a Multi-node OpenACC Implementation of the ICON Model; High 
Performance Computing for Science and Engineering, 19.5.2014, Lugano, 
Switzerland. Presentation and poster. 

 Towards a Multi-node OpenACC Implementation of the ICON Model; PASC'14 
(http://www.pasc14.org), 4-5.6.2014, Zurich, Switzerland. Presentation. 

 Proposal for an OpenACC implementation to the ICON development trunk; ICON all-
hands meeting, 10-13.6.2014, Loewenstein, Germany. Presentation. 
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2.5 Fluidity-ICOM  

2.5.1 Overview and workplan 

Fluidity-ICOM is built on top of Fluidity, an adaptive unstructured finite element code for 
computational fluid dynamics. It consists of a three-dimensional non-hydrostatic parallel 
multiscale ocean model, which implements various finite element and finite volume 
discretisation methods on unstructured anisotropic adaptive meshes so that a very wide range 
of coupled solution structures may be accurately and efficiently represented in a single 
numerical simulation without the need for nested grids. It is used in a number of different 
scientific areas including geophysical fluid dynamics, computational fluid dynamics, ocean 
modelling and mantle convection. Fluidity-ICOM uses state-of-the-art and standardised 3rd 
party software components whenever possible. For example, PETSc is used for solving sparse 
linear systems while Zoltan is used for many critical parallel data-management services. Both 
have compatible open source licenses. Python is widely used within Fluidity-ICOM at run 
time for user-defined functions and for diagnostic tools and problem setup. It requires in total 
about 17 other third party software packages and uses three languages (Fortran, C++, Python). 
Fluidity-ICOM is coupled to a mesh optimisation library allowing for dynamic mesh 
adaptivity.  

As the I/O component has now become the major bottleneck we are now applying the 
extension effort in WP8 to tackle this issue. Our proposed solution is to integrate PETSc's 
DMPlex module. This module is able to generate the necessary halo/ghost regions at runtime 
from the underlying mesh topology, eliminating the need for external domain decomposition 
and improving start-up times. It furthermore provides native interfaces for common meshing 
formats. Based on the above work, we have further optimized the hybrid OpenMP/MPI code 
for the large ocean test case. 

2.5.2 Results 

As Fluidity-ICOM already uses PETSc for solving sparse linear systems, it is a natural 
progression to use DMPlex, a subclass of PETSc data management (DM) object, which 
allows the user to handle unstructured grids using the generic DM interface for hierarchy and 
multi-physics. It also facilitates the way to switch between different discretization methods in 
the same code for further scientific investigation. DMPlex provides an abstraction layer for 
mesh topology, supports unstructured meshes with multiple mesh and I/O file formats and it 
decouples topology from field data. The main advantage of DMPlex in representing topology 
is that it treats all the different components of a mesh, e.g. cells, faces, edges, vertices in 
exactly the same way. This allows the interface to be very small and simple, while remaining 
flexible and general. This also allows “dimension independent programming”, which means 
that the same algorithm can be used unchanged for meshes of different shapes and 
dimensions. 

Figure 3. shows that significant I/O efficiency has been achieved by using the current 
mechanism implemented together with DMPlex. This significantly reduces the number of 
metadata operations on large numbers of nodes, which may otherwise hinder overall 
performance. 

Figure 4. shows the total Fluidity-ICOM runtime and parallel efficiency. It is clear that pure 
MPI runs faster up to 4096 cores. However, due to the halo size increasing exponentially with 
the number of MPI tasks, the cost of MPI communication becomes more dominant from 4096 
cores onwards, where the mixed mode with reduced halos begins to outperform the pure MPI 
version. 
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Figure 3: The Fluidity-ICOM current I/O Performance comparison. 

 

 

Figure 4: The overall performance of Fluidity-ICOM hybrid OpenMP/MPI compared with 
the pure MPI version. 

2.5.3 Impact and Summary 

The main results obtained in WP8: 

 We have accomplished threading the Fluidity-ICOM code during this project. This has 
involved parallelizing CG(Continuous Garlerkin), CV(Control Volume) matrix 
assembly kernels with OpenMP. The performance results indicate that node 
optimisation can be achieved using OpenMP with efficient colouring methods. As a 
result, the matrix assembly kernels now scale well up to 32768 cores. 

 We have done various optimizations of the threaded sparse linear preconditioner and 
KSP(Krylov Subspace Methods) solvers. The work has been carried out using a range 
of large ocean test cases. 

 Several scalability bottlenecks have been identified and fixed. The mixed mode begins 
to outperform the pure MPI version in runs using 4096 cores and upwards, Fluidity-
ICOM is now therefore able to run efficiently on Petascale platforms. 

 PETSc DMPlex has been introduced into Fluidity to tackle the I/O bottleneck, which 
offers a potential solution for both performance and scientific data visualization and 
analysis solutions. 

The activities undertaken with the communities to reintroduce the code are: 
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 All our contributions from PRACE-2IP WP8 for Fluidity-ICOM have already passed 
through all validation tests by using buildbot and merged into the Fluidity-ICOM main 
trunk. 

 All these optimizations offer Fluidity-ICOM the capability to solve "grand-challenge" 
problems. 

 The work has been presented at EASC2013 (http://www.easc2013.org.uk/easc2013-
solving-software-challenges-exascale). 

 The work has been presented at ParCFD 2013 (http://aca.hnu.cn/parcfd2013/ ). 
 The wiki on HPCForge with key results and conclusions. 
 Published papers: 

 Guo Xiaohu et al. “Developing a scalable hybrid MPI/OpenMP unstructured finite 
element model.” In: Computers & Fluids to appear (2014). 

 Guo Xiaohu et al. “Developing the multi-level parallelisms for Fluidity-ICOM – 
Paving the way to exascale for the next generation geophysical fluid modelling 
technology.” In: Advances in Engineering Software to appear (2014). 

 Xiaohu Guo et al. “Exploring the thread-level parallelisms for the next generation 
geophysical fluid modelling framework Fluidity-ICOM.” In: Procedia Engineering 
61 (2013), pp. 251–257. 

 Michael Lange, Gerard Gorman, Michele Weiland, Lawrence Mitchell, Xiaohu 
Guo, James Southern, “Benchmarking mixed-mode PETSc performance on high- 
performance architectures.” In: Advances in Engineering Software to appear 
(2014). 
 

Other impacts on the scientific community: 

Fluidity-ICOM is an open source project, all the improvements developed in this project will 
benefit all Fluidity-ICOM users and methods are available for analysis and use by the wider 
scientific community  

2.6 Quantum ESPRESSO  

2.6.1 Overview and workplan 

Quantum ESPRESSO is an integrated suite of computer codes based on density‐functional 
theory, plane waves, and pseudo-potentials ‐	separable, norm‐conserving and ultrasoft ‐ and 
projector‐augmented waves. The acronym ESPRESSO stands for opEn Source Package for 
Research in Electronic Structure, Simulation, and Optimisation. It is freely available under the 
terms of the GNU General Public License (GPL). It builds upon newly restructured 
electronic‐structure codes that have been developed and tested by some of the original authors 
of novel electronic‐structure algorithms and applied in the last twenty years by hundreds of 
materials modelling groups.  

Quantum ESPRESSO is a modular software package developed and presented with two goals: 
1) to enable state‐of‐the‐art materials simulations, and 2) to foster methodological innovation 
in the field of electronic structure and simulations by providing highly efficient, robust, and 
user‐friendly open source codes containing most recent developments in the field. This 
approach blurs the line separating development and production codes and engages and 
nurtures the user community by inviting their software contributions. These are included in 
the distribution after being verified, validated, and made fully inter‐operable with other 
modules.  

Speed of execution and parallel scalability have always been considered key criteria for the 
assessment of quality of a software. Although they both are major aspects in a community 
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code, an important characteristic is also represented by its flexibility. By “flexibility” we 
mean the possibility to run an application on a variety of architectures as wide as possible. 
This has always been one of the driving criteria in the development of Quantum ESPRESSO.  

Following this principle, for Quantum ESPRESSO we adopted a strategy aimed to expose as 
much parallelism as possible, using a multi-level hierarchy of parallelisms and using both 
MPI and OpenMP approaches. More recently, with the advent of heterogeneous systems, a 
branch of development was devoted to the porting to the GPUs of Quantum ESPRESSO 
(named as QE-GPU).  

The activity inWP8 permitted us to extend the flexibility of Quantum ESPRESSO, making it 
able to run on the new Intel MIC architecture. This work was conducted in synergy with the 
activity of Cineca in the framework of the Intel Parallel Computing Center. In order to take 
advantage of the Intel Knights Corner cards, a mechanism to offload the linear algebra kernels 
was implemented in Quantum ESPRESSO. All the Intel MKL functions can use the card(s) to 
accelerate the execution of the computation trying to hide as much as possible the latency due 
to the data transfer between host and device. 

The first part of this work was concluded and preliminary results were shown to the 
community of users/developers. 

2.6.2 Results 

In order to enable Quantum ESPRESSO to run on Intel MIC architectures, a precious 
contribution was available from the experience previously obtained during the porting to the 
GPUs. In particular, that experience stressed that the advantages coming from the use of an 
external device (such as an accelerator) were strictly related to the input data set and from the 
right choice of run parameters. This fact was indeed confirmed by our experiences with the 
porting of Quantum ESPRESSO to the Intel MIC.  

The driving idea behind the activity of porting were the following: 

1) Preserve the maintainability of the code, by reducing as much as possible the impact 
on it; 

2) Hide the latency of data moving between host and device. 

Target 1) was fulfilled using an approach that permits us to intercept the MKL calls through a 
dynamic library. A MKL function called by the application is wrapped and the execution is 
assigned to the MIC card. With this approach, the original code is left untouched. Using this 
wrapping library different versions of the code can be run exploiting the presence of a MIC 
card on the system. 

Target 2) was the main obstacle from the point of view of performance (i.e. time-to-solution). 
Just as with GPUs the gain in performance when using an accelerator strongly depends on the 
input dataset. A significant improvement of the time-to-solution is achievable only when the 
computational workload is large enough to make the data transfer/computation ratio small. 

When the workload related to the execution of an MKL function (mainly matrix-matrix and 
matrix-vector operations) is large enough, an improvement of the value of the time to solution 
can be achieved, as shown in Figure 4.  
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Figure 4: comparison of performance on CPU and on Xeon PHI 

Inspired by the work carried out by N Varini et al at ICHEC in PRACE-1IP on parallelising 
the GIPAW code over electronic bands using MPI, ICHEC continues to work on introducing 
a new level of parallelism into the PHonon code in collaboration with the QE community. 

During the PRACE-2IP WP8 extension period, PHonon has been further profiled using 
Allinea MAP v4.2 on ICHEC clusters to identify the most time consuming parts of the overall 
execution. As an example, we consider a phonon calculation at the X point for Silicon in the 
data set that comes with QE-PHonon. By analyzing the output of the MAP profiler, compute 
intensive loops over electron bands are found in many subroutines in the PHonon code. 
Motivated by this, we have focused on the parallelization of the following subroutines over 
bands analogous to the parallelization strategy that has been implemented in the GIPAW 
code: cgsolve_all.f90, ch_psi_all.f90, h_psiq.f90. 

The calling order of these routines are: phonon(), do_phonon(),phqscf(), 
solve_linter(),cgsolve_all.f90, ch_psi_all.f90, h_psiq.f90. In 
particular, h_psiq_k(), called with in the h_psiq() is one of the most time consuming 
part in this branching. We illustrate the parallelization of the calculation of the HPSI matrix 
below. Here, loop iterations are divided evenly among the specified band groups. So, each 
group computes ibnd_end–ibnd_start iterations. At the end of the loop, the results of 
each group are summed up. 

 

hpsi=(0.0_dp,0.0_dp) 
DO ibnd = ibnd_start, ibnd_end 
   DO j = 1, n 
      hpsi (j, ibnd) = g2kin (j) * psi (j, ibnd) 
   ENDDO 
ENDDO 
call mp_sum(hpsi, inter_bgrp_comm) 

 
We have implemented this approach on other loops over bands in a similar fashion since there 
are no loop-carried data dependencies. However, the PHonon code is more complicated than 
GIPAW and there are more dependencies between band groups. Thus, care must be taken that 
‘reductions’ are implemented at relevant points in the code. So far, we have modified many 
relevant loops in the call tree to allow for parallelization over bands. Although there are minor 
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inconsistencies in results between the newly bands-parallelized version of PHonon and the 
original version, there are clear indications that the method of band parallelization could work 
successfully for PHonon. We are currently at the stage of testing the implementation in close 
collaboration with the QE community and are seeking larger data sets to profile the code over 
larger node counts. We intend to complete a more detailed whitepaper for both PRACE and 
the QE community at the end of PRACE-2IP. 

2.6.3 Impact and Summary 

During the whole activity of the WP8, the following targets have been achieved: 

- Extension of the level of parallelism 
o Band parallelization 
o Extension of the OpenMP parallelization over the different modules of the 

Quantum ESPRESSO distribution 
- Improvement of the modularization of the application 

o Making the code more homogenous 
o Sharing low-level libraries 

- Implementation of more effective linear algebra libraries 
o ELPA 

- Testing and validation of new algorithms 
o EXX benchmarking 

A part of the work, such as the improvement of the parallelism in the EPW and PHonon 
modules, was not completed. This activity is however likely to be continued after the 
conclusion of WP8, thanks to the efforts of the developers community.  

The developers community has been continuously involved during the evolution of the WP8 
work. Results obtained during the WP8 were shown during the “Developers’ meeting” held in 
Trieste and Lausanne in the January of each year. The work performed has always raised 
interest in the developers’ community and attracted external contributions.  

The code has been continuously updated through the SVN server and the modifications on the 
main trunk have been released during the PRACE-2IP project. 

Scientific community appreciation was increased and the deployment of the new versions of 
Quantum ESPRESSO on the supercomputers available at CINECA attracted more and more 
users.    

2.7 SIESTA  

2.7.1 Overview and workplan 

SIESTA is both a method and its computer program implementation, to perform efficient 
electronic structure calculations and ab initio molecular dynamics simulations of molecules 
and solids. SIESTA's efficiency stems from the use of strictly localized basis sets and from 
the implementation of linear-scaling algorithms which can be applied to suitable systems. A 
very important feature of the code is that its accuracy and cost can be tuned in many aspects, 
from quick exploratory calculations to highly accurate simulations matching the quality of 
other approaches, such as plane-wave and all-electron methods. 

The possibility of treating large systems with some first-principles electronic-structure 
methods has opened up new opportunities in many disciplines. The SIESTA program is 
distributed freely to academics and has become quite popular, being increasingly used by 
researchers in geosciences, biology, and engineering (apart from those in its natural habitat of 
materials physics and chemistry). Currently there are several thousand users all over the 
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world, and the paper describing the method (J. Phys. Cond. Matt. 14, 2745 (2002)) has had 
more than 3500 citations. 

The work previously done in PRACE-2IP, WP8, extended the range of systems that can be 
calculated towards much larger problem sizes due to the implementation of the PEXSI solver, 
which reduces the scaling of the computational cost with the system size, without loss of 
generality or accuracy.  

A consequence of SIESTA’s localized basis is, that the essential matrices are sparse, which 
saves a lot of memory, but makes I/O more demanding due to irregular data structures. The 
I/O operations implemented follow the easiest approach of gathering the data on one 
processor, which also dumps it into a file. But for very large systems this can become a 
bottleneck, regarding the time as well as the amount of memory needed. 

The work for the extension is to implement a parallel version of SIESTA’s writing and 
reading of those matrices that can be used for a restart of the calculation. Furthermore, the 
checkpointing and restarting capabilities are extended.  

2.7.2 Results 

More efficient serial IO 

As a first step serial I/O has been improved. By processing bigger blocks of data, the time for 
I/O was reduced by a factor of 10. This improved code served as a base for the parallel 
implementation.  

Parallelized IO: 

Decision was taken to use HDF5 as parallel I/O infrastructure due to previous, positive 
experience at BSC. A file format for writing sparse matrices was defined. The format, as 
printed by the tool h5dump, is:  

HDF5 "<<filename>>" { 

GROUP "/" { 

   ATTRIBUTE "blocksize" { 

      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( 1 ) / ( 1 ) } 

   } 

   ATTRIBUTE "number_of_orbitals" { 

      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( 1 ) / ( 1 ) } 

   } 

   ATTRIBUTE "number_of_spins" { 

      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( 1 ) / ( 1 ) } 

   } 

   ATTRIBUTE "use_padding" { 

      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( 1 ) / ( 1 ) } 

   } 

   DATASET "col_ind" { 

      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( <<num_orb>> ) / (<<num_orb>> ) } 

   } 

   DATASET "row_ptr" { 
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      DATATYPE  H5T_STD_I32LE 

      DATASPACE  SIMPLE { ( <<num_nonzeros>> ) / (<<num_nonzeros>>) } 

   } 

   DATASET "val" { 

      DATATYPE  H5T_IEEE_F64LE 

      DATASPACE  SIMPLE { (<<num_spin>>, <<num_nonzeros>>  ) /  
                          (<<num_spin>>, <<num_nonzeros>>  ) } 
   } 

} 

} 

 

Implementation into SIESTA 

The infrastructure for writing HDF5 files in parallel on a set of processors, which can be only 
a subset of the processors doing the SIESTA-calculations, was implemented. Some options 
are exposed to the user and can be set in the fdf input file. Those options are:  

WriteDM.HDF5 Activate or deactivate using the HDF5 format. 

WriteDM.num-IO-nodes Number of processors to use for the parallel IO. 

WriteDM.collective_IO Activate or deactivate collective I/O routines. The 
performance of collective I/O is much better, but it 
comes at the cost of larger file sizes due to some 
padding needed in the process.  

Improved checkpointing 

There are a few new options for IO, which go with recent developments for mixing and 
checkpointing:  

 The density matrix or the Hamiltionian, or both, can be saved.  
 The matrices corresponding to the last electronic state computed, or the matrices 

already mixed for being the input of the next SCF iteration can be written.  
 The matrices can be written after each SCF iteration, or only after finishing the whole 

SCF loop (one geometry step). 

2.7.3 Impact and Summary 

Main results:  

 Adaptation of the PEXSI solver and implementation into SIESTA 
 Testing capabilities and performance of SIESTA-PEXSI for insulating, semi-metallic 

and metallic systems, up to a size of ~20000 atoms calculated on up to 16000 
processors.  

  Implementation of parallel IO 

Dissemination:  

 Paper: SIESTA-PEXSI: massively parallel method for efficient and accurate ab initio 
materials simulation without matrix diagonalization; Lin Lin, Alberto Garcia, Georg 
Huhs, Chao Yang; 2014 J. Phys.: Condens. Matter 26 305503 

 Presentation of SIESTA-PEXSI at the following conferences:  
o PASC 2014; Zürich 
o APS March meeting 2014; Denver, Colorado 
o SIAM Parallel Processing 2014; Portland, Oregon 
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o Trends in Nanotechnology 2013; Seville, Spain 
 Presentation at seminar talks at 

o Lawrence Berkeley National Laboratory 
o Graz University of Technology 
o Barcelona Supercomputing Center  

 Contribution to a library of electronic structure functionalities driven by CECAM 
o Documenting PEXSI and its usage for electronic structure calculations 
o Contributing experience with parallel I/O and the sparse file format to I/O 

libraries 

Other impacts:  

PEXSI extends significantly the applicability of SIESTA due to its reduced computational 
cost, its potential to use large amounts of processors, and its reduced memory needs. Large 
systems can be solved orders of magnitude faster, and system sizes that were not even 
reachable can be treated now. The solver is general, hence not limited to specific cases or 
problem classes. However, the largest gain can be achieved for lower-dimensional systems 
like nanotubes, molecules, or Graphene and similar materials. 

2.8 Exciting/ELK  

2.8.1 Overview and workplan 

Exciting 

Exciting is a full-potential all-electron density-functional-theory (DFT) package based on the 
linearised augmented plane-wave (LAPW) method. It can be applied to all kinds of materials, 
irrespective of the atomic species involved and also allows for the investigation of the atomic-
core region. The code particularly focuses on excited state properties, within the framework of 
time-dependent DFT (TDDFT) as well as within many-body perturbation theory (MBPT). 
The code is freely available under the GNU General Public License.  

Elk 

Elk is an all-electron full-potential linearised augmented-plane wave (FP-LAPW) code with 
many advanced features. Written originally at Karl-Franzens-Universität Graz as a milestone 
of the EXCITING EU Research and Training Network, the code is designed to be as simple 
as possible so that new developments in the field of DFT can be added quickly and reliably. 
The code focuses on ground state properties with some effort devoted to excited state 
properties. The code is freely available under the GNU General Public License.  

Both Exciting and Elk codes are successors of the original EXCITING FP-LAPW code and 
have a lot of common algorithms and functionality. In order to preserve the “canonical” 
Fortran implementations which are well known to the corresponding scientific communities 
and at the same time to avoid a redundant job of optimising two codes the decision was made 
to isolate generic LAPW method algorithms in a standalone domain-specific LAPW library 
‘SIRIUS’ which is independent of a particular LAPW code implementation. 

During the extension period of the WP8 the following refactoring work plan was 
accomplished: 

 Most critical parts of the Kohn-Sham SCF loop are ported to GPU. This includes the 
setup of the Hamiltonian and overlap matrices (using vendor’s GPU-aware PBLAS 
library), solution of the generalized eigenvalue problem (using a new GPU-enabled 
distributed eigenvalue solver) and construction of the interstitial charge density (using 
CUDA FFT).  
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 The low-level domain specific LAPW library was fully integrated back into the 
original Exciting code. The public release of the new version of Exciting code and 
SIRIUS library are scheduled for the last quarter of 2014. 

2.8.2 Results 

The extension period of the WP8 was solely dedicated to porting the SIRIUS library to the 
GPU devices and subsequent benchmarking. The GPU porting strategy relies heavily on the 
accelerated versions of (P)BLAS and ScaLAPACK libraries provided by vendors. Only 
interstitial charge density summation was hand-coded using CUDA FFT. In order to 
benchmark the GPU implementation a full-potential DFT ground states simulation of Li-ion 
battery cathode was selected as a representative test case. Li-intercalated CoO2 supercell 
containing 432 formula units of CoO2 and 205 atoms of lithium (1501 atoms in total) was 
created. Li sites were randomly populated to produce a ~50% intercalation. A single Γ-point 
calculation with ~115000 basis functions and ~7900 lowest bands to compute was setup. The 
results of the benchmark are shown in Fig. 3. These results demonstrate that highly accurate 
and transferable quantum simulations are now usable for high-throughput materials search 
problems, given the necessary compute capabilities. 

 
Figure 5: Kohn-Sham SCF iteration time for ~1500-atom unit cell of LixCoO2 on a Cray XC30 platform. 
X-axis labels contain the dimensions of the BLACS grid and number of threads per MPI rank. N hybrid 
nodes to 2N CPU-only sockets comparison is used. Time for the eigenvalue problem setup (green), 
eigenvalue problem solution (blue) and the rest of the DFT cycle (red) is measured. A full SCF iteration 
step is executed in less than 20 minutes on 196 hybrid CPU-CPU nodes and in about 30 minutes on an 
equivalent number of 400 CPU sockets. The results of the benchmark show that the hybrid CPU-GPU 
implementation of the LAPW code is faster than the best CPU-only realisation of the code by a factor of 
~1.44. 

2.8.3 Impact and Summary 

The main result of the WP8 is associated with the development of a standalone domain-
specific LAPW library which is bitwise compatible with Exciting and Elk codes and which 
can be further expanded to provide more LAPW-based functionality (excited state properties 
is one example). The library can also be used as a sandbox to test new algorithms and 
concepts. The impact on scientific community is starting to evince itself as some 
implementation ideas of SIRIUS library are gradually incorporated back into native Fortran90 
code. 

 The accomplished work was presented during the Exciting code developer’s week 
(Berlin, Germany, December 5, 2013) in the talk “SIRIUS library: present and future” 
by A. Kozhevnikov (CSCS). Another talk about GPU-enabled LAPW calculations 
will be given during the CECAM workshop (HoW exciting! Hands-on Workshop on 
Excitations in Solids, Berlin, Germany, July 31, 2014 to August 8, 2014). 
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2.9 PLQCD  

2.9.1 Overview and workplan 

As a part of the code re-factoring efforts in WP8, the goal of this work was to improve the 
scaling of community codes for Lattice QCD applications on multi-core architectures. Four 
main computational tasks were selected: application of the Lattice Dirac operator, iterative 
solver, Landau Gauge Fixing, and optimization of the Monte Carlo integrator. For the Lattice 
Dirac operator, a new library was built in which a hybrid parallelization with MPI and 
OpenMP was used in order to improve the scaling on multi-core machines. This library was 
given the name PLQCD. In addition to using a hybrid parallelization approach, other 
improvements were implemented using compiler intrinsics for SSE3 vectorization and the 
implementation of AVX instructions. The next computational task considered was the 
improvement of the iterative solver. For this work we focused on the tmLQCD software 
developed by the European Twisted Mass Collaboration. We implemented a deflated 
Conjugate Gradient solver for Twisted Mass fermions based on the EigCG algorithm. This 
solver has been very beneficial within the ETMC community and has reduced computational 
cost by a factor of 2-3 as reported in a recent large scale physics calculation. For the Landau 
Gauge Fixing and the Hybrid Monte Carlo integrator, we focused on the Chroma software 
developed by the U.S. Lattice QCD Collaboration. In the case of Landau Gauge fixing, we 
have implemented a code that uses a new parallel Fast Fourier Transform library called PFFT. 
This library allows for parallelization in 3 dimensions and thus improving the scaling of the 
Gauge Fixing code. Finally, in the case of tuning the Hybrid Monte Carlo integrator, we have 
implemented a new method based on Poisson Brackets to determine the optimal value of the 
Omelyian integrator parameter. This tuning leads to a better acceptance during the generation 
of Gauge configurations, consequently reducing the computational cost as well. These 
developments have been done in close collaboration with the developer of the selected 
community codes leading to mutual benefit between the developers and users.  

During the extension of WP8, we focused on PLQCD library for the Lattice Dirac operator 
aiming at optimizing the implementation for the new Intel MIC architecture.  

2.9.2 Results 

MIC cards offer the advantage of allowing codes with MPI and OpenMP to run directly on 
them without the need to re-write the code using a new programming language. Intel MIC 
cards are becoming an important component of current and future machines. In order to 
prepare for the deployment of such machines we focused on re-factoring the implementation 
of the Lattice Dirac operator to achieve maximum benefit of the performance on the Intel 
MIC. This required the re-design of the order of the operations involved in the Lattice Dirac 
operator and the layout of lattice fields to benefit from the vectorization capabilities on the 
MIC. The 512 bit wide registers available on the MIC allows for the simultaneous operation 
on 8 double or 16 single precision numbers. In order to utilize these vectorization capabilities 
we found that it was necessary to group the lattice sites into 8 sites, when the real and 
imaginary parts of the lattice fields are stored separately or into 4 sites when lattice fields are 
stored as complex double precision numbers. In case of using single precision, the number of 
lattice sites to be grouped together will be twice as much. This was found to be the best 
strategy to map the computation of the Dirac operator to the MIC. The hopping part of the 
Lattice Dirac operator is given by 

1 	 1  
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where  is the input spinor field,  is the output spinor field,  is the gauge link (3x3 unitary 
matrix),  are Dirac spin matrices, x is the lattice site and  is a unit vector in the  
direction. Two approaches are usually used in lattice codes. The first approach is loop over 
the input spinor using some auxiliary fields (x) and (x) defined by 

1  

1  

and build the result by 

                                        ∑ 	  

This approach could have improved cache utilization since the input spinor is accessed in 
order. It requires however the memory access of the auxiliary fields more than once. In the 
second approach one loops over the output spinor and avoid the use of auxiliary fields. This 
might be more efficient for the case of shared memory. We tested both methods. Another 
implementation approach we tested is using complex fields versus separating the real and 
imaginary parts. Lattice data are complex and in virtually all codes the data is stored and 
treated as complex variables. Performing complex number multiplications require some 
shuffling when the data is stored as complex in memory. Alternatively one can use separate 
arrays for the real and imaginary parts. This has the advantage of avoiding shuffle operations 
for the vectorization part. When splitting the real and imaginary parts however, we need to 
pack data for more than a single site together even when using SSE2 vectorization. This is not 
a problem since the lattice size is large enough to allow for this. To pack sites together, (either 
as complex or separate real and imaginary parts), we chose the x-direction and divide the sites 
according their x-coordinate. For SSE2 the lattice size in the x-direction must be a multiple of 
2,4,8 when using complex representation for SSE2, AVX, and MIC cases respectively. Twice 
this number is needed when dealing with real and imaginary parts separately. In this 
discussion we are assuming double precision, for single precision these sizes has to be 
doubled again to allow for packing more data. We have implemented the necessary codes for 
this vectorization and change of the data layout within PLQCD. This vectorization together 
with the use of openMP was found to lead to a considerable gain in performance.  

In addition to the Dirac operator work in PLQCD, we also worked on the GMRES-DR solver 
within tmLQCD. Our goal is to combine eigenvectors computed with GMRES-DR with a 
deflated BiCGStab for Twisted-Mass fermions. Progress is made in this algorithmic work and 
we hope to have results for this solver in the near future.  

An implementation of the Lattice Dirac operator within PLQCD for the Intel MIC 
architecture has been done. For this purpose, the data layout of lattice fields has changed in 
order to benefit from the vectorization capabilities of the MIC. This new implementation also 
takes into account the very likely situation that new MIC cards will have even a wider 
registers. In such case, the newly implemented approach can be easily extended with small 
code modifications.  we show the achieved performance of the Hopping part of the Dirac 
operator for the case of PLQCD on a single MIC for the case of complex lattice field in 
double precision. For this test we use a lattice of size L=32 in the spatial direction and T=64 
in the time direction. It is interesting to point out that our codes allows for such a large lattice 
to fit on a single MIC card. In this plot we show results for the case when complex and split 
(real and imaginary separated) representation of the complex data is used. We also show the 
effect when using an auxiliary field as discussed before. These results show that for a single 
MIC, the split representation is more efficient. It also shows that performance is better 
without the auxiliary field. This is probably due to the extra memory access which is not 
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needed in case of a single MIC. The results are encouraging and we plan to continue our 
investigation of possible performance improvements.  

The best performance we get is when all 240 threads on the MIC were used. We compare this 
performance to the CPU performance. The host CPU is Intel Xeon E5 at 2.0GHZ with 8 cores 
and 16 threads. For this comparison we have implemented the split representation for SSE3 
and AVX and run the code with 16 threads. Results are presented in Table 2 which shows the 
MIC to be about 4 times faster than the SSE3 implementation. 

In addition, preliminary work has been done in combining GMRES-DR iterative solver with 
BiCGStab solver for tmLQCD. 

Case GFlops/s #of threads Speed up factor 
SSE3 20.7 16 1 
AVX 25.1 16 1.2 
MIC 85.2 240 4.16 

Table 2: comparing CPU and MIC performance for the hopping matrix 

 
Figure 6: Performance of the hopping part of the lattice Dirac operator on a single MIC for a lattice size 
L=32, T=64 with complex double fields 

2.9.3 Impact and Summary 

In summary, the following has been accomplished in WP8 for Lattice QCD codes: 
 Writing a new library (PLQCD) for implementing the Lattice Dirac operator in which 

both MPI and OpenMP parallelization is used. This approach targets multi-core 
architectures which are expected to be the main feature of future machines. This 
implementation has been extended to the Intel MIC cards benefiting from the many 
cores and the large vectorization capabilities available on the MIC. 

 The EigCG iterative solver is implemented in tmLQCD software suite which leads to 
a significant savings in computational cost used in large scale lattice calculations. 

 The Fast Fourier Transform part of the Landau Gauge Fixing code in Chroma has 
been improved using the PFFT library allowing parallelization in three dimensions 
and thus improving the scaling of the code. 

 An optimization approach of the parameter used in the Omelyian integrator used in the 
Hybrid Monte Carlo simulation is implemented in Chroma. This leads to a higher 
acceptance rate than simply guessing this parameter during the simulation. 
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 Preliminary work for combining the GMRES-DR solver with BiCGStab solver for 
tmLQCD has been done which hopefully allows the efficient use of BiCGStab for 
Twisted Mass fermions. It is known that BiCGStab solver doesn't converge for 
Twisted-Mass fermions. 

Code development and refactoring has been done in close collaboration with communities and 
developers of tmLQCD and Chroma codes. Results from code development work have been 
presented during the European Twisted Mass collaboration meetings. In addition, it has been 
presented at the annual International Lattice QCD Symposium. To highlight the importance of 
code development activities in light of the emergence of new architectures and to initiate a 
community wide effort in this direction, we have organized a special coding session during 
the 31st International Symposium on Lattice Field Theory that was held at Johannes 
Gutenberg University Mainz, Germany from Monday 29th July to Saturday 3rd August 2013. 
Work done in WP8 has been presented in three publications and we also plan to write the 
work done for the MIC in a forthcoming publication.  
One of the great benefits of the refactoring effort in WP8 is the strengthening of collaboration 
in code development efforts with developers of some of the main community codes such as 
tmLQCD and Chroma. This collaboration is expected to continue beyond WP8. Another 
important achievement of this work is that it highlights the extreme importance of improving 
algorithms. The large reduction in computational cost offered by an efficient algorithm such 
as EigCG, emphasizes the importance of working not only on improving the hardware, but 
also on efficient numerical algorithms. One important aspect of this issue which is expected to 
pay a role in the near future is how to map these algorithms properly to the new architectures. 
In the past, it was assumed that these algorithms will be run on CPUs. Now, however, it is 
important to see how or if it will be possible to map these algorithms to new architectures 
such as the Intel MIC or GPUs. 

2.10 ELMER  

2.10.1 Overview and workplan 

The main objective of the previous subtask was the scalability analysis and bottleneck 
identification of the Elmer (open source multiphysical simulation software developed by CSC 
- IT Center for Science in Helsinki, Finland) solvers and its performance improvement by 
means of of FLLOP (FETI Light Layer On top of PETSc - a novel software package 
developed at IT4Innovations, VSB-Technical University of Ostrava, Czech Republic, for 
solution of constrained quadratic programming problems (QP)) solvers for large systems of 
linear equations arising from FEM via implemented Elmer-FLLOP interface. The FETI type 
solvers were identified as the most efficient tool. The final contribution was not only the 
scalability improvement of Elmer, but also functionality extension of Elmer via FLLOP 
enabling an efficient parallel solution of contact problems and other equality, inequality and 
box constrained QPs.  

The main target for an extension was the scalability testing and comparison of optimized 
implementations of linear solvers (direct, iterative) running on CPUs only, CPUs+GPUs and 
CPUs+MICs on benchmarks with systems of linear equations with both, symmetric and non-
symmetric matrices of various structures and fill-ins, including those arising from FETI-1 and 
TFETI applications. We paid extra attention to the implementation, testing and comparison of 
linear solvers running on:  

 CPUs only, 
 accelerated CPUs by means of GPUs,  
 accelerated CPUs by means of MICs.  
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We plan to test: 

 direct solvers – e.g. LU in Magma, SuperLU, MUMPS, etc. 
 iterative solvers – e.g. CG, DCG, BiCG in PETSc etc., 

for both matrix formats: 

 sparse, 
 dense. 

2.10.2 Results 

For the numerical testing a loaded elastic cube generated by PermonCube is used. In our case, 
the loading is f_z = 77 N/mm3, Young's modulus E = 2e5 MPa, and Poisson's ratio μ = 0.33. 
The numerical experiments have been performed using Anselm (Bull cluster at 
IT4Innovations), HECToR (Cray XE6 at EPCC) and Sisu (Cray XC30 at CSC Helsinki).  

 
 Coarse problem (CP) (TFETI, DCG - ) solution using dense MagmaLU on 

CPU and CPU accelerated by GPU and MIC was tested through interface accessible 
from Elmer. We compared LU factorization and solve functions. 

 
Figure 7: Log of times in sec for MagmaLU factorization, solution and factorization+1,000 solves 
using CPU only, CPU+GPU and CPU+MIC, Anselm 
 

 CP (TFETI) solutions for time dependent (plasticity) problems using explicit inverse 
computation by MUMPS or SuperLU in subcommunicators were compared with 
direct parallel solution of the CP. 

 
Figure 8: Scheme of explicit inverse  computation and comparison of log of times in sec for sparse 
parallel direct CP solution (S1) vs. explicit inverse (S2) using MUMPS vs. SuperLU, 100 and 1,000 actions, 
HECToR 

 Comparison of the stiffness matrix K factorization and pseudoinverse K+ application 
in TFETI using PETSc LU, MUMPS and SuperLU locally. 
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Figure 9: Parallel scalability of  factorization and + action, HECToR (y-axis is log of time in sec, x-axis 
is number of subdomains/cores) 

 Comparison of KSPCG solver with the novel pipelined version KSPPIPECG implemented 
in PETSc 3.4 for system 

a) primal block-diagonal assembled ( , ),  
b) primal decomposed penalized unassembled – PFETI ( , 	), 
c) dual decomposed projected unassembled – TFETI ( , ). 

 
Figure 10: Performance of CG (red) vs. PIPECG (blue) for subdomain size 53 for cases a-c, Sisu (y-axis is 
solution time in sec for 1,000 iterations, x-axis is number of cores) 

 Stiffness matrix null-space orthonormalization by means of classical Gramm-Schmidt 
process and its impact on the CP iterative solution, various preconditioners were tested. 
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Figure 11: Comparison of the direct CP solution using MUMPS vs. iterative solution using CG without 
and with preconditioning. 

2.10.3 Impact and Summary 

• CP solution using MagmaLU on GPU and MIC accelerators improves the performance 
and it becomes more significant with increasing number of iterations, e.g. for the largest 
problem size 24,576 for 1 factorization and 1,000 solves CPU needs 279 sec, CPU+GPU 
239 sec and CPU+MIC only 105 sec! 

• CP (TFETI) solution for time dependent (plasticity) problems using explicit inverse 
computation by MUMPS or SuperLU in subcommunicators is faster for hundreds of 
actions than direct parallel solution of the CP. 

• Stiffness matrix factorization and pseudoinverse action were the fastest with MUMPS 
library; SuperLU was for the factorization of the problem with the largest subdomain 
dimension 10 times slower and PETSc built-in LU even 25 times slower. 

• PETSc implementations of KSPCG vs. KSPPIPECG were compared: 

a) purely block-diagonal assembled system, no communication in action of the system 
operator , PIPECG more efficient for subdomain sizes up to 113 

b) PFETI – some communication in action of ρ , involves only SpMV, 
hundreds of cheap iterations, PIPECG more efficient for subdomain sizes up to 113 

c) TFETI – much more communication and computation in action of  
involving parallel direct solve, tens of expensive iterations, PIPECG and CG exhibits 
highly similar behaviour for all subdomain sizes and number of MPI processes.  

• Iterative solution of CP can be even comparable with the most efficient direct parallel CP 
solution if the null-space matrix has orthonormal columns, otherwise the convergence of 
the iterative solver is very poor or furthermore it diverges. The most promising is CG 
method with orthonormalized null-space matrix and Jacobi preconditioner. Modification 
of this approach for PIPECG or PIPEDCG usage is a subject of future work. 

• The accomplished work was presented at: 

• EASC 2014 conference, Stockholm, Sweden, 2nd-3rd April 2014, D. Horák, V. 
Hapla, A. Markoupoulos, L. Říha, IT4Innovations, VSB-TUO: FLLOP: library, poster 

• PMAA 2014 conference, Lugano, Switzerland, 2nd-4th July 2014, D. Horák, V. 
Hapla, A. Markoupoulos, L. Říha, IT4Innovations, VSB-TUO: Scalability 
improvement of FLLOP solvers, lecture 
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• Modelling 2014 conference, Rožnov pod Radhoštěm, Czech Republic, 2nd-6th June 
2014, V. Hapla, D. Horák, A. Markoupoulos, L. Říha, M. Čermák, L. Pospíšil, A. 
Vašátová, IT4Innovations, VSB-TUO: FLLOP: A Massively Parallel QP Solver 
Compatible with the TFETI Substructuring Scheme, lecture + poster 

2.11 ALYA and Code Saturne 

2.11.1 Overview and workplan 

An interface for the coupling library of Code_Saturne named Parallel Location and Exchange 
library (PLE), was developed to be used in ALYA. This interface enables to solve 
multiphysics coupled problems running instances of each code. 

Code_Saturne is a Computational Fluid Dynamics code based in a finite volume formulation. 
It is written in a mixture of C (50%), FORTRAN (37%) and python (13%) languages. The 
coupling library of the code, PLE, is written in C and has been used to couple different 
instances of Code_Saturne and/or similar codes developed by the EDF Research Department. 
Details of the code can be consulted in http://code-saturne.org/cms/. 

ALYA is a multiphysics code developed at the Barcelona Supercomputing Center. It is 
written in FORTRAN language and is based on a finite element formulation. ALYA relies on 
a modular architecture organized in kernel, modules and services. The kernel contains the 
facilities required to solve any set of discretized partial differential equations, while the 
modules provide the physical description of a given problem. There are modules to handle 
several different physical problems, and in the present contribution, the module to solve 
thermal problems, called TEMPER, is used. It is noted that currently two modules of ALYA, 
the one for incompressible flow equations, called NASTIN, and the one for solid mechanics, 
called SOLIDZ, as well as Code_Saturne, are part of the benchmark suite of the Partnership 
for Advanced Computing in Europe (PRACE) http://www.prace-ri.eu/. 

The coupling library to be used, PLE, is written in C language, and is able to handle 
communication between different running applications. PLE has two main features. First, it 
provides a location service. Given a set of coordinates, in one of the running applications, 
PLE is able to search in parallel for the cells or elements that contains (or are closest) to the 
points included in the set in the other application domain. Once the points are located, data 
structures are generated in order to be able to interpolate values in the interest locations. 
Second, it provides a parallel communication ability through MPI messages. PLE can send 
data from one running application to the other using the data structures generated in the 
location phase. 

The interface developed to use the full capacity of PLE in ALYA is programmed in C++, 
taking advantage of data structure construction and manipulation provided by this language. It 
enables exchange of information between a Code_Saturne running simulation to a running 
instance of ALYA. The interface adapts the C data structures needed in PLE to the 
FORTRAN data structures used in ALYA. It should also be pointed out that care must be 
taken for the conversion from the finite volume formulation used in Code_Saturne to the 
finite element formulation used in ALYA. With the use of this interface, it has been possible 
to solve a Fluid-Thermal interaction problem using Code_Saturne for the fluid physical 
problem, and ALYA for the thermal physical one. 

In current developments, the coupling interface, together with Code_Saturne and the SOLIDZ 
module of ALYA will be used to address Fluid-Structure Interaction problems (FSI), 
combining two of the members of the benchmarking suit for PRACE. This involves further 
research for robust coupling strategies, and tackling physical issues that are intrinsic to FSI 
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modelling. Performance and scalability tests will be carried out in order to see the impact of 
the coupling strategy and interface in the overall simulation. 

2.11.2 Results 

In the following, the results of the work done during the extension period are described. 

The coupling library of Code_Saturne, PLE, was tested in code examples in order to identify 
the main problems to be addressed regarding the different programming languages used in the 
two codes to be coupled. This test phase was divided in three main parts, and was important 
to the later development of the final form of the interface. It is highly recommended to follow 
these phases for possible future code coupling applications. In the first phase, the location and 
communication service of PLE was used in two small codes to solve thermal problems, the 
first written in FORTRAN and the second written in C. In the second phase, a coupled 
problem was solved using two independent instances of ALYA. Using the information 
collected in the first test phase, the needed changes in the structure of ALYA where carried 
out, and a fluid-thermal interaction problem was solved. In the third phase, the final form of 
the interface was developed, facing the biggest challenges concerning the conversion of data 
structures and communicators between the two codes, and a fluid-thermal interaction was 
solved using Code_Saturne for the fluid domain and ALYA for the thermal domain. 

The problem addressed is shown schematically in Figure 12. 

 
Figure 12: Schematic representation of the Fluid-Thermal interaction problem. 

An impinging jet impacts a cylindrical solid heat conducting structure, the temperature of the 
impinging jet at the fluid-solid interface is imposed as a boundary condition to the thermal 
problem, meanwhile the heat flux obtained in the thermal domain is imposed as a boundary 
condition for the fluid problem. Both applications are run in parallel, and the full capacity of 
PLE is used by ALYA with the use of the developed interface, the figure also shows the 
points located by PLE at the fluid-solid interface.  

The communications environment set up for the general coupling strategy is shown in Figure 
13. 
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Figure 13: MPI communication environment created for general coupling problems using PLE. 

The MPI_COMM_WORLD communicator is separated in applications communicators, and 
inter-communicators are created between the processes that have part of the coupling 
interface. 

Typical results of the study cases for the temperature distribution in the whole domain are 
shown in Figure 14 and Figure 15. 

 
Figure 14: Temperature along the axis of the cylinder, z = 0.02m is the position of the fluid-solid interface 

 

 
Figure 15: Temperature field at a plane parallel to the axis of the cylindrical region 
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2.11.3 Impact and Summary 

 The PLE coupling library was used in test and study cases 
 An interface for using PLE in ALYA was developed  
 The interface was tested in ALYA-ALYA coupling and Code_Saturne-ALYA 

coupling problems for Fluid-Thermal interaction problems 
 Coupling frameworks and strategies were presented in ICMEg workshop 

http://web.access.rwth-aachen.de/MICRESS/ICMEg1/ 
 Results of a Fluid-Thermal interaction problem using the interface coupling for PLE 

will be presented in the 10th International ERCOFTAC symposium 
http://www.ercoftac.org/etmm10/ 

2.12 PFARM  

2.12.1 Overview and workplan 

PFARM is part of a suite of programs based on the ‘R-matrix’ ab-initio approach to the 
variational solution of the many-electron Schrödinger equation for electron-atom and 
electron-ion scattering [[9]]. The package has been used to calculate electron collision data for 
astrophysical applications (such as: the interstellar medium, planetary atmospheres) with, for 
example, various ions of Fe and Ni and neutral O, plus other applications such as plasma 
modelling and fusion reactor impurities. The code has recently been adapted to form a 
compatible interface with the UKRmol suite of codes for electron (positron) molecule 
collisions [[10]] thus enabling large-scale parallel outer-region calculations for molecular 
systems as well as atomic systems. Each of the main stages of the calculation is designed to 
take advantage of highly optimised, numerical library routines. For efficiency, the external 
region calculation takes place in two distinct stages, named EXDIG and EXAS, with 
intermediate files linking the two. EXDIG uses a parallel domain decomposition approach 
where large-scale parallel eigensolver computations predominate. EXAS uses a combined 
functional/domain decomposition approach where good load-balancing is essential to 
maintain efficient parallel performance. 

 PFARM developers have focused on optimizing the code for new and emerging 
architectures during the extension period. The PFARM code is developed in a scalable, 
modular style and was designed from the start to exploit a range of highly optimized 
numerical library routines for the computational cores of the overall calculations. These 
features mean that the code has the potential to exploit heavily the computational power of 
new many-core architectures and computational accelerator hardware. 

 Initial Testing of MKL [11] and MAGMA [12] libraries on Xeon Phi architectures with 
offloading capabilities. Benchmarking and analysis of results and hence identification of 
suitable candidate PFARM code kernels for offloading to Xeon Phi accelerators (STFC).  

 Development of Fortran interface routines for MAGMA MIC calls and memory 
management routines. Although the MAGMA for GPUs library comes complete with 
Fortran interfaces, the MIC version currently does not. The PFARM code suite is written 
entirely in modern Fortran variants and therefore it has been necessary to design interfaces 
to the C library routines in MAGMA in order to use them (STFC). 

 Initial port of PFARM (EXDIG) and associated third-party software packages to the Intel 
Xeon Phi architecture (STFC 1PM). Firstly port to a single Intel Xeon Phi and then 
multiple Intel Xeon Phis. Taking forward work undertaken in the previous WP8 project 
(details above), the overall performance implications of in-situ offloading of 
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computational bottlenecks such as BLAS and LAPACK (e.g. eigensolvers) routines to 
Xeon Phi accelerator hardware is to be investigated (STFC). 

 Enabling of the PFARM (EXAS) code on a Xeon Phi-based cluster. EXAS incorporates a 
functional decomposition of tasks within the parallel decomposition and therefore the 
strategy implemented here involves running entire sections (i.e functional tasks) of the 
code exclusively on Xeon Phi processors at the same time as other parts run on the host. 
This partition is achieved using “MPI symmetric” mode. MPI symmetric mode is of 
interest for codes already running in parallel on distributed memory systems (e.g., MPI-
based codes). While the steps needed for a basic port to coprocessor-based clusters in 
symmetric mode is generally as trivial as the steps taken for those taken to enable the code 
in native mode, the complexity of load-balancing over such a heterogeneous system of 
compute devices can in reality be very challenging and, as evidenced by this work, often 
involves significant non-trivial refactoring of code (ICHEC). 

2.12.2 Results 

Initial work in the extension period involved testing the performance of several 
computationally intensive routines used by the EXDIG and EXAS codes on the Intel Xeon 
Phi. This was undertaken using the numerical libraries MKL v11.1 and MAGMA MIC v1.1.0 
for a wide range of representative data sizes. The numerical routines were BLAS 3 
(DGEMM), linear solver (DGETRF), eigensolver (DSYEVD), and singular value 
decomposition (DGESVD) routines [13]. All these linear algebra operations are used 
throughout the PFARM calculations on matrices of varying dimensions. One general pattern 
(which also follows intuition) that became clear from our performance analysis was that the 
larger the matrix, usually the more beneficial was offloading calculations to the Xeon Phi 
either from MAGMA MIC or MKL. The operation in PFARM that is undertaken on the 
largest dataset is the Hamiltonian eigensolver calculation in EXDIG and it is this operation 
that would normally take the most time. Sector Hamiltonian matrices setup for 
diagonalization here are generally of dimension 10000 to 30000 and are well into the range 
that demonstrate large benefits in performance from offloading to Phi [14].  

 
Figure 16 Performance of EXDIG code on Xeon Phi with MAGMA 

 



D8.4.2 Final Refactoring Report 

PRACE-2IP - RI-283493  30/08/20144 32

Given the encouraging performance results for parallel diagonalization using MAGMA MIC, 
further development work in the WP8 extension period involved integrating the MAGMA 
MIC eigensolvers into the RMX code. As there are no Fortran wrappers currently available 
for MAGMA MIC, specialist interface code was developed, using the Fortran to C 
interoperability features available in modern Fortran. Figure 16 shows performance results for 
EXDIG with offloading of Hamiltonian sector matrix diagonalizations to the MAGMA MIC 
eigensolver routine DSYEVD for an FeII electron-atom scattering calculation with 1181 
channels. Each point in Figure 16 shows the time taken for a complete calculation comprising 
two Hamilton sector matrix diagonalizations from the Fine region calculation, and two 
smaller Hamilton sector matrix diagonalizations from the Coarse region calculation, both sets 
with associated I/O. To generate a range of representative calculations the number of basis 
points in the Fine region Hamiltonian size is increased whilst the coarse region matrix 
dimensions remain fixed. Interface codes for the MAGMA solver and MAGMA memory 
management routines calls from the Fortran application have been developed using the C 
interoperability features available in modern Fortran. Figure 16 shows that the MAGMA 
Xeon Phi accelerated version is around 50% faster than the host for the smaller cases and 
around 70% faster than the host for the largest case. The Xeon host calculations are run using 
MKL v 1.1 with 32 threads and the Xeon Phi MAGMA v1.1.0 calculations use 240 threads. 
More details of the hardware and software environment used for testing and further 
benchmarks can be found at the HPCforge Wiki [13]. 

A schematic of the new accelerator-based implementation of the EXAS code is shown in 
Figure 17. The overall strategy of the new implementation of the EXAS code is that each 
Xeon Phi coprocessor available on the system can be exploited to process a full systolic 
pipeline (or possibly multiple pipelines). In the original implementation, at least 12 CPU 
cores would be required to process such a pipeline. Since excessive MPI communications are 
known to degrade performance on the Xeon Phi, much more so than on a Host CPU, we have 
focused on minimizing such communications on the Xeon Phi, by exploiting OpenMP 
parallelization across a given pipeline.  

In the new implementation the code has been refactored so that, rather than have a single host 
process read the large (~300 MB) AMP files and then broadcast them to the processes running 
on the Xeon Phi, each process running on the co-processor reads from disk itself (via the PCIe 
bus). The original code is designed such that a given pipeline will only be built if enough MPI 
processes are used at runtime: the more MPI processes employed at runtime, the more pipes 
will be built. However, in the original implementation of the code, at least 12 MPI processes 
are required to build a single pipeline and so the code needed to be significantly refactored so 
that a full pipeline is built from only a single MPI process, but only if that process exists on 
the co-processor. In this way, if a co-processor is found at runtime, a full extra pipeline will 
be constructed, as can be seen for the example of two available co-processors shown in Figure 
17. Finally, since a pipeline that is processed on the Xeon Phi no longer relies on multiple 
MPI processes, but rather exploits OpenMP parallelism, a new subroutine has been developed 
and introduced to the code, prop_mic(), which is only called by those MPI processes 
running on the co-processor. 
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Figure 17: Schematic of original EXAS implementation for a single pipeline (top) and schematic of new 
EXAS implementation enabled for Xeon Phi - based clusters (bottom) 

A performance analysis of the new implementation of the code compared to the original 
version of the code can be seen in the form of profiles from the Intel Trace Analyzer and 
Collector (ITAC) tool [14] in Figure 18. The same FeII test case was used as above, where 
collision rates for 100 electron collision energies were calculated. All development and 
testing was carried out on the Fionn system at ICHEC, a heterogenous machine made up of 
four components: Thin, Hybrid, Fat and Service. Details of the testing platform can be 
obtained from the HPCorge Wiki [13] or ICHEC Fionn website [15]. 

The left hand side of Figure 18 shows a profile of time spent in application time (as opposed 
to MPI time) for the original implementation of the code, where the MPI processes involved 
in the PIPELINE GROUP (processes 1-12) are highlighted in light blue. It can be seen that 
for a given process, ~565 seconds is spent in application time in the PIPELINE GROUP in the 
original implementation of the code (TSelf is time spent in the given function, excluding time 
spent in functions called from it) On the right hand side we see the profile for the same test 
case, but for the new implementation of code, where two co-processors are exploited on top 
of the host node. It can be seen that, by exploiting the two co-processors, less application time 
is spent in the PIPELINE GROUP (TSelf ~371 seconds), but also that the time spent in the 
PIPELINE GROUP for each of the co-processor MPI processes (highlighted in red) is shorter 
(TSelf ~216 seconds) compared to the application time spent in the PIPELINE GROUP for 
each of the host MPI processes, indicating the clear potential for exploiting the Intel Xeon Phi 
for processing the pipelines in full.  

However, while the exploitation of the Xeon Phi architecture does show genuine potential in 
reducing time to solution of the EXAS code (as well as scalability on large-scale systems), the 
initially enabled code suffers from communication bottlenecks that prevent speedup of the 
overall code relative to the original code (the new implementation is ~1.6x slower than the 
original implementation due to these communication bottlenecks). Indeed, these bottlenecks 
have been identified and further non-trivial refactoring of the code is currently underway to 
reduce these communication bottlenecks 



D8.4.2 Final Refactoring Report 

PRACE-2IP - RI-283493  30/08/20144 34

 
Figure 18: Performance analysis of original implementation of EXAS (left) and new implementation of 
EXAS on Xeon Phi (right) using the Intel Trace Analyzer and Collector (ITAC) profiler. 

2.12.3 Impact and Summary 

The main application enabling and performance enhancing features introduced to PFARM 
during the first two years of WP8 are: 

 More efficient parallel ELPA [16] eigensolvers in EXDIG for large Hamiltonian 
matrices. 

 A highly efficient scalable parallel I/O implementation for EXAS, suitable for large-
scale calculations and exploiting underlying properties of the functional 
decomposition.  

 Improved load-balancing algorithms for calculations on petascale systems. 
 Initial investigation of Intel Xeon Phi performance for BLAS 3 and dense linear solver 

operations 
 Establishment of PFARM HPCforge Wiki for detailed descriptions and analyses of 

enabling methodologies 

The main application enabling and performance enhancing features introduced to PFARM 
during the WP8 extension project are: 

 An NVidia GPU port of EXAS with exploitation of phiGEMM and MAGMA GEMM 
routines for BLAS operations. 

 Development of modern Fortran interfaces for MAGMA MIC routines (The authors 
wish to thank Vendel Szeremi from STFC for his assistance with this stage of the 
work). 

 Xeon Phi port of EXDIG with MAGMA MIC for accelerated eigensolvers. 
 Xeon Phi port of EXAS with functional tasks (pipelines) accelerated using Xeon Phi 

hardware. 
 An in-depth analysis of MKL and MAGMA usage and performance for a range of 

relevant computationally intensive linear algebra operations on the Xeon Phi ready for 
future integration into PFARM. 

The code will be made available via the CCPForge repository [17] so that, after additional 
fine-tuning, the upgraded code in PFARM can be used as straightforward Xeon-Phi or GPU 
option in ongoing atomic and molecular physics work (from astrophysical ions to organic 
molecules). The developments are being made known to active members of the community 
via the Collaborative Computational Project CCPQ [18]: a summary of the work was 
presented at the CCPQ Steering Panel meeting (UCL, July 2014). More detailed presentations 
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will be made at forthcoming CCPQ workshops (2014-5) and at a UK-RAMP meeting to be 
held in autumn 2014. 

After some further fine-tuning and follow-up it is expected that the documentation and 
benchmark reports will be upgraded to appear as peer-reviewed papers. The ‘spin-off’ 
Fortran-C/C++ interface currently developed for efficient and easy MAGMA-MIC access 
from standard scientific Fortran codes will have broader applications. 

2.13 RAMSES  

2.13.1 Overview and workplan 

Ramses is an open source, Fortran 90 code for astrophysical simulations. It describes the 
behaviour of both baryons, represented as a fluid on the cells of an adaptive resolution mesh 
(Adaptive Mesh Refinement Method – AMR), and the dark matter, represented as a set of 
particles. The two interact via gravitational forces. Various other physical processes can be 
included (MHD, radiative transfer, cooling processes…). The AMR approach provides high 
spatial resolution only where this is actually required, thus ensuring minimal memory usage 
and computational effort. RAMSES’ Fully Threaded Tree AMR scheme dynamically creates 
refinements on a cell-by-cell basis assigning to each cell the information about the 
neighbouring and parent cells. This allows great flexibility to match complicated flow 
geometries. However, it represents a challenge for GPU computing, due to complex memory 
access patterns. 

The hydrodynamics solver was identified as the target for GPU implementation within WP8, 
being the most computational intensive part of the original code and, at the same time, solving 
a local problem, ideally fitting the accelerator’s architecture. The GPU implementation is 
based on the OpenACC standard, which effectively supports parallel programming on hybrid 
CPU/GPU systems. OpenACC allows adopting an “incremental development approach”, 
extending and optimizing progressively the fraction of the code ported on the accelerator, 
strongly facilitating the refactoring process and minimizing the effort for managing and 
maintaining the software. 

The GPU refactoring required specific care in the effective and efficient management of data 
structures, in order to optimize memory access patterns and minimize the CPU-GPU data 
transfer overhead. Appropriate approaches were followed to adapt the workflow of the 
different algorithms to the accelerator’s architecture, in order to maximise the computational 
throughput.  

Once the GPU enabled hydrodynamic kernel was ready a final effort was done to verify if the 
new code architecture could be exploited also by a multithread processor adopting an 
OpenMP based approach (in the perspective, for instance, of a possible extension to Xeon 
PHI). 

Translation of OpenACC to OpenMP directives was sometimes a tricky process. They both 
have similarities but also meaningful differences, sometimes difficult to spot at first glance. 
One of them is that in OpenACC parallel regions scalars (variables) and loop index variables 
are private by default. However, in OpenMP parallel regions loop index variables are private 
by default and scalars are shared. This, in turn, implicates the correctness of calculated data. 
Awareness of those differences was the key point to valid directives translation and to receive 
valid results of the parallelized program version. 

2.13.2 Results 

The major achievement within the WP8 extension is represented by the full OpenACC 
implementation of the RAMSES’ hydrodynamic kernel. A number of tests and benchmarks 
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have been run in order to prove the correctness of the new version of the code and to analyse 
the performance.  

The results presented in Table 3 compare the performance of the new version RAMSES, 
running on CPUs and on GPUs. If we focus on the hydro kernel only (T_hydro), we see that 
the GPU (Nvidia K20X) performs like 16 cores of a Intel Sandybridge Xeon E5-2670 CPU 
(comparing orig_V10_N16 and ACCyes_C1000_N1 rows). The GPU time accounts for a data 
copy overhead of about 25% of the total hydro time (T_copy). 

Overall, the computing time of a GPU run is just 1.5 smaller than that on the CPU 
(orig_V10_N1 vs. ACCyes_C1000_N1 rows of the T_tot column). In fact a large part of the 
code is still running on the CPU in both cases. In particular, when running on the GPU, the 
hydro part becomes negligible and the computing time is dominated by the gravitational 
potential solver (see Figure 19), which is not GPU enabled. This shows how a full porting of 
the code on the accelerator is often crucial to achieve good speed-ups.  

 
Table 3: Performance comparison of the CPU and GPU versions of RAMSES 

 

 
Figure 19: Performance profiles of the CPU (left) and GPU (right) runs. The functions in red in the left 
panel are all part of the hydrodynamic solver. They disappear in the right panel, showing that the GPU 
efficiently accelerates the solver. On the GPU, the computing time is dominated by functions related to the 
gravitational solver. 
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The new OpenMP (hereafter OMP) implementation was tested comparing the results in four 
primary configurations: no MPI and no OMP, no MPI with OMP, MPI without OMP and 
MPI with OMP. 

To check what is the main impact of work done on application scalability the primary goal 
was to compare single node OMP and non-OMP versions elapsed times. However it was also 
interesting to check how the application behaves and scales in hybrid MPI and OMP version. 
The results, presented in below and in Figure 20, are promising but require further work in 
order to find other spots in the source code to be possibly optimized. Overall we manage to 
lower the execution time from around 300 seconds for basic setup to around 10 seconds using 
8 nodes with 2 task each (8 OMP threads per task). 

OpenMP only tests: 

 1 Thread: 304 sec. 
 4 Threads: 110 sec. 
 16 Threads: 112 sec. 

 
Figure 20: Tests of the new implementation of the OpenMP code in various hybrid (MPI+OMP) 
configurations. 

2.13.3 Impact and Summary 

RAMSES refactoring work was performed in close synergy between CSCS and the numerical 
astrophysics group of the University of Zurich. This way, the software design involved the 
HPC experts and the main code developers, who also progressively verified the results of 
each implementation stage. This way, the kernels implemented in the work package became 
part of the standard development process, without requiring special acceptance procedures.  

The new RAMSES implementation is available to the community through the WP8 web site 
(http://hpcforge.org/plugins/mediawiki/wiki/ramses/index.php/Downloads) and is being 
integrated in the main RAMSES GitHub repository (https://github.com/samgeen/ramses). The 
new features were presented to the community members at the annual Ramses User Meeting 
(RUM 2014, Paris, June 2014) and in a number of local and international events, like:  

 the GPU Technical Conference 2014 (San Jose, USA, March 2014), with the talk 
“RAMSES on the GPU: An OpenACC-Based Approach” (Gheller, Rosiliho de Souza, 
Teyssier, Wetzstein),  

 the Conference of Computational Physics (Boston, USA, August 2014), with the talk 
“Cosmology on the GPU: Enzo and Ramses in action” (Gheller, Teyssier, Vazza, 
Wang), 
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 the Perspectives of GPU Computing in Physics and Astrophysics Conference (Rome, 
September 2014) with the talk “The Ramses code for GPU accelerated numerical 
cosmology” (Gheller). 

3 Discussion and Conclusions  

WP8 working methodology was based on the concept that the process of code design and 
development had to be driven by scientific applications, towards the effective usage of the 
next generations of high performance computing systems.  

This was accomplished by involving the scientific communities in the process of enabling 
some of their most relevant simulation codes on innovative supercomputing architectures. 
This process relied on a close synergy between scientists, code developers and HPC experts, 
the first two contributing with their deep understanding of the research area and of the 
algorithms, the latter providing the necessary skills and competencies for exploiting novel 
hardware architectures, programming models and software solutions. 

Besides improved codes, WP8 produced extensive knowledge on the current methodologies 
and models to develop numerical applications on HPC architectures. This was built upon the 
daily experience of the different developers teams and discussed and consolidated through a 
series of Face-to-Face (F2F) workshops, where scientists, software developers and HPC 
experts met and discussed the WP8 achievements, as well as broader topics related to 
scientific computing and HPC technologies. More specifically, the workshops had the 
following targets:  

 Summarise, verify and present the work accomplished in WP8; 
 Present innovative HPC hardware and software solutions; 
 Collect and analyse the requirements of each community; 
 Assess, for each scientific domain and code, the working strategy. 

During the first two years of WP8 four workshops were organised: at CSCS (October 18-19, 
2011), BSC (February 2-3, 2012), Paris-Saclay (Maison de la Simulation, June 11-13, 2012) 
and again at CSCS (March 6-8, 2013). A fifth workshop was organised during the extension, 
at CINECA, on April 28-29, 2014, to present and discuss the main results achieved during the 
third year.  

In the rest of the section we will summarise the most relevant outcomes matured during this 
three years process, which can serve as guidelines or best practices for similar future 
endeavours.  

General topics 

1. Science and computing. Codes must be developed in close collaboration with the end 
users. This is particularly true for scientific applications, where the quality of the results 
can never be sacrificed to performance improvement. Codes refactoring has to be carried 
out with the help of the scientists, who usually know the features of all adopted algorithms 
in detail. Scientists have also to drive the validation process, that has to be accomplished 
in a rigorous way, according to the their requirements and expectations. This is the only 
way to produce useful software and, even more critical, to have such software accepted 
and adopted by the scientific users. 

2. A “brute force approach” is not sufficient. Sometimes the increasing computing power 
of HPC systems leads the developers to try decrease the time-to-solution just customising 
the code to exploit the underlying hardware and software architecture. However, often, 
effective and efficient solutions can be implemented studying the details of the algorithms 
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and improving them according to more general solutions, often portable among different 
architectures, increasing the long-term impact of the accomplished work.  

3. It is not only about performance. For sure, code re-design and refactoring must be 
addressed to exploit novel architectures and get better and better performance. However, 
code portability and maintainability are both crucial aspects to consider. Portability 
implies both the possibility of running with minor changes, possibly affecting only the 
building (configure, compile and link) chain, on the largest possible variety of HPC 
systems, and the possibility of attaining comparable performance on a broad spectrum of 
different architectures. Portability can be contrasted with extreme performance that 
usually requires the code customisation on the specific device. However, this issue can be 
addressed by adopting proper, although not straightforward, programming models 
(templates, domain languages etc.) or pre-processing based solutions. Maintainability is a 
further important requirement, which encompasses a number of different aspects, like the 
adoption of proper programming languages and well defined and suitable programming 
models, the production of detailed documentation, the definition of rules for names and 
symbols, the usage of versioning systems (especially for large developers teams), etc. 
Maintainability is often underestimated, but it becomes a serious concern as soon as the 
code switches to a “community code”. 

HPC topics 

1. MPI+OpenMP. Threaded versions of a MPI code represent an effective solution that 
allows an efficient exploitation of current HPC architectures. This is usually implemented 
by the adoption of the OpenMP paradigm, although other solutions (essentially P-threads) 
can be envisaged, in the case extreme performance tuning is required (at the expenses, 
once more, of portability). Such an approach allows to scale up to large configurations 
(tens or hundreds thousands cores), delegating the CPU inter-core shared memory 
management to OpenMP. At the same time, it alleviates the problems related to the 
decreasing amount of memory available per core, by exploiting the shared memory, and 
obviating the need of variables copies within a CPU.  

2. Do not reinvent the wheel. Libraries should be used wherever possible. They provide a 
number of different functionalities and solutions that can be adopted for standard code’s 
components (like FFTs, basic linear algebra etc.). In this way, the developers can focus on 
the most specific and peculiar parts of the code. In addition, libraries are highly optimised 
both from an algorithmic point of view, and in order to exploit efficiently the different 
available HPC architectures (unless extremely “exotic”). Note that the usage of libraries is 
not for free. Some code refactoring is always required, in particular concerning data 
structures, which sometimes can result to be particularly “painful”. 

3. I/O is becoming a major issue. Increasing CPU performance and HPC systems 
complexity makes the data reading and writing stages a critical component of the 
applications. A simple approach like delegating a single processor all the I/O operations 
leads to huge performance penalties, while asking each processor to write a different file 
leads to an unmanageable number of files. The adoption of more sophisticated 
approaches, based on low-level (e.g. MPI I/O) or high-level (e.g. HDF5 or ADIOS) 
libraries is necessary in order to ensure reasonable performance, while preserving the 
usability of output. A positive side effect of the aforementioned high-level libraries is that 
the resulting file is self-explanatory (i.e. contains all the information needed to access the 
data therein) and can host metadata describing the data itself (physical meaning, units, 
etc.). In high-end cases, however, this is not enough. The data access procedures have to 
be tuned on the hardware, in order to fully exploit its architectural characteristics. This can 
be done, for example, mapping the I/O algorithms on the system topology (as in the case 
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of the BlueGene machines) or using innovative devices, like solid-state disks (SSD), 
which, however, require specific drivers (which are not always available) to be fully 
exploitable.  

4. From Multi to Many. There is a growing evidence that, due to production costs, 
technological limits and power consumption issues, standard multi-core CPU architectures 
are not sufficient, alone, to “build” the next generations of supercomputers. Accelerators 
represent the current path towards exascale computing, providing high computational 
power with low energy consumption. The underlying idea is to use accelerators for 
computational demanding kernels, using the CPU to take care of all the other code 
components, managing communication and running the OS. Different kinds of 
accelerators are available (the must popular currently being GPUs from Nvidia and AMD, 
and MIC from Intel), all based on the idea of having “many” (a vague quantification, 
dependent on the adopted architecture) computational engines, or cores, working 
concurrently on contiguous data chunks. Of course, not all the algorithms can match this 
kind of approach (e.g. calculation of gravitational forces requires for each point of the 
computational domain the access to all the other points). Hence, accelerators cannot be as 
general-purpose as CPUs. In some cases, we have algorithms that cannot run efficiently 
on any accelerator. In some other cases, a complete refactoring of the algorithm is 
necessary in order to run it with reasonable performance on some devices.  

Accelerators 

1. Accelerators for HPC. Although different kind of accelerators from various vendors are 
available (GPU, MIC, FPGA, Cell), only Nvidia GPUs and Intel MIC, seem, at the 
moment, to be plausible solutions for HPC. They are being integrated into 
supercomputing solutions, support well-defined programming models (CUDA and 
OpenACC for the former, OpenMP for the latter), and have a well defined roadmap for 
the next years.  

2. Code refactoring. All the accelerator-based solutions implement the many-cores 
approach, which, in general, requires some refactoring of the codes. However, thanks also 
to the growing vector capabilities of the CPUs, the refactoring is often beneficial also for 
the non-accelerated code, improving the performance on single CPU or pure MPI runs.  

3. GPU vs. MIC. The GPU is at the moment the most mature architecture, providing good 
performance on a broad spectrum of applications. The number of codes able to exploit the 
GPU is increasing (after a slow initial start-up). It is now well understood that the 
maximum achievable performance is on average 2-3 times that of a typical high-end CPU, 
only in a few cases getting performance ratios of the order of 7-8.  
In the WP8 experience, the MIC proved to be still limited by a few architectural issues 
that should be solved in the coming generation of Xeon PHI, the main problem being 
related to memory access. However, for some applications the MIC already provides 
performance similar to those of the GPU.  

4. Programming models. The main interesting feature of the MIC is represented by the 
programming model that relies on the OpenMP standard. For this reason the MIC is 
expected to be more easily programmable than the GPU. However, performance tuning 
requires, in general, a refactoring effort comparable to that of the GPU. Note that 
OpenMP allows the code to be portable across any shared memory architecture. 
The Nvidia GPUs support CUDA and the OpenACC standard. CUDA is adopted 
whenever maximum performance has to be achieved. However, it has a few major 
drawbacks. First, it is not easy to use (especially for Fortran programmers). Second, it 
leads to two parallel versions of the same code, one for the CPU and one for the GPU, 
which is difficult to maintain. Finally, but most importantly, it is not portable, being 
available only on Nvidia architectures. This strongly limits the portability of the code. The 
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OpenACC solution is more programmer-friendly and it is similar to OpenMP. It is based 
on directives, compatible with both Fortran and C/C++ and supports incremental 
development of the GPU version. Furthermore, it allows a single version of the source 
code. The main drawback is in terms of performance, which is, on average, 20-30% lower 
than that achievable with CUDA. OpenACC is an open standard supported by various 
compilers (PGI, CRAY, gcc version is expected by the end of 2014) and accelerators, 
hence portability should not represent a major issue. At the moment, however, the 
standard is not fully defined or mature. It is also not fully adopted by the different 
implementations, leading to unexpected failures at compile or run time for different 
compilers. The OpenACC and the OpenMP standards were expected to converge in the 
near future, but at the moment, this seems to be unlikely.  

5. OpenCL. The OpenCL standard represents a further solution for accelerators 
programming. This solution has not actually been explored in detail during WP8 (only one 
code, namely EAF-PAMR adopted this solution), since only recently the standard became 
sufficiently reliable and performing to be competitive with CUDA, with which it shares 
the same degree of complexity. Furthermore, only the old 1.0 OpenCL standard is 
supported by Nvidia, which tends to promote its proprietary products. For these reasons 
OpenCL was not widely adopted, but it remains an interesting option to explore, 
especially for the portability of the resulting code. 

6. Standardisation of the analysis of the results. When accelerators are used, the results, 
both in terms of performance and in terms of final outcomes of the run, are tricky to 
analyse and interpret. For performance, the main issue is represented by what we compare 
to what. It is not uncommon to see in the same context (e.g. a conference or a workshop) 
or even in the same presentation, comparisons of a GPU vs. a single core or vs. a full 
CPU, or comparison of the GPU code vs. the original code or vs. the refactored code. A 
fair and standard comparison method should be defined in order to understand clearly and 
promptly the meaning of the presented figures.  
Also the interpretation of the outcomes of the code can be difficult. Due to the different 
architectures, CPU and GPU produce in general different results. The possibility of 
bitwise comparison is not supported by any of the above standards, hence the criteria for 
code validation have to be defined. However, such criteria change with the application and 
they have to be defined by the experts from the scientific community.  

7. Advanced topics. Advanced features for GPU usage are still largely unexplored. For 
instance, the asynchronous model, based on CUDA streams or OpenACC async regions, 
could in principle overlap intensive computation, on the GPU, to data transfer, between 
GPU and CPU or among different CPUs. Though this feature is available (and already 
successfully adopted by some codes), its effective usage is not straightforward, since a 
proper load balancing between CPU and GPU can be tricky to achieve.  
Strong scalability of the GPU code results in general to be worse than that of the original 
MPI CPU code. This is due to the decreasing data size per processor (that is, per GPU) 
with increasing number of processors, which reduces the computational efficiency of the 
accelerator. The adoption of a direct communication model among GPUs could help in 
minimising the MPI communication overhead and in efficiently feeding the different 
GPUs, especially when the computation is highly unbalanced. Currently GPUDirect 
model deployed by Nvidia supports direct communication, but the reliability and the 
performance of such solution have still to be investigated. Furthermore, the limited 
portability of this approach makes it unattractive.  
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4 Summary  

The WP8 one year extension has focused on a subset of the codes developed in the first two 
years of WP8, further enhancing the accomplished refactoring work. The main results for 
each application are summarised in the following table: 

Code name Main results 

EAF-PAMR 

 Implementation of the OpenCL version of the MHD PPM 
algorithm 

 Implementation of the OpenCL version of the MHD TVD 
algorithm 

OASIS  Completion of scaling work, optimal configurations found 
for EC-Earth climate runs 

I/O Services 
 Implementation of XIOS interface for IFS 
 Implementation of GRIB interface for XIOS 

ICON  OpenACC version of ICON finalized, presented and 
accepted by the users community 

Fluidity/ICOM 

 PETSc DMPlex has been integrated in Fluidity. 
 Fluidity is now able to deal with ExodusII mesh formats. 
 Further optimized the hybrid MPI/OpenMP code for large 

ocean test case. 

Quantum ESPRESSO 

 Enhancement of the parallelization layers (cfr. Band 
parallelization, multithreading, etc.) 

 Further modularization of the common kernels 
 Implementation of ELPA libraries 
 Porting to the MIC platform 
 EXX benchmarking 

SIESTA 
 Checkpointing capabilities improved 
 Basic I/O performance improved 
 Parallel I/O based on HDF5 implemented 

EXCITING/ELK 

 Porting the setup of the Hamiltonian and overlap matrices to 
GPU using vendor’s GPU-aware PBLAS library 

 Incorporation of a new GPU-enabled distributed generalized 
eigenvalue solver 

 Porting summation of the interstitial charge density to GPU 
using CUDA FFT.  

 The domain specific LAPW library is fully integrated back 
into the original Exciting code 

PLQCD 

 Re-factoring the PLQCD for the Intel MIC. This included 
Re-design of the lattice field data layout to benefit from 
vectorization on the MIC and implementation of these codes 
using compiler intrinsics. 

 Preliminary work on the combination of GMRES-DR and 
BiCGStab iterative solvers for tmLQCD code. 
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ELMER 

 Coarse problem solution using  
o MagmaLU on GPU and MIC accelerators improves 

the performance  
o explicit inverse computation by MUMPS or 

SuperLU in subcommunicators is faster for hundreds 
of actions 

o iterative solver can be comparable with the most 
efficient direct parallel solvers if the null-space 
matrix has orthonormal columns   

 Stiffness matrix factorization and pseudo-inverse action 
were the fastest with MUMPS library 

 KSPCG vs. KSPPIPECG were compared, for dual TFETI no 
improvement, for primal TFETI PIPECG more efficient for 
subdomain sizes up to 113 

ALYA/CODE_SATU
RNE 

 The coupling library of Code_Saturne has been used 
successfully inside ALYA 

 The code coupling for ALYA-ALYA and Code_saturne-
ALYA has been obtained 

 Test cases for Fluid-Thermal interaction problems have been 
run 

 Strategies to obtain successful code coupling are proposed 

PFARM 

 Optimised Intel Xeon Phi port of PFARM (EXDIG) 
incorporating MAGMA MIC for accelerated parallel 
eigensolvers. 

 A new version of PFARM (EXAS), restructured for 
accelerated R-matrix propagation pipelining. Tested and 
tuned on the Intel Xeon Phi and also applicable to GPUs. 

 Detailed analyses of MKL and MAGMA MIC numerical 
library routines performance on Intel Xeon Phi architectures. 

 A new version of PFARM (EXDIG) with threaded 
eigensolvers appropriate for a wide-range of shared memory 
platforms. 

RAMSES 

 Porting of the Hydro kernel on the GPU adopting the 
OpenACC standard completed. 

 New OpenMP implementation of the hydro kernel, 
exploiting the work done for the GPU. 

 

Besides the outstanding technical results, a major achievement of WP8 is represented by the 
extensive and effective collaboration between HPC experts, code developers and scientists, 
which resulted in establishing durable (beyond the extent of the PRACE-2IP project) 
synergies. The strong commitment of the involved scientific communities was the key to the 
success of WP8. The experience gained during the three years of the work package provides 
valuable guidelines for high performance scientific code development. 


