

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D8.1.3

Prototype Codes Exploring Performance Improvements
Final

Version: 1.0
Author(s): Claudio Gheller and Will Sawyer (CSCS)
Date: 23.12.2011

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: PRACE Second Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: D8.1.3
Deliverable Nature: Report
Deliverable Level:
PU *

Contractual Date of Delivery:
31 / 12 / 2011
Actual Date of Delivery:
31 / 12 / 2011

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Prototype Codes Exploring Performance Improvements
ID: D8.1.3
Version: Status: 1.0
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D8.1.3.docx

Authorship

Written by: Claudio Gheller and and Will Sawyer
(CSCS)

Contributors: Thomas Schulthess, CSCS; Fabio Affinito,
CINECA; Ivan Girotto, Alastair
McKinstry, Filippo Spiga, ICHEC; Laurent
Crouzet, CEA; Andy Sunderland, STFC;
Giannis Koutsou, Abdou Abdel-Rehim,
CASTORC; Fernando Nogueira, Miguel
Avillez , UC-LCA; Georg Huhs, José
María Cela, and Mohammad Jowkar, BSC.

Reviewed by: Richard Blake, Thomas Eickermann
Approved by: MB/TB

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 ii

Document Status Sheet

Version Date Status Comments
0.1 18/11/2011 First skeleton
0.2 23/11/2011 Updated version with astro stuff
0.3 01/12/2011 Intro and conclusions added
0.4 02/12/2011 Contributions added
0.5 05/12/2011 Contributions added
0.6 06/12/2011 Contributions added
1.0 31/12/2011 Final version

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 iii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, scientific applications,

libraries, performance modelling.

Disclaimer

This deliverable has been prepared by Work Package 8 of the Project in accordance with the
Consortium Agreement and the Grant Agreement n° RI-283493. It solely reflects the opinion
of the parties to such agreements on a collective basis in the context of the Project and to the
extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of
PRACE AISBL and therefore does not emanate from it nor should it be considered to reflect
PRACE AISBL’s individual opinion.

Copyright notices

 2011 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 iv

Table of Contents

Project and Deliverable Information Sheet .. i

Document Control Sheet .. i

Document Status Sheet .. ii

Document Keywords .. iii

Table of Contents .. iv

List of Figures .. v

References and Applicable Documents ... v

List of Acronyms and Abbreviations ... vii

Executive Summary .. 1

1 Introduction ... 1

2 Astrophysics ... 4
2.1 RAMSES ... 4
2.2 PKDGRAV .. 11
2.3 PFARM .. 13

3 Climate .. 16
3.1 Couplers: OASIS .. 16
3.2 Input/Output: CDI, XIOS, PIO ... 17
3.3 Dynamical Cores: ICON .. 19
3.4 Ocean Models ... 20

4 Material Science .. 24
4.1 ABINIT ... 24
4.2 Quantum ESPRESSO .. 28
4.3 Yambo ... 31
4.4 Siesta .. 32
4.5 Octopus ... 33

5 Particle Physics .. 35
5.1 Improving the tmLQCD package ... 35

6 Conclusions and next steps .. 39

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 v

List of Figures

Figure 1: The performance modelling methodology. .. 2
Figure 2: Oct structure (in 2D composed by 4 cells), its possible refinements and links to parent and
children octs .. 5
Figure 3: Domain decompositions based on a Peano-Hilbert space filling curve. 6
Figure 4: Distribution of the work for a production test as a function of the number of processors. 7
Figure 5: Levels of the multigrid hierarchy ... 9
Figure 6: Domain decomposition and buffer regions as used in RAMSES, ... 10
Figure 7: Multiple time step integration scheme. .. 12
Figure 8: Example Process Decomposition in the EXAS Stage ... 14
Figure 9: time spent in OASIS3-MCT initialisation ... 17
Figure 10: OASIS3-MCT: Ping-pong (coupling exchange).. 17
Figure 11: Performance of individual OpenCL kernels in the ICON NH-solver multi-platform
implementation. ... 19
Figure 12: Repartition of time in ABINIT routines: on the left: varying the number of plane-wave CPU
cores; on the right: varying the number of band CPU cores. .. 25
Figure 13: Schematic UML activity diagram of PWscf code. .. 28
Figure 14: Flow diagram of the CP code implemented in the Quantum ESPRESSO suite. 29
Figure 15: Compute time spent to solve eigenvalue problem comparing single node libraries such as
LAPACK (red), MAGMA (green-hybrid) with ScaLAPACK (blue-pure MPI). On the x-axis and y-
axis the number of cores used for PWscf calculation and the time in seconds are shown. 30
Figure 16: Scaling of the ScaLAPACK GEV solver for different matrix sizes 32
Figure 17: Efficiency of the ScaLAPACK GEV solver for different matrix sizes 33
Figure 18: Profiling of the twisted mass inverter code on 24 nodes. The chart in the centre shows User
and MPI functions with respect to the total time. The left chart is a break-down of the User functions
(percentages are with respect to the total time spent in User functions) and the right chart is a break-
down of the MPI functions (percentages are with respect to the total time spent in MPI functions) 36

References and Applicable Documents

[1] http://www.prace-ri.eu
[2] Deliverable D8.1.1: “Community Codes Development Proposal”
[3] Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC, T.
Hoefler, Proceedings of Workshop on Productivity and Performance (PROPER 2010),
Springer, Dec. 2010.
[4] A Framework for Performance Modeling and Prediction. Allan Snavely , Laura
Carrington , Nicole Wolter , Jesus Labarta, Rosa Badia , Avi Purkayastha, Proceedings of the
2002 ACM/IEEE conference on Supercomputing.
[5] Performance Modeling: Understanding the Present and Predicting the Future. Bailey,
David H.; Snavely, Allan. http://escholarship.org/uc/item/1jp3949m
[6] How Well Can Simple Metrics Represent the Performance of HPC Applications? Laura
C. Carrington, Michael Laurenzano, Allan Snavely, Roy L. Campbell, Larry P. Davis;
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, 2005, IEEE Computer
Society
[7] Deliverable D8.1.2: “Performance Model of Community Codes“
[8] http://web.me.com/romain.teyssier/Site/RAMSES.html
[9] http://lca.ucsd.edu/portal/software/enzoFLASH
[10] http://www.mpa-garching.mpg.de/gadget/
[11] ICON testbed; https://code.zmaw.de/projects/icontestbed
[12] ICOMEX project; http://wr.informatik.uni-hamburg.de/research/projects/icomex

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 vi

[13] Williams, S.; A. Waterman, and D. Patterson, "Roofline: An Insightful Visual
Performance Model for Floating-Point Programs and Multicore Architectures",
Communications of the ACM (CACM), April 2009.
[14] Conti, C; W. Sawyer: GPU Accelerated Computation of the ICON Model. CSCS
Internal Report, 2011. A G Sunderland, C J Noble, V M Burke and P G Burke, CPC 145
(2002), 311-340.
[15] A G Sunderland, C J Noble, V M Burke and P G Burke, CPC 145 (2002), 311-340.
[16] K L Baluja, P G Burke and L A Morgan, CPC 27 (1982), 299-307.
[17] Future Proof Parallelism for Electron-Atom Scattering Codes with PRMAT, A.
Sunderland, C. Noble, M. Plummer,
http://www.hector.ac.uk/cse/distributedcse/reports/prmat/.
[18] The MRRR algorithm for multi-core and SMP systems,
http://code.google.com/p/mr3smp/.
[19] The Parallel Linear Algebra for Multicore Architectures project,
http://icl.cs.utk.edu/plasma/.
[20] The Matrix Algebra on GPU and Multicore Architectures project,
http://icl.cs.utk.edu/magma/.
[21] Single Node Performance Analysis of Applications on HPCx, M. Bull, HPCx Technical
Report HPCxTR0703 (2007).
[22] Combined-Multicore Parallelism for the UK electron-atom scattering Inner Region R-
matrix codes on HECToR, HECToR Distributed CSE Support projects,
http://www.hector.ac.uk/cse/distributedcse/projects/.
[23] Wolfe, M. and C. Toepfer, ‘The PGI Accelerator Programming Model on NVIDIA
GPUs Part 3: Porting WRF’, PGI Insider Article, October 2009,
(http://www.pgroup.com/lit/articles/insider/v1n3a1.htm).
[24] Madec, G: NEMO ocean engine, Note du Pole de modélisation, Institut Pierre-Simon
Laplace (IPSL), France, No 27 ISSN No 1288-1619, 2008.
[25] Pain, C.C.; M.D. Piggot, A.J.H. Goddard, F. Fang, G.J. Gorman, D.P. Marshall,
M.D. Eaton, P.W. Power, and C.R.E. de Oliveira: Three-dimensional unstructured mesh
ocean modelling. Ocean Modelling, 10(1-2), 5-33, 2005.
[26] http://www.hector.ac.uk
[27] http:// www.top500.org
[28] https://hpcforge.org/projects/pkdgrav2/
[29] J. Barnes and P. Hut (December 1986). "A hierarchical O(N log N) force-calculation
algorithm". Nature 324 (4): 446-44
[30] Ewald P. (1921) "Die Berechnung optischer und elektrostatischer Gitterpotentiale",
Ann. Phys. 369, 253–287.
[31] Long Wang et al., Large Scale Plane Wave Pseudopotential Density Functional Theory
Calculations on GPU Clusters, SC2011
[32] Spiga F. & Girotto I., phiGEMM: a CPU-GPU library for porting Quantum ESPRESSO
on hybrid systems, 20th Euromicro International Conference on Parallel, Distributed and
Network-Based Computing (PDP2012), Special Session on GPU Computing and Hybrid
Computing, February 15-17, 2012, Garching (Germany) - accepted
[33] http://www.tddft.org
[34] Craig, A.; M. Vertenstein and R. Jacob: “A new flexible coupler for earth system
modeling developed for CCSM4 and CESM1”, Int. J. High Perf. Comput. Appl.. In press.
[35] http://www.tddft.org/programs/octopus/wiki/index.php/Main_Page
[36] http://www.yambo-code.org/
[37] http://www.abinit.org/
[38] http://www.quantum-espresso.org/
[39] http://www.icmab.es/dmmis/leem/siesta/

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 vii

[40] A. M, Khokhlov, Fully Threaded Tree Algorithms for Adaptive Refinement Fluid
Dynamics Simulations, 1998, Journal of Computational Physics, 143, 519
[41] http://lca.ucsd.edu/portal/software/enzo
[42] http://www.mpa-garching.mpg.de/gadget/
[43] http://code.google.com/p/cusp-library/

List of Acronyms and Abbreviations

AMR Adaptive Mesh Refinement
API Application Programming Interface
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CAF Co-Array Fortran
CCLM COSMO Climate Limited-area Model
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CERFACS The European Centre for Research and Advanced Training in Scientific

Computation
CESM Community Earth System Model, developed at NCAR (USA)
CFD Computational Fluid Dynamics
CG Conjugate-Gradient
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CNRS Centre national de la recherche scientifique
COSMO Consortium for Small-scale Modeling
CP Car-Parrinello
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CUDA Compute Unified Device Architecture (NVIDIA)
CUSP CUda SParse linear algebra library
DEISA Distributed European Infrastructure for Supercomputing Applications.

EU project by leading national HPC centres.
DFPT Density-Functional Perturbation Theory
DFT Discrete Fourier Transform
DGEMM Double precision General Matrix Multiply
DKRZ Deutsches Klimarechenzentum
DP Double Precision, usually 64-bit floating-point numbers
DRAM Dynamic Random Access memory
EC European Community
ENES European Network for Earth System Modelling
EPCC Edinburgh Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United

Kingdom)
ESM Earth System Model
ETHZ Eidgenössische Technische Hochschule Zürich, ETH Zurich

(Switzerland)
ETMC European Twisted Mass Collaboration

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 viii

ETSF European Theoretical Spectroscopy Facility
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
FFT Fast Fourier Transform
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FT-MPI Fault Tolerant Message Passing Interface
FZJ Forschungszentrum Jülich (Germany)
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also GF/s
GGA Generalised Gradient Approximations
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPL GNU General Public Licence
GPU Graphic Processing Unit
HDD Hard Disk Drive
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing
HPL High Performance LINPACK
ICOM Imperial College Ocean Model
ICON Icosahedral Non-hydrostatic model
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
I/O Input/Output
IPSL Institut Pierre Simon Laplace
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MBPT Many-Body Perturbation Theory
MCT Model Coupling Toolkit, developed at Argonne National Lab. (USA)
MD Molecular Dynamics
MFlop/s Mega (= 106) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also MF/s
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 ix

MKL Math Kernel Library (Intel)
MPI Message Passing Interface
MPI-IO Message Passing Interface – Input/Output
MPIM MPI for Mathematics
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
NCAR National Center for Atmospheric Research
NCF Netherlands Computing Facilities (Netherlands)
NEGF non-equilibrium Green's functions,
NERC Natural Environment Research Council
NEMO Nucleus for European Modeling of the Ocean
NERC Natural Environment Research Council (United Kingdom)
NWP Numerical Weather Prediction
OpenCL Open Computing Language
OpenMP Open Multi-Processing
OS Operating System
PAW Projector Augmented-Wave
PGI Portland Group, Inc.
PGAS Partitioned Global Address Space
PIMD Path-Integral Molecular Dynamics
POSIX Portable OS Interface for Unix
PPE PowerPC Processor Element (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
PWscf Plane-Wave Self-Consistent Field
QCD Quantum Chromodynamics
QR QR method or algorithm: a procedure in linear algebra to factorise a

matrix into a product of an orthogonal and an upper triangular matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RPM Revolution per Minute
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SP Single Precision, usually 32-bit floating-point numbers
SPH Smoothed Particle Hydrodynamics
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
TB Tera (=240 ~ 1012) Bytes (= 8 bits), also TByte
TDDFT Time-dependent density functional theory
TFlop/s Tera (=1012) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UML Unified Modeling Language
UPC Unified Parallel C

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 1

Executive Summary

In this document we describe the performance-critical numerical kernels extracted from a
number of community codes, proposed by the scientific communities, which were identified
in the first month of PRACE-2IP work package 8. The kernels have been selected according
to the results of the performance analysis previously accomplished (and reported in
deliverable D8.1.2). A number of approaches are envisaged for refactoring the kernels
refactoring, in order to allow them to efficiently and effectively exploit the coming generation
of HPC systems. This was part of the performance modelling methodology adopted in this
work package in order to quantitatively evaluate the potential performance benefits that can
be achieved on the new hardware architectures if novel software solutions are adopted. This
final performance evaluation will be estimated by month six of the project (M6,)along with
the specification of the final refactoring plan.

1 Introduction
In this deliverable we describe the performance critical numerical kernels extracted from a
number of community codes, proposed by the scientific communities identified in the first
month of PRACE-2IP [1] work package 8 (hereafter WP8; see deliverable D8.1.1 [2]), and
the approaches that have been envisaged for their refactoring, in order to allow them to
efficiently and effectively exploit the coming generation of HPC systems.

Selected codes are:

Domain Application Usage
Astrophysics RAMSES Galaxy - cluster of galaxy evolution.

PKDGRAV Large scale structure of the universe, precision
cosmology

PFARM Electron-atom scattering
Climate OASIS Full climate modelling, coupler

CDI/XIOS/PIO Efficient I/O libraries
ICON Dynamical core
NEMO Ocean models

Material Science ABINIT Density functional theory, Density-Functional
perturbation theory, Many-Body perturbation
theory, Time-Dependent Density functional
theory

Quantum
ESPRESSO

Density‐Functional theory, Plane Waves, and
Pseudo-Potentials, Projector‐Augmented waves.

YAMBO Many-Body perturbation theory, Time-
Dependent Density functional theory

SIESTA Electronic structure calculations and ab-initio
molecular dynamics

OCTOPUS Density Functional Theory
Exciting/ELK Full-Potential Linearized Augmented-Plane

Wave
Particle Physics tmQCD Lattice QCD

Note that, one of the codes evaluated in Deliverable D8.1.2, EULAG, was dropped since it
was viewed not appropriate for further effort. It has proven scalability but its rectangular grid
is not applicable for global climate applications. Note also, that the analysis on Exciting/ELK

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 2

will be presented in the next deliverable (D8.1.4), since, due to the tight deliverables
schedule, the reference community could not provide their inputs on time.

The proposed codes have been the subject of a detailed performance analysis in order to
identify the most promising kernels deemed ready for the refactoring effort. Due to the broad
spectrum of applications under investigation, an appropriate methodology was defined, based
on the “Performance Modelling” [3][4][5][6] approach. Performance modelling has the goal
of gaining insight into an application’s performance on a given computer system. This is
achieved first by measurement and analysis, and then by the synthesis of the application
characteristics in order to understand the details of the performance phenomena involved and
to project performance to other systems. Therefore, performance modelling not only allows
the study of the current behaviour of a code but also represents a predictive tool, estimating
the behaviour on a different computing architecture and identifying the most promising areas
for performance improvement.

Figure 1: The performance modelling methodology.

The methodology has been described in details in deliverable D8.1.2 [7].

Essentially, it accounts for the two main steps sketched in Figure 1. The first step consists of
the analysis of the codes’ performance, using standard performance tools, collecting all the
information necessary to understand the behaviour of the principal algorithms and their
dependencies on the relevant model parameters (e.g. the number of cells of the computational
mesh) and on the hardware. This step was accomplished during PMs 2 and 3 and the results
described in D8.1.2.

In the second step, the accrued data are synthesised and performance modelled in order, first,
to gain greater understanding of the performance phenomena involved, and to identify the
numerical kernels that will be the subject of WP8 proposing solutions for their re-design and
refactoring. Then, the model is used to project performance to other system/numerical
solutions combinations. The former is the subject of the present deliverable, in which we
describe the work undertaken to select the kernels extracted from the different codes We
justify quantitatively these choices using the collected performance analysis data. In the next
deliverable, that will complete the performance modelling phase, we will present the expected
performance improvements on promising architectures (multicore, GPUs, MIC…) with the
most effective programming approaches (MPI, OpenMP, CUDA, OpenCL, etc. and their
combinations). We will ustify quantitatively the choices (extrapolating from the benchmarks,
according to the performance modelling approach): and identify what improvements can be
expected exploiting a given new architecture with a "novel" parallel programming approach.
The results will lead to the specification of the detailed work plan for code refactoring and re-
implementation, along with a testing and validation strategy.

This document is organized as follows. Sections 2 to 5 are dedicated to describing the kernels
that have been identified as candidates for refactoring, and to show the results of the

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 3

performance analysis accomplished on these kernels. Section 2 is dedicated to codes in the
domain of Astrophysics, while Climate and Material Science are the subjects of Section 3 and
4 respectively. In Section 5 we focus on Particle Physics. Finally, in Section 6, we draw the
conclusions and discuss the next steps for WP8

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 4

2 Astrophysics
In this section, we present kernels selected for performance modelling of three codes in the
Astrophysics domain. RAMSES and PKDGRAV are well known open source codes, the first
focusing on problems of galaxy and cluster of galaxies formation and evolution, the second
being an outstanding tool for the study of the large scale structure of the universe and for
precision cosmology. The PFARM suite describes electron-atom and electron-ion scattering
and can be effectively adapted and exploited in the astrophysics framework, where the precise
and efficient description of atomic physics, is necessary to compare simulations and
observations.

2.1 RAMSES

The RAMSES code [8] is an adaptive mesh refinement (AMR) multi-species code, describing
the behaviour of both the baryonic component, represented as a fluid in the cells of the AMR
mesh, and the dark matter component, represented as a set of collisionless particles. These
two matter components interact via gravitational forces. The AMR approach makes it possible
to get high spatial resolution only where this is actually required, thus ensuring a minimal
memory usage and computational effort.

During the performance analysis phase [7], we identified the critical parts (“sections”) of the
code:

 Hydro: all the functions needed to solve the hydrodynamic problem are included.
Within these functions, we have those that collect from grids at different resolutions
the data necessary to update each single cell, those that calculate fluxes to solve
conservation equations, a Riemann solver, and a finite-volume solver.

 Gravity: this group comprises functions needed to calculate the gravitational potential
at different resolutions using a multigrid-relaxation approach.

 MPI: comprises all the communication related MPI calls (data tranfer,
synchronisation, management)

Several other sections, like N-body (functions needed to update the positions and velocities of
particles and to evaluate the gravitational force acting on each particle) and I/O have been
investigated, but proved to be negligible compared to the other sections.

In what follows we will focus on the two critical sections, Hydro and Gravity. Most of the
MPI overhead is due to operations performed within these two sections, hence its impact and
the related solutions toward performance improvement will be included in their discussion.

2.1.1 Data structure

In order to properly understand the results coming from the performance analysis, the
principal data structures defined in the code must be described.

Three main data “containers” are defined, one for the fluid variables (mass and energy
density, velocity), one for the gravitational forces and one for the N-body particles. The first
two are defined on the AMR mesh, while the third is a meshless data structure containing
particle positions and velocities. This last array is not relevant for the performance analysis
and will be neglected in the following discussion.

The two AMR based data structures have to describe quantities on a variable resolution mesh.
RAMSES adopts a peculiar approach, based on the “Fully Threaded Tree” [40], in which,
starting from a basic Cartesian mesh, refinements are created on a cell-by-cell basis,
according to proper criteria. The fundamental data object is represented by the Oct, a small
grid composed, in 3D, by 8 cells (see Figure 2). Octs are organised as linked lists, fully
connected with other mesh elements, pointing towards:

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 5

1. The parent cell
2. The six neighbouring parent cells
3. The six neighbouring octs
4. The eight children octs

Figure 2: Oct structure (in 2D composed by 4 cells), its possible refinements and links to parent and
children octs

With this approach, each Oct has all the necessary links to the cells relevant for the update of
its physical status. This allows to avoid having to define a global tree structure (adopted in
other similar codes, like Enzo [41] or Flash [9]), managing the distribution of meshes at
different resolution levels. This is typically a computational demanding structure to build and,
in parallel, to balance, requiring intensive data exchange between processors. Furthermore, in
order to achieve acceptable performance, it is usually replicated on each processor, strongly
limiting the scalability, in terms of memory usage, of the code (soon memory is filled by the
global tree structure, this problem becoming worse and worse with the decrease of core
memory, typical for current HPC systems). This is all avoided with the RAMSES’ approach.
The penalty is in terms of memory usage (due to the large number of pointers associated to
each Oct), memory access performance, since Octs are distributed randomly in memory and
load balancing that is hard to optimize. This last problem has already been relieved by the
adoption of a domain decomposition technique based on “Mesh Partitioning” inspired by Tree
N-Body codes [42]. With this approach, the usage of space filling curves arranges Octs
according to a locality criterion that allows to distribute data among different processors in an
effective, though not perfect (see discussion below), way (see Figure 3).

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 6

Figure 3: Domain decompositions based on a Peano-Hilbert space filling curve.

Octs’ cells at the maximum possible resolution in a certain region (that have no children) are
classified as “active”. Those with children are classified as “passive”. These are auxiliary cells
where equations are not directly solved (values are averaged from higher resolution cells). On
average, passive cells are estimated to be the 15% of the total number of cells.

2.1.2 Hydro Kernel

In the Hydro section the equations of conservation of mass, momentum and energy, extended
to include the gravitational field and other possible external sources (cooling, magnetic field
etc.), are solved. A number of solvers are implemented, with different levels of accuracy, all
integrating the equations on the AMR Oct-based mesh.

The Hydro kernel workflow can be summarized as follows:

1. Start the integration sweep updating all ntot active cells of the AMR structure, from
time tn to tn+1.

2. Divide the whole integration sweep in chunks, each integrating a fraction, ncache/ntot,
of the active cells. A proper setting of ncache is an important choice, whose relevance
will become clear later.

3. For each cell, collect all the data necessary to update its status. This means that around
each cell, a 6x6x6 auxiliary mesh (hereafter AuxBox) is built, composed of cells at the
same resolution, containing fluid and gravitational field data copied by neighbouring
Octs at the same level, if present, or interpolated/averaged from lower/higher
resolution levels. At this stage memory is increased by a factor of 63. This is where
ncache becomes important first. Its value must be set low enough in order to prevent
the memory usage “exploding”.

4. Each AuxBox is passed to the hydro solver and the corresponding cell updated. Here,
one of five different solvers can be selected. Each solver has a different accuracy and
impact on the performance.

According to our analysis, the most critical parts for the kernel performance are the creation
of the AuxBoxes and the call to the hydro solver. This can be inferred already from Figure 4,
where the hydro solver accounts for most of the Hydro time, while the AuxBoxes building
contributes to the MPI overhead.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 7

Figure 4: Distribution of the work for a production test as a function of the number of processors.

AuxBoxes performance improvement model

This is the part of the Hydro kernel most affected by data access. In the RAMSES’ AMR data
structure, memory contiguity of two neighbouring Octs is not ensured. Therefore the
corresponding data can be far away in the processor’s memory or even in the memory of two
different processors. Furthermore, despite the usage of the space filling curves, the load is not
perfectly balanced between processors. This problem grows with the number of processors,
since smaller chunks of data are assigned to each processor. This means that, first, the data
distribution tends to be more and more heterogeneous, leading to higher imbalance of the
work. Second, in order to build the AuxBoxes, each processor has to access information
stored on a larger number of processors, affecting strongly the network load and the
communication overhead.

In order to improve the performance, the load balancing must be improved and the
communication overhead must be reduced. This can be achieved byworking on the basic
algorithmic architecture, changing the AMR data structure, or working on the domain
decomposition strategy, increasing data locality. A third solution is that of exploiting some
specific hardware features, like multicore nodes with large shared memory available. Let us
explore in more detail the three solutions.

Data Structure: this first approach has the largest impact on the whole code and can be
considered as an extreme solution. However, it could be adopted in specific situations in
which the AMR data structure is redundant. The typical case is when RAMSES is used with
uniform resolution, so with AMR switched off. In these cases, a linked list based approach is
highly inefficient and can be replaced by a regular rectangular mesh representation, using
directional splitting integration, instead of full 3D integration (currently adopted), in order to
exploit arrays data locality and decomposing the domain between processors in regular, equal
size, rectangular sub-volumes with ghost-cells, for boundaries.

Domain decomposition: The problems that RAMSES treats are intrinsically unbalanced. Due
to gravitational clustering, regions at high resolution form at unpredictable locations in the
computational box, changing continuously with time. Precise load balancing algorithms can
be implemented, but they tend to become the dominant part of the calculation, wiping out any
benefit gained from the other parts of the code.

Hybrid parallelization: the previous problem can be strongly mitigated by specific hardware
solutions. In particular, the coming generation of computing cores will have increasingly
smaller memories, for both performance and power consumption reasons, but they will be
organized (typically) in 8-16 cores per node, sharing a memory of relevant size. In a 16 core
node, 16 or 32 GB of shared memory can be expected. RAMSES can exploit this architecture

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 8

by decomposing the computational domain between nodes instead of cores, thus dealing with
much larger data chunks, with intra-node direct memory access. The communication overhead
is consequently reduced and load balancing is much easier to optimise.

In order to exploit shared memory, the Hydro kernel has to be re-implemented with a hybrid
OpenMP+MPI approach. This, in principle, could be accomplished by an OpenMP parallel
loop running on all the active cells stored in each node. However, special care must be
devoted to managing the access to shared memory. This in fact, is in general only logically
shared, being physically distributed among the cores inside a node. Furthermore, concurrent
access to the same memory location can be frequent when a large number of threads is
instanced and work simultaneously to build different AuxBoxes. Therefore, OpenMP
implementation must be developed:

 Preserving data locality even inside the shared memory
 Handling effectively concurrent data access

Hydro solver performance improvement model

The hydro solver, due to its high accuracy, is intrinsically computational intensive. Five
different solvers are available, the most accurate being based on an exact Riemann solver that
is extremely demanding. However, in most cases, a light approximate Riemann solver can be
used.

The implementation of the hydro solver proved to be highly optimized, so no relevant
improvements are expected from algorithms refactoring. Furthermore, any change could
affect the accuracy of the solution, which is a crucial feature of this solver.

However, benefits can be expected by the usage of accelerator devices, like GPUs or Intel
MIC. In fact, once AuxBoxes are built around the ncache cells, the computation is completely
local and fully vectorizable: in order to calculate the new value of each cell, the code uses
only the data stored in the corresponding AuxBox, with no other access to memory (local).
Hence, each cell can be calculated by a different thread independently from all the other,
(vectorizable) perfectly matching, e.g, the CUDA programming model.

A number of issues must be taken into account:

1. The main memory size of the device: only part of the active cells can be moved to the
device, since its memory is expected to be smaller than that of the corresponding node.
Here a careful setting of the ncache parameter becomes crucial, to fit the memory size
of the device. The algorithm does not require any change, but just a careful tuning of
the parameter.

2. The cache memory of each core of the device: this ideally should contain all the
AuxBox data, in order to minimize main memory accesses. However, the 63 cells
based AuxBox structure is, from a storage point of view, rather demanding, therefore
this optimization appears to be challenging and needs to be carefully investigated on
different device architectures, potentially requiring deep algorithmic changes.

3. Data movement: due to its complexity the hydro solver is characterized by many
successive loops. AuxBox data has to be moved to the device memory only once, at
the beginning of the procedure and then it has to lie on the device till the end of the
computation, when only the updated cells dataset, much smaller than the input dataset,
is moved back to the processor memory. Unnecessary data copy would produce a big
overhead.

4. Functions inlining: in order to run on the device, functions called within a loop, should
be inlined. This is actually a requirement that could be relaxed in future device
generations. However, currently it may represent an issue; due to the high number of
functions called in the hydro solver.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 9

5. The Riemann solver: the exact Riemann solver is unsuitable for GPU-like devices,
being characterized by frequent branching. The adoption of the approximate solver is
required. This rules out all those applications for which the exact solver is necessary.

Note that most of the code refactoring needed to run the hydro kernel on the device does not
foresee any modification in the core algorithms that can be taken as “black boxes”.

2.1.3 Gravity Kernel

The Gravity section calculates gravitational forces on each fluid element and particle in the
simulations. Forces are computed as partial directional derivatives of the gravitational
potential , that is evaluated solving the Poisson equation

where is the Laplacian operator and is the total matter density (baryon + dark matter
mass).

The Poisson equation is solved by means of a multigrid scheme with Dirichlet boundary
conditions on a Cartesian grid with irregular domain boundaries. This scheme was developed
in the context of the AMR scheme. The Poisson equation is solved on a level-by-level basis,
using a “one-way interface” approach in which boundary conditions are interpolated from the
previous coarser level solution with a second order accurate reconstruction algorithm. Such a
scheme is particularly well suited for self-gravitating astrophysical flows requiring an
adaptive time stepping strategy.

For the one-way interface schemes implemented in RAMSES the Poisson equation is solved
over the whole AMR hierarchy on a level-by-level basis, the size of the cell involved in each
individual Poisson solve being uniform. Each AMR level constitutes the finest level of the
multigrid hierarchy. A Cartesian grid with complex irregular boundaries therefore defines the
finest multigrid level. We then build a hierarchy of coarser grids, which cover this reference
domain (see Figure 5). This new hierarchy defines the multigrid structure for the current level.
Although it is also based on an octree structure similar to the underlying AMR grid, it is a
different structure that does not interfere with the coarse AMR levels (which are, in a way,
“orthogonal” to the multigrid levels). One major advantage of using this secondary grid
hierarchy for each Poisson solve is that the computational cost of the multigrid solver at a
given level only scales as the number of cells in that level, as we use only a subset of the
AMR coarser cells.

Figure 5: Levels of the multigrid hierarchy

Avoiding technical details, the multigrid approach can be interpreted as an iterative method to
solve the Poisson equation, accelerated by the usage of a hierarchy of grids where errors at
different resolutions are wiped out. This strongly improves the convergence rate to the
solution. One of the crucial factors for the quality of the result is a proper reconstruction a) of

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 10

the domain at various levels/resolutions, b) the proper setting of the boundary conditions,
which is accurately implemented in the code.

The parallel implementation of the gravity solver is based on a domain decomposition
approach, splitting the computational domain into sub-regions (gravity patches), which are
each managed and updated by a dedicated computing core. Such spatial domain
decomposition techniques rely on the ability to update each CPU independently first, then
address the couplings between different domains. In RAMSES, this last step is implemented
using buffer regions (see Figure 6).

Each computing core manages its own cells, but also possesses a local copy of cells from
other neighboring CPUs which are needed for local computation. These buffer cells need to
be updated after every iteration. The update operation is done by communicating the updated
values of the buffer cells from the CPUs which own them to the buffer regions in other
processors. Therefore, any CPU only communicates with its direct neighbors, and the number
of neighbors usually remains small. Moreover, the number of buffer cells scales only as a
surface term, limiting the transfer to computation volume ratio.

Figure 6: Domain decomposition and buffer regions as used in RAMSES,

Just like for the Hydro section, the data patches with all the necessary boundary data, at
different levels, are built at the beginning of the step. In this case, however, the
aforementioned features of the multigrid algorithm make communication less demanding,
ensuring a better scalability of the kernel and a good efficiency over a large number of
processors.

The two approaches proposed for the Hydro section, hybrid OpenMP+MPI parallelization and
exploitation of accelerators, are expected to be effective also for the Gravity kernel.
Communication is less demanding, but it can be further reduced by the usage of large shared
memory nodes, that can manage larger patches, minimizing the need for internode data
exchange. With respect to the Hydro section, also shared memory access is less intense,
improving the performance of the OpenMP parallelization that therefore can be efficient up to
the number of cores available on the node.

Once the patches are built, all the subsequent calculation is efficiently vectorizable, since it is
based on local finite volumes algorithms and linear interpolation operators. Therefore each
patch can be potentially solved effectively on an accelerator. For the Gravity kernel, however,
the memory management is critical, since the patches are much larger than the AuxBoxes for
Hydro and their size cannot be predicted in advance. Therefore, accelerator load cannot be
perfectly tuned and this could result in a sub-optimal exploitation of the resource. In other
words, only a certain number of patches can be copied to the accelerator memory. Due to the
patches’ “granularity” this could leave part of the accelerator memory unused, and require a
larger number of expensive copy-in copy-out operations.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 11

2.1.4 Conclusions

We have identified the most computational demanding parts of the RAMSES code as the
Hydro and the Gravity kernels together with all the related communication. We have
described performance features informed by a work analysis in order to roughly predict the
benefits that can be achieved by the refactoring of some of the basic algorithms and from
changing the adopted parallel paradigm, currently relying on a pure MPI based strategy. A
hybrid parallel implementation strategy has been envisaged, in order to exploit multi-core
nodes and many-core accelerator devices.

2.2 PKDGRAV

PKDGRAV [28] is a Tree-N-Body code, designed to accurately describe the behaviour of the
Dark Matter in a cosmological framework. The central data structure in PKDGRAV is a tree
structure, which forms the hierarchical representation of the mass distribution. PKDGRAV
calculates the gravitational accelerations using the well-known tree-walking procedure of the
Barnes-Hut [29] algorithm. Periodic boundary conditions are implemented via the Ewald
method [30]. Adaptive time stepping is adopted in order to improve time integration accuracy
only where this is strictly necessary.

The main computational intensive parts of the code identified in PKDGRAV are:

 Gravity: gravitational forces are calculated for each particle by direct point-to-point
sum, for particles that are close to each other (where high accuracy is needed) and via
a Fast Multipole Method (5th-order expansion of the potential) for long-range
interactions.

 Tree build: the K-d tree is built according to the distribution of particles, in order to
speed-up the calculation of gravitational forces.

 Kick: equation of motion are integrated with multiple time-steps, depending on the
dynamical status in which the particle is (e.g. high density regions are more “active”,
hence the time-step for particles in those region are shorter than those for particles in
“empty” volumes).

2.2.1 Adaptive timestepping algorithm

The performance analysis phase [7] showed that, when a single time step approach is adopted
(all particles integrated with the same time step), the code is balanced between the three main
sections, with good scalability and efficiency. However, particles are all integrated with the
same time step, dictated by the dynamical conditions of the N-body system. Hence a large
fraction of the particles adopts a time step much shorter than necessary. When adaptive time
stepping is used, particles are integrated with their “ideal” time step, longer for particles in
dynamically inactive regions, shorter in overdense regions, where forces are strong and
dynamics fast. In PKDGRAV, the time step is refined by powers of 2, the timestep at “rung”
0 (the longest) being twice that at rung 1, that is twice that at rung 2 etc. Particles are assigned
to the most suitable rung.

The adaptive time step approach, in principle, improves the performances of the code, which
can dedicate most of the time integrating a limited number of particles, updating at lower
frequency particles that require long time steps (see Figure 7). On parallel systems however
this leads to a serious load balancing issue that represents the main source of inefficiency of
the current implementation of the code.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 12

Figure 7: Multiple time step integration scheme.

In fact, as more and more time-stepping rungs are needed the cost of a simulation can be
completely dominated by the deep rungs. In other words, the simulation cost is dominated by
work done on a small subset of the particles (deep particles). This strongly affects parallel
efficiency since:

 the compute to communication ratio decreases.
 load balancing is hard, since particles at different rungs are distributed “randomly” on

the computational domain. Any optimization on the particle distribution leads to an
increase in communication and synchronization.

 more synchronizations are required.

In general, we get about 25% parallel efficiency in typical simulations with adaptive time step
due to load imbalance and idle time waiting for data. Effective load balance can be achieved,
but the implemented load balancer algorithms tend to dominate the calculation. Furthermore
the tree building phase gets ever more imbalanced and also begins to dominate the
calculation. A compromise is represented by fully balancing the highest couple of rungs only,
suffering imbalance on deeper rungs, but reducing the cost the load balancing.

Performance improvements

A first improvement of PKDGRAV performance can be expected by exploiting multi core
shared memory systems. In fact, core calculations of PKDGRAV have been written to use
“tiles” of vectors whose size can be optimized for OpenMP. The domain decomposition can
be performed over nodes as opposed to cores, greatly reducing overhead and increasing
parallelization for difficult cases.

Domain decomposition can be calculated for all rungs once at the beginning of a step,
providing a map where each particle should be sent at each sub-step. Each rung performs the
domain decomposition of its active (i.e. integrated by that rung) and inactive particles
separately, thereby getting perfect load and memory balance.

The main drawback of this approach is represented by a heavy communication phase at each
sub-step. This has to be carefully designed and optimized.

The same tiling can be exploited to off-load the calculation of gravitational interactions to an
accelerator (GPU, MIC) where the calculation of the force per particle is completely local and
efficiently vectorizable, leading to a potentially efficient exploitation of the accelerating
device. For this, the tile’s number and size represent critical parameters, minimizing memory
transfer between host and device and leading to an ideal exploitation of the accelerator
memory.

A further improvement can be achieved calculating gravity using a specific tree structure for
each rung each with its own domain decomposition. This leads to a perfect load and memory
balance for all phases of the calculation. Each rung’s domain decomposition can be calculated
in a time proportional to the number of active particles at that level, and is performed as

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 13

frequently as gravity for that rung. Multiple trees would mean more terms on interaction lists,
but with the fast multipole algorithm of PKDGRAV it is possible to aggregate terms from
different trees efficiently. The main drawbacks are represented first, by a high degree of non-
locality of data that could be alleviated by the implementation of local data caches in available
memory. Second, such reimplementation requires a deep change in the tree structure, one of
the main data structures of the code.

2.2.2 Conclusions

PKDGRAV is an extremely well engineered software, optimized for HPC, whose main
current performance limitations are represented by the adoption of multiple timesteps. The
WP8 refactoring effort will focus on two major areas: hybridization with OpenMP, in order to
exploit large multi-core systems, and support of accelerators for the calculation of
gravitational interactions. Other solutions require a more invasive algorithms rewriting, thus
they will be considered only if time and resources permit.

2.3 PFARM

PFARM is part of a suite of programs based on the ‘R-matrix’ ab-initio approach to
variational solution of the many-electron Schrödinger equation for electron-atom and
electron-ion scattering [15]. Relativistic extensions have been developed and have enabled
much accurate scattering data to be produced. The package has been used to calculate electron
collision data for astrophysical applications (such as: the interstellar medium, planetary
atmospheres) with, for example, various ions of Fe and Ni and neutral O, plus other
applications such as plasma modelling and fusion reactor impurities (for example ions of Sn,
Co, and in progress, W). PFARM performs the 'outer region' calculation extending from the
R-matrix sphere boundary to the asymptotic region in which scattering matrices and
(temperature-dependent) collision strengths are produced [15].

PFARM divides configuration space into radial sectors and solves for the Green’s function
within each sector using a basis expansion: the BBM method [16]. The parallel calculation
takes place in two distinct stages, with a dedicated MPI-based program for each stage. Firstly,
parallel sector Hamiltonian diagonalizations are performed using a domain decomposition
approach with the ScaLAPACK-based code EXDIG. The energy-dependent propagation
(EXAS stage) across the sectors is then performed using systolic pipelines with different
processors computing different sector calculations.

2.3.1 EXDIG Stage

The first stage of a calculation is dominated by the parallel diagonalizations of large sub-
region (or sector) Hamiltonian matrices that are computed independently of scattering
energies. The code is structured to take advantage of the parallel symmetric diagonalization
methods available in the distributed-memory based numerical library ScaLAPACK. A
previous project [17] has improved the performance of this stage by undertaking the n
Hamiltonian matrix parallel diagonalizations concurrently using BLACS-defined sub-groups
of processes. Of the several parallel real symmetric diagonalization routines available in the
current release of ScaLAPACK, investigations have found that the ‘Divide-and-Conquer’
based method PDSYEVD performs best, both in terms of performance and scalability [17].
However ScaLAPACK is based on a distributed-memory pure MPI parallel model and
therefore may not be best suited to the latest multi/many core or heterogeneous architectures.
In order to explore alternative approaches that may yield performance improvements on the
latest HPC architectures we suggest that the following novel methods are investigated (and
incorporated into the code if appropriate).

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 14

Selected EXDIG Kernels for refactoring and optimization:

1. Analysis of a newly developed multi-threaded variant of the diagonalization algorithm
MRRR called mr3smp [18].

2. Analysis of real symmetric diagonalization routines made available through the
PLASMA [19] or MAGMA [20] numerical library initiatives, which are designed
specifically for multi-core and GPU-based platforms.

2.3.2 EXAS Stage

In this stage of the calculation the majority of the processors available are arranged in arrays
of processor pipelines, where each ‘node’ of the pipeline represents one sector. These
pipelines are supplied with initial R-matrices (one for each scattering energy) from the inner
region boundary by an R-matrix production group of processors (domain decomposition
calculation). The final R-matrices produced by the propagation pipelines are passed on to a
final group of processors for a task-farmed asymptotic region calculation, before results such
as collision strength results are written to disk. The decomposition is shown in the figure
below.

Figure 8: Example Process Decomposition in the EXAS Stage

The significant advantage of this ‘hybrid’ decomposition of tasks in EXAS is that much of the
initial R-matrix and sector R-matrix propagation calculation on each node of the pipeline can
be based upon highly optimised level 3 BLAS routines, leading to highly efficient usage of
the underlying HPC architecture [21]. The main priority is therefore to optimize the number
of processes dedicated to each task-group, particularly the asymptotic region calculation, and
minimize the runtime management (data collection) group whilst ensuring the best achievable
load-balancing properties. The processor configuration is currently determined automatically
via a Perl script using predictive algorithms for expected performance of each task-group
[15], but this is in need of updating for the latest multi/many core and accelerator based
architectures.

Many calculations using HPC electron collisions codes involve many different stages of
computation involving different scales of computation (e.g. number of cores suitable).
Therefore overall performance is highly dependent upon efficient portable, parallel I/O
transfer between different numbers of cores and hence different HPC platforms. To help

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 15

facilitate these important requirements, the proposed work will involve parallel extension,
testing and application of I/O management and wrapper systems recently developed for the R-
matrix suite [22] which can automatically handle and switch between local binary and
portable XDR formats.

Selected EXAS Kernels for refactoring and optimisation:

1. Update of auto-load-balancing script and algorithm for target architectures (0.5
Months)

2. Debugging, testing and further development and parallelization of existing I/O
wrapper system. (1 Month)

3. Incorporation of parallel I/O wrapper system into PFARM electron collision codes
(a software package containing several parallel programs): adjust automated sub-
task core-group assignment algorithm to take account of the efficient I/O as
required. (3 Months)

4. Development of self-contained parallel I/O wrapper library package for more
general use and distribution. (1 Month)

5. Determination of optimal I/O settings on PRACE systems, benchmarking of
optimized codes (i.e. using I/O wrapper library) on PRACE systems. (0.5 Months)

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 16

3 Climate
In deliverable 8.1.2 [7], seven codes were evaluated and analysed within four different areas
of computational climate science:

1. Couplers: OASIS
2. Input/Output: CDI, XIOS, PIO
3. Dynamical cores: ICON
4. Ocean Models: NEMO, ICOM

The performance analysis of these codes already led to initial thoughts on the kernels which
should be investigated, and the technologies (hardware, programming paradigms, etc.) which
might be employed to achieve a considerable increase in performance. In this section
individual kernels, which are representative for the codes as a whole, are selected for intense
refactoring for emerging architectures, to which PRACE will soon have access.

3.1 Couplers: OASIS

OASIS was reviewed in D8.1.2 as a key component in most large European climate models,
and its performance was seen to be a bottleneck. Two solutions are being examined: OASIS3-
MCT and OASIS4.

The first is the modification of OASIS-3 to use the Model Coupling Toolkit (MCT [34]),
which also couples components in the American National Center for Atmospheric Research
(NCAR) Community Earth System Model (CESM). MCT requires that the regridding
weights are pre-computed offline, but then implements fully parallel regridding and
exchanges of the coupling fields.

OASIS3-MCT is currently being tested by CERFACS on the PRACE Tier-0 Bullx computer
CURIE on the “toymodel” test up to 2048 cores, with decompositions similar to those used in
the EC-EARTH model. This work is at a preliminary stage, with the coupling of the OASIS3-
MCT still under development. Profiling has been done on a high-resolution test case with the
atmosphere component using a IFS T799 grid and the ocean component using the ORCA 0.25
deg grid. The toymodel performs 120 coupling exchanges.

Initial analysis shows that time taken for toyocn/atm decreases from 1 to 64 cores but then
increases. This is because of a poor scaling of the coupling initialization phases and because
the initialization here has a relative high cost. Some work should be done to reduce the
coupling initialization phases, but in all cases, the cost is small compared to the cost of the
real component for a real run of the equivalent duration (i.e. 5 days if there are coupling
exchanges every hour).

In the initialisation phases, some time is spent before calling the prism_enddef_proto and in
the calling to prism_enddef_proto. Before calling the prism_enddef_proto, most of the
time is spent when calling mct_gsmap, which defines the coupling map from distributed data.
In prism_enddef_proto, most of the time is spent in the call to prism_coupler_setup and
in the distributed read of the NetCDF SCRIP file.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 17

Figure 9: time spent in OASIS3-MCT initialisation

Most interesting is the time of the ping-pong exchanges (see Figure 10)"toyocn/atm : Ping-
pong exchange"), which represents the overhead of the coupling exchanges (not taking into
account the coupling initialization overhead). This time decreases from 1 to 128 cores but
then increases slightly to about 5 sec for 2048 cores. This is mainly the matrix-vector
multiplication (for the remapping from the source to the target grid) and communication; an
overhead of 5 sec for 120 interpolations + exchanges of 2 high-resolution fields is quite
reasonable.

The increase of the time needed for the ping-pong from 128 to 2048 cores is partly linked to
the increase of the time required for the matrix-vector multiplication. This is not yet
understood, and some time should be devoted to understand why that is.

Hence initial targets for analysis and comparison of OASIS3-MCT and OASIS4, which are
conceptually identical in precalculating the gridding, are the scaling of initialisation and time
required for the matrix-vector multiplication.

Figure 10: OASIS3-MCT: Ping-pong (coupling exchange)

3.2 Input/Output: CDI, XIOS, PIO

In D8.1.2 [2] we proposed within PRACE-2IP WP8 to compare several I/O and processing
tools, with the aim of proposing and developing efficient generic solutions. The tools to be
considered are CDI developed at MPIM in Hamburg, XIOS developed at IPSL in Paris, and
PIO developed at NCAR in boulder, USA.

3.2.1 Description of Code: CDI

Climate Data Interface, CDI has been developed at MPI Meteorology in Hamburg to provide
an efficient I/O server mechanism for climate codes, in particular for the ECHAM climate

0,0000

20,0000

40,0000

60,0000

80,0000

100,0000

120,0000

140,0000

1 4 16 64 256 1024

T
im

e
(s

.)

Cores

Datenreih
en1

Datenreih
en2

0,0000

5,0000

10,0000

15,0000

20,0000

25,0000

30,0000

35,0000

1 4 16 64 256 1024

T
im

e
(s

.)

Cores

Datenreih
en1
Datenreih
en2

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 18

model. It implements a strategy of using separate I/O nodes responsible for doing file writing,
with each of the compute nodes storing data in buffers that are RDMA-capable, so that the
nodes running the model can copy data to these buffers and continue while the I/O nodes
collect this data, do transpositions necessary to orientate arrays for storage, compress records
and write them.

Secondly, the CDI interface provides an abstraction allowing a variety of output formats to be
used, in particular both NetCDF3/4 and Grib1/2 formats. This is important for models that are
used for “seamless” or “unified” prediction, where the same model is used for both weather
and climate prediction. This includes models such as the IFS atmosphere model used in EC-
EARTH and the UK Met Office Unified Model. For NWP, GRIB output is preferred for size
reasons, but in climate modelling, the higher numerical accuracy of NetCDF is preferred.
Hence it is desirable that I/O processors are capable of writing both.

In performance tests done to date, CDI has shown linear scaling up to the limits of I/O
bandwidth possible at MPIM (30 GB/s total system bandwidth, but 2 GB/s bandwidth per
node for 250 nodes). Work is currently underway to measure the scaling of CDI. Scaling is
determined by:

 total systems hardware bandwidth,
 single node hardware bandwidth,
 available memory on I/O nodes,
 encoding and compression,
 network jitter for RDMA access,
 memory used on compute nodes,
 memory requirements for post-processing.

Principally then, the scaling of the I/O server system is set by hardware and memory,
especially memory for post-processing. Hence full profiling of CDI needs to be done in the
context of a plan for what post-processing may be done on the I/O nodes

3.2.2 Description of Code: XIOS

XIOS is the parallel I/O software, written in C++, developed at IPSL for climate codes. This
code was described in detail in [2]. The software has two aims: i) a parallel output system,
and ii) a simple configuration of model outputs through XML files. A draft version has been
developed, mainly to test the main concepts. XIOS Server version 1 is in beta state, with
delivery to users this month.

To date no real performance testing has been done with XIOS.

A meeting has been arranged for DKRZ (German Climate Computing Centre) in February to
include PRACE partners and the community developers, in particular the CDI and XIOS
developers, to investigate the opportunities for a generic I/O module and scaling tests will be
planned for PRACE Tier-0 systems.

3.2.3 Description of Code: PIO

PIO is a thin layer placed on top of existing, more general parallel I/O libraries. This layer
clearly separates the concerns of earth science application, e.g., the desire for a simple
mapping between the process-local and global depiction of a field, and those of the I/O
library, which are generally associated with efficiency.

PIO is a mature library. Performance results were discussed extensively in [7]. There are no
plans to refactor PIO, but rather to use PIO in a comparative study. Thus the only targeted
kernel will be the I/O driver, which will be modified for the PIO API.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 19

3.3 Dynamical Cores: ICON

The emerging ICOsahedral Non-hydrostatic (ICON) model was determined [11] to contain
the only emerging, near-production European dynamical core, to which software engineers at
PRACE centres could actively and beneficially contribute. Of particular long-term interest is
ICON’s non-hydrostatic (NH) solver, as it will play a key role in versions of ICON using
mesh refinement for enhanced resolution over certain geographic regions. Detailed
performance analysis and modelling [11] indicated that the NH-solver is entirely memory
bandwidth-bound, and that its performance adheres well to the Roofline Model [13] for
processor performance, and correlates particularly well with the STREAM benchmark for
memory bandwidth. Moreover, initial results [11] of the MPI-parallel NH-solver indicate
reasonable strong scaling of a moderately high-resolution test case (roughly 69 km) to 1024
MPI processes, but only modest scaling thereafter. We conclude that NH-solver should be
refactored to offer additional levels of parallelism, e.g., multi-threading for (possibly
heterogeneous) multi-core platforms.

A feasibility study [13] considered the ICON testbed [11] NH-solver, which has been
parallelised for OpenMP multi-threading, but not MPI distributed memory parallelism. The
NH-solver was rewritten in OpenCL to offer multi-platform compatibility. The study
concluded that the implicit vertical solver, which solves a linear tridiagonal system of
equations with the order of the number of vertical levels (approx. 60 columns), was a
significant bottleneck to GPU parallelisation. In Figure 11 one vertical column (containing
two triangles and one diamond) represents the same kernel run on either an NVIDIA Fermi
(medium and high resolution) or AMD Cayman (high resolution). Two kernels stand out with
much lower performance than predicted by the roofline model. These have loop dependencies
and are both related to the implicit vertical solver.

Figure 11: Performance of individual OpenCL kernels in the ICON NH-solver multi-platform
implementation.

It seems clear that the tridiagonal solver needs to be investigated. One issue is the extensive
optimisation of ICON for vector machines, in which higher dimensional temporary arrays are
often introduced to avoid data dependencies.

The feasibility study has, however, clearly proven the potential of GPUs for the ICON NH-
solver. In contrast to that study, the work in WP8 will be based on the MPI-enabled

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 20

development version available through collaboration with MPIM and DWD. From the
analysis presented here and in [11] efforts on the following kernels could bring tangible
benefits to the ICON project, and thus to the greater community:

1. Firstly, it is would be necessary to clearly define the set of kernels. One option would
be to adopt the kernel taxonomy from the feasibility study [13]. Generally each nested
loop of the existing solver would roughly map to one kernel. Certain kernels, such as
gradient and divergence are already well-defined and currently correspond to
subroutines. But for the most part, the current code is a monolithic collection of these
loops, so written to perform well on vector architectures.

2. In conjunction with MPIM and DWD, optimisations to the vertical implicit solver
need to be made, while leaving in the current optimisations for vector architectures in
place (possibly utilising CPP directives). Subsequently the gain (or loss) in
performance will be evaluated on various CPU and vector architectures.

3. After agreement on the proper programming paradigm for multi-core architectures
(e.g., OpenCL or CUDAFortran), the kernels defined in points 1 and 2 would be
programmed, optimised and incorporated into the MPI-enabled ICON development
code.

3.4 Ocean Models

2.4.1 NEMO

NEMO [24] is a widely-used, highly portable numerical platform for simulating ocean
dynamics, biochemistry and sea-ice. It is written in Fortran90 and parallelised using MPI
with a regular domain decomposition in latitude/longitude. The governing equations are
solved in finite-difference form upon a tri-polar 'ORCA' grid to get rid of the north pole
singularity.

The two key performance-limiting factors for NEMO identified during the profiling stage [7]
were the poor scaling of the amount of time spent in MPI and the high memory-bandwidth
requirements of its computations. (We leave input/output performance as a separate issue
tackled in Section 3.2) Here we consider two strategies for tackling the memory-bandwidth
demands – porting the code to make use of a GPU with its greater memory bandwidth and
porting the code to OpenMP with the hope of achieving more efficient use of on-chip cache.

Unfortunately NEMO has a rather flat profile [7] and therefore the memory-bandwith issue
permeates much of the code. Despite this, we can select kernels for this work according to the
relative significance of the various subroutines found during the profiling stage [7] for single
node performance. Therefore, we will work on kernels based on the traldf_iso(), lim_rhg()
and traadv_tvd() subroutines since these account for 5.1%, 13% and 4.3%, respectively, of
wall-clock time when the ORCA2_LIM configuration (global model at 2 degree resolution
coupled with the LIM sea-ice model) is run on 12 cores of a Cray XE6 (HECToR [26]). We
anticipate that these proportions will remain similar for multi-node runs.

Although lim_rhg() is easily the most expensive of these routines, it is likely that this is due to
load-balancing as well as to memory bandwidth since the sea-ice properties are only
computed by MPI processes which have sea-ice in their domain. For this reason we will also
consider the traldf_iso() and traadv_tvd() routines which deal with the lateral diffusion and
advection of tracers, respectively. The first of these is more expensive and has the advantage
of being relatively short and free of any MPI calls and therefore should be a straightforward
test case. The second brings in the complexity of MPI calls, which will be a key issue for both
OpenMP and GPU implementations. In both cases this is because the MPI calls represent
thread synchronisation points. In the case of the GPU there is an additional difficulty since,
with current technology, the MPI library will only be able to access data in the address space

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 21

of the CPU. Consequently, data must be transferred between the CPU and GPU to service the
MPI calls. Since the current generation of many-core devices must be accessed over a PCI
Express bus, the transfer of data between the CPU and GPU can be a significant bottleneck.

As listed in Table 1, there are currently several ways of writing code for execution on a GPU.
Of these, three are specific to NVIDIA hardware and while NVIDIA currently has the edge in
GPU hardware, both AMD and Intel are working to develop their offerings in this area. A
second key issue is the fact that NEMO is written in Fortran while CUDA and OpenCL are
both C-based. The performance benefits of running on a GPU would have to be substantial to
warrant the effort required to re-write tried, tested and trusted parts of NEMO in C.

Approach Notes Fortran
support

PGI Accelerator Directives Currently NVIDIA specific Yes

HMPP Workbench Can generate CUDA and OpenCL
code, will support Intel MIC in
2012.

Yes

PGI CUDA Fortran NVIDIA specific Yes

OpenCL Portable, open standard No

CUDA C Widely used, mature and low-
level but NVIDIA specific

No

Table 1: The available options for programming a GPU.

As a consequence of these considerations we will use only directives-based approaches in this
work since, in principle, they allow the original Fortran code to remain unchanged and also
have the potential to generate code for different GPUs. In fact, HMPP Workbench (a product
from the French company CAPS Entreprise) can generate either CUDA or OpenCL code
from the same instrumented source (including Fortran to OpenCL and Fortran to CUDA/C++
translators).

Inevitably there is a compromise here in that the use of a higher-level programming model
often precludes some of the optimisations that might be viable when using a lower-level
language such as CUDA. In their work on porting a kernel from the Weather Research &
Forecast (WRF) model, the authors compared the performance achieved when using PGI
Accelerator Directives with that of a hand-written CUDA version by J. Michalakes (one of
the WRF authors). Although the GPU compute part of their initial version was twice as slow
as the CUDA version, after manually applying some of the loop transforms used in the latter,
it was actually some 26% faster. Including data transfers, their GPU version of the kernel was
a factor of 2.7 times faster on an NVIDIA Tesla than on four cores of an Intel Nehalem. We
can conclude that using directives is not necessarily a barrier to performance although it may
prove necessary to alter the source code in order to take full advantage of the GPU
architecture.

Many-core devices are widely acknowledged as being a key building block of future
supercomputers. In fact, four of the top ten machines in the June 2011 Top500 List of
Supercomputers [27] are already using some sort of many-core accelerator. It is therefore
essential to assess the potential of this hardware for a code such as NEMO so as to inform
future development effort on both it and any successors. From the work in [23] it seems
reasonable to expect a speed-up in the region of two to three for a given kernel on a GPU as
compared to a version using all of the cores on a CPU. Creating OpenMP versions of the

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 22

kernels will both enable realistic comparisons with GPU performance as well as inform the
best way of making use of the available memory bandwidth on the now ubiquitous many-core
CPUs. It also appears that OpenMP is one of the ways in which the new Intel MIC
architecture can be programmed and will therefore provide a way of testing performance on
this new approach to many-core hardware.

3.4.2 Fluidity-ICOM

Fluidity-ICOM is an open-source partial differential equation simulator for unstructured
meshes used in a diverse range of geophysical fluid flow applications. Fluidity-ICOM uses
state-of-the-art and standardised 3rd party software components whenever possible. For
example, PETSc is used for solving sparse linear systems while Zoltan is used for many
critical parallel data-management services, both of which have compatible open source
licenses.

Typically current computer systems are based on interconnected multi-core processing units,
each of which has a non-uniform memory access (NUMA) architecture. Such multicore
clusters provide a natural environment for the mixed-mode programming paradigm, whereby
OpenMP can be used for sharing data between the cores that comprise a single node and MPI
can be used for the communication between computing nodes.

Previous benchmarking [7] has already shown that the two dominant simulation costs are
sparse matrix assembly (30%-40% of total computation) and solving the sparse linear systems
defined by these equations. Recent work by the Applied Modelling and Computation Group
(AMCG) at Imperial College, and Fujitsu Laboratories of Europe Limited (FLE) has found
that the Hypre library’s hybrid sparse linear system solvers/preconditioners, which can be
used by Fluidity-ICOM through the PETSc interface, are competitive with the pure MPI
implementation on Intel's Woodcrest processors (4-way nodes). There is also an ongoing
project on hybridizing PETSc with MPI and OpenMP. Therefore, in order to run a complete
simulation using mixed mode parallelism, sparse matrix assembly is now the most important
component remaining to be parallelised using OpenMP.

Performance Improvement: Matrix assembly kernel

While improving I/O is not a direct objective of this work plan, significant benefit can be
expected from using mixed-mode parallelism. For example, only one process per node will be
involved in I/O (contrast with the pure MPI case where potentially 24 processes per node
could be performing I/O on Phase 2b of HECToR), which will significantly reduce the
number of metadata operations on the file system at large process counts. In addition, the total
size of the mesh halo increases with number of partitions (i.e. number of processes). It can be
shown empirically that the size of the vertex halo in a linear tetrahedral mesh grows as
O(P1.5), where P is the number of partitions. Therefore, the use of hybrid OpenMP/MPI will
decrease the total memory footprint per compute node, the total volume of data to write to
disk, and the total number of metadata operations given Fluidity’s files-per-process I/O
strategy.

For a given simulation, a number of different matrices need to be assembled, e.g. continuous
and discontinuous finite element formulations for velocity, pressure and tracer fields for the
Navier-Stokes equations and Stokes flow. Each of these have to be individually parallelised
using OpenMP. Parallelism can be realised through well-established graph colouring
techniques, where the graph defines the data dependencies in the matrix assembly. This
approach removes data contention, so called critical sections in OpenMP, allowing very
efficient parallelisation.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 23

The procedure is as follows:

1. Calculate the dual graph mesh from the input mesh. This is only done once.

2. Create the sparsity pattern from the dual graph mesh for the different finite-element
type schemes of the different terms in the equations. For instance, the upwind scheme
for the advection term and the Compact Discontinuous Galerkin scheme for the
diffusion term. This will produce the element dependency graph.

3. Using the greedy colouring algorithm, colour the dual graph according to the sparsity
of the adjacency matrix of the graph. If the vertices are ordered according to their
degrees, the resulting greedy colouring uses at most one more than the graph’s
maximum degree. (This heuristic is sometimes called the Welsh–Powell algorithm.)

4. Add a loop over colours outside the OpenMP parallel region. Within the parallel
region there are no data dependencies in the calculation, which would hinder efficient
execution.

One of the key performance considerations for achieving performance on ccNUMA nodes is
memory bandwidth. In order to optimize memory bandwidth, we will employ the following
methods to ensure good performance:

 First touch initialisation and other methods to ensure that page faults are satisfied by
the memory bank directly connected to the CPU that raises the page fault;

 Thread pinning to ensure that individual threads are bound to the same core
throughout the computation.

Typically all of the above must be implemented in order to minimise data traffic between
CPU’s and non-local memory banks. With the above procedure, we expect that using pure
Open-MP will give better performance than pure MPI within one node. With threaded PETSc,
we are expecting improved scalability for Fluidity-ICOM.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 24

4 Material Science
4.1 ABINIT

ABINIT [37] is a package, delivered under the GNU General Public Licence (GPL), whose
main program allows one to find from first principles the total energy, charge density,
electronic structure and miscellaneous properties of systems made of electrons and nuclei
(molecules and periodic solids) using pseudo-potentials and a plane-wave or wavelet basis.
The basic theories implemented in ABINIT are Density-Functional Theory (DFT), Density-
functional perturbation theory (DFPT), Many-Body Perturbation Theory (the GW
approximation and Bethe-Salpeter equation), and Time-Dependent Density Functional
Theory.

The main ABINIT program includes options to optimise the geometry according to the DFT
forces and stresses, to perform molecular dynamics simulations using these forces, to
determine transition states. It can also directly generate dynamical matrices, Born effective
charges, dielectric tensors, and other linear and non-linear coupling quantities, based on
Density-Functional Perturbation Theory. Excited states computations from Many-Body
Perturbation Theory (the GW approximation) delivers band gaps generally in excellent
agreement with experiment, unlike with DFT. Accurate Optical properties are obtained with
excitonic effects within the Bethe-Salpether equation.

Historically, ABINIT uses plane-waves to describe the electronic wave functions; it makes an
intensive use of Fourier transforms, in particular when applying the local part of the
Hamiltonian. In recent years, a development of wave functions utilising a wavelet basis has
been introduced (for the ground state calculations), using wavelet transforms and a specific
Poisson operator in real space. The implementation of wavelets has been achieved in the
project named "BigDFT". During this project, a library of functions devoted to wavelets has
been produced. It is used by ABINIT and can also be called from a standalone executable.
The library and the standalone code are inseparable parts of the ABINIT project.

ABINIT parallelisation is exclusively performed using the MPI library for the current stable
version and for ground-state calculations. In a beta version, several time consuming code
sections of the ground-state part have been ported to GPU. Even if it is already useable, this
level of parallelisation is work in progress.

As for the performance analysis phase [7], this “performance improvements exploration”
phase is divided in three sections: 1-ground-state calculations using plane waves, 2-ground-
state calculations using wavelets, 3-Excited states calculations.

4.1.1 Performance improvement: ground-state calculations using plane waves

During the performance analysis phase [7], we identified the critical parts of the code:

 LOBPCG algorithm and diagonalisation/orthogonalisation of wave functions: this
routine solves the eigenvalue problem by minimisation using LOBPCG algorithm

 Hamiltonian application: this routine applies Hamiltonian H (and overlap matrix S) to
the wave-functions, divided in local operator, non-local operator and communications.

 Forces: this routine computes forces on atoms.

Several other sections have been investigated, but proved to be negligible compared to the
previous sections. When looking at the code performances increasing the number of CPU
cores, it clearly appears that the main obstacle to scalability is the application of LOBPCG
algorithm. Only this part will be investigated here.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 25

Figure 12: Repartition of time in ABINIT routines: on the left: varying the number of plane-wave CPU
cores; on the right: varying the number of band CPU cores.

4.1.1.1 Eigenvalue problem (LOBPCG) improvment: Prototype code improving load
balancing; Prototype code using openMP parallelization.

The Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) is an
algorithm for finding the smallest eigenvalues and the corresponding eigenvectors of a
symmetric positive definite generalized eigenvalue problem.

As shown in the Figure 12, the time spent in the LOBPCG algorithm become predominant; a
first (but deep) analysis of the corresponding code section demonstrated that this is essentially
due to: 1- an unbalanced load, 2-communications in orthogonalizations/diagonalizations.

In order to improve the performances, both the load balancing must be improved and the
communication overhead must be reduced.

The envisaged prototype codes are the following:

1- Unbalanced load correction

The unbalanced load is due to both “band” and “plane wave” distribution. In some
disadvantageous cases, some cores can have a load 1.75 times larger than others. Plane
wave vectors are incorrectly distributed among processors. Modifying their repartition,
according to the physical system, can change this. Only a minor modification at the level
of the distribution routine is required, but this has to be done with subtlety.
The expected improvement depends on the treated physical system but can reach 50% on
some disadvantageous cases.

A prototype code applying the non-local Hamiltonian using a better band/plane wave
distribution will be tested.

2- Communications in diagonalizations/orthogonalizations

The analysis shows that the implicated communications mainly are reductions in the
orthogonalization and eigenvalue solvers. As there is no hope in decreasing the size of the
matrices, the most promising evolution seems to be the use of shared memory
parallelism… and openMP is the most natural choice. This choice is reinforced when
looking at the architecture of some of the PRACE nodes. The TGCC-CURIE computer
has a “large-nodes” partition with possibly 128 cores on each node.

A prototype code of the orthogonalization routine using openMP will be tested.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 26

4.1.1.2 Use of Graphics Processing Units improvement: Prototype code using GPU
activation thresholds

Use of Graphic Processing Units (GPU) will be available in the 6.12 version of ABINIT; this
implementation is in beta stage. It uses NVIDIA CUDA library and is still evolving. Some
additional “free of use“ packages have been also linked: NVidia cuBlas, NVidia cuFFT,
MAGMA.

The GPU implementation is fully compatible with all MPI levels of parallelisation except at
the plane wave level. Performance tests show that it is only efficient when the computational
load is large enough, i.e. when big physical systems are treated (large simulation cells and/or
heavy materials). It is also demonstrated that the efficiency of the GPU code strongly depends
on the performance ratio between CPU and GPU.

In order to improve the performance, an envisaged modification is the (automatic) activation
of the use of GPU code sections when thresholds are reached. This concerns the FFT and the
LaPACK calls. For these two different parts, the thresholds are necessarily different. This
implementation will be based on the automatic determination of thresholds according to the
CPU/GPU architecture (only CPU/GPU ratio is important, taking transfers into account). This
could be made by calling small FFT or LaPACK routines at start simultaneously on CPU and
GPU and comparing the obtained performances. Then, according to the physical system size,
the code could decide to use CPU or GPU version of the algorithms.

A prototype code using an automatic process to determine whether GPU has to be used
for FFT or LaPACK will be tested.

4.1.2 Performance improvement: ground-state calculations using wavelets (BigDFT)

BigDFT uses three level of optimization:

 MPI over orbitals for coarse parallelization,

 OpenMP for each orbital for fine optimization,

 OpenCL to accelerate the code by means of GPUs.

As in the plane wave version of ABINIT, we would first improve the OpenMP optimization
of BigDFT especially for the exchange-correlation potential calculation (LibXC). This task is
straightforward and should give some significant performance imporvements for small
simulated systems. This will represent a gain between 10 and 20% depending on the number
of threads.

A prototype code calculating the exchange-correlation potential with openMP directives
will be tested.

The second task would be the improvement of the Poisson solver used both by BigDFT and
ABINIT. The Poisson solver is based on FFT (Fast Fourier Transform) in order to calculate
long range solution of the Poisson equation. The second task would be the use of OpenCL to
calculate FFT on GPUs in order to accelerate the Poisson solver. This will represent a small
gain for large systems but a substantial gain for small systems. The main interest is to have an
OpenCL version of FFT is to accelerate also the exchange-correlation calculations in the
specific case of hybrid functionals. In this case, the gain will be substantial for large systems.
The calculation of the exchange-correlation for hybrid functionals represents 90% of the time.
Using GPUs, we will reduce the execution time by a factor of 6. This will give a gain of 4 for
the whole code.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 27

We point out that this speedup could be also realised by means of OpenMP directives. The
advantage of using GPU is important if we can use both OpenMP and GPU for different
operations in the code. This will be realised in future developments.

This OpenCL FFT could be also used in future developments for the excited states calculation
which use a large number of FFTs.

A prototype code will be tested with OpenCL FFT for all long range convolutions.

4.1.3 Performance improvement: excited states calculations

GW calculations are very CPU and memory demanding due to the large number of empty
bands that are usually needed to converge the quasiparticle corrections. For this reason, the
GW code of ABINIT distributes the full set of bands at the beginning of the run such that each
Processing Unit can compute locally its own partial contribution without having to exchange
data with the other MPI nodes involved in the run. Most of the computation is distributed
among the node and a few collective MPI communications are required to gather the final
results.

The preliminary tests performed at the Barcelona Supercomputing Center have revealed that
both the computation of the polarizability and of the self-energy matrix elements scale well up
to 512 processors. The degradation of the total speedup observed for large number of
processors is mainly due to:

 The reading of the orbitals from the KSS file

 The matrix inversion performed during the computation of the screening.

 An unbalanced distribution of the work during the calculation of the exchange part of
the self-energy.

The envisaged prototype codes are the following:

1- Reading of the orbitals

In order to achieve better scaling in the I/O part, we plan to replace the plain Fortran-IO
implementation with a new version based on MPI-IO.

A prototype code using collective MPI-IO routines to read the orbitals will be tested.

2- Matrix inversion

The matrix inversion represents a serious bottleneck for large-scale applications since the
CPU time quickly increases with the number of atoms.

A prototype code using ScalaPACK routines to to perform the inversion will be
tested.

3- Unbalanced distribution

The unbalanced distribution of the work in the calculation of the exchange part of the self-
energy can be avoided by resorting to a different distribution of the orbitals such that each
node can participate in the computation.

A prototype code employing a different MPI distribution of the orbitals will be
implemented and tested.

Another point worth stressing is that the present implementation is best suited for crystalline
compounds where symmetries can be used to reduce the number of independent matrix
elements that have to be computed explicitly. Isolated or disordered systems can be treated by
means of the supercell technique but, in this case, the implementation is not optimal as the

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 28

non-scalable arrays whose size increases with the number of atoms will dominate the memory
requirements.

To overcome this limitation we plan to use a hybrid MPI-OpenMP implementation in which
MPI is used at a coarse level in order to distribute the most memory-demanding arrays while
OpenMP is employed for the fine grain parallelization.

A prototype code employing OpenMP to parallelize the most CPU intensive parts (FFT,
matrix algebra, loops,…) will be implemented and tested.

4.2 Quantum ESPRESSO

Quantum ESPRESSO [38] is a distribution of software for atomistic simulations based on
electronic structure using density-functional theory with a plane-wave basis set and pseudo
potential. Main packages are PWscf (PW), a self-consistent electronic structure solver, and
CP, a variable-cell Car Parrinello molecular dynamics package.

The flowchart of the PW code is shown in the figure below. This is the typical flowchart of a
density-functional calculation: in the self-consistency cycle, once the wave functions are
calculated from the input, the diagonalization of the Hamiltonian matrix is performed for each
k-point. As we showed in D8.1.2, this is certainly the most expensive part of the self-
consistency cycle. Then the charge density is calculated and from that new potentials are
generated.

Figure 13: Schematic UML activity diagram of PWscf code.

The computational cost of the diagonalization of the hamiltonian matrix is strictly related to
the physical properties of the system under investigation. PW implements two different
methods to achieve this task: a Davidson method and the Conjugate Gradient method. Within
this project we aim to focus on the Davidson method since it is widely used also in other
Quantum chemistry codes.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 29

Figure 14: Flow diagram of the CP code implemented in the Quantum ESPRESSO suite.

The CP code (schema above) calculates the molecular dynamics of a system following the
Car Parrinello schema. After the solution of the density-functional problem, for each time step
along the trajectory, ionic and electronic forces should be calculated in order to evolve the
dynamics of the system. In this case, as we showed in the previous deliverable, a relevant part
of the computation effort is due to the evaluation of forces. Here, a significant issue is related
to the computation of the 3DFFT. The second main bottleneck, in terms of scalability is
given, as for PW, by linear algebra (including a matrix diagonalization) involved in the wave
functions orthogonalization process (not displayed in the figure, but computed in each step).

4.2.1 Performance Analysis Resume

Potential bottlenecks in both PW and CP are strictly related to some physical quantities of the
system that affect both array and matrix dimensions (see table below).

Id Brief Description

N_w Number of plane waves used in wavefunction expansion *

N_g Number of G-vectors (used in potential/charge density expansion)**

N_i Dimensions of the FFT grid. Where i = 1,2,3...

N_a Number of atoms in the unit cell or supercell

N_b Number of (Kohn-Sham) states (bands) used in the calculation.

N_p Number of projectors in non-local pseudopotentials (summed over the cell)

N_k Number of k-points in the irreducible Brillouin Zone

* N_w ~ V (size of the unit cell)

** N_g ~ N_1 x N_2 x N_3 - N_g ~ a N_w
with a=8 for a norm-conserving pseudopotential and a=20 for a ultrasoft.

The main common computational engines of those codes are modularized such that high
performance across different architectures is achieved by the systematic use of standardized
mathematical libraries such as BLAS, LAPACK, ScaLAPACK and FFTW (see table below):

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 30

Problem Current Implementation

Calculation of density, n(r) FFT + Linear algebra (matrix-matrix
multiplications, matrix size ~ N_w x N_a*N_p)

Calculation of potential
V(r)=Vxc[n(r)]+VH[n(r)]

FFT + operations on a real-space grid

Iterative diagonalization (PW); electronic
force calculation (CP), H\psi products

FFT + linear algebra (matrix-matrix
multiplications, matrix size ~ N_w x N_b)

Subspace diagonalization (PW); iterative
orthonormalization of Kohn-Sham states
(CP)

Diagonalization of matrices + matrix-matrix
multiplication, matrix size ~ N_b x N_b

Although the performance of the key engines (PWscf and CP) was demonstrated to run and
scale efficiently on massively parallel computers up to thousands of processors, the previous
document [7] underlined how both the diagonalization of the Hamiltonian matrix and FFT
computation become main bottlenecks when increasing the number of distributed nodes.

4.2.2 The state of the art

While the current G-space data distribution is better exploited during subspace
diagonalization (PWscf) or iterative orthonormalization (CP), it does not represent the best
solution while performing a number of 3DFFTs across distributed G-vectors. A band-index
parallelization would certainly design a schema performing better on massive parallel
architecture. Pre and post data reordering does not reduce the amount of communication but it
would allow performing each single 3DFFT locally. This solution has never been
implemented in Quantum ESPRESSO but it gains strength when considering a huge increase
of compute density into heterogeneous computing nodes, as this is one of the recognized
faithful road-maps toward the next generation of supercomputers [31].

Figure 15: Compute time spent to solve eigenvalue problem comparing single node libraries such as
LAPACK (red), MAGMA (green-hybrid) with ScaLAPACK (blue-pure MPI). On the x-axis and y-axis
the number of cores used for PWscf calculation and the time in seconds are shown.

Subspace diagonalization (PWscf) or iterative orthonormalization (CP) require linear algebra
operations (eigenvalue/eigenvector solvers and matrix-matrix multiplications) on square N_b
× N_b matrices, where N_b is the number of electron states (or a small multiple of it). By

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 31

default this algorithm is performed using the LAPACK library but to exploit architectures
with a small amount of memory on each node (for large systems N_b ~ several thousands),
ScaLAPACK parallel diagonalization routines are available to perform this operation on
distributed data.

While the scalability limitations of the ScaLAPACK library are well know this schema
usually demonstrated better performance than the use of LAPACK within a single CPU node.
This perspective certainly changes if we consider the use of MAGMA/PLASMA which
allows us to take full advantage of hybrid accelerated nodes (see Figure 15). These
preliminary numbers certainly require a deeper analysis but already show how the use of
accelerators can be considered an option to improve performance. The substitution of the
Davidson algorithm with an indirect subspace iteration method or the use of a conjugate
gradient approach are considered two other possible options to overcome this problem. In
particular, the latter method is already implemented within the CP module. However this
would return to what is reported on the previous paragraph: the need to improve the efficiency
of the 3DFFT calculations.

The most recent version of PWscf has been ported to NVIDIA GPUs. This version takes
advantage of the phiGEMM developed at ICHEC. The phiGEMM library extends the
NVIDIA version to support matrix-matrix multiplication on single-precision, double-
precision and complex matrices in both transpose and conjugate forms along with other
features described later. In [32], it is reported how the use of phiGEMM library can have an
outstanding impact on the scf calculation.

4.3 Yambo

Yambo [36] is an ab initio code for calculating quasiparticle energies and optical properties of
electronic systems within the framework of many-body perturbation theory (MBPT) and
time-dependent density functional theory (TDDFT). Quasiparticle energies are calculated
within the GW approximation for the self-energy. Optical properties are evaluated either by
solving the Bethe–Salpeter equation or by using the adiabatic local density approximation.

During the performance analysis phase a very clear bottleneck was identified: the matrix
inversion step, as can be seen in Fig. 58 of D8.1.2. The use of ScaLAPACK does not seem to
bring any scaling improvements, although some runtimes are smaller than when using
standard LAPACK (Fig. 59 of D8.1.2). The matrix inversion procedure used in the code,
with either LAPACK or ScaLAPACK, is based on LU factorization (LAPACK routines zgetri
and zgetrf). In order to improve the performance of this step of yambo, a new method is
therefore needed. Several alternatives can be considered:

1. Use of GPUs, i.e., use of GPU versions of zgetrf and zgetri. This implies that the
entire matrix is sent to the GPU, which might pose a problem for large matrices (a
fairly typical 9000x9000 complex matrix occupies 1.2 GB).

2. Use of MAGMA for the LU factorization. This approach has the same drawbacks as
the previous one.

3. Replace LU-factorization based Gaussian elimination by Gauss-Jordan elimination,
that is essentially a refinement/operation reordering of the former.

The proposed course of action is to start by implementing proposal 2. above, as this requires
minimal coding and proceed to develop and implement a multicore and/or GPU aware version
of Gauss-Jordan elimination.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 32

4.4 Siesta

As the performance analysis in [7] clearly showed, by far the most important kernel to work
on is the diagonalisation. Currently Siesta [39] uses routines provided by the ScaLAPACK
library. It suffers from two disadvantages:

1. It is meant for dense matrices, so the amount of memory needed is unnecessarily high.

2. It scales badly for large numbers of processors (see Figure 16).

Figure 16: Scaling of the ScaLAPACK GEV solver for different matrix sizes

Thus an algorithm exploiting sparseness and featuring good scaling is needed. The latter can
be achieved by using parallelism on different levels. A method providing this is the Sakurai-
Sugiura algorithm. The most costly part of this method is the solution of a set of linear
equations, based on the Hamiltonian and overlap matrices. These systems are independent,
thus they can be solved very efficiently in parallel. First tests showed that for current
problems the number of linear systems can reach several hundreds. As Figure 17 shows, the
efficiency of ScaLAPACK running on hundreds of processes has already dropped
dramatically.

Moreover, for each of these systems a parallel solver can be used. Many libraries for this
purpose already exist, based on several technologies:

1. MPI offers the possibility to use an arbitrary number of processes

2. Using OpenMP for example a whole node can be used for solving one system, taking
advantage of shared memory

3. Also GPU-based solvers can be used. Tests with CUSP [43] showed promising
performance. Due to the parallelization on other levels this method provides a good
opportunity to use many GPUs in parallel efficiently.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 33

Figure 17: Efficiency of the ScaLAPACK GEV solver for different matrix sizes

Already a simple, by far not optimised prototype implementation of this algorithm reaches the
solution time of ScaLAPACK. A better performance for larger problems solved on many
processes is expected for the Sakurai-Sugiura method due to its superior efficiency, which
depends mainly on the linear solver used.

4.5 Octopus

Octopus [35] is a real-space, real-time computer code to simulate the dynamics of electrons
and nuclei under the influence of external time-dependent fields in the framework of Time-
Dependent Density Functional Theory (TDDFT). The real-time propagation of the TDDFT
equations frees the code from the limitations imposed by perturbation theory and enables it to
model systems under very strong external fields.

During the performance analysis phase, two different bottlenecks were identified:

1. In ground state mode, parallelization in states requires a considerable amount of
communication due to the orthogonalization and subspace diagonalization procedures
that mix different states.

2. In a time propagation run, the evolution of the states is completely independent, but at
each time-step it is necessary to recompute the Hamiltonian. One of its components,
the Hartree potential, is obtained solving Poisson’s equation. However, the Poisson
solver does not scale with the number of processors, becoming the most time
consuming step of the simulation for large numbers of processors.

4.5.1 Performance improvement: State-parallelization ScaLAPACK Kernel

Dealing with different states in different nodes implies a large amount of communication
between nodes due to the need of orthogonalizing the different states and also due to the use
of subspace diagonalization in the eigensolver, mixing states located in different nodes. If one
wants to do parallel linear algebra, basically the only general tool that one can use (in
FORTRAN) is ScaLAPACK. As a first attempt at tackling this problem, one should fully
implement the use of ScaLAPACK in this part of the code, test it and eventually refine the
implementation. The expected performance gain would only be visible when dealing with
large systems in large numbers of processors.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 34

However, ScaLAPACK is complicated, hard to use, and in the end it is not well integrated
with MPI, which causes problems to attach it to any large code. There is an excellent solution
to this, PETSC, but this is not really a library, but a framework. Therefore, it is hard to use in
a large project. The ideal solution would be a real library as flexible as the lower levels
PETSc, as complete as ScaLAPACK, but easy to use. But as a first step, one might not need
to fully replace ScaLAPACK. The main hassle is BLACS that was designed to be an interface
for different communication libraries but that in fact is very difficult to use with MPI. For
example, it is very difficult to use a subset of the processors in ScaLAPACK, since BLACS
expects all processes to call some function. A simple solution would be a very thin
reimplementation of BLACS on top of MPI with topologies (BLACS assumes a 2D
topology).

The implementation of ScaLAPACK was already started by the code developers, but it is still
very crude and was not benchmarked nor fine-tuned. We plan to finish this implementation
and refine it according to the results of benchmarks. If the performance gain is insufficient we
will follow the path of reimplementing BLACS.

4.5.2 Performance improvement: Poisson Solver Kernel

There are at least two different roads to address the Poisson solver problem: solving Poisson’s
equation in reciprocal space using a truly parallel FFT library and using a fast multipole
method. The first solution is the most promising and the easiest to implement. There is a
drawback: using, e.g., Juelich’s PFFT library, the real-space grid has to be partitioned in a
way that renders it extremely inefficient for the stencils used to compute numerical
derivatives in other parts of the code. This means that two different partitioning schemes will
have to coexist and a grid re-partitioning step will have to be taken after each call to PFFT.
This is a communication-intensive step that can degrade the performance to the point of
rending PFFT impracticable. Thus, this is the real bottleneck that needs to be addressed.

We expect the fast multipole method (FMM) to be efficient only for very large numbers of
processors/grid points. The PFFT method, on the other hand, should be the method of choice
for intermediate numbers of processors/grid points. Thus, both methods should be
implemented and the code should advise the user on the best method for the problem at hand.
The implementation of FMM is straightforward, and has already been started by the code
developers. We will collaborate with them on testing and improving this implementation.
PFFT, however, is a different story. We are already working on its implementation and we
started by re-writing all the routines that deal explicitly with the partitions in order to allow
for different partitions to coexist. Next, we will address the re-partitioning in order to avoid
the expensive “all to all” communications that are used in the current version of the code.
This will imply keeping track of the two partitions to which each point in the grid belongs –
one partition for PFFT and a different partition for the other parts of the code – and
communicate only with the nodes that will handle the partitions that intersect the partition
handled by the current node. A further refinement will be taking in account the need for the
PFFT partition when defining the standard partitions. This would reduce the number of
partition intersections and thus the communication overhead.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 35

5 Particle Physics
Based on the performance analysis given in D8.1.2 [7], we continue our discussion here of the
kernels which we focus on improving. We describe those kernels and what they do and give a
description of our plan to improve their performance and initial rough estimates of the
improvement gain expected based on the performance analysis carried out in the previous
deliverable.

5.1 Improving the tmLQCD package

In this part we work on the tmLQCD package. Improving this code includes: improving the
overlap between scheduling of communications and computations in the Dirac operator,
implementing a hybrid MPI/OpenMP parallelism approach and implementing deflated
iterative solvers for multiple right-hand sides.

5.1.1 Improving the Dirac operator

Application of the Dirac operator or Dirac matrix to a lattice vector is a fundamental operation
in lattice QCD codes. This matrix involves nearest neighbor terms that requires
communication between processes which is usually implemented using MPI. In addition, it
has loops that go over all lattice sites. Optimization of this operation is very important for the
overall performance of the code. For Twisted-Mass Lattice QCD, the matrix elements of the
application of the Dirac operator on a lattice vector is given by:

4

1
2

1 ̂ ℎ ̂ 1 ̂

where is the input source vector at lattice site x. At each lattice site x, is actually a
12 component vector corresponding to the three quark colors and four Dirac spin indices.

, are constant 4 by 4 matrices acting on the spin degrees of freedom and U(x) is a 3 by 3
complex matrix which gives the value of the gauge field link at site x and they are elements of
the SU(3) group. ℎ denotes the Hermitian conjugate of U. Note that U acts only on the color
degrees of freedom. The lattice spacing is and ̂ is a unit vector in the direction. The
parameters and are the two mass parameters for the Twisted-Mass action.

To compute we have two parts: the first part is just a scaling of by a constant
number and doesn't require any communication between neighboring sites. The other two
terms involve the source vector at neighboring sites ̂ and ̂ which requires the
communication of boundary sites between processes. This second part is implemented in a
user function called Hopping_Matrix(,). We have seen in our performance analysis that
about this Hopping_Matrix function accounts for about 80% of the total time spent in user-
defined functions. Because of this, we focus our improvement effort on the optimization of
this function. In Figure 18, we show an example profile with a many node test for
48, 96 lattice.

Before discussing the optimization of the Hopping_Matrix function, the following important
points are implemented in the tmLQCD code:

 In many situations, the Dirac operator needs to be applied to a lattice vector O(1000)
times without changing the gauge field U. This is the case for iterative solvers such as
the Conjugate Gradient algorithm. In such cases, only the boundary sites of the lattice
vector need to be exchanged between applications of the Dirac operator.

 In spinor space, the operators 1 are projection operators which project a 4
component spinor into two component spinors. So, 1 has two independent

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 36

spinor combinations. Using this fact, half of the size of the boundary sites of a lattice
vector need to be exchanged.

 In order to reduce cache misses, an additional copy of the gauge field is stored such
that and looping is done over the input vector . This way, the
gauge field is accessed in the same order as needed by the Dirac operator.

Figure 18: Profiling of the twisted mass inverter code on 24 nodes. The chart in the centre shows User
and MPI functions with respect to the total time. The left chart is a break-down of the User functions
(percentages are with respect to the total time spent in User functions) and the right chart is a break-
down of the MPI functions (percentages are with respect to the total time spent in MPI functions)

5.1.1.1 Optimization of the communication/computation schedule:

The profiling results showed that the call to the blocking MPI_Waitall consumes a large
fraction of the total time spent in MPI functions (about 60% for this multi-node case). This is
related to the way computation and communication is scheduled inside the Hopping_Matrix.
Currently, this is implemented as follows:

 compute for all sites x.

 compute for all sites x.

where are projectors from a 4 component spinor into a 2 component spinor. The
half-spinor fields are computed locally on each node and no communication is
needed because of the existence of the gauge field copy.

 Exchange boundaries of and . This part is done by calling the user function
xchange_halffield. Note that even though communications are done using the non-
blocking MPI_Isend and MPI_IRecv, in effect the communication of the boundaries is
blocking, because no computations are done before the associated MPI_Waitall is
posted. The function xchange_halffield exchanges the boundaries as follows:

for each direction :

1. Send boundaries to the neighbor and receive boundaries from neighbor.

2. Send boundaries to the neighbor and receive boundaries from neighbor.

3. Wait for all 16 communication processes to finish (MPI_Waitall).

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 37

 The result is then computed as

4 ̂ ,

̂ , for all sites x, Where are the reverse projectors from half-spinor to full-
spinor. This step requires only computation and no communication.

The above schedule is not optimal and we suggest to improve it by overlapping
communication with computation. There is more than one way to achieve this. One example
is as follows:

 Compute 4 for all sites x.

 For 0,1,2,3, send boundaries to the neighbor and receive boundaries from –
neighbor.

 For 0,1,2,3:

1. Call MPI_wait for the send to the and receive from the – requests for this .

2. Compute ̂ , for all sites x.

3. Send boundaries to the – neighbor and receive boundaries from the neighbor.

 For 0,1,2,3:

1. Call MPI_Wait for the send to the – and receive from the neighbors.

2. ̂ , for all sites x.

This schedule has the potential of reducing the wait time for the communication to complete
and is expected to reduce the MPI time used by the Hopping_Matrix.

5.1.1.2 Using a hybrid MPI/OpenMP parallelism:

Apart from modifying the communication schedule, we will investigate benefits of including
thread-level parallelism for on-node communications. This can potentially have a double
benefit to the code:

 The memory footprint of the kernel will be lower because less boundary buffers shall
need to be allocated. Currently the code treats every process as having a single NUMA
domain, and so every core requires temporary buffers for MPI communications. A
shared memory approach for the intra-node communications, using OpenMP, will
alleviate the memory requirements of the kernel, especially as the number of cores
sharing the same memory space increases in future architectures.

 Although this depends on the MPI implementation, thread-level parallelism for the
intra-node communications could save on the overhead required to set-up such data
transfers via MPI. Certain MPI implementations use buffering of communications, and
some even allocate these buffers with every communication call. Therefore
parallelizing intra-node communications with OpenMP could benefit the total run-time
of the code.

5.1.2 Algorithmic Improvements

For completeness, we include here three algorithmic improvements which are being

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 38

investigated:

 Deflated Iterative Methods: Standard iterative solvers such as Conjugate Gradient or
BiCGStab become slow as the quark mass approaches zero. Deflated iterative methods
such as GMRES-DR, Eig-CG, or Domain-Decomposition methods have not been
sufficiently tested for the case of the Twisted-Mass action. We plan on performing an
evaluation of these methods and implement those that are not currently implemented
in this package. Initial testing of the Eig-CG solver showed a speedup in the solution
time of a factor of 2 on a L=24, T=48 Lattice.

 Using Poisson brackets to tune Hybrid Monte Carlo integrators: The standard
algorithm to generate lattice configurations with dynamical quarks is Hybrid Monte
Carlo (HMC). The most time consuming part of the HMC method is the molecular
dynamics (MD) step, where we evolve the system using some approximate integrator.
In general, the integrator contains free parameters, which can be tuned such that the
acceptance rate is maximized, while keeping the step size as large as possible. The
best way to do this is using Poisson bracket measurements. Depending on how well
tuned the default integration scheme is, the optimization of the integrator allows to
decrease the number of the inversions of the fermionic matrix needed by HMC. New
integrator schemes can be tested (such as force-gradient integrators), hopefully
providing further improvements.

 Parallel Landau and Coulomb gauge fixing: On the lattice, Landau and Coulomb
gauge fixing is performed using a local optimization method, such as Steepest
Descent. Such methods suffer from critical slowing down: the number of iterations
needed to solve the problem increase with Vz, where V is the size of the problem (in
our case, the lattice volume). For gauge fixing, naïve procedures have an associated
critical exponent z around 2. A Fourier-accelerated method has been proposed (with
z~0), but it requires the use of Fast Fourier Transforms (FFT), whose parallelization is
far from being trivial. The standard and well-known FFTW package (www.fftw.org)
provides parallel routines which only parallelize along one dimension. We therefore
want to explore other possible FFT packages allowing further parallelization, such that
we can consider the use of more processors.

D8.1.3 Prototype Codes Exploring Performance Improvements

PRACE-2IP - RI-283493 23.12.2011 39

6 Conclusions and next steps
In this deliverable, the performance modelling approach was adopted in order to characterize
the performance of a number of numerical kernels. These had been identified in community
codes as the most critical to effectively utilise novel HPC architectures. In the current
deliverable, we described the main algorithmic features of these kernels and the possible
solutions towards the next generation of HPC systems, emphasising those aspects that have to
be subject of the final performance modelling stage. This final stage, which will be reported
in deliverable D8.1.4 “Plan for Community Code Refactoring”, will allow a quantitative
estimation of the possible performance improvements on coming HPC systems and will
define the approaches to take in the refactoring effort.

In some cases, as for Astrophysics, the expected improvements affect specific codes, being
designed on their peculiar algorithmic features. The impact is therefore vertical on single
applications, and the corresponding user community can have a significant immediate
advantage. However, the acquired experience can then be spread to similar algorithms and
numerical approaches adopted by other software, extending its impact to a much broader
community.

For other codes, as in the case of Material Science, features and needs common to various
codes have emerged, and the refactoring work on corresponding kernels can be shared and
exploited by different applications. For example, linear algebra solvers, in particular for the
calculation of eigenvalues and eigenvectors, are critical for most of the codes selected in this
domain. Therefore, the experimentation and adoption of specialized libraries, tuned on
innovative architectures, replacing the traditional solvers, can be highly profitable for all these
applications. On the other hand, such a wide and heterogeneous spectrum of applications
represents for these libraries a valuable test-bed for their further consolidation and for the
tuning of their performances.

Furthermore, a valuable achievement is the dramatic improvement in know-how, resulting
from experiencing new HPC solutions, both hardware and software, on “real” codes (and not
simplified testing tools) in “production” conditions (as opposed to artificial benchmark cases).

Finally, we stress how the current performance modelling is successful thanks only to a
consolidated synergy between the scientific community code developers, with their
knowledge of codes and algorithms, and the HPC experts, with their competencies in HPC
systems and software, parallel programming and algorithms optimisation.

At the end of the performance modelling phase, all the information necessary to define a
precise work plan for code refactoring will be available. The specification of the targets, the
partners’ roles, the timeline and the milestones for each code will be the subject of the next
step of WP8, to be accomplished by M6. A further, but not less relevant, goal for the next
phase is represented by the specification of a testing and validation procedure, necessary to
verify the correctness and quality of the results produced by the re-implemented kernels (fast
algorithms producing wrong results are obviously useless…). This is a crucial step to certify
the quality of the work to the scientific communities, and to permit them to introduce and
accept the new kernels into the official production distributions. This represents the final main
objective of WP8.

