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MDT  MetaData Target 
MFC  Memory Flow Controller 
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per 

second, also MF/s 
MGS  Modified Gram-Schmidt 
MHz  Mega (= 106) Hertz, frequency =106 periods or clock cycles per second 
MIC               Many Integrated Core 
MIF               Maximum Improvement Factor 
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC 

processor architecture developed by MIPS Technology 
MKL  Math Kernel Library (Intel) 
ML  Maximum Likelihood 
MoML           Modeling Markup Language 
Mop/s  Mega (= 106) operations per second (usually integer or logic operations) 
MoU Memorandum of Understanding. 
MPI  Message Passing Interface 
MPP  Massively Parallel Processing (or Processor) 
MPT  Message Passing Toolkit 
MRAM Magnetoresistive RAM 
MTAP  Multi-Threaded Array Processor (ClearSpead-Petapath) 
MTTI             Mean Time to Interrupt  
mxm  DP matrix-by-matrix multiplication mod2am of the  EuroBen kernels 
NAS  Network-Attached Storage 
NCF  Netherlands Computing Facilities (Netherlands) 

NDA Non-Disclosure Agreement. Typically signed between vendors and 
customers working together on products prior to their general 
availability or announcement. 

NoC Network-on-a-Chip 
NFS  Network File System 
NIC  Network Interface Controller 
NUMA           Non-Uniform Memory Access or Architecture 
NYSE            New York Stock Exchange 
OpenCL Open Computing Language 
OpenGL Open Graphic Library 
Open MP Open Multi-Processing 
OS  Operating System 
OSS  Object Storage Server 
OST  Object Storage Target 
PaToH          Partitioning Tools for Hypergraph 
PCIe  Peripheral Component Interconnect express, also PCI-Express 
PCI-X  Peripheral Component Interconnect eXtended 
PGAS  Partitioned Global Address Space 
PGI  Portland Group, Inc.  
PETSc          Portable, Extensible Toolkit for Scientific Computation 
pNFS  Parallel Network File System 
POSIX          Portable OS Interface for Unix 
POMP          OpenMP Monitoring Interface 
PPE  PowerPC Processor Element (in a Cell processor) 
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PRACE Partnership for Advanced Computing in Europe; Project Acronym 
PSNC  Poznan Supercomputing and Networking Centre (Poland) 
P2P               Peer to Peer 
QCD  Quantum Chromodynamics 
QCDOC Quantum Chromodynamics On a Chip 
QDR  Quad Data Rate 
QN                Quasi Newton 
QP                Quadratic Programming 
QPACE QCD Parallel Computing on the Cell 
QR QR method or algorithm: a procedure in linear algebra to compute the 

eigenvalues and eigenvectors of a matrix 
RAM  Random Access Memory 
RDMA            Remote Data Memory Access 
RFA              Radio Frequency Ablation 
RISC  Reduce Instruction Set Computer 
RNG  Random Number Generator 
RPM  Revolution per Minute 
SAN  Storage Area Network 
SARA  Stichting Academisch Rekencentrum Amsterdam (Netherlands) 
SAS  Serial Attached SCSI 
SATA  Serial Advanced Technology Attachment (bus) 
SDK  Software Development Kit 
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS 
SGI  Silicon Graphics, Inc. 
SHMEM  Share Memory access library (Cray) 
SIMD  Single Instruction Multiple Data 
SLURM         Simple Linux Utility for Resource Management 
SM  Streaming Multiprocessor, also Subnet Manager 
SMP  Symmetric MultiProcessing 
SMT              Simultaneous Multithreading 
SNIC  Swedish National Infrastructure for Computing (Sweden) 
SP  Single Precision, usually 32-bit floating point numbers 
SPE  Synergistic Processing Element (core of Cell processor) 
SPH  Smoothed Particle Hydrodynamics 
SPU Synergistic Processor Unit (in each SPE) 
SpMV            Sparse Matrix Vector Multiplication 
SSD Solid State Disk or Drive 
SSE              Streaming SIMD Extensions 
STFC Science and Technology Facilities Council (represented in PRACE by 

EPSRC, United Kingdom) 
STRATOS PRACE advisory group for STRAtegic TechnOlogieS 
STT  Spin-Torque-Transfer 
SURFsara Dutch national High Performance Computing & e-Science Support 
  Center 
SVM              Support Vector Machine 
TARA Traffic Aware Routing Algorithm 
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte 
TCO Total Cost of Ownership. Includes the costs (personnel, power, cooling, 

maintenance, ...) in addition to the purchase cost of a system.  
TDP Thermal Design Power 
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TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per 
second, also TF/s 

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this 
context the Supercomputing Research Infrastructure would host the 
Tier-0 systems; national or topical HPC centres would constitute Tier-1 

TSVC            Leave-one-out Cross-Validation 
UFM              Unified Fabric Manager (Voltaire) 
UNICORE Uniform Interface to Computing Resources. Grid software for seamless 

access to distributed resources. 
UPC  Unified Parallel C 
UV  Ultra Violet (SGI) 
VALT            Vectorization and Loop Transformation  
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description 

Language 
WCSS           Wrocław Centre for Networking and Supercomputing 
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Executive Summary 

This Work Package performed research and development on the programmability of future 
multi-petascale and exascale systems. In particular, it was focused on main four areas, auto-
tuned runtime environments, scalable numerical algorithms, fault tolerant tools, and file 
system optimization for exascale systems. A total of 16 research projects are reporting in this 
document covering multiple different techniques.  

On auto-tuned runtimes environments a total of six projects were exploring different auto-
tuning techniques at different granularities. For example, it goes from a coarse technique that 
auto-tunes the job scheduler down to the finest granularity when auto-tuning Intel vector 
instructions. Specifically, on SLURM job scheduler we explored the case capability to do 
topologically aware mappings of jobs on hierarchically interconnected systems. On the other 
hand, three projects were focused mostly on the programming language exploring one these 
projects the case of controlling dynamically the number of threads allocated to OpenMP 
parallel regions to decrease the overall wall-times; and the rest were focusing on improving of 
workflow executions through meta-model methods and the other using a component based 
approach to improve the 3D FFT. Additionally, on project  was focused on compilation 
utilities to improve the vectorization of their codes. And finally, the last project was focused 
on improving the collective communications operations, specifically the MPI_All_to_All.   

On scalable numerical algorithms, it was explored new algorithms or techniques that improve 
the scalability of existing algorithms. Eight projects were also focused on this research line. 
with several diverse parallel techniques such as utilization of GPU and MIC accelerators, 
message-passing paradigm and shared memory constructs. There are algorithmic approaches 
to increase the efficiency of widely used numerical algorithms (such as Conjugate Gradient 
(CG)) as well as adaptive parameter determination and utilization. The target applications and 
libraries include HYDRO, PETSc, CP2K and FETI. 

On the other hand, on fault tolerant tools, it was shown the performance of the fault tolerant 
tool called FTI based on application-based checkpoint/restart. The overhead of using this tool 
could be very low at large scale. It was reporting less than 6% on HYDRO at 9,600 cores.  

And finally, on file system optimization it was showed the performance of user hint guided 
I/O prefetching which is seen a scalable technique for accessing I/O at exascale systems. In 
fact, it was shown that anticipating user reads, with small information from the user, can 
produce great benefits in terms of performance. In addition, it was shown than the memory 
usage could be reduced with the use of an advanced filtering technique.  

1 Introduction 

This Work Package has been performed research and development on the programmability of 
future multipetascale and exascale systems.  Specifically, it was focused on the following four 
areas of research which corresponds to the tasks where this Work Package was organized as 
well,  

- Task 12.1: Auto-tuned runtime environments. Runtime environments for parallel 
platforms were investigated to provide auto-tuning capabilities in order to 
automatically find the best implementation for application codes.   
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- Task 12.2: Scalable numerical algorithms. This task explored new algorithms 
exposing much higher asynchrony, overlap between communication and computation, 
locality awareness than current practice.  

- Task 12.3: Development environments and tools. It addressed the problem to provide 
efficient tools in order to deal with failures at large scale parallel system. The impact 
to the performance to applications when using a fault tolerant tool is evaluated at large 
scale.   

- Task 12.4: File system optimization. It was focused to address performance issues of 
file systems at exascale in order to reduce the perceived request latency and improve 
the overall performance when a high volume of I/O requests are expected in such as 
environments.  

This document provides a summary of the results achieved in each of these tasks during the 
third year. WP12 was initially plan for two years, but at the end was extended for an 
additional year. This is the only deliverable produced during the third year for WP12. Along 
with this deliverable it was produced a series of whitepapers that detailed in a more extended 
way the results presented in this document. 

Task 12.1 and 12.2 were organized into several projects.  In particular, task 12.1 was focused 
on six different projects focusing on auto-tuning various parts of the systems such as job 
scheduler, processor’s vector instructions, or OpenMP applications. All of these projects are 
reported in this deliverable. Additionally, five whitepapers were produced to describe in more 
detail the results obtained.  

Similarly task 12.2 was also composed on multiple independent projects, a total of eight. 
Results achieved of these projects are summarized in this document. In addition, five of these 
eight projects have also produced a whitepaper.  

On the other hand, the other last tasks 12.3 and 12.4 were organized into only one project 
each. For this reason, they did not provided a whitepaper and the results are fully presented in 
this document. The techniques explored during the third year area on both tasks are not a 
continuation of the previous techniques explored during the first two years of WP12. For the 
third year they explored fresh new ideas. In the case of task 12.3, it was explored the use of 
fault tolerant tools which are of vital of importance for exascale systems. And on task 12.4, it 
was explored prefetching techniques in order to reduce the huge pressure of I/O operations in 
exascale environments as well.  

In summary, this deliverable is reporting work for a total of 16 projects focusing on important 
aspects to improve the scalability of codes at large scale such as automatic optimization, 
algorithms, fault tolerance, and file systems. 

Section 0 summarizes the results achieved on Auto-tuned runtime environments. Section 3 
summarizes the results achieved on Scalable numerical algorithms. Section 4 provides results 
of a fault tolerant tool on a large scale system. Section 5 describes a new technique based on 
I/O prefetching in order to improve file systems at large scale. And finally, Section 6 
concludes this document.  
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2 Auto-tuned Runtime Environments 

2.1 Introduction 

This chapter details the work done during the one year extension of Task 12.1. It is a follow 
up of D12.1 that described the work done on Heterogeneous and Auto-tuned Runtime System 
during the first two years. Six projects were extended and are covered by this chapter.  This 
chapter is quite concise in order to allow readers to easily identify the projects that are of 
particular interest for them and to encourage further reading in the accompanying white 
papers or the referenced publications. All but the last project have been published as PRACE 
white paper. 

This six projects aims at making HPC systems more efficient by improving optimization 
support, in particular through the use of auto-tuning. They contribute to optimize various HPC 
elements: OpenMP applications, SLURM scheduler, Kepler workflow engine, component 
based 3D FFT, compiler auto-vectorization, and All-to-all collective communication. Here is 
the list of these projects that are then further detailed in this chapter. 

 Auto-tuning of OpenMP applications on the IBM Blue Gene/Q 
o It deals with a library called SOMPARlib which capable of controlling 

dynamically the number of threads allocated to OpenMP parallel regions. 
 Topologically Aware Job Scheduling for SLURM 

o It deals with a new AUCSCHED3 SLURM scheduler plug-in that has a 
capability to do topologically aware mappings of jobs on hierarchically 
interconnected systems. 

 Self-improving workflow models for generating of combinatorial objects designed in 
the Kepler Project System 

o This work proposes some dedicated methods that can improve the execution 
time of workflows based on decision trees and the replication of some actors in 
the workflow. 

 Evaluating Component Assembly Specialization for 3D FFT 
o It deals with the design and evaluation of component based assemblies of 3D 

FFT computation to ease code specialization while maintaining performance. 
 Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization 

Heuristics 
o This work aims to provide techniques for determining the best way to optimize 

certain codes regarding vectorization, with an end goal of guiding the compiler 
into generating optimized code without requiring developer expert knowledge. 

 Scalable algorithm for network bandwidth / latency hierarchy detection and designing 
topology aware collective routines and testing performance in CPMD application 

o This project aims to develop a scalable code identifying performance tiers 
reflecting the network topology to improve MPI ALL-TO-ALL scalar/vector 
collective routine such as for example for  the quantum chemistry code CPMD. 

2.2 Auto-tuning of OpenMP applications on the IBM Blue Gene/Q  

WP179: Auto-tuning of OpenMP applications on the IBM Blue Gene/Q system 
Authors: Maciej Cytowski, Maciej Szpindler (ICM, Univ. of Warsaw) 

Modern high performance computing architectures are based on multi-core and multi-
threaded computing nodes. The mixed MPI and OpenMP programming is currently a 
reference model for obtaining high scalability on large computing systems. In such a model, 
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MPI processes contain many OpenMP parallel regions. Scalability and performance of those 
parallel regions may differ between various computing systems and between each run of the 
code. The control of the number of threads used by different OpenMP regions, by users of the 
HPC systems, is very often limited to setting a single environment variable – 
OMP_NUM_THREADS. We have developed a tool called SOMPARlib which is based on 
OpenMP Monitoring Interface (POMP) and is capable of controlling the execution of various 
OpenMP parallel regions introduced in computational codes during run time. The tool is 
particularly useful in the case of architectures that introduce the multithreading mechanisms 
like Simultaneous multithreading (SMT) or Hyper-Threading (HT). 

The library in its current version provides support for codes of a specific computational 
structure. The main object of our interest are those simulation packages for which 
computations are divided into a large number of iterations, e.g. molecular dynamics packages, 
cosmological simulation codes and many others. Main simulation loop may contain numerous 
OpenMP parallel regions. It may also call an external function (e.g. library calls) which may 
contain its own OpenMP parallel regions. 

When code is linked against SOMPARlib and executed the following occurs: 

1. SOMPARlib initialization phase 
a. memory required by SOMPARlib is allocated 
b. maximum number of threads available for a single process is found 
c. parallel modes (i.e. different number of threads used during testing phase) are 

defined 
2. First iteration - detection phase 

a. structure of the main simulation loop is detected 
b. all OpenMP parallel regions within a single iteration are detected 

3. Next N iterations (where N = number of parallel modes) - testing phase 
a. performance of parallel regions in all defined parallel modes is measured 
b. the best parallel mode for each of the OpenMP regions is selected 

4. All remaining iterations - computing phase 
a. all remaining calculations are carried out with number of threads set 

individually for each of the OpenMP parallel regions 
5. SOMPARlib cleanup phase 

During the initialization phase SOMPARlib allocates memory required for storing 
performance measurements data. The maximum number of threads available for current 
process is checked by calling the function omp_get_thread_limit(). Based on this 
number the available parallel modes are determined. The first parallel mode is always related 
with the use of all available threads. If the number of threads assigned to a given parallel 
mode is divisible by two, the next parallel mode will be selected by reducing the number of 
threads twice. Otherwise, the number of threads is reduced by one. For example, if the 
maximum number of threads available to a single process is equal to 64, there will be 6 
parallel modes considered during the testing phase, corresponding to 64, 32, 16, 8, 4 and 2 
threads per process. However, if the maximum number of threads available to a single process 
is equal to 24, SOMPARlib will select 5 parallel modes corresponding to 24, 12, 6, 3 and 2 
threads per process. The most effective setup is achieved when the maximum number of 
threads available to a single process is a power of two, which is also a very natural choice for 
many of today's HPC platforms. 

In the next phase, the computations are started. During the first iteration of the main 
simulation loop all OpenMP parallel regions within the loop need to be detected. SOMPARlib 
is able to automatically detect a loop structure, but only for simple loops, wherein each 
OpenMP parallel region is called at most once during each iteration. In such cases the 
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detection of the loop structure ends when SOMPARlib encounters the first OpenMP parallel 
region again, i.e. in the beginning of the second iteration. In all other cases, the SOMPARlib 
API needs to be used in order to mark the beginning and end of the iteration. 

Next N iterations of the main simulation loop, where N is equal to the number of parallel 
modes, are used to gather necessary performance measurements of all OpenMP parallel 
regions in the loop. Starting from the parallel mode with the largest number of threads 
SOMPARlib measures execution time of all parallel regions. These measurements are 
repeated for subsequent parallel modes with decreasing number of threads. To prevent a 
significant slowdown of the testing phase we have decided to implement an additional 
checkpoint. If in two consecutive parallel modes the execution time of a given OpenMP 
parallel region increased 1.5 times, then we recognize that this change of performance is the 
effect of scalability. Therefore, in such situations we do not continue to search for the best 
parallel mode for the given OpenMP region, since we expect that consecutive time 
measurements will be worse than the previous ones. When appropriate parallel modes have 
been selected for all regions, the simulation is continued, and before each subsequent 
OpenMP region the appropriate number of threads is set by calling the 
omp_set_num_threads() function. 

SOMPARlib was created primarily as a case study and therefore has some important 
limitations. In the current implementation, we assume that the amount of work corresponding 
to each OpenMP parallel region is at the same level in all the iterations. Furthermore, each 
iteration of the main simulation loop must always contain the same OpenMP parallel regions 
executed in the same order. Assumptions about the structure of the program are so restrictive 
mainly due to technical limitations of the POMP interface available on the Blue Gene/Q 
architecture. When it comes to handling different OpenMP standard functionalities, currently 
only classical parallel regions and parallel loops are supported. In particular, SOMPARlib 
does not support OpenMP tasking. 

Usage of the SOMPARlib on the IBM Blue Gene/Q system is rather simple. Recompilation of 
the code is only necessary in the case of applications that use the SOMPARlib's API. 
Programs need to be also linked with the library, e.g.: 

$ bgxlc_r -qsmp=omp program.o -o program.x -lxlsmp_pomp -lsompar 

Thanks to the POMP implementation available in IBM compilers, SOMPARlib is able to 
control OpenMP parallel regions included within external libraries. SOMPARlib is able to 
detect and control OpenMP parallel regions defined within external libraries. Most 
importantly, no additional code modifications or recompilation of those libraries is required.  

Functionality of the SOMPARlib is shown based on the benchmark program specially written 
for this purpose. Benchmark code is made up of 512 successive iterations each consisting of 
five steps with different computational footprint. In the first step of the main simulation loop 
an N-body type computations are carried out. For all of 32768 particles in three-dimensional 
space distance and interactions between them are calculated. The loop over particles is 
parallelized with single OpenMP pragma. In the second step, the matrix multiplication is 
calculated with two square matrices of size 256 x 256. On the Blue Gene/Q system we use the 
OpenMP parallelized DGEMM available in the ESSL SMP library. Third step of the 
benchmark is an OpenMP implementation of a sorting algorithm applied to randomly 
generated sequence of 1048576 floating point numbers. The implementation is based on the 
qsort function available in the standard C library, which is applied in its thread-safe version 
to equal subsequences of the original data. The resulting sorted sequences are then merged 
into the final result. In the fourth step of the benchmark we use the FFTW (v.3.3.2) library 
compiled with OpenMP support to compute the 3D FFT of a 512 x 512 x 512 grid data. The 
last step of the main simulation loop is the LU factorization of a sparse matrix. For this 
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purpose we use the SuperLU-MT library and an example sparse matrix Fidapm11 of size 
22294 x 22294 and 623554 non-zero elements obtained from the Matrix Market. 

The most important result of presented test was the decrease of overall walltime for 
benchmark runs. To compare performance we have executed two benchmark runs with one of 
these runs compiled and controlled by the SOMPARlib. We compare the results obtained with 
the use of SOMPARlib with standard executions in available SMT modes. On the Blue 
Gene/Q platform we have executed the program on 16 (SMT1), 32 (SMT2) and 64 (SMT4) 
threads. The actual number of threads used by the application was chosen by setting the 
OMP_NUM_THREADS environment variable. In this way we try to mimic a situation where in 
order to obtain the highest scalability computations are executed with the use of a single MPI 
process per node and maximum number of threads available within node. The increase of 
performance was measured for all SMT modes; results are presented in Table 1. 

Parallel modes 16 (SMT1) 32 (SMT2) 64 (SMT4) 
Improvement 49.91% 21.37% 7.62% 
Table 1: Performance results for all SMT modes 

2.3 Topologically Aware Job Scheduling for SLURM 

WP180: Topologically Aware Job Scheduling for SLURM 
Authors: Seren Soner, Can Ozturan (Bogazici University)  

SLURM is a popular resource management system that is used on many supercomputers in 
the TOP500 list. SLURM provides two primary modes of operation for topology-aware job 
placement in order to reduce network contention: One mode for hierarchical interconnects 
like a tree (or a fat tree) and another mode for three-dimensional torus architectures. In this 
work, we contribute a new AUCSCHED3 SLURM scheduler plug-in that has a capability to 
do topologically aware mappings of jobs on hierarchically interconnected systems. 

SLURM identifies the lowest level switch in the hierarchy that can satisfy a job’s request and 
then allocates resources on its underlying leaf switches using a best-fit algorithm [1] 
AUCSCHED3 is based on our previous auction based scheduling algorithm of AUCSCHED2 
[2] [3]. AUCSCHED3 does the following: (i) It generates bids for topologically good 
mappings of jobs onto the resources and (ii) it adjusts the priorities of the jobs slightly without 
changing the original priority ordering of jobs so as to favor topologically better candidate 
mappings.  

Effectiveness of the new AUCSCHED3 plug-in is tested on a three level (levels 0, 1 and 2) 
hierarchically interconnected 1024 node system with 16 cores and 3 GPUs on each of its 
nodes. In the workloads used for testing, there are five types of jobs (named A, B, C, D, E) 
with each type making different resource requests as shown in Table 2. The workloads are 
made up of various percentages of these job types and are shown in Table 3.  

Job	Type	 Job	Description	
A	 only	x	cores	
B	 x	cores	on	y	nodes	
C	 x	cores	on	y	nodes,	1	GPU	on	each	node
C’	 x	cores	on	y	nodes,	1	to	3	GPUs	on	each	

node	
D	 x	cores	on	y	nodes,	2	GPUs	on	each	node
D’	 x	cores	on	y	nodes,	2	to	3	GPUs	on	each	

node	
E	 x	cores	on	y	nodes,	3	GPUs	on	each	node

Table 2: Job types in the workload 
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When testing SLURM’s Backfill plug-in, jobs of type A, B, C, D and E are used. 
AUCSCHED2 and AUCSCHED3 also provide support for generic resource ranges (which is 
not available in SLURM/Backfill). Such a feature can be useful to runtime auto-tuning 
applications that can make use of variable number of generic resource such as GPUs. Job 
types C’ and D’ and workloads 5’ and 6’ are the same as their counterparts but use GPU 
ranges. Therefore, we only test them using AUCSCHED3. 
	
	 	 Percentage	of	Jobs
Workload	

ID	
Number	
Of		Jobs	

A	 B C D E	

1	 350	 100	 0 0 0 0	
2	 2095	 100	 0 0 0 0	
3	 350	 0	 100 0 0 0	
4	 2095	 0	 100 0 0 0	
5	 350	 20	 20 20 20 20	
6	 2095	 20	 20 20 20 20	
5’	 same	as	5,	but	uses	GPU	ranges
6’	 same	as	6,	but	uses	GPU	ranges

Table 3: Workload types and job distributions 
 
To test our new AUCSCHED3 plug-in, we conduct emulation tests. We are able to retrieve 
topology related information of allocated jobs and hence we can evaluate goodness of 
allocations. The results are analyzed using the following performance measures:  (i) Lowest 
level common switch (the lowest level common switch from which all the nodes allocated to a 
job can be reached), (ii) Spread (the distance from the first node to the last node allocated to a 
job), and (iii) Utilization.   

Average lowest common switch level and the average spread measures are plotted in Figure 
1. To get a better insight, the distribution of jobs over lowest common switch levels of all jobs 
for all workloads and for 5,6,5’, 6’ workloads are given in Figure 2(a) and Figure 2(b) 
respectively.  

	

Figure 1: (a) Average lowest level common switch (b) Average job spread 
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Figure 2: Distribution of jobs over switch levels for all workloads (a), for 5, 6, 5’ and 6’ workloads (b) 
 
The results obtained on the emulated 1024 node system show that  AUSCHED3 plug-in is 
able to generate better topological mappings than SLURM/Backfill. It can do this while 
keeping system utilization levels even higher than that of SLURM/Backfill in the case of 
workloads 1, 2, 5, 6, 5’, and 6’. In the case of workloads 3 and 4, utilizations drop slightly by 
4% and 5% respectively. However, considering the fact that the switch levels of 
AUCSCHED3 mappings are lower, the execution times are likely to be shorter due to faster 
communication and hence the differences in utilizations in these cases are likely to be smaller.  
Overall, AUCSCHED3 is able to generate both topologically better mappings of jobs and 
achieve higher system utilizations especially in workloads involving jobs that request both 
CPU and GPU resources. 

2.4 Self-improving workflow models for generating of combinatorial objects 
designed in the Kepler Project System 

WP181: Self-improving workflow models for generating of combinatorial objects designed in 
the Kepler Project System  
Authors: Krzysztof T. Zwierzyński (PSNC)  

We consider the problem of design of self-improving meta-model of workflow of jobs that is 
sensitive on the change of the computational environment. As an example of searched 
combinatorial objects some classes of integral graphs are used. We propose some dedicated 
methods that can improve the execution time of workflow based on decision trees and the 
replication of some actors in the workflow. 

The Kepler Project [4] is based on the Ptolemy II System, a platform supporting multiple 
models of computation, i.e.: Synchronous Data Flow, Dynamic Data Flow, Process Network, 
Discrete Events, and Continuous Time. The Kepler Project provides a graphical user interface 
and a run-time engine that can execute workflows either from within the graphical interface or 
from a command line. Workflows can be nested, allowing complex tasks to be composed 
from simpler components. Kepler Project workflows are defined in the Modeling Markup 
Language (MoML) [5]. 

Let G = (V, E) denote a simple graph with a nonempty vertex set V of a cardinality n = |V|, 
and a set of pairs of vertices called edges E where loops are forbidden. The distance matrix 
(Dis(G)) of G is an all-pairs shortest path matrix consisting distances between all pairs of 
vertices in the graph G. The set Sp(G) = {1, 2,…, n,} of graph eigenvalues of the adjacency 
matrix A is called the spectrum of graph G. The combinatorial goal was to find all graphs of 
given order n with distance matrices that have integral eigenvalues.  

The workflow model of the computation in the Kepler Project is a bipartite digraph W = (A 
R InP OutP, LP LR), where A is set of Actors (units that can perform some 
computation; in particular Composite Actors). The set R contains vertices that correspond to 
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relations. InP is the set of input ports and OutP is set of output ports, respectively. LP is a set 
of pairs (a, p) where a �A, and p InP  OutP. LR is a set of pairs (r, p) where r R, and 
i InP  OutP. The workflow shown in the Figure 3 represents a simple pipeline workflow: 
the output from A1 is the input for A2; the output of A2 is the input for A3. The relations R1 
and R2 correspond to the arrow.  

 

 
 
 
 
 
 

 
 

The main goal is to describe the possibilities of transforming workflows in such a way that the 
runtime of new one should be shorter than the old one. From that reason we define some 
meta-workflows that can take some statistic data of executions of some set of workflows and 
chose the best one, or define a decision tree which workflow use for a specific values of 
parameters of the combinatorial problem to solve.  

Figure 4 shows the Kepler Project workflow that generates graphs using the G(n, p) model. 
The value p is an edge probability. The graphs are stored in the Prologue database as 
compound terms. The main benefit of this web-service oriented solution is that we can also 
put into the Prologue database some producing rules that add some new compound terms 
derived from the facts in the database.  

 
Figure 4: Usage the G(n, p) model and the Prologue database  (n = 4 and p = 0.5) 
 
Using the meta-workflow shown in the Figure 5 we can obtain statistics about the runtime of 
some programs. 
 

AA AR R

Ports: 

Actors, 

Figure 3: The model of computation (○: A – Actors; ◊: R – Relations, ▼� InP   Input 
ports; ▲: OutP   Output ports) 
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Figure 5: The meta-workflow about runtimes of a given program in the function of task size. 
 
If some calculations for instances of the problem can be done independently then to improve 
the runtime we can make the replication of the main Actor in the workflow. The useful limit 
of the replication can be obtained experimentally. The replication technique is also a method 
that can auto-tune workflows for new generations of computers where for each processor 
more cores will be available. However, that schema of replication has a limit that comes from 
the bottleneck of the task scheduler.  

We can also introduce in a workflow some Map-Reduce technique. Figure 6 displays one of 
the methods that introduce a decision tree (DT) into the Kepler Project workflow. The 
Expression Actor compare vectors of parameters values X of the task with the vector of 
thresholds values T. It results in some decision class. 

 

 
Figure 6: An example of usage the Expression Actor as the decision tree (DT) 
 
To build a DT we can use J.R. Quinlan’s algorithm called c4.5 [5]. To improve the thresholds 
in the DT we can during the execution of workflow run additionally in parallel way some 
other algorithm chosen randomly from the sequence. If it finishes the execution before the 
algorithm chosen by DT, then we can add this information to the training set, and build a new 
DT. Instead of choosing another algorithm randomly we can use information about thresholds 
values. If the parameter value is equal to the threshold value in the node close to leafs of DT 
than we can run in parallel both branches. If we distribute computation over the network of 
heterogeneous hosts, we can also use DT in the job scheduling algorithm to find the best host 
that can make the fastest computation of our task. 

The same strategy can be used in the case when the task can be divided into two or more parts 
(subtasks). Then in the case when one big task is working to long, we can run in the delay 
technique its equivalent subtasks. This can be done hierarchically for subtasks.  
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2.5 Evaluating Component Assembly Specialization for 3D FFT 

WP182: Evaluating Component Assembly Specialization for 3D FFT 
Authors: Jérôme Richard (LIP/Univ. Orléans), Vincent Lanore (LIP/ENSL), Christian Perez 
(LIP/Inria) 

The Fast Fourier Transform (FFT) is a widely-used building block for many high-
performance scientific applications. Efficient computing of FFT is paramount for the 
performance of these applications. This has led to many efforts to implement machine and 
computation specific optimizations. However, no existing FFT library is capable of easily 
integrating and automating the selection of new and/or unique optimizations. 

To ease FFT specialization, we have evaluated the use of component-based software 
engineering, a programming paradigm which consists in building applications by assembling 
small software units. Component models are known to have many software engineering 
benefits but usually have insufficient performance for high-performance scientific 
applications. 

This work is based on L2C [6] a general purpose high-performance component model, and it 
studies its performance and adaptation capabilities on 3D FFTs. Experiments show that L2C, 
and components in general, enables easy handling of 3D FFT specializations while obtaining 
performance comparable to that of well-known libraries. However, a higher-level component 
model is needed to automatically generate an adequate L2C assembly 

The L2C model [6]can be seen as an extension of modular compilation or as a low level 
component model that does not hide system issues. Indeed, each component is compiled as an 
object file. At launch time, components are instantiated and connected together according to 
an assembly description file (LAD) or to an API. L2C supports various features like memory 
sharing, C++/FORTRAN procedure invocations, message passing with MPI, and remote 
procedure calls with CORBA thanks to provides/uses port and MPI ports (MPI communicator 
sharing). Components can also expose attributes used to configure component instances. A 
L2C assembly descriptor file contains a description of all component instances, their attributes 
values, and the connections between instances. Each component is part of a process and each 
process has an entry point (an interface that is called when the application starts).  

We have designed and implemented in L2C various assemblies to analyze how L2C can be 
used to implement distributed 3D-FFT based on the use of global transpositions. First, we 
have first designed a basic 3D-FFT assembly using 1D decomposition. Then, we have 
improved it with some optimizations from the literature. Optimizations have been applied in 
three stages to highlight different component model features: i) replacing a component 
implementation with a more optimized implementation (transpose implementation), ii) using 
component attributes for heterogeneous platforms tuning, and iii) global assembly adaptation 
to implement computation/communication overlapping and 2D decomposition. 

We have evaluated the component based approach in terms of performance and adaptability 
through some L2C assemblies. Performance and scalability are evaluated on up to 512 cores 
on homogeneous and heterogeneous architectures. Adaptability relates to the easiness to 
implement the various optimizations, and to how much code has been reuse. 

Experiments have been done on multiple clusters of the Grid’5000 experimental platform 
[7].These clusters are Griffon, Graphene, Edel and Genepi. They are made of quad-core dual 
processor but Graphene whose nodes have a quad-core mono-processor. For heterogeneous 
tests, we have used the Genepi cluster and the Edel cluster. Both clusters are connected to the 
same InfiniBand network. However, they have different processors which make them suitable 
for heterogeneous experiments. 
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Assembly 
Name 

Decom-
position 

#Transpo
sition 

Hetero. Library 
Name 

Decom-
position 

#Transpo
sition 

Hetero. 

1D 2t xz 1D 2 No FFTW 1D 2 Not used 

1D 1t yz 1D 1 No FFTW 1t 1D 1 Not used 

1D 2t yz 1D 2 No 2DECOMP 
1D1t 

1D 1 
Not 

available 1D 2t yz blk 1D 2 No 

1DH 1t yz 1D 1 Yes 2DECOMP 
1D2t 

1D 2 
Not 

available 1DH 2t yz blk 1D 2 Yes 

2D 3t 2D 3 No 2DECOMP 
2D 

2D 3 
Not 

available 2DH 3t 2D 3 Yes 

Table 4: Assemblies and reference libraries used in experiments 
 
Table 4 summarized the L2C assemblies and the reference FFT libraries that are used in 
experiments. All experiments involve complex-to-complex 3D FFTs. We have not used L2C 
assemblies with overlapping because their implementation is still ongoing. The FFT libraries 
used as reference are FFTW 3.3.4 and 2DECOMP 1.5. All libraries are configured to use a 
complex to complex 3D FFT without overlapping (as for L2C assemblies) using FFTW 
sequential implementation and double precision floating point. All implementations use 
FFTW_MEASURE planning. The compiler is gcc (version 4.7.2) and the implementation of 
MPI is OpenMPI (version 1.8.1). 

 
Figure 7: Experiments for a 2563 matrix, 1D 
decomposition, and two transpositions on Griffon. 

Figure 8: Execution time for a 2563 matrix, 2D 
decomposition, and one transposition on Graphene. 
 

Figure 9 and Figure 7 shows that L2C assemblies can be as efficient as reference libraries for 
1D decomposition. However, as shown in Figure 8, the L2C assembly needs more 
optimization to compete when using 2D decomposition. 
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Figure 9: Experiments for a 2563 matrix, 1D 
decomposition, and two transpositions on a 
heterogeneous cluster (Edel+Genepi). 

Figure 10: Experiments for a 2563 matrix, 2D 
decomposition, and one transposition on a 
heterogeneous cluster (Edel+Genepi). 
 

Figure 9 and Figure 10 have been obtained on a heterogeneous cluster made of two 
homogeneous clusters (Edel and Genepi) for 1D and 2D decomposition respectively. The goal 
of these experiments is to show that components enable to easily adapt an assembly to support 
heterogeneity and that of course improves performance. 

Assembly 
Name 

C++ Lines of 
Codes 

Code reused Assembly 
Name (cont.) 

C++ Lines of 
Codes (cont.) 

Code reused 
(cont.) 

1D 2t xz 927 - 1DH 1t yz 983 80% 

1D 1t yz 929 77% 1DH 2t yz blk 1097 72% 

1D 2t yz 929 100% 2D 3t 1067 87% 

1D 2t yz blk 1035 69% 2DH 3t 1146 69% 

Table 5: Total number of lines for the various versions of the 3D FFT application 
 
With respect to reuse, Table 5 shows code reuse (in terms of number of lines of C++ code) 
between some of L2C assemblies. Reuse is the amount of code that is reused from the 
assemblies list higher in the table. Overall, our L2C implementations are much smaller than 
2DECOMP or P3DFFT (respectively 11570 and 8118 lines of FORTRAN code); that is also 
because they implement more features. 

With respect to adaptation, which is the goal of this work, components enable lightweight and 
specialized assemblies. Several optimizations from the literature have been implemented, 
taking advantages of code reuse, component replacement in assemblies, and component 
attribute tuning. Other optimizations require the implementation of new components. The 
specialization process allows to reuse most of the base components (69% to 100% reuse) 
without any modification. 

With L2C, assembly descriptions need to be rewritten for each specific hardware. As it is 
fastidious and error-prone, such descriptions should be automatically generated. This is one of 
the purposes of HLCM [8], a high level component model. HLCM also aims at automating 
assembly generation. To this end, one direction is to rely on 3D FFT performance models. 
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2.6 Performance Improvement in Kernels by Guiding Compiler Auto-
Vectorization Heuristics 

WP183: Performance Improvement in Kernels by Guiding Compiler Auto-Vectorization 
Heuristics 
Authors:  Miceli (NUIG/URennes), Christian Lalanne (NUIG), Michael Lysaght (NUIG), 
Michael Browne (NUIG), William Killian (UDel), EunJung Park (UDel), Marco A. Vega 
(UDel), John Cavazos (UDel) 

Vectorization support in hardware continues to expand and grow as we still continue on 
superscalar architectures. Unfortunately, compilers are not always able to generate optimal 
code for the hardware; detecting and generating vectorized code is extremely complex. 
Programmers can use a number of tools to aid in development and tuning, but most tools 
require expert or domain-specific knowledge to use. In this work we aim to provide 
techniques for determining the best way to optimize certain codes, with an end goal of 
guiding the compiler into generating optimized code without requiring developer expert 
knowledge. Initially, we study how to combine vectorization reports with code generation and 
iterative compilation and summarize our insights and patterns on how the compiler vectorizes 
code. Our code generation and compilation utilities can be further used by non-experts in the 
generation and analysis of programs. Finally, we leverage the obtained knowledge to design a 
Support Vector Machine classifier to predict the speedup of a program given a sequence of 
optimization. We show that our classifier can predict the speedup of 56% of the inputs within 
15% over- and 50% under-prediction, with 82% of these accurate within 15% both ways. 

Based on previous experience [9] we developed two utilities in order to help with version 
generation for iterative compilation. autovec is a source-to-source compiler which 
translates a simplified directive language to a compiler-specific directive language (e.g. Intel 
Compiler, CAPS HMPP Compiler, PGI Compiler). VALT (vectorization and loop 
transformation) performs iterative compilation among a set of optimizations to apply more 
than once in a given program. These utilities can help non-experts in the generation and 
analysis of codes; they have been used here to understand the inner workings of the 
compiler’s vectorization strategies. 

 

autovec directive Intel-specific pragma 

permute generate each version 

vl(x) simd 

vectorlength(x) 

always vector always 

ivdep Ivdep 

none <nothing> 

Table 6: autovec directive support and 
translation 

 
 
 
 
 
 
 
 
 
 

VALT directive Intel-specific pragma 

vector(default) <no code emmited> 

vector(none) novector 

vector(always) vector always 

vector(ignore) ivdep 

vector(aligned) vector aligned 

vector(temp) vector temporal 

vector(nontemp) vector nontemporal 

vectorsize(x) simd vectorlength(x) 

loop(unroll(x)) unroll(x) 

loop(jam(x)) unroll_and_jam(x) 

loop(nofusion) nofusion 

Loop(dist) distribute_point 

Table 7: VALT directive language translation for Intel-
specific pragmas 

 
 

To evaluate the Intel compiler’s built-in vectorization heuristics, two sets of benchmarks were 
used to determine performance improvement: Test Suite for Vectorizing Compilers [10], with 
151 loop nests, is an extension and modification of a test suite for vectorizing FORTRAN 
compilers in the late 1980’s [11] and Polybench/C 3.2 [12] with 30 micro-kernels, stems from 
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Pouchet’s work with Polyhedral compilers. We studied the vectorization reports generated by 
the Intel compiler and compared the original benchmark’s vectorization report to the 
vectorization reports from each version generated by autovec and VALT. With this we 
identified patterns and trends followed by the vectorization heuristics. Figure 11 shows 
sample performance analysis of 4 different loop nests with varying level of correctness. 

(a) Good speedup observed; no invalid code generation (b) Good speedup observed with invalid code faster 

(c) No speedup observed; invalid code generation faster (d) No speedup observed; invalid code generation 

Figure 11: TSVC loop nest optimizations and speedup comparison (valid code is green; invalid is red). 
 
We were also able to classify TSVC loop nests into a four 
different categories: 

1. Non-vectorizable – Loop nests not vectorizable. 16 
benchmarks (11%) were not vectorizable as indicated 
by the optimized version vectorization report and 
minimal/non-existing speedup observed. 

2. Known vectorization pattern – Loop nests which could 
be vectorized by the compiler with minimal additional 
speedup observed after optimizing. 69 benchmarks 
(46%) fell into this category. This suggests that overall 
the Intel compiler is able to vectorize code well with its 
built-in heuristics although they are not always optimal. 

3. Inner-loop vectorizable – Loop nests not initially 
vectorized well but better optimized with a #pragma 
simd directive placed in an inner loop. 12 loop nests (8%) were inner-loop vectorizable 
with a speedup of at least 2×. 

4. Outermost-loop vectorizable – Loop nests not initially vectorized well but better 
optimized with a #pragma simd directive placed in the outermost loop of the loop 
nest. 54 loop nests (35%) were outermost-loop vectorizable with a speedup of at least 2×. 

SVM-Based Speedup Predictor 

Given the speedup information based on different 
optimizations for a collection of loop nests, we designed a 
support vector machine (SVM) classifier to automate the 
prediction of benchmark speedups given an optimization 
sequence. We used the 151 loop nests from TSVC as training 
data for our predictor model. For training we specified our 
feature vector as consisting of 45 performance counters [13] 
[14] normalized to the total of instructions executed, the 

Percentile Type Count 

0.15 Under 45 

0.50 Under 15 

1.00 Under 12 

2.00 Under 16 

> 2.00 Under 27 

0.15 Over 24 

> 0.15 Over 12 

Table 8: Speedup Predictor 
Accuracy 

Figure 12: Categorization of 
TSVC loop nests. 
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speedup of vectorized code over non-vectorized code, the optimization bit vector, and the 
speedup of optimized code over vectorized code. We tested our trained models with leave-
one-out cross validation (LOOCV). Our results in Table 8 show that 84 of the loop nests were 
accurate within 15% over-prediction and 50% under-prediction. 5 of the over-predictions 
were on non-vectorizable loop nests. The predictor could not accurately predict speedup for 
over 44% of the loop nests. For 46% of the loop nests, the predictor was accurate within 15%. 
Analysis of the types of loop nests and the predicted speedup did not show correlation 
between the types of benchmarks which were under- and over-predicted. In the future, we can 
reuse this predictor in auto-tuning frameworks [15] [16]. 

2.7 Scalable algorithm for network bandwidth / latency hierarchy detection 
and designing topology aware collective routines and testing performance in 
CPMD application 

No whitepaper 
Supported by: Johan Raber, Chandan Basu (SNIC-LiU) 

The goals of this project are to develop a scalable code identifying interconnect performance 
tiers reflecting the interconnect topology. This information subsequently is to be used in 
forming MPI collective groups for use in improved MPI ALL-TO-ALL scalar/vector 
collective routine of our design. It has also been our goal to demonstrate the viability of our 
approach on a popular quantum chemistry code, CPMD, which relies heavily on 
MPI_ALLTOALL in its implementation. 

The identification of interconnect performance tiers has been done using statistical tools, most 
prominently Classification and Regression Tree models (CART) [17] using a two-phased 
approach. In the first phase, ping-pong latency data from selectively chosen, and 
representative, nodes and ranks of the system are used to build a statistical decision tree where 
rank pair data such as ping-pong latency, bandwidth and message rates can be used to 
categorize the relation between them, for instance whether they share memory controller or 
they reside on different nodes. In practice this traversing of the decision tree is done through a 
series of comparison operations on the input data record, the simplest case of which is shown 
in Figure 13. 

 
The first phase is intended as a one-time effort for any given cluster (or other system) and sets 
up the categorization criteria to be used in the second phase, the runtime classification and 
MPI group forming. 

Figure 13: Graphical output from the statistical software R. 
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In the work presented in this report, we have chosen to measure small message ping pong 
latency. This because every switch an MPI data package passes incurs a latency overhead 
whereas it does not necessarily incur a detectable bandwidth drop, which should allow the 
detection of the number of switches an MPI package passes. This is shown in Figure 14  that 
displays measurements on two popular interconnect topologies as kernel density plots. 

 
Figure 14: Kernel density plots of rank pair latency data from the Triolith commodity cluster. 
 
The data collection is based on the OSU micro benchmark code (osu_latency) for small 
message latency and our adaptation of it for our purposes also contains a fix to handle the 
problem of the very common outliers in the measurement data. The outliers are caused by 
network congestion as well as OS incurred interrupts. The way we deal with this is to simply 
increase the number of samples taken per rank pair data collection record and to also drop 
20% of the head and tail extreme values sampled. Dropping the head values is possibly not 
necessary since there is a hard physical limit to how low they can be and they should 
therefore not be considered as “noise” to be dropped. 

To investigate the feasibility and scope of our approach on different interconnect topologies 
we have performed measurements on two important classes of supercomputers, a commodity 
cluster using InfiniBand interconnect in a fat tree topology, and also a Cray system using their 
proprietary Gemini interconnect in a 3D torus topology. The results are depicted in Figure 14  
and they merit some comments. The first two peaks (from the left) in the left plot arise from 
intra node rank pairs, the first of which come from rank pairs sharing memory controller. 
Next comes a group of three peaks arising from rank pairs on different nodes sharing the same 
InfiniBand switch and then comes the last group of three peaks stemming from rank pairs on 
different nodes residing on different InfiniBand switches. The fine structure of these groups 
arise from the computer architecture of present day two-socket Intel Sandybridge based 
servers where the low latency peak consists of rank pairs where both ranks reside on the CPU 
socket controlling the PCI express bus hosting the InfiniBand HCA. The high latency peak in 
these groups consists of rank pairs on sockets not controlling the IB HCA. 

The right plot of Figure 14 has much less well defined peaks except for the first two. These 
stem from intra node rank pairs and their relative size difference comes from the two-socket 
nodes and the AMD Magny-Cours CPU which has two memory controllers per socket 
resulting in four memory controllers per node. Beyond these two well defined peaks lies a 
“data smear” devoid of clear features. This looks like a characteristic of the 3D torus topology 
the cause of which we have not investigated. Likely, our approach cannot be used to good 
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effect on this supercomputer architecture beyond identifying intra node rank pairs, switch 
jump count detection seems out of reach. 

We have earlier worked on a topology aware ALL-TO-ALL vector routine [18] [19]. This 
routine detects intra-node and inter-node topology and forms intra-node and inter-node MPI 
communicators. In our implementation ALL-TO-ALL communication is achieved by first an 
ALL-TO-ALL across inter-node ranks followed by several ALL-TO-ALL across intra-node 
ranks. As intra-node bandwidth and latency are better than that of inter-node this gives better 
ALL-TO-ALL performance. We have shown before [18] [19]  that performance of our ALL-
TO-ALL vector routine is better than the normal MPI_ALLTOALLV routine. Our earlier 
implementation of ALL-TO-ALL had a different interface than MPI_ALLTOALLV. In 
addition, it required some initialization routine to be called whenever a new dataset is to be 
sent. The usage of this routine therefore required some changes in the application source code. 
In this project we have extended our work on ALL-TO-ALL routine. We have made the 
interface of our ALL-TO-ALL vector routine the same as that of the MPI_ALLTOALLV 
routine. We have created a FORTRAN interface of our ALL-TO-ALL vector routine and we 
have also created topology aware ALL-TO-ALL scalar routine. With these enhancements 
these routines can now directly replace MPI_ALLTOALL / MPI_ALLOTOALLV in any C / 
FORTRAN program without any code change.  

We have tested our ALL-TO-ALL routine in the CPMD code [20] CPMD is an ab-initio 
molecular dynamics code written in FORTRAN. It is well known that CPMD code 
performance is dominated by MPI_ALLTOALL time [21]. For compiling CPMD with our 
ALL-TO-ALL routine we added the extra preprocessor flag -
DMPI_ALLTOALL=MPI_ALLTOALL_TUNED at the compile time, where 
MPI_ALLTOALL_TUNED is the name of our ALL-TO-ALL routine. At link time we add the 
library containing the MPI_ALLTOALL_TUNED routine. We have used gcc 4.7.2, Intel MPI 
4.0.3.008 and Intel MKL 11.0.4.183 for compiling CPMD code. 

For our benchmarking we have used the CPMD Si512 Inp-1 benchmark. We measure the 
total run time t_ref and t_tuned respectively for “reference CPMD binary with 
MPI_ALLTOALL” and “tuned CPMD with MPI_ALLTOALL_TUNED”. We define 
speedup = (t_ref - t_tuned) / t_ref. Figure 15 shows the %speedup of the tuned version of 
CPMD. For small number of ranks the tuned version is slightly slower than the reference 
version of CPMD which is expected as our approach is expected to give speedups for wide 
runs. We see that for 256 rank and 1024 rank runs the tuned version is more than 60 % faster. 
However for 512 rank run there is no speedup. This anomaly may be due to some change in 
internal algorithm in the MPI_ALLTOALV at this size.  
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Figure 15: CPMD benchmark.  The speedup is defined as (t_ref - t_tuned) / t_ref. 
 
It seems clear that our approach to performance tier detection is viable for at least the 
commodity cluster class of supercomputers where it is capable of producing very finely 
resolved data to form MPI groups. Its usefulness is therefore limited by how well an MPI 
application developer can utilize this information in the setup of the calculation and not by the 
precision of the performance tier detection. It is more than capable enough to serve our goal 
for using it with our improved MPI ALL-TO-ALL routines. In our current implementation of 
ALL-TO-ALL routines we have not integrated the information from network tier detection. 
At present we are only detecting intra-node and inter-node network tier. The replacement of 
our MPI_ALLTOALL_TUNED routine in the CPMD code shows speedup in general. We will 
continue working on further improving our topology aware collective routines.  

2.8 Conclusion 

During this one year of extension, six projects successfully contributed to Task 12.1 that is 
about auto-tuning HPC systems. They all aimed to automatize the efficient usage of HPC 
systems Indeed, petascale and post-petascale systems are too much complex to rely on non-
experts to optimize their usage. The results of these six projects have concerned various 
aspects of an HPC system. 

 Language 
o The library named SOMPARlib has shown to be able of controlling 

dynamically the number of threads allocated to OpenMP parallel regions to 
decrease the overall walltimes for benchmarks runs. 

 Job scheduler 
o An improved version of the AUCSCHED SLURM scheduler plug-in 

(AUCSCHED3) achieves better mappings and higher system utilization by 
using topologically aware mappings on hierarchically interconnected systems. 

 Workflows 
o Meta-model based dedicated methods relying on decision trees and the 

replication of some workflow actors have been design and integrated into 
Kepler to improve the execution time of workflows. 



D12.5 Summary of Novel Programming Techniques Results 
 

PRACE-2IP - RI-283493  22.8.2014 20

 Component models 
o This work has shown that equivalent performance, better code reuse, and 

much easier specialization of 3D FFT codes can be obtained by using a 
component based approach. 

 Compiler 
o A method and tools (code generation and compilation utilities) have been 

proposed to let non-experts improve the vectorization of their codes to improve 
their performance. 

 Collective communications 
o A method to detect tier performance and its inclusion into an MPI All-to-all  

implementation have been proposed and its benefit in term of performance 
improvement have been shown on a quantum chemistry code (CPMD) 
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3 Scalable Numerical Algorithms 

3.1 Introduction 

Numerical algorithms play a vital role for solving several different big problems encountered 
in physics, chemistry and mathematics. With the advent of modern supercomputers with 
thousands of cores and enabling parallel tools that utilize numerical algorithms, it became 
necessary to reconsider efficiency of these tools running on emerging large-scale systems. 
This section contains the works that are aimed towards improving parallel performance of the 
numerical algorithms with several diverse parallel techniques such as utilization of GPU and 
MIC accelerators (Sections 3.2, 3.6 and 3.8), message-passing paradigm (Sections 3.2, 3.3, 0, 
3.6, 3.7 and 0), and shared memory constructs (Section 0). There are algorithmic approaches 
(Sections 0 and 3.6) to increase the efficiency of widely used numerical algorithms (such as 
Conjugate Gradient (CG)) as well as adaptive parameter determination and utilization 
(Sections 3.7 and 0). The target applications and libraries include HYDRO, PETSc, CP2K 
and FETI. 

The first work in Section 3.2 focuses on a cellular automata algorithm that models fluid flows, 
called the Frish-Hasslacher-Pomeau model. It improves the performance of this algorithm 
using multiple GPUs with OpenCL. Comparing this approach to a previous work with 
OpenACC, it is shown that OpenCL has more potential for improvement. 

Section 3.3 presents a novel hybrid distributed memory algorithm for nonlinear parameter 
optimization with parameter pools. This algorithm finds its application in a nonlinear dynamic 
system which is exemplified as the asset flow differential equations. The optimization 
objective is to determine the parameters for which the differential equations produce the best 
fit using daily market prices and net asset values. The presented algorithm can handle large 
number of parameters and obtains smaller error with better improvement factor. 

The work in Section 0 aims to improve the performance of the Coarse-Grain version of 
HYDRO application by introducing OpenMP tasks into this tool. Using the task dependency 
concept introduced with OpenMP 4.0, a subdomain synchronization scheme is realized. With 
this approach, almost perfect scalability is attained. 

The work in Section 0 tries to improve the parallel performance of sparse linear iterative 
solvers through proposing a novel scheme that completely avoids the communication latency 
overhead of parallel sparse-matrix vector multiplication operations. Basically, the solver is 
organized in such a way that two different types of communication operations (P2P and 
collective communications) can be performed simultaneously. Although the proposed 
methodology is realized in CG solver, the reorganization method is applicable to most of the 
Krylov subspace methods. The proposed computational rearrangement scheme has no 
potential to introduce numerical instability to the solver. The simultaneous communication is 
realized by embedding P2P messages into the collective communication messages. With this 
approach, it is shown with the large-scale experiments on a Cray XE6 and IBM BlueGene/Q 
machine that the CG solver can be scaled much better.  

Yet another approach for scaling CG iterative solver is presented in Section 3.6. In this work, 
a pipelined CG solver is used to overlap more computation with communication and is 
implemented within the FETI application. Besides, the performance of MAGMA LU dense 
direct solver is evaluated on GPU and MIC accelerators. 

Section 3.7 focuses on Finite Element Method (FEM) simulation of thermal and electrical 
fields. In an effort to reduce the simulation time, rather than using a uniform discretization of 
the time interval, an adaptive time-stepping scheme is utilized. With the objective of 
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discovering feasible values for the threshold parameters on both structured and unstructured 
meshes, an IBM BlueGene/P computer is used and the results indicate that the time-stepping 
approach leads to better scalability and decreases the number of both inner and outer 
iterations drastically. 

Another work that takes advantage of GPU accelerators is summarized in Section 3.8. 
Specifically aiming at DBCSR library (responsible for performing sparse matrix 
multiplications) of the CP2K application, the applicability and performance of OpenACC and 
OpenCL parallel tools are illustrated by comparing them to BLAS, SMM, and MATMUL. 

The final work in this subtask focuses on asynchronous solution of sparse linear systems and 
is explained in Section 0. Aiming at solving the linear elasticity equations in a solid cuboidal 
block of material, the proposed solver is realized in PETSc tool. In addition, an automatic and 
adaptive scheme is proposed to determine the parameter for dynamically adjusting local 
convergence criterion. It is shown that this auto-tuning approach yields better performance 
compared to the one that uses the fixed parameter. 

3.2 FHP library multi-GPU extension with MPI and OpenCL 

WP184: Multi-GPGPU Cellular Automata Simulations using OpenCL 
Authors: Sebastian Szkoda (WCSS, IFT UWr), Zbigniew Koza (IFT UWr), Mateusz 
Tykierko (WCSS, IIAR PWr) 

The aim of this research is to examine the possibility of parallelizing the Frish-Hasslacher-
Pomeau (FHP) model, a cellular automata algorithm for modelling fluid flow, on clusters of 
modern graphics processing units (GPUs). To this end an Open Computing Language 
(OpenCL) implementation for GPUs was written and compared with a previous, semi-
automatic one based on the OpenACC compiler pragmas (S. Szkoda, Z. Koza, and M. 
Tykierko, Multi-GPGPU Cellular Automata Simulations using OpenACC, http://www.prace-
project.eu/IMG/pdf/wp154.pdf). Both implementations were tested on up to 16 Fermi-class 
GPUs using MPICH3 library for inter-process communication. We found that for both of the 
multi-GPU implementations the weak scaling is practically linear for up to 16 devices, which 
suggests that the FHP model can be successfully run even on much larger clusters. Secondly, 
while the pragma-based OpenACC implementation is much easier to develop and maintain, it 
gives as good performance as the manually written OpenCL code. 

 
Figure 16: The strong and weak scaling on 16 nodes each with 2 NVIDIA M2050 cards. 
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Using 8 professional HPC computing nodes with two Nvidia M2050 units each, we could go 
up to 400 GUps (giga lattice updates per second). The result is one order of magnitude faster 
than for the single GPU implementation, which still is 4 times faster than the fastest CPU 
implementation (OpenMP + SSE) on a computing node with Intel Xeon X5670, considering 
weak scaling. The results for the weak and strong scaling for up to 16 GPUs are shown in 
Figure 16. The weak scaling is almost linear for both implementations. Figure 16 also 
presents results for an alternative OpenACC, Multi-GPU implementation, presented in a 
previous work. Performance results of both implementations are equal, but it is important to 
remark that the multi-spin implementation considered here is perfectly suited for SIMD 
devices which allow semi-automatic OpenACC porting to be equally efficient as the hand-
written code. This situation is expected to be rare. 

3.3 Scalable Parallel Nonlinear Parameter Optimization Algorithm with 
Parameter Pools  

WP185: Scalable Parallel Nonlinear Parameter Optimization Algorithm with Parameter 
Pools 
Authors: Ahmet Duran (UHEM-ITU), Mehmet Tuncel (UHEM-ITU) 

In this project, we propose a new hybrid algorithm and implement it using MPI. In particular, 
we study a scalable parallel nonlinear parameter optimization algorithm with parameter pools 
for a nonlinear dynamical system called the asset flow differential equations (AFDEs) in 4. 
AFDEs have been developed and analyzed by Caginalp and collaborators since 1989 [22], 
[23] [24], [25], [26]. The algorithm is applicable for parameter optimization of the related 
nonlinear dynamical system of differential equations with thousands of parameters. 

Duran [27] introduced a serial algorithm called the asset flow optimization forecast algorithm. 
An inverse problem involving parameter optimization for AFDEs was used in order to 
forecast near term market returns by following an out-of-sample procedure. Duran and [28]. A 
quasi-Newton (QN) weak line search with the Broyden–Fletcher–Goldfarb–Shanno formula 
[29] and their semi-dynamic initial parameter pool are utilized in conjunction with daily 
market prices and net asset values to determine the parameters for which the AFDEs yield the 
best fit for the previous n days in the optimization procedure. They use nonlinear least-square 
technique with initial value problem (IVP) approach by focusing on the MP variable P since 
any real data for the other three variables B, ζ1 , and ζ2 in the dynamical system is not 
available explicitly. The gradient (∇ F (x)) is approximated by using the central difference 
formula, and step length s is determined by the backtracking line search [30].They [28] 
construct a pool of initial parameters K i chosen via a set of grid points in a hyper-box. They 
select an initial parameter vector from the initial parameter pool because the optimization 
success of quasi-Newton method in the algorithm depends on the initial parameter. Besides 
the fixed part of various initial parameters, the dynamic part of the pool is updated by adding 
successful parameters so that they keep a pool of different and most recently used candidate 
parameters. It is a feasible dynamic multi-start approach without a convexity assumption for 
their semi-unconstrained optimization problem. The parametric sensitivity analysis was 
performed by Duran [25]. Later, Duran studied the stability analysis of the AFDEs, in three 
versions, analytically and numerically. 

There are several challenges while studying numerical parameter optimization of the 
nonlinear dynamical systems. For example, some initial parameters may lead to singularities 
in the AFDE during parameter optimization process. Our implementation handles these kinds 
of problems. Moreover, we apply nonlinear optimization technique for arbitrary conditions 
with various initial parameters in a challenging financial application. Furthermore, for 
optimization methods using derivatives in a nonlinear model it is important to start the 
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iteration close enough to the potential global minimum to get rid of being caught in a local 
minimum. There is no strategy that will guarantee the number of necessary iterations to 
discover the neighbourhood of the global optimum [31]. Therefore, we need sufficiently large 
number of initial parameters systematically via high performance computing. 

In this study, we propose a parallel nonlinear parameter optimization algorithm. One of the 
novel components of the former algorithm was the presence of the dynamic initial parameter 
pool that contains most recently used successful parameters, besides the various fixed 
parameters from a set of grid points in a hyper-box. Therefore, it has dependencies on the 
most recently used successful parameters. 

We use fixed initial parameter pool with more number of parameter vectors so that we can get 
rid of the dependencies. Unlike the serial algorithm, the new algorithm has a classified initial 
parameter pool with partitions that can generate different curves having behaviours such as 
almost steady, uptrend, downtrend, strong uptrend and strong downtrend. In Stage 2, each 
core performs curve fitting by using its own initial parameters and the steps in the serial 
algorithm [28] are followed to find the local optimal parameters.  

 

 
Figure 17: Monte Carlo simulation of the MIF for curve fitting of Price_1k_v2. 
 
Algorithm. The parallel nonlinear parameter optimization algorithm 

Stage 1. Obtain classified initial parameter pool having partitions that can generate different 
curves having various behaviours.  
Stage 2. Apply pool partitioning for parallelism. Each core should find the local optimal 
parameter(s) by using its local initial parameters.  
Stage 3. Find the global parameter(s) that can minimize the nonlinear least squares error. 

We generate time series pairs as proxy to market price and net asset value by using random 
walk simulation where the volatilities of the time series are similar to those of real closed-end 
funds traded on NYSE [25]. See Anderson and Born [32] for more information about the 
closed-end funds. 

Table 9 describes the time series, their volatility behavior and ranges. Table 10 shows the wall 
time for testing the parallel nonlinear parameter optimization algorithm for 128 cores on the 



D12.5 Summary of Novel Programming Techniques Results 
 

PRACE-2IP - RI-283493  22.8.2014 25

Linux Nehalem Cluster. Table 11 illustrates the Monte Carlo simulation results for the 
parameters, the average number of QN iteration, the average nonlinear least squares error and 
the average maximum improvement factor (MIF) where MIF is used to measure the 
performance of the optimization process and it is defined as the ratio of the final nonlinear 
least squares error to the initial nonlinear least squares error. Generally, the smaller MIF 
corresponds to a better performance, which depends on the closeness of the initial parameter 
to the optimal one as well. For example, Figure 17 shows the convergence diagram of the 
MIF for curve fitting of Price_1k_v2. 

 

Time series 
Standard 
deviation

Max Min 

Price_1k_v1 3.94 65.68 48.19 
Nav_1k_v1 2.25 58.03 48.32 
Price_1k_v2 5.01 67.50 48.77 
Nav_1k_v2 2.38 63.94 53.68 
Price_1k_v3 2.66 61.68 49.38 
Nav_1k_v3 1.81 58.78 49.99 
Price_1k_v7 3.63 67.31 51.82 
Nav_1k_v7 2.91 61.55 48.45 
Table 9: Description of the time series 
 

Time series 
Wall clock time 
(s) 

Price_1k_v1 28071.28 
Price_1k_v2 27677.68 
Price_1k_v3 28421.29 
Price_1k_v7 25723.34 
Table 10: Wall clock time for 128 cores on the Linux Nehalem Cluster available at UHeM 
 

Time series 
Parameters Average 

number of 
QN iteration 

Average 
NLS error 

Average MIF 
c1 q1 c2 q2 

Price_1k_v1 1.9301 18.5099 18.4881 44.5936 166.97 0.0175 0.2109 

Price_1k_v2 2.0564 20.8872 16.5765 55.3533 160.32 0.0310 0.2362 

Price_1k_v3 2.0438 16.0870 17.5011 39.4577 156.14 0.0171 0.2126 

Price_1k_v7 1.5148 21.7521 15.9028 48.8719 135.57 0.0411 0.2859 
Table 11: Monte Carlo simulations results 
 
We find that the new parallel algorithm having 512 initial parameter vectors in the classified 
pool that can generate different curves outperforms the sequential parameter optimization 
algorithm using dynamic initial parameter pool having up to 80 initial parameter vectors. We 
obtained smaller nonlinear least squares errors, better maximum improvement factor, and 
curve fitting for more curve segments, by the advantage of using sufficiently large number of 
initial parameters methodically. 
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3.4 Introducing OpenMP Tasks into the HYDRO Benchmark  

WP186: Introducing OpenMP tasks in the Hydro benchmark 
Authors: Jérémie Gaidamour (IDRIS/CNRS), Dimitri Lecas (IDRIS/CNRS), Pierre-François 
Lavallée (IDRIS/CNRS) 

HYDRO [33] is a mini-application which implements a simplified version of RAMSES [34] a 
code developed to study large scale structure and galaxy formation. HYDRO uses a fixed 
rectangular two-dimensional space domain and solves the compressible Euler equations of 
hydrodynamics using a finite volume discretization of the space domain and a second-order 
Godunov scheme with splitting direction technique.  

The OpenMP “Coarse-Grain” version of HYDRO described in [35] exploits data locality by 
using a 2D domain decomposition of the global domain. The implementation is very similar 
to the MPI version of HYDRO as each thread is responsible for the computation of a local 
subdomain. The algorithm used on each subdomain is described in Figure 18. For the 
interface cells, synchronization between threads is needed, as a thread must read (step (1) of 
the algorithm in Figure 1) the initial values of its neighbour subdomains (ghost cells) before 
neighbour threads update them (step (3) of the algorithm). Before step (3), threads have to 
wait until step (1) of the two neighbour domains is complete. This thread-level 
synchronization is a barrier involving threads grouped in threes, the implementation of this 
barrier involves flushing the buffer with the OpenMP FLUSH. 

 

 
The version 4.0 of the OpenMP specification [36] introduces the concept of tasks with 
dependencies. The goal of this work was to introduce OpenMP tasks in the “Coarse-Grain” 
version of HYDRO. We aim at implementing the subdomain synchronization we described 
previously using task dependencies. 

Figure 19 and Figure 20 show how we implement the symchronization using task 
dependencies. A unique task is  responsible for reading all the interface cells between two 
domains. Every WRITE kernel directly depends on a single COMPUTE kernel and the 
dependency graph can be further simplified by merging COMPUTE 

Table 12 and Table 13 show a scalability evaluation of the OpenMP versions of HYDRO. The 
experimental platform is the supercomputer Ada (CNRS/IDRIS-GENCI) composed of IBM 
System x3750 M4 compute nodes.  

The scalability of the “Coarse-Grain” version is nearly perfect due to efficient cache 
utilization. Threads work fully in parallel on their own portion of data and no time is wasted 
at the barriers. This performance gain comes at the cost of a greater code complexity. 
The scalability of the new “OpenMP tasks” version is not as good as the finely tuned “Coarse-
Grain” version since we are no longer in control of the affinity between threads and 
subdomains.  

U(i , j) is the 2D grid buffer for conservative variables. 
For each time step n : 
- Apply boundary conditions 
- PARALLEL LOOP:  For each column j of a subdomain:    

(1) READ - Copy the values of the j column into a 1D temporary buffer. 
       The buffer holds conservative variable values of the previous time step (Un-1(:,j)). 
(2) COMPUTE - Compute the new grid values (Un(:,j)) only from the temporary buffer 
     (ie: compute primitive variables, solve Riemann problem at cell interfaces and compute incoming fluxes). 
(3) WRITE - Copy Un(:,j) in global U. 

- PARALLEL LOOP:  For each row i of a subdomain:   
 […] 

Figure 18: 1D Godunov time step routine in the column and row direction (pseudo-code). 
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The OpenMP specification does not define how the scheduling of tasks should be done by 
runtime systems [37] and very little information is available concerning the actual strategy of 
our OpenMP library. As for now, it is not possible to select the task scheduler strategy at the 
user level but it would be useful to be able to give hints to the scheduler in the same way we 
control the scheduling of parallel loop or the CPU affinity of threads in OpenMP. 
 

 
Figure 19: The domain decomposition 
with the domain coordinates and a 
simplified description of the interfaces. 
 

Figure 20: Dependency graph of the implemented algorithm. 

 
 
 
 
 
 
 
 
 

Table 12: Scalability of the “Coarse-Grain” version of HYDRO 
 
 
 
 
 
  
 
 
 

Table 13: Scalability of the “OpenMP tasks” version of HYDRO 
 
The tasking model allows expressing a complex algorithm with ease and using tasks was less 
intrusive than implementing the algorithm with busy-waiting. We plan to extend this work 
with a more complete analysis of the performance and by investigating specialized task-based 
programming environments and runtime systems. 

 
  

 Time (s) Speedup Efficiency
1 377.15 1.00 100.00 % 
2 188.41 2.00 100.09 % 
4 98.63 3.82 95.60 % 
8 52.18 7.23 90.35 % 
16 24.72 15.26 95.36 % 
32 11.91 31.67 98.96 % 

 Time (s) Speedup Efficiency
1 376.81 1.00 100.00 % 
2 188.99 1.99 99.69 % 
4 98.65 3.82 95.49 % 
8 56.72 6.64 83.04 % 
16 32.96 11.43 71.45 % 
32 20.01 18.83 58.85 % 
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3.5 Reducing Synchronization Overhead of Conjugate-Gradient-type Parallel 
Iterative Solvers  

WP187: Reducing Synchronization Overheads in CG-type Parallel Iterative Solvers by 
Embedding Point-to-point Communications into Reduction Operations 
Authors: R. Oguz Selvitopi (Bilkent), Cevdet Aykanat (Bilkent) 

Iterative solvers are widely used and adopted to solve sparse linear systems of equations on 
modern large-scale parallel systems. In these systems, the communication requirements of the 
solver generally become the main bottleneck for obtaining a good scalable performance. For 
this reason, the coefficient matrix is usually processed in a pre-processing phase which 
involves partitioning of this matrix to reduce the communication requirements. In the 
literature, the most often used and optimized communication metric is the communication 
volume [38], [39]. 

In iterative solvers, there are two types communication that are repeated through all iterations: 

 Collective communication operations: This type of communication is used to gather 
the results of the inner product computations at all processors and requires all 
processors to join the communication. The MPI equivalent of this operation is the 
MPI_Allreduce (hereafter referred to as ALL-REDUCE) with the summation being 
the reduction operator. 

 Irregular point-to-point (P2P) communication operations: This type of operation is 
used to communicate the entries of the input and/or output vector of the sparse-matrix 
vector multiplication (SpMV). The irregular sparsity pattern of the coefficient matrix 
causes irregular task-to-task interaction between parallel processes. They are generally 
performed by simple MPI primitives, e.g., MPI_Send , MPI_Recv, and their variants. 

We devise a computational reorganization method to perform P2P and collective 
communication operations simultaneously. This allows the synchronization points in a single 
iteration of the solver drop from two to one for a single pair of SpMV and its follow-up inner 
product(s). We use a modified Conjugate Gradient (CG) iterative solver to show the validity 
of the proposed methods. We use 1D partitioning of the matrix and test the solver on JuQueen 
and Hermit up to 2048 cores with the matrices selected from UFL sparse-matrix collection 
[40]. The proposed computational rearrangement scheme has no potential to introduce 
numerical instability to the solver, because it is mainly based on performing a negligible 
amount of redundant computation per processor. 

In parallelization of CG, the coefficient matrix is generally row-wise decomposed and 
distributed among the processors. Without computational reorganization, there are two 
separate communication: (i) one of them is the P2P communications prior to SpMV 
computations and (ii) the other one is the collective communication after the local inner 
products. This parallel algorithm has two synchronization points due to these P2P and 
collective communication phases. In the proposed alternative parallelization with 
computational reorganization, the input vector of the SpMV computations is not formed with 
the P2P communications but it is formed with the help of the other vectors. Instead of 
communicating this input vector, the output vector is communicated and it is augmented with 
the entries that are received from other processors. This augmented output vector is then 
subjected to the same linear vector operations to perform the augmented input vector of the 
SpMV, requiring no further communication. This reorganization enables P2P 
communications to be performed right after collective communication operations, reducing 
two separate communication phases into one. 
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We realize the opportunity provided by the computational reorganization by performing these 
two types of communication phases in a single one. The P2P and collective communications 
are performed simultaneously by embedding messages of P2P communications into the 
communication pattern of the algorithm used for the ALL-REDUCE algorithm. In other 
words, the latency overhead due to the P2P communications is completely eliminated by 
using the messages that are already transmitted for ALL-REDUCE. 

Embedding messages of P2P communications into collective communications have the 
following implications: 

 Startup costs of all messages due to P2P communications are completely avoided. 
 An exact bound on the maximum and average number of messages is provided, which 

is log  for a parallel system with  processors. This is a significant advantage and is 
actually the key factor in obtaining a good scalable performance at large processor 
counts. 

 Communication volume increases due to the store-and-forward scheme required by 
the embedding. 

 Embedding scheme requires buffering due to the store-and-forward scheme. 
 There is a trade-off between avoiding latency costs and increasing communication 

volume. Here, the former is favoured, because, as will be shown with the experiments, 
message latency becomes the dominating factor in determining the communication 
costs with increasing number of processors. 

The store-and-forward scheme used in embedding contents of P2P messages into the 
messages of collective communication operations may increase communication volume. If 
total number P2P messages is low, this can be a bottleneck in obtaining a good scalable 
performance. We present two heuristics to further reduce this increased communication 
volume. Objective of both of the mapping heuristics is to keep the pairs of processors that 
communicate a large volume of data close to each other. The closeness notion here refers to 
the communication pattern used for the ALL-REDUCE algorithm.  Both of the heuristics are 
Kernighan-Lin (KL) [41] type of algorithms which try to find a good mapping by a number of 
successive swap operations: 

 KLF: Use full neighbourhood information with 1  possible swaps. 
 KLR: Restrict the search space to the processors that directly communicate, thus 

reducing the number of possible swaps to lg /2. 

For more detail on these heuristics, refer to [42]. 
We compare four schemes in our experiments (i) Conventional parallelization of conjugate 
gradient solver (CONV), (ii) Alternative parallelization with computational reorganization 
(EMB), (iii) Alternative parallelization with computational reorganization and mapping 
algorithm KLF (EMB-KLF), (iv) alternative parallelization with computational reorganization 
and mapping algorithm KLR. We used PaToH [41] to partition all matrices prior to execution. 
Two parallel systems are used in the experiments: Cray XE6 (XE6) and IBM Blue Gene/Q 
(BG/Q). The obtained speedup results for the pcrystk02 matrix with 968,583 nonzeros are 
illustrated in Figure 21. 
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Figure 21: Speedup values. 
 
With increasing number of processors, the proposed three schemes usually scale much better 
compared to conventional parallelization. These speedup values validate that startup costs 
become more important with increasing number of processors and to obtain a good scalability 
performance, it is paramount that latency should be considered as a separate stand-alone 
optimization objective. The results of this task have been recently accepted for publication in 
the prestigious IEEE Transactions of Parallel and Distributed Systems journal. Details and 
more test results can be found in this publication [42]. 

3.6 Scalability improvement of the projected conjugate gradient method 
used in FETI domain decomposition algorithms 

WP198: Scalability improvement of the projected conjugate gradient method used in FETI 
domain decomposition algorithms 
Authors: Tomáš Kozubek (VSB), David Horák (VSB), Václav Hapla (VSB), Lubomír Říha 
(VSB) 

FETI (Finite Element Tearing and Interconnecting) type domain decomposition methods are 
powerful tool for constructing numerically and parallel scalable solvers for real linear and 
nonlinear engineering problems combining iterative and direct solvers. In many cases the 
resulting algebraic formulation leads to a quadratic programming problem with convex 
constraints. Solvers for such problems including our own FETI method called Total FETI are 
developed at IT4Innovations, VSB-Technical University of Ostrava. We have implemented 
many of these solvers (TFETI, etc.) into an in-house FLLOP (FETI Light Layer On top of 
PETSc) library being implemented as an extension of the PETSc framework. It is primarily 
used for solving constrained quadratic programming (QP) problems on parallel computers. To 
allow other packages to use FLLOP solvers a general C array based FLLOP_AIF interface 
has been also implemented.  

FETI methods use the Lagrange multipliers  to enforce equality constraints (gluing 

conditions) in the original primal problem: min 		 . .		 . The primal 

problem is then transformed into significantly smaller and better conditioned dual equality 

constrained problem: min 		 . .		 ,		with . This problem can 

be solved by means of projectors , 			and CG method applied 
to the projected system . For this dual problem the classical estimate of the 
spectral condition number by Farhat, Mandel, and Roux is valid, i.e. | 	

,		with H denoting the decomposition and h the discretization parameter. To be able to 

fully utilize the massively parallel computers it is essential to maximize the number of 
subdomains (decrease	 ) which leads to the reduction of the subdomain size. This improves 
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the performance due to following reasons: (1) a subdomain stiffness matrix size is reduced 
which speeds up both factorization and subsequent pseudo-inverse application; and (2) the 
conditioning is improved which reduces the number of iterations. The negative effect of the 
large number of subdomains is the increase of dual and null space dimension which slows 
down the coarse problem (CP) solution (solution of the system ). Therefore in this 
case the bottleneck of the TFETI method is the application of the projector which dominates 
the solution time. Several parallel direct solvers have been already tested for CP processing in 
other Work Packages.  

The main objective of our work within the extension of WP12 PRACE-2IP is to achieve 
better scalability of FLLOP’s FETI solvers. A performance evaluation of two new techniques 
is presented: (1) a novel pipelined implementation of CG (PIPECG) method in PETSc and 
(2) a MAGMA LU solver running on following many-cores accelerators: GPU Nvidia Tesla 
K20m and Intel MIC Xeon Phi 5110P. 

The following tests have been performed:   

1. the performance comparison of CG vs. PIPECG when applied to the following 
problems: 

a) primal block-diagonal, assembled ( , ),  
b) primal decomposed and penalized, unassembled – PFETI (

, 	), 
c) dual decomposed, unassembled – TFETI ( , ). 

2. the performance evaluation of the following functions from the MAGMA library 
designed for many-core accelerators (GPU and Intel MIC): 

a) LU factorization, 
b) solve function,  

running on (1) multicore CPU only ; (2) combination of CPU and GPU; and (3) 
combination of CPU and MIC. LU factorization and triangular solves are the essential 
functions used for the solution of the CP ( , ). 
 

The numerical experiments have been performed using Anselm (Bull cluster at 
IT4Innovations – used for GPU and MIC tests with MAGMA library) and Sisu (Cray XC30 
at CSC Helsinki – used for large scalability tests of PIPECG algorithm). For the numerical 
testing a loaded elastic cube is used. To be able to test our FETI solvers on large scale 
problems, that are expected to run on exascale machines, we have used a parallel 
PermonCube benchmark developed by our team at IT4Innovations. It enables to generate data 
of large-scale problems decomposed into thousands of subdomains in parallel.  

Numerical experiments for tests 1a – 1c were done with PIPECG implementation available 
in PETSc 3.4. The main idea of PIPECG is “talk less and work more”, in this case it is the 
hiding the communication needed in two dot products computation behind the matrix by 
vector multiplication, some additional work with several additional auxiliary vectors 
compared to CG is necessary. The success of PIPECG profits from the balancing of these two 
operations, if the multiplication dominates and dimension of the problem is huge, i.e. also the 
dimension of additional vectors is huge, then PIPECG can have even worse performance than 
the general CG in our case.  PIPECG brings significant time savings for cases 1a and 1b, if 
the number of subdomain elements is less than 113- see Figure 22. PIPECG is in both cases 
worse than CG for large problems as the benefit from the overlap of matrix by vector 
multiplication and two dot products computation is eliminated. The first operation exceeds 
significantly the second one and an additional work with longer vectors is more and more 
significant. In case 1c there is no performance difference between the general CG and the 
pipelined CG algorithm due to excessive communication contained in the dual operator : 
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(1) multiplication by a constrained matrix gluing the subdomains together; (2) multiplication 
by the transpose of this matrix; and (3) application of the projector. With respect to our 
current analysis it seems that pipelined CG will be ideally suited for the parallel solution of 
the TFETI CP ( , ) – it is very promising and it will be the topic for the further 
research.  

 

 
Figure 22: Performance of CG vs. PIPECG for various subdomain sizes. 
 
The performance evaluation of the MAGMA LU dense direct solvers applied to CP was 
evaluated on a single compute node of Anselm supercomputer. Three hardware configurations 
have been tested: (1) CPU only (16 OpenMP threads – two 8-core CPUs); (2) CPU + GPU 
(16 OpenMP threads + 1 Tesla K20m GPU), and (3) CPU + MIC (16 OpenMP threads + 1 
MIC - 240 OpenMP threads). Concerning the largest CP having dimension 24,576, the 
following observations have been made: (1) LU factorization: CPU + MIC is 2 times faster 
than CPU (22.5 sec); CPU + GPU is 4 times faster than CPU (11.3 sec); CPU only (46.1 sec); 
(2) 100 calls of the triangular solves: CPU + MIC is 3 times faster than CPU (8.29 sec); CPU 
+ GPU is 1.02 times faster than CPU (22.75 sec); CPU only (23.29 sec). To conclude, the 
combination of CPU + MIC is more efficient if large number of solve calls is required while 
CPU + GPU is better if solver can find a solution in smaller number of iterations.  

3.7 Computer modeling and simulations in strongly heterogeneous 
nonlinear media 

No whitepaper  
Authors: K. Georgiev, N. Kosturski, S. Margenov, Y. Vutov 

This work concerns the Finite Element Method (FEM) simulation of thermal and electrical 
fields in strongly heterogeneous nonlinear media on structured (voxel) and unstructured 
(tetrahedral) meshes. Mass and heat transfer and coupled electrical processes involved in the 
radio–frequency (RF) hepatic tumor ablation are considered. Instead of a uniform 
discretization of the considered time interval, an adaptive time-stepping procedure is applied 
in an effort to decrease the simulation time. The procedure is based on the local comparison 
of the Crank Nicholson and backward Euler approximations. 

The new results in the development of the computer models and their parallel 
implementations include: a) a scalable high-performance adaptive time stepping algorithm for 
simulating the radio-frequency ablation for treatment of liver tumors; b) implementation and 
tuning of the new computer modules on the IBM Blue Gene/P computer in Sofia both on 
structured and unstructured meshes; c) founding a suitable set of values for the algorithm 
threshold parameters. 

The minimally invasive treatment called radio-frequency ablation (RFA) guided by imaging 
techniques, the doctor inserts a thin needle through the skin and into the tumor. High-
frequency electrical energy delivered through this needle heats and destroys the tumor. The 
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circuit is closed with a ground pad applied to the patient's skin. The right procedure 
parameters are very important for the successful killing of all of the tumor cells with minimal 
damage on the non-tumor cells. 

Computer simulation on geometry obtained from a magnetic resonance imaging (MRI) scan 
of the patient is performed. 

The IBM Blue Gene/P computer, located at the Bulgarian Supercomputing Center, is used for 
the simulations and numerical experiments with the new adaptive time stepping algorithm. 
This machine consists of two racks, 2048 Power PC 450 based compute nodes, 8192 
processor cores and a total of 4~TB random access memory. Each processor core has a 
double-precision, dual pipe floating-point core accelerator. Sixteen I/O nodes are connected 
via fiber optics to a 10~Gbps Ethernet switch. Number of runs were done both using 128 and 
1024 processors. Uniformly refined mesh was used for the runs on 1024 processors.  

The experimental results show that the new algorithm is scalable. The tests allowed us to find 
some suitable parameters and showed the practical usefulness of the developed solver for 
such kind of computer simulations. One can observe that the computing time is decreased 
more than three times, the number of outer iterations is decreased from 420 to 71, and the 
number of inner iterations decreases from 2233 to 535. 

3.8 Optimization of CP2K DBCSR library for GPU with OpenCL 

No whitepaper  
Authors: Mariusz Uchroński (WCSS), Marcin Gębarowski (WCSS), Agnieszka Kwiecień 
(WCSS), Franciszek Klajn (WCSS) 

P2K [43] is an open-source application designed for atomistic and molecular simulation of 
solid state, liquid, molecular and biological systems. A scalability of CP2K has been tested 
and has shown good results [44]. The code is written in Fortran 95 and parallelized mainly 
with MPI but in some parts, also with hybrid techniques, like MPI/OpenMP [45] and CUDA. 
Recent works report promising results also for OpenACC and OpenCL implementations of a 
DBCSR library [46], [47] and show a successful usage of the Intel Xeon Phi accelerators [48]. 

The main goal of this project is to optimize the DBCSR library, which performs sparse matrix 
multiplications, using OpenCL [49] and check the possibility to improve the OpenACC [50] 
implementation. OpenCL and OpenACC are both open standards and have been successfully 
used in previous works on the library. During this project, we worked on CP2K v2.4. 

Introducing OpenACC into the code requires usage of a compiler which understands the 
OpenACC pragmas. There are only three such compilers so far, all commercial, delivered by 
PGI, CAPS and Cray. The CP2K code compilation with PGI [51] has been reported as 
problematic [46] , and to fully utilize the DBCSR OpenACC port within the application some 
additional work had to be done. We have performed a code compilation attempt with PGI 
14.1 and with a few changes of the source code managed to provide a working solution. The 
PGI 14.1 does not fully support Fortran 2008 extensions, so every call to the built-in erfc 
function had to be changed to its implementation delivered in the other part of the CP2K 
code. Such code worked fine, but only if it was compiled with no optimization. A compilation 
with anyone of the optimization flags, e.g. "-fastsse", produced executables which ended with 
a segmentation fault. Further analysis with the PGDBG debugger [52] revealed that the PGI 
Fortran compiler is not able to correctly allocate the memory for temporary arrays used in an 
array multiplication: 
ALLOCATE(a(n,n),w(n),work(lwork),STAT=ierr) 
CPPostcondition(ierr==0,cp_failure_level,routineP,error,failure) 
a(1:m,1:m) = MATMUL(TRANSPOSE(umat(1:n,1:m,l)),MATMUL(hmat(1:n,1:n,l),umat(1:n,1:m,l))) 
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To resolve the issue a further modification of the code was required. An explicit declaration 
and allocation of temporary arrays has led to a successful run after compilation with 
optimizations: 
ALLOCATE(a(n,n),b(m,n),c(n,m),w(n),work(lwork),STAT=ierr) 
b(1:m,1:n) = TRANSPOSE(umat(1:n,1:m,l)) 
c(1:n,1:m) = MATMUL(hmat(1:n,1:n,l),umat(1:n,1:m,l)) 
a(1:m,1:m) = MATMUL(b,c) 
 

At the same time we attempted to use the CAPS Compiler Suite in version 3.4.4 to compile 
CP2K code with OpenACC pragmas. The compilation was performed as specified in the 
CAPS documentation: FC = hmpp -d gfortran. A part of the code was compiled successfully, 
but some of the Fortran syntax was not recognized by belfort (part of the suite), populating 
the following: 
belfort: [Error BGFT0071] Illegal module procedure list_timerenv_init at  
/cp2k/src/list.F, line 30 

The code which caused the error is as follows: 

INTERFACE list_init 
    MODULE PROCEDURE list_timerenv_init, list_routinestat_init, & 
        list_callstackentry_init 
END INTERFACE 

The code is syntactically correct and is compiled successfully with GNU and PGI compilers. 
The error made it impossible to use the CAPS compilers for CP2K and its OpenACC 
extension, as an alternative for the PGI. In addition, in May 2014 an official statement of 
CAPS has been announced to all its customers, that the company will be closed due to 
financial problems, and no new licences or support will be provided after the end of June, 
2014. 

An analysis of the initial OpenCL implementation [46] revealed that the approach to memory 
allocation and data distribution need to be changed to better utilise the GPU architecture. As a 
result a new OpenCL kernel has been implemented for the DBCSR library, and integrated 
into the application code, as an OPENCL driver. A specific function for data partitioning has 
been implemented and the portions of data sent to the GPU has been enlarged which reduced 
the transfer times. The data distribution between the work groups on the GPU allows usage of 
the shared memory to store elements of the matrices needed during a multiplication. The 
block multiplication algorithm in the DBCSR library requires using of memory locks 
(semaphores), when executed on GPUs. This is undesirable, as threads writing to the same 
memory area are blocking each other, slowing down the execution. A solution for this is 
a specific assignment of small block matrices to threads within the kernel, in such a way that 
to each work group a unique fragment of the output matrix is assigned. The index table for 
data distribution was sorted and slices distributed in such a manner that two groups do not 
work on the same slice of C matrix, if possible. The number of conflicts between working 
groups has been reduced, but the semaphores are still used, to ensure that only one work 
group can write to the slice. It is planned to work further on removing the conflicts and 
semaphores completely. 

The experimental results for the DBCSR library are presented in Table 14. We compare the 
OpenCL and OpenACC ports with BLAS, SMM and MATMUL drivers from CP2K. 
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Nblocks BLAS SMM MATMUL OPENACC OPENCL

10k 0.68 0.49 0.95 3.52 0.16 
40k 1.15 0.98 1.92 3.95 0.99 
90k 1.63 1.47 2.88 4.26 1.34 
160k 2.16 1.96 3.83 4.85 1.70 
250k 2.60 2.45 4.81 5.48 2.08 
360k 3.09 2.94 5.83 6.01 2.51 
490k 3.61 3.43 6.71 6.53 2.84 
640k 4.10 3.94 7.68 7.07 3.26 
810k 4.63 4.44 8.65 7.54 3.77 
1000k 5.07 4.95 9.61 7.98 4.09 
Table 14: DBCSR library tests results for different drivers (Exec times in seconds) 
 
Results presented in Table 14 show that difference between execution times for OpenCL and 
SMM driver (drivers with shortest execution times) increases with the problem size 
(Nblocks).  The OpenACC performs worst for small problem sizes but it is better than 
MATMUL for bigger problems. 

We have also used a dbcsr_mm test from the CP2K distribution, and the results are presented 
in Table 15.  

Input 
BLAS SMM MATMUL OPENACC OPENCL 

S Mflops s Mflops S Mflops S Mflops s Mflops

dbcsr_mm 2.98 770.6 2.94 781.5 29.54 77.4 150.83 14.9 3.04 755.22 
Table 15: CP2K tests results for dbcsr_mm test case 
 
Execution times of the application for OpenCL, BLAS and SMM drivers shown in Table 15 
are almost the same. The results obtained with OpenACC are worse than OpenCL in every 
case, as there is a limited possibility to influence the data transfer and memory allocation 
strategies with pragmas. An attempt was made to introduce the pragmas outside the small 
matrix multiplication loops to limit the unnecessary data transfers, but the compiler-generated 
kernels have produced wrong results. Further work could combine OpenACC pragmas (for 
matrix multiplication) with CUDA kernels (for data preparation), to achieve a better 
performance.  

The BLAS used in the testing was ACML 5.3.1, FFTW 3.3.4, and the PGI 14.3 compiler 
(with compilation flags –fastsse –tp amd64 and –acc).  

For development and testing we used the Supernova system, located at Wrocław Centre for 
Networking and Supercomputing (WCSS). Supernova serves as a Tier-1 machine within 
PRACE infrastructure. For testing we used fat node with four sixteen-core AMD Opteron 
6274 processors with 256 GB of memory and two NVIDIA Tesla M2075 (448 cores, 6 GB of 
memory) per node. For OpenCL code development we also used a node with two NVIDIA 
GTX 480. 
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3.9 Asynchronous solution of sparse linear systems 

No whitepaper  
Authors: Mark Bull (EPCC) 

In third year, we have continued the work reported in [53], on solving sparse linear systems 
using asynchronous multisplitting algorithms.  

Firstly, we have implemented a more realistic, and somewhat more complex test case, which 
solves the linear elasticity equations in a solid cuboidal block of material. The physical 
system is discretised into cubic elements interconnected at nodes. The nodes are numbered 
1, . . . ,  and each node has three degrees of freedom (in x, y, and z dimensions). The system 
of equations that is solved is:  

	 	  

where  is a 3  vector of displacements,  is the vector of forces acting on each of the nodes 
in each degree of freedom, and 	is the global stiffness matrix which links the forces to the 
displacements. In the finite element approach each node is only coupled to neighbouring 
nodes.  In this model each node has a maximum of 27 neighbours (nodes which share an 
element), so there are a maximum of 81 non-zero entries per row.  As the number of nodes 
grows,  becomes increasingly sparse. We have validated our solver against PetSc and a 
bespoke finite element code for this test case. 

Secondly, we have worked on a scheme for automatic run-time tuning of a key parameter in 
the algorithm.  For each iteration it is necessary to decide how accurately to solve the inner 
block system before exchanging halo data again.  

This can either be done by choosing a fixed number of iterations of the Krylov solver, or by 
iterating until the block residual has been reduced by a given amount. In [53] we showed that 
choosing a fixed number of inner iterations for the entire solve is not straightforward. If the 
number of iterations is too small, then too much time is spent exchanging inaccurate data; if it 
is too big then time spent obtaining spurious local accuracy is wasted. Moreover, the optimum 
value changes as the system converges. 

We dynamically adjust the local convergence criterion as follows: we select a local relative 
residual as the criterion instead of a number of iterations, since this appears to be more robust. 
We assess the local progress of the algorithm by calculating the local progress rate as the 
local relative change in residual per second for the latest inner solve, and smooth this value 
both over outer iterations and over neighbouring blocks. We then adjust the local convergence 
criterion to try to maximise this local progress rate.  

Figure 23 shows the results of using our autotuning scheme compared with fixing a number or 
inner iterations. We can see that the initial convergence rate is about five times faster with 
autotuning compared to its counterpart which does not use autotuning. 
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Figure 23: Convergence rate for asynchronous multisplitting. 
 

3.10 Conclusion  

Subtask 12.2 has successfully exploited various applications and libraries that utilize 
numerical algorithms such as HYDRO, PETSc, CP2K and FETI. The performance of various 
numerical algorithms is improved via using new parallel paradigms within accelerators or 
shared memory constructs and novel algorithmic strategies. GPU and MIC accelerators are 
utilized with the OpenACC and OpenCL enabling parallel constructs. Besides, shared 
memory parallelism with OpenMP is exploited to improve efficiency of HYDRO application. 
The approaches for numerical algorithms also include distributed memory parallelism, 
example applications including PETSc and FETI. 

The 8 projects in Subtask 12.2 have resulted with 5 whitepapers and 3 detailed reports. In 
addition to this deliverable, all whitepapers will be available online and will prove useful for 
users facing similar algorithmic challenges. In summary, Subtask 12.2 has provided new 
guidelines, algorithmic approaches and adaptive methodologies to improve the performance 
of numerical algorithms on modern large-scale systems. 
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4 Development environments and tools 

4.1 Introduction 

Future high-end HPC platform will induce constraints associated with their huge amount of 
components. Introducing checkpoint in HPC application has to be addressed, dealing with the 
threat of an unaffordable overhead . 

Fault tolerance is clearly stated as a critical issue for multi-petascale and future Exascale 
systems. According to the EESI1 roadmap, the current approach that consists in saving the 
full execution state on remote file system is responsible for significant overhead in Petascale 
systems and will not scale at the Exascale level. In this prototype, we have tested the 
performance, scalability, and overhead of a new approach called Advanced Multilevel Fault 
Tolerance (AMFT) combining existing application based checkpointing and multilevel 
checkpointing capabilities provided by using different storage hierarchies from local storage 
(standard HDD, hybrid HDD/SSD, regular SSD and optimized SSD) to “remote” parallel file 
system. 

This work is a follow up of D9.3.4 from 1P-WP9 AMFT, as part of the objectives of 2IP-
WP12. 

4.2 FTI : Basic Description 

Fault tolerance and application resiliency will be a key issue for next multi-petascale and 
Exascale system as identified by many recent reports including IESP¹ and EESI². As the 
evolution of the networks and the bandwidth of the parallel filesystems will not scale as 
needed, it will be impossible to checkpoint a full system image at an appropriate frequency 
(for dealing with a low expected MTTI³). 

One solution consists in implementing application-based checkpoint/restart (in order to reduce 
the footprint of the checkpointed data to save, just the key variable states) and to use in a 
smart way the different levels of storage hierarchies available on HPC systems for performing 
asynchronous high frequency checkpoint restart. 

Application based checkpoint restart can be realized by coding explicit subroutines into 
source codes for storing pertinent data or through directives for assisting smart runtime 
systems in saving pertinent data structures. 

The FTI middleware (Fault Tolerance Interface) co-developed by the INRIA-Illinois joint 
laboratory on Petascale computing and Tokyo Institute of Technology will be used as the 
multilevel checkpointing middleware.  

The objectives of this prototype are to assess on different hardware platforms the interesting 
potential of FTI and AMFT on new profiles of applications coming from the PRACE 
benchmarks, the newly EUABS (European Unified Applications Benchmark Suite) or 
applications proposed by community codes from 1IP-7.2 or 2IP-WP8. 

Criteria like the amount and complexity of work to adapt the target applications, performance 
and scalability of such applications, overhead of using FTI and its level of maturity will be 

                                                 
¹ International Exascale Software Project : http://www.exascale.org/iesp/IESP 
² European Exascale Sotware Initiative : http://www.eesi‐project.eu 
³ Mean Time To Interrupt 
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assessed in order to envision “industrializing” and making it as a standard package of the 
PRACE software stack. 

The FTI middleware co-developed by the INRIA-Illinois joint laboratory on Petascale 
computing and Tokyo Institute of Technology was used as the multilevel checkpoint 
middleware. FTI is a research prototype composed of a programming interface and a runtime 
environment. FTI is a portable package and its implementation is totally agnostic to the target 
application since FTI API functions can be used by simply linking with the FTI library.  

FTI can be used with applications already featuring application level checkpointing or with 
applications that do not provide any support for fault tolerance. To adapt applications 
featuring application level checkpoint/restart the programmers replaces the checkpoint and 
restart calls existing in the application by FTI checkpoint and restart function calls. For other 
applications, the programmer replaces checkpoint/restart using the FTI API in the same way 
one would implement application level checkpoint but avoiding the complexity of the 
multilevel resiliency, garbage collector and metadata management. In addition, FTI proposes 
several configuration parameters that can be easily set up in a configuration file. 

FTI is based upon protection levels as described below,  

 L1 : FTI performs checkpointing on local storage without any concern to resist a 
failure of this support. 

	

	
Figure 24: FTI – L1 “Basic write”. 
	
 L2 : FTI does a local checkpoint and duplicates to a partner node. This mode allows 

an application to resume from any failure involving one node in each partnership.  
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Figure 25: FTI – L2  “Partner Copy”. 

 
 

 L3 : FTI dispatches checkpoints to a group of multiple nodes. The backup is encoded 
with other processes using a Reed-Solomon algorithm.  

 

 
Figure 26: FTI – L3  “Node group checkpoint” – Redundancy with Reed Solomon encoding. 
 
 L4 : FTI writes the checkpoint on the parallel file system (PFS). To hide the cost of 

the backup level, the local storage system is used as a buffer to write the data on PFS 
asynchronously. 
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Figure 27: FTI – L4  “Node group checkpoint” – Redundancy with Reed Solomon encoding. 
 
The use of FTI with all these levels makes sense when SSDs are available as local storage. As 
a matter of fact, they insure permanency of data after a power off that a classic memory does 
not offer. This allows a faster recovery than with the PFS alone, especially if a big number of 
nodes are involved. 

FTI enables to generate checkpoints more frequently on the first three levels and to reduce the 
frequency of more expensive checkpoints at level 4, while ensuring effective protection 
against hardware failures. Thus, the global impact of the implementation of protection can be 
reduced in comparison with classical mechanism based upon the PFS alone. 

FTI is a collection of few simple functions to call within the application to protect:  

 int FTI_Init (char _configFile, MPI_Comm globalComm). This function will initialize 
FTI. 

 int FTI_Protect (int id, void _ptr, long size). It stores a pointer to a variable that needs 
to be protected. 

 int FTI_Snapshot (). This function takes an FTI snapshot or recover the data if it is a 
restart. 

 int FTI_Finalize (). This function  closes FTI properly on the application processes. 

Besides measurements, requirements and new features interesting for production applications 
were decided among partners. 

 A Fortran interface was necessary (only C was available). This has been done by 
CEA/MdlS  

 Python was removed to improve portability 
 FTI did not formerly handle restart when no failure occurred for multiple stage jobs 

(protection files were flushed on normal end), a flag has been added to keep protection 
for a scheduled restart. 

 Checkpoint frequency was based upon the number of iterations. This is inconvenient 
from a production perspective as iteration may be barely predictable or may vary. 
Duration based checkpoint was implemented.  

 A synchronous mode was implemented with no requirement for a dedicated process. 
This mode lacks advanced features but it allows a better portability on machines with 
restrictions on the number of processes per node.  

 FTI was based upon a dedicated MPI task on a per node basis, this may lead to a waste 
of resources. A thread-based version has been implemented for synchronous mode and 
extension to other levels is under study.  
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 The API was redesigned to get more information about the protected variables. This 
will allow future developments for corruption detection and data compression. 

 To figure out how to use FTI without SSD, a “memory map” (mmap) mode is on 
study. 

4.3 Experiments  

Measurement was done using weak-scaling. Calibration was necessary to ensure the best 
compromise between test duration, size and frequency of protection and measurable impact of 
multilevel protection.  

Weak scaling scheme (grid size / number of cores) up to 9600 cores on the CURIE system. 

 

 
Table 16:  Hydro weak scaling : Grid size / number of cores 
 
To put a focus on FTI impact and to represent future high checkpoint traffic expected, 
frequency has been set to every 6 minutes, each task writing a 255MB file. Several levels of 
FTI were assessed ranging from no checkpoint to PFS synchronous mode (figure below). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28: Hydro – FTI :  Overhead level measurements. 
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The overhead induced by FTI Hydro remained for all tests below 6% and broadly constant as 
that induced by conventional backups on the file system ( PFS, Lustre in our example ) 
increased exponentially with the scaling (light blue curve). 

To analyze these results it is necessary to take into account the variability of the 
measurements. As a matter of fact, variability of results on a machine in concurrent 
production can often reach 5%. This explains in particular the graph changes in the 
classification of different levels of FTI : they have quite small differences in cost. For 
example, the level 1 should be theoretically faster. We can say that these results are from real 
world experience. 

4.4 Conclusion 

The concept introduced by FTI is application oriented and is a good answer to future multi 
petascale and exascale HPC facilities.  

 FTI handles « how » and takes the best advantage of the HPC platform 
 The application integration focuses on « what » 
 Easy to implement on already checkpointed applications 
 Embedded added value by FTI hardly integrable by application implementation 
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5 File system optimization 

On this chapter we present the architecture and the different tests that we have done on user 
hint guided I/O prefetching as part of the WP12 of the PRACE project. In Exascale HPC 
environments, it is important to be able to successfully prefetch clients’ I/O in order to reduce 
the perceived request latency and improve the overall performance. Nevertheless, due to the 
high pressure on the resources that the large numbers of clients of Exascale environments 
deliver, it is also important that this prefetching uses as less memory as possible, and also 
avoids issuing more I/O operations than strictly required. In this kind of scenario, the 
elements that know how an application will issue the I/O operations it requires, are either 
application itself or the user of the system. Thus, it seems clear that allowing a richer 
communication between them and the underlying storage will provide benefits.  

5.1 Introduction 

The page cache is an important element concerning the performance of an Operating System 
(OS), since it either stores memory pages with the contents of a file, or memory pages directly 
requested by an application. The former have a lower priority than the latter, and this causes 
that pages associated to a file may be discarded when the application requires additional 
memory. Unfortunately, keeping file pages in memory is important to reduce the perceived 
request latency and avoid accessing the storage device when a data page is needed again (note 
that accessing data in the page cache can accelerate I/O time by a factor of 100x when 
compared to a disk access).Additionally, as the number of client applications competing for 
the OS resources increases, and the amount of available memory grows scarce it is not always 
easy for the OS to determine which file pages should be discarded from the page cache and 
which should be kept. Since both are typical situations of large Exascale environments, we 
designed a user-guided prefetching mechanism that allows the user to specify the I/O access 
patterns of an application, so that it is possible to identify which data pages are important, and 
which can be safely discarded. To make the prefetching more flexible, we introduce the 
concept of minimal time to process, so that future blocks can be prefetched in advance at the 
right time. Further extensions are possible, like adapting those times to what is really 
happening (taking into account congestion issues, or CPU-intensive processes. Nevertheless, 
these extensions fall out of the scope of this work, and we will not describe them here. 

As we have mentioned, the out-of-the-box prefetching that is done by the OS is exceedingly 
simple: unless a POSIX_FADV_RANDOM flag is indicated by the application (using the 
posix_fadvise interface [54]), the OS assumes that subsequent request will follow a sequential 
access pattern and simply tries to fetch a few more sequential blocks than requested by the 
upper layers. If or when the OS detects that the requests issued are no longer sequential, the 
prefetching process is stopped. Note that, in order to avoid overloading the system, the 
prefetcher does not try to get a lot of additional blocks from the devices, with the most recent 
Linux kernels only reading at most 32 blocks per file in advance. However, those additional 
blocks are not discarded, but rather kept in the page cache, which may cause memory 
consumption issues. 

For all these reasons, a more versatile prefetching library and some modifications on the 
kernel may suppose a big improvement in the I/O stack over two topics: cache memory usage 
as we can reduce it to the minimal needed and performance, as we can prefetch better than the 
OS non-standard patterns (big blocks or non-sequential). 

We can summarize the start of the art with Reducing Seek Overhead with Application-
Directed Prefetching [55]. The paper offers a library and some changes in the kernel to 
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provide prefetching. Our proposal focuses on the user part and avoids kernel modifications, 
since such modifications are generally a bad idea as they introduce additional difficulties in 
the deployment of the solution. 

5.2 Contributions 

We introduce two novel proposals in order to improve the performance and reduce the 
memory consumption of cluster nodes in Exascale environments. The first proposal 
introduces the concept of user-provided minimal time to process inside the prefetching 
mechanism, which represents the estimated minimum CPU time between two different I/O 
requests. With this information at hand, read requests can be anticipated and the prefetcher act 
in consequence. As a result of using this information, we obtain a reduction of the memory 
used for prefetched data blocks, with some additional improvements on the performance of 
the operations. 

The second proposal, on the other hand, is an advanced filtering feature. This feature is able 
to understand how user’s data is stored and apply a filter to decide if the data is going to be 
useful or not. For example, users could use this feature to filter a set of climate raw data by 
temperature, discarding non-interesting data in the background, and keep in the page cache 
only the data that is higher than, e.g., 10ºC. With this feature, which is similar to HDF5 filters 
[56] or indexed data, the prefetching library can keep in the page cache memory only the data 
that is actually useful, returning to the user a record with “dummy” data if the data requested 
does not pass the filter. Notice that this dummy record is defined by the user itself, and only 
serves to mark that a filtered data access did not succeed. As such, the library can discard the 
read data block, thus saving on long-term memory usage.  This feature will work on raw, 
unstructured data when no index or other fast selection methods are available (e.g., scan 
workflows). 

Our proposal avoids making changes in the kernel since it is difficult to export the ideas for 
the different kernels/OSs available. Additionally, it has been shown on previous works that 
such changes are a barrier to install or test the proposed techniques on different environments, 
as it happened for instance with IOAnalyzer [57] in the IOLANES [58] project, forcing the 
creation and maintenance of a user-mode version. Thus, we introduce a new a library that acts 
as a wrapper for normal read/open/seek system calls, and that allows the appropriate user 
hints to be provided in order to implement our extended prefetching mechanism. 

To allow users to appropriately characterize the I/O access patterns of their applications, our 
library extends the standard open operation list of parameters with an extra IODefinition 
structure that is used to specify the application's I/O for that particular file (see Table 17). 
Once the library receives this I/O characterization (plus some hints that could be inferred 
using machine learning), it creates several background fetcher threads that anticipate the read 
operations of the applications, and load the appropriate data in the page cache so that it is 
readily available. Once used, if the data blocks are not going to be reused, they are discarded, 
rather than kept in the page cache (please refer to Figure 29 for a high-level scheme of the 
library components). 
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NAME EXPLANATION 

Mode Single read, fetcher, or filtering 

StartPos Starting position 

RecordSize Record size 

EndPos Ending position 

Stride Bytes to jump between records 

Rate Time to wait between record reads (msecs) 

FieldPos Field position inside a record (bytes) 

FieldType Field type : Integer, float, double 

FieldOp Field operation : gt, lt, eq 

FieldValue Value to use with FieldOp to filter 

FieldDummy Dummy value to be returned to the user 

Table 17: List of the fields in an IODefinitionstructure 
 
Notice that the key of user-hinted I/O is the interface with the library, a richer communication 
channel between clients and the filesystem that allows a detailed specification of the expected 
I/O applications will do. Table 17 shows the fields introduced by the IODefinition in our 
current prototype, which the users of the library can use to define the I/O for a particular file. 
The fields in a white background are those used in the basic user-guided I/O mode of our 
library, while the fields in a gray background are those used for the advanced filtering feature. 
As can be observed, the basic user-guided I/O requires the start and end offset within the file, 
the size of the record (i.e. the amount of consecutive data to be read), the stride (the space 
between consecutive reads that the application will jump) and the rate at which the file should 
be read. Notice that the Rate field specifies how much time the fetcher threads should wait 
until the next record is read. Advanced filtering however, requires more fields; these include 
the position of the target variable inside the record (in bytes), the type of the variable and the 
operation to apply on it (e.g., “> 10”). Finally, we also require a value to mark the dummy 
fields that do not pass the filter, to allow for a fast identification in the application level. Note 
that all these fields could be replaced with a Data Description Language (DSL), for example) 
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Figure 29: I/O library architecture 

 
All this information is used to configure the read pattern for the fetcher threads, which will 
load the page cache in time for the application to use the data. 

Our first proposed prototype, shown in Figure 30, included a memory manager where read 
pages were stored in order to have a clear view of what was indeed needed to be cached and 
what not, thus allowing the library to support filesystems that do not have the readahead 
system call (or similar) implemented. Nevertheless, this organization had some problems. As 
can be observed in Figure 31, even though with this proposal the library keeps prefetched data 
blocks in user memory, the OS also keeps an additional copy in the page cache: when a 
fetcher thread asks the OS for a page on disk, the read result is stored in the page cache and 
then it is copied to the I/O library memory. Although this is not a problem for the library, as 
we can mark the pages as not usable, we are stressing the system unnecessarily. 
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Figure 30: Discarded proposal with Memory Management 

 

 
Figure 31: Memory duplication between page cache and memory manager 

 

After some preliminary tests, we decided to remove the memory manager and instead make 
use of the readahead system call, thus effectively using the kernel's page cache as a buffer for 
the prefetching library. Using the page cache as a buffer only requires one kernel → user 
space interaction, since the data can be transferred directly from the kernel buffers to the 
application buffers. This option removes all the complexity of having to keep a block cache in 
the user side. Since the library does not have control over which pages are in the page cache 
(as the OS will drop them without notification), to the library uses the fincore [59] utility to 
keep track of which pages of a file may have been dropped, and act accordingly. For example, 
if the OS removes some pages due to memory pressure, the fetcher thread may need to be 
delayed. 



D12.5 Summary of Novel Programming Techniques Results 
 

PRACE-2IP - RI-283493  22.8.2014 49

When the user opens a file, the prefetch library looks up the user-provided IODefinition 
structure and creates a background prefetcher thread with the information contained in it. In 
order to illustrate the inner works of the library, let us consider the situation where a user 
opens a file and requests it to be prefetched with stride. In this situation, the created 
background thread first needs to identify which is the sequence of records that the user will 
require. Once this is done, the thread then issues a readahead call for each of record in order 
to store it in the page cache, jumps to the next one and waits the required time defined by the 
user to match the desired I/O rate. Notice that since the information will only be read once (as 
it is specified inside the IODefinition class), when the user reads it a DONTNEED fadvise is 
applied to the page marking it as a candidate to be removed from the page cache. If the user 
reads faster than the background reader, the background fetcher detects it and jumps to a more 
advanced position. 

We also propose an advanced prefetching mechanism that allows to define the record 
structure via the IODefinition structure and to add some filtering instructions. For example, 
imagine that the application stores its data as an aggregation of the structures (i.e. records) 
shown in Table 18. 

 

Variable Size 

Char[256] 256 bytes 

Int 4 bytes 

Other 1024 bytes 

Table 18: Sample record 
 

With this record, the library allows users to define a record size of 1284 bytes (the total sum 
of all the fields) and a field of interest (FOI) that represents an integer at offset 256 (within the 
record). This FOI is useful, for instance, in order to specify detailed filtering tasks, so that e.g. 
only records with a FOI integer value greater than 100 will be useful for the application. The 
background prefetcher thread scans the different records and applies the specified operation. 
If the record passes the filter, it will already be in the page cache (as the library needs to read 
it in order to apply the filter operation). If the filter fails, the record is removed from the page 
cache by issuing a fadvise call with the DONTNEED flag. Note however, that in order to 
have improvements on the application side, the library needs to keep an updated bitmap with 
the records that have passed or not the filter. Using this bitmap (or similar structure), we can 
offer to the client a dummy record on the failed ones. This dummy record, known by the 
application will reduce the prefetch memory usage and may increase the performance. This 
bitmap or index, is also essential to offer a filtered or virtual view of the file, as in traditional 
SQL views, avoiding operations on the client (like testing that the record is a dummy or not).  

5.3 Evaluations and Experimental Results 

In order to test the benefits of our proposal, we devised a test application to measure the 
memory used in the page cache. This test application mimics the READ_DATA → 
PROCESS_DATA → READ_DATA access pattern common to most HPC scientific 
applications. As we will see in this section, our proposal obtains some performance benefits 
for big requests (> 512 KiB), and large memory benefits in all the cases evaluated. The test 
environment for these experiments uses a Intel Core 2 Quad CPU Q9300 with 4 GB and a 
standard SATA drive ST31500341AS. The kernel version is a 3.14 without modifications. 
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 Scenario 1 – Memory usage of 1 process 

In this scenario, we want to show the reduction on memory used for the page cache on the 
case of 1 single process. Although memory will be freed if needed, it helps to understand 
what will happen when there are a large number of processes. For this experiment, we 
measure the memory usage of a test application that performs 2000 reads of 1MiB records 
from a file, uses 100ms of process time for each record read, and a 400KiB offset stride 
between records. We evaluate the two following configurations: standard kernel reads with 
prefetching (STD) and user-guided reads with the proposed prefetching library (USER 
HINTS). As can be observed in Figure 32 the memory cost of the USER HINTS method is 
close to 0, while read operations with STD method keep all the accessed blocks in the page 
cache even if they are only used once. Also note that, despite the fact that improving 
performance is not the main objective of the library, reads using the original kernel 
prefetching need nearly 10% more time to complete the tests than those using the library. The 
reason for this lies in the fact that the user-informed library is more effective at prefetching 
striding patterns: whereas the kernel keeps reading data blocks sequentially until it notices the 
offset stride, the library is able to stop reading immediately and move the file pointer to the 
next offset. 

 
Figure 32: Memory utilization using 1 process with different read techniques. 
 
Scenario 2 – 64 processes, informed sequential access 

In this experiment we measure the memory usage of the page cache of 64 concurrent 
processes performing informed reads on 64 independent files. Each process performs 100 
read operations that follow a sequential access pattern. In order to properly evaluate the 
benefits of the library, we measure the impact of different record sizes (512KiB, 1MiB, 2MiB, 
and 4MiB), and different CPU processing times (1ms, 10ms, and 100ms). We also include the 
results for a pure sequential access pattern (NO STR) and a strided access pattern with an 
offset of 400KiB (STR). 
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Figure 33: ECDF with each operation response time. 
 

Figure 33 shows the results of this evaluation. The figure is divided horizontally by the block 
request size (512KiB-4MiB) and vertically by the minimum time needed to process the 
requested block (1ms-100ms). Each subplot shows the empirical cumulative distribution 
function (ECDF) for the operation response time, both for STD and USER HINTS reads. It 
can be observed how, in most of the experiments, the USER HINTS method offers a better 
response time than standard prefetching. For record sizes of 512KiB and purely sequential 
access, however, the USER HINTS results are similar to the standard prefetching. 
Additionally, the plots also show that the difference between strided and non strided access 
for the USER HINTS method is small. Since the library knows in advance how data needs to 
be accessed, the I/O cost of disk seeks can be overcome at the fetcher level, thus leading to 
very similar response times. 

Focusing on non-strided access, we aggregated the measured cached data kept in the page 
cache for all 64 processes, and plot it in Figure 34. Each x-axis represents the duration of the 
test, since the memory usage of the page cache will change as the test progresses. It can be 
clearly observed how the STD method offers an increasing memory usage. Note that the 
memory usage is irregular for higher block sizes since the OS may eventually need to do 
some evictions. For the USER HINTS method, the memory usage is kept low for the entire 
test’s length. This is the expected behavior, since the library is able to evict data pages when 
they are no longer needed, keeping the memory usage contained. Note that although these 
evictions may not be needed, it is convenient for the library to mark the pages with the 
DONTNEED flag. The kernel will, normally, evict old pages automatically, but the behavior 
could change under memory pressure situations or under different kernels. 
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Figure 34: Total memory usage in the page cache (64 processes,no stride, 10 ms process). 
 

Scenario 3 – 64 processes, random informed access 

This scenario is similar to the one already described. The main difference is that in this 
scenario, the 64 processes are issuing “random” requests to each of the 64 files. This random 
access is not truly random in the sense that the user knows which offsets will be accessed, and 
how much data needs to be read for each record. Nevertheless, even if this information is 
predictable, the OS prefetcher is not able to infer a clear access pattern from the offsets 
accessed, and classifies it as random data accesses, thus deactivating the prefetching 
mechanism. The user hints mechanism offers a way for applications to inform the prefetching 
library of these expected access patterns, which can be useful for scenarios such as database 
queries, indexed data or HDF5/NetCDF structured data.  

Figure 35 shows the memory usage for measured in this scenario. Once again, each process 
performs 100 read operations and we measure the impact of using different record sizes 
(512KiB, 1MiB, 2MiB, and 4MiB), and different CPU processing times (1ms, 10ms, and 
100ms). Since access patterns in this scenario are random, it does not make sense to consider 
sequential or strided access patterns, which is why they do not appear in the figures. The 
ECDF curves depicted in the subplots show that, as expected, all the scenarios are favorable 
to the USER HINTS method. Since the library knows in advance which data blocks are going 
to be accessed, it can successfully load them in the page cache just before they are needed, 
offering better performance results than the kernel’s standard prefetching mechanism, which 
has no basis to work on. The results for the memory usage are similar to those shown in 
Figure 34. 
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Figure 35: ECDF of the Response time per operation when issuing random requests. 
 

Scenario 4 – Advanced filtering 

Finally, and to show how the advanced filtering technique works, in this scenario we show a 
zoom of the results obtained when applying this technique. The application scans a file 
reading 4KiB records with a 100ms process time and testing if an integer field is bigger than 
100. Figure 36, shows two scenarios: the STD and the ADV FILTER scenario. In the first 
scenario, a user level application reads each record and decides whether it is usable or not, 
whereas in the second scenario the filtering is done by the library in the background and the 
already-filtered records returned to the user. Usable data is shown in blue and with a 
sequential ID (to allow comparison of the two approaches), while unusable data is shown in 
red and without a number ID. It can be observed that, if the required information is passed via 
user hints to the library, the filtering process can be done at the fetcher level, keeping the 
passed/failed information in an index and storing only the good records. Finally, the user 
application works as usually but only the correct data is prefetched as the filtered data is 
returned with a dummy that the user will recognize. With this technique, the library is able to 
reduce the memory used while being able to prefetch only useful data (for example, one or 
two requests in advance, depending on the ratio of success rate). A bigger performance 
improvement can be achieved if the library offers to the application a virtual file, since the 
user does not need to pass the filter over the dummy data (and we avoid the data copy to the 
application buffer). 
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Figure 36: Advanced Filtering with the standard behavior shown on the left, and the user level and fetcher 
thread on the right. 

5.4 Conclusions 

The techniques explored in this deliverable can be used on Exascale environments to reduce 
the memory pressure on the page cache. As we have shown, anticipating user reads, with 
small information from the user, can produce great benefits. On the one hand, these 
techniques will always decrease the memory usage but, on the other hand they may increase 
the response time if the blocks requested are small (<512 KiB) or the access pattern are 
sequential enough that the OS prefetcher may work in a suitable way. 

The second proposal, advanced filtering, will also reduce the memory pressure and will have 
an effect on performance since the dummy records can be easily removed. Finally, this 
technique can be moved down the I/O stack, for example to the PFS nodes, to activate also 
reductions on network congestion. 

As a summary, a prefetch library shows benefits in performance and memory usage when: 

1) There are consecutive big reads with or without stride and process time involved. 
2) The library knows in advance the I/O patterns of the application. 
3) The user can describe the records going to be read, and the library is able to apply the 

filtering during the prefetch process. This allows that only the needed records are 
cached. 

However, there are also situations where it is difficult that library prefetching becomes better 
than the OS prefetcher: 

1) When consecutive reads happen very fast and they are also consecutive on space (i.e. 
sequential). The OS will prefetch automatically, and the memory used will be minimal 
as the older pages will be removed automatically (in low memory pressure situations). 

2) There is no information about future reads. Without information about the application 
behavior (user- or automatically-inferred) guided prefetching will not work better than 
the OS. 

Sometimes direct I/O can offer better performance than any prefetching mechanism (OS or 
library) due to the direct memory transfer allowed by DMA. However, the I/O restrictions 
should not be underestimated. For example for direct DMA data transfer, need aligned 
reads/writes and buffers are required, which can prove bothersome to achieve under some 
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environments, and may be a strict requirement to place on the users of a high-performance 
computing cluster. 

 

6 Summary and Conclusions 

This Work Package performed research and development on the programmability of future 
multipetascale and exascale systems exploring a diverse set of techniques. It was organized 
into four different tasks, Task 12.1 dealed with auto-tuned runtime environments, Task 12.2 
dealt with scalable numerical algorithms, Task 12.3 focused on fault tolerant tools, and Task 
12.4 looked at file system optimization for exascale systems. Although, these tasks focused on 
improving independent areas of an HPC system, there is some relationships between them as 
well. For instance, there is some relationship between Tasks 12.1 and Task 12.2 where auto-
tuning techniques where used to find out the optimal number of threads which can be applied 
to the OpenMP codes in Task 12.2. 

A total of 16 research projects were reporting in this document covering multiple different 
techniques within these main four areas which are summarized below. 

Task 12.1 provided different auto-tuning techniques to improve the performance of codes. 
Systems and applications are getting so complex that it is imperative to relay on auto-tuning 
techniques to automatically obtain the desired high performance on the target system without 
user intervention. This task contributed on different areas such as OpenMP applications, 
SLURM scheduler, Kepler workflow engine, component based 3D FFT, compiler auto-
vectorization, and All-to-all collective communication.  A total of seven projects were 
covering these different areas resulting on 5 whitepapers and 2 additional detailed reports all 
of them reported on this document.  

Task 12.2 has provided new guidelines, algorithmic approaches and adaptive methodologies 
to improve the performance of numerical algorithms on modern large-scale systems. It 
demonstrated improvements on diverse numerical algorithms such as HYDRO, PETSc, CP2K 
and FETI. This task consisted on eigth different projects that resulted on 5 whitepapers and 3 
detailed reports. Improvements are achieved in part using aaccelerators with the OpenACC 
and OpenCL enabling parallel constructs or using shared memory parallelism with OpenMP 
improving efficiency of the HYDRO application. The approaches for numerical algorithms 
also include distributed memory parallelism, example applications including PETSc and 
FETI. One of the major focusses of this task was to show that it is possible to improve the 
parallel performance of sparse linear iterative solvers. Three projects addressed this issued 
using a novel scheme that completely avoids the communication latency overhead, or using a 
pipelined solver to increased computation with communication overlap, or via a strategy to 
dynamically adjust the local convergence criterion during execution.  

Task 12.3 concluded that fault tolerant based on selecting within the application the critical 
data to save achieves very little overhead at large scale. It was reporting less than 6% on 
HYDRO at 9,600 cores.  

Task 12.4 explored techniques aimed to be used on Exascale environments to reduce the 
memory pressure on the page cache. It concluded that anticipating user reads, with small 
information from the user, can produce great benefits. These techniques will always decrease 
the memory usage which is important at exascale where the amount of memory per core is 
expected to be small.   



D12.5 Summary of Novel Programming Techniques Results 
 

PRACE-2IP - RI-283493  22.8.2014 56

In conclusion, in this work package we have shown that applications and system software has 
to be re-developed in order to deal with the increasing complexity of hardware at the multi-
peta scale and exascale computers. Hardware at high scale is going to be complex and thus 
applications are going to be fully re-developed to deal with that complexity. In this work 
package we have demonstrated that we have a solid foundation to obtain a very high parallel 
performance getting close to petascale as demonstrated in all the projects carried out during 
this last year.  

In Task 12.1 we have shown how applications must adapt to the specific characteristics of 
processor and network topologies as an example. And additionally, in Task 12.2 we have 
shown that algorithmic changes are needed in order to improve parallel efficiency at large 
scale. Although this research show promising results, we are still far away to be ready for 
exascale and thus more research is needed to re-develop codes to this un-precendent parallel 
machines. From our point of view, it will require integration of technical ideas as well as solid 
theoretical foundations into its core design to take full advantage of the underlying hybrid 
architecture of exascale machines. We think that new applications should take these remarks 
into account from the very beginning in their design process. 

 


