

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Phase Project

Grant Agreement Number: RI-283493

D12.5

Summary of Novel Programming Techniques Results

Final

Version: 1.0
Author(s): Jose Carlos Sancho, BSC; Christian Perez, INRIA; Cevdet Aykanat,
 R. Oguz Selvitopi, Bilkent University; Alberto Miranda,
 Ramon Nou, Toni Cortes, BSC; Eric Boyer, GENCI
Date: 22.8.2014

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: Summary of Novel Programming Techniques
Results
Project Web Site: http://www.prace-project.eu
Deliverable ID: < D12.5 >
Deliverable Nature: <DOC_TYPE: Report >
Deliverable Level:
PU

Contractual Date of Delivery:
31/08/2014
Actual Date of Delivery:
31/08/2014

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Summary of Novel Programming Techniques Results
ID: D12.5
Version: <1.0> Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D12.5.docx

Authorship

Written by: Jose Carlos Sancho, BSC; Christian Perez,
INRIA; Cevdet Aykanat, , R. Oguz
Selvitopi, Bilkent University; Alberto
Miranda, Ramon Nou, Toni Cortes, BSC;
Eric Boyer, GENCI

Contributors:
Reviewed by: Manuel Fiolhais, UC-LCA; Florian

Berberich, FZJ
Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 09/08/2014 Draft
1.0 21/08/2014 Final version

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 ii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-283493. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2014 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 iii

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. i

Document Keywords ... ii

Table of Contents ... iii

List of Figures ... iv

List of Tables .. v

References and Applicable Documents ... v

List of Acronyms and Abbreviations .. viii

Executive Summary .. 1

1 Introduction ... 1

2 Auto-tuned Runtime Environments .. 3
2.1 Introduction ... 3

2.2 Auto-tuning of OpenMP applications on the IBM Blue Gene/Q ... 3

2.3 Topologically Aware Job Scheduling for SLURM ... 6

2.4 Self-improving workflow models for generating of combinatorial objects designed in the Kepler
Project System .. 8

2.5 Evaluating Component Assembly Specialization for 3D FFT ... 11

2.6 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization Heuristics ... 14

2.7 Scalable algorithm for network bandwidth / latency hierarchy detection and designing topology
aware collective routines and testing performance in CPMD application .. 16

2.8 Conclusion .. 19

3 Scalable Numerical Algorithms ... 21
3.1 Introduction ... 21

3.2 FHP library multi-GPU extension with MPI and OpenCL ... 22

3.3 Scalable Parallel Nonlinear Parameter Optimization Algorithm with Parameter Pools 23

3.4 Introducing OpenMP Tasks into the HYDRO Benchmark ... 26

3.5 Reducing Synchronization Overhead of Conjugate-Gradient-type Parallel Iterative Solvers ... 28

3.6 Scalability improvement of the projected conjugate gradient method used in FETI domain
decomposition algorithms .. 30

3.7 Computer modeling and simulations in strongly heterogeneous nonlinear media 32

3.8 Optimization of CP2K DBCSR library for GPU with OpenCL .. 33

3.9 Asynchronous solution of sparse linear systems ... 36

3.10 Conclusion .. 37

4 Development environments and tools .. 38
4.1 Introduction ... 38

4.2 FTI : Basic Description ... 38

4.3 Experiments ... 42

4.4 Conclusion .. 43

5 File system optimization ... 44
5.1 Introduction ... 44

5.2 Contributions ... 45

5.3 Evaluations and Experimental Results .. 49

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 iv

5.4 Conclusions .. 54

6 Summary and Conclusions ... 55

List of Figures

Figure 1: (a) Average lowest level common switch (b) Average job spread .. 7
Figure 2: Distribution of jobs over switch levels for all workloads (a), for 5, 6, 5’ and 6’ workloads (b)
 ... 8
Figure 4: Usage the G(n, p) model and the Prologue database (n = 4 and p = 0.5) 9
Figure 3: The model of computation (○: A – Actors; ◊: R – Relations, ▼� InP Input ports; ▲: OutP
Output ports) ... 9
Figure 5: The meta-workflow about runtimes of a given program in the function of task size. 10
Figure 6: An example of usage the Expression Actor as the decision tree (DT)................................... 10
Figure 7: Experiments for a 2563 matrix, 1D decomposition, and two transpositions on Griffon. 12
Figure 8: Execution time for a 2563 matrix, 2D decomposition, and one transposition on Graphene. 12
Figure 9: Experiments for a 2563 matrix, 1D decomposition, and two transpositions on a
heterogeneous cluster (Edel+Genepi). .. 13
Figure 10: Experiments for a 2563 matrix, 2D decomposition, and one transposition on a
heterogeneous cluster (Edel+Genepi). .. 13
Figure 11: TSVC loop nest optimizations and speedup comparison (valid code is green; invalid is red).
 ... 15
Figure 12: Categorization of TSVC loop nests. .. 15
Figure 13: Graphical output from the statistical software R. .. 16
Figure 14: Kernel density plots of rank pair latency data from the Triolith commodity cluster. 17
Figure 15: CPMD benchmark. The speedup is defined as (t_ref - t_tuned) / t_ref. 19
Figure 16: The strong and weak scaling on 16 nodes each with 2 NVIDIA M2050 cards. 22
Figure 17: Monte Carlo simulation of the MIF for curve fitting of Price_1k_v2. 24
Figure 18: 1D Godunov time step routine in the column and row direction (pseudo-code). 26
Figure 19: The domain decomposition with the domain coordinates and a simplified description of the
interfaces. .. 27
Figure 20: Dependency graph of the implemented algorithm. .. 27
Figure 21: Speedup values. ... 30
Figure 22: Performance of CG vs. PIPECG for various subdomain sizes. ... 32
Figure 23: Convergence rate for asynchronous multisplitting. ... 37
Figure 24: FTI – L1 “Basic write”. ... 39
Figure 25: FTI – L2 “Partner Copy”. ... 40
Figure 26: FTI – L3 “Node group checkpoint” – Redundancy with Reed Solomon encoding. 40
Figure 27: FTI – L4 “Node group checkpoint” – Redundancy with Reed Solomon encoding. 41
Figure 28: Hydro – FTI : Overhead level measurements. .. 42
Figure 29: I/O library architecture ... 47
Figure 30: Discarded proposal with Memory Management .. 48
Figure 31: Memory duplication between page cache and memory manager .. 48
Figure 32: Memory utilization using 1 process with different read techniques. 50
Figure 33: ECDF with each operation response time. ... 51
Figure 34: Total memory usage in the page cache (64 processes,no stride, 10 ms process). 52
Figure 35: ECDF of the Response time per operation when issuing random requests. 53
Figure 36: Advanced Filtering with the standard behavior shown on the left, and the user level and
fetcher thread on the right. .. 54

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 v

List of Tables
Table 1: Performance results for all SMT modes ... 6
Table 2: Job types in the workload .. 6
Table 3: Workload types and job distributions .. 7
Table 4: Assemblies and reference libraries used in experiments .. 12
Table 5: Total number of lines for the various versions of the 3D FFT application 13
Table 6: autovec directive support and translation ... 14
Table 7: VALT directive language translation for Intel-specific pragmas ... 14
Table 8: Speedup Predictor Accuracy ... 15
Table 9: Description of the time series .. 25
Table 10: Wall clock time for 128 cores on the Linux Nehalem Cluster available at UHeM 25
Table 11: Monte Carlo simulations results .. 25
Table 12: Scalability of the “Coarse-Grain” version of HYDRO ... 27
Table 13: Scalability of the “OpenMP tasks” version of HYDRO ... 27
Table 14: DBCSR library tests results for different drivers (Exec times in seconds) 35
Table 15: CP2K tests results for dbcsr_mm test case .. 35
Table 16: Hydro weak scaling : Grid size / number of cores ... 42
Table 17: List of the fields in an IODefinitionstructure .. 46
Table 18: Sample record.. 49

References and Applicable Documents

[1] SLURM, “Slurm topology guide,” [Online]. [Accessed 2014].

[2] S. S. a. C. Ozturan, “Integer Programming Based Heterogeneous CPU-GPU Cluster
Schedulers for Slurm Resource Manager,” 2014.

[3] S. S. a. I. K. C. Ozturan, “Extending slurm with support for gpu ranges,” PRACE
Whitepaper, 2013.

[4] “The Kepler Project,” [Online].

[5] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, 1993.

[6] Z. H. C. P. a. V. P. J. Bigot, “A low level component model easing performance
portability of HPC applications,” Computing, 2013.

[7] G. F. E. J. K. K. M. K. D. M. P. N. L. N. C. P. O. R. W. S. G. V. L. a. J. V. F. Desprez,
“Supporting Experimental Computer Science,” INRIA, 2012.

[8] J. B. a. C. Pérez, “High Performance Composition Operators in Component Models. In
High Performance Computing: From Grids and Clouds to Exascale,” vol. 20, 2011.

[9] G. C. a. R. M. B. Eagan, “Investigating Performance Benefits from OpenACC Kernel
Directives,” vol. 25, 2014.

[10] Y. G. M. G. T. W. a. D. P. S. Maleki, “An evaluation of vectorizing compilers,” 2011.

[11] J. D. a. D. L. D. Callahan, “Vectorizing compilers: A test suite and results,” Los
Alamitos, CA, USA, 1988.

[12] L. N. Pouchet, “Polybench/c: the polyhedral benchmark suite,” March 2012. [Online].

[13] G. F. F. A. E. B. M. O. a. O. T. J. Cavazos, “Rapidly selecting good compiler
optimizations using performance counters,” 2007.

[14] J. C. a. M. A. A. E. Park, “Using graph-based program characterization for predictive
modeling,” New York, NY, USA, 2012.

[15] R. M. A. L. M. G. M. B. A. D. M. Z. C. D. N. a. D. D. V. G. Fursin, “Collective Mind:
Towards practical and collaborative auto-tuning. Scientific Programming,” vol. 22, no. 3.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 vi

[16] G. C. A. S. E. C. M. G. H. H. C. N. S. B. M. S. L. M. a. F. B. R. Miceli, “AutoTune: A
Plugin-Driven Approach to the Automatic Tuning of Parallel Applications,” vol. 7782,
2013.

[17] J. F. R. O. C. S. L. Breiman, Classification and Regression Trees, Wadsworth and
Brooks, 1984.

[18] C. Basu, “Improving MPI communication latency of Euroben kernels,” PRACE report.

[19] J. R. a. M. S. Chandan Basu, “Towards Runtime Clustering and improved
Implementations of collective Operations in MPI,” PRACE report.

[20] “CPMD,” IBM, [Online]. Available: http://www.cpmd.org/.

[21] H. A. Council, “CPMD Performance Benchmark, Profiling and Tuning,”
www.hpcadvisorycouncil.com/pdf/CPMD_Performance_Profiling_Intel_x5670.pdf.

[22] G. C. a. D. Balenovich, “Asset flow and momentum: deterministic and stochastic
equations,” vol. 357, 1999.

[23] G. C. a. B. Ermentrout, “Numerical studies of differential equations related to theoretical
financial markets,” vol. 4, 1991.

[24] J. C. a. E. A. A. Duran, “Evaluation of OpenMP task scheduling strategies. OpenMP in a
new era of parallelism,” 2008.

[25] A. Duran, “Sensitivity analysis of asset flow differential equations and volatility
comparison of two related variables,” vol. 30, 2009.

[26] A. Duran, “Stability analysis of asset flow differential equations,” vol. 24, no. 4, 2006.

[27] A. Duran, “Overreaction Behavior and Optimization Techniques in Mathematical
Finance,” PhD thesis, University of Pittsburgh, Pittsburgh, PA, 2006.

[28] A. D. a. G. Caginalp, “Parameter optimization for differential equations in asset price
forecasting,” vol. 23, 2008.

[29] C. Broyden, “The convergence of a class of double rank minimization algorithms, part
1,” vol. 6, 1970.

[30] J. Nocedal and S.J. Wright, Numerical Optimization, New York: Springer Series in
Operations Research, Springer-Verlag, 2006.

[31] M. Bartholomew-Biggs, Nonlinear Optimization with Financial Applications, Boston,
USA: KluwerAcademic Publishers, 2005.

[32] S. A. a. J. Born, Closed-End Fund Pricing: Theories and Evidence, Boston, MA, USA:
Kluwer Academic Publishers, 2002.

[33] e. a. R. Teyssier, “The HYDRO code,” [Online]. Available:
https://github.com/HydroBench/Hydro.

[34] R. Teyssier, “The RAMSES code,” [Online]. Available:
https://bitbucket.org/rteyssie/ramses.

[35] S. K. Godunov, “A Difference Scheme for Numerical Solution of Discontinuous
Solution of Hydrodynamic Equations,” Math. Sbornik,, 1959.

[36] G.-C. d. V. P. W. D. L. P-F. Lavallée, “Porting and optimizing HYDRO to new
platforms and programming paradigms–lessons learnt,” PRACE whitepaper, 2013.

[37] “OpenMP 4.0 Specifications,” 2013. [Online]. Available: http://openmp.org/wp/openmp-
specifications.

[38] B. U. a. C. Aykanat, “Partitioning sparse matrices for parallel preconditioned iterative
methods,” vol. 29, no. 4, 2007.

[39] B. V. a. R. H. Bisseling, “A two-dimensional data distribution method for parallel sparse
matrix-vector multiplication,” vol. 47, 2005.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 vii

[40] T. A. D. a. Y. Hu, “The university of florida sparse matrix collection,” vol. 11, no. 1,
2011.

[41] U. C. a. C. Aykanat, “Hypergraph-partitioning-based decomposition for parallel sparse-
matrix vector multiplication,” vol. 10, 1999.

[42] M. O. C. A. O. Selvitopi, “A novel method for scaling iterative solvers: Avoiding latency
overhead of parallel sparse-matrix vector multiplies,” vol. 99, 2014.

[43] “CP2K homepage,” [Online]. Available: http://www.cp2k.org .

[44] A. C. X. G. P. K. I. Bethune, ““Million Atom KS-DFT with CP2K,” PRACE whitepaper.

[45] I. Bethune, “Improving the scalability of CP2K on multi-core systems. A dCSE Project,”
2010.

[46] M. U. M. G. A. Kwiecień, “Enabling the CP2K Application for Exascale Computing
with Accelerators using OpenACC and OpenCL,” PRACE whitepaper, 2014.

[47] J. V. V. W. J. H. Urban Borštnik, “Sparse Matrix Multiplication: The Distributed Block-
Compressed Sparse Row Library,” 2014.

[48] I. B. Fiona Reid, “Evaluating CP2K on Exascale Hardware: Intel Xeon Phi,” PRACE
whitepaper, 2014.

[49] [Online]. Available: http://www.khronos.org/opencl/.

[50] [Online]. Available: http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf.

[51] [Online]. Available: http://www.pgroup.com/resources/accel.htm.

[52] [Online]. Available: http://www.pgroup.com/products/pgdbg.htm.

[53] J. B. a. I. B. N. Brown, “Solving Large Sparse Linear Systems using Asynchronous
Multisplitting,” PRACE White , 2013.

[54] L. Kernel, “posix_fadvise man page,” [Online]. [Accessed June 2014].

[55] S. C. a. K. E. VanDeBogart, “Reducing seek overhead with application-directed
prefetching,” 2009.

[56] M. Folk, G. Heber, Q. Koziol, E. Pourmal and D. Robinson, “An overview of the HDF5
technology suite and its applications.,” in Proceedings of the EDBT/ICDT Workshop on
Array Databases, 2011.

[57] R. Nou, J. Giralt and T. Cortes, “Automatic I/O scheduler selection through online
workload analysis,” in 9th International Conference on Autonomic & Trusted Computing
, Fukuoka, Japan, 2012.

[58] FORTH, IBM, INTEL, BSC, UPM and Neurocom, “IOLanes EU Project,” [Online].
Available: www.iolanes.eu. [Accessed 2014].

[59] D. Stainton, “linux-ftools - fincore,” [Online]. Available:
https://code.google.com/p/linux-ftools/.

[60] S. t. guide. [Online]. [Accessed 2014].

[61] L. E. S. N. S., “MoML.A Modeling Markup Language in XML. Version 0.4,” University
of California at Berkeley, 2000.

[62] R. C. Team, R Foundation for Statistical Computing, [Online]. Available: http://www.R-
project.org.

[63] C. Broyden, “The convergence of a class of double rank minimization algorithms, part
2,” vol. 6, 1970.

[64] B. K. a. S. Lin, “An efficient heuristic procedure for partitioning graphs,” vol. 49, 1970.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 viii

List of Acronyms and Abbreviations

AAA Authorization, Authentication, Accounting.
ACF Advanced Computing Facility
ADP Average Dissipated Power
AFDE Asset Flow Differential Equations
AISBL Association International Sans But Lucratif
 (legal form of the PRACE-RI)
AMD Advanced Micro Devices
AMFT Advanced Multilevel Fault Tolerance
APGAS Asynchronous PGAS (language)
API Application Programming Interface
APML Advanced Platform Management Link (AMD)
ASIC Application-Specific Integrated Circuit
ATI Array Technologies Incorporated (AMD)
BAdW Bayerischen Akademie der Wissenschaften (Germany)
BCO Benchmark Code Owner
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CAF Co-Array Fortran
CAL Compute Abstraction Layer
CART Classification and Regression Tree models
CCE Cray Compiler Environment
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CG Conjugate Gradient
CGS Classical Gram-Schmidt
CGSr Classical Gram-Schmidt with re-orthogonalisation
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CLE Cray Linux Environment
CORBA Common Object Request Broker Architecture
CP Coarse Problem
CPU Central Processing Unit
CPMD Car–Parrinello Molecular Dynamics
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CSR Compressed Sparse Row (for a sparse matrix)
CUDA Compute Unified Device Architecture (NVIDIA)
DARPA Defense Advanced Research Projects Agency
DDN DataDirect Networks
DDR Double Data Rate
DEISA Distributed European Infrastructure for Supercomputing Applications.

EU project by leading national HPC centres.
DGEMM Double precision General Matrix Multiply
DIMM Dual Inline Memory Module
DMA Direct Memory Access

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 ix

DNA DeoxyriboNucleic Acid
DP Double Precision, usually 64-bit floating point numbers
DRAM Dynamic Random Access memory
DSL Data Description Language
DT Decision Tree
EC European Community
EESI European Exascale Software Initiative
EoI Expression of Interest
EP Efficient Performance, e.g., Nehalem-EP (Intel)
EPCC Edinburg Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United

Kingdom)
eQPACE extended QPACE, name of the FZJ WP8 prototype
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich

(Switzerland)
EUABS European Unified Applications Benchmark Suite
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
EX Expandable, e.g., Nehalem-EX (Intel)
FC Fiber Channel
FFT Fast Fourier Transform
FFTW Fastest Fourier Transform in the West
FETI Finite Element Tearing and Interconnect
FEM Finite Element Method
FHPCA FPGA HPC Alliance
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FTI Fault Tolerance Interface
FZJ Forschungszentrum Jülich (Germany)
GASNet Global Address Space Networking
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GDDR Graphic Double Data Rate memory
GÉANT Collaboration between National Research and Education Networks to

build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GigE Gigabit Ethernet, also GbE
GLSL OpenGL Shading Language
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GS Gram-Schmidt
GWU George Washington University, Washington, D.C. (USA)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 x

HBA Host Bus Adapter
HCA Host Channel Adapter
HCE Harwest Compiling Environment (Ylichron)
HDD Hard Disk Drive
HE High Efficiency
HET High Performance Computing in Europe Taskforce. Taskforce by

representatives from European HPC community to shape the European
HPC Research Infrastructure. Produced the scientific case and valuable
groundwork for the PRACE project.

HLCM High Performance Composition Operators in Component Model
HMM Hidden Markov Model
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HP Hewlett-Packard
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing
HPCC HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/
HPCS High Productivity Computing System (a DARPA program)
HPL High Performance LINPACK
HT HyperTransport channel (AMD)
HWA HardWare accelerator
IB InfiniBand
IBA IB Architecture
IBM Formerly known as International Business Machines
ICE (SGI)
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
IL Intermediate Language
IMB Intel MPI Benchmark
I/O Input/Output
INRIA French Institute for Research in Computer Science and Automation
IOR Interleaved Or Random
IPMI Intelligent Platform Management Interface
ISC International Supercomputing Conference; European equivalent to the

US based SC0x conference. Held annually in Germany.
IVP Initial Value Problem
IWC Inbound Write Controller
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LAD Assembly Description File
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LLNL Laurence Livermore National Laboratory, Livermore, California (USA)
LQCD Lattice QCD
LOOCV Leave-one-out cross Validation
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LU Lower Upper Decomposition
LS Local Store memory (in a Cell processor)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 xi

MATMUL Matrix Multiplication
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MDT MetaData Target
MFC Memory Flow Controller
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MGS Modified Gram-Schmidt
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIC Many Integrated Core
MIF Maximum Improvement Factor
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
ML Maximum Likelihood
MoML Modeling Markup Language
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MoU Memorandum of Understanding.
MPI Message Passing Interface
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
MRAM Magnetoresistive RAM
MTAP Multi-Threaded Array Processor (ClearSpead-Petapath)
MTTI Mean Time to Interrupt
mxm DP matrix-by-matrix multiplication mod2am of the EuroBen kernels
NAS Network-Attached Storage
NCF Netherlands Computing Facilities (Netherlands)

NDA Non-Disclosure Agreement. Typically signed between vendors and
customers working together on products prior to their general
availability or announcement.

NoC Network-on-a-Chip
NFS Network File System
NIC Network Interface Controller
NUMA Non-Uniform Memory Access or Architecture
NYSE New York Stock Exchange
OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing
OS Operating System
OSS Object Storage Server
OST Object Storage Target
PaToH Partitioning Tools for Hypergraph
PCIe Peripheral Component Interconnect express, also PCI-Express
PCI-X Peripheral Component Interconnect eXtended
PGAS Partitioned Global Address Space
PGI Portland Group, Inc.
PETSc Portable, Extensible Toolkit for Scientific Computation
pNFS Parallel Network File System
POSIX Portable OS Interface for Unix
POMP OpenMP Monitoring Interface
PPE PowerPC Processor Element (in a Cell processor)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 xii

PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
P2P Peer to Peer
QCD Quantum Chromodynamics
QCDOC Quantum Chromodynamics On a Chip
QDR Quad Data Rate
QN Quasi Newton
QP Quadratic Programming
QPACE QCD Parallel Computing on the Cell
QR QR method or algorithm: a procedure in linear algebra to compute the

eigenvalues and eigenvectors of a matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RFA Radio Frequency Ablation
RISC Reduce Instruction Set Computer
RNG Random Number Generator
RPM Revolution per Minute
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)
SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SLURM Simple Linux Utility for Resource Management
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SMT Simultaneous Multithreading
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SPE Synergistic Processing Element (core of Cell processor)
SPH Smoothed Particle Hydrodynamics
SPU Synergistic Processor Unit (in each SPE)
SpMV Sparse Matrix Vector Multiplication
SSD Solid State Disk or Drive
SSE Streaming SIMD Extensions
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
STT Spin-Torque-Transfer
SURFsara Dutch national High Performance Computing & e-Science Support
 Center
SVM Support Vector Machine
TARA Traffic Aware Routing Algorithm
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCO Total Cost of Ownership. Includes the costs (personnel, power, cooling,

maintenance, ...) in addition to the purchase cost of a system.
TDP Thermal Design Power

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 xiii

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per
second, also TF/s

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this
context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

TSVC Leave-one-out Cross-Validation
UFM Unified Fabric Manager (Voltaire)
UNICORE Uniform Interface to Computing Resources. Grid software for seamless

access to distributed resources.
UPC Unified Parallel C
UV Ultra Violet (SGI)
VALT Vectorization and Loop Transformation
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description

Language
WCSS Wrocław Centre for Networking and Supercomputing

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 1

Executive Summary

This Work Package performed research and development on the programmability of future
multi-petascale and exascale systems. In particular, it was focused on main four areas, auto-
tuned runtime environments, scalable numerical algorithms, fault tolerant tools, and file
system optimization for exascale systems. A total of 16 research projects are reporting in this
document covering multiple different techniques.

On auto-tuned runtimes environments a total of six projects were exploring different auto-
tuning techniques at different granularities. For example, it goes from a coarse technique that
auto-tunes the job scheduler down to the finest granularity when auto-tuning Intel vector
instructions. Specifically, on SLURM job scheduler we explored the case capability to do
topologically aware mappings of jobs on hierarchically interconnected systems. On the other
hand, three projects were focused mostly on the programming language exploring one these
projects the case of controlling dynamically the number of threads allocated to OpenMP
parallel regions to decrease the overall wall-times; and the rest were focusing on improving of
workflow executions through meta-model methods and the other using a component based
approach to improve the 3D FFT. Additionally, on project was focused on compilation
utilities to improve the vectorization of their codes. And finally, the last project was focused
on improving the collective communications operations, specifically the MPI_All_to_All.

On scalable numerical algorithms, it was explored new algorithms or techniques that improve
the scalability of existing algorithms. Eight projects were also focused on this research line.
with several diverse parallel techniques such as utilization of GPU and MIC accelerators,
message-passing paradigm and shared memory constructs. There are algorithmic approaches
to increase the efficiency of widely used numerical algorithms (such as Conjugate Gradient
(CG)) as well as adaptive parameter determination and utilization. The target applications and
libraries include HYDRO, PETSc, CP2K and FETI.

On the other hand, on fault tolerant tools, it was shown the performance of the fault tolerant
tool called FTI based on application-based checkpoint/restart. The overhead of using this tool
could be very low at large scale. It was reporting less than 6% on HYDRO at 9,600 cores.

And finally, on file system optimization it was showed the performance of user hint guided
I/O prefetching which is seen a scalable technique for accessing I/O at exascale systems. In
fact, it was shown that anticipating user reads, with small information from the user, can
produce great benefits in terms of performance. In addition, it was shown than the memory
usage could be reduced with the use of an advanced filtering technique.

1 Introduction

This Work Package has been performed research and development on the programmability of
future multipetascale and exascale systems. Specifically, it was focused on the following four
areas of research which corresponds to the tasks where this Work Package was organized as
well,

- Task 12.1: Auto-tuned runtime environments. Runtime environments for parallel
platforms were investigated to provide auto-tuning capabilities in order to
automatically find the best implementation for application codes.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 2

- Task 12.2: Scalable numerical algorithms. This task explored new algorithms
exposing much higher asynchrony, overlap between communication and computation,
locality awareness than current practice.

- Task 12.3: Development environments and tools. It addressed the problem to provide
efficient tools in order to deal with failures at large scale parallel system. The impact
to the performance to applications when using a fault tolerant tool is evaluated at large
scale.

- Task 12.4: File system optimization. It was focused to address performance issues of
file systems at exascale in order to reduce the perceived request latency and improve
the overall performance when a high volume of I/O requests are expected in such as
environments.

This document provides a summary of the results achieved in each of these tasks during the
third year. WP12 was initially plan for two years, but at the end was extended for an
additional year. This is the only deliverable produced during the third year for WP12. Along
with this deliverable it was produced a series of whitepapers that detailed in a more extended
way the results presented in this document.

Task 12.1 and 12.2 were organized into several projects. In particular, task 12.1 was focused
on six different projects focusing on auto-tuning various parts of the systems such as job
scheduler, processor’s vector instructions, or OpenMP applications. All of these projects are
reported in this deliverable. Additionally, five whitepapers were produced to describe in more
detail the results obtained.

Similarly task 12.2 was also composed on multiple independent projects, a total of eight.
Results achieved of these projects are summarized in this document. In addition, five of these
eight projects have also produced a whitepaper.

On the other hand, the other last tasks 12.3 and 12.4 were organized into only one project
each. For this reason, they did not provided a whitepaper and the results are fully presented in
this document. The techniques explored during the third year area on both tasks are not a
continuation of the previous techniques explored during the first two years of WP12. For the
third year they explored fresh new ideas. In the case of task 12.3, it was explored the use of
fault tolerant tools which are of vital of importance for exascale systems. And on task 12.4, it
was explored prefetching techniques in order to reduce the huge pressure of I/O operations in
exascale environments as well.

In summary, this deliverable is reporting work for a total of 16 projects focusing on important
aspects to improve the scalability of codes at large scale such as automatic optimization,
algorithms, fault tolerance, and file systems.

Section 0 summarizes the results achieved on Auto-tuned runtime environments. Section 3
summarizes the results achieved on Scalable numerical algorithms. Section 4 provides results
of a fault tolerant tool on a large scale system. Section 5 describes a new technique based on
I/O prefetching in order to improve file systems at large scale. And finally, Section 6
concludes this document.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 3

2 Auto-tuned Runtime Environments

2.1 Introduction

This chapter details the work done during the one year extension of Task 12.1. It is a follow
up of D12.1 that described the work done on Heterogeneous and Auto-tuned Runtime System
during the first two years. Six projects were extended and are covered by this chapter. This
chapter is quite concise in order to allow readers to easily identify the projects that are of
particular interest for them and to encourage further reading in the accompanying white
papers or the referenced publications. All but the last project have been published as PRACE
white paper.

This six projects aims at making HPC systems more efficient by improving optimization
support, in particular through the use of auto-tuning. They contribute to optimize various HPC
elements: OpenMP applications, SLURM scheduler, Kepler workflow engine, component
based 3D FFT, compiler auto-vectorization, and All-to-all collective communication. Here is
the list of these projects that are then further detailed in this chapter.

 Auto-tuning of OpenMP applications on the IBM Blue Gene/Q
o It deals with a library called SOMPARlib which capable of controlling

dynamically the number of threads allocated to OpenMP parallel regions.
 Topologically Aware Job Scheduling for SLURM

o It deals with a new AUCSCHED3 SLURM scheduler plug-in that has a
capability to do topologically aware mappings of jobs on hierarchically
interconnected systems.

 Self-improving workflow models for generating of combinatorial objects designed in
the Kepler Project System

o This work proposes some dedicated methods that can improve the execution
time of workflows based on decision trees and the replication of some actors in
the workflow.

 Evaluating Component Assembly Specialization for 3D FFT
o It deals with the design and evaluation of component based assemblies of 3D

FFT computation to ease code specialization while maintaining performance.
 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization

Heuristics
o This work aims to provide techniques for determining the best way to optimize

certain codes regarding vectorization, with an end goal of guiding the compiler
into generating optimized code without requiring developer expert knowledge.

 Scalable algorithm for network bandwidth / latency hierarchy detection and designing
topology aware collective routines and testing performance in CPMD application

o This project aims to develop a scalable code identifying performance tiers
reflecting the network topology to improve MPI ALL-TO-ALL scalar/vector
collective routine such as for example for the quantum chemistry code CPMD.

2.2 Auto-tuning of OpenMP applications on the IBM Blue Gene/Q

WP179: Auto-tuning of OpenMP applications on the IBM Blue Gene/Q system
Authors: Maciej Cytowski, Maciej Szpindler (ICM, Univ. of Warsaw)

Modern high performance computing architectures are based on multi-core and multi-
threaded computing nodes. The mixed MPI and OpenMP programming is currently a
reference model for obtaining high scalability on large computing systems. In such a model,

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 4

MPI processes contain many OpenMP parallel regions. Scalability and performance of those
parallel regions may differ between various computing systems and between each run of the
code. The control of the number of threads used by different OpenMP regions, by users of the
HPC systems, is very often limited to setting a single environment variable –
OMP_NUM_THREADS. We have developed a tool called SOMPARlib which is based on
OpenMP Monitoring Interface (POMP) and is capable of controlling the execution of various
OpenMP parallel regions introduced in computational codes during run time. The tool is
particularly useful in the case of architectures that introduce the multithreading mechanisms
like Simultaneous multithreading (SMT) or Hyper-Threading (HT).

The library in its current version provides support for codes of a specific computational
structure. The main object of our interest are those simulation packages for which
computations are divided into a large number of iterations, e.g. molecular dynamics packages,
cosmological simulation codes and many others. Main simulation loop may contain numerous
OpenMP parallel regions. It may also call an external function (e.g. library calls) which may
contain its own OpenMP parallel regions.

When code is linked against SOMPARlib and executed the following occurs:

1. SOMPARlib initialization phase
a. memory required by SOMPARlib is allocated
b. maximum number of threads available for a single process is found
c. parallel modes (i.e. different number of threads used during testing phase) are

defined
2. First iteration - detection phase

a. structure of the main simulation loop is detected
b. all OpenMP parallel regions within a single iteration are detected

3. Next N iterations (where N = number of parallel modes) - testing phase
a. performance of parallel regions in all defined parallel modes is measured
b. the best parallel mode for each of the OpenMP regions is selected

4. All remaining iterations - computing phase
a. all remaining calculations are carried out with number of threads set

individually for each of the OpenMP parallel regions
5. SOMPARlib cleanup phase

During the initialization phase SOMPARlib allocates memory required for storing
performance measurements data. The maximum number of threads available for current
process is checked by calling the function omp_get_thread_limit(). Based on this
number the available parallel modes are determined. The first parallel mode is always related
with the use of all available threads. If the number of threads assigned to a given parallel
mode is divisible by two, the next parallel mode will be selected by reducing the number of
threads twice. Otherwise, the number of threads is reduced by one. For example, if the
maximum number of threads available to a single process is equal to 64, there will be 6
parallel modes considered during the testing phase, corresponding to 64, 32, 16, 8, 4 and 2
threads per process. However, if the maximum number of threads available to a single process
is equal to 24, SOMPARlib will select 5 parallel modes corresponding to 24, 12, 6, 3 and 2
threads per process. The most effective setup is achieved when the maximum number of
threads available to a single process is a power of two, which is also a very natural choice for
many of today's HPC platforms.

In the next phase, the computations are started. During the first iteration of the main
simulation loop all OpenMP parallel regions within the loop need to be detected. SOMPARlib
is able to automatically detect a loop structure, but only for simple loops, wherein each
OpenMP parallel region is called at most once during each iteration. In such cases the

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 5

detection of the loop structure ends when SOMPARlib encounters the first OpenMP parallel
region again, i.e. in the beginning of the second iteration. In all other cases, the SOMPARlib
API needs to be used in order to mark the beginning and end of the iteration.

Next N iterations of the main simulation loop, where N is equal to the number of parallel
modes, are used to gather necessary performance measurements of all OpenMP parallel
regions in the loop. Starting from the parallel mode with the largest number of threads
SOMPARlib measures execution time of all parallel regions. These measurements are
repeated for subsequent parallel modes with decreasing number of threads. To prevent a
significant slowdown of the testing phase we have decided to implement an additional
checkpoint. If in two consecutive parallel modes the execution time of a given OpenMP
parallel region increased 1.5 times, then we recognize that this change of performance is the
effect of scalability. Therefore, in such situations we do not continue to search for the best
parallel mode for the given OpenMP region, since we expect that consecutive time
measurements will be worse than the previous ones. When appropriate parallel modes have
been selected for all regions, the simulation is continued, and before each subsequent
OpenMP region the appropriate number of threads is set by calling the
omp_set_num_threads() function.

SOMPARlib was created primarily as a case study and therefore has some important
limitations. In the current implementation, we assume that the amount of work corresponding
to each OpenMP parallel region is at the same level in all the iterations. Furthermore, each
iteration of the main simulation loop must always contain the same OpenMP parallel regions
executed in the same order. Assumptions about the structure of the program are so restrictive
mainly due to technical limitations of the POMP interface available on the Blue Gene/Q
architecture. When it comes to handling different OpenMP standard functionalities, currently
only classical parallel regions and parallel loops are supported. In particular, SOMPARlib
does not support OpenMP tasking.

Usage of the SOMPARlib on the IBM Blue Gene/Q system is rather simple. Recompilation of
the code is only necessary in the case of applications that use the SOMPARlib's API.
Programs need to be also linked with the library, e.g.:

$ bgxlc_r -qsmp=omp program.o -o program.x -lxlsmp_pomp -lsompar

Thanks to the POMP implementation available in IBM compilers, SOMPARlib is able to
control OpenMP parallel regions included within external libraries. SOMPARlib is able to
detect and control OpenMP parallel regions defined within external libraries. Most
importantly, no additional code modifications or recompilation of those libraries is required.

Functionality of the SOMPARlib is shown based on the benchmark program specially written
for this purpose. Benchmark code is made up of 512 successive iterations each consisting of
five steps with different computational footprint. In the first step of the main simulation loop
an N-body type computations are carried out. For all of 32768 particles in three-dimensional
space distance and interactions between them are calculated. The loop over particles is
parallelized with single OpenMP pragma. In the second step, the matrix multiplication is
calculated with two square matrices of size 256 x 256. On the Blue Gene/Q system we use the
OpenMP parallelized DGEMM available in the ESSL SMP library. Third step of the
benchmark is an OpenMP implementation of a sorting algorithm applied to randomly
generated sequence of 1048576 floating point numbers. The implementation is based on the
qsort function available in the standard C library, which is applied in its thread-safe version
to equal subsequences of the original data. The resulting sorted sequences are then merged
into the final result. In the fourth step of the benchmark we use the FFTW (v.3.3.2) library
compiled with OpenMP support to compute the 3D FFT of a 512 x 512 x 512 grid data. The
last step of the main simulation loop is the LU factorization of a sparse matrix. For this

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 6

purpose we use the SuperLU-MT library and an example sparse matrix Fidapm11 of size
22294 x 22294 and 623554 non-zero elements obtained from the Matrix Market.

The most important result of presented test was the decrease of overall walltime for
benchmark runs. To compare performance we have executed two benchmark runs with one of
these runs compiled and controlled by the SOMPARlib. We compare the results obtained with
the use of SOMPARlib with standard executions in available SMT modes. On the Blue
Gene/Q platform we have executed the program on 16 (SMT1), 32 (SMT2) and 64 (SMT4)
threads. The actual number of threads used by the application was chosen by setting the
OMP_NUM_THREADS environment variable. In this way we try to mimic a situation where in
order to obtain the highest scalability computations are executed with the use of a single MPI
process per node and maximum number of threads available within node. The increase of
performance was measured for all SMT modes; results are presented in Table 1.

Parallel modes 16 (SMT1) 32 (SMT2) 64 (SMT4)
Improvement 49.91% 21.37% 7.62%
Table 1: Performance results for all SMT modes

2.3 Topologically Aware Job Scheduling for SLURM

WP180: Topologically Aware Job Scheduling for SLURM
Authors: Seren Soner, Can Ozturan (Bogazici University)

SLURM is a popular resource management system that is used on many supercomputers in
the TOP500 list. SLURM provides two primary modes of operation for topology-aware job
placement in order to reduce network contention: One mode for hierarchical interconnects
like a tree (or a fat tree) and another mode for three-dimensional torus architectures. In this
work, we contribute a new AUCSCHED3 SLURM scheduler plug-in that has a capability to
do topologically aware mappings of jobs on hierarchically interconnected systems.

SLURM identifies the lowest level switch in the hierarchy that can satisfy a job’s request and
then allocates resources on its underlying leaf switches using a best-fit algorithm [1]
AUCSCHED3 is based on our previous auction based scheduling algorithm of AUCSCHED2
[2] [3]. AUCSCHED3 does the following: (i) It generates bids for topologically good
mappings of jobs onto the resources and (ii) it adjusts the priorities of the jobs slightly without
changing the original priority ordering of jobs so as to favor topologically better candidate
mappings.

Effectiveness of the new AUCSCHED3 plug-in is tested on a three level (levels 0, 1 and 2)
hierarchically interconnected 1024 node system with 16 cores and 3 GPUs on each of its
nodes. In the workloads used for testing, there are five types of jobs (named A, B, C, D, E)
with each type making different resource requests as shown in Table 2. The workloads are
made up of various percentages of these job types and are shown in Table 3.

Job	Type	 Job	Description	
A	 only	x	cores	
B	 x	cores	on	y	nodes	
C	 x	cores	on	y	nodes,	1	GPU	on	each	node
C’	 x	cores	on	y	nodes,	1	to	3	GPUs	on	each	

node	
D	 x	cores	on	y	nodes,	2	GPUs	on	each	node
D’	 x	cores	on	y	nodes,	2	to	3	GPUs	on	each	

node	
E	 x	cores	on	y	nodes,	3	GPUs	on	each	node

Table 2: Job types in the workload

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 7

When testing SLURM’s Backfill plug-in, jobs of type A, B, C, D and E are used.
AUCSCHED2 and AUCSCHED3 also provide support for generic resource ranges (which is
not available in SLURM/Backfill). Such a feature can be useful to runtime auto-tuning
applications that can make use of variable number of generic resource such as GPUs. Job
types C’ and D’ and workloads 5’ and 6’ are the same as their counterparts but use GPU
ranges. Therefore, we only test them using AUCSCHED3.
	
	 	 Percentage	of	Jobs
Workload	

ID	
Number	
Of		Jobs	

A	 B C D E	

1	 350	 100	 0 0 0 0	
2	 2095	 100	 0 0 0 0	
3	 350	 0	 100 0 0 0	
4	 2095	 0	 100 0 0 0	
5	 350	 20	 20 20 20 20	
6	 2095	 20	 20 20 20 20	
5’	 same	as	5,	but	uses	GPU	ranges
6’	 same	as	6,	but	uses	GPU	ranges

Table 3: Workload types and job distributions

To test our new AUCSCHED3 plug-in, we conduct emulation tests. We are able to retrieve
topology related information of allocated jobs and hence we can evaluate goodness of
allocations. The results are analyzed using the following performance measures: (i) Lowest
level common switch (the lowest level common switch from which all the nodes allocated to a
job can be reached), (ii) Spread (the distance from the first node to the last node allocated to a
job), and (iii) Utilization.

Average lowest common switch level and the average spread measures are plotted in Figure
1. To get a better insight, the distribution of jobs over lowest common switch levels of all jobs
for all workloads and for 5,6,5’, 6’ workloads are given in Figure 2(a) and Figure 2(b)
respectively.

	

Figure 1: (a) Average lowest level common switch (b) Average job spread
	

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 8

Figure 2: Distribution of jobs over switch levels for all workloads (a), for 5, 6, 5’ and 6’ workloads (b)

The results obtained on the emulated 1024 node system show that AUSCHED3 plug-in is
able to generate better topological mappings than SLURM/Backfill. It can do this while
keeping system utilization levels even higher than that of SLURM/Backfill in the case of
workloads 1, 2, 5, 6, 5’, and 6’. In the case of workloads 3 and 4, utilizations drop slightly by
4% and 5% respectively. However, considering the fact that the switch levels of
AUCSCHED3 mappings are lower, the execution times are likely to be shorter due to faster
communication and hence the differences in utilizations in these cases are likely to be smaller.
Overall, AUCSCHED3 is able to generate both topologically better mappings of jobs and
achieve higher system utilizations especially in workloads involving jobs that request both
CPU and GPU resources.

2.4 Self-improving workflow models for generating of combinatorial objects
designed in the Kepler Project System

WP181: Self-improving workflow models for generating of combinatorial objects designed in
the Kepler Project System
Authors: Krzysztof T. Zwierzyński (PSNC)

We consider the problem of design of self-improving meta-model of workflow of jobs that is
sensitive on the change of the computational environment. As an example of searched
combinatorial objects some classes of integral graphs are used. We propose some dedicated
methods that can improve the execution time of workflow based on decision trees and the
replication of some actors in the workflow.

The Kepler Project [4] is based on the Ptolemy II System, a platform supporting multiple
models of computation, i.e.: Synchronous Data Flow, Dynamic Data Flow, Process Network,
Discrete Events, and Continuous Time. The Kepler Project provides a graphical user interface
and a run-time engine that can execute workflows either from within the graphical interface or
from a command line. Workflows can be nested, allowing complex tasks to be composed
from simpler components. Kepler Project workflows are defined in the Modeling Markup
Language (MoML) [5].

Let G = (V, E) denote a simple graph with a nonempty vertex set V of a cardinality n = |V|,
and a set of pairs of vertices called edges E where loops are forbidden. The distance matrix
(Dis(G)) of G is an all-pairs shortest path matrix consisting distances between all pairs of
vertices in the graph G. The set Sp(G) = {1, 2,…, n,} of graph eigenvalues of the adjacency
matrix A is called the spectrum of graph G. The combinatorial goal was to find all graphs of
given order n with distance matrices that have integral eigenvalues.

The workflow model of the computation in the Kepler Project is a bipartite digraph W = (A
R InP OutP, LP LR), where A is set of Actors (units that can perform some
computation; in particular Composite Actors). The set R contains vertices that correspond to

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 9

relations. InP is the set of input ports and OutP is set of output ports, respectively. LP is a set
of pairs (a, p) where a �A, and p InP OutP. LR is a set of pairs (r, p) where r R, and
i InP OutP. The workflow shown in the Figure 3 represents a simple pipeline workflow:
the output from A1 is the input for A2; the output of A2 is the input for A3. The relations R1
and R2 correspond to the arrow.

The main goal is to describe the possibilities of transforming workflows in such a way that the
runtime of new one should be shorter than the old one. From that reason we define some
meta-workflows that can take some statistic data of executions of some set of workflows and
chose the best one, or define a decision tree which workflow use for a specific values of
parameters of the combinatorial problem to solve.

Figure 4 shows the Kepler Project workflow that generates graphs using the G(n, p) model.
The value p is an edge probability. The graphs are stored in the Prologue database as
compound terms. The main benefit of this web-service oriented solution is that we can also
put into the Prologue database some producing rules that add some new compound terms
derived from the facts in the database.

Figure 4: Usage the G(n, p) model and the Prologue database (n = 4 and p = 0.5)

Using the meta-workflow shown in the Figure 5 we can obtain statistics about the runtime of
some programs.

AA AR R

Ports:

Actors,

Figure 3: The model of computation (○: A – Actors; ◊: R – Relations, ▼� InP Input
ports; ▲: OutP Output ports)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 10

Figure 5: The meta-workflow about runtimes of a given program in the function of task size.

If some calculations for instances of the problem can be done independently then to improve
the runtime we can make the replication of the main Actor in the workflow. The useful limit
of the replication can be obtained experimentally. The replication technique is also a method
that can auto-tune workflows for new generations of computers where for each processor
more cores will be available. However, that schema of replication has a limit that comes from
the bottleneck of the task scheduler.

We can also introduce in a workflow some Map-Reduce technique. Figure 6 displays one of
the methods that introduce a decision tree (DT) into the Kepler Project workflow. The
Expression Actor compare vectors of parameters values X of the task with the vector of
thresholds values T. It results in some decision class.

Figure 6: An example of usage the Expression Actor as the decision tree (DT)

To build a DT we can use J.R. Quinlan’s algorithm called c4.5 [5]. To improve the thresholds
in the DT we can during the execution of workflow run additionally in parallel way some
other algorithm chosen randomly from the sequence. If it finishes the execution before the
algorithm chosen by DT, then we can add this information to the training set, and build a new
DT. Instead of choosing another algorithm randomly we can use information about thresholds
values. If the parameter value is equal to the threshold value in the node close to leafs of DT
than we can run in parallel both branches. If we distribute computation over the network of
heterogeneous hosts, we can also use DT in the job scheduling algorithm to find the best host
that can make the fastest computation of our task.

The same strategy can be used in the case when the task can be divided into two or more parts
(subtasks). Then in the case when one big task is working to long, we can run in the delay
technique its equivalent subtasks. This can be done hierarchically for subtasks.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 11

2.5 Evaluating Component Assembly Specialization for 3D FFT

WP182: Evaluating Component Assembly Specialization for 3D FFT
Authors: Jérôme Richard (LIP/Univ. Orléans), Vincent Lanore (LIP/ENSL), Christian Perez
(LIP/Inria)

The Fast Fourier Transform (FFT) is a widely-used building block for many high-
performance scientific applications. Efficient computing of FFT is paramount for the
performance of these applications. This has led to many efforts to implement machine and
computation specific optimizations. However, no existing FFT library is capable of easily
integrating and automating the selection of new and/or unique optimizations.

To ease FFT specialization, we have evaluated the use of component-based software
engineering, a programming paradigm which consists in building applications by assembling
small software units. Component models are known to have many software engineering
benefits but usually have insufficient performance for high-performance scientific
applications.

This work is based on L2C [6] a general purpose high-performance component model, and it
studies its performance and adaptation capabilities on 3D FFTs. Experiments show that L2C,
and components in general, enables easy handling of 3D FFT specializations while obtaining
performance comparable to that of well-known libraries. However, a higher-level component
model is needed to automatically generate an adequate L2C assembly

The L2C model [6]can be seen as an extension of modular compilation or as a low level
component model that does not hide system issues. Indeed, each component is compiled as an
object file. At launch time, components are instantiated and connected together according to
an assembly description file (LAD) or to an API. L2C supports various features like memory
sharing, C++/FORTRAN procedure invocations, message passing with MPI, and remote
procedure calls with CORBA thanks to provides/uses port and MPI ports (MPI communicator
sharing). Components can also expose attributes used to configure component instances. A
L2C assembly descriptor file contains a description of all component instances, their attributes
values, and the connections between instances. Each component is part of a process and each
process has an entry point (an interface that is called when the application starts).

We have designed and implemented in L2C various assemblies to analyze how L2C can be
used to implement distributed 3D-FFT based on the use of global transpositions. First, we
have first designed a basic 3D-FFT assembly using 1D decomposition. Then, we have
improved it with some optimizations from the literature. Optimizations have been applied in
three stages to highlight different component model features: i) replacing a component
implementation with a more optimized implementation (transpose implementation), ii) using
component attributes for heterogeneous platforms tuning, and iii) global assembly adaptation
to implement computation/communication overlapping and 2D decomposition.

We have evaluated the component based approach in terms of performance and adaptability
through some L2C assemblies. Performance and scalability are evaluated on up to 512 cores
on homogeneous and heterogeneous architectures. Adaptability relates to the easiness to
implement the various optimizations, and to how much code has been reuse.

Experiments have been done on multiple clusters of the Grid’5000 experimental platform
[7].These clusters are Griffon, Graphene, Edel and Genepi. They are made of quad-core dual
processor but Graphene whose nodes have a quad-core mono-processor. For heterogeneous
tests, we have used the Genepi cluster and the Edel cluster. Both clusters are connected to the
same InfiniBand network. However, they have different processors which make them suitable
for heterogeneous experiments.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 12

Assembly
Name

Decom-
position

#Transpo
sition

Hetero. Library
Name

Decom-
position

#Transpo
sition

Hetero.

1D 2t xz 1D 2 No FFTW 1D 2 Not used

1D 1t yz 1D 1 No FFTW 1t 1D 1 Not used

1D 2t yz 1D 2 No 2DECOMP
1D1t

1D 1
Not

available 1D 2t yz blk 1D 2 No

1DH 1t yz 1D 1 Yes 2DECOMP
1D2t

1D 2
Not

available 1DH 2t yz blk 1D 2 Yes

2D 3t 2D 3 No 2DECOMP
2D

2D 3
Not

available 2DH 3t 2D 3 Yes

Table 4: Assemblies and reference libraries used in experiments

Table 4 summarized the L2C assemblies and the reference FFT libraries that are used in
experiments. All experiments involve complex-to-complex 3D FFTs. We have not used L2C
assemblies with overlapping because their implementation is still ongoing. The FFT libraries
used as reference are FFTW 3.3.4 and 2DECOMP 1.5. All libraries are configured to use a
complex to complex 3D FFT without overlapping (as for L2C assemblies) using FFTW
sequential implementation and double precision floating point. All implementations use
FFTW_MEASURE planning. The compiler is gcc (version 4.7.2) and the implementation of
MPI is OpenMPI (version 1.8.1).

Figure 7: Experiments for a 2563 matrix, 1D
decomposition, and two transpositions on Griffon.

Figure 8: Execution time for a 2563 matrix, 2D
decomposition, and one transposition on Graphene.

Figure 9 and Figure 7 shows that L2C assemblies can be as efficient as reference libraries for
1D decomposition. However, as shown in Figure 8, the L2C assembly needs more
optimization to compete when using 2D decomposition.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 13

Figure 9: Experiments for a 2563 matrix, 1D
decomposition, and two transpositions on a
heterogeneous cluster (Edel+Genepi).

Figure 10: Experiments for a 2563 matrix, 2D
decomposition, and one transposition on a
heterogeneous cluster (Edel+Genepi).

Figure 9 and Figure 10 have been obtained on a heterogeneous cluster made of two
homogeneous clusters (Edel and Genepi) for 1D and 2D decomposition respectively. The goal
of these experiments is to show that components enable to easily adapt an assembly to support
heterogeneity and that of course improves performance.

Assembly
Name

C++ Lines of
Codes

Code reused Assembly
Name (cont.)

C++ Lines of
Codes (cont.)

Code reused
(cont.)

1D 2t xz 927 - 1DH 1t yz 983 80%

1D 1t yz 929 77% 1DH 2t yz blk 1097 72%

1D 2t yz 929 100% 2D 3t 1067 87%

1D 2t yz blk 1035 69% 2DH 3t 1146 69%

Table 5: Total number of lines for the various versions of the 3D FFT application

With respect to reuse, Table 5 shows code reuse (in terms of number of lines of C++ code)
between some of L2C assemblies. Reuse is the amount of code that is reused from the
assemblies list higher in the table. Overall, our L2C implementations are much smaller than
2DECOMP or P3DFFT (respectively 11570 and 8118 lines of FORTRAN code); that is also
because they implement more features.

With respect to adaptation, which is the goal of this work, components enable lightweight and
specialized assemblies. Several optimizations from the literature have been implemented,
taking advantages of code reuse, component replacement in assemblies, and component
attribute tuning. Other optimizations require the implementation of new components. The
specialization process allows to reuse most of the base components (69% to 100% reuse)
without any modification.

With L2C, assembly descriptions need to be rewritten for each specific hardware. As it is
fastidious and error-prone, such descriptions should be automatically generated. This is one of
the purposes of HLCM [8], a high level component model. HLCM also aims at automating
assembly generation. To this end, one direction is to rely on 3D FFT performance models.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 14

2.6 Performance Improvement in Kernels by Guiding Compiler Auto-
Vectorization Heuristics

WP183: Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization
Heuristics
Authors: Miceli (NUIG/URennes), Christian Lalanne (NUIG), Michael Lysaght (NUIG),
Michael Browne (NUIG), William Killian (UDel), EunJung Park (UDel), Marco A. Vega
(UDel), John Cavazos (UDel)

Vectorization support in hardware continues to expand and grow as we still continue on
superscalar architectures. Unfortunately, compilers are not always able to generate optimal
code for the hardware; detecting and generating vectorized code is extremely complex.
Programmers can use a number of tools to aid in development and tuning, but most tools
require expert or domain-specific knowledge to use. In this work we aim to provide
techniques for determining the best way to optimize certain codes, with an end goal of
guiding the compiler into generating optimized code without requiring developer expert
knowledge. Initially, we study how to combine vectorization reports with code generation and
iterative compilation and summarize our insights and patterns on how the compiler vectorizes
code. Our code generation and compilation utilities can be further used by non-experts in the
generation and analysis of programs. Finally, we leverage the obtained knowledge to design a
Support Vector Machine classifier to predict the speedup of a program given a sequence of
optimization. We show that our classifier can predict the speedup of 56% of the inputs within
15% over- and 50% under-prediction, with 82% of these accurate within 15% both ways.

Based on previous experience [9] we developed two utilities in order to help with version
generation for iterative compilation. autovec is a source-to-source compiler which
translates a simplified directive language to a compiler-specific directive language (e.g. Intel
Compiler, CAPS HMPP Compiler, PGI Compiler). VALT (vectorization and loop
transformation) performs iterative compilation among a set of optimizations to apply more
than once in a given program. These utilities can help non-experts in the generation and
analysis of codes; they have been used here to understand the inner workings of the
compiler’s vectorization strategies.

autovec directive Intel-specific pragma

permute generate each version

vl(x) simd

vectorlength(x)

always vector always

ivdep Ivdep

none <nothing>

Table 6: autovec directive support and
translation

VALT directive Intel-specific pragma

vector(default) <no code emmited>

vector(none) novector

vector(always) vector always

vector(ignore) ivdep

vector(aligned) vector aligned

vector(temp) vector temporal

vector(nontemp) vector nontemporal

vectorsize(x) simd vectorlength(x)

loop(unroll(x)) unroll(x)

loop(jam(x)) unroll_and_jam(x)

loop(nofusion) nofusion

Loop(dist) distribute_point

Table 7: VALT directive language translation for Intel-
specific pragmas

To evaluate the Intel compiler’s built-in vectorization heuristics, two sets of benchmarks were
used to determine performance improvement: Test Suite for Vectorizing Compilers [10], with
151 loop nests, is an extension and modification of a test suite for vectorizing FORTRAN
compilers in the late 1980’s [11] and Polybench/C 3.2 [12] with 30 micro-kernels, stems from

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 15

Pouchet’s work with Polyhedral compilers. We studied the vectorization reports generated by
the Intel compiler and compared the original benchmark’s vectorization report to the
vectorization reports from each version generated by autovec and VALT. With this we
identified patterns and trends followed by the vectorization heuristics. Figure 11 shows
sample performance analysis of 4 different loop nests with varying level of correctness.

(a) Good speedup observed; no invalid code generation (b) Good speedup observed with invalid code faster

(c) No speedup observed; invalid code generation faster (d) No speedup observed; invalid code generation

Figure 11: TSVC loop nest optimizations and speedup comparison (valid code is green; invalid is red).

We were also able to classify TSVC loop nests into a four
different categories:

1. Non-vectorizable – Loop nests not vectorizable. 16
benchmarks (11%) were not vectorizable as indicated
by the optimized version vectorization report and
minimal/non-existing speedup observed.

2. Known vectorization pattern – Loop nests which could
be vectorized by the compiler with minimal additional
speedup observed after optimizing. 69 benchmarks
(46%) fell into this category. This suggests that overall
the Intel compiler is able to vectorize code well with its
built-in heuristics although they are not always optimal.

3. Inner-loop vectorizable – Loop nests not initially
vectorized well but better optimized with a #pragma
simd directive placed in an inner loop. 12 loop nests (8%) were inner-loop vectorizable
with a speedup of at least 2×.

4. Outermost-loop vectorizable – Loop nests not initially vectorized well but better
optimized with a #pragma simd directive placed in the outermost loop of the loop
nest. 54 loop nests (35%) were outermost-loop vectorizable with a speedup of at least 2×.

SVM-Based Speedup Predictor

Given the speedup information based on different
optimizations for a collection of loop nests, we designed a
support vector machine (SVM) classifier to automate the
prediction of benchmark speedups given an optimization
sequence. We used the 151 loop nests from TSVC as training
data for our predictor model. For training we specified our
feature vector as consisting of 45 performance counters [13]
[14] normalized to the total of instructions executed, the

Percentile Type Count

0.15 Under 45

0.50 Under 15

1.00 Under 12

2.00 Under 16

> 2.00 Under 27

0.15 Over 24

> 0.15 Over 12

Table 8: Speedup Predictor
Accuracy

Figure 12: Categorization of
TSVC loop nests.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 16

speedup of vectorized code over non-vectorized code, the optimization bit vector, and the
speedup of optimized code over vectorized code. We tested our trained models with leave-
one-out cross validation (LOOCV). Our results in Table 8 show that 84 of the loop nests were
accurate within 15% over-prediction and 50% under-prediction. 5 of the over-predictions
were on non-vectorizable loop nests. The predictor could not accurately predict speedup for
over 44% of the loop nests. For 46% of the loop nests, the predictor was accurate within 15%.
Analysis of the types of loop nests and the predicted speedup did not show correlation
between the types of benchmarks which were under- and over-predicted. In the future, we can
reuse this predictor in auto-tuning frameworks [15] [16].

2.7 Scalable algorithm for network bandwidth / latency hierarchy detection
and designing topology aware collective routines and testing performance in
CPMD application

No whitepaper
Supported by: Johan Raber, Chandan Basu (SNIC-LiU)

The goals of this project are to develop a scalable code identifying interconnect performance
tiers reflecting the interconnect topology. This information subsequently is to be used in
forming MPI collective groups for use in improved MPI ALL-TO-ALL scalar/vector
collective routine of our design. It has also been our goal to demonstrate the viability of our
approach on a popular quantum chemistry code, CPMD, which relies heavily on
MPI_ALLTOALL in its implementation.

The identification of interconnect performance tiers has been done using statistical tools, most
prominently Classification and Regression Tree models (CART) [17] using a two-phased
approach. In the first phase, ping-pong latency data from selectively chosen, and
representative, nodes and ranks of the system are used to build a statistical decision tree where
rank pair data such as ping-pong latency, bandwidth and message rates can be used to
categorize the relation between them, for instance whether they share memory controller or
they reside on different nodes. In practice this traversing of the decision tree is done through a
series of comparison operations on the input data record, the simplest case of which is shown
in Figure 13.

The first phase is intended as a one-time effort for any given cluster (or other system) and sets
up the categorization criteria to be used in the second phase, the runtime classification and
MPI group forming.

Figure 13: Graphical output from the statistical software R.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 17

In the work presented in this report, we have chosen to measure small message ping pong
latency. This because every switch an MPI data package passes incurs a latency overhead
whereas it does not necessarily incur a detectable bandwidth drop, which should allow the
detection of the number of switches an MPI package passes. This is shown in Figure 14 that
displays measurements on two popular interconnect topologies as kernel density plots.

Figure 14: Kernel density plots of rank pair latency data from the Triolith commodity cluster.

The data collection is based on the OSU micro benchmark code (osu_latency) for small
message latency and our adaptation of it for our purposes also contains a fix to handle the
problem of the very common outliers in the measurement data. The outliers are caused by
network congestion as well as OS incurred interrupts. The way we deal with this is to simply
increase the number of samples taken per rank pair data collection record and to also drop
20% of the head and tail extreme values sampled. Dropping the head values is possibly not
necessary since there is a hard physical limit to how low they can be and they should
therefore not be considered as “noise” to be dropped.

To investigate the feasibility and scope of our approach on different interconnect topologies
we have performed measurements on two important classes of supercomputers, a commodity
cluster using InfiniBand interconnect in a fat tree topology, and also a Cray system using their
proprietary Gemini interconnect in a 3D torus topology. The results are depicted in Figure 14
and they merit some comments. The first two peaks (from the left) in the left plot arise from
intra node rank pairs, the first of which come from rank pairs sharing memory controller.
Next comes a group of three peaks arising from rank pairs on different nodes sharing the same
InfiniBand switch and then comes the last group of three peaks stemming from rank pairs on
different nodes residing on different InfiniBand switches. The fine structure of these groups
arise from the computer architecture of present day two-socket Intel Sandybridge based
servers where the low latency peak consists of rank pairs where both ranks reside on the CPU
socket controlling the PCI express bus hosting the InfiniBand HCA. The high latency peak in
these groups consists of rank pairs on sockets not controlling the IB HCA.

The right plot of Figure 14 has much less well defined peaks except for the first two. These
stem from intra node rank pairs and their relative size difference comes from the two-socket
nodes and the AMD Magny-Cours CPU which has two memory controllers per socket
resulting in four memory controllers per node. Beyond these two well defined peaks lies a
“data smear” devoid of clear features. This looks like a characteristic of the 3D torus topology
the cause of which we have not investigated. Likely, our approach cannot be used to good

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 18

effect on this supercomputer architecture beyond identifying intra node rank pairs, switch
jump count detection seems out of reach.

We have earlier worked on a topology aware ALL-TO-ALL vector routine [18] [19]. This
routine detects intra-node and inter-node topology and forms intra-node and inter-node MPI
communicators. In our implementation ALL-TO-ALL communication is achieved by first an
ALL-TO-ALL across inter-node ranks followed by several ALL-TO-ALL across intra-node
ranks. As intra-node bandwidth and latency are better than that of inter-node this gives better
ALL-TO-ALL performance. We have shown before [18] [19] that performance of our ALL-
TO-ALL vector routine is better than the normal MPI_ALLTOALLV routine. Our earlier
implementation of ALL-TO-ALL had a different interface than MPI_ALLTOALLV. In
addition, it required some initialization routine to be called whenever a new dataset is to be
sent. The usage of this routine therefore required some changes in the application source code.
In this project we have extended our work on ALL-TO-ALL routine. We have made the
interface of our ALL-TO-ALL vector routine the same as that of the MPI_ALLTOALLV
routine. We have created a FORTRAN interface of our ALL-TO-ALL vector routine and we
have also created topology aware ALL-TO-ALL scalar routine. With these enhancements
these routines can now directly replace MPI_ALLTOALL / MPI_ALLOTOALLV in any C /
FORTRAN program without any code change.

We have tested our ALL-TO-ALL routine in the CPMD code [20] CPMD is an ab-initio
molecular dynamics code written in FORTRAN. It is well known that CPMD code
performance is dominated by MPI_ALLTOALL time [21]. For compiling CPMD with our
ALL-TO-ALL routine we added the extra preprocessor flag -
DMPI_ALLTOALL=MPI_ALLTOALL_TUNED at the compile time, where
MPI_ALLTOALL_TUNED is the name of our ALL-TO-ALL routine. At link time we add the
library containing the MPI_ALLTOALL_TUNED routine. We have used gcc 4.7.2, Intel MPI
4.0.3.008 and Intel MKL 11.0.4.183 for compiling CPMD code.

For our benchmarking we have used the CPMD Si512 Inp-1 benchmark. We measure the
total run time t_ref and t_tuned respectively for “reference CPMD binary with
MPI_ALLTOALL” and “tuned CPMD with MPI_ALLTOALL_TUNED”. We define
speedup = (t_ref - t_tuned) / t_ref. Figure 15 shows the %speedup of the tuned version of
CPMD. For small number of ranks the tuned version is slightly slower than the reference
version of CPMD which is expected as our approach is expected to give speedups for wide
runs. We see that for 256 rank and 1024 rank runs the tuned version is more than 60 % faster.
However for 512 rank run there is no speedup. This anomaly may be due to some change in
internal algorithm in the MPI_ALLTOALV at this size.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 19

Figure 15: CPMD benchmark. The speedup is defined as (t_ref - t_tuned) / t_ref.

It seems clear that our approach to performance tier detection is viable for at least the
commodity cluster class of supercomputers where it is capable of producing very finely
resolved data to form MPI groups. Its usefulness is therefore limited by how well an MPI
application developer can utilize this information in the setup of the calculation and not by the
precision of the performance tier detection. It is more than capable enough to serve our goal
for using it with our improved MPI ALL-TO-ALL routines. In our current implementation of
ALL-TO-ALL routines we have not integrated the information from network tier detection.
At present we are only detecting intra-node and inter-node network tier. The replacement of
our MPI_ALLTOALL_TUNED routine in the CPMD code shows speedup in general. We will
continue working on further improving our topology aware collective routines.

2.8 Conclusion

During this one year of extension, six projects successfully contributed to Task 12.1 that is
about auto-tuning HPC systems. They all aimed to automatize the efficient usage of HPC
systems Indeed, petascale and post-petascale systems are too much complex to rely on non-
experts to optimize their usage. The results of these six projects have concerned various
aspects of an HPC system.

 Language
o The library named SOMPARlib has shown to be able of controlling

dynamically the number of threads allocated to OpenMP parallel regions to
decrease the overall walltimes for benchmarks runs.

 Job scheduler
o An improved version of the AUCSCHED SLURM scheduler plug-in

(AUCSCHED3) achieves better mappings and higher system utilization by
using topologically aware mappings on hierarchically interconnected systems.

 Workflows
o Meta-model based dedicated methods relying on decision trees and the

replication of some workflow actors have been design and integrated into
Kepler to improve the execution time of workflows.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 20

 Component models
o This work has shown that equivalent performance, better code reuse, and

much easier specialization of 3D FFT codes can be obtained by using a
component based approach.

 Compiler
o A method and tools (code generation and compilation utilities) have been

proposed to let non-experts improve the vectorization of their codes to improve
their performance.

 Collective communications
o A method to detect tier performance and its inclusion into an MPI All-to-all

implementation have been proposed and its benefit in term of performance
improvement have been shown on a quantum chemistry code (CPMD)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 21

3 Scalable Numerical Algorithms

3.1 Introduction

Numerical algorithms play a vital role for solving several different big problems encountered
in physics, chemistry and mathematics. With the advent of modern supercomputers with
thousands of cores and enabling parallel tools that utilize numerical algorithms, it became
necessary to reconsider efficiency of these tools running on emerging large-scale systems.
This section contains the works that are aimed towards improving parallel performance of the
numerical algorithms with several diverse parallel techniques such as utilization of GPU and
MIC accelerators (Sections 3.2, 3.6 and 3.8), message-passing paradigm (Sections 3.2, 3.3, 0,
3.6, 3.7 and 0), and shared memory constructs (Section 0). There are algorithmic approaches
(Sections 0 and 3.6) to increase the efficiency of widely used numerical algorithms (such as
Conjugate Gradient (CG)) as well as adaptive parameter determination and utilization
(Sections 3.7 and 0). The target applications and libraries include HYDRO, PETSc, CP2K
and FETI.

The first work in Section 3.2 focuses on a cellular automata algorithm that models fluid flows,
called the Frish-Hasslacher-Pomeau model. It improves the performance of this algorithm
using multiple GPUs with OpenCL. Comparing this approach to a previous work with
OpenACC, it is shown that OpenCL has more potential for improvement.

Section 3.3 presents a novel hybrid distributed memory algorithm for nonlinear parameter
optimization with parameter pools. This algorithm finds its application in a nonlinear dynamic
system which is exemplified as the asset flow differential equations. The optimization
objective is to determine the parameters for which the differential equations produce the best
fit using daily market prices and net asset values. The presented algorithm can handle large
number of parameters and obtains smaller error with better improvement factor.

The work in Section 0 aims to improve the performance of the Coarse-Grain version of
HYDRO application by introducing OpenMP tasks into this tool. Using the task dependency
concept introduced with OpenMP 4.0, a subdomain synchronization scheme is realized. With
this approach, almost perfect scalability is attained.

The work in Section 0 tries to improve the parallel performance of sparse linear iterative
solvers through proposing a novel scheme that completely avoids the communication latency
overhead of parallel sparse-matrix vector multiplication operations. Basically, the solver is
organized in such a way that two different types of communication operations (P2P and
collective communications) can be performed simultaneously. Although the proposed
methodology is realized in CG solver, the reorganization method is applicable to most of the
Krylov subspace methods. The proposed computational rearrangement scheme has no
potential to introduce numerical instability to the solver. The simultaneous communication is
realized by embedding P2P messages into the collective communication messages. With this
approach, it is shown with the large-scale experiments on a Cray XE6 and IBM BlueGene/Q
machine that the CG solver can be scaled much better.

Yet another approach for scaling CG iterative solver is presented in Section 3.6. In this work,
a pipelined CG solver is used to overlap more computation with communication and is
implemented within the FETI application. Besides, the performance of MAGMA LU dense
direct solver is evaluated on GPU and MIC accelerators.

Section 3.7 focuses on Finite Element Method (FEM) simulation of thermal and electrical
fields. In an effort to reduce the simulation time, rather than using a uniform discretization of
the time interval, an adaptive time-stepping scheme is utilized. With the objective of

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 22

discovering feasible values for the threshold parameters on both structured and unstructured
meshes, an IBM BlueGene/P computer is used and the results indicate that the time-stepping
approach leads to better scalability and decreases the number of both inner and outer
iterations drastically.

Another work that takes advantage of GPU accelerators is summarized in Section 3.8.
Specifically aiming at DBCSR library (responsible for performing sparse matrix
multiplications) of the CP2K application, the applicability and performance of OpenACC and
OpenCL parallel tools are illustrated by comparing them to BLAS, SMM, and MATMUL.

The final work in this subtask focuses on asynchronous solution of sparse linear systems and
is explained in Section 0. Aiming at solving the linear elasticity equations in a solid cuboidal
block of material, the proposed solver is realized in PETSc tool. In addition, an automatic and
adaptive scheme is proposed to determine the parameter for dynamically adjusting local
convergence criterion. It is shown that this auto-tuning approach yields better performance
compared to the one that uses the fixed parameter.

3.2 FHP library multi-GPU extension with MPI and OpenCL

WP184: Multi-GPGPU Cellular Automata Simulations using OpenCL
Authors: Sebastian Szkoda (WCSS, IFT UWr), Zbigniew Koza (IFT UWr), Mateusz
Tykierko (WCSS, IIAR PWr)

The aim of this research is to examine the possibility of parallelizing the Frish-Hasslacher-
Pomeau (FHP) model, a cellular automata algorithm for modelling fluid flow, on clusters of
modern graphics processing units (GPUs). To this end an Open Computing Language
(OpenCL) implementation for GPUs was written and compared with a previous, semi-
automatic one based on the OpenACC compiler pragmas (S. Szkoda, Z. Koza, and M.
Tykierko, Multi-GPGPU Cellular Automata Simulations using OpenACC, http://www.prace-
project.eu/IMG/pdf/wp154.pdf). Both implementations were tested on up to 16 Fermi-class
GPUs using MPICH3 library for inter-process communication. We found that for both of the
multi-GPU implementations the weak scaling is practically linear for up to 16 devices, which
suggests that the FHP model can be successfully run even on much larger clusters. Secondly,
while the pragma-based OpenACC implementation is much easier to develop and maintain, it
gives as good performance as the manually written OpenCL code.

Figure 16: The strong and weak scaling on 16 nodes each with 2 NVIDIA M2050 cards.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 23

Using 8 professional HPC computing nodes with two Nvidia M2050 units each, we could go
up to 400 GUps (giga lattice updates per second). The result is one order of magnitude faster
than for the single GPU implementation, which still is 4 times faster than the fastest CPU
implementation (OpenMP + SSE) on a computing node with Intel Xeon X5670, considering
weak scaling. The results for the weak and strong scaling for up to 16 GPUs are shown in
Figure 16. The weak scaling is almost linear for both implementations. Figure 16 also
presents results for an alternative OpenACC, Multi-GPU implementation, presented in a
previous work. Performance results of both implementations are equal, but it is important to
remark that the multi-spin implementation considered here is perfectly suited for SIMD
devices which allow semi-automatic OpenACC porting to be equally efficient as the hand-
written code. This situation is expected to be rare.

3.3 Scalable Parallel Nonlinear Parameter Optimization Algorithm with
Parameter Pools

WP185: Scalable Parallel Nonlinear Parameter Optimization Algorithm with Parameter
Pools
Authors: Ahmet Duran (UHEM-ITU), Mehmet Tuncel (UHEM-ITU)

In this project, we propose a new hybrid algorithm and implement it using MPI. In particular,
we study a scalable parallel nonlinear parameter optimization algorithm with parameter pools
for a nonlinear dynamical system called the asset flow differential equations (AFDEs) in 4.
AFDEs have been developed and analyzed by Caginalp and collaborators since 1989 [22],
[23] [24], [25], [26]. The algorithm is applicable for parameter optimization of the related
nonlinear dynamical system of differential equations with thousands of parameters.

Duran [27] introduced a serial algorithm called the asset flow optimization forecast algorithm.
An inverse problem involving parameter optimization for AFDEs was used in order to
forecast near term market returns by following an out-of-sample procedure. Duran and [28]. A
quasi-Newton (QN) weak line search with the Broyden–Fletcher–Goldfarb–Shanno formula
[29] and their semi-dynamic initial parameter pool are utilized in conjunction with daily
market prices and net asset values to determine the parameters for which the AFDEs yield the
best fit for the previous n days in the optimization procedure. They use nonlinear least-square
technique with initial value problem (IVP) approach by focusing on the MP variable P since
any real data for the other three variables B, ζ1 , and ζ2 in the dynamical system is not
available explicitly. The gradient (∇ F (x)) is approximated by using the central difference
formula, and step length s is determined by the backtracking line search [30].They [28]
construct a pool of initial parameters K i chosen via a set of grid points in a hyper-box. They
select an initial parameter vector from the initial parameter pool because the optimization
success of quasi-Newton method in the algorithm depends on the initial parameter. Besides
the fixed part of various initial parameters, the dynamic part of the pool is updated by adding
successful parameters so that they keep a pool of different and most recently used candidate
parameters. It is a feasible dynamic multi-start approach without a convexity assumption for
their semi-unconstrained optimization problem. The parametric sensitivity analysis was
performed by Duran [25]. Later, Duran studied the stability analysis of the AFDEs, in three
versions, analytically and numerically.

There are several challenges while studying numerical parameter optimization of the
nonlinear dynamical systems. For example, some initial parameters may lead to singularities
in the AFDE during parameter optimization process. Our implementation handles these kinds
of problems. Moreover, we apply nonlinear optimization technique for arbitrary conditions
with various initial parameters in a challenging financial application. Furthermore, for
optimization methods using derivatives in a nonlinear model it is important to start the

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 24

iteration close enough to the potential global minimum to get rid of being caught in a local
minimum. There is no strategy that will guarantee the number of necessary iterations to
discover the neighbourhood of the global optimum [31]. Therefore, we need sufficiently large
number of initial parameters systematically via high performance computing.

In this study, we propose a parallel nonlinear parameter optimization algorithm. One of the
novel components of the former algorithm was the presence of the dynamic initial parameter
pool that contains most recently used successful parameters, besides the various fixed
parameters from a set of grid points in a hyper-box. Therefore, it has dependencies on the
most recently used successful parameters.

We use fixed initial parameter pool with more number of parameter vectors so that we can get
rid of the dependencies. Unlike the serial algorithm, the new algorithm has a classified initial
parameter pool with partitions that can generate different curves having behaviours such as
almost steady, uptrend, downtrend, strong uptrend and strong downtrend. In Stage 2, each
core performs curve fitting by using its own initial parameters and the steps in the serial
algorithm [28] are followed to find the local optimal parameters.

Figure 17: Monte Carlo simulation of the MIF for curve fitting of Price_1k_v2.

Algorithm. The parallel nonlinear parameter optimization algorithm

Stage 1. Obtain classified initial parameter pool having partitions that can generate different
curves having various behaviours.
Stage 2. Apply pool partitioning for parallelism. Each core should find the local optimal
parameter(s) by using its local initial parameters.
Stage 3. Find the global parameter(s) that can minimize the nonlinear least squares error.

We generate time series pairs as proxy to market price and net asset value by using random
walk simulation where the volatilities of the time series are similar to those of real closed-end
funds traded on NYSE [25]. See Anderson and Born [32] for more information about the
closed-end funds.

Table 9 describes the time series, their volatility behavior and ranges. Table 10 shows the wall
time for testing the parallel nonlinear parameter optimization algorithm for 128 cores on the

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 25

Linux Nehalem Cluster. Table 11 illustrates the Monte Carlo simulation results for the
parameters, the average number of QN iteration, the average nonlinear least squares error and
the average maximum improvement factor (MIF) where MIF is used to measure the
performance of the optimization process and it is defined as the ratio of the final nonlinear
least squares error to the initial nonlinear least squares error. Generally, the smaller MIF
corresponds to a better performance, which depends on the closeness of the initial parameter
to the optimal one as well. For example, Figure 17 shows the convergence diagram of the
MIF for curve fitting of Price_1k_v2.

Time series
Standard
deviation

Max Min

Price_1k_v1 3.94 65.68 48.19
Nav_1k_v1 2.25 58.03 48.32
Price_1k_v2 5.01 67.50 48.77
Nav_1k_v2 2.38 63.94 53.68
Price_1k_v3 2.66 61.68 49.38
Nav_1k_v3 1.81 58.78 49.99
Price_1k_v7 3.63 67.31 51.82
Nav_1k_v7 2.91 61.55 48.45
Table 9: Description of the time series

Time series
Wall clock time
(s)

Price_1k_v1 28071.28
Price_1k_v2 27677.68
Price_1k_v3 28421.29
Price_1k_v7 25723.34
Table 10: Wall clock time for 128 cores on the Linux Nehalem Cluster available at UHeM

Time series
Parameters Average

number of
QN iteration

Average
NLS error

Average MIF
c1 q1 c2 q2

Price_1k_v1 1.9301 18.5099 18.4881 44.5936 166.97 0.0175 0.2109

Price_1k_v2 2.0564 20.8872 16.5765 55.3533 160.32 0.0310 0.2362

Price_1k_v3 2.0438 16.0870 17.5011 39.4577 156.14 0.0171 0.2126

Price_1k_v7 1.5148 21.7521 15.9028 48.8719 135.57 0.0411 0.2859
Table 11: Monte Carlo simulations results

We find that the new parallel algorithm having 512 initial parameter vectors in the classified
pool that can generate different curves outperforms the sequential parameter optimization
algorithm using dynamic initial parameter pool having up to 80 initial parameter vectors. We
obtained smaller nonlinear least squares errors, better maximum improvement factor, and
curve fitting for more curve segments, by the advantage of using sufficiently large number of
initial parameters methodically.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 26

3.4 Introducing OpenMP Tasks into the HYDRO Benchmark

WP186: Introducing OpenMP tasks in the Hydro benchmark
Authors: Jérémie Gaidamour (IDRIS/CNRS), Dimitri Lecas (IDRIS/CNRS), Pierre-François
Lavallée (IDRIS/CNRS)

HYDRO [33] is a mini-application which implements a simplified version of RAMSES [34] a
code developed to study large scale structure and galaxy formation. HYDRO uses a fixed
rectangular two-dimensional space domain and solves the compressible Euler equations of
hydrodynamics using a finite volume discretization of the space domain and a second-order
Godunov scheme with splitting direction technique.

The OpenMP “Coarse-Grain” version of HYDRO described in [35] exploits data locality by
using a 2D domain decomposition of the global domain. The implementation is very similar
to the MPI version of HYDRO as each thread is responsible for the computation of a local
subdomain. The algorithm used on each subdomain is described in Figure 18. For the
interface cells, synchronization between threads is needed, as a thread must read (step (1) of
the algorithm in Figure 1) the initial values of its neighbour subdomains (ghost cells) before
neighbour threads update them (step (3) of the algorithm). Before step (3), threads have to
wait until step (1) of the two neighbour domains is complete. This thread-level
synchronization is a barrier involving threads grouped in threes, the implementation of this
barrier involves flushing the buffer with the OpenMP FLUSH.

The version 4.0 of the OpenMP specification [36] introduces the concept of tasks with
dependencies. The goal of this work was to introduce OpenMP tasks in the “Coarse-Grain”
version of HYDRO. We aim at implementing the subdomain synchronization we described
previously using task dependencies.

Figure 19 and Figure 20 show how we implement the symchronization using task
dependencies. A unique task is responsible for reading all the interface cells between two
domains. Every WRITE kernel directly depends on a single COMPUTE kernel and the
dependency graph can be further simplified by merging COMPUTE

Table 12 and Table 13 show a scalability evaluation of the OpenMP versions of HYDRO. The
experimental platform is the supercomputer Ada (CNRS/IDRIS-GENCI) composed of IBM
System x3750 M4 compute nodes.

The scalability of the “Coarse-Grain” version is nearly perfect due to efficient cache
utilization. Threads work fully in parallel on their own portion of data and no time is wasted
at the barriers. This performance gain comes at the cost of a greater code complexity.
The scalability of the new “OpenMP tasks” version is not as good as the finely tuned “Coarse-
Grain” version since we are no longer in control of the affinity between threads and
subdomains.

U(i , j) is the 2D grid buffer for conservative variables.
For each time step n :
- Apply boundary conditions
- PARALLEL LOOP: For each column j of a subdomain:

(1) READ - Copy the values of the j column into a 1D temporary buffer.
 The buffer holds conservative variable values of the previous time step (Un-1(:,j)).
(2) COMPUTE - Compute the new grid values (Un(:,j)) only from the temporary buffer
 (ie: compute primitive variables, solve Riemann problem at cell interfaces and compute incoming fluxes).
(3) WRITE - Copy Un(:,j) in global U.

- PARALLEL LOOP: For each row i of a subdomain:
 […]

Figure 18: 1D Godunov time step routine in the column and row direction (pseudo-code).

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 27

The OpenMP specification does not define how the scheduling of tasks should be done by
runtime systems [37] and very little information is available concerning the actual strategy of
our OpenMP library. As for now, it is not possible to select the task scheduler strategy at the
user level but it would be useful to be able to give hints to the scheduler in the same way we
control the scheduling of parallel loop or the CPU affinity of threads in OpenMP.

Figure 19: The domain decomposition
with the domain coordinates and a
simplified description of the interfaces.

Figure 20: Dependency graph of the implemented algorithm.

Table 12: Scalability of the “Coarse-Grain” version of HYDRO

Table 13: Scalability of the “OpenMP tasks” version of HYDRO

The tasking model allows expressing a complex algorithm with ease and using tasks was less
intrusive than implementing the algorithm with busy-waiting. We plan to extend this work
with a more complete analysis of the performance and by investigating specialized task-based
programming environments and runtime systems.

 Time (s) Speedup Efficiency
1 377.15 1.00 100.00 %
2 188.41 2.00 100.09 %
4 98.63 3.82 95.60 %
8 52.18 7.23 90.35 %
16 24.72 15.26 95.36 %
32 11.91 31.67 98.96 %

 Time (s) Speedup Efficiency
1 376.81 1.00 100.00 %
2 188.99 1.99 99.69 %
4 98.65 3.82 95.49 %
8 56.72 6.64 83.04 %
16 32.96 11.43 71.45 %
32 20.01 18.83 58.85 %

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 28

3.5 Reducing Synchronization Overhead of Conjugate-Gradient-type Parallel
Iterative Solvers

WP187: Reducing Synchronization Overheads in CG-type Parallel Iterative Solvers by
Embedding Point-to-point Communications into Reduction Operations
Authors: R. Oguz Selvitopi (Bilkent), Cevdet Aykanat (Bilkent)

Iterative solvers are widely used and adopted to solve sparse linear systems of equations on
modern large-scale parallel systems. In these systems, the communication requirements of the
solver generally become the main bottleneck for obtaining a good scalable performance. For
this reason, the coefficient matrix is usually processed in a pre-processing phase which
involves partitioning of this matrix to reduce the communication requirements. In the
literature, the most often used and optimized communication metric is the communication
volume [38], [39].

In iterative solvers, there are two types communication that are repeated through all iterations:

 Collective communication operations: This type of communication is used to gather
the results of the inner product computations at all processors and requires all
processors to join the communication. The MPI equivalent of this operation is the
MPI_Allreduce (hereafter referred to as ALL-REDUCE) with the summation being
the reduction operator.

 Irregular point-to-point (P2P) communication operations: This type of operation is
used to communicate the entries of the input and/or output vector of the sparse-matrix
vector multiplication (SpMV). The irregular sparsity pattern of the coefficient matrix
causes irregular task-to-task interaction between parallel processes. They are generally
performed by simple MPI primitives, e.g., MPI_Send , MPI_Recv, and their variants.

We devise a computational reorganization method to perform P2P and collective
communication operations simultaneously. This allows the synchronization points in a single
iteration of the solver drop from two to one for a single pair of SpMV and its follow-up inner
product(s). We use a modified Conjugate Gradient (CG) iterative solver to show the validity
of the proposed methods. We use 1D partitioning of the matrix and test the solver on JuQueen
and Hermit up to 2048 cores with the matrices selected from UFL sparse-matrix collection
[40]. The proposed computational rearrangement scheme has no potential to introduce
numerical instability to the solver, because it is mainly based on performing a negligible
amount of redundant computation per processor.

In parallelization of CG, the coefficient matrix is generally row-wise decomposed and
distributed among the processors. Without computational reorganization, there are two
separate communication: (i) one of them is the P2P communications prior to SpMV
computations and (ii) the other one is the collective communication after the local inner
products. This parallel algorithm has two synchronization points due to these P2P and
collective communication phases. In the proposed alternative parallelization with
computational reorganization, the input vector of the SpMV computations is not formed with
the P2P communications but it is formed with the help of the other vectors. Instead of
communicating this input vector, the output vector is communicated and it is augmented with
the entries that are received from other processors. This augmented output vector is then
subjected to the same linear vector operations to perform the augmented input vector of the
SpMV, requiring no further communication. This reorganization enables P2P
communications to be performed right after collective communication operations, reducing
two separate communication phases into one.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 29

We realize the opportunity provided by the computational reorganization by performing these
two types of communication phases in a single one. The P2P and collective communications
are performed simultaneously by embedding messages of P2P communications into the
communication pattern of the algorithm used for the ALL-REDUCE algorithm. In other
words, the latency overhead due to the P2P communications is completely eliminated by
using the messages that are already transmitted for ALL-REDUCE.

Embedding messages of P2P communications into collective communications have the
following implications:

 Startup costs of all messages due to P2P communications are completely avoided.
 An exact bound on the maximum and average number of messages is provided, which

is log for a parallel system with processors. This is a significant advantage and is
actually the key factor in obtaining a good scalable performance at large processor
counts.

 Communication volume increases due to the store-and-forward scheme required by
the embedding.

 Embedding scheme requires buffering due to the store-and-forward scheme.
 There is a trade-off between avoiding latency costs and increasing communication

volume. Here, the former is favoured, because, as will be shown with the experiments,
message latency becomes the dominating factor in determining the communication
costs with increasing number of processors.

The store-and-forward scheme used in embedding contents of P2P messages into the
messages of collective communication operations may increase communication volume. If
total number P2P messages is low, this can be a bottleneck in obtaining a good scalable
performance. We present two heuristics to further reduce this increased communication
volume. Objective of both of the mapping heuristics is to keep the pairs of processors that
communicate a large volume of data close to each other. The closeness notion here refers to
the communication pattern used for the ALL-REDUCE algorithm. Both of the heuristics are
Kernighan-Lin (KL) [41] type of algorithms which try to find a good mapping by a number of
successive swap operations:

 KLF: Use full neighbourhood information with 1 possible swaps.
 KLR: Restrict the search space to the processors that directly communicate, thus

reducing the number of possible swaps to lg /2.

For more detail on these heuristics, refer to [42].
We compare four schemes in our experiments (i) Conventional parallelization of conjugate
gradient solver (CONV), (ii) Alternative parallelization with computational reorganization
(EMB), (iii) Alternative parallelization with computational reorganization and mapping
algorithm KLF (EMB-KLF), (iv) alternative parallelization with computational reorganization
and mapping algorithm KLR. We used PaToH [41] to partition all matrices prior to execution.
Two parallel systems are used in the experiments: Cray XE6 (XE6) and IBM Blue Gene/Q
(BG/Q). The obtained speedup results for the pcrystk02 matrix with 968,583 nonzeros are
illustrated in Figure 21.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 30

Figure 21: Speedup values.

With increasing number of processors, the proposed three schemes usually scale much better
compared to conventional parallelization. These speedup values validate that startup costs
become more important with increasing number of processors and to obtain a good scalability
performance, it is paramount that latency should be considered as a separate stand-alone
optimization objective. The results of this task have been recently accepted for publication in
the prestigious IEEE Transactions of Parallel and Distributed Systems journal. Details and
more test results can be found in this publication [42].

3.6 Scalability improvement of the projected conjugate gradient method
used in FETI domain decomposition algorithms

WP198: Scalability improvement of the projected conjugate gradient method used in FETI
domain decomposition algorithms
Authors: Tomáš Kozubek (VSB), David Horák (VSB), Václav Hapla (VSB), Lubomír Říha
(VSB)

FETI (Finite Element Tearing and Interconnecting) type domain decomposition methods are
powerful tool for constructing numerically and parallel scalable solvers for real linear and
nonlinear engineering problems combining iterative and direct solvers. In many cases the
resulting algebraic formulation leads to a quadratic programming problem with convex
constraints. Solvers for such problems including our own FETI method called Total FETI are
developed at IT4Innovations, VSB-Technical University of Ostrava. We have implemented
many of these solvers (TFETI, etc.) into an in-house FLLOP (FETI Light Layer On top of
PETSc) library being implemented as an extension of the PETSc framework. It is primarily
used for solving constrained quadratic programming (QP) problems on parallel computers. To
allow other packages to use FLLOP solvers a general C array based FLLOP_AIF interface
has been also implemented.

FETI methods use the Lagrange multipliers to enforce equality constraints (gluing

conditions) in the original primal problem: min 		 . .		 . The primal

problem is then transformed into significantly smaller and better conditioned dual equality

constrained problem: min 		 . .		 ,		with . This problem can

be solved by means of projectors , 			and CG method applied
to the projected system . For this dual problem the classical estimate of the
spectral condition number by Farhat, Mandel, and Roux is valid, i.e. | 	

,		with H denoting the decomposition and h the discretization parameter. To be able to

fully utilize the massively parallel computers it is essential to maximize the number of
subdomains (decrease) which leads to the reduction of the subdomain size. This improves

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 31

the performance due to following reasons: (1) a subdomain stiffness matrix size is reduced
which speeds up both factorization and subsequent pseudo-inverse application; and (2) the
conditioning is improved which reduces the number of iterations. The negative effect of the
large number of subdomains is the increase of dual and null space dimension which slows
down the coarse problem (CP) solution (solution of the system). Therefore in this
case the bottleneck of the TFETI method is the application of the projector which dominates
the solution time. Several parallel direct solvers have been already tested for CP processing in
other Work Packages.

The main objective of our work within the extension of WP12 PRACE-2IP is to achieve
better scalability of FLLOP’s FETI solvers. A performance evaluation of two new techniques
is presented: (1) a novel pipelined implementation of CG (PIPECG) method in PETSc and
(2) a MAGMA LU solver running on following many-cores accelerators: GPU Nvidia Tesla
K20m and Intel MIC Xeon Phi 5110P.

The following tests have been performed:

1. the performance comparison of CG vs. PIPECG when applied to the following
problems:

a) primal block-diagonal, assembled (,),
b) primal decomposed and penalized, unassembled – PFETI (

,),
c) dual decomposed, unassembled – TFETI (,).

2. the performance evaluation of the following functions from the MAGMA library
designed for many-core accelerators (GPU and Intel MIC):

a) LU factorization,
b) solve function,

running on (1) multicore CPU only ; (2) combination of CPU and GPU; and (3)
combination of CPU and MIC. LU factorization and triangular solves are the essential
functions used for the solution of the CP (,).

The numerical experiments have been performed using Anselm (Bull cluster at
IT4Innovations – used for GPU and MIC tests with MAGMA library) and Sisu (Cray XC30
at CSC Helsinki – used for large scalability tests of PIPECG algorithm). For the numerical
testing a loaded elastic cube is used. To be able to test our FETI solvers on large scale
problems, that are expected to run on exascale machines, we have used a parallel
PermonCube benchmark developed by our team at IT4Innovations. It enables to generate data
of large-scale problems decomposed into thousands of subdomains in parallel.

Numerical experiments for tests 1a – 1c were done with PIPECG implementation available
in PETSc 3.4. The main idea of PIPECG is “talk less and work more”, in this case it is the
hiding the communication needed in two dot products computation behind the matrix by
vector multiplication, some additional work with several additional auxiliary vectors
compared to CG is necessary. The success of PIPECG profits from the balancing of these two
operations, if the multiplication dominates and dimension of the problem is huge, i.e. also the
dimension of additional vectors is huge, then PIPECG can have even worse performance than
the general CG in our case. PIPECG brings significant time savings for cases 1a and 1b, if
the number of subdomain elements is less than 113- see Figure 22. PIPECG is in both cases
worse than CG for large problems as the benefit from the overlap of matrix by vector
multiplication and two dot products computation is eliminated. The first operation exceeds
significantly the second one and an additional work with longer vectors is more and more
significant. In case 1c there is no performance difference between the general CG and the
pipelined CG algorithm due to excessive communication contained in the dual operator :

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 32

(1) multiplication by a constrained matrix gluing the subdomains together; (2) multiplication
by the transpose of this matrix; and (3) application of the projector. With respect to our
current analysis it seems that pipelined CG will be ideally suited for the parallel solution of
the TFETI CP (,) – it is very promising and it will be the topic for the further
research.

Figure 22: Performance of CG vs. PIPECG for various subdomain sizes.

The performance evaluation of the MAGMA LU dense direct solvers applied to CP was
evaluated on a single compute node of Anselm supercomputer. Three hardware configurations
have been tested: (1) CPU only (16 OpenMP threads – two 8-core CPUs); (2) CPU + GPU
(16 OpenMP threads + 1 Tesla K20m GPU), and (3) CPU + MIC (16 OpenMP threads + 1
MIC - 240 OpenMP threads). Concerning the largest CP having dimension 24,576, the
following observations have been made: (1) LU factorization: CPU + MIC is 2 times faster
than CPU (22.5 sec); CPU + GPU is 4 times faster than CPU (11.3 sec); CPU only (46.1 sec);
(2) 100 calls of the triangular solves: CPU + MIC is 3 times faster than CPU (8.29 sec); CPU
+ GPU is 1.02 times faster than CPU (22.75 sec); CPU only (23.29 sec). To conclude, the
combination of CPU + MIC is more efficient if large number of solve calls is required while
CPU + GPU is better if solver can find a solution in smaller number of iterations.

3.7 Computer modeling and simulations in strongly heterogeneous
nonlinear media

No whitepaper
Authors: K. Georgiev, N. Kosturski, S. Margenov, Y. Vutov

This work concerns the Finite Element Method (FEM) simulation of thermal and electrical
fields in strongly heterogeneous nonlinear media on structured (voxel) and unstructured
(tetrahedral) meshes. Mass and heat transfer and coupled electrical processes involved in the
radio–frequency (RF) hepatic tumor ablation are considered. Instead of a uniform
discretization of the considered time interval, an adaptive time-stepping procedure is applied
in an effort to decrease the simulation time. The procedure is based on the local comparison
of the Crank Nicholson and backward Euler approximations.

The new results in the development of the computer models and their parallel
implementations include: a) a scalable high-performance adaptive time stepping algorithm for
simulating the radio-frequency ablation for treatment of liver tumors; b) implementation and
tuning of the new computer modules on the IBM Blue Gene/P computer in Sofia both on
structured and unstructured meshes; c) founding a suitable set of values for the algorithm
threshold parameters.

The minimally invasive treatment called radio-frequency ablation (RFA) guided by imaging
techniques, the doctor inserts a thin needle through the skin and into the tumor. High-
frequency electrical energy delivered through this needle heats and destroys the tumor. The

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 33

circuit is closed with a ground pad applied to the patient's skin. The right procedure
parameters are very important for the successful killing of all of the tumor cells with minimal
damage on the non-tumor cells.

Computer simulation on geometry obtained from a magnetic resonance imaging (MRI) scan
of the patient is performed.

The IBM Blue Gene/P computer, located at the Bulgarian Supercomputing Center, is used for
the simulations and numerical experiments with the new adaptive time stepping algorithm.
This machine consists of two racks, 2048 Power PC 450 based compute nodes, 8192
processor cores and a total of 4~TB random access memory. Each processor core has a
double-precision, dual pipe floating-point core accelerator. Sixteen I/O nodes are connected
via fiber optics to a 10~Gbps Ethernet switch. Number of runs were done both using 128 and
1024 processors. Uniformly refined mesh was used for the runs on 1024 processors.

The experimental results show that the new algorithm is scalable. The tests allowed us to find
some suitable parameters and showed the practical usefulness of the developed solver for
such kind of computer simulations. One can observe that the computing time is decreased
more than three times, the number of outer iterations is decreased from 420 to 71, and the
number of inner iterations decreases from 2233 to 535.

3.8 Optimization of CP2K DBCSR library for GPU with OpenCL

No whitepaper
Authors: Mariusz Uchroński (WCSS), Marcin Gębarowski (WCSS), Agnieszka Kwiecień
(WCSS), Franciszek Klajn (WCSS)

P2K [43] is an open-source application designed for atomistic and molecular simulation of
solid state, liquid, molecular and biological systems. A scalability of CP2K has been tested
and has shown good results [44]. The code is written in Fortran 95 and parallelized mainly
with MPI but in some parts, also with hybrid techniques, like MPI/OpenMP [45] and CUDA.
Recent works report promising results also for OpenACC and OpenCL implementations of a
DBCSR library [46], [47] and show a successful usage of the Intel Xeon Phi accelerators [48].

The main goal of this project is to optimize the DBCSR library, which performs sparse matrix
multiplications, using OpenCL [49] and check the possibility to improve the OpenACC [50]
implementation. OpenCL and OpenACC are both open standards and have been successfully
used in previous works on the library. During this project, we worked on CP2K v2.4.

Introducing OpenACC into the code requires usage of a compiler which understands the
OpenACC pragmas. There are only three such compilers so far, all commercial, delivered by
PGI, CAPS and Cray. The CP2K code compilation with PGI [51] has been reported as
problematic [46] , and to fully utilize the DBCSR OpenACC port within the application some
additional work had to be done. We have performed a code compilation attempt with PGI
14.1 and with a few changes of the source code managed to provide a working solution. The
PGI 14.1 does not fully support Fortran 2008 extensions, so every call to the built-in erfc
function had to be changed to its implementation delivered in the other part of the CP2K
code. Such code worked fine, but only if it was compiled with no optimization. A compilation
with anyone of the optimization flags, e.g. "-fastsse", produced executables which ended with
a segmentation fault. Further analysis with the PGDBG debugger [52] revealed that the PGI
Fortran compiler is not able to correctly allocate the memory for temporary arrays used in an
array multiplication:
ALLOCATE(a(n,n),w(n),work(lwork),STAT=ierr)
CPPostcondition(ierr==0,cp_failure_level,routineP,error,failure)
a(1:m,1:m) = MATMUL(TRANSPOSE(umat(1:n,1:m,l)),MATMUL(hmat(1:n,1:n,l),umat(1:n,1:m,l)))

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 34

To resolve the issue a further modification of the code was required. An explicit declaration
and allocation of temporary arrays has led to a successful run after compilation with
optimizations:
ALLOCATE(a(n,n),b(m,n),c(n,m),w(n),work(lwork),STAT=ierr)
b(1:m,1:n) = TRANSPOSE(umat(1:n,1:m,l))
c(1:n,1:m) = MATMUL(hmat(1:n,1:n,l),umat(1:n,1:m,l))
a(1:m,1:m) = MATMUL(b,c)

At the same time we attempted to use the CAPS Compiler Suite in version 3.4.4 to compile
CP2K code with OpenACC pragmas. The compilation was performed as specified in the
CAPS documentation: FC = hmpp -d gfortran. A part of the code was compiled successfully,
but some of the Fortran syntax was not recognized by belfort (part of the suite), populating
the following:
belfort: [Error BGFT0071] Illegal module procedure list_timerenv_init at
/cp2k/src/list.F, line 30

The code which caused the error is as follows:

INTERFACE list_init
 MODULE PROCEDURE list_timerenv_init, list_routinestat_init, &
 list_callstackentry_init
END INTERFACE

The code is syntactically correct and is compiled successfully with GNU and PGI compilers.
The error made it impossible to use the CAPS compilers for CP2K and its OpenACC
extension, as an alternative for the PGI. In addition, in May 2014 an official statement of
CAPS has been announced to all its customers, that the company will be closed due to
financial problems, and no new licences or support will be provided after the end of June,
2014.

An analysis of the initial OpenCL implementation [46] revealed that the approach to memory
allocation and data distribution need to be changed to better utilise the GPU architecture. As a
result a new OpenCL kernel has been implemented for the DBCSR library, and integrated
into the application code, as an OPENCL driver. A specific function for data partitioning has
been implemented and the portions of data sent to the GPU has been enlarged which reduced
the transfer times. The data distribution between the work groups on the GPU allows usage of
the shared memory to store elements of the matrices needed during a multiplication. The
block multiplication algorithm in the DBCSR library requires using of memory locks
(semaphores), when executed on GPUs. This is undesirable, as threads writing to the same
memory area are blocking each other, slowing down the execution. A solution for this is
a specific assignment of small block matrices to threads within the kernel, in such a way that
to each work group a unique fragment of the output matrix is assigned. The index table for
data distribution was sorted and slices distributed in such a manner that two groups do not
work on the same slice of C matrix, if possible. The number of conflicts between working
groups has been reduced, but the semaphores are still used, to ensure that only one work
group can write to the slice. It is planned to work further on removing the conflicts and
semaphores completely.

The experimental results for the DBCSR library are presented in Table 14. We compare the
OpenCL and OpenACC ports with BLAS, SMM and MATMUL drivers from CP2K.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 35

Nblocks BLAS SMM MATMUL OPENACC OPENCL

10k 0.68 0.49 0.95 3.52 0.16
40k 1.15 0.98 1.92 3.95 0.99
90k 1.63 1.47 2.88 4.26 1.34
160k 2.16 1.96 3.83 4.85 1.70
250k 2.60 2.45 4.81 5.48 2.08
360k 3.09 2.94 5.83 6.01 2.51
490k 3.61 3.43 6.71 6.53 2.84
640k 4.10 3.94 7.68 7.07 3.26
810k 4.63 4.44 8.65 7.54 3.77
1000k 5.07 4.95 9.61 7.98 4.09
Table 14: DBCSR library tests results for different drivers (Exec times in seconds)

Results presented in Table 14 show that difference between execution times for OpenCL and
SMM driver (drivers with shortest execution times) increases with the problem size
(Nblocks). The OpenACC performs worst for small problem sizes but it is better than
MATMUL for bigger problems.

We have also used a dbcsr_mm test from the CP2K distribution, and the results are presented
in Table 15.

Input
BLAS SMM MATMUL OPENACC OPENCL

S Mflops s Mflops S Mflops S Mflops s Mflops

dbcsr_mm 2.98 770.6 2.94 781.5 29.54 77.4 150.83 14.9 3.04 755.22
Table 15: CP2K tests results for dbcsr_mm test case

Execution times of the application for OpenCL, BLAS and SMM drivers shown in Table 15
are almost the same. The results obtained with OpenACC are worse than OpenCL in every
case, as there is a limited possibility to influence the data transfer and memory allocation
strategies with pragmas. An attempt was made to introduce the pragmas outside the small
matrix multiplication loops to limit the unnecessary data transfers, but the compiler-generated
kernels have produced wrong results. Further work could combine OpenACC pragmas (for
matrix multiplication) with CUDA kernels (for data preparation), to achieve a better
performance.

The BLAS used in the testing was ACML 5.3.1, FFTW 3.3.4, and the PGI 14.3 compiler
(with compilation flags –fastsse –tp amd64 and –acc).

For development and testing we used the Supernova system, located at Wrocław Centre for
Networking and Supercomputing (WCSS). Supernova serves as a Tier-1 machine within
PRACE infrastructure. For testing we used fat node with four sixteen-core AMD Opteron
6274 processors with 256 GB of memory and two NVIDIA Tesla M2075 (448 cores, 6 GB of
memory) per node. For OpenCL code development we also used a node with two NVIDIA
GTX 480.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 36

3.9 Asynchronous solution of sparse linear systems

No whitepaper
Authors: Mark Bull (EPCC)

In third year, we have continued the work reported in [53], on solving sparse linear systems
using asynchronous multisplitting algorithms.

Firstly, we have implemented a more realistic, and somewhat more complex test case, which
solves the linear elasticity equations in a solid cuboidal block of material. The physical
system is discretised into cubic elements interconnected at nodes. The nodes are numbered
1, . . . , and each node has three degrees of freedom (in x, y, and z dimensions). The system
of equations that is solved is:

	 	

where is a 3 vector of displacements, is the vector of forces acting on each of the nodes
in each degree of freedom, and 	is the global stiffness matrix which links the forces to the
displacements. In the finite element approach each node is only coupled to neighbouring
nodes. In this model each node has a maximum of 27 neighbours (nodes which share an
element), so there are a maximum of 81 non-zero entries per row. As the number of nodes
grows, becomes increasingly sparse. We have validated our solver against PetSc and a
bespoke finite element code for this test case.

Secondly, we have worked on a scheme for automatic run-time tuning of a key parameter in
the algorithm. For each iteration it is necessary to decide how accurately to solve the inner
block system before exchanging halo data again.

This can either be done by choosing a fixed number of iterations of the Krylov solver, or by
iterating until the block residual has been reduced by a given amount. In [53] we showed that
choosing a fixed number of inner iterations for the entire solve is not straightforward. If the
number of iterations is too small, then too much time is spent exchanging inaccurate data; if it
is too big then time spent obtaining spurious local accuracy is wasted. Moreover, the optimum
value changes as the system converges.

We dynamically adjust the local convergence criterion as follows: we select a local relative
residual as the criterion instead of a number of iterations, since this appears to be more robust.
We assess the local progress of the algorithm by calculating the local progress rate as the
local relative change in residual per second for the latest inner solve, and smooth this value
both over outer iterations and over neighbouring blocks. We then adjust the local convergence
criterion to try to maximise this local progress rate.

Figure 23 shows the results of using our autotuning scheme compared with fixing a number or
inner iterations. We can see that the initial convergence rate is about five times faster with
autotuning compared to its counterpart which does not use autotuning.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 37

Figure 23: Convergence rate for asynchronous multisplitting.

3.10 Conclusion

Subtask 12.2 has successfully exploited various applications and libraries that utilize
numerical algorithms such as HYDRO, PETSc, CP2K and FETI. The performance of various
numerical algorithms is improved via using new parallel paradigms within accelerators or
shared memory constructs and novel algorithmic strategies. GPU and MIC accelerators are
utilized with the OpenACC and OpenCL enabling parallel constructs. Besides, shared
memory parallelism with OpenMP is exploited to improve efficiency of HYDRO application.
The approaches for numerical algorithms also include distributed memory parallelism,
example applications including PETSc and FETI.

The 8 projects in Subtask 12.2 have resulted with 5 whitepapers and 3 detailed reports. In
addition to this deliverable, all whitepapers will be available online and will prove useful for
users facing similar algorithmic challenges. In summary, Subtask 12.2 has provided new
guidelines, algorithmic approaches and adaptive methodologies to improve the performance
of numerical algorithms on modern large-scale systems.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 38

4 Development environments and tools

4.1 Introduction

Future high-end HPC platform will induce constraints associated with their huge amount of
components. Introducing checkpoint in HPC application has to be addressed, dealing with the
threat of an unaffordable overhead .

Fault tolerance is clearly stated as a critical issue for multi-petascale and future Exascale
systems. According to the EESI1 roadmap, the current approach that consists in saving the
full execution state on remote file system is responsible for significant overhead in Petascale
systems and will not scale at the Exascale level. In this prototype, we have tested the
performance, scalability, and overhead of a new approach called Advanced Multilevel Fault
Tolerance (AMFT) combining existing application based checkpointing and multilevel
checkpointing capabilities provided by using different storage hierarchies from local storage
(standard HDD, hybrid HDD/SSD, regular SSD and optimized SSD) to “remote” parallel file
system.

This work is a follow up of D9.3.4 from 1P-WP9 AMFT, as part of the objectives of 2IP-
WP12.

4.2 FTI : Basic Description

Fault tolerance and application resiliency will be a key issue for next multi-petascale and
Exascale system as identified by many recent reports including IESP¹ and EESI². As the
evolution of the networks and the bandwidth of the parallel filesystems will not scale as
needed, it will be impossible to checkpoint a full system image at an appropriate frequency
(for dealing with a low expected MTTI³).

One solution consists in implementing application-based checkpoint/restart (in order to reduce
the footprint of the checkpointed data to save, just the key variable states) and to use in a
smart way the different levels of storage hierarchies available on HPC systems for performing
asynchronous high frequency checkpoint restart.

Application based checkpoint restart can be realized by coding explicit subroutines into
source codes for storing pertinent data or through directives for assisting smart runtime
systems in saving pertinent data structures.

The FTI middleware (Fault Tolerance Interface) co-developed by the INRIA-Illinois joint
laboratory on Petascale computing and Tokyo Institute of Technology will be used as the
multilevel checkpointing middleware.

The objectives of this prototype are to assess on different hardware platforms the interesting
potential of FTI and AMFT on new profiles of applications coming from the PRACE
benchmarks, the newly EUABS (European Unified Applications Benchmark Suite) or
applications proposed by community codes from 1IP-7.2 or 2IP-WP8.

Criteria like the amount and complexity of work to adapt the target applications, performance
and scalability of such applications, overhead of using FTI and its level of maturity will be

¹ International Exascale Software Project : http://www.exascale.org/iesp/IESP
² European Exascale Sotware Initiative : http://www.eesi‐project.eu
³ Mean Time To Interrupt

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 39

assessed in order to envision “industrializing” and making it as a standard package of the
PRACE software stack.

The FTI middleware co-developed by the INRIA-Illinois joint laboratory on Petascale
computing and Tokyo Institute of Technology was used as the multilevel checkpoint
middleware. FTI is a research prototype composed of a programming interface and a runtime
environment. FTI is a portable package and its implementation is totally agnostic to the target
application since FTI API functions can be used by simply linking with the FTI library.

FTI can be used with applications already featuring application level checkpointing or with
applications that do not provide any support for fault tolerance. To adapt applications
featuring application level checkpoint/restart the programmers replaces the checkpoint and
restart calls existing in the application by FTI checkpoint and restart function calls. For other
applications, the programmer replaces checkpoint/restart using the FTI API in the same way
one would implement application level checkpoint but avoiding the complexity of the
multilevel resiliency, garbage collector and metadata management. In addition, FTI proposes
several configuration parameters that can be easily set up in a configuration file.

FTI is based upon protection levels as described below,

 L1 : FTI performs checkpointing on local storage without any concern to resist a
failure of this support.

	

	
Figure 24: FTI – L1 “Basic write”.
	
 L2 : FTI does a local checkpoint and duplicates to a partner node. This mode allows

an application to resume from any failure involving one node in each partnership.

	

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 40

	
Figure 25: FTI – L2 “Partner Copy”.

 L3 : FTI dispatches checkpoints to a group of multiple nodes. The backup is encoded
with other processes using a Reed-Solomon algorithm.

Figure 26: FTI – L3 “Node group checkpoint” – Redundancy with Reed Solomon encoding.

 L4 : FTI writes the checkpoint on the parallel file system (PFS). To hide the cost of

the backup level, the local storage system is used as a buffer to write the data on PFS
asynchronously.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 41

Figure 27: FTI – L4 “Node group checkpoint” – Redundancy with Reed Solomon encoding.

The use of FTI with all these levels makes sense when SSDs are available as local storage. As
a matter of fact, they insure permanency of data after a power off that a classic memory does
not offer. This allows a faster recovery than with the PFS alone, especially if a big number of
nodes are involved.

FTI enables to generate checkpoints more frequently on the first three levels and to reduce the
frequency of more expensive checkpoints at level 4, while ensuring effective protection
against hardware failures. Thus, the global impact of the implementation of protection can be
reduced in comparison with classical mechanism based upon the PFS alone.

FTI is a collection of few simple functions to call within the application to protect:

 int FTI_Init (char _configFile, MPI_Comm globalComm). This function will initialize
FTI.

 int FTI_Protect (int id, void _ptr, long size). It stores a pointer to a variable that needs
to be protected.

 int FTI_Snapshot (). This function takes an FTI snapshot or recover the data if it is a
restart.

 int FTI_Finalize (). This function closes FTI properly on the application processes.

Besides measurements, requirements and new features interesting for production applications
were decided among partners.

 A Fortran interface was necessary (only C was available). This has been done by
CEA/MdlS

 Python was removed to improve portability
 FTI did not formerly handle restart when no failure occurred for multiple stage jobs

(protection files were flushed on normal end), a flag has been added to keep protection
for a scheduled restart.

 Checkpoint frequency was based upon the number of iterations. This is inconvenient
from a production perspective as iteration may be barely predictable or may vary.
Duration based checkpoint was implemented.

 A synchronous mode was implemented with no requirement for a dedicated process.
This mode lacks advanced features but it allows a better portability on machines with
restrictions on the number of processes per node.

 FTI was based upon a dedicated MPI task on a per node basis, this may lead to a waste
of resources. A thread-based version has been implemented for synchronous mode and
extension to other levels is under study.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 42

 The API was redesigned to get more information about the protected variables. This
will allow future developments for corruption detection and data compression.

 To figure out how to use FTI without SSD, a “memory map” (mmap) mode is on
study.

4.3 Experiments

Measurement was done using weak-scaling. Calibration was necessary to ensure the best
compromise between test duration, size and frequency of protection and measurable impact of
multilevel protection.

Weak scaling scheme (grid size / number of cores) up to 9600 cores on the CURIE system.

Table 16: Hydro weak scaling : Grid size / number of cores

To put a focus on FTI impact and to represent future high checkpoint traffic expected,
frequency has been set to every 6 minutes, each task writing a 255MB file. Several levels of
FTI were assessed ranging from no checkpoint to PFS synchronous mode (figure below).

Figure 28: Hydro – FTI : Overhead level measurements.

grid size

50000*100000 600

100000*100000 1200

100000*200000 2400

200000*200000 4800

300000*200000 7200

400000*200000 9600

core for
hydro

600 1200 2400 4800 7200 9600
0

10

20

30

40

Weak Scaling Checkpointing Overhead

255MB Ckpt. size per core every 6 min.

No ckpt. FTI L1 FTI L2

FTI L3 FTI L4 PFS ckpt.

Numbers of cores

C
h
e
ck

p
o
in

tin
g
 o

ve
rh

e
a
d
 (
%

)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 43

The overhead induced by FTI Hydro remained for all tests below 6% and broadly constant as
that induced by conventional backups on the file system (PFS, Lustre in our example)
increased exponentially with the scaling (light blue curve).

To analyze these results it is necessary to take into account the variability of the
measurements. As a matter of fact, variability of results on a machine in concurrent
production can often reach 5%. This explains in particular the graph changes in the
classification of different levels of FTI : they have quite small differences in cost. For
example, the level 1 should be theoretically faster. We can say that these results are from real
world experience.

4.4 Conclusion

The concept introduced by FTI is application oriented and is a good answer to future multi
petascale and exascale HPC facilities.

 FTI handles « how » and takes the best advantage of the HPC platform
 The application integration focuses on « what »
 Easy to implement on already checkpointed applications
 Embedded added value by FTI hardly integrable by application implementation

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 44

5 File system optimization

On this chapter we present the architecture and the different tests that we have done on user
hint guided I/O prefetching as part of the WP12 of the PRACE project. In Exascale HPC
environments, it is important to be able to successfully prefetch clients’ I/O in order to reduce
the perceived request latency and improve the overall performance. Nevertheless, due to the
high pressure on the resources that the large numbers of clients of Exascale environments
deliver, it is also important that this prefetching uses as less memory as possible, and also
avoids issuing more I/O operations than strictly required. In this kind of scenario, the
elements that know how an application will issue the I/O operations it requires, are either
application itself or the user of the system. Thus, it seems clear that allowing a richer
communication between them and the underlying storage will provide benefits.

5.1 Introduction

The page cache is an important element concerning the performance of an Operating System
(OS), since it either stores memory pages with the contents of a file, or memory pages directly
requested by an application. The former have a lower priority than the latter, and this causes
that pages associated to a file may be discarded when the application requires additional
memory. Unfortunately, keeping file pages in memory is important to reduce the perceived
request latency and avoid accessing the storage device when a data page is needed again (note
that accessing data in the page cache can accelerate I/O time by a factor of 100x when
compared to a disk access).Additionally, as the number of client applications competing for
the OS resources increases, and the amount of available memory grows scarce it is not always
easy for the OS to determine which file pages should be discarded from the page cache and
which should be kept. Since both are typical situations of large Exascale environments, we
designed a user-guided prefetching mechanism that allows the user to specify the I/O access
patterns of an application, so that it is possible to identify which data pages are important, and
which can be safely discarded. To make the prefetching more flexible, we introduce the
concept of minimal time to process, so that future blocks can be prefetched in advance at the
right time. Further extensions are possible, like adapting those times to what is really
happening (taking into account congestion issues, or CPU-intensive processes. Nevertheless,
these extensions fall out of the scope of this work, and we will not describe them here.

As we have mentioned, the out-of-the-box prefetching that is done by the OS is exceedingly
simple: unless a POSIX_FADV_RANDOM flag is indicated by the application (using the
posix_fadvise interface [54]), the OS assumes that subsequent request will follow a sequential
access pattern and simply tries to fetch a few more sequential blocks than requested by the
upper layers. If or when the OS detects that the requests issued are no longer sequential, the
prefetching process is stopped. Note that, in order to avoid overloading the system, the
prefetcher does not try to get a lot of additional blocks from the devices, with the most recent
Linux kernels only reading at most 32 blocks per file in advance. However, those additional
blocks are not discarded, but rather kept in the page cache, which may cause memory
consumption issues.

For all these reasons, a more versatile prefetching library and some modifications on the
kernel may suppose a big improvement in the I/O stack over two topics: cache memory usage
as we can reduce it to the minimal needed and performance, as we can prefetch better than the
OS non-standard patterns (big blocks or non-sequential).

We can summarize the start of the art with Reducing Seek Overhead with Application-
Directed Prefetching [55]. The paper offers a library and some changes in the kernel to

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 45

provide prefetching. Our proposal focuses on the user part and avoids kernel modifications,
since such modifications are generally a bad idea as they introduce additional difficulties in
the deployment of the solution.

5.2 Contributions

We introduce two novel proposals in order to improve the performance and reduce the
memory consumption of cluster nodes in Exascale environments. The first proposal
introduces the concept of user-provided minimal time to process inside the prefetching
mechanism, which represents the estimated minimum CPU time between two different I/O
requests. With this information at hand, read requests can be anticipated and the prefetcher act
in consequence. As a result of using this information, we obtain a reduction of the memory
used for prefetched data blocks, with some additional improvements on the performance of
the operations.

The second proposal, on the other hand, is an advanced filtering feature. This feature is able
to understand how user’s data is stored and apply a filter to decide if the data is going to be
useful or not. For example, users could use this feature to filter a set of climate raw data by
temperature, discarding non-interesting data in the background, and keep in the page cache
only the data that is higher than, e.g., 10ºC. With this feature, which is similar to HDF5 filters
[56] or indexed data, the prefetching library can keep in the page cache memory only the data
that is actually useful, returning to the user a record with “dummy” data if the data requested
does not pass the filter. Notice that this dummy record is defined by the user itself, and only
serves to mark that a filtered data access did not succeed. As such, the library can discard the
read data block, thus saving on long-term memory usage. This feature will work on raw,
unstructured data when no index or other fast selection methods are available (e.g., scan
workflows).

Our proposal avoids making changes in the kernel since it is difficult to export the ideas for
the different kernels/OSs available. Additionally, it has been shown on previous works that
such changes are a barrier to install or test the proposed techniques on different environments,
as it happened for instance with IOAnalyzer [57] in the IOLANES [58] project, forcing the
creation and maintenance of a user-mode version. Thus, we introduce a new a library that acts
as a wrapper for normal read/open/seek system calls, and that allows the appropriate user
hints to be provided in order to implement our extended prefetching mechanism.

To allow users to appropriately characterize the I/O access patterns of their applications, our
library extends the standard open operation list of parameters with an extra IODefinition
structure that is used to specify the application's I/O for that particular file (see Table 17).
Once the library receives this I/O characterization (plus some hints that could be inferred
using machine learning), it creates several background fetcher threads that anticipate the read
operations of the applications, and load the appropriate data in the page cache so that it is
readily available. Once used, if the data blocks are not going to be reused, they are discarded,
rather than kept in the page cache (please refer to Figure 29 for a high-level scheme of the
library components).

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 46

NAME EXPLANATION

Mode Single read, fetcher, or filtering

StartPos Starting position

RecordSize Record size

EndPos Ending position

Stride Bytes to jump between records

Rate Time to wait between record reads (msecs)

FieldPos Field position inside a record (bytes)

FieldType Field type : Integer, float, double

FieldOp Field operation : gt, lt, eq

FieldValue Value to use with FieldOp to filter

FieldDummy Dummy value to be returned to the user

Table 17: List of the fields in an IODefinitionstructure

Notice that the key of user-hinted I/O is the interface with the library, a richer communication
channel between clients and the filesystem that allows a detailed specification of the expected
I/O applications will do. Table 17 shows the fields introduced by the IODefinition in our
current prototype, which the users of the library can use to define the I/O for a particular file.
The fields in a white background are those used in the basic user-guided I/O mode of our
library, while the fields in a gray background are those used for the advanced filtering feature.
As can be observed, the basic user-guided I/O requires the start and end offset within the file,
the size of the record (i.e. the amount of consecutive data to be read), the stride (the space
between consecutive reads that the application will jump) and the rate at which the file should
be read. Notice that the Rate field specifies how much time the fetcher threads should wait
until the next record is read. Advanced filtering however, requires more fields; these include
the position of the target variable inside the record (in bytes), the type of the variable and the
operation to apply on it (e.g., “> 10”). Finally, we also require a value to mark the dummy
fields that do not pass the filter, to allow for a fast identification in the application level. Note
that all these fields could be replaced with a Data Description Language (DSL), for example)

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 47

Figure 29: I/O library architecture

All this information is used to configure the read pattern for the fetcher threads, which will
load the page cache in time for the application to use the data.

Our first proposed prototype, shown in Figure 30, included a memory manager where read
pages were stored in order to have a clear view of what was indeed needed to be cached and
what not, thus allowing the library to support filesystems that do not have the readahead
system call (or similar) implemented. Nevertheless, this organization had some problems. As
can be observed in Figure 31, even though with this proposal the library keeps prefetched data
blocks in user memory, the OS also keeps an additional copy in the page cache: when a
fetcher thread asks the OS for a page on disk, the read result is stored in the page cache and
then it is copied to the I/O library memory. Although this is not a problem for the library, as
we can mark the pages as not usable, we are stressing the system unnecessarily.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 48

Figure 30: Discarded proposal with Memory Management

Figure 31: Memory duplication between page cache and memory manager

After some preliminary tests, we decided to remove the memory manager and instead make
use of the readahead system call, thus effectively using the kernel's page cache as a buffer for
the prefetching library. Using the page cache as a buffer only requires one kernel → user
space interaction, since the data can be transferred directly from the kernel buffers to the
application buffers. This option removes all the complexity of having to keep a block cache in
the user side. Since the library does not have control over which pages are in the page cache
(as the OS will drop them without notification), to the library uses the fincore [59] utility to
keep track of which pages of a file may have been dropped, and act accordingly. For example,
if the OS removes some pages due to memory pressure, the fetcher thread may need to be
delayed.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 49

When the user opens a file, the prefetch library looks up the user-provided IODefinition
structure and creates a background prefetcher thread with the information contained in it. In
order to illustrate the inner works of the library, let us consider the situation where a user
opens a file and requests it to be prefetched with stride. In this situation, the created
background thread first needs to identify which is the sequence of records that the user will
require. Once this is done, the thread then issues a readahead call for each of record in order
to store it in the page cache, jumps to the next one and waits the required time defined by the
user to match the desired I/O rate. Notice that since the information will only be read once (as
it is specified inside the IODefinition class), when the user reads it a DONTNEED fadvise is
applied to the page marking it as a candidate to be removed from the page cache. If the user
reads faster than the background reader, the background fetcher detects it and jumps to a more
advanced position.

We also propose an advanced prefetching mechanism that allows to define the record
structure via the IODefinition structure and to add some filtering instructions. For example,
imagine that the application stores its data as an aggregation of the structures (i.e. records)
shown in Table 18.

Variable Size

Char[256] 256 bytes

Int 4 bytes

Other 1024 bytes

Table 18: Sample record

With this record, the library allows users to define a record size of 1284 bytes (the total sum
of all the fields) and a field of interest (FOI) that represents an integer at offset 256 (within the
record). This FOI is useful, for instance, in order to specify detailed filtering tasks, so that e.g.
only records with a FOI integer value greater than 100 will be useful for the application. The
background prefetcher thread scans the different records and applies the specified operation.
If the record passes the filter, it will already be in the page cache (as the library needs to read
it in order to apply the filter operation). If the filter fails, the record is removed from the page
cache by issuing a fadvise call with the DONTNEED flag. Note however, that in order to
have improvements on the application side, the library needs to keep an updated bitmap with
the records that have passed or not the filter. Using this bitmap (or similar structure), we can
offer to the client a dummy record on the failed ones. This dummy record, known by the
application will reduce the prefetch memory usage and may increase the performance. This
bitmap or index, is also essential to offer a filtered or virtual view of the file, as in traditional
SQL views, avoiding operations on the client (like testing that the record is a dummy or not).

5.3 Evaluations and Experimental Results

In order to test the benefits of our proposal, we devised a test application to measure the
memory used in the page cache. This test application mimics the READ_DATA →
PROCESS_DATA → READ_DATA access pattern common to most HPC scientific
applications. As we will see in this section, our proposal obtains some performance benefits
for big requests (> 512 KiB), and large memory benefits in all the cases evaluated. The test
environment for these experiments uses a Intel Core 2 Quad CPU Q9300 with 4 GB and a
standard SATA drive ST31500341AS. The kernel version is a 3.14 without modifications.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 50

 Scenario 1 – Memory usage of 1 process

In this scenario, we want to show the reduction on memory used for the page cache on the
case of 1 single process. Although memory will be freed if needed, it helps to understand
what will happen when there are a large number of processes. For this experiment, we
measure the memory usage of a test application that performs 2000 reads of 1MiB records
from a file, uses 100ms of process time for each record read, and a 400KiB offset stride
between records. We evaluate the two following configurations: standard kernel reads with
prefetching (STD) and user-guided reads with the proposed prefetching library (USER
HINTS). As can be observed in Figure 32 the memory cost of the USER HINTS method is
close to 0, while read operations with STD method keep all the accessed blocks in the page
cache even if they are only used once. Also note that, despite the fact that improving
performance is not the main objective of the library, reads using the original kernel
prefetching need nearly 10% more time to complete the tests than those using the library. The
reason for this lies in the fact that the user-informed library is more effective at prefetching
striding patterns: whereas the kernel keeps reading data blocks sequentially until it notices the
offset stride, the library is able to stop reading immediately and move the file pointer to the
next offset.

Figure 32: Memory utilization using 1 process with different read techniques.

Scenario 2 – 64 processes, informed sequential access

In this experiment we measure the memory usage of the page cache of 64 concurrent
processes performing informed reads on 64 independent files. Each process performs 100
read operations that follow a sequential access pattern. In order to properly evaluate the
benefits of the library, we measure the impact of different record sizes (512KiB, 1MiB, 2MiB,
and 4MiB), and different CPU processing times (1ms, 10ms, and 100ms). We also include the
results for a pure sequential access pattern (NO STR) and a strided access pattern with an
offset of 400KiB (STR).

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 51

Figure 33: ECDF with each operation response time.

Figure 33 shows the results of this evaluation. The figure is divided horizontally by the block
request size (512KiB-4MiB) and vertically by the minimum time needed to process the
requested block (1ms-100ms). Each subplot shows the empirical cumulative distribution
function (ECDF) for the operation response time, both for STD and USER HINTS reads. It
can be observed how, in most of the experiments, the USER HINTS method offers a better
response time than standard prefetching. For record sizes of 512KiB and purely sequential
access, however, the USER HINTS results are similar to the standard prefetching.
Additionally, the plots also show that the difference between strided and non strided access
for the USER HINTS method is small. Since the library knows in advance how data needs to
be accessed, the I/O cost of disk seeks can be overcome at the fetcher level, thus leading to
very similar response times.

Focusing on non-strided access, we aggregated the measured cached data kept in the page
cache for all 64 processes, and plot it in Figure 34. Each x-axis represents the duration of the
test, since the memory usage of the page cache will change as the test progresses. It can be
clearly observed how the STD method offers an increasing memory usage. Note that the
memory usage is irregular for higher block sizes since the OS may eventually need to do
some evictions. For the USER HINTS method, the memory usage is kept low for the entire
test’s length. This is the expected behavior, since the library is able to evict data pages when
they are no longer needed, keeping the memory usage contained. Note that although these
evictions may not be needed, it is convenient for the library to mark the pages with the
DONTNEED flag. The kernel will, normally, evict old pages automatically, but the behavior
could change under memory pressure situations or under different kernels.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 52

Figure 34: Total memory usage in the page cache (64 processes,no stride, 10 ms process).

Scenario 3 – 64 processes, random informed access

This scenario is similar to the one already described. The main difference is that in this
scenario, the 64 processes are issuing “random” requests to each of the 64 files. This random
access is not truly random in the sense that the user knows which offsets will be accessed, and
how much data needs to be read for each record. Nevertheless, even if this information is
predictable, the OS prefetcher is not able to infer a clear access pattern from the offsets
accessed, and classifies it as random data accesses, thus deactivating the prefetching
mechanism. The user hints mechanism offers a way for applications to inform the prefetching
library of these expected access patterns, which can be useful for scenarios such as database
queries, indexed data or HDF5/NetCDF structured data.

Figure 35 shows the memory usage for measured in this scenario. Once again, each process
performs 100 read operations and we measure the impact of using different record sizes
(512KiB, 1MiB, 2MiB, and 4MiB), and different CPU processing times (1ms, 10ms, and
100ms). Since access patterns in this scenario are random, it does not make sense to consider
sequential or strided access patterns, which is why they do not appear in the figures. The
ECDF curves depicted in the subplots show that, as expected, all the scenarios are favorable
to the USER HINTS method. Since the library knows in advance which data blocks are going
to be accessed, it can successfully load them in the page cache just before they are needed,
offering better performance results than the kernel’s standard prefetching mechanism, which
has no basis to work on. The results for the memory usage are similar to those shown in
Figure 34.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 53

Figure 35: ECDF of the Response time per operation when issuing random requests.

Scenario 4 – Advanced filtering

Finally, and to show how the advanced filtering technique works, in this scenario we show a
zoom of the results obtained when applying this technique. The application scans a file
reading 4KiB records with a 100ms process time and testing if an integer field is bigger than
100. Figure 36, shows two scenarios: the STD and the ADV FILTER scenario. In the first
scenario, a user level application reads each record and decides whether it is usable or not,
whereas in the second scenario the filtering is done by the library in the background and the
already-filtered records returned to the user. Usable data is shown in blue and with a
sequential ID (to allow comparison of the two approaches), while unusable data is shown in
red and without a number ID. It can be observed that, if the required information is passed via
user hints to the library, the filtering process can be done at the fetcher level, keeping the
passed/failed information in an index and storing only the good records. Finally, the user
application works as usually but only the correct data is prefetched as the filtered data is
returned with a dummy that the user will recognize. With this technique, the library is able to
reduce the memory used while being able to prefetch only useful data (for example, one or
two requests in advance, depending on the ratio of success rate). A bigger performance
improvement can be achieved if the library offers to the application a virtual file, since the
user does not need to pass the filter over the dummy data (and we avoid the data copy to the
application buffer).

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 54

Figure 36: Advanced Filtering with the standard behavior shown on the left, and the user level and fetcher
thread on the right.

5.4 Conclusions

The techniques explored in this deliverable can be used on Exascale environments to reduce
the memory pressure on the page cache. As we have shown, anticipating user reads, with
small information from the user, can produce great benefits. On the one hand, these
techniques will always decrease the memory usage but, on the other hand they may increase
the response time if the blocks requested are small (<512 KiB) or the access pattern are
sequential enough that the OS prefetcher may work in a suitable way.

The second proposal, advanced filtering, will also reduce the memory pressure and will have
an effect on performance since the dummy records can be easily removed. Finally, this
technique can be moved down the I/O stack, for example to the PFS nodes, to activate also
reductions on network congestion.

As a summary, a prefetch library shows benefits in performance and memory usage when:

1) There are consecutive big reads with or without stride and process time involved.
2) The library knows in advance the I/O patterns of the application.
3) The user can describe the records going to be read, and the library is able to apply the

filtering during the prefetch process. This allows that only the needed records are
cached.

However, there are also situations where it is difficult that library prefetching becomes better
than the OS prefetcher:

1) When consecutive reads happen very fast and they are also consecutive on space (i.e.
sequential). The OS will prefetch automatically, and the memory used will be minimal
as the older pages will be removed automatically (in low memory pressure situations).

2) There is no information about future reads. Without information about the application
behavior (user- or automatically-inferred) guided prefetching will not work better than
the OS.

Sometimes direct I/O can offer better performance than any prefetching mechanism (OS or
library) due to the direct memory transfer allowed by DMA. However, the I/O restrictions
should not be underestimated. For example for direct DMA data transfer, need aligned
reads/writes and buffers are required, which can prove bothersome to achieve under some

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 55

environments, and may be a strict requirement to place on the users of a high-performance
computing cluster.

6 Summary and Conclusions

This Work Package performed research and development on the programmability of future
multipetascale and exascale systems exploring a diverse set of techniques. It was organized
into four different tasks, Task 12.1 dealed with auto-tuned runtime environments, Task 12.2
dealt with scalable numerical algorithms, Task 12.3 focused on fault tolerant tools, and Task
12.4 looked at file system optimization for exascale systems. Although, these tasks focused on
improving independent areas of an HPC system, there is some relationships between them as
well. For instance, there is some relationship between Tasks 12.1 and Task 12.2 where auto-
tuning techniques where used to find out the optimal number of threads which can be applied
to the OpenMP codes in Task 12.2.

A total of 16 research projects were reporting in this document covering multiple different
techniques within these main four areas which are summarized below.

Task 12.1 provided different auto-tuning techniques to improve the performance of codes.
Systems and applications are getting so complex that it is imperative to relay on auto-tuning
techniques to automatically obtain the desired high performance on the target system without
user intervention. This task contributed on different areas such as OpenMP applications,
SLURM scheduler, Kepler workflow engine, component based 3D FFT, compiler auto-
vectorization, and All-to-all collective communication. A total of seven projects were
covering these different areas resulting on 5 whitepapers and 2 additional detailed reports all
of them reported on this document.

Task 12.2 has provided new guidelines, algorithmic approaches and adaptive methodologies
to improve the performance of numerical algorithms on modern large-scale systems. It
demonstrated improvements on diverse numerical algorithms such as HYDRO, PETSc, CP2K
and FETI. This task consisted on eigth different projects that resulted on 5 whitepapers and 3
detailed reports. Improvements are achieved in part using aaccelerators with the OpenACC
and OpenCL enabling parallel constructs or using shared memory parallelism with OpenMP
improving efficiency of the HYDRO application. The approaches for numerical algorithms
also include distributed memory parallelism, example applications including PETSc and
FETI. One of the major focusses of this task was to show that it is possible to improve the
parallel performance of sparse linear iterative solvers. Three projects addressed this issued
using a novel scheme that completely avoids the communication latency overhead, or using a
pipelined solver to increased computation with communication overlap, or via a strategy to
dynamically adjust the local convergence criterion during execution.

Task 12.3 concluded that fault tolerant based on selecting within the application the critical
data to save achieves very little overhead at large scale. It was reporting less than 6% on
HYDRO at 9,600 cores.

Task 12.4 explored techniques aimed to be used on Exascale environments to reduce the
memory pressure on the page cache. It concluded that anticipating user reads, with small
information from the user, can produce great benefits. These techniques will always decrease
the memory usage which is important at exascale where the amount of memory per core is
expected to be small.

D12.5 Summary of Novel Programming Techniques Results

PRACE-2IP - RI-283493 22.8.2014 56

In conclusion, in this work package we have shown that applications and system software has
to be re-developed in order to deal with the increasing complexity of hardware at the multi-
peta scale and exascale computers. Hardware at high scale is going to be complex and thus
applications are going to be fully re-developed to deal with that complexity. In this work
package we have demonstrated that we have a solid foundation to obtain a very high parallel
performance getting close to petascale as demonstrated in all the projects carried out during
this last year.

In Task 12.1 we have shown how applications must adapt to the specific characteristics of
processor and network topologies as an example. And additionally, in Task 12.2 we have
shown that algorithmic changes are needed in order to improve parallel efficiency at large
scale. Although this research show promising results, we are still far away to be ready for
exascale and thus more research is needed to re-develop codes to this un-precendent parallel
machines. From our point of view, it will require integration of technical ideas as well as solid
theoretical foundations into its core design to take full advantage of the underlying hybrid
architecture of exascale machines. We think that new applications should take these remarks
into account from the very beginning in their design process.

