

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D8.1.2

Performance Model of Community Codes
Final

Version: 1.0
Author(s): Claudio Gheller, Will Sawyer, Thomas Schulthess, CSCS; Fabio Affinito,
CINECA; Ivan Girotto, Alastair McKinstry, Filippo Spiga, ICHEC; Laurent Crouzet, CEA;
Andy Sunderland, STFC; Giannis Koutsou, Abdou Abdel-Rehim, CASTORC; Fernando
Nogueira, Miguel Avillez , UC-LCA; Georg Huhs, José María Cela, and Mohammad Jowkar,
BSC.
Date: 24.11.2011

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: PRACE Second Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: D8.1.2
Deliverable Nature: Report
Deliverable Level:
PU

Contractual Date of Delivery:
30 / 11 / 2011
Actual Date of Delivery:
30 / 11 / 2011

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Performance Model of Community Codes
ID: D8.1.2
Version: 1.0 Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D8.1.2.docx

Authorship

Written by: Claudio Gheller, Will Sawyer
Contributors: Thomas Schulthess, CSCS; Fabio Affinito,

CINECA; Ivan Girotto, Alastair
McKinstry, Filippo Spiga, ICHEC; Laurent
Crouzet, CEA; Andy Sunderland, STFC;
Giannis Koutsou, Abdou Abdel-Rehim,
CASTORC; Fernando Nogueira, Miguel
Avillez , UC-LCA; Georg Huhs), José
María Cela, and Mohammad Jowkar, BSC

Reviewed by: Aad van der Steen; Dietmar Erwin
Approved by: MB/TB

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 ii

Document Status Sheet

Version Date Status Comments
0.1 04/10/2011 Draft Document skeleton
0.2 19/10/2011 Draft Draft distributed to task leaders
0.3 24/10/2011 Draft First version of the performance

modelling methodology
0.4 25/10/2011 Draft First benchmarks collected
0.6 28/10/2011 Draft Introduction and Section1

improved
0.8 5/11/2011 Draft Most benchmarks collected
0.9 9/11/2011 Draft Extensive proofreading
1.0 30/11/2011 Final version

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, scientific applications,

libraries, performance modelling.

Disclaimer

This deliverable has been prepared by Work Package 8 of the Project in accordance with the
Consortium Agreement and the Grant Agreement n° RI-283493. It solely reflects the opinion
of the parties to such agreements on a collective basis in the context of the Project and to the
extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of
PRACE AISBL and therefore does not emanate from it nor should it be considered to reflect
PRACE AISBL’s individual opinion.

Copyright notices

 2011 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 iii

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet ... ii

Document Keywords ... ii

Table of Contents ... iii

List of Figures ... iv

List of Tables .. viii

References and Applicable Documents ... ix

List of Acronyms and Abbreviations ... xi

Executive Summary ... 1

1. Introduction .. 2

2. The Performance Analysis Methodology .. 4
2.1 Performance Modelling Example .. 5

3. Performance Analysis of Community Codes: Astrophysics ... 7
3.1 RAMSES ... 7

3.1.1 Description of the code.. 7
3.1.2 Performance Analysis .. 8

3.2 PKDGRAV ... 13
3.2.1 Description of the code.. 13
3.2.2 Performance Analysis .. 13

3.3 PFARM ... 18
3.3.1 Description of the code.. 18
3.3.2 Performance Analysis .. 18

4. Performance Analysis of Community Codes: Climate ... 21
4.1 OASIS ... 21

4.1.1 Description of Code ... 21
4.1.2 Performance Analysis .. 21

4.2 Input/Output ... 23
4.2.1 Description of Code: CDI .. 24
4.2.2 Performance Analysis: CDI ... 25
4.2.3 Description of Code: XIOS .. 26
4.2.2 Description of Code: PIO .. 27
4.2.3 Performance Analysis: PIO ... 27
4.3.1 Description of Codes .. 29
4.3.2 Performance Analysis: EULAG, ICON ... 30

4.4 Ocean Models ... 34
4.4.1 Description of Code: NEMO ... 34
4.4.2 Performance Analysis: NEMO .. 35
4.4.3 Description of Code: ICOM .. 39
4.4.4 Performance Analysis: ICOM ... 39

5. Performance Analysis of Community Codes: Material Science ... 43
5.1 ABINIT .. 43

5.1.1 Global description of ABINIT .. 43
5.1.2 Ground‐State calculations: performances ... 45
5.1.3 Excited States calculations: performance .. 56

5.2 Quantum ESPRESSO .. 59
5.2.1 Description of the code.. 59

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 iv

5.2.2 Performance: PW.X – plane‐wave self consistent calculations ... 61
5.2.3 Performances: CP.X – Car Parrinello MD ... 64

5.3 Yambo ... 66
5.3.1 Description of the code.. 66
5.3.2 Test cases ... 67

5.4 Siesta ... 69
5.4.1 Description of the code.. 69
5.4.2 Implementation details concerning performance ... 70
5.4.3 The tests... 71
5.4.4 Conclusions .. 74

5.5 Octopus ... 75
5.5.1 Description of the code.. 75
5.5.2 Test cases ... 75

5.6 Exciting / ELK ... 79
5.6.1 Description of the code.. 79
5.6.2 Performance analysis ... 80

6. Performance Analysis of Community Codes: Particle Physics ... 83
6.1 Overview ... 83
6.2 Performance analysis .. 84

6.2.1 Single core performance: ... 84
6.2.2 Single node performance ... 85
6.2.3 Many nodes performance with a large lattice: .. 86
6.2.4 Strong scaling: .. 86

6.3 Discussion: ... 87

7. Conclusions and Next Steps ... 89

List of Figures

Figure 1: The performance modelling methodology. .. 4
Figure 2: An analytic model based on the memory bandwidth to L2 cache was derived from the
number of memory accesses given in Table 1. The predicted execution time can be considered a lower
bound. If the assumption is valid that all arrays associated with the local domain fit into L2 cache, this
lower bound is quite tight (see 6 core results), if not, the predicted times can be off by a large factor
(e.g., 1 core results). .. 6
Figure 3: RAMSES domain decomposition based on the Peano-Hilbert curve for AMR based data
structure: different colours are assigned to different processors. .. 8
Figure 4: Distribution of the work in a single core run for a UNIGRID setup. 9
Figure 5: Distribution of the work in a single core run for a AMR setup. .. 9
Figure 6: Scalability of a small test both for UNIGRID and AMR set-up described above. Liner
scalability (black line) is shown for comparison). ... 10
Figure 7: Distribution of the work for the small test as a function of the number of processors. 11
Figure 8: AMR structure at the final time step of the production test ... 11
Figure 9: Distribution of the work for the production test as a function of the number of processors. . 12
Figure 10: Scalability in the production test (left) for the whole code, the principal sections and MPI
(linear scalability is shown for comparison – black line). Efficiency of the code as a function of the
number of processors is shown in the right image (efficiency=1 for the 256 case). 13
Figure 11: The tree structure of PKDGRAV. .. 13
Figure 12: Multiple time step integration scheme. .. 14
Figure 13: Distribution of work for the different PKDGRAV section in the Single Timestep test
described above. .. 15
Figure 14: Scalability of PKDGRAV in in the Single Timestep test described above.. 15

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 v

Figure 15: Efficiency of PKDGRAV for the Single Timestep test (efficiency=1 is set for the 512
processors test) .. 16
Figure 16: Fraction of active particles with different timesteps, linear (left) and logarithmic (right)
scales as a function of evolutionary time. Darker zones are characterized by shorter dynamic
timesteps. Red line shows where half of the CPU work is spent. ... 17
Figure 17: Distribution of absolute time spent in different parts of the codead different timestep levels
in runs with 1000 (left) and 2000 (right) processors. The solid lines show the time for the various
sections integrated on the various time levels. .. 17
Figure 18: Parallel Performance of Diagonalisation Stage EXDIG on the Cray XT4 18
Figure 19: Parallel Performance of optimised EXDIG (new) using BLACS sub-groups compared to
the original EXDIG (ori). FeIII, JJ coupling calculations. .. 19
Figure 20: Parallel Performance of EXAS R-matrix propagation code. The graph reports the strong
scaling behaviour on the Cray XE6 for a FeIII calculation with JJ coupling involving 10678 scattering
energies. ... 20
Figure 21: Performance of different codes .. 20
Figure 22: The MCT ocean-to-atmosphere benchmark performs an interpolation between a 0.47x0.63
degree oceanic grid and a 0.47x0.63 degree atmospheric grid. The operation scales well to large
numbers of cores on an IBM PowerSeries (“bluefire”) and IBM BlueGene/P (“intrepid”), though there
are some scalability limitations on the Cray XT5 (“jaguarpf”). Credit: [25]. 23
Figure 23: File writing procedure with serial CDI version, running on MPI process 0. 24
Figure 24 File write procedure for the new CDI version, running on a set of I/O processes, completely
separate from the compute processes. ... 25
Figure 25: CDI testbed write strategies: Classic Serial (top center), MPI Writer, including
MPI_File_iwrite_shared (top right), Offset Sharing (bottom left), Offset Guard (bottom center),
POSIX Writer (bottom right). ... 26
Figure 26: PIO performance results from [24] for the collective reading and writing of fields, which
are distributed over a given number of cores. ... 29
Figure 27: The ICON grid consists of spherical triangles at a base resolution (red), which have been
derived by recursively bisecting the edges of an icosahedron. In areas of particular interest, some
triangles can be further refined (blue) by subdivided triangles into four. This procedure can be
repeated recursively (e.g., black triangles). ... 30
Section 28: All EULAG-HS strong-scaling benchmarks except the horizontal domain grid 2048x1280
were performed on a BlueGene/L at the National Center for Atmospheric Research. The vertical has
41 levels. The red curves result when the benchmark is run in coprocessor mode, the blue lines in
virtual mode. The 2048x1280 domain size was run on a BlueGene/P at IBM/Watson, and indicates
excellent scaling to about 7000 cores in either mode. Credit: Andrzej Wyszogrodzki, NCAR. 31
Figure 29: The speedup of the MPI-only version of ICON for the R2B04 resolution (roughly 139 km. -
upper panel) and for the R2B05 resolution (roughly 69 km) – lower panel. with respect to the 64-
process execution. The strong scaling plateaus at about 10 for this medium resolution test case. Credit:
Hendryk Bockelmann, DKRZ. .. 32
Figure 30: The roofline model [28], distinguishes between low and high computational intensities
(floating-point operations per byte accessed). For low intensities, the overall performance is limited by
memory bandwidth in a roughly linear relationship: the higher the intensity the more performance
since the bandwidth is constant. At a certain intensity, memory speed becomes sufficient to fully
occupy the floating-point unit, whose performance is now the limiting factor. The “X” indicates
roughly the location of most finite difference or finite volume dynamical cores, such as the ICON non-
hydrostatic solver. ... 32
Figure 31: Double precision rooflines for AMD Magny-Cours (purple), NVIDIA Tesla M2050 (blue),
NVIDIA Tesla T10 (green), NVIDIA GeForce GTX285 (yellow) and AMD Cayman (red). The
theoretical rooflines are represented with dashed lines and the measured ones are shown with solid
lines. The grey dotted line represents the theoretical PCI-e bandwidth. Credit: Christian Conti, ETHZ.
 ... 33
Figure 32: Operational intensities of the various kernels implemented with expected peak achievable
performance (solid lines). Three different cases are depicted for each kernel: the R2B3 resolution
(5120 grid triangles) on Tesla M2050 (blue diamonds) and R2B4 (20480 grid triangles) on a Tesla
M2050 (blue triangles) and on a Cayman (orange triangles). The expected performance is based on the

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 vi

operational intensity only and does not consider the performance degradation caused by the size of the
data structures on which the kernels operate. About ten kernels perform far worse than expected, due
to poor utilisation of the data structures, and/or dependencies between loop iterations (such as for the
vertical integration). Several kernels perform above the STREAM performance due to fortuitous cache
effects. Most kernels cluster just below the maximum performance. ... 33
Figure 33: Execution time (l.) and relative efficiency (r.) for NEMO, Test Case A. Credit: A. Porter,
STFC. .. 36
Figure 34: NEMO profile as a function of MPI process count. .. 38
Figure 35: Wall time for the assembly and solve of the momentum and pressure equation on the
Hector Cray XE6. .. 39
Figure 36: Profile by function group ... 40
Figure 37: Top time consuming user functions got from CrayPAT. ... 40
Figure 38: Top time consuming MPI functions. ... 41
Figure 39: Top time consuming MPI SYNC functions. .. 41
Figure 40: Functional structure of ABINIT... 44
Figure 41: Repartition of time in ABINIT routines varying the number of plane-wave CPU cores.
While some parts of the code scale linearly (ex: non-local operator), others become predominant. A
plateau is observed at 390 cores. ... 47
Figure 42 Repartition of time in ABINIT routines varying the number of band CPU cores. While
some parts of the code scale linearly (ex: non-local operator, forces), others become predominant. On
432 cores, the codes clearly has no more a linear behavior. ... 48
Figure 43: Repartition of time in ABINIT routines varying the number of atoms. This test case is not a
full « weak scaling » performance test as the number of cores is kept fixed. When only the size of the
system is increased, the resolution of the eigenvalue problem becomes the predominant part. 49
Figure 44: Repartition of time in ABINIT routines varying the number of atoms and the number of
cores. This weak scaling performance test clearly shows that the code does not scale linearly which is
an expected behavior for a DFT code. As the size of the simulation cell increases, the number of plane
waves increase as the cube of the cell size. ... 50
Figure 45: Scaling of ABINIT wrt the distribution of (Nband x Npw x Nkpt) CPU cores 51
Figure 46 Scaling of ABINIT wrt the CPU cores distributed on the replicas of the cell. 51
Figure 47: Profiling of elapsed time for the application of FFT to one wave function, in the “Test Cu”
test case; “GPU time” corresponds to the bare GPU time needed by the graphic card to execute the
FFT task; “CPU time” corresponds to the total elapsed time, including kernel latencies and
synchronisations. ... 52
Figure 48: Comparison of the performances of BigDFT on different platforms. 54
Figure 49: Speedup of OMP threaded BigDFT code as a function of the number of MPI processes. The
test system is a B80 cagem and the machine is Swiss CSCS Palu (Cray XT5, AMD Opteron). 55
Figure 50: Relative speedup of the hybrid DFT code wrt the equivalent pure CPU run. In the top panel,
different runs for systems of increasing size have been done on a Intel X5472 3GHz (Harpertown)
machine. In the bottom panel, a given system has been tested with increasing number of processors on
an Intel X5570 2.93GHz (Nehalem) machine. The scaling efficiency of the calculation is also
indicated. It presents poor performances due to the fact that the system is too little for so many MPI
processes. In the right side of each panel, the same calculation have been done by accelerating the
code via one Tesla S1070 card per CPU core used, for both architectures. The speedup is around a
value of six for a Harpertown, and around 3.5 for a Nehalem based calculation. 56
Figure 51: Speedup for the scaling parts of the screening calculation and total speedup for different
numbers of bands .. 57
Figure 52: Relative cost of the most time-consuming code sections On the left for 717 bands, on the
right for 1229 bands. ... 58
Figure 53: Speedup for the screening part and its most costly sections .. 59
Figure 54: Relative amount of wall clock time for the partitioning of the sigma calculation. 59
Figure 55: Relative time spent in the main code’s subroutines. .. 62
Figure 56: Absolute performances of the various sections of the code. .. 62
Figure 57: Distribution of time between the main functions in the two cases. 63
Figure 58: Distribution of time between the main functions in the two cases. 63
Figure 59: Relative time spent in the main code’s subroutines. .. 64

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 vii

Figure 60: Absolute time spent in the main code’s subroutines. ... 65
Figure 61: Absolute time spent in the main code’s subroutines. ... 66
Figure 62: The test system: Si(100) c(2x4) surface (left) and the 64 atoms slab used to represent it
(right). .. 67
Figure 63: Scaling analysis of the Si 64-atoms slab run. Xo_tot is the matrix setup step that is very
well distributed among the nodes. X_tot is the matrix inversion step that does not show any sign of
parallelism. Other steps in the calculation are unimportant. ... 68
Figure 64: Scaling analysis of a run that uses SCALAPACK. Inversion step remains essentially non-
parallelised. ... 68
Figure 65: Same as previous figure, but showing parallel speedup instead of computing time. 68
Figure 66: Speedup graphs for the CNT transport examples with one (left) and two (right) unit cells
per supercell. ... 72
Figure 67: Relative amount of time spent in the most costly functions depending on the number of
processes. The left image shows the results for the small, the right for the big example. 73
Figure 68: Speedup graph for the DNA example .. 74
Figure 69: Relative amount of time spent in the most costly functions depending on the number of
processes. ... 74
Figure 70: 650-atom chlorophyll complex represented in two different ways. 76
Figure 71: Scheme of the multi-level parallelisation of Octopus. The main parallelisation levels are
based on MPI and include state- and domain-parallelisation. For a limited type of systems, additionally
K-point or spin parallelisation can be used. In-node parallelisation can be done using OpenMP threads
and hand-vectorisation using compiler directives, or by using OpenCL parallelisation for GPUs and
accelerator boards. ... 76
Figure 72: Parallel speedup of a ground-state calculation for 3 different chlorophyll complexes, with
180, 441 and 650 atoms, run on Jugene. ... 77
Figure 73: Parallel speedup of a real-time propagation run for a 1365 chlorophyll complex on Jugene.
 ... 78
Figure 74: Cumulative times, on Jugene, of a time propagation run for the 1365-atom chlorophyll
complex. .. 78
Figure 75: Percentage of time taken by each TDDFT propagation step, on Jugene, for the 1365-atom
chlorophyll complex. ... 79
Figure 76: Graphical representation of results shown in Table 26 .. 81
Figure 77: Graphical representation of time to solution (shown in table 26) versus number of MPI task
times OpenMP threads. We compare measure versus ideal scaling. ... 81
Figure 78: Graphical representation of the results shown in table 27. .. 82
Figure 79: Graphical representation of time to solution (shown in table 27) versus number of MPI task
times OpenMP threads. We compare measure versus ideal scaling. ... 82
Figure 80: Profiling of the twisted mass inverter code. The left chart compares User and MPI
functions, while the right chart compares the User functions (percentages are with respect to the total
time spent in User functions). .. 85
Figure 81: Profiling of the twisted mass inverter code on a single node. Centre for User and MPI
functions with respect to the total time. The left chart is a break-down of the User functions
(percentages are with respect to the total time spent in User functions) and the right chart is a break-
down of the MPI functions (percentages are with respect to the total time spent in MPI functions) 85
Figure 82: Profiling of the twisted mass inverter code on a 24 nodes. Notation is the same as in the
previous figure. .. 86
Figure 83: Strong scaling test of the twisted mass inverter on a CrayXE6 (left) and a BlueGene/P
(right). The points labeled “Time restricted to node” refer to scaling tests carried out where care was
taken so that the spatial lattice sites where mapped to the physical 3D torus topology of the machine’s
network, which restricts the time-dimension partitioning to a node. .. 87

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 viii

List of Tables
Table 1: Number of memory accesses are listed for the calculation of a given 3-D field in different
portions of the atmospheric dynamics fast-wave solver. These portions have various calling
frequencies. ... 5
Table 2: 2-hour simulation response time (in seconds) for the different components and for EC-Earth3
coupled model. The configuration (top row) indicates the number of cores used for IFS, NEMO and
OASIS respectively. The coupling overhead is calculated as the difference between EC-Earth and IFS
standalone elapse time. IFS and NEMO run in parallel, not sequentially. .. 21
Table 3: Throughputs (in MB/s) for four of the six write strategies tested for parallel CDI. 26
Table 4: Test configurations for the POPD benchmark defined in terms of different output formats .. 28
Table 5: The performance of the OpenMP multi-threaded version of the ICON non-hydrostatic solver
is compared over a number of multi-core architectures. The memory throughput (GB/s) for the
STREAM benchmark is also supplied. The “achievable GFlop/s” is defined as the STREAM
throughput (GB/s) times the solver’s average computational intensity of 0.4. Credit: CSCS. 34
Table 6: A profile of NEMO running the ORCA2_LIM configuration on 12 MPI processes on
HECToR Phase IIb. ... 37
Table 7: Profile of NEMO run in serial on a single core of HECToR IIb for the ORCA2_LIM
configuration. .. 38
Table 8: CPU total clock time of ABINIT varying the number of plane-wave CPU cores. 47
Table 9: CPU total clock time of ABINIT varying the number of band CPU cores. 48
Table 10: CPU total clock time of ABINIT varying the number of atoms. .. 49
Table 11: CPU total clock time of ABINIT varying the number of atoms and number of cores. 50
Table 12: Comparison of elapsed time for the wave function FFT. .. 52
Table 13: Elapsed time for the wave function FFT w.r.t. the number of WF sent. 52
Table 14: Comparison of elapsed time for the application of non-local operator. 53
Table 15: Comparison of elapsed time for the LOBPCG algorithm. .. 53
Table 16: Comparison of total elapsed times using (or not) GPU on two different architectures; Curie:
CPU=Intel Westmere, GPU=NVidia Fermi M2090; Titane: CPU=Intel Nehalem, GPU=NVidia Tesla
S1070 ... 53
Table 17: Time (seconds) spent in each of the main functions of the code... 61
Table 18: Time spent in each of the main functions of the code. .. 62
Table 19: Time spent in the main code’s subroutines. .. 63
Table 20: Time spent in the main code’s subroutines. .. 64
Table 21: Time spent in the main code’s subroutines. .. 65
Table 22: Time spent in the main code’s subroutines. .. 65
Table 23: Parameters describing the systems examined. .. 72
Table 24: Total wall clock time in seconds for different numbers of processes. 73
Table 25: Total wall clock time in seconds for different numbers of processes. 74
Table 26: Aggregative time of the various parts of the Elk code for the 6 iterations of the ground state
run for La4Cu2O8. .. 80
Table 27: Aggregate time of the various parts of the Elk code for the 6 iterations of the ground state
run of La7SrCu4O16. .. 82
Table 28: Parameters of the test configurations. beta is a gauge coupling parameter that determine the
lattice spacing. kappa and mu are two mass parameters and nf is the number of sea quarks. nf=2 means
two degenerate light quarks corresponds to the up and down quarks and nf=2+1+1 means two light
quarks and two heavy quarks corresponds to the strange and charm quarks. 84

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 ix

References and Applicable Documents

[1] http://www.prace-project.eu
[2] Deliverable D8.1.1: “Community Codes Development Proposal”
[3] High Performance and High Productivity Computing Initiative, http://hp2c.ch.
[4] DeRose, L.; B. Homer, D. Johnson, S. Kaufmann and H. Poxon: Cray Performance
Analysis Tools. In: Tools for High Performance Computing, 191-199. Springer-Verlag. 2008.
[5] Schende, S.S.; A.D. Malony: The TAU Parallel Performance System. Int. J. High Perf.
Comput. Appl. 20, 287-311. 2006.
[6] Wolf, F.; B.J.N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger, M. Geimer,
M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and Z. Szebenyi: Usage of the SCALASCA
toolset for scalable performance analysis of large-scale parallel applications. In: Tools for
High Performance Computing, 157—167. Springer-Verlag. 2008.
[7] http://web.me.com/romain.teyssier/Site/RAMSES.html
[8] http://user.cscs.ch/hardware/rosa_cray_xt5/index.html
[9] https://hpcforge.org/projects/pkdgrav2/
[10] J. Barnes and P. Hut (December 1986). "A hierarchical O(N log N) force-calculation
algorithm". Nature 324 (4): 446-44
[11] Ewald P. (1921) "Die Berechnung optischer und elektrostatischer Gitterpotentiale",
Ann. Phys. 369, 253–287.
[12] P G Burke, C J Noble and V M Burke, Adv. At. Mol. Opt. Phys. 54 (2007) 237-318.
[13] K L Baluja, P G Burke and L A Morgan, CPC 27 (1982), 299-307.
[14] A G Sunderland, C J Noble, V M Burke and P G Burke, CPC 145 (2002), 311-340.
[15] Future Proof Parallelism for Electron-Atom Scattering Codes with PRMAT, A.
Sunderland, C. Noble, M. Plummer, http://www.hector.ac.uk/cse/distributedcse/reports/prmat/
[16] Single Node Performance Analysis of Applications on HPCx, M. Bull, HPCx Technical
Report HPCxTR0703 (2007), http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0703.pdf
[17] Rockel, B.; A. Will and A. Hense: The Regional Climate Model COSMO-CLM
(CCLM). Meteorologische Zeitschrift 17(4), 347-348. 2008.
[18] S. Valcke; Directions for a community coupler for ENES. CERFACS internal report,
2011.
[19] A. Gassmann, and H.-J. Herzog, Towards a consistent numerical compressible non-
hydrostatic model using generalized Hamiltonian tools, Q.J.R.Meteorol.S., 134, 1597-1613,
2008.
[20] Hazeleger W., et al., EC-Earth V2: description and validation of a new seamless Earth
system prediction model. Submitted. http://ecearth.knmi.nl/Hazelegeretal.pdf
[21] Collins, M.; Tett, S.F.B., and Cooper, C.: "The internal climate variability of HadCM3,
a version of the Hadley Centre coupled model without flux adjustments". Climate Dynamics
17: 61–81. 2001.
[22] Giorgetta, M.A.; G. P. Brasseur, E. Roeckner, and J. Marotzke, Preface to Special
Section on Climate Models at the Max Planck Institute for Meteorology, J. Climate, 19, 3769-
3770, 2006.
[23] Prusa, J.M.; P.K. Smolarkiewicz, and A.A. Wyszogrodzki: EULAG, a computational
model for multiscale flows. Comput. Fluids., 37, 1193-1207. 2008.
[24] J. M. Dennis and J. Edwards and R. Loy and R. Jacob and A. A. Mirin and A. P. Craig
and M. Vertenstein, 2011: "An Application Level Parallel I/O Library for Earth System
Models", Int. J. High Perf. Comput. Appl., Accepted.
[25] Craig, A.; M. Vertenstein and R. Jacob: “A new flexible coupler for earth system
modeling developed for CCSM4 and CESM1”, Int. J. High Perf. Comput. Appl.. In press.
[26] ICON testbed; https://code.zmaw.de/projects/icontestbed
[27] ICOMEX project; http://wr.informatik.uni-hamburg.de/research/projects/icomex

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 x

[28] Williams, S.; A. Waterman, and D. Patterson, "Roofline: An Insightful Visual
Performance Model for Floating-Point Programs and Multicore Architectures",
Communications of the ACM (CACM), April 2009.
[29] Conti, C; W. Sawyer: GPU Accelerated Computation of the ICON Model. CSCS
Internal Report, 2011.
[30] Skamarock, W.C.; J.B. Klemp, M.G. Duda, L.Fowler, S.-H. Park and T.D. Ringler: A
Multi-scale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and
C-Grid Staggering. Submitted to Mon. Wea. Rev., 2011.
[31] Satoh, M.; T. Matsuno, H. Tomita, H. Miura, T. Nasuno, S. Iga: Nonhydrostatic
icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. of Comp.
Phys. 227(7), 3486-3514. 2008.
[32] DYNAMICO project: http://www.lmd.polytechnique.fr/~dubos/DYNAMICO
[33] Gung-Ho project: http://www.metoffice.gov.uk/research/areas/dynamics/next-
generation
[34] Lauritzen, P.H.; C. Jablonowski, M. Taylor and R.D. Nair: Rotated versions of the
Jablonowski steady-state and baroclinic wave test cases: A dynamical core intercomparison.
J. Adv. Model. Earth Syst., Vol. 2 Art. 15, 2010.
[35] Madec, G: NEMO ocean engine, Note du Pole de modélisation, Institut Pierre-Simon
Laplace (IPSL), France, No 27 ISSN No 1288-1619, 2008.
[36] Pain, C.C.; M.D. Piggot, A.J.H. Goddard, F. Fang, G.J. Gorman, D.P. Marshall,
M.D. Eaton, P.W. Power, and C.R.E. de Oliveira: Three-dimensional unstructured mesh
ocean modelling. Ocean Modelling, 10(1-2), 5-33, 2005.
[37] Rew, R; G. Davis: NetCDF: an interface for scientific data access. Computer Graphics
and Applications, IEEE 10(4), 76-82, 1990.
[38] Li, J.; W.-K Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp, R. Latham, A. Siegel,
B. Gallagher, and M. Zingale: Parallel netCDF: A High-Performance Scientific I/O Interface.
In Proceedings of the 2003 ACM/IEEE conference on Supercomputing (SC '03), 39-49, 2003.
[39] Next Generation Weather & Climate Prediction, accessed 9th Nov. 2011:
http://www.nerc.ac.uk/research/programmes/ngwcp/
[40] HARNESS Fault Tolerant MPI, accessed 9th Nov. 2011: http://icl.cs.utk.edu/ftmpi/
[41] Madec,G; M. Imbard: A global ocean mesh to overcome the North Pole singularity,
Climate Dynamics, 12,6381-388
[42] Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC, T.
Hoefler, Proceedings of Workshop on Productivity and Performance (PROPER 2010),
Springer, Dec. 2010.
[43] A Framework for Performance Modeling and Prediction. Allan Snavely , Laura
Carrington , Nicole Wolter , Jesus Labarta, Rosa Badia , Avi Purkayastha, Proceedings of the
2002 ACM/IEEE conference on Supercomputing.
[44] Performance Modeling: Understanding the Present and Predicting the Future. Bailey,
David H.; Snavely, Allan. http://escholarship.org/uc/item/1jp3949m
[45] How Well Can Simple Metrics Represent the Performance of HPC Applications? Laura
C. Carrington, Michael Laurenzano, Allan Snavely, Roy L. Campbell, Larry P. Davis;
Proceedings of the 2005 ACM/IEEE conference on Supercomputing, 2005, IEEE Computer
Society
[46] http://www.hp2c.ch/
[47] http://www.enes.org
[48] http://icl.cs.utk.edu/ftmpi/overview/index.html
[49] http://www.deisa.eu/science/benchmarking/codes/nemo
[50] http://qe-forge.org/
[51] http://www-zeuthen.desy.de/~kjansen/etmc/
[52] http://www.exciting.physics.at

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 xi

[53] http://exciting-code.org
[54] http://elk.sourceforge.net
[55] http://www.netlib.org/scalapack/
[56] http://www.netlib.org/blacs/
[57] http://netlib.org/blas/
[58] https://verc.enes.org/models/software-tools/oasis
[59] http://www.unidata.ucar.edu/software/netcdf/
[60] http://www.grib.us/
[61] http://www.cs.virginia.edu/stream/
[62] http://icl.cs.utk.edu/ftmpi/
[63] http://www-meom.hmg.inpg.fr/Web/Projets/DRAKKAR/
[64] http://www.hector.ac.uk/
[65] http://www.mcs.anl.gov/petsc/
[66] http://www.pwscf.org/home.htm
[67] http://www.quantum-espresso.org/
[68] http://www.icmab.es/dmmis/leem/siesta/
[69] http://www.abinit.org/
[70] http://exciting-code.org/
[71] http://elk.sourceforge.net/
[72] http://www.tddft.org/programs/octopus/wiki/index.php/Main_Page
[73] http://www.yambo-code.org/
[74] http://www.gnu.org/copyleft/gpl.html
[75] http://icl.cs.utk.edu/magma/
[76] http://www-ccrt.cea.fr/fr/moyen_de_calcul/titane.htm
[77] http://software.intel.com/en-us/articles/intel-mkl/
[78] http://inac.cea.fr/L_Sim/BigDFT/
[79] http://www.fftw.org/
[80] http://www.gnu.org/s/gsl/

List of Acronyms and Abbreviations

AMR Adaptive Mesh Refinement
API Application Programming Interface
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CAF Co-Array Fortran
CCLM COSMO Climate Limited-area Model
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CERFACS The European Centre for Research and Advanced Training in Scientific

Computation
CESM Community Earth System Model, developed at NCAR (USA)
CFD Computational Fluid Dynamics
CG Conjugate-Gradient
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CNRS Centre national de la recherche scientifique

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 xii

COSMO Consortium for Small-scale Modeling
CP Car-Parrinello
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CUDA Compute Unified Device Architecture (NVIDIA)
DEISA Distributed European Infrastructure for Supercomputing Applications.

EU project by leading national HPC centres.
DFPT Density-Functional Perturbation Theory
DFT Discrete Fourier Transform
DGEMM Double precision General Matrix Multiply
DKRZ Deutsches Klimarechenzentum
DP Double Precision, usually 64-bit floating-point numbers
DRAM Dynamic Random Access memory
EC European Community
ENES European Network for Earth System Modelling
EPCC Edinburgh Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United

Kingdom)
ESM Earth System Model
ETHZ Eidgenössische Technische Hochschule Zürich, ETH Zurich

(Switzerland)
ETMC European Twisted Mass Collaboration
ETSF European Theoretical Spectroscopy Facility
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
FFT Fast Fourier Transform
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FT-MPI Fault Tolerant Message Passing Interface
FZJ Forschungszentrum Jülich (Germany)
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also GF/s
GGA Generalised Gradient Approximations
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPL GNU General Public Licence
GPU Graphic Processing Unit
HDD Hard Disk Drive
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 xiii

HPL High Performance LINPACK
ICOM Imperial College Ocean Model
ICON Icosahedral Non-hydrostatic model
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
I/O Input/Output
IPSL Institut Pierre Simon Laplace
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
NEMO Nucleus for European Modeling of the Ocean
NERC Natural Environment Research Council (United Kingdom)
NCAR National Center for Atmospheric Research
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MBPT Many-Body Perturbation Theory
MCT Model Coupling Toolkit, developed at Argonne National Lab. (USA)
MD Molecular Dynamics
MFlop/s Mega (= 106) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also MF/s
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
MPI Message Passing Interface
MPI-IO Message Passing Interface – Input/Output
MPIM MPI for Mathematics
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
NCF Netherlands Computing Facilities (Netherlands)
NEGF non-equilibrium Green's functions,
NERC Natural Environment Research Council
OpenCL Open Computing Language
Open MP Open Multi-Processing
OS Operating System
PAW Projector Augmented-Wave
PGI Portland Group, Inc.
PGAS Partitioned Global Address Space
PIMD Path-Integral Molecular Dynamics
POSIX Portable OS Interface for Unix
PPE PowerPC Processor Element (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
PWscf Plane-Wave Self-Consistent Field
QCD Quantum Chromodynamics

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 xiv

QR QR method or algorithm: a procedure in linear algebra to factorise a
matrix into a product of an orthogonal and an upper triangular matrix

RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RPM Revolution per Minute
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SP Single Precision, usually 32-bit floating-point numbers
SPH Smoothed Particle Hydrodynamics
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
TB Tera (=240 ~ 1012) Bytes (= 8 bits), also TByte
TDDFT Time-dependent density functional theory
TFlop/s Tera (=1012) Floating-point operations (usually in 64-bit, i.e., DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UPC Unified Parallel C

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 xv

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 1

Executive Summary

This document presents the results achieved by PRACE-2IP [1] Work Package 8 at PM3.
Scientific communities, selected during the first project month, proposed a number of codes
relevant for the scientific domain and promising in terms of potential performance
improvement on the coming generation of supercomputing architectures. In order to analyse
the performance features of these codes, a methodology, based on the performance modelling
approach, has been defined and adopted. This methodology relies on the analytic modelling of
the main algorithms (characterising the dependency from the critical model parameters) and
on the performance analysis, based on the usage of performance tools. The performance
modelling approach allows studying the current behaviour of a code, emphasising
performance and bottlenecks. But it is also a predictive tool, allowing the estimation of the
code’s behaviour on different computing architectures, and identifying the most promising
areas for performance improvement.

The first step of the modelling is represented by performance analysis. This analysis was
accomplished for all the proposed codes, with detailed data generated and collected. The
overall results are presented for each scientific domain and code. Most of the data was
generated for “real cases”, i.e., running the codes for real scientifically meaningful cases, in
order to evaluate performances and bottlenecks in daily usage configurations, and to achieve a
performance impact through code refactoring and optimisation of the crucial sections of each
code. In the following step of WP8, this data will be synthesised and modelled, in order to
identify the most promising numerical kernels for performance improvement. This will be the
subject of the coming deliverable D8.1.3 “Prototype Codes Exploring Performance
Improvements”

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 2

1. Introduction
In the first month of Work Package 8 (hereafter WP8), four scientific domains, Astrophysics,
Climate, Material Science and Particle Physics, have been identified as areas on which WP8
can have a extraordinary impact. The final objective was to select, within these domains, a
number of representative communities, i.e., research groups acting jointly in a given research
field, developing some of the most popular scientific codes, and willing to actively invest in
software refactoring and algorithm re-engineering in synergy with PRACE-2IP partners
within the framework of WP8. In this way, scientific teams and HPC experts cooperate in
order to design and implement a new generation of software tools with outstanding scientific
features and, at the same time, capable of effectively exploiting the coming HPC systems.

A sound and proper selection of the communities was a key achievement for the work
package. Since they have the best grasp of applications and algorithms, these communities not
only specify the scientific challenges, but also address the selection and the implementation of
the simulation codes. Such selection had also to be prompt, in order to leave as much time as
possible to the development phase, where most of the WP effort has to focus.

A successful selection was accomplished at the end of PM1, as reported in deliverable D8.1.1
[2]. The first immediate step made by the communities was the proposal of a number of
relevant codes that could be interesting for WP8. Among these codes, only those deemed
ready for a refactoring effort were selected.

For an objective and quantitatively motivated selection, a detailed performance analysis was
necessary. Due to the broad spectrum of applications under investigation, a general and
powerful methodology had to be specified. An appropriate methodology was defined, based
on the “Performance Modelling” [42][43][44][45] approach. Performance modelling has the
goal of gaining insight into a application’s performance on a given computer system. This is
achieved first by measurement and analysis, and then by the synthesis of the application
characteristics in order to understand the details of the performance phenomena involved, and
to project performance to other systems. Therefore, performance modelling not only allows to
study the current behaviour of a code, emphasising performances and bottlenecks, but
represent a predictive tool, estimating the behaviour on a different computing architecture and
identifying the most promising areas for performance improvement.

The adopted Performance Modelling approach will be described in more details in Section 2.

The first step to model the proposed codes was the analysis of the performances, using
standard performance tools, collecting all the information that are necessary to understand the
behaviour of the main code’s algorithms and their dependencies from the relevant model
parameters (e.g. the number of cells of the computational mesh) and from the hardware. The
performance analysis phase and its results are described in details in Sections 3 to 6, where
codes from the four selected scientific domains are considered.

For all the codes, it is important to note that:

1. In this document we can present only a synthesis of all the performance data available,
in general those that characterise the “coarse grain” behaviour of each application and
that can be of interest for the non-expert reader. More specific and detailed
information is available and will be exploited in the subsequent modelling phase.

2. Due to the variety of involved application areas, algorithms, numerical approaches,
compilers, computing environments, libraries etc., each code was analysed according
to its most proper specific methodology, using the most appropriate tools and
collecting the most meaningful data. This makes the presentation of the results
somehow “untidy” and inhomogeneous, but guarantees that all necessary data was
produced.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 3

At the end of this step, collected data will be synthesised and performance-modelled, in order
to identify the most promising numerical kernels for performance improvement. This will be
the subject of the coming deliverable D8.1.3.

The present deliverable is organised as follows. The adopted performance modelling
methodology is presented in Section 2, together with a simple case that exemplifies how the
methodology works.

Sections 3 to 6 are dedicated to the presentation of the overall results of the performance
analysis. Section 3 is dedicated to Astrophysics codes (RAMSES, PKDGRAV, PFARM);
Section 4 is for Climate (OASIS, CDI, XIOS, PIO, ICON, NEMO, ICOM); Section 5 is
focused on Material Science codes (ABINIT, Quantum ESPRESSO, Yambo, Siesta, Octopus,
EXCITING). Finally, Section 6 describes Particle Physics algorithms performances.

In Section 7, the next steps of WP8 are summarised and the conclusions drawn.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 4

2. The Performance Analysis Methodology
A thorough understanding of the application code performance is crucial for the ultimate
success of this work package. While the chosen codes differ greatly in their size, complexity
and preparedness for HPC, a common methodology for analysing their performance can be
formulated. This methodology relies on the “performance modelling” approach.

The goal of performance modelling is to gain understanding of applications’ performance, by
means of measurement and analysis, and then to synthesise these results in order to gain
greater understanding of the performance phenomena involved and to project performance to
other system/application combinations.

Performance modelling of scientific codes is usually performed in three phases: (1) identify
the performance-critical input parameters (e.g., the number of particles or cells, the number of
iterations, etc.), (2) formulate and test a hypothesis about the performance as function of the
performance-critical input parameters, and (3) parameterise the function. Empirical modelling
strategies that benchmark parts of the code (kernels) on the target architecture are often
employed to maintain human-manageable performance models. Steps (2) and (3) of
developing analytic performance models are often performed with the help of performance
tools, that allow deep insights into the behaviour of machines and their performance by
displaying the performance characteristics of executed applications. Tools allow the
determination of bottlenecks and tune applications. They can also guide re-engineering of
applications and they are often used to collect the data to design application models. Many
codes already contain their own profiling timers. For the codes that do not, either timers can
be inserted, or common performance analysis tools like CrayPat [4], TAU [5] or Scalasca [6]
can be employed.

Analytic modelling and performance analysis tools cooperate in the performance model.
Analytic performance modelling can be seen as top-down approach where the user formulates
an expectation based on an algorithm or implementation and tries to validate and parameterise
it to predict performance. Performance analysis tools can be seen as a bottom-up approach
that records performance artefacts and strive to trace the artefacts back to the original
implementation or algorithm.

Figure 1: The performance modelling methodology.

We intend to apply the performance model approach for each individual community code
chosen, in order to give a precise indication of areas of the code requiring performance
improvement. We do not expect that the performance models for all codes have the same
degree of sophistication, or that there can be the same degree of profiling presented for each,
however a minimum of information necessary to complete the modelling has to be collected.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 5

From the analytical point of view, performance-critical input parameters must be identified.
This has to be done by an application expert. Performance-critical input parameters (“critical
parameters”) can be for example the size of the simulated system or parameters that influence
convergence. Other parameters, such as initial starting values (e.g., heats or masses) might not
change the runtime of the algorithm and are thus not critical in performance models. More
complex parameters such as the shape of the input systems need to be approximated into a
single value by the application expert.

For performance analysis we focused two major factors: 1) single processor performance and
2) use of parallel architectures (other factors, although present, are assumed to be negligible
for the applications we deal with). Therefore we expect to collect information on:

1. single processor traces and profiles, focusing on floating-point work and usage of the
memory sub-system,

2. shared- or distributed-memory parallel performances, focusing on communication,
scalability, access to shared memory, hybrid approaches.

Analytical and performance information concurs in defining, for each code, an extended
analytical model that can predict performance on a multiple-node and/or multi-core platform,
given a minimal number of descriptive parameters, allowing to predict execution time on new
systems, given the critical parameters and the characteristic of the target platform (e.g.,
memory bandwidth, network cross-sectional bandwidth, Flop/s, etc.).

This will allow the selection of the numerical kernels to work on in WP8 and a quantitatively
estimation of the benefits of code refactoring on the target architectures, maximising the
impact on the community codes of interest.

2.1 Performance Modelling Example

Within the context of the HP2C initiative [46], a pilot project was started to model and
subsequently optimise for single node performance. First a highly simplified model was
developed for the performance of the fast-wave solver, which is the main kernel of the
dynamical core of a European regional numerical weather prediction model COSMO.

The ideas behind the performance model are the following:

 Performance is dominated by the memory access,
 The memory access in the small time steps dominates,
 Only accesses to the 3d arrays are considered,
 The read and write accesses to the variables are counted,
 Assume that all accesses within the inner 2 loops are in L2 cache.

Task # accesses # runs per large step # accesses per large step

Update tendencies 11 3 33

Horizontal integration 17 10 170

Vertical integration 41 10 410

Pre-calculation 50 1 50 (estimation)

Table 1: Number of memory accesses are listed for the calculation of a given 3-D field in different portions
of the atmospheric dynamics fast-wave solver. These portions have various calling frequencies.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 6

The number of accesses for portions of the fast-wave solver is listed in Table 1. Their weighted
sum gives the number of accesses per field element per time step. We assume that the local
domain – the horizontal 2-D cross-section of all 3-D fields in the computation – can fit into
level 2 cache on the individual core, an often unjustified assumption. If one ignores all
computation and considers only the time needed to move data between L2 cache and the FPU,
a simple lower bound for execution time can be derived. This lower bound can be tight if the
cache assumption is valid, if not, the timings can be off by a large factor.

Due to its simplicity, this model can be quickly modified to represent a different architecture,
by changing the cache memory bandwidth parameter. It was the chief motivator for the
refactoring of the fast wave solver to recalculate intermediate quantities “on the fly” instead
of storing them in intermediate arrays and then reusing them.

Figure 2: An analytic model based on the memory bandwidth to L2 cache was derived from the number of
memory accesses given in Table 1. The predicted execution time can be considered a lower bound. If the
assumption is valid that all arrays associated with the local domain fit into L2 cache, this lower bound is
quite tight (see 6 core results), if not, the predicted times can be off by a large factor (e.g., 1 core results).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 7

3. Performance Analysis of Community Codes: Astrophysics
Several codes have been proposed by the Astrophysics community for the refactoring of the
most time consuming routines and their enabling to innovative HPC systems. All of these
codes are open source. RAMSES and PKDGRAV are widely used in the astrophysiscs
community, the first focusing on problems of galaxy and cluster of galaxies formation and
evolution, the second being an outstanding tool for the study of the large scale structure of the
universe and for precision cosmology. The PFARM suite is, instead, usually used in material
science but, describing electron-atom and electron-ion scattering, it can be effectively adapted
and exploited in the astrophysics framework, where the precise and efficient description of
atomic physics, an extreme computationally demanding task, is necessary to get, from
simulations, results comparable to observational data.

3.1 RAMSES

3.1.1 Description of the code
The RAMSES code was developed in Saclay [7] to study the evolution of the large-scale
structure of the universe and the process of galaxy formation. RAMSES is an adaptive mesh
refinement (AMR) multi-species code, describing the behaviour of both the baryonic
component, represented as a fluid on the cells of the AMR mesh, and the dark matter,
represented as a set of collisionless particles. The two matter components interact via
gravitational forces. The AMR approach makes it possible to get high spatial resolution only
where this is actually required, thus ensuring a minimal memory usage and computational
effort.

The main features of the RAMSES code are the following:

1. The AMR grid is built on a tree structure, with new refinements dynamically created (or
destroyed) on a cell-by-cell basis, where high spatial resolution is required by the
physical problem. This allows greater flexibility to match complicated flow geometries.
This property appears to be especially relevant to cosmological simulations, since clumpy
structures form and collapse everywhere within the hierarchical clustering scenario;
different refinement strategies are implemented: e.g. the “quasi-Lagrangian” criterion, in
which the number of dark matter particles per cell remains roughly constant, minimising
two-body relaxation and Poisson noise, or criteria based on matter overdensities.

2. The hydrodynamic solver is based on several different shock capturing methods, all
ensuring exact total energy conservation, and relying on Riemann solvers, without any
artificial viscosity.

3. The dark matter particles dynamics is calculated according to a N-body approach with a
Cloud-in-Cell force calculation schema.

4. The gravitational field is calculated solving the Poisson equation with Dirichlet boundary
conditions on a Cartesian grid with irregular domain boundaries. This scheme was
developed in the context of the AMR schemes based on a graded-octree data structure.
The Poisson equation is solved on a level-by-level basis, using a “one-way interface”
scheme in which boundary conditions are interpolated from the previous coarser level
solution. Such a scheme is particularly well suited for self-gravitating astrophysical flows
requiring an adaptive time stepping strategy.

5. Time integration is performed for each level independently, with an adaptive time step
algorithm, the time interval being determined by a level dependent stability condition.

6. Magnetic and radiative fields are supported and can be turned on for specific
applications.

7. The code is parallelised adopting a MPI-based approach. Domain decomposition is
accomplished by mesh partitioning techniques, inspired by parallel tree codes. Several

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 8

cell ordering methods (based on space filling curves) are implemented in order to achieve
an optimal work-load balancing and to minimise the communication

Figure 3: RAMSES domain decomposition based on the Peano-Hilbert curve for AMR based data
structure: different colours are assigned to different processors.

3.1.2 Performance Analysis
All the tests presented in this section were run on a 1844 nodes CRAY XT5 [8] system. Each
of the compute nodes consists of two 6-core AMD Opteron 2.4 GHz Istanbul processors
giving 12 cores in total per node with 16 GBytes of memory.

For each test we present the total time required by the code to complete the test and the
fraction of the work spent in the different parts of the code (“sections”), grouped as follows:

 Hydro: all the functions needed to solve the hydrodynamic problem are included.
Within these functions, we have those that collect from grids at different resolutions
the data necessary to update each single cell, those that calculates fluxes to solve
conservation equation, the Riemann solver, and the finite-volume solver.

 Gravity: this group comprises functions needed to calculate the gravitational potential
at different resolutions using a multigrid-relaxation approach

 N-body: functions needed to update particles’ position and velocity and to evaluate the
gravitational force acting on each particle

 I/O: functions that read/write data from/to the disk
 Time-stepping: function needed to manage the AMR hierarchy and to control the

multiple time step integration sweep
 MPI (only in the parallel tests): comprises all the communication related MPI calls

(data transfer, synchronisation, management)

Critical parameters analysis

The critical parameters for RAMSES are represented by the number of particles describing
the Dark Matter component (Np), the number of cells of the AMR, base mesh, where fluid
dynamics data are initialised (Nc), the number of AMR cells, generated during the simulation
(NAMR) and the number of refinement levels (NL). The two NAMR and NL parameters are
clearly related, however it is impossible to find a precise dependency between the two, the
AMR grid refining according to the evolution of the system.

Due to the adaptive time stepping, Hydro (finite differences) and Gravity (multigrid) scale
linearly with the total number of cells of the computational mesh (Nc\NAMR) at a given level:

T = A x NAMR,

where A = 2L, L being the current AMR Level (L=0 is the base level).

The same behaviour is exhibited by the N-body (Particle-Mesh) algorithm that scales as:

T = A x N(p,a),

N(p,a) being the number of particles active at a given refinement level.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 9

Single core profiling, UNIGRID mode

In this first test, we analyse the behaviour of RAMSES when executed sequentially on a
single core of our computing system. This allows the modelling the performance of the code
without any influence of communication and network. AMR is switched off (UNIGRID
mode), in order to keep memory requirements constant (both the number of particles and the
number of cells do not change with time). Three different configuration are analysed: in all
the tests the two critical parameters, i.e., the number of particles, Np, is set equal to the
number of cells Nc. For the Small test, we set Np = Nc = 323, in the Medium test Np = Nc =
643, while for the large test, we set: Np = Nc = 1283.

Problem size 323 643 1283

Figure 4: Distribution of the work in a single core
run for a UNIGRID setup.

Total Time (sec) 19.3 87.3 733.4

Hydro (%) 37.4 41.9 40.2

Gravity (%) 27.3 31 33.6

N-body (%) 4.3 5.4 5.6

I/O (%) 1 1 1

Time-stepping (%) 5.8 9.9 10.3

Others (%) 24.2 10.8 9.3

The medium and the large tests are consistent with each other, the total time icreasing by a
factor approximately of 8 (as expected by the problem sizes) and the percentage of time spent
in each section being roughly the same. The small case is strongly affected by the initial
conditions setup (the corresponding times being included in “Others”). However, once
“cleaned” from such contributions, the results are consistent with the two larger
configurations. Hence, on a single processor no specific dependency from the problem size
seems to appear.

Single core profiling, AMR code

The same initial configurations adopted in the previous section, are used with AMR switched
on. In this case, the number of particles is constant, while the number of cells changes with
time, leading to a variable memory load with memory access performances changing with
time. We have performed two different experiments, setting Np=1283 a base grid with 1283
cells and 2 and 4 refinement levels respectively:

 2 levels 4 levels

Figure 5: Distribution of the work in a single core run
for a AMR setup.

Total Time (sec) 1555.3 1567

Hydro (%) 37.2 37.8

Gravity (%) 41.8 38.9

N-body (%) 2.9 3.2

I/O (%) 1 1

Time-stepping (%) 4.6 5.2

Others (%) 12.5 13.9

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 10

It is interesting to notice that the time to solution is roughly the same in the two cases,
although a different number of levels of refinement is adopted. This is mainly due to the
particular data structure of RAMSES, that allows to access data irrespectively to the
resolution level it belongs to. Furthermore, it is worth noticing that, the total number of
refined cells in the “4 levels” test is, at the final step, equal to 199853, while in the “2 levels”
test it is 285474, unlike one would expect. This means that, when high resolution is enforced,
some processes that at lower resolution are spread over a broad volume, concentrate on
narrow regions, strongly decreasing the number of cells necessary to their description.

When AMR is active, Gravity becomes the most demanding part of the code, although Hydro
times tend to increase with the resolution. The N-body part, is instead always negligible.

The Time-stepping section appears to be less demanding than in the UNIGRID case. This,
however, is true only from a percentage point of view. The wall clock time spent in this
section by the AMR, in fact, is, as expected, larger than in the UNIGRID case.

Parallel Profiling, Single Node test

In this test we compare the previous 1283 sequential runs, UNIGRID and AMR, with the
corresponding parallel realisations. Since the test is still small, it can be run on a single node,
using up to 8 cores. This preliminary set of tests is needed to verify the impact of parallelism
on the application: larger configurations in fact, cannot be run on a single processor, hence a
direct comparison with the sequential performances is prevented. For the AMR we adopted 4
levels of refinement.

Figure 6: Scalability of a small test both for UNIGRID and AMR set-up described above. Liner scalability
(black line) is shown for comparison).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 11

Figure 7: Distribution of the work for the small test as a function of the number of processors.

In Figure 6 we show the scalability of the UNIGRID and AMR cases from 2 to 8 processors.
The uniform grid test deviates from the linear behaviour, since, due to the limited grid size,
the amount of computation tends to be small with respect to communication, even when 4
cores are used. This is slightly less relevant for the AMR, where the data size is larger due to
the presence of refined regions, but, as shown in Figure 7, the MPI overhead is larger due to
the unbalanced distribution of work related to the adoption of the multiple time-step approach,
that leads to a slower integration of the high resolution region, whose distribution is not
perfectly balanced among the processors. This problem in fact grows with the number of
cores. It is interesting to notice that for the parallel execution, the Hydro part tends to be
larger than the gravitational one. The two are instead comparable on a single processor and on
two processors for the AMR case. The N-body part is always much smaller than Hydro and
Gravity, and becomes completely negligible in the AMR runs, being not subject of any
refinement procedure.

Parallel Profiling, Production test

In the last series of test, we analyse the performances of the code in “production” conditions,
i.e., with a problem size typical of scientific cosmological simulations. In this case the number
of processors is typically larger than 512, in order to have both enough memory and to keep
the simulation time (wall clock time) reasonably low (the former being usually the most
severe constraint).

We have run a cosmological simulation of a box of 503 Mpc, with a base mesh of 5123 cells
and the same number of particles. We have analysed the performances considering 15 time
steps starting from an evolved configuration, when AMR is already active and its nested
structure populated (see Figure 8, where Level 9 is the last level with a uniform grid - the base
grid – while at higher levels AMR is active and cells are generated at increasing resolution)

Figure 8: AMR structure at the final time step of the production test

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 12

In Figure 9 we show the performance analysis of the different code sections when 256, 512
and 1024 cores are used. Due to the memory requirements of this set up, it was not possible to
use less than 256 processors. It extremely interesting to notice how, for such large
configurations, the MPI communication overhead is large, becoming dominant when 1024
processors are used. A more accurate analysis shows that most of the MPI time is spent in
MPI_wait calls, so in synchronising the different MPI threads. In order to give the right
interpretation to this result, it is useful to consider the strong scalability curves of the whole
code and of its main sections (MPI, Hydro, Gravity, see Figure 10). It is also interesting to
note that, both Hydro and Gravity scales linearly with the number of processors (Hydro, due
to cache effects even better than linearly between 512 and 1024 processors). This means that
the domain decomposition is well balanced and each processor works approximately on the
same number of cells for each level (due to the multiple time stepping approach, higher levels
cells requires more work to be integrated). Therefore, the synchronisation overhead cannot be
interpreted as an effect of the multiple time stepping approach, together with the difficulty in
getting ideal domain decomposition, intrinsic to AMR. Instead, it can be explained as a result
of the continuous need for each processor to access information that are stored remotely, both
for hydrodynamics and for the gravity. For the former, data locality is not ensured, due to the
AMR structure that, although optimised, leads to frequent requests for cells data stored in
remote memories. For the latter, long-range forces are involved, hence remote information are
necessary to perform any calculation. The number of remote accesses is not predictable and
changes along time and among different processors. The result can be detected as the MPI
overhead shown above. This is confirmed by the fact that when few processors are used, and
the domain decomposition is much coarser, MPI impact is less relevant, becoming more and
more important as the number of AMR (hence its complexity) increases (see Figure 7).

In Figure 10, also the computational efficiency is presented. For this specific set up, the
efficiency is good for the 512 case, still reasonable for the 1024 case, but the tendency is to
drop to unacceptable values above 1024 processors.

Figure 9: Distribution of the work for the production test as a function of the number of processors.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 13

Figure 10: Scalability in the production test (left) for the whole code, the principal sections and MPI
(linear scalability is shown for comparison – black line). Efficiency of the code as a function of the number
of processors is shown in the right image (efficiency=1 for the 256 case).

3.2 PKDGRAV

3.2.1 Description of the code

PKDGRAV [9] is a Tree-N-Body code, designed to accurately describe the behaviour of the
Dark Matter in a cosmological framework. The central data structure in PKDGRAV is a tree
structure, which forms the hierarchical representation of the mass distribution. Unlike the
more traditional oct-tree, which is used in the Barnes-Hut algorithm [10], PKDGRAV uses a
k-D tree, which is a binary tree. The root-cell of this tree represents the entire simulation
volume. Other cells represent rectangular sub-volumes that contain the mass, centre-of-mass,
and moments up to hexadecapole order of their enclosed regions. PKDGRAV calculates the
gravitational accelerations using the well-known tree-walking procedure of the Barnes-Hut
algorithm. Periodic boundary conditions are implemented via the Ewald summation technique
[11]. PKDGRAV uses adaptive time stepping. It runs efficiently on very large parallel
computers and has produced some of the world's highest resolution simulations of cosmic
structures. Although designed for cosmological and galaxy simulations, PKDGRAV has been
successfully used also on much smaller spatial scales, for studies on the evolution of planetary
systems.

Figure 11: The tree structure of PKDGRAV.

3.2.2 Performance Analysis

All the tests presented in this section were run on a 1844 nodes CRAY XT5 [8] system. Each
of the compute nodes consists of two 6-core AMD Opteron 2.4 GHz Istanbul processors
giving 12 cores in total per node with 16 GBytes of memory.

For each test we present the total time required by the code to complete the test and the
fraction of the work spent in the different parts of the code (“sections”), grouped as follows:

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 14

 Gravity: gravitational forces are calculated for each particle by direct point-to-point
sum, for particles that are close to each other (where high accuracy is needed) and via
Fast Multipole Method (5th-order expansion of the potential) for long-range
interactions.

 Tree build: the K-d tree is built according to the distribution of particles, in order to
speed-up the calculation of gravitational forces.

 Kick: equation of motion are integrated with multiple time-steps, depending on the
dynamical status in which the particle is (e.g. high density regions are more “active”,
hence the time-step for particles in those region are shorter than those for particle in
“empty” volumes)

Figure 12: Multiple time step integration scheme.

Critical parameters analysis

The critical parameters for the PKDGRAV code are the number of particles used for the
simulation (Np) and the number of particles active at a given sub-timestep level (Na).

 Gravity: the computing time needed for the calculation of the gravitational forces,
scales linearly with the active particles O(Na) if Na >~ 100000; otherwise it scales as
O(Na log(Np)). Communication is estimated to scale linearly with the number of
particles ~O(Np).

 Tree Build: the construction of the K-d tree can be split in two main phases, a sort
function, which scales as O(Np log(Np)) and the calculation of forces and moments,
that scales as O(Np). Communication scales linearly with Np.

 Boundary Conditions: no communication involved in this step. The computation
scales as O(Na)

 Kick: particle positions update requires no communication and scales as O(Na)

Single Timesteps test

In a first series of tests, we have analysed PKDGRAV performances when adaptive time step
is switched off. This allows to focus on the force calculation part, emphasizing the
performances of the Boundary, Gravity and Tree Build sections.

The test set-up consists in about 1 billion particles (10243), whose dynamics is followed from
the homogeneous initial conditions, to an evolved, clumpy, configuration, after about 50
integration steps.

 Figure 13 shows the distribution of work between different sections of the code as a function
of the number of processors. PKDGRAV spends approximately the same fraction of time for
calculating gravity, exploring the tree and imposing periodic boundary conditions. This last
function is the most demanding for 512and 1024 processors. Communication overhead,
represented by the MPI section, is less or around the 10% in all cases but the 4096 processors
one, for which it grows to the 18%. This is due to the size of the problem that starts to be too
“small” when 4096 processors are used.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 15

Figure 13: Distribution of work for the different PKDGRAV section in the Single Timestep test described
above.

In Figure 14, we present the strong scalability of the whole code and of its main sections as a
function of the number of processors. For comparison, the linear scalability is shown as well.
A slight deviation from the linear scalability is measured, due mainly to the highest
communication overhead, stressed by the MPI overhead trend, the other sections scaling
linearly (or with NlogN behaviour) as expected by the analytic performance modelling.

Figure 14: Scalability of PKDGRAV in in the Single Timestep test described above..

The efficiency curve, calculated with respect to the 512 processors case, confirms the good
scalability of the code in this configuration. Efficiency is above 0.75 even when 4096
processors are used.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 16

Figure 15: Efficiency of PKDGRAV for the Single Timestep test (efficiency=1 is set for the 512 processors
test)

Dynamic Timesteps test

In this testcase, the PKDGRAV adaptive timestep is switched on. This allows coping with the
large dynamical range typical of cosmological simulations. In this situation, each particle,
depending on its dynamical state, evolves on different timescales. This means that long
timesteps can be adopted for particles lying in “quite” (i.e. underdense) regions, using a small
timestep only for those particles that really need it for numerical accuracy, strongly reducing
the computational effort, that is mainly due to small timesteps particles. Figure 16 shows for a
test with 9 timestep levels (“Rungs”) the distribution of particles adopting different timesteps.
At the beginning of the simulation, most of the particles use the same timestep, the particle
distribution being homogeneous. The situation changes as soon as gravitational collapse starts
and particles tend to concentrate in small clumps, where timestep can be extremely short.
Note that less than 5% of the particles end up in these clumps, but they account for almost
half of the total work. In a sequential code, this is a good achievement. In fact, it means that
the code saves a lot of time that would be needed to integrate particles that can adopt large
timesteps, but that with the single timestep approach would be integrated at the maximum
time resolution (i.e. with a tiny timestep). However, this creates a relevant load balancing
problem in parallel, expecially when a large number of processors is used. High (time)
resolution particles, in fact, are distributed randomly among processors, and a few processors
could be in charge of their integration.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 17

Figure 16: Fraction of active particles with different timesteps, linear (left) and logarithmic (right) scales
as a function of evolutionary time. Darker zones are characterized by shorter dynamic timesteps. Red line
shows where half of the CPU work is spent.

This leads to a computational overload of these few processors, leaving the others almost free,
hence, to an overall drop of the performance.

Figure 17: Distribution of absolute time spent in different parts of the codead different timestep levels in
runs with 1000 (left) and 2000 (right) processors. The solid lines show the time for the various sections
integrated on the various time levels.

The behaviour of the code on a use case characterised by about 1 billion particles is shown in
Figure 17. In this test eight timestep levels are active. The absolute time spent in different
parts of the code is shown for each level. As expected, most of the time is spent at levels 4, 5
and 6, that performs 16, 32, and 64 timesteps respectively for each level 0 “large” step. The
unbalance problem is extremely clear and dominates the computing time at various levels. It
is not relevant at level 0, where a homogeneous distribution of the weakly interacting particles
is intrinsic to the physical problem. For level 0 it is the force calculation the most demanding
part of the algorithm. The unbalance is also low or even negligible at the highest levels. For
those levels in fact, few particles are present (although each particle accounts for 128 and 256
steps with respect to level 0) and most of the overhead is due to the access to the distributed
tree.

An overall parallel efficiency of the 25% is measured in this (representative) test, due mainly
to the load unbalance and to some MPI communication overhead (Idle time). These aspect
will be the subject of specific care in the further steps of WP8.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 18

3.3 PFARM

3.3.1 Description of the code

PFARM is part of a suite of programs based on the ‘R-matrix’ ab initio approach to
variational solution of the many-electron Schrödinger equation for electron-atom and
electron-ion scattering [12]. Relativistic extensions have been developed and have enabled
much accurate scattering data to be produced. The package has been used to calculate data for
electron collisions with various ions of Fe, Ni, Sn and neutral O. It is also being used for
studies of intermediate energy scattering by light atoms.

PFARM divides configuration space into radial sectors and solves for the Green’s function
within each sector using a basis expansion: the BBM method [13]. The parallel calculation
takes place in two distinct stages, with a dedicated MPI-based program for each stage. Firstly,
parallel sector Hamiltonian Diagonalisations are performed using a domain decomposition
approach with the ScaLAPACK-based code EXDIG. The energy-dependent propagation
(EXAS stage) across the sectors is then performed using systolic pipelines with different
processors handling different sectors [14]. This partitioning allows us to optimise sector
length for each region: generally smaller numbers of sectors with a larger number of basis
functions in the fine region and larger numbers of sectors with a smaller number of basis
functions in the coarse region. In most cases the vast majority of energy points lie within the
fine region and therefore this is the stage where most compute time is spent.

3.3.2 Performance Analysis

EXDIG Stage

The first stage of a calculation involves the parallel diagonalisation of large sub-region (or
sector) Hamiltonian matrices that are computed independently of scattering energies.
Evidently this approach is highly beneficial for calculations involving hundreds or thousands
of scattering energies. The code is structured to take advantage of the parallel symmetric
diagonalisation methods available in ScaLAPACK [55]. These routines are built upon the
BLACS [56] communication library (itself based on MPI) and the highly optimised vendor
BLAS [57] libraries, thereby ensuring highly efficient performance. Figure 18 shows the
parallel performance of EXDIG using the ScaLAPACK diagonaliser PDSYEVD for a range
of data matrix sizes out to 8192 cores of the Cray XT4.

Figure 18: Parallel Performance of Diagonalisation Stage EXDIG on the Cray XT4

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 19

A characteristic of the EXDIG code is that n independent Hamiltonian matrix diagonalisations
are required, where n is the number of sub-regions defined in the calculation. A recent
optimisation [15] applied to the EXDIG code involves introducing a further level of
parallelisation by splitting the global number of parallel tasks into n sub-groups of tasks, each
with a unique BLACS communicator (or BLACS sub-grid). Each sub-group is then allocated
a sector Hamiltonian matrix and undertakes the parallel matrix diagonalisations concurrently
within these sub-groups. This can improve performance of EXDIG markedly, as shown by the
timings obtained on the Cray XT4 and depicted in Figure 19.

EXAS Stage

For large-scale calculations involving several thousands of scattering energies, the parallel run
time is generally dominated by the R-matrix propagation stage calculations undertaken in the
EXAS code. In this stage of the calculation the majority of the processors available are
arranged in arrays of processor pipelines, where each ‘node’ of the pipeline represents one
sector. These pipelines are supplied with initial R-matrices (one for each scattering energy)
from the inner region boundary by an R-matrix production group of processors (domain
decomposition calculation). The final R-matrices produced by the propagation pipelines are
passed on to a final group of processors for a task-farmed asymptotic region calculation,
before results such as collision strength results are written to disk. The significant advantage
of this ‘hybrid’ decomposition of tasks in EXAS is that much of the initial R-matrix and
sector R-matrix propagation calculation on each node of the pipeline can be based upon
highly optimised level 3 BLAS routines, leading to highly efficient usage of the underlying
HPC architecture. A further reduction in compute time can usually be obtained by
undertaking EXAS runs in two stages. Firstly a fine region propagation involving scattering
energies residing in the extremely complex scattering resonance region followed by a coarse
region propagation for scattering energies above this region.

The parallel code also scales very well up to large number of cores as more processor
pipelines are added (Figure 20). However on very large core counts e.g. 16384, overheads
such as IO start to become significant and at this level of parallelism the strong scaling wanes.
A more detailed discussion of the parallel performance of PFARM can be found in the report
from the Distributed CSE Support Project Report [15].

Figure 19: Parallel Performance of optimised EXDIG (new) using BLACS sub-groups compared to the
original EXDIG (ori). FeIII, JJ coupling calculations.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 20

Figure 20: Parallel Performance of EXAS R-matrix propagation code. The graph reports the strong
scaling behaviour on the Cray XE6 for a FeIII calculation with JJ coupling involving 10678 scattering
energies.

Serial Performance

As shown in Figure 20, the bulk of the computational time in large-scale parallel runs is spent
in the sub-region propagation calculations. These calculations make much use of Level 3
serial BLAS matrix-multiply routines. The highly optimised BLAS library routines are
typically designed to take advantage of the underlying microprocessor architecture, and
therefore attain near peak performance. The figure below (Figure 21), taken from a single-
node efficiency study in the UK on an IBM Power5+ series architecture [16], shows that
PFARM (here referenced as PRMAT) is one of the fastest academic application codes in
common usage in the UK on HPC architectures, averaging >35% of peak performance.

Figure 21: Performance of different codes

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 21

4. Performance Analysis of Community Codes: Climate
In deliverable D8.1.1, four areas have been identified as being central to the improvement of
performance in climate modelling. These are:

1) Couplers between different earth system components,
2) Input/Output – reading and writing data in parallel from numerous threads,
3) Dynamical cores – the solution of the equations of fluid motion,
4) Ocean models – solvers of the oceanic dynamics.

The selection of the individual software components and their performance analysis is given
in the subsequent sections.

4.1 OASIS

4.1.1 Description of Code

In Europe, OASIS [58] is the most widely employed coupler to build a full climate model on
the basis of individual realm components (ocean, atmosphere, sea-ice, etc.). It is used in six
out of the seven Earth System Models (ESMs) involved in ENES [47] to exchange and
interpolate the coupling information (the coupling “fields”) between their individual
components. The widely used OASIS-3 version of the coupler offers only a limited field-by-
field “pseudo-parallelism”, and will soon become a central bottleneck for high resolution
ESMs running on massively parallel platforms.

4.1.2 Performance Analysis

In spite of the impending bottleneck, OASIS-3 is still being used successfully, for example, in
the EC-Earth model, whose underlying atmospheric model, IFS, was increased to ~25km, or
843,000 points, and 62 levels, along with an 0.25-degree (1.5M points), 75 depth-level
configuration of the NEMO ocean model [35]. This was run on the Ekman cluster at the PDC
Centre for High-Performance Computing (1268 nodes of dual-socket quad-core AMD
Opteron processors, i.e., a total of 10144 cores) with different numbers of cores for each
component and OASIS-3. Different combinations were tested, and Table 2 illustrates the
benefit of the OASIS-3 pseudo-parallelisation.

IFS-NEMO-OASIS number of cores 512-128-1 512-128-10 800-256-1 800-256-10

1-IFS standalone 41. 41. 29.9 29.9

2-EC-Earth3 45.7 42.3 33.2 30.3

2.1-IFS component 41.8 n/a 32.7 n/a

2.2-NEMO component 38.5 n/a 24,6 n/a

2.3-OASIS 5.5 n/a 6 n/a

Coupling overhead (2-1) 4.7 (13.4%) 1.3 (3%) 3.3 (11%) 0.4 (1.3%)

Table 2: 2-hour simulation response time (in seconds) for the different components and for EC-Earth3
coupled model. The configuration (top row) indicates the number of cores used for IFS, NEMO and
OASIS respectively. The coupling overhead is calculated as the difference between EC-Earth and IFS
standalone elapse time. IFS and NEMO run in parallel, not sequentially.

The OASIS elapsed time is non-negligible when it runs in single-core mode (respectively 5.5
seconds and 6 seconds for the 512-128-1 and the 800-256-1 configurations). In this case, the

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 22

coupling induces significant overhead in elapsed time with respect to the IFS standalone run
(respectively 13.4% and 11%); this is true even if OASIS-3 interpolates the fields when the
fastest component waits for the slowest, as the cost of OASIS-3 is larger than the component
imbalance. When the parallelism of OASIS-3 increases (from 1 to 10 cores), the OASIS-3
elapsed time decreases and can almost be “hidden” in the component imbalance. Even if we
do not have direct measures of the OASIS elapse time in these cases, this can deduced by the
EC-Earth3 elapsed time, which decreases from 45.7 to 42.3 seconds (512-128-1 -> 512-128-
10 configurations) and from 33.2 to 30.3 seconds (800-256-1 -> 800-256-10 configurations).
Therefore, it can be concluded that OASIS-3 pseudo-parallelisation can be an efficient way to
reduce the coupling overhead (which goes from 13.4% to 3% in the 512-128 configuration
and from 11% to 1.3% in the 800-256 configuration).

Of course, this way of overlapping the cost of OASIS-3 works only if there is some imbalance
of the components elapsed times, which allows OASIS-3 to interpolate the fields when the
fastest component waits for the slowest. If the components were perfectly load balanced, then
the OASIS-3 cost, even if lower when OASIS-3 is used in the pseudo-parallel mode, would
be directly added into the coupled model elapsed time.

So, it is expected that for more than O(1000) cores – already close to the low limit of cores
required to run on PRACE Tier-0 platforms, or for other configurations, the limited
parallelism of OASIS-3 will soon become a bottleneck in coupled simulations. For example,
the ARPEGE-NEMO climate model jointly developed by Météo-France and CERFACS, has
been compiled and run on more than 1000 cores on the PRACE Tier-0 “CURIE” Bullx
supercomputer, at relatively high resolution (50km-atmosphere, 1⁄4 degree-ocean), to study
regional scale / large scale interactions. The ocean model is used in a 1D mode, as a mixed
layer model (this configuration is called NEMIX), to simplify and better understand coupled
processes. On 1024 cores (500 for the atmosphere, 512 for the ocean, 12 for the coupler), it
was observed that OASIS-3 takes up to 20% of total elapsed time to perform interpolations
and communications between coupled components.

Two approaches are currently followed to introduce true parallelism into OASIS. The first is
the modification of OASIS-3 to use the Model Coupling Toolkit (MCT [25]), which also
couples components in the American National Center for Atmospheric Research (NCAR)
Community Earth System Model (CESM). MCT requires that the regridding weights are pre-
computed offline, but then implements fully parallel regridding and exchanges of the coupling
fields.

MCT has proven parallel performance. For example, a key operation is the interpolation
between fields defined on atmospheric and on oceanic grids. This is essentially a sparse,
rectangular matrix-vector multiplication, which scales well on parallel platforms if
programmed correctly (see Figure 22). The production nature of MCT and its documented
performance imply that an OASIS3-MCT implementation will be a wise investment.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 23

Figure 22: The MCT ocean-to-atmosphere benchmark performs an interpolation between a 0.47x0.63
degree oceanic grid and a 0.47x0.63 degree atmospheric grid. The operation scales well to large numbers
of cores on an IBM PowerSeries (“bluefire”) and IBM BlueGene/P (“intrepid”), though there are some
scalability limitations on the Cray XT5 (“jaguarpf”). Credit: [25].

The second approach is to use the OASIS-4 coupler, which should be considered a separate
product to OASIS-3, that is to say, OASIS-4 is not a direct evolution of OASIS-3. OASIS-4 is
a product of a collaboration between the Nippon Electric Company (NEC) IT Research
division, CERFACS, CNRS and DKRZ. The conceptual strength of OASIS-4 is its fully
parallel online calculation of regridding weights (the so-called “neighbourhood search”).
However, in an evaluation [18] of a beta version of OASIS-4, extensive bugs were found.
These were difficult to fix because the code is large (180K lines of code) and because the
original developers no longer work on the project. Moreover, key deficiencies in the design of
the parallel neighbourhood search library were determined. The OASIS-4 design is based on
structured grids, and completely new routines would have to be developed for unstructured
grids.

A short-term solution is to retrofit OASIS-4 for pre-computed regridding weights, thereby
circumventing most of the bugs, and the limitations on structured grids. This solution is
conceptually equivalent to the OASIS3-MCT solution. Our current plan is to implement both
OASIS3-MCT and OASIS-4 with pre-computed weights, and to perform a comparison.

4.2 Input/Output

Many scientific challenges in climate research, e.g. the direct simulation of small scale
processes like clouds and precipitation, will require models with increasing spatial resolution
as well as very high temporal resolution. The large volume of data produced by these
simulations and the time needed to write (and subsequently access and process) these datasets
will greatly impact the scientific productivity, and limit the effective exploitation of multi-
Petascale and Exascale systems.

Today’s output in many climate models is still serial: data are collected on a single CPU or
core, which packs the data and writes them to disk. In a typical climate model run, about 2%

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 24

of time steps are output steps, one output step taking at least on order of magnitude longer
than non-output steps. Thus, often 30% or more of the of a model’s wall clock time is spent in
(serial) I/O. This gets worse with model resolution and scaling of any given resolution to
higher thread counts.

Trivial parallel I/O concepts proved to have severe limitations, e.g. parallel I/O using many
separate files just postpones the problem to the post-processing stage. Parallel I/O using
native direct access, e.g. MPI-IO, leads to problems with compressed data and is often not
implemented efficiently.

Within the climate modelling community, several approaches exist to solve this problem
through the development of specific I/O server solutions, which ideally provide at the same
time interfaces to on-the-fly post-processing capabilities. However, a single, tested and
generally applicable solution is not yet available.

We propose therefore, within PRACE2IP WP8, to compare several of these tools with respect
to functionality and efficiency, and propose efficient generic solutions. The tools to be
considered here are CDI developed at MPIM in Hamburg, XIOS developed at IPSL in Paris
and PIO developed at NCAR in Boulder, USA. It is also proposed to compare these solutions
with a standard library, e.g. parallel netCDF [59].

4.2.1 Description of Code: CDI

The Climate Data Interface (CDI) is an Interface to access Climate and NWP model Data.
The interface is independent from a specific data format and has a C and Fortran API. CDI
was developed for a fast and machine independent access to GRIB [60] and NetCDF [59]
datasets with the same interface. Local MPI-MET data formats are also supported.

The production version of CDI runs serially on MPI process 0. File writing with this version
is depicted in Figure 23.

Figure 23: File writing procedure with serial CDI version, running on MPI process 0.

The CDI version currently under development will run on multiple I/O PEs. A file write
operation proceeds along the following lines:

1. decompose I/O in a way that all variables are distributed over the
collector/concentrator processes (“I/O PEs”),

2. store each compute PEs data in buffers to be collected by collector PEs (I/O PEs) - the
buffer should reside in RDMA capable memory areas,

3. rather than doing I/O, copy data to buffer and continue simulation,
4. the collectors collect their respectable data (gather) via one-sided (RDMA based) MPI

calls and do the transpose,
5. compress each individual record, and
6. write the file.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 25

The parallel write procedure is illustrated in Figure 24. In this case there is a pool of processes
to collect and to write the data, completely independent of the compute processes.

Figure 24 File write procedure for the new CDI version, running on a set of I/O processes, completely
separate from the compute processes.

4.2.2 Performance Analysis: CDI

In the parallel CDI, a number of different algorithmic strategies have been tested for the write
operation, which is known to be more critical in climate applications than the read operation.

1. Classic Serial: collect and write serially using fwrite. Advantages: no communications
needed, simplicity, simple multi-file handling. Disadvantage: does not scale.

2. MPI Writer: collect and write in parallel using MPI_File_write_all. Advantages: No
user-visible communication between I/O processes, straightforward implementation,
performs best of all MPI file-writing routines. Disadvantages: collective call, does not
work for inhomogeneous allocation of variables per process/file.

3. MPI_File_iwrite_shared: collect and write in parallel using MPI_File_iwrite_shared.
Advantages: no user-visible communication between I/O processes. Disadvantage:
very bad performance on GPFS

4. Offset sharing: collect and write in parallel, communicate file offsets using MPI RMA
with passive target. Advantages: all collectors write, use of POSIX AIO possible.
Disadvantages: complex locking is needed, performance is bad.

5. Offset guard: collect and write in parallel using one process to administrate file
offsets. Advantages: performs best of testbed versions, use of POSIX AIO possible.
Disadvantages: one process is idle most of the time, problems if I/O processs span
over different nodes.

6. POSIX writer: collect in parallel and write serially using fwrite. Advantages: use of
POSIX AIO possible, use of double buffering possible, one writer process for each file
possible (this might gain performance, and the processes could be on different nodes).
Disadvantages: the buffer has to be communicated, the speedup is limited if only one
writer for all files is used.

These write strategies are depicted in Figure 25.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 26

Figure 25: CDI testbed write strategies: Classic Serial (top center), MPI Writer, including
MPI_File_iwrite_shared (top right), Offset Sharing (bottom left), Offset Guard (bottom center), POSIX
Writer (bottom right).

Write Strategy # PEs # Collectors # Writers MB/s
Classic Serial 1 1 1 148
MPI_File_iwrite_shared 4 4 4 234
 8 8 8 281
 16 16 16 338
 32 32 32 322
Offset Guard 4 3 3 240
 8 7 7 498
 16 15 15 829
 32 31 31 946
POSIX Writer, fwrite 4 3 1 257
 8 7 1 450
 16 15 1 411
 32 31 1 482
POSIX Writer, aio_write 4 3 1 122
(5 output streams) 8 7 1 120

Table 3: Throughputs (in MB/s) for four of the six write strategies tested for parallel CDI.

The write throughputs of four of the six strategies are given in Table 3. “Offset Guard” seems
to be the most promising strategy, however not all strategies have been fully optimised. All of
the strategies will be implemented in the upcoming release, and these will all be tested in the
I/O intercomparison.

4.2.3 Description of Code: XIOS

XIOS is the parallel I/O software, written in C++, developed at IPSL for climate codes. The
software has two aims: i) a parallel output system, ii) a simple configuration of model outputs

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 27

through XML files. A draft version has been developed, mainly to test the main concepts.
This version 0 has been put in production in the NEMO ocean model [35]. It has been used in
several climate models for the CMIP5 climate model intercomparison. XIOS version 1 is now
in beta state, and will be delivered to users in a few weeks.

The system can work in two modes: online mode or server mode. In either case, one can
choose to output multiple files, with each process writing its domain on its own file, or output
in a single global file using parallel file system access using the NetCDF4 library. In the case
of multiple files, the global output file should be built after execution.

 Connected mode. The software is linked as a library in the model executable. Each
process has simultaneous access to the file system so time access cannot be
overlapped. With this mode it easier to manage the execution, but performance may
suffer drastically from the file system time access.

 Server mode. The software is divided between server(s) and client(s). The client is
linked to the model executable. The server runs as a separates executable, on its own
processor. In each model parallel process, the client sends data to the output server. If
the number of model processes is large, several servers can be used. The number of
servers is adjusted to equilibrate the load balancing between the model and the servers.
Communications between clients and servers are asynchronous: the clients buffer the
data, and send them asynchronously while the model runs. The main advantage is to
reduce the number of processes simultaneously accessing the file system, and time
access is overlapped with computation. This is the mode used in production runs. In
server mode, time means could either be done on the server side, producing a heavy
load of communication, or on the client side, producing more CPU load on the model
processors.

Performance has not been extensively evaluated as of this time.

4.2.2 Description of Code: PIO

PIO is a thin layer placed on top of existing, more general parallel I/O libraries. This layer
clearly separates the concerns of earth science application, e.g., the desire for a simple
mapping between the process-local and global depiction of a field, and those of the I/O
library, which are generally associated with efficiency. The target application for PIO is the
Community Earth System Model (CESM), however the API would support a wide spectrum
of applications, e.g., also those employing non-rectangular grids. The back-end libraries
supported are MPI-IO, NetCDF-3 and NetCDF-4 [37], and pNetCDF [38].

4.2.3 Performance Analysis: PIO

In [24], an I/O benchmark “POPD”, derived from the parallel ocean program (POP), was
implemented with PIO with several different configurations (see Table 4). In the table, the test
configurations for the POPD benchmark are defined in terms of different output formats
(either NetCDF3 or binary), different backend libraries (NetCDF3 or pNetCDF), varying
numbers of I/O tasks (denominator of 12 yields one I/O task per socket of the test machine, a
Cray XT5), whether user-level collective buffering and/or flow control was employed. While
NetCDF3 is inherently a sequential library, the “parallel” C-n configuration was achieved by
the I/O tasks reading/writing in turn from/to the file. C-n can be expected to reduce memory
usage by roughly a factor of #iotasks, but will, if anything, yield an I/O bandwidth less than
the sequential approach. The D-b configuration with a binary format is meant for comparative
purposes only, as climate models would consistently require their data in NetCDF, or a
similar, self-describing metadata format.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 28

Config. name Format Backend lib. # I/O tasks coll. buffering flow control

A-n NetCDF3 NetCDF3.6.2 1 yes no

B-n NetCDF3 NetCDF3.6.2 1 yes yes

C-n NetCDF3 NetCDF3.6.2 2(ncores/12) yes yes

D-n NetCDF3 pNetCDF1.2.0 2(ncores/12) yes yes

D-b binary MPI-IO 2(ncores/12) yes yes

E-n NetCDF3 pNetCDF1.2.0 ncores no yes

Table 4: Test configurations for the POPD benchmark defined in terms of different output formats

The performance results for memory usage and read/write bandwidth are given in Figure 26.
The results can be explained by fairly simple analytical arguments: Memory usage for the
sequential versions (A-n, B-n) should be roughly constant, since the fields must be collected
on one process. For the parallel scenarios (C-n, D-n, D-b, E-n), memory usage should
decrease monotonically to the point where buffering becomes an issue for large number of
cores (e.g., in E-n). For A-n and B-n, the maximum achievable single node bandwidth can be
expected. In C-n, the I/O readers/writers take turns in a round-robin fashion with some
overhead, necessitating a bandwidth less than the sequential case. Configurations D-n and D-b
compare the effect of different backend libraries, MPI-IO and pNetCDF. Since pNetCDF uses
MPI-IO in turn as a backend, the D-n bandwidth is logically similar, though generally less,
than D-b performance. Note: the D-b configuration is not usable in production, since climate
data are always required in a metadata format. Using all ncores, the E-n bandwidth can be
expected to decay for large numbers of cores.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 29

Figure 26: PIO performance results from [24] for the collective reading and writing of fields, which are
distributed over a given number of cores.

4.3 Dynamical Cores

4.3.1 Description of Codes

Within this project there are potentially two ways to assist the climate community in the field
of atmospheric dynamics solvers (known as dynamical cores). First would be to facilitate the
port of existing production dynamical cores to emerging architectures, as was done, for
example, in the HP2C COSMO project [3]. For climate models, the candidates for such an
effort would by the cores in the IFS model (used in the EC-EARTH [20] climate model), or
the ECHAM [22] and HadCM3 [21] models. The problem here is the limitations on the
scalability of the underlying spectral atmospheric dynamics solver. Extensive effort has
already been put into scaling these cores on previous generations of supercomputers, and it is
generally agreed that the prospects to make a meaningful contribution on emerging platforms
are limited.

The second possible contribution is to participate in the development of new and emerging
dynamical cores for climate models, which are specifically targeting massively parallel
platforms from the outset. Most of these global dynamical cores do not employ latitude-
longitude grids, as such grids cause numerical instabilities, and limit inherent parallelism, due
to converging meridians at the poles. A G8-funded ICOMEX project [25] concentrates on
four of these cores: MPAS [30], NICAM [31], ICON [19], and DYNAMICO [32], where the
latter two are European developments. ICON is close to official release and has already been
evaluated in an inter-dycore comparison [34]. ICON employs a grid of spherical triangles
which is derived from an icosahedral grid, and which can be (statically) refined in regions of
interest (see Figure 27).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 30

Figure 27: The ICON grid consists of spherical triangles at a base resolution (red), which have been
derived by recursively bisecting the edges of an icosahedron. In areas of particular interest, some triangles
can be further refined (blue) by subdivided triangles into four. This procedure can be repeated recursively
(e.g., black triangles).

The UK MetOffice, STFC and other UK academic institutions, funded through NERC, are
working on the Next Generation Weather and Climate Prediction (NGWCP) programme [39],
also known as “GUNG-HO!” The aim of this project is to develop a new dynamical core for
an operational forecast model to eventually replace the current Unified Model in about ten
years time and also be suitable for climate research scenarios. A major objective is to replace
the current latitude-longitude grid with a quasi-uniform grid to avoid problems due to
convergence of longitude lines at the poles and enable better scaling on massively parallel
systems. A wide range of grids and associated implicit, semi-implicit and explicit solvers are
currently being evaluated with a view to reducing the number of candidates in March 2012,
allowing more detailed investigations and parallel implementations to proceed. At that stage
PRACE 2IP-WP8 support could contribute to the implementation and evaluation of
algorithms on current and near-future systems, e.g. by focusing on PRACE prototype systems.

There is currently a study supported by the COSMO Consortium to evaluate the efficacy of
the EULAG [23] solver for geophysical flows in the regional COSMO CLM climate model.

4.3.2 Performance Analysis: EULAG, ICON

Of the above-mentioned European developments – DYNAMICO, GUNGHO, EULAG, and
ICON – the first two are in the design phase. There is a clear opportunity for PRACE centres
to offer their background on emerging architectures to assist in the co-design of these cores.
EULAG has proven scalability (Section 28) but its rectangular grid is not applicable for
global climate applications.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 31

Section 28: All EULAG-HS strong-scaling benchmarks except the horizontal domain grid 2048x1280 were
performed on a BlueGene/L at the National Center for Atmospheric Research. The vertical has 41 levels.
The red curves result when the benchmark is run in coprocessor mode, the blue lines in virtual mode. The
2048x1280 domain size was run on a BlueGene/P at IBM/Watson, and indicates excellent scaling to about
7000 cores in either mode. Credit: Andrzej Wyszogrodzki, NCAR.

ICON is the only near-production European emerging dynamical core appropriate for global
climate to which PRACE centres can actively contribute to the evolving code base. ICON has
several dynamical cores: several variants of a hydrostatic solver and a non-hydrostatic solver.
The latter is of particular importance, as the trend to high resolution (10 km. and less) requires
this. The ICON development branch contains the MPI-enabled version of the entire ICON
model, but it is not publicly available. However, preliminary benchmarking has been
performed at DKRZ. The speedup results with respect to the 64 MPI-process version are
depicted in Figure 29.

The tail-off in scalability in the MPI implementation implies that other parallelisation
paradigms need to be investigated as well. An OpenMP-multithreaded version of the non-
hydrostatic core is a component of the freely available ICON testbed [26], and was
extensively benchmarked in the first months of WP8 project, with the midterm goal of porting
the code to a GPU.

In order to evaluate ICON’s single-node, shared memory performance, the Roofline Model
[28] was employed. The roofline model consists in a log-log plot of the operational intensity
of the kernel measured in flops/byte (horizontal axis) versus the maximum floating-point
performance measured in GFlop/s (Figure 30). For a given computational component, the
operational intensity is defined as the ratio of the number of floating-point instructions per
byte of memory traffic. The plot is divided in two distinct regions: the area underneath a left
sloping line defines all operational intensities for which the performance is bound by the
memory bandwidth. The sloping line itself represents the maximum bandwidth achieved in
the STREAM benchmark [61]. Secondly, the area underneath the right horizontal line denotes
values of the operational intensity with performance limited by the computing capacity of the
underlying hardware. The horizontal line denotes the maximum achievable performance of a
computationally intensive code, such as the DGEMM (matrix-multiply) benchmark [57].

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 32

Figure 29: The speedup of the MPI-only version of ICON for the R2B04 resolution (roughly 139 km. -
upper panel) and for the R2B05 resolution (roughly 69 km) – lower panel. with respect to the 64-process
execution. The strong scaling plateaus at about 10 for this medium resolution test case. Credit: Hendryk
Bockelmann, DKRZ.

Figure 30: The roofline model [28], distinguishes between low and high computational intensities (floating-
point operations per byte accessed). For low intensities, the overall performance is limited by memory
bandwidth in a roughly linear relationship: the higher the intensity the more performance since the
bandwidth is constant. At a certain intensity, memory speed becomes sufficient to fully occupy the
floating-point unit, whose performance is now the limiting factor. The “X” indicates roughly the location
of most finite difference or finite volume dynamical cores, such as the ICON non-hydrostatic solver.

In the preliminary WP8 investigations, several CPU and GPU architectures were evaluated
and their roofline models derived (see Figure 31).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 33

Figure 31: Double precision rooflines for AMD Magny-Cours (purple), NVIDIA Tesla M2050 (blue),
NVIDIA Tesla T10 (green), NVIDIA GeForce GTX285 (yellow) and AMD Cayman (red). The theoretical
rooflines are represented with dashed lines and the measured ones are shown with solid lines. The grey
dotted line represents the theoretical PCI-e bandwidth. Credit: Christian Conti, ETHZ.

In a student project [29], the computational components of the non-hydrostatic solver were
rewritten into roughly 60 OpenCL kernels, which are portable to both CPU and GPU. The
kernel intensities (defined as the number of floating point operations per used Byte of
memory) range from 0.1 to 1.0, entirely within the bandwidth-limited region of the roofline.
The performances generally cluster around the STREAM benchmark limits, but are
occasionally above them, implying some benefit from cache or thread-local memory (“shared
memory” in CUDA terminology).

Figure 32: Operational intensities of the various kernels implemented with expected peak achievable
performance (solid lines). Three different cases are depicted for each kernel: the R2B3 resolution (5120
grid triangles) on Tesla M2050 (blue diamonds) and R2B4 (20480 grid triangles) on a Tesla M2050 (blue
triangles) and on a Cayman (orange triangles). The expected performance is based on the operational
intensity only and does not consider the performance degradation caused by the size of the data structures
on which the kernels operate. About ten kernels perform far worse than expected, due to poor utilisation
of the data structures, and/or dependencies between loop iterations (such as for the vertical integration).
Several kernels perform above the STREAM performance due to fortuitous cache effects. Most kernels
cluster just below the maximum performance.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 34

To test this the applicability of the STREAM benchmark to the ICON non-hydrostatic solver
further, we ran the existing OpenMP testbed NH solver on a number of different multi-core
architectures (Table 5).

Platform Threads R2B3 (5120 tri) R2B4 (20480 tri) STREAM Achievable

 s. GFlop/s (s.) GFlop/s GB/s GFlop/s

IBM BG/P 1 57.2 0.8 229.5 0.8 2.2 0.9

IBM BG/P 4 15.0 3.1 60.4 3.1 8.9 3.6

AMD Magny-Cours 1 46.6 1.0 195.4 1.0 8.1 3.24

AMD Magny-Cours 12 5.4 8.7 23.1 8.1 29.6 11.8

AMD Interlagos 1 33.5 1.4 135.0 1.4 12.7 5.1

AMD Interlagos 16 4.3 11.0 16.3 11.6 70.0 28.0

Intel Westmere 1 19.7 2.4 82.0 2.3 8.39 3.4

Intel Westmere 7 3.1 15.2 12.9 14.6 50.22 20.1

Table 5: The performance of the OpenMP multi-threaded version of the ICON non-hydrostatic solver is
compared over a number of multi-core architectures. The memory throughput (GB/s) for the STREAM
benchmark is also supplied. The “achievable GFlop/s” is defined as the STREAM throughput (GB/s)
times the solver’s average computational intensity of 0.4. Credit: CSCS.

Thus, it appears that the STREAM benchmark offers a fairly tight upper bound for ICON
non-hydrostatic solver. Furthermore, we predict that the roofline model can be applied to
most ICON components (e.g., the physical parameterisations), and, indeed, in other finite-
difference or finite-volume-based climate codes. The open task is to then to concentrate
development efforts on bottleneck components, which are more than an order of magnitude
slower than the achievable STREAM performance. In the above-mentioned pilot project, the
implicit vertical solver, which contains a small tridiagonal matrix inversion, is one such
component. The isolation of such components will be a topic of subsequent work.

4.4 Ocean Models

4.4.1 Description of Code: NEMO

NEMO [35] is a widely used, highly portable numerical platform for simulating ocean
dynamics, biochemistry and sea-ice, for both operational and research purposes. It is written
in Fortran90 and parallelised using MPI with a regular domain decomposition in
latitude/longitude. The governing equations are solved in finite-difference form upon a tri-
polar 'ORCA' grid [45] to get rid of the north fold singularity. Thus, unlike atmospheric
models, polar filtering isn’t needed and parallelisation is well balanced. The development of
new oceanic dynamical cores (Section 4.3) is then of a lower priority, even if NEMO could
benefit at middle term of such improvements. Considering the large spectrum of options and
applications (global, regional, with/without ice, with/without biogeochemistry, etc.), the focus
should be more on improving the structural paradigm of parallelisation, rather than on specific
routines. This is also confirmed by the flat profile of the code (Section 4.4.2).

Other parallelisation initiatives

Fine grain parallelism (loop-based) has already been tested in hybrid mode. Unfortunately it
did not show real speed-up and became even inefficient on a large number of processors
(O(1000)). Tests on other finite difference ocean models (POM, ROMS) or NAS parallel
benchmarks strongly suggest the need to go with coarse grain OpenMP multitasking with

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 35

each MPI domain being sub-divided in tiles at a high level.

A prospective study on porting NEMO on GPGPUs (gNEMO) is underway, led by STFC
Daresbury Laboratory. At that time, different routines have been tested on GPUs with various
success in terms of speed-up. It is worth noting that, as pointed out by A. Porter, the analysis
of the most significant NEMO routines has emphasised their low computational intensity and
resulting dependency on memory bandwidth. Therefore the question is; how do we make
more effective use of what memory bandwidth we have? Bandwidth requirements could be
solved by GPUs but also by using different approaches to algorithms or different data
structures.

Another perspective concerns data output. For realistic experiments, NEMO, like all
ocean/atmospheric models, spends a large amount of time writing ouput. It has been
interfaced with a first version of a dedicated output server developed at IPSL. This
implementation is technically working but shows disappointing speed-up, mainly due to
unnecessary MPI communications. A second version of an IO server has been provided
(November 2011) and tests are underway.

NEMO Fault Tolerance

The French collaboration program (ANR "SPADES") has given CERFACS the opportunity to
start working on the fault tolerance issues. This preparatory step consisted in an evaluation of
the amount of work which is be necessary to adapt the different climate models components
or tools (atmosphere, ocean, coupler, etc.) and make them compliant to a fault tolerant FT-
MPI [62] environment. This work is long-term: its full validation is not expected before the
availability of Exascale supercomputers, but a first prototype will be delivered at the end of
2012 through ANR SPADES collaboration.

The first step was to choose an application from the different models available. The NEMO
ocean model [36] is the best candidate, given its relative simplicity: the recent F90 code holds
about 100.000 lines, and MPI routines calls are located on a single routine, which simplifies
the error handling. The code has been compiled and launched on a supercomputer using ICL
University of Tennessee Fault Tolerant OpenMPI environment (FT-MPI) [40]. The error
handling is going to be implemented on the model, and the different choices and steps of the
implementation documented.

Within WP8, we intend to test the implemented error handling with a test case necessarily
different from the ultimately targeted 1,000,000-core configuration. This test case will be
defined according to the FT-MPI 'communicator mode' choice. With a “BLANK”
communicator mode (fault tolerant FT-MPI supported mode, see documentation for details
[48]), our implementation allows that surviving model process keep calculating until the end
of the simulation. In order to evaluate our error handling robustness, the test case must be able
to reproduce the error structure of the targeted configuration. Present regional configurations,
which better reproduce spatial resolution of the future global configuration, could be chosen
for such experiment. Ideally, both NEMO fault compliant test case and FT-MPI should be
tested on a platform able to reproduce real failures.

4.4.2 Performance Analysis: NEMO

Test Case A is a global, 0.25-degree resolution simulation with sea-ice initially developed by
DRAKKAR project [63]. It uses a grid-size of 1442x1021, and 46 depth levels. This is now a
standard resolution, and some centers are runnings 0.1 degree in forced mode.

Figure 33 shows scaling results for Test Case A taken from Deliverable D5.4 of the PRACE
Preparatory Phase project.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 36

Figure 33: Execution time (l.) and relative efficiency (r.) for NEMO, Test Case A. Credit: A. Porter,
STFC.

This test case does not scale well on any of the systems used. Relative efficiency is similar on
the Cray XT5 and IBM BlueGene/P, and is lower on these systems than on the IBM Power6.

Profiling Results

All of the following profile data was obtained for NEMO version 3.3 running the smaller
ORCA2_LIM configuration (a two-degree resolution global model with a grid of just 182 x
149 with 31 vertical levels). Table 6 contains profile data obtained using the craypat tool for a
run on 12 MPI processes of a Cray XE6. In common with many environmental-science codes,
the profile is rather flat in that no one routine accounts for a large percentage of the total
runtime.

Key to NEMO's poor scaling performance is the large amount of time spent in MPI as seen in
in Table 6. To further illustrate this, Figure 34 shows summary profile data for 12- and 24-
process count jobs. It is clear that the time spent in MPI increases significantly in doubling the
number of MPI processes. Even worse, since HECToR IIb [64] has 24 cores per node, the
MPI communications in these jobs are all intra-node. Once a job spans more than one node
we can expect the MPI communications to be even more time consuming.

1.0E+01

1.0E+02

1.0E+03

100 1000 10000
Number of CPUs

E
x

e
c

u
ti

o
n

 t
im

e

IBM BlueGene/P

Cray XT5b

Cray XT5s

IBM Power6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 10 100

Partition size (peak TFlop/s)

R
e

la
ti

v
e

 e
ff

ic
ie

n
c

y

IBM BlueGene/P
Cray XT5b

Cray XT5s
IBM Power6

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 37

% of total runtime Imbalance % Routine

74.4 USER routines

13.4 2.6 limrhg_lim_rhg

5.2 7.8 lib_mpp_mpp_lnk_3d

5.1 2.6 traldf_iso_tra_ldf_iso

4.3 3.9 traadv_tvd_tra_adv_tvd

4.2 3.9 ldfslp_ldf_slp

3.3 7.5 traadv_tvd_nonosc

3.3 2.1 trazdf_imp_tra_zdf_imp

3.2 4.6 zdftke_tke_tke

2.6 2.8 dynzdf_imp_dyn_zdf_imp

2.2 5.0 zdftke_tke_avn

2.1 7.9 field_bufferize_bufferize_field

1.9 6.8 mathelp_moycum

1.6 34.4 solpcg_sol_pcg

1.5 7.5 field_bufferize_init_field_bufferize

1.2 6.5 traadv_eiv_tra_adv_eiv

1.2 6.3 eosbn2_eos_bn2

1.1 7.7 eosbn2_eos_insitu_pot

1.1 8.3 traswp_tra_unswap

1.1 12.7 dynspg_flt_dyn_spg_flt

1.0 6.7 zdfddm_zdf_ddm

1.0 7.8 eosbn2_eos_insitu

15.2 MPI

6.1 23.4 mpi_allreduce

5.9 39.7 mpi_recv

2.5 60.5 mpi_allgather

10.4 ETC

3.5 7.5 _wordcopy_fwd_aligned

1.4 23.8 __c_mcopy8

1.0 28.8 __c_mzero8

Table 6: A profile of NEMO running the ORCA2_LIM configuration on 12 MPI processes on HECToR
Phase IIb.

Key to NEMO's poor scaling performance is the large amount of time spent in MPI seen in
profile in Table 6. To further illustrate this, Figure 34 shows summary profile data for 12- and
24-process count jobs. It is clear that the time spent in MPI increases significantly in doubling
the number of MPI processes. Even worse, since HECToR IIb has 24 cores per node, the MPI
communications in these jobs are all intra-node. Once a job spans more than one node we can
expect the MPI communications to be even more time consuming.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 38

Figure 34: NEMO profile as a function of MPI process count.

We also used the craypat tool [4] on HECToR to measure the computational intensity of
NEMO's more significant subroutines. Table 7 contains another profile of NEMO running
ORCA2_LIM but this time including the computational intensity of each subroutine. This
shows that, in general, the routines accounting for a greater percentage of run-time have
relatively low computational intensities, emphasising the dependence of NEMO on available
memory bandwidth.

Routine % of wall-clock time Computational intensity (ops/ref)

tra_adv_tvd 6.5 0.82

sol_pcg 6.4 0.78

tra_ldf_iso 5.9 0.88

ldf_slp 5.6 0.98

lim_rhg 3.8 1.17

tra_qsr 3.5 0.81

tra_adv_eiv 3.3 0.42

dyn_zdf_imp 2.8 0.57

tra_zdf_imp 2.6 0.70

mathelp_moycum 2.6 0.62

zdf_ddm 2.3 0.71

eos_insitu_pot 2.0 1.63

eos_bn2 2.0 1.69

eos_insitu 1.6 1.74

Table 7: Profile of NEMO run in serial on a single core of HECToR IIb for the ORCA2_LIM configuration.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 39

4.4.3 Description of Code: ICOM

The Fluidity-ICOM (Imperial College Ocean Model) [36] is built on top of Fluidity, an
adaptive unstructured finite element code for computational fluid dynamics. It consists of a
three-dimensional non-hydrostatic parallel multiscale ocean model, which implements various
finite element and finite volume discretisation methods on unstructured anisotropic adaptive
meshes, Fluidity-ICOM uses state-of-the-art and standardised 3rd party software components
whenever possible. For example, PETSc [65] is used for solving sparse linear systems while
Zoltan is used for many critical parallel data-management services both of which have
compatible open source licenses. Python is widely used within Fluidity-ICOM at run time for
user-defined functions and for diagnostic tools and problem setup. It requires in total about 17
other third party software packages and use three languages (Fortran, C++, Python).

4.4.4 Performance Analysis: ICOM

Profiling is the best way to address both the serial execution of the code (such as cache usage,
vectorisation) and parallel aspects, such as parallel efficiency, load balancing and
communications overheads. Profiling using CrayPAT and Vampir on HECToR has been
performed on the gyre benchmark [49] test case, which is of particular relevance to GFD
applications. CrayPAT is the main tool being used for Fluidity-ICOM profiling. As a starting
point, we use simple timing hooks in the code to get a coarse grain profile of code
performance, then to use these results as a basis for more fine grain profiling with the
CrayPAT API in the identified areas of interest.

Following the above procedure, the first target of this work was to analyse Fluidity-ICOM on
a large number of processes (cores) with the gyre test case. The number of processes ranges
from 1024 to 4096. In order to identify the issues for this scale of processes, a 10 million node
mesh has been generated. We focus on the solution of the momentum equation in
combination with the incompressibility constraint given by the continuity equation, as this is
by far the main cost of the simulation, and dominates the overall scaling of the simulation.
The solution process consists of the assembly of the linear systems representing the
discretised momentum equation and the pressure equation, and their solution. The scaling
analysis of the momentum equation is naturally broken down into 4 parts: assembly of the
pressure matrix, linear solve for the pressure equation, assembly of the discretised momentum
(velocity) equation, and linear solve of the momentum (velocity) equation.

Figure 35: Wall time for the assembly and solve of the momentum and pressure equation on the Hector
Cray XE6.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 40

From Figure 35, we can infer that matrix assembly for pressure and velocity can take more
than 30% of the total simulation time with 1024 cores, where the pressure solver occupies
nearly 53.9% of the total simulation time. The matrix assembly phase is expensive for a
number of reasons, including: significant loop nesting, where the innermost loop increases in
size with increasing quadrature; indirect addressing (due to unstructured meshes) and cache
re-use.

Communication overhead and load balance analysis

Using CrayPAT [4], we obtained the statistics of three groups of functions, namely MPI
functions, USER functions and MPI_SYNC functions. MPI_SYNC is used in the trace
wrapper for each collective subroutine to measure the time spent waiting at the barrier call
before entering the subroutine. Therefore, MPI_SYNC statistics can be a good indication of
load imbalance. The time percentage of each group is shown in Figure 36.

Figure 36: Profile by function group

With core counts from 1024 to 4096, we can see that the time percentage spent in MPI
increases from 28.7% to 33.1% while USER functions drop from 45.5% to 24.9%, and time
percentage of MPI_SYNC increase from 25.7% to 42.0%. This lead us to identify the top time
consuming functions in each group along with their calling hierarchy.

Top time consuming functions in each group

Figure 37: Top time consuming user functions got from CrayPAT.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 41

The subsequent figures give the top time consuming functions in each group. In Figure 37 the
speed up of the linear solver KSPSolve is about 3.5 with 4096 cores comparing with 1024
cores according to the CrayPAT tracing results. The function main represents the functions
that have not been traced in the code. These functions are outside of momentum solver.

Figure 38: Top time consuming MPI functions.

The most time consuming of the MPI groups is MPI_Allreduce. It is expected that this
collective operation does not scale well. However on the HECToR the scaling is relatively
good from 2048 to 4096 cores. From the call tree generated by CrayPAT, it becomes clear
that this function is called from PetscMaxSum within PETSc. MPI_Waitany is indicative of
the quality of the load balancing. Given that this amount does not increase significantly
between runs on 1024 to 4096 cores in Figure 39, it does not appear that load-balancing is
worsening noticeably as the core count increases.

Figure 39: Top time consuming MPI SYNC functions.

In Figure 39, MPI_Allreduce accounts the most part of waiting time spent in the barrier, it is
worth to check if it is possible to combine several MPI_Allreduce together. MPI_Bcast and
MPI_SCAN are becoming more significant on 4096 cores, compared to runs on 1024 and
2048 cores.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 42

Conclusions

Presently the code is now scaling well up to 4096 cores on the HECToR Cray XE6. Runs on
even larger core counts could be achieved if suitably partitioned datasets existed. The ongoing
project of hybridising fluidity-ICOM with MPI and OpenMP will further improve scaling of
fluidity-ICOM.

Profiling the real world application has turned out to be a big challenge. It required a
considerable understanding of profiling tools and extensive knowledge of the software itself.
The introduction of manual instrumentation was required in order to focus on specific sections
of the code. Determining a suitable way to reduce the profiling data size without losing the
fine grain details was critical for successfully profiling. Inevitably this procedure involved
much experimentation requiring large numbers of profiling runs.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 43

5. Performance Analysis of Community Codes: Material Science
The codes discussed in the present chapter are representative set of the most used ab initio
electronic structure codes in Europe that are freely distributed under open source licenses. The
particular selection is based only on community input. Initial input was gathered during the
community selection phase prior to the submission of the first deliverable of this work
package. During a subsequent face-to-face meeting as well as several conference calls,
representatives from the European Theoretical Spectroscopy Facility (ETSF) and the
Quantum ESPRESSO community decided to select the following set of codes that are to be
further investigated: (1) a suite of codes from the ETSF; (2) Quantum ESPRESSO [67]
including PWscf [66]; and (3) Siesta [68]. Siesta was included as a representative of localized
numerical basis set codes that are used mostly in chemistry and complement the plane wave
pseudopotential codes developed by the ETSF and Quantum ESPRESSO communities. The
ETSF suite of codes includes ABINIT [69], EXCITING [70], ELK [71], OCTOPUS [72], and
YAMBO [73].

The code descriptions and performance data presented bellow were provided by the
communities that maintain the codes. It has to be emphasized that the benchmarks used for
the performance analysis represent typical workloads for which the codes have been
developed (in contrast to codes and problems selected by centres to emphasis scalability of a
code or performance of a supercomputer). Hence the benchmarks are not uniform. No attempt
has been made to polish the results. In some cases, such as ABINITI, teams have in the past
invested into scalability of parts of the code base. In other cases, such as EXCITIN/ELK, the
code has not been running on much more than large workstations and small clusters. The
purpose of subsequent work in the present work package will be to improve the performance
of these codes and to map them onto future supercomputing platforms, such as hybrid multi-
core systems. The intent is to eventually make these codes fit for PRACE Tier 1 and possibly
even Tier 0 systems.

5.1 ABINIT

5.1.1 Global description of ABINIT

ABINIT is a package whose main program allows one to find from first principles the total
energy, charge density, electronic structure and miscellaneous properties of systems made of
electrons and nuclei (molecules and periodic solids) using pseudo-potentials and a plane-wave
or wavelet basis. The basic theories implemented in ABINIT are Density Functional Theory
(DFT), density-functional perturbation theory (DFPT), Many-Body Perturbation Theory (the
GW approximation and Bethe-Salpeter equation), and Time-Dependent Density Functional
Theory. The main ABINIT program includes options to optimise the geometry according to
the DFT forces and stresses, to perform molecular dynamics simulations using these forces, to
determine transition states (string method), to perform path-integral molecular dynamics. It
can also directly generate dynamical matrices, Born effective charges, dielectric tensors, and
other linear and non-linear coupling quantities, based on Density-Functional Perturbation
Theory. Excited states computations from Many-Body Perturbation Theory (the GW
approximation) delivers band gaps generally in excellent agreement with experiment, unlike
with DFT. Accurate Optical properties are obtained with excitonic effects within the Bethe-
Salpether equation.

ABINIT is delivered under the GNU General Public Licence (GPL [74]), and freely
distributed on the Web. The documentation is extensive, also provided on the Web. More than
800 automatic tests are integrated in the package, allowing to verify the development by
different groups worldwide.

The functional structure of ABINIT, at the highest level, is represented by Figure 40.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 44

Depending on the input parameters, ABINIT will call one (or several) processing unit(s) in
turn. These processing units are rather independent, implement different algorithms, and their
parallelisation is to be addressed separately.

Figure 40: Functional structure of ABINIT.

Section 5.1.2 will address performance issues for the basic DFT calculations using plane-
waves and wavelets. In section 5.1.3, the two major steps, based on plane-waves, for the
calculation of the electronic structure using MBPT will be detailed: the screening calculation
and the self-energy calculation.

In the different sections, several physical or numerical parameters are to be considered in
order to understand the computational load and memory scaling, and also the possibilities to
distribute it on different processors.

The size of the physical cell (in real space) will usually scale directly with Natom, the number
of atoms to be represented, although much larger cells will be needed to host systems placed
in vacuum (like molecules, or nanotubes, or slabs) when treated with plane-waves.

The basis set size will directly depend on this size of the cell. It will also depend on the spatial
resolution, measured by the kinetic energy cut-off Ecut (plane-waves) or the grid spacing
(wavelets).

The number of points in real space, usually connected to a Fast Fourier treatment (plane-wave
case), will be represented by Nfft. The number of plane-waves Npw to be used is usually a fixed
fraction of Nfft. The number of wavelets will be represented by Nwvl.

In case of plane-waves, the resolution (small wavelength details) is governed by the kinetic
energy cut-off Ecut. Roughly, Nfft or Npw are proportional to Natom times Ecut

3/2. In Ground-state
DFT as well as MBPT, different resolution grids might coexists (e.g. for the representation of
the screening matrix in GW)

The sampling of electronic velocities (or wave-vectors) is described by the number of "k-
points" in the Brillouin zone, Nkpt. Usually it scales inversely proportional to the size of the
system, although one cannot go below one k point. The number of electronic states, or energy
bands Nband, is also usually proportional to the number of atoms Natom. In DFT or DFPT, one
often treats explicitly only the occupied electronic states or also the low-lying unoccupied
states. For MBPT calculation (screening or self-energy), the number of unoccupied states to
be treated to converge the results can be much larger than the number of occupied states (a
factor 100 is not unusual).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 45

Finally, there are two additional physical quantities that can lead to a distribution of the
computational load and memory:

(1) for spin-polarised systems, the two spins can be treated separately, to a large extend.
Nsppol=2 in this case.

(2) for spinorial wave-functions, the two spinor components can be treated also
separately. Nspinor=2 in this case.

5.1.2 Ground-State calculations: performances
Historically, ABINIT uses plane-waves to describe the electronic wave functions; it makes an
intensive use of Fourier transforms, in particular when applying the local part of the
Hamiltonian.

ABINIT parallelisation is exclusively performed using the MPI library for the current stable
version and for ground-state calculations. In a beta version, several time consuming code
sections of the ground-state part have been ported to GPU. Even if it is already useable, this
level of parallelisation is in progress…

In recent years, a development of wave functions on a wavelet basis has been introduced (for
the ground state calculations), using wavelet transforms and a specific Poisson operator in real
space. The implementation of wavelets has been achieved in the project named "BigDFT”
[78]. During this project, a library of functions devoted to wavelets has been produced. It is
used by ABINIT and can also be called from a standalone executable. The library and the
standalone code are inseparable parts of the ABINIT project.

This section devoted to ground-state calculations with ABINIT is divided in three
subsections: 1-plane-waves using MPI, 2-plane-waves using CUDA, 3-wavelets.

5.1.2.1 Electronic ground state calculations using planes-waves; performances using
MPI

Parallelisation levels

Several levels of parallelisation have been introduced in ABINIT; they can be used separately
or simultaneously:

 Parallelisation over k points: this is a classical level of parallelisation in DFT codes.
Several terms of the total energy are obtained by integration over the wave-vector
space (k points). Each contribution to the integral can be computed separately. A final
reduction (global communication) is done to get the total energy. As the scaling of this
parallelism level is almost linear, it is not checked here.

 Parallelisation over independent spins: in the case of spin-polarised systems, each spin
component of the density can be computed independently. As the scaling of this
parallelism level is almost linear, it is not checked here.

 Parallelisation over bands: parallelisation over plane-waves: These two levels of
parallelisation are linked. To solve the Kohn-Sham DFT equations, an eigenvalue
problem has to be solved (only the lowest eigenvalues are computed); Nband
eigenvalues have to be identified, expressing the Hamiltonian matrix on a plane-wave
basis (Npw basis elements). In ABINIT, an iterative “by block” algorithm is used
(LOBPCG= “Locally Optimal Block Preconditioned Conjugate Gradient”). It can be
parallelised over Nband and Npw. Results concerning this level of parallelisation are
presented here.

 Parallelisation over spinorial components: in some specific cases (non-collinear
magnetism, spin-orbit coupling) each electronic wave function has to be expressed as

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 46

a “spinor” (two vectors). This level of parallelisation is implemented in ABINIT but
not detailed here.

 Parallelisation over replicas of the unit cell: this is a high-level parallelism level. For
some specific applications, the simulation cell has to be replicated several times:
“Minimal Energy Path” research or inclusion of the quantum effect of atomic nuclei
(PIMD=“Path-Integral Molecular Dynamics”). Although it is needed (especially for
PIMD), this distribution of workload can be considered as “embarrassingly parallel”.
We just verifired that the scaling is linear.

Definition of main time consuming parts:

 Hamiltonian application: this routine applies Hamiltonian H (and overlap matrix S) to
the wave-functions. It is divided in three parts:

- Application of local operator (Fast Fourier Transform)
- Application of non-local operator
- MPI communications (“alltoall”)

 LOBPCG algorithm: this routine solves the eigenvalue problem by minimisation using
LOBPCG algorithm; it mainly uses linear algebra.

 Diagonalisation/orthogonalisation of wave functions: this routine solves the eigen-
problem in wave-functions subspace; it mainly uses linear algebra.

 Local Potential: this routine computes the evolving parts of the local potential
(Hartree + exchange-correlation).

 Forces: this routine computes forces on atoms.

Band-FFT strong scaling

In the following, we test how the increasing of cores at fixed load (i.e., in a strong scaling
regime) affects the performance of each of the functions. We verify that the code scales
linealry with the number of cores and try to find at what number of cores a « plateau » is
reached. Such tests help to check if the core work is well balanced.

Test case: one vacancy in a 108 Gold atoms unit cell (i.e., 107 atoms). Gamma k-point
calculation. The (unrelaxed) vacancy breaks symmetries and induces large forces.
“Projector Augmented-Wave” (PAW) method is used.

Libraries used: MPI and ScaLAPACK

Keeping fixed the number of atoms and increasing the number of CPU cores.

We check here that, mixing band and FFT level, the performance model is not simple. For a
given total number of CPU cores, performances directly depend on their distribution on bands
and plane-waves.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 47

Varying only plane-wave CPU cores

CPU total clock time (s) 65 (band) x 2 (npw) 65 (band) x 4 (npw) 65 (band) x 6 (npw)
65 (band) x 8

(npw)

ABINIT part 130 cores 260 cores 390 cores 520 cores

Hamiltonian application:
local operator (FFT)

2538,0 4547,9 8342,9 8720,9

Hamiltonian application:
non‐local operator

20568,9 19451,4 18698,3 21086,7

Hamiltonian application:
alltoall communications

3167,0 6613,9 12453,1 14518,3

LOBPCG algorithm
(without Hamiltonian application)

29385,1 74593,0 108648,9 157520,6

Diagonalisation/orthogonalisation
of wave‐functions

1308,0 3570,6 9277,6 15312,9

Local potential computation
(Hartree + XC)

8601,4 12986,4 13081,0 15773,6

Forces computation

3272,8 4861,3 4918,0 5596,9

Others 6972,4 10932,3 11858,8 21830,1

Total 75813,6 137556,8 187278,6 260360,0

Table 8: CPU total clock time of ABINIT varying the number of plane-wave CPU cores.

Figure 41: Repartition of time in ABINIT routines varying the number of plane-wave CPU cores.
While some parts of the code scale linearly (ex: non-local operator), others become predominant. A
plateau is observed at 390 cores.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 48

Varying only band cores

CPU total clock time (s) 9 (band) x 6 (npw) 18 (band) x 6 (npw) 36 (band) x 6 (npw) 72 (band) x 6 (npw)

ABINIT part 72 cores 144 cores 216 cores 432 cores

Hamiltonian application:
local operator (FFT)

4601,9 5085,0 5196,1 6461,3

Hamiltonian application:
non‐local operator

20891,1 20957,1 20982,7 23122,3

Hamiltonian application:
alltoall communications

3248,7 4196,8 4708,0 10966,4

LOBPCG algorithm
(without Hamiltonian application)

4581,1 27232,0 50083,6 361190,1

Diagonalisation/orthogonalisation
of wave‐functions

767,4 1731,3 2736,7 9520,1

Local potential computation
(Hartree + XC)

1890,1 4063,6 6405,4 14779,9

Forces computation

3272,8 4861,3 4918,0 5596,9

Others -683,7 714,2 3912,3 20955,2

Total 38569,4 68841,3 98942,8 452592,2

Table 9: CPU total clock time of ABINIT varying the number of band CPU cores.

Figure 42 Repartition of time in ABINIT routines varying the number of band CPU cores.
While some parts of the code scale linearly (ex: non-local operator, forces), others become predominant.
On 432 cores, the codes clearly has no more a linear behavior.

Band-FFT weak scaling

Differently from the previous two cases presented (strong scaling), we keep here the number
of cores fixed observing the performance when the number of atoms changes. In this case the
problem size (workload) assigned to each processing element stays constant and additional
elements are used to solve a larger total problem.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 49

Test case: a 108 (or 54) Gold atoms unit cell; atomic positions obtained from a
Molecular Dynamics simulation at 500K. Gamma k-point calculation. The “Projector
“Projector Augmented-Wave” (PAW) method is used.

Libraries used: MPI and ScaLAPACK

Varying the number of atoms keeping the number of CPU cores constant

CPU total clock time (s) 55 (band) x 8 (npw) 55 (band) x 8 (npw)

 108 atoms 54 atoms

ABINIT part 440 cores 440 cores

Hamiltonian application: local operator (FFT) 6571,1 1852,1

Hamiltonian application: non‐local operator 23775,7 1831,9

Hamiltonian application: alltoall communications 8037,5 3691,3

LOBPCG algorithm (without Hamiltonian application) 378221,4 32112,2

Diagonalisation/orthogonalisation of wave‐functions 9912,5 5485,0

Local potential computation (Hartree + XC) 15262,4 3569,5

Forces computation 5379,0 854,5

Others 21087,2 11831,3

Total 468246,8 61227,8

Table 10: CPU total clock time of ABINIT varying the number of atoms.

Figure 43: Repartition of time in ABINIT routines varying the number of atoms. This test case is not a full
« weak scaling » performance test as the number of cores is kept fixed. When only the size of the system is
increased, the resolution of the eigenvalue problem becomes the predominant part.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 50

Varying the number of atoms and the number of CPU cores

CPU total clock time (s) 55 (band) x 8 (npw) 55 (band) x 4 (npw)

 108 atoms 54 atoms

ABINIT part 440 cores 220 cores

Hamiltonian application: local operator (FFT) 6571,1 874,5

Hamiltonian application: non‐local operator 23775,7 1759,2

Hamiltonian application: alltoall communications 8037,5 1145,8

LOBPCG algorithm (without Hamiltonian application) 378221,4 14544,8

Diagonalisation/orthogonalisation of wave‐functions 9912,5 1234,5

Local potential computation (Hartree + XC) 15262,4 2901,4

Forces computation 5379,0 744,0

Others 21087,2 3370,2

Total 468246,8 26574,4

Table 11: CPU total clock time of ABINIT varying the number of atoms and number of cores.

Figure 44: Repartition of time in ABINIT routines varying the number of atoms and the number of cores.
This weak scaling performance test clearly shows that the code does not scale linearly which is an
expected behavior for a DFT code. As the size of the simulation cell increases, the number of plane waves
increase as the cube of the cell size.

Influence of the CPU cores distribution in the parallelisation levels

Test case: PuO2 surface: 60 atoms (correlations, magnetism, f electrons, vacuum…).
400 bands; gamma k-point calculation
“Projector Augmented-Wave” (PAW) method is used.

We check here how the distribution of CPU cores in the (Nband x Npw x Nkpt) levels of
parallelisation influences the performance.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 51

Figure 45: Scaling of ABINIT wrt the distribution of (Nband x Npw x Nkpt) CPU cores

Parallelisation over replicas of the simulation cell

Test case: calculation of the energy barrier between two positions of a silicon interstitial
atom; 65 silicon atoms; 4 k-points; 130 bands; PAW method.

We check here that this level of parallelisation scales almost linearly.

Figure 46 Scaling of ABINIT wrt the CPU cores distributed on the replicas of the cell.

5.1.2.2 Electronic ground state calculations using planes-waves; performances using
CUDA

Use of Graphic Processing Units (GPU) will be available in the 6.12 version ABINIT; this
implementation is in beta stage. It uses NVIDIA CUDA library and is still evolving. The
following performance profiling has to be considered as a step toward the full
implementation.

Three parts of the code have been parallelised:
 Application of the local Hamiltonian (Fast Fourier Transform); it has been chosen

to use the cuFFT library (included in CUDA package).

 Application of the non-local Hamiltonian; specific CUDA kernels have been
written for the non-local operator and its derivatives (forces, stresses…).

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 52

 Linear algebra used in the LOBPCG algorithm and diagonalisation-
othogonalisation in the wave-functions subspace; for that purpose we use cuBLAS
library delivered in CUDA package and GNU-GPL MAGMA library (LAPACK on
GPU [75]).

The GPU implementation is fully compatible with all MPI levels of parallelisation except the
FFT level. Only results obtained with one CPU cores are shown here in order to isolate the
GPU performances only.

Test cases (all done using PAW):
 Test Au: 107 gold atoms (vacancy in gold crystal)
 Test BaTiO3: 39 atoms (one vacancy in 8 BaTiO3 units)
 Test Cu: 20 copper atoms

Application of local Hamiltonian
Use of cuFFT library for the Fast Fourier Transform of wave functions.

Test case FFT CPU time (sec) FFT GPU time (sec)

Test Au 246,1 156,2

Test BaTiO3 164,2 120,3

Test Cu 19,6 25,4

Table 12: Comparison of elapsed time for the wave function FFT.

As shown in Table 12, executing FFT on GPU is only profitable when the size of wave
functions is large enough. However, according to the simulated system, it is possible to send
several wave functions together to the graphic card, increasing the FFT efficiency.
Table 13 shows the results obtained for the smallest test case (Test Cu), varying the number of
wave functions sent to the GPU:

of wave-functions sent
to the GPU

FFT GPU time (sec)

1 25,4

2 20,8

4 14,1

84 9,6

Table 13: Elapsed time for the wave function FFT w.r.t. the number of WF sent.

Figure 47: Profiling of elapsed time for the application of FFT to one wave function, in the “Test Cu” test
case; “GPU time” corresponds to the bare GPU time needed by the graphic card to execute the FFT task;
“CPU time” corresponds to the total elapsed time, including kernel latencies and synchronisations.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 53

Application of non-local Hamiltonian

Specific CUDA kernels have been implemented to compute application of non-local operator
and its contribution to energy, forces and stress tensor.

Test case NL op. CPU time (sec) NL op. GPU time (sec)

Test Au 3142,0 1172,9

Test BaTiO3 185,1 160,2

Test Cu 85,1 42,4

Table 14: Comparison of elapsed time for the application of non-local operator.

As shown in Table 14, the efficiency of the adopition of the non-local Hamiltonian based
approach on the GPU strongly depends on the number and type of treated electrons (s, p, d or
f).

Application of linear and matrix algebra

All vector/matrix multiplication in LOBPCG algorithm are done using the cuBlas library.
Orthogonalisation and diagonalisation of the Hamiltonian in the wave-function subspace uses
MAGMA package. It can be shown that this use of MAGMA is only profitable when the size
of matrixes is large enough. A threshold value has been introduced to call MAGMA routines
only when they are efficient. It can be shown that this use of MAGMA is only profitable
when the size of matrixes is large enough. A threshold value has been introduced to call
MAGMA routines only when they are efficient. This value has been empirically estimated to
100 (size of matrix) and can also be determined « on the fly » by launching a small lapack
routine at the start of the code.

Test case LOBPCG CPU time (sec) LOBPCG GPU time (sec)

Test Au 761,9 593,1

Test BaTiO3 709,0 342,1

Test Cu 21,3 12,3

Table 15: Comparison of elapsed time for the LOBPCG algorithm.

Global profiling on GPU
Performances are subject to change as the development of the GPU code is a work in
progress. In the following table we show performances of the ABINIT running on GPU in the
present state of the code (v6.12 to be released in december 2011). Improvements of the GPU
implementation are ongoing and have not been included.

Test case Curie
GPU Fermi
Time (sec)

Curie
CPU

Time (sec)

Titane
GPU Tesla
Time (sec)

Titane
CPU

Time (sec)

Test Au 609,8 1528,0 1856,8 4230,7

Test BaTiO3 681,1 865,1 810,11 849,0

Test Cu 67,5 235,6 102,2 153,0

Table 16: Comparison of total elapsed times using (or not) GPU on two different architectures; Curie:
CPU=Intel Westmere, GPU=NVidia Fermi M2090; Titane: CPU=Intel Nehalem, GPU=NVidia Tesla
S1070

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 54

5.1.2.3 Electronic ground state calculations using wavelets: BigDFT profiling

BigDFT is a project that should be considered inseparable from ABINIT. It consists of two
(connected) parts: a library, which is used by ABINIT, and a standalone code. We present
here some performance of the standalone code.

Two data distribution schemes are used in the parallel version of the program. In the orbital
distribution scheme, each processor works on one or a few orbitals for which it holds all its
scaling function and wavelet coefficients. In the coefficient distribution scheme each
processor holds a certain subset of the coefficients of all the orbitals. Most of the operations
— such as applying the Hamiltonian on the orbitals and the preconditioning — are done in the
orbital distribution scheme. This has the advantage that we do not have to parallelise these
routines with MPI. The calculation of the Lagrange multipliers that enforce the orthogonality
constraints onto the gradient as well as the orthogonalisation of the orbitals is done in the
coefficient distribution scheme. A global reduction sum is then used to sum the contributions
to obtain the correct matrix. Such sums can easily be performed with BLAS-LAPACK
routines. Switch back and forth between the orbital distribution scheme and the coefficient
distribution scheme is done by the MPI global transposition routine MPI ALLTOALL(V). For
parallel computers where the cross sectional bandwidth scales well with the number of
processors this global transposition does not require much CPU time. Another time-
consuming communication is the global reduction sum required to obtain the total charge
distribution from the partial charge distribution of the individual orbital.

MPI parallelisation performances. Architecture dependence

The parallelisation scheme of the code is tested since its first version. Since MPI
communications do not interfere with calculations, as far as the computational workload is
more demanding than time needed for communication, the overall efficiency is always higher
than 88%, also for large systems with a large number of processors.

Figure 48: Comparison of the performances of BigDFT on different platforms.

Runs on CCRT machine are worse in scalability but better in performances than runs on
CSCS one (1.6 to 2.3 times faster). French CCRT Titane platform (Bull Novascale R422 [76])
is compared to Swiss Rosa Cray XT5 [8]. The latter have better performances for
communication, and the scalability performances are quite good. However, from the « timeto-
solution » viewpoint, the former is about two times faster. This is mainly related to better
performances of the linear algebra libraries (Intel MKL [77] compared to Istanbul linear
algebra) and of the processor.

OpenMP parallelisation

In the parallelisation scheme of the BigDFT code another level of parallelisation was added
via OpenMP directives. All the convolutions and the linear algebra part can be executed in
multi-threaded mode. This adds further flexibility to the parallelisation scheme. Several tests
and improvements have been performed to stabilise the behaviour of the code in multilevel

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 55

MPI/OpenMP parallelisation. At present, optimal performances can be reached by associating
one MPI process per CPU, or even one MPI per node, depending on the network and MPI
library performances. This has been possible also thanks to recent improvements of the
OpenMP implementation of the compilers.

Figure 49: Speedup of OMP threaded BigDFT code as a function of the number of MPI processes. The
test system is a B80 cagem and the machine is Swiss CSCS Palu (Cray XT5, AMD Opteron).

GPU acceleration

The BigDFT code is well suited for GPU acceleration. On one hand the computational nature
of 3D separable convolutions may allow to write efficient routines, which may benefit of
GPU computational power. On the other hand, the parallelisation scheme of BigDFT code is
optimal in this sense: GPU can be used without affecting the nature of the communications
between the different MPI process. This is in the same spirit of the multi-level MPI/OpenMP
parallelisation. Porting has been done within the Kronos OpenCL standard, which allows for
multi-architecture acceleration.

In the following figure, systems of different sizes have been run in different conditions. The
response of the code in the case of an under-dimensioned calculation (where the amount of
communication is of the same order as the calculation) has been tested. This may happen if
the system is too small, or if the ratio between the runtime GigaFlop/s of the computations
and the cross-sectional bandwidth of the network is high.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 56

Figure 50: Relative speedup of the hybrid DFT code wrt the equivalent pure CPU run. In the top panel,
different runs for systems of increasing size have been done on a Intel X5472 3GHz (Harpertown)
machine. In the bottom panel, a given system has been tested with increasing number of processors on an
Intel X5570 2.93GHz (Nehalem) machine. The scaling efficiency of the calculation is also indicated. It
presents poor performances due to the fact that the system is too little for so many MPI processes. In the
right side of each panel, the same calculation have been done by accelerating the code via one Tesla S1070
card per CPU core used, for both architectures. The speedup is around a value of six for a Harpertown,
and around 3.5 for a Nehalem based calculation.

5.1.3 Excited States calculations: performance
Description of the test

The test case is a relaxed 2x2x1 supercell of wurtzite ZnO with an oxygen defect (one oxygen
removed). The cell contains 31 atoms, corresponding to 205 occupied electronic bands. The
Projector Augmented-Wave (PAW) method is used for all-electron precision, with a 2x2x2 k-
point grid in reciprocal space. A plasmon-pole model is used for the screening calculation.

For optimal load balancing the number of bands to be calculated was set to 717 and 1229 for
the screening calculation, and to 1024 for the self-energy.

5.1.3.1 Screening

The most time-consuming parts of the screening calculation are:

setup: Initialisation of run

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 57

This section reads and checks the header of the KSS file containing the wave functions and
electronic band energies and performs the setup of the basic objects needed for computing
the screening (pseudo-potentials, PAW objects, GW objects, etc.) This part is not
parallelised.

rdkss: Reading of the Kohn-Sham orbitals

This routine reads KSS file employing plain Fortran-IO. Each node opens the file and
reads a subset of bands. This routine does not scale and it is expected to have a detrimental
effect on the scaling.

qloop: Matrix inversion and write to file

This routine calculates the inverse dielectric matrix via matrix inversion and writes the
SCR file. The inversion is done in serial and the writing is performed by the master node
using Fortran-IO primitives. This component does not scale.

cchi0q0: Computation of the polarisability for q = 0

cchi0: Computation of the polarisability for non-zero q

These routines are parallelised over the empty bands. The implementation scales optimally
with the number of processors provided that the number of CPUs divides the number of
conduction states used in the calculation.

The tests were executed with ABINIT version 6.5.0.

To decrease the high demand of memory gwmem=10 was used, but still at least 16 nodes
(8GB memory each) were needed.

Results

The functions cchi0 and cchi0q0 scale well with the number of processes. This scaling is
nearly independent of the number of bands to be calculated, which is different for the total
speedup, as to be seen in Figure 51. Apparently the relative cost of the non-scaling functions
is higher when calculating fewer bands. Figure 52 compares the partitioning of the workload
for different numbers of bands. One can see that the fraction of the well scaling functions
(cchi0 and cchi0q0) is 99% when using 16 processes. On 512 processors this decreases to
79% in the 1229 bands case, and even to 64% for 717 bands.

Figure 51: Speedup for the scaling parts of the screening calculation and total speedup for different
numbers of bands

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 58

Figure 52: Relative cost of the most time-consuming code sections On the left for 717 bands, on the right
for 1229 bands.

5.1.3.2 Self-Energy

The calculations in the sigma-part can be decomposed into:

Init: Initialisation of the run

setup_sigma: Initial setup of the self-energy (not parallelised)

rdkss: Reading of the Kohn-Sham orbitals (wave function file)

This routine reads KSS file employing plain Fortran-IO. Each node opens the file and
reads a subset of bands. This routine does not scale and it is expected to have a detrimental
effect on the scaling.

csigme: Calculation of the self-energy matrix elements

There are two components to be calculated, the exchange contribution and the correlation
part. The computation of the correlation (the most time consuming part) should scale up to
the total number of bands occupied+unoccupied (Nband). For an optimal distribution the
number of processors should divide Nband.

Note, however, that the calculation of the exchange term will not scale anymore when the
number of processor exceeds the number of occupied bands (205 in our case). This should
explain part of the degradation of the speedup in csigme when Ncpu >= 128, this limitation
can be lifted by implementing a new algorithm that distributes the computation over
transitions instead of distributing bands.

Further there is the function Init2, whose contribution is negligible and thus will not be
discussed here.

The ABINIT version 6.10.1. was used.

For this test the parameter gwmem=11 was used, yielding faster but more memory-demanding
calculations. As a result it was not possible to run the problem on less than 4 nodes, each
featuring 8GB of memory.

Results

As to be seen in Figure 53, the only function scaling well is csigme, which takes most of the
computation time when using a small number of processes (Figure 54). This changes rapidly,
decreasing from 99% to 33% when going from 4 to 512 processes. In particular rdkss takes
over a lot of time.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 59

The resulting total speedup is quite good up to 64 processes, where still an efficiency of 67%
can be reached, but decays quickly beyond that point, reaching only 16% at 512 processes.

This result can be expected due to the small number of bands (1024) to be calculated, giving
only two bands per processor. Note that rdkss (which acts in serial) starts to take up a
significant amount of the calculation when the number of processor is comparable to the
number of bands.

Figure 53: Speedup for the screening part and its most costly sections

Figure 54: Relative amount of wall clock time for the partitioning of the sigma calculation.

5.2 Quantum ESPRESSO

5.2.1 Description of the code

Quantum ESPRESSO is an integrated suite of computer codes based on density‐functional
theory, plane waves, and pseudo-potentials ‐ separable, norm‐conserving and ultrasoft ‐ and
projector‐augmented waves. The acronym ESPRESSO stands for opEn Source Package for
Research in Electronic Structure, Simulation, and Optimisation. It is freely available under the
terms of the GNU General Public License (GPL). It builds upon newly restructured

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 60

electronic‐structure codes that have been developed and tested by some of the original authors
of novel electronic‐structure algorithms and applied in the last twenty years by hundreds of
materials modelling groups.

Quantum ESPRESSO is a modular software package developed and presented with two goals:
1) to enable state‐of‐the‐art materials simulations, and 2) to foster methodological innovation
in the field of electronic structure and simulations by providing highly efficient, robust, and
user‐friendly open source codes containing most recent developments in the field. This
approach blurs the line separating development and production codes and engages and
nurtures the user community by inviting their software contributions. These are included in
the distribution after being verified, validated, and made fully inter‐operable with other
modules. A web portal, the qe‐forge [50], was set up as a dynamic space for content creation
and sharing to facilitate the coordination and integration of the programming efforts of
various groups and to easy the dissemination of software tools. It is the main tool by which
QE end users and external contributors maintain QE‐related projects and make them available
to the community.

Two of the main codes contained in the suite Quantum ESPRESSO are PW and CP.

PW – This is the total energy code using an iterative approach to self‐consistency and
iterative diagonalisation techniques in the framework of the plane‐wave pseudo-potential
method. All forms of pseudo-potentials, exchange and correlation functionals, and extended
functionals mentioned above are implemented in this code. Spin‐polarisation, and
non‐collinear magnetism as induced by spin–orbit interactions are also implemented.
Self‐consistency is achieved via the modified Broyden method. Crystal symmetries are
automatically detected and exploited to restrict the BZ (k‐point) sampling to the irreducible
wedge. BZ integrations in metallic systems can be performed using a variety of
smearing/broadening techniques. The finite‐temperature Mermin functional is also
implemented. The calculation of minimum‐energy paths, activation energies, and transition
states uses the nudged elastic band (NEB) method. Potential energy surfaces as a function of
suitably chosen collective variables can be studied using metadynamics. Microcanonical
(NVE) MD is performed on the Born‐Oppenheimer surface using the Verlet algorithm.
Canonical (NVT) dynamics can be performed using velocity rescaling, or Anderson’s or
Berendsen’s thermostats. Constant pressure (NPT) MD is performed by adding additional
degrees of freedom for the cell size and volume, using either the Parrinello–Rahman or the
invariant Lagrangian by Wentzcovitch. A quantum fragment can also be embedded in a
complex electrostatic environment such as a model solvent.

The main bottlenecks in PWscf code are the calculations that utilise 3D-FFTs, linear algebra
(matrix-matrix multiplications), space integrals and point-function evaluations.

CP ‐ The CP code is a specialised module performing Car–Parrinello ab initio MD. It is quite
efficient for large‐scale calculations. CP implements all exchange‐correlation functionals but
the hybrids. A simplified one‐electron self‐interaction correction (SIC) and Hubbard U
corrections are implemented. k‐point sampling is restricted to the Γ‐point. CP can also treat
metallic systems. Microcanonical (NVE) MD on electronic and nuclear degrees of freedom
use the Verlet algorithm. Constant‐pressure (NPH) uses the Parrinello–Rahman Lagrangian.
Nose’–Hoover thermostat and chains allow simulations for different canonical ensembles. CP
can also be used to achieve electronic self‐consistency or to perform structural minimisations
using the ‘global minimisation’ approaches, damped dynamics, or conjugate‐gradients on all
degrees of freedom. It can also perform NEB and metadynamics calculations. Finite
homogeneous electric fields are implemented using the Berry‐phase method. This feature can
be used in combination with MD to obtain the infrared spectra of liquids, low‐ and

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 61

high‐frequency dielectric constants and coupling factors required to calculate vibrational
properties, including infrared, Raman and hyper‐Raman spectra.

5.2.2 Performance: PW.X – plane-wave self consistent calculations
Test Case 1: 216 atoms MnGeSbTe (gamma point calculation) 1

The profiling for this Test Case has been performed keeping fixed the number of atoms and
increasing the number of cores. No ScaLAPACK were used in these tests. These runs were
performed by using only MPI tasks. The following table summarises the time spent in each of
the main functions of the code.

Table 17: Time (seconds) spent in each of the main functions of the code.

The routines for PW are described here:

1. electrons: this routine is a driver of the self-consistent cycle. It uses the routine
c_bands for computing the bands at fixed Hamiltonian, the routine sum_band to
compute the charge density, the routine v_of_rho to compute the new potential and the
routine mix_rho to mix input and output charge densities.

2. sum_bands: calculates the symmetrised charge density and sum of occupied
eigenvalues

3. v_of_rho: this routine computes the Hartree and Exchange and Correlation potential
and energies which corresponds to a given charge density. The XC potential is
computed in real space, while the Hartree potential is computed in reciprocal space.

4. newd: it calculates the augmented density of the ultrasoft pseudo-potential.
5. h_psi: this routine computes the product of the Hamiltonian matrix with the wave-

functions
6. s_psi: this routine applies the S matrix to m wave-functions psi
7. *diaghg: this routine calculates eigenvalues and eigenvectors of the generalised

problem Hv=eSv, with H symmetric matrix, S overlap matrix (rdiaghg is the version
of this routine in double precision).

In the following plot, we show the relative time spent on each of the above-described
subroutines. Each column refers to a different number of cores. Here it’s possible to compare
how the increasing of cores at fixed load (i.e., in a strong scaling regime) affects the
performance of each of the functions.

1 The extension to k-points is quite straightforward, being the calculation over k-points almost
“embarassingly parallel”

CORES electrons sum_bands v_of_rho newd h_psi s_psi *diaghg other

48 13616,83 4399,21 210,85 3532,4 3125,58 255,09 1113,64 980,06

96 9783 2663,58 136,42 1823,38 3252,4 136,86 1171,41 598,95

144 8264,01 2016,56 136,8 1133,45 3251 87,98 1123,54 514,68

192 5067,04 1134,44 154,71 760,17 1319,68 67,74 1124,5 505,8

288 3384,76 565,46 101,26 401,42 653,15 45,97 1122,11 495,39

384 3199,27 450,26 126,91 248,47 698,15 35,83 1119,27 520,38

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 62

Figure 55: Relative time spent in the main code’s subroutines.

From this plot it is quite evident that the function *diaghg gains more weight when the
number of cores rises. Without ScaLAPACK, the standard algorithm uses a serial LAPACK
and every time the diagonalisation of the reduced Hamiltonian is performed.

In the following plot, we show absolute time values in seconds. In this way it is possible to
better identify the overall scaling behaviour of the Quantum ESPRESSO for this Test Case.

Figure 56: Absolute performances of the various sections of the code.

Test Case 2: 875 atoms GeSbTe (gamma point calculation)

We report this scientific case where a large number of atoms is used. In this case, to exploit
all the necessary memory we used both MPI and OpenMP. More precisely, we used 128 MPI
tasks and 6 threads per task, in order to fulfil a cluster node capability.

In the following plot and table, we report the absolute times for two cases.

Table 18: Time spent in each of the main functions of the code.

The scaling trend of the single functions and the overall performance are comparable to those
obtained in the Test Case 1. Again, the most time consuming function is *diaghg.

MPIxOMP sum_bands v_of_rho newd h_psi s_psi *diaghg other

64x6 255,15 2,42 98,81 476,96 118,82 568,05 300,79

128x6 128,31 2,81 38,82 269,03 62,24 529,25 208,54

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 63

Figure 57: Distribution of time between the main functions in the two cases.

Test Case 3: nanodots of CdSe atoms

Differently from the previous two cases presented, we kept the number of cores fixed
observing the performance when the number of atoms changes (weak-scaling analysis).

In the following table we report the relative times for the above described functions of two
cases (275 and 489 atoms) using 64 MPI tasks with 6 OpenMP threads each.

atoms h_psi s_psi rdiaghg sum_band vofrho newd

275 34,98287 6,129886 6,271327 34,35897 0,495973 17,7609

489 34,81832 9,032691 13,74204 24,85920 0,215780 17,33195

Table 19: Time spent in the main code’s subroutines.

Figure 58: Distribution of time between the main functions in the two cases.

Again, from the stacked columns, one can notice that the most increasing contribution comes
from the *diaghg function, as observed in the previous Case Studies. At the same time, the
function sum_band decreases his weight. The relative amount of the all other functions
studied here does not change significantly.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 64

5.2.3 Performances: CP.X – Car Parrinello MD
Test Case 4: nanodots of CdSe

For the Car Parrinello simulation we choose to use the same system used in the Test Case 3.
Here, just like in that case, we keep fixed the number of cores (64 MPI tasks x 6 threads) and
we increase the load, i.e., the number of atoms. (weak scaling).

In the following table, we report the data obtained for 4 different systems of different size.

atoms rhoofr vofrho dforce other newd Ortho updatc

275 5,18 1,53 74,96 2,52 3,38 10,42 1,98

489 3,16 0,82 80,00 2,81 1,03 10,09 2,06

922 2,44 0,43 82,03 2,89 0,37 9,62 2,19

1214 1,82 0,36 82,57 3,02 0,21 9,88 2,09

Table 20: Time spent in the main code’s subroutines.

Definition of subroutines

‐ rhoofr: it computes the electron density in real space
‐ vofrho: it computes the one-particle potential v in real space, the total energy and the

forces acting on the ions
‐ dforce: it computes the generalised force acting on the i-th electron state at the gamma

point of the Brillouin zone
‐ newd: it calculates the augmented density of the ultrasoft pseudo-potential
‐ ortho: it makes wave functions orthogonal
‐ updatc: updates the wave functions

Now if we look at the following plot we can notice that the compute intensive part is the
dforce routine. This could be expected because in the dynamics this part is invoked many
times to calculate the generalised force acting on all the atoms. Moreover, this function
contains a FFT over all the bands and this is of great on the overall performance.

Figure 59: Relative time spent in the main code’s subroutines.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 65

If we compare the first two columns of the above plot with the corresponding plot of the Test
Case 3, we can make a consideration on the two analogues routines: ortho and *diaghg. We
can observe that in the PW case the latter increases his weight when passing from 275 to 489
atoms. Differently, in the CP case the weight relative to the ortho routine keep constant or it
slightly decreases. The trend, when the number of atoms increases, is that that in CP the
prevalent part is for the FFT calculation, while on the PW is for the linear algebra (GEMM
and eigenvalues/eigenvectors solvers).

In order to study the scaling at fixed number of atoms, we report the results obtained for a
system of 922 atoms with 64 and 128 MPI tasks. In both cases, 6 OpenMP threads for each
task were used.

 rhoofr vofrho dforce calphi newd ortho updatc

64task*6threads 361 63,9 12131 428 55,33 1424 325

128task*6threads 218,1 33,9 6097 220 57,06 771 245

Table 21: Time spent in the main code’s subroutines.

If we plot the above data, we can see that all the routines, with the exception of the ortho
routine, scale up almost linearly.

Figure 60: Absolute time spent in the main code’s subroutines.

Finally, to profile the efficiency of the threading, we made a calculation by fixing the number
of MPI tasks. In this case, we have 275 atoms, 64 MPI tasks, and we report the obtained
timings for 1 thread and 6 threads.

 rhoofr vofrho dforce calphi newd ortho updatc

1 thread 152,24 21,05 1701 92,4 108,52 334,68 61,55

6 thread 32,59 9,68 471,43 15,88 21,29 65,55 12,46

Table 22: Time spent in the main code’s subroutines.

The scaling factor is 3.6 for the dforce routine and 5.1 for the ortho routine.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 66

Figure 61: Absolute time spent in the main code’s subroutines.

5.3 Yambo

5.3.1 Description of the code
Yambo is an ab initio code for calculating quasiparticle energies and optical properties of
electronic systems within the framework of many-body perturbation theory (MBPT) and
time-dependent density functional theory (TDDFT). Quasiparticle energies are calculated
within the GW approximation for the self-energy. Optical properties are evaluated either by
solving the Bethe–Salpeter equation or by using the adiabatic local density approximation.

The distinct feature of Yambo when compared with other electronic excitation codes is the
accounting for excitonic effects (electron–hole interactions) through the solution of the
Bethe–Salpeter equation for the electron–hole Green’s function, within the MBPT framework.
As an example, for wide bandgap insulators these effects are crucial as spectra calculated
within non-interacting theories do not resemble experiment at all.

The excitations that can be calculated with Yambo are quasiparticles, excitons and plasmons.
These excitations are ubiquitous in the ab initio description of the electronic and optical
properties of any physical system. The Yambo code uses as input the result of standard DFT
calculations obtained with other codes, such as abinit and Quantum ESPRESSO. This input
enables Yambo to build the non-interacting Green’s function. To obtain the exact Green’s
function, one has then to solve the Dyson equation. This is a very complicated equation and
Yambo resorts to a widely used approximation in order to solve it: the GW approximation.

The key ingredient for the excitation calculations is the density response. Within the GW
approximation, obtaining the density response amounts to building the non-interacting
response function and then inverting it. As Yambo is interfaced with plane-wave codes, the
non-interacting response function is written as a matrix in reciprocal space, transforming the
key problem of excitation calculations to a matrix inversion procedure. TDDFT and the
Bethe-Salpeter equations can be used afterwards to obtain the optical response functions.

Yambo is a plane-wave code that, although particularly suited for calculations of periodic
bulk systems, has been applied to a large variety of physical systems. Yambo relies on
efficient numerical techniques devised to treat systems with reduced dimensionality, or with a
large number of degrees of freedom. The code has a user-friendly command line based
interface and a flexible I/O procedure. It requires BLAS and LAPACK libraries and can use
some other libraries: MPI, BLACS, SCALAPACK, FFTW [79] and netCDF. The GPL
version of yambo can be obtained at http://www.yambo-code.org/.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 67

5.3.2 Test cases
The problem used to profile Yambo was a 64 atoms slab (16 layers) of Si, periodically
repeated. The goal was to obtain the optical response function of Si(100) c(2x4) surface. In
this calculation, 256 electrons were explicitly considered (128 occupied states) and the non-
interacting density response function was a 3000x3000 matrix.

Figure 62: The test system: Si(100) c(2x4) surface (left) and the 64 atoms slab used to represent it (right).

Performance data

Test runs were performed in Barcelona’s Supercomputing Centre MareNostrum computer.
For these runs, the code did not use SCALAPACK. The scaling is hindered by the matrix
inversion step, as can be seen in Figure 63. The other key step in the run is the setup of the
non-interacting matrix, but this a trivially parallel procedure, as every node in the run can
independently calculate some matrix elements.

The use of SCALAPACK does not seem to bring any scaling improvements, although some
runtimes are smaller than when using standard LAPACK (see Figure 64). In the case shown
in Figs. 3 and 4, a slightly different system was used: a 16 layers slab of Si(100) c(4x4), again
with 128 occupied bands, but with a different number of k-points (20 instead of 42). The non-
interacting response matrix size was 9000x9000. The runs were performed at the IBM SP6 of
CINECA in SMT mode. Figure 65 shows the speedup of the two main tasks of Yambo for
this second test case. At least for this dataset and this (small) number of CPUs, the scaling of
the matrix set up is almost ideal.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 68

Figure 63: Scaling analysis of the Si 64-atoms slab run. Xo_tot is the matrix setup step that is very well
distributed among the nodes. X_tot is the matrix inversion step that does not show any sign of parallelism.
Other steps in the calculation are unimportant.

Figure 64: Scaling analysis of a run that uses SCALAPACK. Inversion step remains essentially non-
parallelised.

Figure 65: Same as previous figure, but showing parallel speedup instead of computing time.

16 32 64 128 256 512

0

10000

20000

30000

40000

50000

60000

70000

rest
Xo_tot
X_tot
 loadWF2
dipole
loadWF1

CPUs

T
im

e
(s

)

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 69

5.4 Siesta

5.4.1 Description of the code
SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a
method and its implementation as a computer program, to perform electronic structure
calculations and ab-initio molecular dynamics simulations of molecules and solids. Its main
characteristics are:

 It uses the standard Kohn-Sham self-consistent density functional method in the local
density (LDA-LSD) or generalised gradient (GGA) approximations.

 It uses norm-conserving pseudo-potentials in their fully nonlocal (Kleinman-Bylander)
form.

 It uses atomic orbitals as a basis set, allowing unlimited multiple-zeta and angular
momenta, polarisation and o-site orbitals. The radial shape of every orbital is
numerical and any shape can be used and provided by the user, with the only condition
that it has to be of nite support, i.e., it has to be strictly zero beyond a user-provided
distance from the corresponding nucleus. Finite-support basis sets are the key for
calculating the Hamiltonian and overlap matrices in O(N) operations.

 Projects the electron wave-functions and density onto a real-space grid in order to
calculate the Hartree and exchange-correlation potentials and their matrix elements.

 Besides the standard Rayleigh-Ritz eigenstate method, it allows the use of localised
linear combinations of the occupied orbitals (valence-bond or Wannier-like functions),
making the computer time and memory scale linearly with the number of atoms.
Simulations with several hundred atoms are feasible with modest workstations.

 It is written in Fortran 95 and memory is allocated dynamically.
 It may be compiled for serial or parallel execution (under MPI).

It routinely provides:

 Total and partial energies
 Atomic forces
 Stress tensor
 Electric dipole moment
 Atomic, orbital and bond populations (Mulliken)
 Electron density

And also (though not all options can be used together):

 Geometry relaxation, xed or variable cell
 Constant-temperature molecular dynamics (Nose thermostat)
 Variable cell dynamics (Parrinello-Rahman)
 Spin polarised calculations (collinear or not)
 k-sampling of the Brillouin zone
 Local and orbital-projected density of states
 COOP and COHP curves for chemical bonding analysis
 Dielectric polarisation
 Vibrations (phonons)
 Band structure
 Ballistic electron transport (through TranSiesta)

Starting from version 3.0, SIESTA includes the TranSiesta module. TranSiesta provides the
ability to model open-boundary systems where ballistic electron transport is taking place.
Using TranSiesta one can compute electronic transport properties, such as the zero bias

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 70

conductance and the I-V characteristic, of a nanoscale system in contact with two electrodes
at different electrochemical potentials. The method is based on using non-equilibrium Green's
functions (NEGF), that are constructed using the density functional theory Hamiltonian
obtained from a given electron density. A new density is computed using the NEGF
formalism, which closes the DFT-NEGF self-consistent cycle.

5.4.2 Implementation details concerning performance

SIESTA uses a set of strictly localised pseudo-atomic orbitals as basis (non-orthogonal).
Charge densities and potentials are represented on a real-space grid, and the Poison equation
is currently solved using an FFT algorithm. The performance depends on the following
parameters:

1. The cardinality of the basis (norbs). This is the total number of basis orbitals in the
unit cell. In diagonalisation mode, SIESTA currently builds dense Hamiltonian (H)
and overlaps (S) matrices, and solves the generalised eigenvalue problem. At the
moment it uses ScaLAPACK, distributing the matrices in 2D block-cyclic form.

2. If k-points are used, this procedure is repeated for each k-point, building H(k) and S(k)
with the appropriate phases. There is an option to parallelise over k-points instead of
over orbitals, useful for smaller systems. (Work is ongoing to have both levels of
parallelisation at the same time).

3. The degree of sparsity of the H and S matrices. This depends on the spatial extent of
the orbitals ("big" orbitals will overlap with more neighbours). The number of non-
zero matrix elements of H and S (nnz) is a key parameter for the workload involved in
setting up H and S. Due to the locality of the basis set, this setup is approximately
O(N) in the size of the system (except for a very small O(NlogN) term due to the FFT
needed to set up the potential from the charge density).

4. The degree of sparsity will be large for large systems, while for small systems most
pairs of orbitals will have non-zero matrix elements. As an example, we show tables
for a DNA fragment (approx. 750 atoms) with different basis sizes. The number of
orbitals (norbs), the number of non zeros (nnz) and the sparsity are presented. The size
of the orbitals can be parameterised in SIESTA by indicating the "energy shift"
involved in confining the free atom (the larger the shift the more confined, and the
smaller the orbital radii).

 norbs nnz sparsity

OUT.sz.100: 2218 75462 1,53%

OUT.sz.200: 2218 61954 1,26%

OUT.sz.300: 2218 54648 1,11%

OUT.sz.400: 2218 49062 1,00%

OUT.sz.500: 2218 44680 0,91%

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 71

Double-zeta plus polarisation basis set:

 norbs nnz sparsity

OUT.dzp.100: 7702 771951 1,30%

OUT.dzp.200: 7702 640884 1,08%

OUT.dzp.300: 7702 567209 0,96%

OUT.dzp.400: 7702 510423 0,86%

OUT.dzp.500: 7702 463914 0,78%

For this large system we get about 1% of non-zero entries in H and S. This DNA
example was used in 1998 to demonstrate the capabilities of the linear-scaling solver
in SIESTA: the calculation was done in a desktop workstation. In diagonalisation
mode the nearly 8000 orbitals for the DZP basis represent a big computational load.
Work is underway at BSC to produce an eigensolver that exploits sparsity. It would be
a major breakthrough.

5. The fineness of the real-space grid. The grid point separation is expressed as a
MeshCutoff in units of energy (resembling the use of an energy cutoff in plane-wave
codes - in SIESTA, this cutoff is the "density cutoff" and not the "wave-function
cutoff"). The major operations involved are the computation of the charge density
from the one-particle density matrix and the orbital info (rhoofd), the calculation of
the potential from the charge density (poison), the calculation of the exchange-
correlation energy and potential (cellxc), and the computation of the contribution of
the potential to the Hamiltonian matrix elements (vmat). The rhoofd and vmat parts
actually couple the grid to the orbitals.

A given SIESTA calculation might be dominated by the setting up of H and S (an operation
collectively known in the code as DHSCF) or by diagonalisation (diagon). Since diagon
scales as O(N3) with the size of the system, and DHSCF approximately as O(N), it is clear
that systems with a large number of atoms are dominated by diagonalisation. (In some cases,
such as large QM-MM systems with smallish quantum parts but large unit cells, the DHSCF
part will dominate).

The diagon part consists of the actual diagonalisation routines cdiag (complex valued) or
rdiag (real valued), which use ScaLAPACK routines, and the computation of the density
matrix in c-buildD and r-buildD.

5.4.3 The tests
Performance analysis of three examples, taken from two different physical problems, is
presented. All data was gathered with SIESTA Version 3.0-b-11 running on MareNostrum,
which is based on PowerPC 970 processors, Myrinet network, and Suse Linux. Each of its
2560 nodes features four cores and 8 GB of memory.

The first example, called CNT transport, is based on the examination of electronic transport
through carbon nanotubes covalently bound to graphene layers for different geometric
configurations, presented in [15]. These evaluations were done with TranSiesta, which builds
on SIESTA ground state calculations. The data presented here describes the performance of
the SCF calculation for one of the configurations.

For examining the influence of the number of atoms, a second system twice as big was
created by using two unit cells per supercell. To point out this influence, the results of both
systems are discussed in parallel.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 72

The second physical system is given by a part of a DNA strand, solved using diagonalisation.
The system size is similar to the smaller CNT transport example, but due to a higher number
of orbitals the resulting matrix size is even larger than in the scaled CNT problem.

These systems differ in the number of k-points calculated – eight for CNT and one for DNA.
When calculating only the gamma-point, as in the DNA example, SIESTA uses real
arithmetic instead of complex. Due to the selection of examples both modes are represented
here, but some direct comparisons, e.g. total running time, are not reasonable.

Problem Atoms n nnz

CNT transport 1 780 3048 ~ 5*105

CNT transport 2 1560 6096 ~ 106

DNA 776 7752 ~ 2.4*106

Table 23: Parameters describing the systems examined.

5.4.3.1 CNT-Transport Test

Scalability

The following diagrams show the speedup for the most time-consuming code sections and for
the total ground state calculation.

The total speedup apparently depends mainly on the scaling of the diagonalisation part, whose
efficiency rises with the system size. For the small system the speedup quickly saturates at
around 30, whereas with the big system a total speedup of about 60 can be reached on 256
processes.

The scaling of DHSCF and c-buildD is less correlated to the system size, but never exceeds a
value of 20. The matrix construction speedup even decreases beyond 128 processes.

Figure 66: Speedup graphs for the CNT transport examples with one (left) and two (right) unit cells

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 73

Time Distribution

In order to visualize the importance of the different code sections, their relative amount of

wall clock time is shown.

As expected from the scalability results, the diagonalisation is always the by far most
expensive step, taking up to over 90% of the total effort. For the small problem there is no
clear dependence on the number of processors observable, whereas in the other case the time
fraction of DHSCF and c-buildD rises with the number of MPI-processes due to the bad
scaling of these functions.

Total time

The times for solving the systems are as follows:

Processes 1 4 16 64 256

CNT transport 1 44645 9892 3777 1878 1608

CNT transport 2 302672 55430 17015 8190 4698

Table 24: Total wall clock time in seconds for different numbers of processes.

5.4.3.2 DNA Test

Scalability

The speedup graph clearly shows that DHSCF and r-buildD scale very bad. The
diagonalisation scales much better, but beyond 128 processes its efficiency drops. In total the
speedup converges to about 70.

Compared to the CNT data the diagonalisation scales better, but has less influence on the total
speedup.

Figure 67: Relative amount of time spent in the most costly functions depending on the number of
processes. The left image shows the results for the small, the right for the big example.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 74

Figure 68: Speedup graph for the DNA example

Figure 69: Relative amount of time spent in the most costly functions depending on the number of
processes.

Similar to the CNT examples the diagonalisation is the most costly part, but due to its lack of
scalability DHSCF takes over a good part of the computation time when increasing the
number of processes.

Total time

The total running time for different numbers of processes is given below. The times are
smaller compared to the CNT results because only one k-point is calculated, real arithmetic is
used, and the number of iterations in the SCF loop is much smaller.

Processes 1 4 16 64 256

DNA 33411 6338 1916 762 463

Table 25: Total wall clock time in seconds for different numbers of processes.

5.4.4 Conclusions
In all cases the diagonalisation routine is the most costly part. It uses ScaLAPACK, which
also has the disadvantage of working with dense matrices, so an unnecessary high amount of
memory is needed by not taking advantage of sparseness.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 75

As the DNA example shows, also the construction of the Hamiltonian and overlap matrices
can take a good fraction of the computation time for certain types of problems when using
many processes. The scalability of this part has already been improved by optimising the load
balance and tests show much better behaviour, but this code was not implemented in the
SIESTA version used for the analysis.

 5.5 Octopus

5.5.1 Description of the code
Octopus is a computer code to calculate excitations of electronic systems, i.e., to simulate the
dynamics of electrons and nuclei under the influence of external time-dependent fields. The
code relies on Density Functional Theory (DFT) to accurately describe the electronic structure
of finite 1-, 2- and 3-dimensional systems, like e.g. quantum dots, molecules and clusters. The
initial implementation relied on finite-system boundary conditions, but the most recent
version also enables the user to specify periodic boundary conditions, opening the door to the
simulation of 1D, 2D and 3D infinite systems.

Although it is used to calculate the DFT ground-state of electronic systems, Octopus was
written mainly for the calculation of electronic excitations, using the Time-Dependent
formulation of DFT (TDDFT). The response properties of electronic systems can be
calculated using either perturbative techniques (Casida’s or Sternheimer’s equations) or real-
time propagation of the Kohn-Sham wavefunctions when subject to an external perturbation.
There is also the possibility of allowing the ions to move (classically) and thus perform a very
realistic simulation of the ionic and electronic dynamics of, e.g., a molecule under the
influence of a time-dependent perturbation.

In Octopus the functions are represented in a real space grid. The differential operators are
approximated by high-order finite differences. The propagation of the time-dependent Kohn-
Sham equation is done approximating the exponential of the Hamiltonian operator by a
Taylor expansion.

The code is released under the GNU Public License and is freely available at:
http://www.tddft.org/. The code is mainly written in FORTRAN 90, but it contains some parts
written in C and it also relies on several Perl scripts. The code consists of approximately 120k
lines of FORTRAN 90 code and 20k lines of C code.

Besides an MPI library, the code requires some standard external libraries: FFTW, BLAS,
LAPACK, and GSL [80]. Other libraries are also required, but they are currently bundled
with the code. Optional libraries include BLACS and SCALAPACK for parallel linear
algebra, netCDF and ETSF_IO for ETSF standardised output, and PFFT or LIBFM for the
solution of Poisson’s equation. Octopus uses auto-tools to ease the compilation process and is
thus very easy to compile for different architectures/systems.

Octopus plain ASCII input file is parsed by an engine that allows for the use of variables. It
also automatically assumes default values for all input parameters that are not explicitly
assigned a value in the input file. The output is plain text for summary information, and
platform-independent binary for wave functions.

5.5.2 Test cases
The typical problem used to profile Octopus was the optical response of chlorophyll
complexes of different sizes. A realistic simulation of this system would involve at least a
complex with 5879 atoms, but calculations did not converge for systems larger than 1365
atoms. The 650-atom chlorophyll complex is shown in Figure 70. This system has 650 atoms

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 76

and 1654 electrons. It was simulated considering 827 occupied states and 53 unoccupied
states. The grid had 1144073 points.

Figure 70: 650-atom chlorophyll complex represented in two different ways.

Parallelisation strategies in the code

Octopus has a multilevel parallelisation: states parallelisation, where the processors are
divided in groups, and each one gets assigned a number of orbitals; and domain
parallelisation, where real space is divided in domains assigned to different processors. When
using domain parallelisation, the application of differential operators requires that the
boundary regions be communicated. This is done asynchronously, overlapping computation
and communication. For periodic systems, k-point parallelisation is also available. Besides
these parallelisation strategies, each process can run several OpenMP threads and use
OpenCL if a GPU is available (see Figure 71).

Figure 71: Scheme of the multi-level parallelisation of Octopus. The main parallelisation levels are based
on MPI and include state- and domain-parallelisation. For a limited type of systems, additionally K-point
or spin parallelisation can be used. In-node parallelisation can be done using OpenMP threads and hand-
vectorisation using compiler directives, or by using OpenCL parallelisation for GPUs and accelerator
boards.

Ground-state and time-propagation runs present different scaling challenges. In a time-
dependent simulation with state parallelisation there is minimal communication, but in the
ground state mode this parallelisation strategy requires a considerable amount of
communication due to the orthogonalisation and subspace diagonalisation procedures that mix
different states. Not using this parallelisation forces the ground-state runs to be only parallel
in domains, and this puts a limit to the number of processors involved in ground-state
calculations, because small domains imply a large domain surface to volume ratio, and this
incurs in a communication overhead, as there are too many boundary points. This limitation is
easily seen in Figure 72.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 77

Figure 72: Parallel speedup of a ground-state calculation for 3 different chlorophyll complexes, with 180,
441 and 650 atoms, run on Jugene.

In order to circumvent this problem, state parallelisation was recently implemented in the
ground-state mode of Octopus, based on the ScaLAPACK library. This parallelisation has not
been profiled and tuned yet. Given that the main objective of using Octopus is performing
TDDFT simulations, the ground-state part of the calculation represents a small part of the
total computational time. In fact, the most important objective of the use of ScaLAPACK is to
have the capability of simulating large systems with a modest amount of memory per node,
and this applies to both ground-state and time-dependent runs.

Time propagation runs present very different scaling problems. As the propagation of each
orbital is almost independent, the partitioning of the orbitals among processor groups is
extremely efficient. This scaling strategy is in principle only limited by the number of
available states, which increases linearly with the system size. Domain parallelisation is
limited by the number of points in the grid that as in the previous case, also increases linearly
with the system size. When both parallelisation strategies are used, and as the number N of
processors increases, the number of processors dedicated to each strategy is proportional to
the square root of N. There are, however, tasks like the calculation of the Kohn-Sham
potential, that do not depend on the number of electrons and that are not affected by the state-
parallelisation. Hence their computational time is only reduced by the domain parallelisation,
so they will have a scaling proportional to the square root of N. Based on this idea, Amdahl's
law can be generalised to the case of Octopus by dividing the computational time in three
parts: a fully parallelizable one, P, a fully serial one, S, and the rest that is partially
parallelizable and scales with the square root of the number of processors. This one
corresponds to tasks that can only be divided in domains. For this division in three parts the
parallel speed-up takes the form:

Figure 73 shows scaling data obtained on Jugene for the 1365-atom chlorophyll complex. The
scaling model fits very nicely to the data, with P=97.930% and S=0.0058%, hence the part
that scales with the square root of N corresponds to about 2% of the serial execution time. An
Amdahl's law fit of the data yields a parallelisable fraction P=99.995%, however, the curve
does not properly reproduce Octopus speed-up for large number of cores.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 78

Figure 73: Parallel speedup of a real-time propagation run for a 1365 chlorophyll complex on Jugene.

These curves show that, although the vast majority of the code seems to be fully parallel,
there is something hindering its performance, as the parallel efficiency drops markedly with
the number of processors.

This point can be studied deeper. In a time propagation run, the evolution of the states is
completely independent, but at each time-step it is necessary to recompute the Hamiltonian.
The Hartree potential is therefore recomputed at each step and this computation is performed
obtaining an updated electronic density (built with updated orbitals) and then solving
Poisson’s equation. In Figure 74 and Figure 75 the time taken by each block of routines is
plotted against the number of nodes. It is apparent that most of the routines scale reasonably
well, but the Poisson solver doesn’t. For small numbers of processors its share of the total
runtime is negligible, but for large numbers of processors it takes almost 50% of the total step
time. This corresponds to the part of limited scaling in our model.

Figure 74: Cumulative times, on Jugene, of a time propagation run for the 1365-atom chlorophyll
complex.

1024 2048 4096 8192 16384 32768 65536
Number of processor cores

0.5

1

2

4

8

T
hr

ou
gh

pu
t [

te
ra

fl
op

s]

Octopus scaling
Model fit
Amdahl’s law fit

1024 2048 4096 8192

No. of processors

HAMILTONIAN

POISSON_SOLVE

EIGENVALUE_CALC

NL_OPERATOR_BATCH

KOHN_SHAM_CALC

TD_PROPAGATOR

XC

XC_LOCAL

EXP_TAYLOR_BATCH

DENSITY_REDUCE

0

50

100

150

200

250

300

512 1024 2048 4096 8192

ti
m
e
(s
e
c.
)

No. of processors

HAMILTONIAN

POISSON_SOLVE

EIGENVALUE_CALC

NL_OPERATOR_BATCH

KOHN_SHAM_CALC

TD_PROPAGATOR

XC

XC_LOCAL

EXP_TAYLOR_BATCH

DENSITY_REDUCE

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 79

Figure 75: Percentage of time taken by each TDDFT propagation step, on Jugene, for the 1365-atom
chlorophyll complex.

5.6 Exciting / ELK

5.6.1 Description of the code

The EXCITING FP-LAPW Code was an open-source full-potential linearized augmented-
plane wave (FP-LAPW) code originally developed at Karl-Franzens-Universität Graz as a
milestone of the EXC!TiNG EU Research and Training Network [52]. In 2009 the code
development split into two branches: Exciting [53] which is particularly focused on excited
state properties, within the framework of time-dependent DFT (TDDFT) as well as within
many-body perturbation theory (MBPT) and Elk [54], which is mainly focused on the ground-
state properties with some experimental implementation of excited state properties (within the
TDDFT framework).

Both Exiting/Elk are Fortran90 MPI+OpenMP hybrid codes, freely available under the terms
of GNU General Public License.

Main features:

Though Exiting/Elk codes are diverging, they still bear the core features of the original
Exciting code:

 high precision all-electron DFT code based on the FP-LAPW method including local-
orbitals – no approximation is made on the form of potential, charge density and
wave-functions

 most general treatment of the magnetism (collinear, non-collinear, spin-orbit, spin-
spirals) is implemented using the “second-variational” technique

 calculation of forces and structural optimization
 “beyond DFT” calculations including L(S)DA+U, exact exchange (EXX) and Hartree-

Fock (HF)
 The following important features were added to the both codes after splitting:
 time-dependent density functional theory (TDDFT) for the linear response

calculations (for finite momentum transfer q-vectors)
 Bethe-Salpeter equation (BSE) for the optical response

���

���

���

���

���

���

����

d�������� �����������

W���������� ��� �

� � �� �� ��
��

���

���

���

���

���

���

���

���

���

����

��� ���� ���� ���� ����

E ����������������

d�������� �����������

W���������� ��� �

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 80

5.6.2 Performance analysis

Exciting/Elk codes perform many tasks. The most important among them is the ground state
total energy calculation using the Kohn-Sham iterative minimization procedure. Ground state
calculation involves three major steps:

i) Construction of the dense Hamiltonian and overlap matrices in the LAPW basis
(the basis size is ~100 functions/atom and construction time scales as ~O(N3),
where N is the number of atoms) with the consequent call to the Lapack
generalized eigenvalue solver (~O(N3) scaling).

ii) Construction and symmetrization of the charge density (~O(N3) scaling).
iii) Construction of the new potential (~O(N2log(N)) scaling). The obtained Kohn-

Sham eigen-values and eigen-functions are then used in various tasks as an input
data.

Performance tests:

Below we present the ground-state profiling of the Elk-1.3.31 code (obtained at
http://elk.sourceforge.net/), which is representative of the EXCITING code as well. Test
platform is Cray XT5 at CSCS with the threaded BLAS/LAPACK libraries provided by
Cray’s LibSci. Default PGI compiler (with the options ‘-O3 -fast -fastsse -Munroll -
mp=nonuma’) is used. The tests are done with the default set of LAPW parameters and
species files. MT spheres are scaled up to a maximally allowed radii (autormt=.true.). Default
LSDA functional is used. Number of empty bands is 50. Number of ground-state iterations is
6. Restart from STATE.OUT is done to skip the initial charge-density setup.

Test case 1: Antiferromagnetic La4Cu2O8 (21 irreducible k-points)

The test is done with 1,7,11 and 21 single-threaded MPI tasks and with 21 six-threaded MPI
tasks.

Table 26: Aggregative time of the various parts of the Elk code for the 6 iterations of the ground state run
for La4Cu2O8.

Definition of the columns:

 Total – total time (initialization + 6 ground-state iterations)
 allatoms – search the initial core energies; this is done once during the initialization
 ground state – difference between Total and allatoms; this is the pure time for 6

iterations
 one iteration – time for one iteration (ground state divided by 6)
 seceqnfv (total) – total (setup + diagonalization) time for the first-variational eigen-

value equation
 seceqnfv (solve) – generalized eigen-value problem for the first-variational states

(done in reals because of the existing inversion symmetry)
 seceqnfv (setup) – setup of the LAPW Hamiltonian and overlap matrices
 seceqnsv – total (setup + diagonalization) time for the second-variational eigen-value

equation (most of the time is spent in the setup)
 rhomag – generation of charge density and magnetization

MPIxOMP

Time (sec)

Total allatoms ground
state

one
iteration

seceqnfv
(total)

seceqnfv
(solve)

seceqnfv
(setup)

seceqnsv rhomag other

1x1

7x1

11x1

21x1

21x6

3843.103 72.885 3770.219 628.370 1521.967 283.955 1238.012 1307.096 852.597 88.559

1187.275 65.587 1121.688 186.948 553.424 90.789 462.635 218.680 215.838 133.746

851.831 65.150 786.681 131.114 345.103 55.031 290.072 142.662 158.198 140.719

529.882 72.813 457.069 76.178 190.862 31.646 159.216 76.106 95.511 94.590

510.286 123.493 386.794 64.466 73.403 10.956 62.447 63.006 70.394 179.991

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 81

 other – remaining stuff (MPI sync, OMP threads sync, density symmetrization,
effective potential, mixing, linearization)

Figure 76: Graphical representation of results shown in Table 26

Figure 77: Graphical representation of time to solution (shown in table 26) versus number of MPI task
times OpenMP threads. We compare measure versus ideal scaling.

0 628.370 1256.740 1885.110 2513.479 3141.849 3770.219

88.56852.601307.101238.01283.96

1
x1

0 186.948 373.896 560.844 747.792 934.740 1121.688

133.75215.84218.68462.6390.79

7x
1

0 131.114 262.227 393.341 524.454 655.568 786.681

140.72158.20142.66290.0755.03

11
x1

0 76.178 152.356 228.535 304.713 380.891 457.069

94.5995.5176.11159.2231.65

21
x1

0 64.466 128.931 193.397 257.863 322.328 386.794

179.9970.3963.0162.4510.96

Time (sec)

21
x6

seceqnfv (solve) seceqnfv (setup) seceqnsv
rhomag other

measured
ideal

0

100.000

200.000

300.000

400.000

500.000

600.000

700.000

1x1 7x1 11x1 21x1 21x6

One iteration for La4Cu2O8

T
im

e
(s

e
c

)

MPIxOMP

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 82

Test case 2: antiferromagnetic La7SrCu4O16 (40 irreducible k-points)

The test is done with 10,20 and 40 single-threaded MPI tasks and with 40 six-threaded MPI
tasks.

Table 27: Aggregate time of the various parts of the Elk code for the 6 iterations of the ground state run of
La7SrCu4O16.

Note that there is no inversion symmetry in this case. Hence, the Hamiltonian matrix is
complex and consequently the diagonalization is a factor 3 slower.

Figure 78: Graphical representation of the results shown in table 27.

Figure 79: Graphical representation of time to solution (shown in table 27) versus number of MPI task
times OpenMP threads. We compare measure versus ideal scaling.

MPIxOMP

Time (sec)

Total allatoms ground
state

one
iteration

seceqnfv
(total)

seceqnfv
(solve)

seceqnfv
(setup)

seceqnsv rhomag other

10x1

20x1

40x1

40x6

13585.172 85.287 13499.885 2249.981 8214.087 3443.511 4770.576 1343.405 2414.338 1528.055

7096.498 95.888 7000.610 1166.768 4409.032 1848.320 2560.711 702.856 1225.473 663.249

3759.015 94.215 3664.800 610.800 2256.937 943.958 1312.979 352.155 626.789 428.919

2441.522 112.326 2329.196 388.199 895.182 411.618 483.565 217.010 348.879 868.125

0 2249.981 4499.962 6749.943 8999.923 11249.904 13499.885

1528.052414.341343.404770.583443.51

1
0x

1

0 1166.768 2333.537 3500.305 4667.073 5833.842 7000.610

663.251225.47702.862560.711848.32

2
0x

1

0 610.800 1221.600 1832.400 2443.200 3054.000 3664.800

428.92626.79352.161312.98943.96

4
0x

1

0 388.199 776.399 1164.598 1552.797 1940.997 2329.196

868.12348.88217.01483.56411.62

Time (sec)

40
x6

seceqnfv (solve) seceqnfv (setup) seceqnsv
rhomag other

measured
ideal

0

357.143

714.286

1071.429

1428.571

1785.714

2142.857

2500.000

10x1 20x1 40x1 40x6

One iteration for La7SrCu4O16

T
im

e
(s

e
c)

MPIxOMP

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 83

6. Performance Analysis of Community Codes: Particle Physics
6.1 Overview

In this area we shall focus on optimising a key component of almost every lattice QCD
application code, the so-called Wilson Dirac operator. Although many versions of this
operator in its discretised form exist, the part that involves communication and is therefore
more susceptible to architecture characteristics such as network bandwidth and latency, is
almost identical across different lattice formulations.

We will focus on the tmQCD package, which is the production code of the European Twisted
Mass QCD collaboration or ETMC [51]. Twisted Mass (TM) QCD refers to a particular
discretisation of the fermion action of continuum QCD in which quarks are arranged as
doublets with a modified mass term called the twisted-mass term. This formulation has two
important advantages. The first advantage is that it avoids the problem of exceptional
configurations that limits the lattice simulations with Wilson fermions to a relatively large
quark mass. Consequently, simulations with light quark masses close to the physical values
become possible. The second advantage is the automatic removal of leading errors due to the
finite value of the lattice spacing, or what is known as O(a) improvement, where “a” is the
lattice spacing. QCD Gauge configurations with a dynamical degenerate doublet of up and
down quarks on large physical volumes, small lattice spacings, and small up and down quark
masses have been generated by the ETMC and made available for researchers through the
ILDG. In addition, configurations with dynamical up, down, charm, and strange quarks are
currently being generated. These configurations are being used to compute important hadronic
observables including the spectrum of hadrons as well as parameters of the standard model of
particle physics with great success.

As mentioned, we focus on the operation of applying the Dirac matrix to a vector. For a
lattice with L points in the spatial directions x,y,z and T points in the time direction t, a vector
has dimension 12 L3 T, where 12 corresponds to 3 colours and 4 spins. The Dirac matrix has a
structure:

M = A + c H (6.1)

where A is a diagonal matrix, c is a constant, and H is called the hopping matrix with non-
zero elements connecting nearest neighbour sites. Dividing the lattice sites into even and odd
sites, the Dirac matrix will have the structure

 (6.2)

where the subscripts ee,eo,oe,oo mean even-even, even-odd, odd-even and odd-odd
respectively. For the parallel implementation with MPI, one needs to communicate the
boundary sites when applying the hopping matrix. In turn this affects the performance of the
code and it becomes important to optimise how this communication is performed and how it
is integrated with computation.

An important part of lattice QCD calculations is the solution of the linear system:

M x = b (5.3)

where b is an input vector and x is the unknown solution vector. Many such systems need to
be solved in the course of lattice calculations within the hybrid Monte Carlo simulation or
when requiring the quark propagator to obtain the hadronic spectrum and structure related

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 84

observables. These systems are usually solved using iterative solvers such as the Conjugate-
Gradient (CG) algorithm. In the CG algorithm, the hopping matrix needs to be applied to a
vector O(1000) times. This illustrates the need to optimise this part of the code which we will
call the kernel.

6.2 Performance analysis

In order to identify the bottlenecks of the code we performed a profiling test. For this test, we
solved the system in Equation (5.3) using CG. Our test lattices are described in Table 28.

Table 28: Parameters of the test configurations. beta is a gauge coupling parameter that determine the
lattice spacing. kappa and mu are two mass parameters and nf is the number of sea quarks. nf=2 means
two degenerate light quarks corresponds to the up and down quarks and nf=2+1+1 means two light
quarks and two heavy quarks corresponds to the strange and charm quarks.

The profiling tests are done on a Cray XE6 machine where each node has two 12-core AMD
‘MagnyCours’ 2.1-GHz processors (or a total of 24 cores per node). The machine has 6000
nodes with 32 GB DDR3 1333-MHz memory per node and 384 nodes with 64 GB DDR3
1333-MHz. The machine has a peak performance of 8.4 GFlop/s per core. Profiling was done
using CrayPat.

The relevant user functions we want to profile are:

Qtm_pm_psi : the application of Q+ Q where Q is the even-odd preconditioned Dirac
matrix.

Hopping_Matrix : application of Heo or Hoe, called within Qtm_pm_psi().

We’d like to note at this point that although Qtm_pm_psi calls Hopping_Matrix, in what
follows the time indicated by the profiler for Qtm_pm_psi is in fact the time spent in this
function excluding the time spent in Hopping_Matrix.

6.2.1 Single core performance:
We first run the 163x32 lattice on a single core. In this case there is no communication
required (even though MPI-calls still occur in the code). Since the hopping matrix has the
same sparsity in every application, the number of floating-point operations per iteration is
directly measurable and therefore the floating-point rate can be computed simply by dividing
with the total time spent in Qtm_pm_psi.

In this run 1516 iterations of CG where performed, requiring 679 seconds. This means a
sustained floating-point performance of 797.5 GFlop/sec double precision.

L T beta kappa mu nf

16 32 3.9 0.16090 0.0075 2

48 96 1.9 0.16124 0.0035 2+1+1

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 85

Figure 80: Profiling of the twisted mass inverter code. The left chart compares User and MPI functions,
while the right chart compares the User functions (percentages are with respect to the total time spent in
User functions).

In Figure 80 we show profiling results of this single core run. In this case where no
communication is required, we see that about three quarters of the run-time are spent in the
Hopping_Matrix function, which involves coupling the nearest neighbors, while all other
functions shown are local, linear operations, which don’t require complicated memory
accesses.

6.2.2 Single node performance
For this test, we run the 163x32 lattice on 8 cores on a single node. In this case, MPI
communication will take place on a single node. The code required 1521 iterations to
converge in 151 seconds. This means a sustained performance of 797.5 GFlop/sec double
precision, which is consistent with the single-core run.

In Figure 81 we plot the profile data for the run on a single node. As can be seen about 15%
of the time is now spent in MPI functions. 65% of this time is in the blocking MPI_Waitall()
function, which is called in the communication part of Hopping_Matrix().

Figure 81: Profiling of the twisted mass inverter code on a single node. Centre for User and MPI
functions with respect to the total time. The left chart is a break-down of the User functions (percentages
are with respect to the total time spent in User functions) and the right chart is a break-down of the MPI
functions (percentages are with respect to the total time spent in MPI functions)

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 86

6.2.3 Many nodes performance with a large lattice:
We perform a test on many nodes using the 483x96 lattice. We run this test on 576 cores with
24 cores per node. For the 5299 iterations the solver required 601 seconds, meaning a
sustained performance of 442.4 GFlop/s in double precision.

In Figure 82 we show profiling charts of the run on 24 nodes. The conclusions are the same as
in the case of Section 6.2.2, namely that the bulk of the time spent in MPI functions is spent in
the MPI_Waitall() function which blocks for the communication in the Hopping_Matrix()
function.

Figure 82: Profiling of the twisted mass inverter code on a 24 nodes. Notation is the same as in the
previous figure.

6.2.4 Strong scaling:
The second area of possible improvement is related to the fact that the parallelisation in the
current implementation is done using MPI only. Given that future machines will probably be
equipped with many cores per node it will be advantageous to use a hybrid implementation
with MPI and OpenMP. This will take advantage of the shared memory feature of those
multi-core/node machines. We performed a strong scaling test of the 483x96 lattice on a Cray
XE6 and a BlueGene/P machines.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 87

Figure 83: Strong scaling test of the twisted mass inverter on a CrayXE6 (left) and a BlueGene/P (right).
The points labeled “Time restricted to node” refer to scaling tests carried out where care was taken so
that the spatial lattice sites where mapped to the physical 3D torus topology of the machine’s network,
which restricts the time-dimension partitioning to a node.

6.3 Discussion:

Our profiling tests have corroborated what is well known about lattice QCD codes; that the
majority of the wall time is spent in the application of the Kernel. For the specific code we
have seen that the code requires optimisation in terms of the floating-point performance as
well as the way communication is done.

In terms of the floating-point performance, lattice QCD codes are rather balanced in the ratio
of floating-point operations per memory access. The exact knowledge of this ratio allows for
an approximate estimate of the sustained performance one should be able to reach on a given
architecture. The number of floating-point operations in an application of the kernel on a
single lattice site is of the order of 1.3 thousand, while the bytes of memory needed to be read
or written in order to apply the kernel on a single site is 960 bytes (in double precision). This
gives a ratio of 1.4 flops to bytes I/O for the kernel. To see what this means in terms of
sustainable performance, we need to compare with the characteristics of a given machine, say
the CrayXE6. This machine has 24 cores per node, which have a theoretical peak of 8.4
GFlop/core and all 24 cores share a common bandwidth to memory, which has a theoretical
peak of 85.3 GB/s. This machine has therefore a flop-to-bytes of I/O ratio of about 2.4
flops/byte. Therefore, to a first approximation, we can say that the maximum floating-point
performance a lattice QCD kernel could achieve on this architecture is ~60% of peak
performance. We stress that this number is a first approximation, since the performance of the
kernel can only asymptotically reach this number. To achieve this, our kernel would have to
read each site once, which is practically unfeasible due to the imposing of boundary
conditions, and we would have to physically saturate the memory bandwidth, which in
practice we know is technically unachievable.

However the above calculation indicates that the code is not well optimised in terms of the
floating-point performance we are currently seeing; the fact that we achieve around 800
MFlop/sec, which is about 10%, means there is room for improvement. This is the first point
we would like to address in terms of our effort in this work package.

Apart from the computational efficiency of the kernel, it seems the communication strategy is
also sub-optimal the way it is currently implemented. Indeed, the profiling shows that the bulk
of the time spent in MPI functions is spent in MPI_Waitall(). With careful inspection of the
source code of Hopping_Matrix() we were able to identify that this blocking call is made for
waiting for boundary data communicated between nearest neighbouring processes.
Specifically, the communication schedule follows the algorithm:

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 88

1. Prepare boundaries (communication buffers)
2. Start communication of boundaries
3. Wait for boundaries (block)
4. Apply operator

This structure could be improved by overlapping communications and computations such that
the code performs part of the computation while part of the data is being communicated.
There is no unique way to do this, depending on the latency and bandwidth of the
architecture; less “aggressive” overlapping means less tolerance to latencies but are usually
simpler to implement and require less memory. More “aggressive” schemes require more
temporary buffers and are more complicated with the upshot that smaller bandwidths and
larger latencies can be hidden. Using test kernels we will investigate this issue starting from
the simplest, less aggressive overlapping schemes and evolve towards more aggressive ones if
required.

Apart from the aforementioned issues we have identified directly through the profiling work
done, we would also like to list several modification that would also benefit this
implementation, and we which we intend to focus on in the future:

 Thread level parallelism: there is currently only process-level parallelism
implemented in the code (MPI). On major improvement would be to add thread-level
parallelism via OpenMP pragmas for instance.

 Refactoring of right-hand-sides loop: Better data reuse can be achieved by
modifying Hopping_Matrix() to act on (and return) multiple vectors rather than one.
This would also allow for better thread-level parallelism.

 Eigenvalue deflation: Shorter time-to-solution can potentially be achieved if the
lowest few eigenvalues of the kernel are removed before the inversion.

 Domain Decomposition: This is a preconditioner which effectively allows for less
frequent communication of boundaries, thus yielding an algorithm more tolerable to
network bandwidth and latency.

 Using Poisson brackets to tune Monte Carlo parameters: A method to improve the
scaling of the Monte Carlo algorithm with respect to the problem size “V” from V5/4
to V9/8.

 Parallel Landau and Coulomb gauge fixing: These are lattice QCD operations
which are difficult to optimise since they rely on an efficient parallel FFT.

Some of these are purely algorithmic improvements which can be investigated in the context
of their suitability for massively parallel architectures while others are technical modifications
which require code refactoring for better scaling to massively parallel architectures.

D8.1.2 Performance Model of Community Codes

PRACE-2IP - RI-283493 24.11.2011 89

7. Conclusions and Next Steps

In this document we presented the results of the performance analysis of the codes proposed
by the scientific communities as targets of the re-design and refactoring action addressed by
WP8. This is the first step of the performance modelling methodological approach, and its
outcomes will be used to evaluate code’s behaviour in an analytical and quantitative way and
to estimate potential performance improvements on the next generation HPC systems,
highlighting critical numerical kernels that can benefit greatly from the adoption of novel
algorithmic/computational approaches that allows the exploitation of innovative
hardware/software (e.g. GPU/CUDA) solutions. Such analytical study will be the subject of
the next step of WP8, and will be reported in deliverable D8.1.3 “Prototype Codes Exploring
Performance Improvements”.

According to the outcomes of our analysis, all the codes under investigation are suitable
candidates to the WP8 refactoring work. Relevant, computing intensive, parts that can
potentially benefit of new software/hardware, can be clearly identified. A quantitative
estimate of the impact of the proposed refactoring work will be provided as a result of the
analytical study phase, together with a precise specification of the numerical kernels that
needs to be re-designed and re-implemented.

It is worth pointing out that the analysis phase could be accomplished only thanks to a
successful synergy between the scientific community code developers and the HPC experts,
blending the deep knowledge of codes and algorithms of the former -- necessary to properly
set up the benchmarks, to provide the analytical modelling, and to check the results -- with the
expertise in HPC systems, parallel programming and performance analysis tools of the latter.
The same approach will be adopted in WP8 also for the next steps.

