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Executive Summary 

This report documents the research and development carried on within Task 12.4. The main 
goal of the task is to identify and address some open issues in file systems for multi-petascale 
and exascale facilities, aiming to the development of solutions that can be applied to the 
Lustre file system. 

The addressed issues can be classified into two main areas: metadata management and data 
management. Metadata handling involves dealing with huge numbers of files and their 
hierarchical organization according the user’s view (including directory management and file 
attributes). Data handling deals with the storage of file contents and management data; this 
includes, in particular, techniques for automatic (self-tuned) placement of data on a system 
with many heterogeneous devices, aiming at maximizing bandwidth and minimizing response 
time. 

The work carried on in the area of metadata management included the observation, 
measurement and study of a large scale system currently in production, in order to identify the 
key metadata-related issues; the development of a prototype aimed to improve the metadata 
behaviour in such system and also to provide a framework to easily deploy novel metadata 
management techniques on top of other systems; the measurement and study of specially 
deployed Lustre and GPFS prototypes to validate the presence of the metadata issues 
observed in current in-production systems; and finally the porting of the framework prototype 
to test novel metadata management techniques on the Lustre prototype facility. 

In this line we have observed that in both Lustre and GPFS there are some scalability issues 
that reduce the performance of metadata operation when many files are used by the 
applications or when the number of accessing clients grows. The most important observation 
is that the number of files needed for the problem to appear is only a few hundreds and the 
number of clients a few dozens. This clearly shows that the problem needs to be addressed. 

After our mechanism has been added to the GPFS system, we have observed that the decrease 
in performance that appears in the evaluated cases disappears making the system much more 
scalable with the number of files and clients. The main reason for this beneficial effect is that 
our middleware is able to convert not optimized cases (from GPFS point of view) into the 
optimized cases of GPFS. 

Regarding data management, the work carried on in the present Task is based in the study of 
the limitations of current data distribution strategies, especially when dealing with sustained 
growth of storage capacity.  

The results consist of a proposal for a novel data re-distribution technique for increased 
storage capacity, aimed to maximize bandwidth and responsiveness while minimizing the cost 
of data re-distribution. This technique that redistributes data using an approach that mixes the 
two current trends (deterministic and randomized placement) is able to achieve a perfect 
redistribution of data with minimal data movement (like the randomized approaches) and 
without the negative effects in metadata size or computing time of traditional randomized 
approaches. 

It is also a contribution of this work a new level in the caching hierarchy that uses a tiny 
portion of all available storage systems to cache data and achieves performance results similar 
to the ones obtained when the data is perfectly well distributed, but starting from data very 
badly distributed. 
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1. Introduction 

The purpose of this report is to document the results obtained in Task 12.4. The final goal of 
the task is to identify the open issues related to file systems for multi-petascale and exascale 
facilities, and propose novel solutions that can be applied to Lustre, enabling it to manage a 
huge number of files on a system with many heterogeneous devices while efficiently 
delivering huge data bandwidth and low latency, minimizing the response time. 

The work of the task follows two main lines: metadata handling and data storage handling. 
Metadata management involves providing support for a large number of files, offering a 
consistent view of their attributes and organization, according to the semantics expected by 
users. On the other hand, data management focuses on optimizing the placement of data on a 
large set of heterogeneous storage devices, taking into account its dynamic nature (due to the 
addition of new devices to both increase the storage capacity and the replacement of old 
devices). 

The issues we try to solve are not specific to Lustre: all modern file systems aiming to provide 
a storage solution for very large scale systems share similar goals and face related issues. For 
this reason, even if the final goal is to provide novel mechanisms to enrich the Lustre 
prototype, we have studied and taken advantage of the experience of large-scale production 
facilities also using different file systems (e.g. GPFS[1]), and we have also evaluated policies 
in simulation environments. Consequently, the results we have obtained could also be applied 
directly (or ported with minimum effort) to file systems other than Lustre. 

In general, file systems try to adapt to the new demands by specializing and targeting specific 
kinds of workloads. As a counterpart, there is a cost in terms of performance for non-
optimized cases. 

A usual way to deal with non-optimized cases is to add even more specific optimizations, 
either by means of files system specific modifications (e.g. parallel creations policies in 
PVFS2 [2]), or by means of a middleware targeted to fulfil the needs of specific classes of 
applications (e.g. MPI-IO implementations using hierarchical striping for Lustre [3]). 
Unfortunately, this approach does not deal with performance penalties caused by unforeseen 
or inadequate access patterns from arbitrary applications, which are likely to occur in 
heterogeneous workloads. 

Our approach to handle the metadata issues consists of placing a layer on top of the file 
system for decoupling the user view from the actual low-level file system organization, 
allowing us to convert the application access patterns into something that can be dealt with by 
underlying file system without harming the performance (instead of trying to adapt the file 
system to any possible workload). In other words, the mechanism consists of improving the 
file system behaviour by avoiding bottlenecks caused by application patterns, instead of 
focusing only on optimizing the file system for a very specific workload. 

Running on top of the file system (instead of integrating new code into it) makes development 
much easier and simplifies the integration of other state-of-the-art technologies which may 
help to address the issues under study. Additionally, it allows us to easily adapt the same 
solutions to multiple file systems and environments. 

On the other hand, regarding data, we attack the problem by proposing algorithms that can 
easily adapt their placement to the changing needs of the load and the changing resources. 
Both the new placement algorithm and the new hierarchy level are general enough to fit any 
parallel file system and should be implemented as part of the data placement modules of such 
systems. 
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Section 2 describes the identified metadata scalability issues. Section 3 describes the COFS 
(Composite File System) prototype and how it is used as a framework to integrate solutions 
for the scalability issues. Section 4 summarizes the data management issues in large-scale 
systems. Section 5 describes the proposals to reduce the cost of data allocation and re-
distribution. Section 6 exposes some details about the evaluations and experiments performed, 
both in actual systems and in simulated environments. Finally, section 7 summarizes the 
conclusions. 

This document is intended for the authors of PRACE deliverables and for parallel file system 
managers who can understand some limitations of their systems and see some mechanisms to 
mitigate such problems. Finally, and especially the second part of the deliverable, is aimed at 
parallel file system developers that may be interested in including the proposed simulated 
techniques into real file systems.  

2. Metadata Management Issues 

Parallel file systems usually keep pace with high performance computing clusters by 
incorporating optimizations targeted at specific workloads. Unfortunately, the growing 
number of large scale applications increases workload heterogeneity, generating a gap 
between how file systems work, and how users expect them to behave. 

High performance computing is rapidly evolving into large aggregations of computing 
elements in the form of big clusters. In the last few years, the size of such distributed systems 
has increased from tens of nodes to thousands of nodes, and the number is still rising. Trying 
to keep pace with these developments, parallel file systems try to provide mechanisms for 
distributing data across a range of storage devices and making them readily available to the 
computing elements. 

At the other end, the final user’s view of the storage systems has not changed significantly: 
for the usual case, files are organized in a hierarchical name space, much in the same way as 
they were placed in a classical local file system using an attached disk in a single computer. 

In this classical view, a directory was often tacitly used as a hint to indicate locality. Indeed, it 
is not surprising to find a directory containing files that are going to be used together, or in a 
very related way (for example, a directory containing a program’s code, the corresponding 
executable, some configuration files and maybe the output of its execution). 

Trying to exploit this affinity, file systems tended to group together the management 
information (the metadata) about directory contents. This was favoured by the fact that this 
information is relatively small, so that it is feasible to pack together information about access 
permissions, statistics, and also the physical location of the data, not only for a single file, but 
also for a set of related files (i.e. for files present in the same directory). 

The approach of treating directory contents as a group of related objects with similar 
properties is still present in modern file systems. It is common to see parallel file systems to 
use directories as mount points to access different volumes or partitions with different 
functionalities or, in finer grain file systems, to be able to specify directory-wide rules that 
apply to directory contents. 

The problem appears when, in large clusters with parallel file systems, directory contents are 
semantically related according user's view, without that meaning that they are going to be 
used together or in similar ways from the file system perspective. Reusing the example above, 
now the program code in a directory will be compiled and linked, probably in a single node, 
to generate a binary that will be read and executed simultaneously in 2,000 nodes, each of 
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them generating an output file to be left in the same directory, which will be collected and 
read by a single post-processing tool generating some summary information. Files are indeed 
related, but patterns of use are totally dissimilar. 

Parallel file systems trying to keep close the apparently related fragments of metadata will end 
up trying to keep consistent a relatively small pack of miscellaneous information (which is not 
easy to distribute and share) while it is being simultaneously used, and probably modified, by 
a large number of nodes. As a result, the pressure on metadata handling in large scale systems 
will rise up, producing delays comparable to the actual data transfer times from and to the 
storage systems, and jeopardizing the overall system performance. 

The metadata issue has been confirmed by observations in actual systems, showing that lack 
of synergy between file systems and the multiplicity of applications running on them is 
increasing the pressure on metadata management, up to the level of becoming a significant 
performance-killer. 

The following subsections give more details about the observations of metadata behaviour in 
both GPFS and Lustre file systems. 

2.1. Metadata Scalability Issues in GPFS 

Parallel applications on large scale parallel systems expect to be able to perform I/O 
simultaneously from all the nodes as they would if it was a single node (i.e. efficiently, in 
parallel and keeping the consistency). Not many file systems are able to provide such support 
to applications in a reliable way. Together with Lustre, GPFS is another mature file system 
aimed to large distributed clusters which has been adopted at many high performance 
computing centers. 

As Lustre, GPFS offers a standard POSIX interface, while having the possibility to use non-
POSIX advanced features for increased performance (e.g. for MPI-IO). Nevertheless, their 
architectural approaches differ significantly. For this reason, studying its behaviour and 
comparing it with Lustre’s provides useful insights regarding the different techniques 
available to deal with large cluster file systems and their impact on performance. 

GPFS uses block-based storage (contrary to Lustre’s Object Storage Devices [4]). A typical 
configuration consists of clients which access to a set of file servers connected to the storage 
devices via a Storage Area Network (SAN). Metadata is also distributed and consistency is 
guaranteed by distributed locking, with the possibility of delegating control to a particular 
client to increase performance in case of exclusive access. 

We have been able to observe important performance drops in large production clusters using 
GPFS with heterogeneous workloads, and we have been able to track the causes back to 
metadata management issues that are related to the way in which applications use the file 
system: 

 Large parallel applications usually create per-node auxiliary files, and/or generate 
checkpoints by having each participating node dumping its relevant data into a 
different file; not unlikely, applications place these files in a common directory. 

 On the other hand, smaller applications are typically launched in large bunches, and 
users configure them to write the different output files in a shared directory, creating 
something similar to a file-based results database; the overall access pattern is similar 
to that from a parallel application: lots of files are being created in parallel from a 
large number of nodes in a single shared directory. 
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In both cases, typical modus operandi ends up creating large amounts of files in the same 
directory; and very large directories, especially when populated in parallel, require GPFS to 
use a complex and costly locking mechanism to guarantee the consistency, resulting in far-
from-optimal performance. For example, a parallel application spanning across a large 
number of nodes can use an important portion of its execution time creating and writing 
checkpoint files (significantly greater than what should be expected for the simple transfer of 
data.) To mention another example, collection software used by computer science researchers 
to obtain per-node application execution traces for performance analysis also suffer from this 
inadequate metadata handling. 

As an additional concern, the overhead is not limited to the infringing applications, but affects 
the whole system, as file servers are busy with synchronization and all file system requests are 
delayed. 

We have conducted a series of experiments in a GPFS cluster to confirm that metadata 
handling was a significant cause of performance drops. The situation we wanted to evaluate 
essentially involved parallel metadata operations, so we used Metarates [5] as the main 
benchmark. Metarates was developed by UCAR and the NCAR Scientific Computing 
Division, and measures the rate at which metadata transactions can be performed on a file 
system. It also measures aggregate transaction rates when multiple processes read or write 
metadata concurrently. We used this application to invoke create, stat, and utime on a number 
of files from the same directory in parallel. The issues identified in the production GPFS 
cluster have then been used to locate potential issues in the Lustre prototype. 

The measurements for GPFS have been carried out in a cluster of IBM JS21 blades, with 2 
dual core processors PPC970MP at 2.3 GHz and 8 GB of RAM per blade. The 
interconnection network is a 1Gb Ethernet. 

The observations indicate that an important portion of the relatively large operation times is 
consumed not by actual information being transmitted from the server to the clients, but by 
consistency-related traffic (even when each process works on a different set of files). That 
assumption would give our virtualization layer enough room to obtain a good speed-up by 
reorganizing the file layout and reduce the synchronization needed among GPFS clients. 

 

 
Figure 1 Utime cost for a single GPFS client node 
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Figure 1 shows the average time to fulfil an utime request (changing the timestamp indicating 
when the file was last modified) on a file in a directory accessed by a single client node. The 
low values for small directories (about 45 microseconds) are the cost of the request when the 
GPFS delegation mechanism is active (control is transferred to the client node, so that 
operations can be carried on locally, without server synchronization) and represent a lower 
boundary for the operation cost; beyond 1024 entries per directory, delegation is no longer 
active and the operation requires remote server intervention, resulting in larger operation 
times. 

 

 
Figure 2 Utime cost in GPFS using multiple client nodes 
 
The operation average times when performing simultaneous utime calls from different nodes 
are shown in Figure 2. Ideally, the cost should be around 0.75ms (the cost in a single node 
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Figure 3 Average parallel creation times in GPFS (1024 files per node) 
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As the multi-core hardware in the Lustre prototype allows us to efficiently execute several 
processes in the same node, we have executed the benchmarks using 1 and 8 processes per 
node. From the data in Figure 4 we can see that the Lustre client is able to parallelize requests 
from different processes, resulting in an increased performance. 

 
Figure 4 Utime cost for a single Lustre client node 
 
The improved behaviour of Lustre when using multiple processes per node tends to converge 
with the single node behaviour when the number of nodes increases (see Figure 5).  

 

 
Figure 5 Utime cost for multiple Lustre client nodes (1024 files per node) 
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Figure 6 Lustre utime behaviour in larger systems (1024 files per node) 
 
Figure 6 shows that beyond 64 nodes, there is an indication of an increase of the effective 
average operation time (resulting in a reduction of the performance). Possibly, this effect will 
become larger with further increases in the number of nodes (but this is still to be confirmed 
by experiments). 

Regarding file creation, Lustre also shows differences between the creation of files in a shared 
directory and in a unique directory per process (see Figure 7), though they are not so 
significant as they were in GPFS. 

 
Figure 7 Average parallel creation times in Lustre (8 procs. per node, 1024 files per node) 
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2.3. Conclusions 

From the experiments, we have learned some facts about file system behaviour that may help 
us to optimize the Lustre prototype and improve its scalability. 

The sequential behaviour of Lustre regarding metadata operations is not significantly affected 
by the number of files in the directory (differing from GPFS). The only exception is the 
create request: the optimal creation ratio is reached at 1024-2048 entries per directory, and 
stabilizes beyond that point. 

Parallel creations on shared directories suffer from overhead with respect to parallel creations 
in separate directories per process. The overhead is much more significant in GPFS than in 
Lustre. One of the possible causes is that GPFS has a delegation mechanism that allows 
transferring the control of metadata operations from the server to the client temporarily, 
allowing near-local operation times when a node works on a directory which is uniquely 
accessed by a single node. On the contrary, Lustre does not have such a mechanism and 
operations to both unique and shared directories need to go to the remote metadata server 
(resulting in less significant improvements for non-shared operations). 

Parallel operations in Lustre scale quite well up to an optimum value about 16-32 nodes 
(depending on the operation and conditions) but show hints of performance degradation 
beyond that point. The goal should be avoiding the performance degradation and even 
continue the performance improvement with more nodes. 

Decoupling the name space from the low-level file system layout could be a way to mitigate 
the issues. A virtual layer would offer large shared directory views while internally splitting 
them to take advantage of non-shared operations. Moreover, this layer could be used to easily 
add delegation mechanisms and coalesce requests, reducing round-trips to the metadata 
server. The Composite File System (COFS), explained in section 3 was developed to validate 
this approach. Section 6.1 shows some of the results obtained up to now (for the GPFS file 
system). 

3. Tools for Metadata Management: the COFS Framework 

Given the observations on metadata behaviour described in previous sections, we have 
developed the Composite File System (COFS) as a prototype to validate the assumption that it 
is possible to boost the performance of a parallel file system by decoupling metadata, and 
name space handling, from the underlying directory layout. COFS acts as a metadata 
management layer on top of the file system, enabling the improvement of its behaviour under 
high pressure situations without harming the other aspects of file system performance. 

In particular, COFS has been used to evaluate the performance benefits of separating the user 
view from the underlying file system structure on our systems under study. In this section we 
describe its main features, focusing on the implementation aspects that are relevant to explain 
the experimental results. 

3.1. Principles 

The main goal of the current COFS prototype is to be able to decouple the user view of the 
file hierarchy, the metadata handling and the physical placement of the files. In particular, this 
allows us to present the user with a virtual view of the file system directories, while the actual 
layout can be optimized for the underlying file system. 
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Regarding functionality, POSIX compliance was a strong design requirement. Apart from the 
fact that this is still the dominant model for most applications, our generic goal was reducing 
the operational restrictions of underlying file systems; so, limiting the semantics was not an 
option: if POSIX semantics is required and the underlying file system supports it (as is the 
case with Lustre), then COFS should also be able to deal with it. The current implementation 
fully supports POSIX except for some functionality that was not relevant for our present work 
(specifically, named pipes). 

Another important point to mention is that COFS is implemented as a user-level FUSE 
(Filesystem in USErspace [6]) daemon, and it is independent from the underlying file system. 
The reasons for this are two-fold. First, even if one of the original motivations of this work 
was mitigating potential performance drops on a specific file system, we believe that 
equivalent issues affect other file systems; so, the solving mechanism should be generic 
enough to be applied to any file system. Second, we plan to deploy our framework in 
production-grade clusters, and having a user-land drop-in package without hard requirements 
on kernel modifications, configurations or complex software packages makes it much easier 
to have access to such environments, as the potential impact on the rest of the system is 
minimal. 

The COFS framework does not directly deal with low-level data storage. There is no explicit 
management of disks, blocks or storage objects: COFS simply forwards data requests to the 
underlying file systems and indicates an appropriate low level path when a file is created. 
Then it is up to the underlying file system to take the decisions on low-level data server 
selection, striping, block/object placement, etc. In this sense, COFS is not a complete file 
system, but a tool to leverage the capabilities of underlying file systems. 

On the contrary, COFS does take the responsibility on metadata management. By metadata 
we specifically mean access control (owner, group and related access permissions), symbolic 
and hard link management, directory management (both the hierarchy and the individual 
entries) and size and time data for non-regular files (sizes and access time management for 
regular files rely on the underlying file system). 

Regarding security aspects, COFS relies on the underlying infrastructure: local file system 
operations are already protected by FUSE's in-kernel support; communications with the 
metadata service make use of the authentication mechanisms provided by the Erlang/OTP 
environment [7]. 

3.2. Architecture 

Figure 8 shows how the COFS framework integrates with an existing file system 
environment. An original parallel file system is served by 3 file system servers, and n clients 
contact such servers through the network. COFS introduces an extra layer on each file system 
client, providing a virtual view of the file system layout. Metadata information is handled by 
an additional server node. It is important to mention that even though we use a single 
metadata server in the current stage of implementation, this is not forced by design, and the 
framework also admits a distributed metadata service. 
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Figure 8 Parallel file system architecture augmented with COFS virtualization layer 
 

The COFS layer on each node offers a file system interface, so it can be mounted as any other 
file system. The implementation is based on FUSE, which provides a kernel module that 
exports VFS-like callbacks to user-space applications. The decision to use FUSE was driven 
by both portability and level of support, as well as easy of development. FUSE is a standard 
component of current linux kernels (also available for other operating systems) and provides a 
stable platform for implementing a fully functional file system in a user-space program. 
Considering our experimental goals, the downside of missing some kernel-level information 
that is not exported or forwarded to user level, and possibly minor efficiency losses, is largely 
compensated by having a drop-in environment that can be used in most linux boxes without 
requiring specific kernel modifications. 

Once intercepted by FUSE, file system requests are internally diverted by COFS into two 
different modules (the placement and metadata drivers) with well-defined interfaces. The 
placement driver is responsible for mapping the regular files into the underlying file 
system(s), while the metadata driver takes care of hard and symbolic links, directories, and 
generic attributes. Some operations need the collaboration of both drivers: for example, 
creating a file involves creating an actual regular file on a convenient location (a placement 
driver responsibility) and updating the proper entries in the directory (done by the metadata 
driver). So, an interface is also defined for communication between both drivers. 

3.3. Metadata service details 

How to handle metadata is an important factor that must be considered carefully when dealing 
with parallel and distributed file systems. This also applies to the COFS framework, as the 
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separation of metadata and name space handling from the actual data layout is a key feature to 
obtain performance benefits. 

Currently adopted solutions for metadata range from having a single centralized metadata 
server (like Lustre) to fully distributing metadata (such as GPFS). While the first have 
simplicity on their side, centralized approaches are suspected to become a bottleneck and 
hinder scalability; on the other hand, the latter approach requires distributed locking/leasing 
techniques to keep the coherence and complex fault detection and recovery mechanisms. 
Other options lie in the middle, like explicitly dividing the system into smaller partitions 
(Panasas) or relaxing consistency or caching to avoid synchronization needs (PVFS2). The 
distributed directory service for Farsite also explores several techniques for partitioning file 
system metadata while mitigating synchronization hotspots. 

In COFS, we have taken a conceptually centralized approach for metadata because of its 
simplicity. We dealt with scalability concerns by leveraging the well-know technology of 
distributed databases: metadata can be seen as small set of tables having information about the 
files and directories and, in case of need, it could be distributed into several servers by the 
database engine itself (without the need of explicit file system partitions or separate volumes). 

To this end, we chose the Mnesia database, which is part of the Erlang/OTP environment. 
Mnesia provides a database environment optimized for simple queries in soft real time 
distributed environments (with built-in support for transactions and fault tolerance 
mechanisms). Additionally, the Erlang language has proven to be a good tool for fast 
prototyping of highly concurrent code (the language itself internally deals with thread 
synchronization and provides support for transparently distributing computations across 
several nodes). 

The current COFS prototype uses a single metadata server running an Erlang node with an 
instance of the Mnesia database, and the COFS metadata driver on each client simply 
forwards the requests to the server and handles metadata leases. 

The server also keeps the current working set of metadata information as a cache of active 
objects to reduce the pressure on the backend database engine, using a concurrent caching 
mechanism similar to the one described by Jay Nelson. Although our performance tests show 
that a single node is enough to handle the metadata, the used algorithm would be compatible 
with a distributed multi-node Erlang system, if needed. 

4. Data Management Issues 

Metadata management represents just one of the aspects that have to be addressed in exascale 
systems. Data storage and handling constitutes the other important set of issues that must be 
carefully considered in order to avoid unacceptable performance losses. 

Indeed, the ever-growing creation of massive amounts of data expected in exascale systems 
requires highly scalable solutions. The most flexible approach is to use a pool of storage 
devices that can be expanded and scaled down as needed by adding new storage devices or 
removing older ones. Nevertheless, such an approach brings out the following challenges: 

1. These storage systems will inevitably be composed of a collection of heterogeneous 
hardware: as capacity requirements grow, new storage devices will be added to cope 
with demand, but it is unlikely that these new devices have the same capacity and/or 
performance that those currently in the storage system. Furthermore, when disks fail 
they are usually replaced by faster and larger ones, since it ends up being cheaper than 
finding a particular model of drive. In the long run, any mass storage system will have 
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to cope with a myriad of devices (SATA/SCSI drives, optical tapes, SSDs...) with very 
different performance characteristics and capacities. 

2. Storage systems must be able to scale according to the needs of the users, and they 
must do so in an efficient manner. Whenever new devices are added to the system 
large amounts of data must be migrated in order to keep the system’s load balanced 
across devices. For large-scale storage systems the amounts of data moved can be 
enormous and the required migration times impractical. 

In summary, data must be carefully balanced to maintain acceptable access ratios in very large 
scale systems; nevertheless, the supporting hardware will need to be expanded and replaced 
continuously, which means that large amounts of existing data will have to be redistributed 
and moved from the old devices to the new ones in a proper way to maintain performance 
characteristics. 

Research has taken some very different directions in order to solve the problem of scalability 
in heterogeneous storage. Table-based strategies can provide an optimal mapping between 
data blocks and storage systems, but obviously do not scale to large systems because tables 
grow linearly in the number of data blocks. Rule-based methods, on the other hand, run into 
fragmentation problems, so defragmentation must be performed periodically to preserve 
scalability. 

Hashing-based strategies use a hashing function in order to map data blocks with unique 
identifiers into a set of devices, so that blocks are evenly distributed. Given a static set of 
devices, it is simple to construct a hash function so that every device gets a fair share of the 
data load. However, standard hashing techniques do not adapt well to a changing set of 
devices. 

Pseudo-randomized hashing schemes that can adapt to a changing set of devices have been 
proposed and theoretically analyzed. The most popular is probably Consistent Hashing [8], 
which is able to evenly distribute single copies of each data block among a set of storage 
devices and to adapt to a changing number of disks. Nevertheless, these theoretically perfect 
approaches suffer from heavy memory usage which limits their applicability in real 
implementations. 

5. Proposals for Data Management 

5.1. Random Slicing 

Random Slicing is a new data distribution strategy that aims to solve the problems mentioned 
in Section 4 by using a pseudo-randomized distribution of data blocks coupled to a scalable 
data structure that controls the mapping of sets of blocks to devices. 

Random Slicing overcomes the drawbacks of randomized data distribution strategies by 
incorporating lessons learned from table-based, rule-based and pseudo-randomized hashing 
strategies. Random Slicing keeps a small table with information about previous storage 
system insertions and removals that helps to drastically reduce the required amount of 
randomness in the system and thus reduces the amount of necessary main memory by orders 
of magnitude. 

Random Slicing has been designed to be fair and efficient both in homogeneous and 
heterogeneous environments and to adapt gracefully to changes in the number of devices. 
Suppose that we have a random function ݄: ሼ1, … , ሽܯ  ՜ ሾ0,1ሻ that maps data blocks 
uniformly at random to real numbers in the interval ሾ0,1ሻ. Also, suppose that the relative 
capacities for the ݊ given devices are ሺܿ଴, … , ܿ௡ିଵሻ א ሾ0, 1ሻ௡ and that ∑ ܿ௜ ൌ 1௡ିଵ

௜ୀ଴ . 
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The strategy begins by dividing the ሾ0,1ሻ range into intervals and assigning them to the 
devices currently in the system. Notice that intervals do not overlap and completely cover the 
ሾ0,1ሻ range. Also note that device ݅ can be responsible for several non-contiguous intervals 

௜ܲ ൌ  ሺܫ଴, … , ݇ ௞ሻ, whereܫ ൏ ݊, which constitute the partition of that device. To ensure an 
even distribution, Random Slicing will always enforce  ∑ หܫ௝ห ൌ ܿ௜

௞ିଵ
௝ୀ଴ . 

In an initial phase, i.e. when the first set of storage devices enters the system, each device ݅ is 
given only one interval of length ܿ௜, since this suffices to maintain a fair distribution of data. 
Whenever new devices enter the system, however, relative capacities for old devices change 
due to the increased overall capacity. To maintain this fairness, Random Slicing shrinks 
existing partitions by splitting the intervals that compose them until their new relative 
capacities are reached. The new intervals generated are used to create partitions for the newly 
added devices. 

First, the algorithm computes how much partitions should be shrunk in order to keep the 
fairness of the distribution. Since the global capacity has increased, each partition ௜ܲ must be 
reduced by ݎ௜ ൌ ܿ௜ െ ܿ௜

, , where ܿ௜
,  corresponds to the new relative capacity of device ݅. 

Partitions become smaller by releasing or splitting some of their intervals, thus generating 
gaps, which can be used for new intervals. Notice, however, that the strategy’s memory 
consumption directly depends on the number of intervals used and, therefore, the number of 
splits made in each addition phase can affect scalability. For this reason, the algorithm tries to 
collect as many complete intervals as possible and will only split an existing interval as a last 
resort. Furthermore, when splitting an interval is the only option, the algorithm tries to expand 
any adjacent gap instead of creating a new one. 

The partition lengths for the old devices already represent the corresponding relative 
capacities. It is only necessary to use these gaps to create new partitions for the newly added 
bins. The strategy proceeds by greedily allocating the largest partitions to the largest gaps 
available in order to reduce the number of new intervals even more, which ends the process. 

 
Figure 9 Random Slicing interval reorganization for the new devices 
 

An example of this reorganization is shown in Figure 9,where two new bins ܤଷ and ܤସ (which 
account for a 50% capacity increase) are added to the bins ܤ଴, ܤଵ, and ܤଶ. Figure 9 (a) shows 
the initial configuration and the relative capacities for the initial bins. Figure 9 (b) shows that 
the partition of ܤ଴ must be reduced by 0.06, the partition of ܤଵ by 0.11, and the one of ܤଶ by 
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0.16, whereas two new partitions with a size of 0.14 and 0.19 must be created for ܤଷ and ܤସ. 
The interval ሾ0.1, 0.2ሻ א ,ଵcan be completely utilized, whereas the intervals ሾ0.0ܤ 0.1ሻ א  ,଴ܤ
ሾ0.2, 0.6ሻ א ,ଶ and ሾ0.7ܤ 0.9ሻ א  ଵare split while trying to maximize the length of the createdܤ
gaps. Figure 9 (c) shows the completed process where, the partition for ܤଷ is composed of 
intervals ሾ0.23, 0.36ሻ and ሾ0.7, 0.71ሻ, while the partition for ܤସ only contains interval 
ሾ0.04, 0.23ሻ. 

When all partitions are created, the location of a data block ܾ can be determined by 
calculating ݔ ൌ ݄ሺܾሻ and finding the interval ܫ that contains ݔ, which in turn determines the 
device. Notice that some blocks will change partition after the reorganization, but as partitions 
always match their ideal capacity, only a near minimal amount of blocks will need to be 
reallocated. Furthermore, if ݄ሺܾሻ is uniform enough and the number of expected blocks in the 
system is significantly larger than the number of intervals (both conditions easily feasible), 
the fairness of the strategy is guaranteed. 

5.2. Multi-Zone Self-Caching Data Storage 

As shown in [9], some workloads show relevant amounts of long-term locality, that is, data 
that tends to be accessed continuously for several days or weeks. We have designed and 
simulated a new allocation strategy that optimizes access times to hot data sets and maintains 
an appropriate balance of data load and operations across devices. 

The basic idea of this strategy is to claim a portion of each device in the storage system and 
use it to create a storage zone where we can distribute active data. This effectively defines two 
zones in the storage system: an archival zone and a caching zone. The strategy also keeps 
track of changes to the currently active working set and updates the caching zone accordingly. 

We consider that data is active when it begins receiving accesses. When this happens, the data 
block is copied to the caching zone and all subsequent requests are served from it. Once data 
stops being active it is copied back to the archival zone, where it will remain until it becomes 
active again. Each zone can be managed with a different data allocation policy that befits the 
requirements of the data that it contains, therefore combining the advantages of performance-
oriented strategies with the cost-capacity benefits of archival-oriented ones. 
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Figure 10 Overview of an hybrid architecture with a RAID0 caching zone 
 

Figure 10 shows an example of an architecture with RAID0 for both the caching zone and the 
archival zone. The caching zone is assembled with segments from all five disks. Active data 
is copied to the caching zone, where it is accessed and updated. When a data block is no 
longer active, the original block is updated and the copy is removed from the caching zone. 

6. Evaluations and Experimental Results 

6.1. COFS 

We deployed the COFS prototype to verify that it could mitigate some of the metadata 
performance issues of the parallel file systems and that the benefits obtained where significant 
enough to compensate the cost of adding an extra layer on top of the file system. Experiments 
were run using GPFS as the underlying system in the same hardware used for the initial 
measurements (described in section 2.1). The reason behind the selection of GPFS instead of 
Lustre was because the installation we planed to use for the Lustre experiments was delayed 
by six months and we only had time to measure the performance, but not to apply the 
techniques to the system. This evaluation results over Lustre will be presented in a later 
progress report. 

6.1.1. Metadata virtualization results 

The following measures of COFS over GPFS have been obtained in the same system 
described in Section 2.1. Additionally, COFS uses IP over Myrinet for communicating 
metadata service and clients. 

Figure 11 shows the benefits of breaking the relationship between the virtual name space 
offered by COFS (exporting a single shared directory to the application level) and the actual 
layout of file in the underlying GPFS file system. By redistributing the entries into smaller 
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low level directories, COFS allows GPFS to fully exploit its parallel capacity by converting a 
shared parallel workload into multiple local sections that do not require global 
synchronization. 

The improvement translates into a reduction of the average create time from more than 10 ms 
in 16 nodes for GPFS to about 1 ms when using COFS over GPFS. The numbers for pure 
GPFS were limited to 64 nodes because beyond that point the system was suffering severe 
performance problems when running the benchmarks (that issue was not present when using 
COFS over GPFS). 

 

 
Figure 11 Parallel creation time improvements with COFS (1024 files per node) 
 
Figure 12 shows the average time for utime requests. We can see that, in this case, the 
overhead introduced by COFS virtualization is noticeable for a small number of nodes, but it 
converges with pure GPFS results at 16 nodes. Beyond that point, we can observe that GPFS 
rapidly degrades its performance as we increase the number of participating nodes; on the 
contrary, COFS is able to compensate and eliminates the degradation, allowing the system to 
scale better to larger number of nodes. 
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Figure 12 Utime request scalability (1024 files per node) 
 

COFS takes advantage of the reduced operation time when GPFS delegation is active by 
redistributing the files in smaller directories and avoiding parallel accesses to such directories 
when possible, thus reducing the conflicts between different nodes and allowing GPFS to 
fully exploit the parallelism. 

In summary, our measurements show that the virtualization of the name space provided by the 
COFS framework can drastically boost the base GPFS file system for file creations on shared 
parallel environments (with speed-up factors up to 10, as shown in Figure 11. For the rest of 
metadata operations, performance is also boosted for large numbers of nodes, and 
performance degradation due to conflicting parallel accesses is reduced. 

6.1.2. Impact on data transfer bandwidth 

After verifying that the benefits obtained by our prototype regarding metadata handling are 
promising, and that it effectively mitigates the issues motivating the present work, we also 
wanted to measure the possible impact of the virtualization environment on read/write 
operations on file contents. 

Altering the file hierarchy could lead the underlying file system to modify the actual location 
of data, impacting negatively on read/write bandwidth; additionally, we wanted to be sure that 
COFS infrastructure was not adding an unacceptable overhead to data transfer operations. 
Possible causes would be FUSE's double buffer copying, round-trips to the metadata service 
or caching issues. 

We have used the IOR (Interleaved Or Random) benchmark to measure data I/O performance 
for GPFS with and without the COFS virtual layer. Even if COFS does not deal with data I/O, 
we wanted to verify that the hierarchy re-organization had no negative impact in this aspect. 
IOR v2 was developed at LLNL and provides aggregate I/O data rates for both parallel and 
sequential read/write operations to shared and separate files in a parallel file system. The 
benchmark was executed using the POSIX interface with aggregate data sizes of 256MB, 
1GB and 4GB (the individual file size when using separate files is the aggregated data size 
divided into the number of participating processes. 

Table 1 summarizes the results obtained with the IOR I/O benchmark in a small GPFS cluster. 
Overall, COFS over GPFS is usually able to obtain a data transfer performance similar to 
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native GPFS. The only remarkable exceptions occur when each node access independent 
small files. 

 

Access 
Pattern 

Separate files per process Single shared file 

Sequential 
read 

COFS performance comparable to 
GPFS except for small files (< 32MB 
per node) where COFS suffers an 
important slowdown. 

COFS performance comparable to 
GPFS. 

Random 
read 

COFS performance comparable to 
GPFS except for small files (<32MB 
per node) where COFS suffers an 
important slowdown. 

COFS performance comparable to 
GPFS. 

Sequential 
write 

COFS performance drawback for single 
node and performance improvements of 
COFS over GPFS as the number of 
nodes is increased. 

COFS performance drawback for 
single node and comparable 
performance for multiple nodes. 

Random 
write 

COFS performance comparable to 
GPFS except for small files (<32MB 
per node) where COFS suffers from 
slight slowdown. 

COFS performance comparable to 
GPFS. 

Table 1 Impact of COFS on data transfers 
 

For operations on small separate files (less than 32MB,) pure GPFS is able to exploit its 
optimizations and the cache by locally keeping both the metadata and the file contents for 
read operations (files were created and written in the same node they were accessed.) 
Additionally, the total benchmark time for such small files are about a few milliseconds, 
which is comparable, for example, to the extra round-trips needed by COFS to access its 
metadata server. In these circumstances, COFS is paying the cost of its infrastructure. The 
case of writes is slightly different: not being a pure local cache operation (as data has to be 
eventually sent to file servers) GPFS cannot apply all of its optimizations; consequently, 
COFS benefits have room to partially mask the infrastructure costs, resulting in only slightly 
lower performance. The performance penalties disappear with larger file sizes, as transfer 
times become dominant compared with COFS infrastructure costs. 

Noticeably, we also observed a positive effect of COFS when writing sequentially to separate 
files. In this case, GPFS bandwidth suffers degradation as the number of participating nodes 
was increased, while COFS was able to neutralize this effect. A closer look revealed that, for 
a larger number of nodes, the increased cost of the parallel open operation was “serializing” 
the data transfers (as the last node was able to open the file only much later than the first one, 
it also started to transfer data later); as a result, the use of the available data bandwidth was 
reduced. On the contrary, COFS reduced the open time to a minimum, allowing all nodes to 
start transferring data in parallel and achieving a much better use of the network bandwidth. 

In summary, we did not observe a remarkable global impact of the COFS virtualization layer 
on the data transfer rates. The isolated performance drops affect only the GPFS highly 
optimized cases (local accesses to independent small files) where there is little room for 
improvement. Even then, the nature of the cases would make it possible to reduce the 
differences by incorporating the same aggressive caching and delegation techniques for 
strictly local accesses to the COFS framework. 
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6.2. Random Slicing 

In order to evaluate Random Slicing we used a simulation. To establish a relevant baseline to 
compare against, we also simulate some of the best-known randomized data distribution 
strategies such as Consistent Hashing[8], Redundant Share [10], and RUSH-R [11]. 

We distinguish between homogeneous and heterogeneous settings and also between static and 
dynamic environments. We assume that each storage system in the homogeneous, static 
setting can hold up to k · 500,000 data items, where k is the number of copies of each block. 
Assuming a hard disk capacity of 1TByte and putting 16 hard disks in each shelf means that 
each data item has a size of 2MByte. The number of placed data items is k · 250,000 times the 
number of storage systems. In all cases, we compare the fairness, the memory consumption, 
as well as the performance of the different strategies for a different number of storage 
systems. 

The heterogeneous setting assumes that in the beginning we have 128 storage systems and we 
add 128 new devices each step, which have 3/2 times the size of the previously added system. 
We are placing again half the number of items, which saturates all disks. 

For each of the homogeneous and heterogeneous tests, we also count the number of data 
items, which have to be moved in case we are adding disks, so that the data distribution 
delivers the correct location for a data item after the redistribution phase. The number of 
moved items has to be as small as possible to support dynamic environments, as the systems 
typically tend to a slower performance during the reconfiguration process. 

The dynamic behaviour can be different if the order of the k copies is important, e.g. in case 
of parity RAID, Reed-Solomon codes, or EvenOdd-Codes, or if this order can be neglected in 
case of pure replication strategies. 

The following sections evaluate the impact of the different distribution strategies on the data 
distribution quality, the memory consumption of the different strategies, their adaptability and 
performance. All graphs presented in the section contain four bars for each number of storage 
systems, which represent the experimental results for one, two, four, and eight copies (please 
see Figure 13 for the colour codes in the legend). The white boxes in each bar represent the 
range of results, e.g., between the minimum and the maximum usage. Also, the white boxes 
include the standard deviation for the experiments. Small or non-existing white boxes indicate 
a very small deviation between the different experiments. 

6.2.1. Fairness 

The first simulations evaluate the fairness of the strategies for different sets of homogeneous 
disks, ranging from 8 storage systems up to 8192 storage systems (see Figure 13). A data 
distribution is considered to be fair when every single storage system gets a share of the data 
load which is proportional to its relative capacity with respect to the total aggregate capacity 
of participating storage systems. The following graphs are normalized so that a usage of 1 
indicates that the distribution is fair. 
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(a) Consistent Hashing                                   (b) Redundant Share 

 

(c) RUSH-R                                                   (b) Random Slicing 

 
Figure 13 Fairness in an homogeneous setting 
 
Consistent Hashing has been developed to evenly distribute one copy over a set of 
homogeneous disks of the same size. Figure 13 (a) shows that the strategy is able to fulfil 
these demands for the test case, in which all disks have the same size. The difference between 
the maximum and the average usage is always below 7% and the difference between the 
minimum and average usage is always below 6%. The deviation is nearly independent from 
the number of copies as well as from the number of disks in the system, so that the strategy 
can be reasonably well applied. 

Redundant Share uses pre-computed intervals for each disk and therefore does not rely too 
much on randomization properties. The intervals exactly represent the share of each disk on 
the total disk capacity, leading to a very even distribution of the data items (see Figure 13 
(b)). The drawback of this version of Redundant Share is that it has linear runtime, possibly 
leading to high delays in case of huge environments. 

RUSH-R places objects almost ideally according to the appropriate weights, though it begins 
to degrade as the number of disks grows (see Figure 13 (c)). We believe this happens due to 
small variations in the probabilistic distribution, which build up for higher numbers of storage 
systems. 

In Random Slicing, pre-computed partitions are used to represent a disk’s share of the total 
system capacity, in a similar way to Redundant Share’s use of intervals. This property, in 
addition to the hash function used, enforces an almost optimal distribution of the data items, 
as shown in Figure 13 (d). 

The fairness of the different strategies for a set of heterogeneous storage systems is depicted 
in Figure 14. As previously described, we start with 128 storage systems and add every time 
128 additional devices with 3/2-times the capacity of the previously added. 
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(a) Consistent Hashing                                   (b) Redundant Share 

 

 
(c) RUSH-R                                                   (b) Random Slicing 

 
Figure 14 Fairness in an heterogeneous setting 
 
The fairness of Consistent Hashing shows apparent deviations from the ideal load (see Figure 
14 (a)). The difference between the maximum, respectively minimum and the average usage 
is around 10% and increases slightly with the number of copies. 

Both Redundant Share and Random Slicing show again a nearly perfect distribution of data 
items over the storage systems, due to their precise modelling of disk capacities and the 
uniformity of the distribution functions (see Figure 14 (b) and Figure 14 (d), respectively). 
RUSH-R, on the other hand, does a good distribution job for 1, 2, and 4 copies but seems to 
degrade with 8 copies showing important deviations from the optimal distribution (Figure 14 
(c)). 

6.2.2. Memory Consumption and Computation Time 

The memory consumption, as well as the performance of the different data distribution 
strategies, has a strong impact on the applicability of the different strategies. The bars in the 
graphs of Figure 15 represent the average allocated memory, the white bars on top the peak 
consumption of virtual memory over the different tests. The points in that figure represent the 
average time required for a single request. These latencies include confidence intervals. 
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(a) Consistent Hashing                                   (b) Redundant Share 

 

(c) RUSH-R                                                   (b) Random Slicing 

 
Figure 15 Memory consumption and performance in an heterogeneous setting 
 

The memory consumption of Consistent Hashing only depends on the number and kind of 
disks in the system, while the number of copies k has no influence on it (see Figure 15 (a)). 
The time to calculate the location of a data item only depends on the number of copies, as 
Consistent Hashing is implemented as a O(1)-strategy for a single copy. 

Redundant Share (Figure 15 (b)) has very good properties concerning memory usage, but the 
computation time grows linearly in the number of storage systems. Even the calculation of a 
single item for 128 storage systems takes 145 μs. Using 8 copies increases the average access 
time for all copies to 258 μs, which is 50 μs for each copy, making it unsuitable for large-
scale environments. 

RUSH-R shows good results both in memory consumption and in computation time (see 
Figure 15 (c)). The reduced memory consumption is explained because the strategy does not 
need a great deal of in-memory structures in order to maintain the information about clusters 
and storage nodes. Lookup times depend only on the number of clusters in the system, which 
can be kept comparatively small for large systems. 

Random Slicing shows very good behaviour concerning memory consumption and 
computation time, as both depend only on the number of intervals I currently managed by the 
algorithm (see Figure 15 (d)). In order to compute the position of a data item , the strategy 
only needs to locate the interval containing , which can be done O(log I) using and 
appropriate interval tree structure. Furthermore, the algorithm strives to reduce the number of 
intervals created in each step in order to minimize memory consumption as much as possible. 
In practice, this yields an average access time of 5μs for a single data item and 13μs for 8 
copies, while keeping a memory footprint similar to that of Redundant Share. 
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6.2.3. Adaptability 

Adaptability to changing environments is an important requirement for data distribution 
strategies and one of the main drawbacks of standard RAID approaches. Adding a single disk 
to a RAID system typically requires either the replacement of all data items in the system or 
splitting the RAID environment into multiple independent domains.  

The theory behind randomized data distribution strategies claims that these strategies are able 
to compete with a best possible strategy in an adaptive setting. This means that the number of 
data movements to keep the properties of the strategy after a storage system has been inserted 
or deleted can be bounded against the best possible strategy. We assume in the following that 
a best possible algorithm just moves as much data from old disks to new disks, respectively 
from removed disks to remaining disks, as necessary to have the same usage on all storage 
systems. All bars in Figure 16 have been normalized to this definition of an optimal 
algorithm. 

 
(a) Consistent Hashing                                   (b) Redundant Share 

 
(c) RUSH-R                                                   (b) Random Slicing 

 
Figure 16 Adaptability in an heterogeneous setting 
 

Furthermore, we distinguish between placements, where the ordering of the data items is 
relevant and where it is not. The first case occurs, e.g., for standard parity codes, where each 
data item has a different meaning: if a client accesses the third block of a parity set, then it is 
necessary to receive exactly that block. In contrast, the second case occurs for RAID 1 sets, 
where each copy has the same content and receiving any of these blocks is sufficient. The first 
situation is labelled “moved keeping order” in Figure 16, whereas the second is labelled 
“moved changing order”. We will see in the following that not having to keep the order 
strongly simplifies the rebalancing process. 

We start our tests in all cases with 128 storage systems and increase the number of storage 
systems by 1, 2, 3, 5, 7, 11, or 13 storage systems. The new storage systems have 1.5-times 
the capacity of the original system. 

Figure 16 (a) shows the adaptability of Consistent Hashing in case that the number of points 
is fixed for each individual storage system and only depends on its own capacity. We use 
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2,400 points for the smallest storage system and use a proportional higher number of points 
for bigger storage systems. In this case the insertion of new storage systems only leads to data 
movements from old systems to the new ones and not between old ones and therefore the 
adaptability is very good in all cases. 

The adaptability of Redundant Share for adding new storage systems is nearly optimal, which 
is in line with the proofs presented in [12]. Nevertheless, Redundant Share is only able to 
achieve an optimal competitiveness if a new storage system is inserted that is at least as big as 
the previous ones. Otherwise it can happen that Redundant Share is only log n-competitive 
(see Figure 16 (b)). 

Figure 16 (c) shows that RUSH-R performs nearly optimal when storage nodes are added. 
Note, however, that we did not evaluate the effect on replica ordering because the current 
implementation does not support replicas as distinct entities. Instead, RUSH-R distributes all 
replicas within one cluster. 

Figure 16 (d) shows that the adaptability of Random Slicing is very good in all cases. This is 
explained because intervals for new storage systems are always created from fragments of old 
intervals, thus forcing data items to migrate only to new storage systems. 

6.3. Multi-Zone Self-Caching Data Storage 

The methodology we followed to evaluate Multi-Zone Self-Caching data storage strategy is 
analytical. We have created a trace-fed simulator that models large-scale storage architectures 
and we used it to evaluate our prototype strategy. Individual disks are simulated using the 
well-know DiskSim [13] simulator. In order to see if our strategy offers any significant 
improvement we also evaluated several well-known allocation strategies to establish a 
relevant baseline to compare against. 

We have evaluated the new strategy against the following baseline policies: 

 RAID0: RAID0 divides data in stripes that are distributed in a round-robin fashion 
across all devices. With a carefully chosen stripe size, this strategy provides extremely 
good results regarding response time (as requests are split and served in parallel by 
devices) and load balance. 

 SEQUENTIAL: SEQUENTIAL places data sequentially in a device. When the device 
is full, sequential chooses the next device and proceeds to fill it sequentially, as well. 
This strategy offers very poor results regarding performance (a request can only be 
served by one or two devices at most) and also poor load balance (data fills up the 
disks one at a time, leaving the others unused). 

By now, our mechanism supports the following combinations of policies for the caching zone 
and the archival zone: 

 RAID0+SEQUENTIAL: This variant uses a sequential strategy for the archival zone 
and a RAID0 strategy for the caching zone. We want to evaluate how much of a 
benefit the caching zone can provide when the archival zone uses an unsuitable policy. 

 RAID0+RAID0: This variant uses RAID0 both for the caching zone and the archival 
zone. We want to see if there is any improvement when comparing it with a traditional 
RAID0 approach. 

For our simulations, we used the CELLO99, DEASNA [14], HOME02 [14], WEB-USERS and 
WEB-RESEARCH [15]. For each experiment we configured the simulator with 50 disks with a 
capacity of 146GBytes and speed of 7,200 rpm. The allocation policy uses 0.02% of each disk 
to create the caching zone, because this value is not sufficient to contain the active working 
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set and will produce extra disk traffic due to data evictions. We decided to evaluate the 
behaviour of the cache with a simple LRU replacement policy. All RAID0 instances used a 
stripe size of 128KBytes and the SEQUENTIAL policy used the same value as block size. 

6.3.1. Response time 

Figure 17 shows the average response time for read requests for the traces simulated with the 
respective strategies. As expected, requests are significantly slower in sequential than in 
RAID0, with response times in general between one and two orders of magnitude slower. 
Notice that in most cases, the performance of RAID0+SEQUENTIAL is similar to that of 
RAID0 which validates our hypothesis that there’s no need to optimize the data placement of 
all the data space. In addition, notice that the performance of RAID0+RAID0 shown in Figure 
17(a), Figure 17(d) and Figure 17(e) is slightly better than that of RAID0. This can happen 
because currently active data is clustered in the caching zone which favours spatial locality. 
Interestingly, the performance gains for WEB-RESEARCH and WEB-USERS are lower than 
for others workloads, which might imply that RAID0 is not being exploited to its full 
potential. 

 

(a) CELLO99                          (b) DEASNA                           (c) HOME02 

 
(d) WEB-RESEARCH                   (e) WEB-USERS 

 
Figure 17 Average response time for read operations 
 
Bar plots in Figure 18 show the average response time for writes requests, however. We can 
see the same behaviour than in the previous experiment: the response times of the hybrid 
strategies are similar to those of RAID0 even taking into account the simple LRU replacement 
policy and the extra overhead added by replacing data from the caching zone. 
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(a) CELLO99                          (b) DEASNA                           (c) HOME02 

 
(d) WEB-RESEARCH                        (e) WEB-USERS 

 
Figure 18 Average response time for write operations 

6.3.2. Load Balance 

Figure 19 and Figure 20 show the cumulative distribution function (CDF) over time of the 
standard deviation from an ideal load balance displayed by the devices. Every minute of 
simulation, we compute the I/O load of each device and how it deviates from an ideal load 
distribution. Therefore, an ideal load balance corresponds to a value of 1, whereas a value of 2 
means that the distribution was twice as unbalanced as the ideal load. Since the experiments 
use 50 disks, an unbalance index of sqrt(50) ≈ 7.07 is the maximum load unbalance possible, 
and can only happen when all data access is directed towards only one device. The y axis 
represents the accumulated frequency (in measurement intervals) where a balancing index 
was observed, e.g.: Figure 19 (a) shows that, for RAID0, 90% of observations displayed a 
balancing index of 1.8 or less. 

As expected, sequential is highly unbalanced both for read and write operations in all the 
simulations. RAID0 is significantly more balanced in all simulations except for the WEB-
RESEARCH and WEB-USERS workloads (Figure 19 (d), Figure 19 (e), Figure 20 (d) and 
Figure 20 (e)). Since these workloads are from web servers, the distribution of requests 
probably is more random than those coming from human users, which might explain this 
variation. Furthermore, a stripe size of 128KBytes might be too large for this data workload, 
which would render the parallelism and load balance provided by RAID0 useless. This 
question deserves a careful examination and we plan to examine it in the future. Nevertheless, 
the hybrid strategy RAID0+SEQUENTIAL is successful in reducing the I/O unbalance of 
SEQUENTIAL, displaying results similar to those of RAID0, both for reads and for writes. 
This supports our assumption that the caching zone is able to absorb most of the requests and 
can distribute them effectively across all devices. 
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(a) CELLO99                          (b) DEASNA                           (c) HOME02 

 

 
(d) WEB-RESEARCH                        (e) WEB-USERS 

 
Figure 19 Deviation from ideal load for read operations 
 
Most interestingly, RAID0+RAID0 provides a better load balance than RAID0 in some cases. 
The set of active data we’re considering is significantly smaller than the entire data space (≈ 
0.02%) and most requests are directed to it which probably makes it easier to effectively 
balance it. 

 

(a) CELLO99                          (b) DEASNA                           (c) HOME02 

 

(d) WEB-RESEARCH                        (e) WEB-USER

 
Figure 20 Deviation from ideal load for write operations 
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7. Conclusions 

This document presents evaluations to detect problems in both metadata and data 
management in large-scale storage systems. 

We have evaluated the effect the number of files and clients have on the performance of 
metadata operations in both Lustre and GPFS. In this evaluation we have detected that both 
the parameters have a significant negative effect in the obtained performance and we have 
proposed to use COFS a middleware to handle metadata. COFS is a middleware that 
decouples the view the user has from the one implemented by the file system and thus is able 
to transparently convert not optimized cases from the parallel file system point of view into 
optimized ones, thus getting all the benefits without asking the user to change their 
behaviours. 

The information provided by the metadata performance measurements will help to tune the 
large scale PRACE systems (and high performance systems in general), as well as algorithms 
and specific applications, by showing which situations are likely to produce performance 
issues when accessing the storage systems and avoiding them. To this end, the current COFS 
implementation is available and can be used to mitigate certain metadata performance issues. 
The flexible architecture of COFS allows using it both as a transparent layer covering a whole 
file system, and as a tool to improve the behaviour of individual applications, without 
affecting the rest of the system. 

We have also proposed some data distribution policies that are able to dynamically adapt to 
the increasing number of storage devices and still obtain the desired performance benefits 
guaranteeing minimal data movement among devices. These policies are based on a data 
distribution where blocks are placed by applying a function that is half randomized and half 
deterministic, and by increasing the caching hierarchy with one level built from a tiny portion 
of all available disks. The new data distribution policies will be used to enable the capacity 
upgrade of future large scale storage systems at a much lower cost than current algorithms. 

We expect to take more measurements in the PRACE Lustre prototype and other large scale 
systems; any new developments and information acquired will be documented in a Progress 
Report at month 18. 


