

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D12.4

Performance Optimized Lustre

Draft/Final

Version: 1.0
Author(s): Ernest Artiaga, Alberto Miranda, Barcelona Supercomputing Center
Date: 25.08.2012

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: PRACE Second Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: D12.4
Deliverable Nature: Report
Deliverable Level:
PU

Contractual Date of Delivery:
31/08/2012
Actual Date of Delivery:
31/08/2012

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Performance Optimized Lustre
ID: D12.4
Version: <1.0> Status: Draft/Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D12.4.docx

Authorship

Written by: Ernest Artiaga, Alberto Miranda, Barcelona
Supercomputing Center

Contributors: Jonathan Martí, BSC
Toni Cortes, BSC
Jan Christian Meyer, SIGMA

Reviewed by: D. Erwin, FZJ; Jerry Erikson, UMU
Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 20/July/2012 Draft
0.2 24/July/2012 Draft
1.0 25/August/2012 Final version

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 ii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Lustre, GPFS, Metadata, data,

COFS

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-283493. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2012 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 iii

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. i

Document Keywords ... ii

Table of Contents ... iii

List of Figures ... iv

List of Tables ... iv

References and Applicable Documents .. iv

List of Acronyms and Abbreviations ... v

Executive Summary .. 1

1. Introduction ... 2

2. Metadata Management Issues .. 3

2.1. Metadata Scalability Issues in GPFS ... 4

2.2. Metadata Scalability Issues in Lustre .. 7

2.3. Conclusions .. 10

3. Tools for Metadata Management: the COFS Framework .. 10

3.1. Principles .. 10

3.2. Architecture ... 11

3.3. Metadata service details .. 12

4. Data Management Issues .. 13

5. Proposals for Data Management .. 14

5.1. Random Slicing .. 14

5.2. Multi-Zone Self-Caching Data Storage ... 16

6. Evaluations and Experimental Results .. 17

6.1. COFS .. 17

6.1.1. Metadata virtualization results ... 17

6.1.2. Impact on data transfer bandwidth ... 19

6.2. Random Slicing .. 21

6.2.1. Fairness ... 21

6.2.2. Memory Consumption and Computation Time.. 23

6.2.3. Adaptability ... 25

6.3. Multi-Zone Self-Caching Data Storage ... 26

6.3.1. Response time .. 27

6.3.2. Load Balance ... 28

7. Conclusions .. 30

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 iv

List of Figures

Figure 1 Utime cost for a single GPFS client node ... 5
Figure 2 Utime cost in GPFS using multiple client nodes ... 6
Figure 3 Average parallel creation times in GPFS (1024 files per node) .. 7
Figure 4 Utime cost for a single Lustre client node ... 8
Figure 5 Utime cost for multiple Lustre client nodes (1024 files per node) .. 8
Figure 6 Lustre utime behaviour in larger systems (1024 files per node) ... 9
Figure 7 Average parallel creation times in Lustre (8 procs. per node, 1024 files per node).................. 9
Figure 8 Parallel file system architecture augmented with COFS virtualization layer 12
Figure 9 Random Slicing interval reorganization for the new devices ... 15
Figure 10 Overview of an hybrid architecture with a RAID0 caching zone ... 17
Figure 11 Parallel creation time improvements with COFS (1024 files per node) 18
Figure 12 Utime request scalability (1024 files per node) .. 19
Figure 13 Fairness in an homogeneous setting .. 22
Figure 14 Fairness in an heterogeneous setting ... 23
Figure 15 Memory consumption and performance in an heterogeneous setting 24
Figure 16 Adaptability in an heterogeneous setting .. 25
Figure 17 Average response time for read operations ... 27
Figure 18 Average response time for write operations ... 28
Figure 19 Deviation from ideal load for read operations .. 29
Figure 20 Deviation from ideal load for write operations ... 29

List of Tables
Table 1 Impact of COFS on data transfers .. 20

References and Applicable Documents

[1] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for Large Computing
Clusters,” in FAST'02: Proc. of the 1st USENIX Conf. on File and Storage Technologies,
2002.

[2] A. Devulapalli and P. Wyckoff, “File Creation Strategies in a Distributed Metadata File
System,” in IPDPS '07: Proceedings of 21st IEEE International Parallel and Distributed
Processing Symposium, Long Beach, CA, USA, 2007.

[3] W. Yu, J. Vetter, R. S. Canon and S. Jiang, “Exploiting Lustre File Joining for Effective
Collective IO,” in CCGRID '07: Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, 2007.

[4] P. J. Braam, “Lustre File System: High-Performance Storage Architecture and Scalable
Cluster File System (White Paper),” Sun Microsystems, Inc., 2007.

[5] “Metarates,” University Corporation for Atmospheric Research (UCAR) and NCAR
Scientific Computing Division, 2004. [Online]. Available:
http://www.cisl.ucar.edu/css/software/metarates/.

[6] “FUSE: Filesystem in Userspace,” [Online]. Available: http://www.fuse.org.

[7] “Erlang/OTP (Open Telecom Platform),” [Online]. Available: http://www.erlang.org.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin and R. Panigrahy, “Consistent
Hashing and Random Trees: Distributed Caching Protocols for Relieving Hot Spots on
the World Wide Web,” in Proceedings of the 29th ACM Symposium on Theory of
Computing (STOC), El Paso, Texas, USA, 1997.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 v

[9] A. Miranda and T. Cortes, “Analyzing Long-Term Access Locality to Find Ways to
Improve Distributed Storage Systems,” in Proceedings of the 20th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing
(PDP), Garching, Germany, 2012.

[10] M. Mense and C. Scheideler, “Spread: An adaptive scheme for redundant and fair
storage in dynamic heterogeneous storage systems,” in Proceedings of the 19th ACM-
SIAM Symposium on Discrete Algorithms (SODA), San Francisco, California, USA,
2008.

[11] R. J. Honicky and E. L. Miller, “Replication Under Scalable Hashing: A Family of
Algorithms for Scalable Decentralized Data Distribution,” in Proceedings of the 18th
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2004.

[12] A. Brinkmann, S. Effert, F. Meyer auf der Heide and C. Scheideler, “Dynamic and
Redundant Data Placement,” in Proceedings of the 27th IEEE International Conference
on Distributed Computing Systems (ICDCS), Toronto, Canada, 2007.

[13] G. R. Ganger, B. L. Worthington and Y. N. Patt, “The DiskSim simulation environment
version 2.0 reference manual,” Carnegie Mellon University/University of Michigan,
1999.

[14] D. Ellard, J. Ledlie, P. Malkani and M. Seltzer, “Passive NFS tracing of email and
research workloads,” in Proceedings of the 2nd USENIX Conference on File and Storage
Technologies, 2003.

[15] A. Verma, R. Koller, L. Useche and R. Rangaswami, “Srcmap: Energy proportional
storage using dynamic consolidation,” in Proceedings of the 8th USENIX Conference on
File and Storage Technologies, 2010.

List of Acronyms and Abbreviations

AAA Authorization, Authentication, Accounting.
ACF Advanced Computing Facility
ADP Average Dissipated Power
AMD Advanced Micro Devices
APGAS Asynchronous PGAS (language)
API Application Programming Interface
APML Advanced Platform Management Link (AMD)
ASIC Application-Specific Integrated Circuit
ATI Array Technologies Incorporated (AMD)
BAdW Bayerischen Akademie der Wissenschaften (Germany)
BCO Benchmark Code Owner
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CAF Co-Array Fortran
CAL Compute Abstraction Layer
CCE Cray Compiler Environment
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CGS Classical Gram-Schmidt
CGSr Classical Gram-Schmidt with re-orthogonalisation

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 vi

CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CLE Cray Linux Environment
COFS Composite File System, a metadata virtualization file system layer
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CSR Compressed Sparse Row (for a sparse matrix)
CUDA Compute Unified Device Architecture (NVIDIA)
DARPA Defense Advanced Research Projects Agency
DDN DataDirect Networks
DDR Double Data Rate
DEISA Distributed European Infrastructure for Supercomputing Applications.

EU project by leading national HPC centres.
DGEMM Double precision General Matrix Multiply
DIMM Dual Inline Memory Module
DMA Direct Memory Access
DNA DeoxyriboNucleic Acid
DP Double Precision, usually 64-bit floating point numbers
DRAM Dynamic Random Access memory
EC European Community
EESI European Exascale Software Initiative
EoI Expression of Interest
EP Efficient Performance, e.g., Nehalem-EP (Intel)
EPCC Edinburg Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United

Kingdom)
eQPACE extended QPACE, name of the FZJ WP8 prototype
Erlang/OTP Erlang-based Open Telecom Platform
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich

(Switzerland)
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
EX Expandable, e.g., Nehalem-EX (Intel)
FC Fiber Channel
FFT Fast Fourier Transform
FHPCA FPGA HPC Alliance
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FUSE Filesystem in Userspace, a framework for user-level file systems
FZJ Forschungszentrum Jülich (Germany)
GASNet Global Address Space Networking
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GDDR Graphic Double Data Rate memory

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 vii

GÉANT Collaboration between National Research and Education Networks to
build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GigE Gigabit Ethernet, also GbE
GLSL OpenGL Shading Language
GNU GNU’s not Unix, a free OS
GPFS A commercial parallel file system
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GS Gram-Schmidt
GWU George Washington University, Washington, D.C. (USA)
HBA Host Bus Adapter
HCA Host Channel Adapter
HCE Harwest Compiling Environment (Ylichron)
HDD Hard Disk Drive
HE High Efficiency
HMM Hidden Markov Model
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HP Hewlett-Packard
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing
HPCC HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/
HPCS High Productivity Computing System (a DARPA program)
HPL High Performance LINPACK
HT HyperTransport channel (AMD)
HWA HardWare accelerator
IB InfiniBand
IBA IB Architecture
IBM Formerly known as International Business Machines
ICE (SGI)
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
IL Intermediate Language
IMB Intel MPI Benchmark
I/O Input/Output
IOR Interleaved Or Random
IPMI Intelligent Platform Management Interface
ISC International Supercomputing Conference; European equivalent to the

US based SC0x conference. Held annually in Germany.
IWC Inbound Write Controller
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LBE Lattice Boltzmann Equation

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 viii

LINPACK Software library for Linear Algebra
LLNL Laurence Livermore National Laboratory, Livermore, California (USA)
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LS Local Store memory (in a Cell processor)
Lustre A parallel file system
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MDT MetaData Target
MFC Memory Flow Controller
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MGS Modified Gram-Schmidt
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
ML Maximum Likelihood
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MoU Memorandum of Understanding.
MPI Message Passing Interface
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
MRAM Magnetoresistive RAM
MTAP Multi-Threaded Array Processor (ClearSpead-Petapath)
mxm DP matrix-by-matrix multiplication mod2am of the EuroBen kernels
NAS Network-Attached Storage
NCF Netherlands Computing Facilities (Netherlands)

NDA Non-Disclosure Agreement. Typically signed between vendors and
customers working together on products prior to their general
availability or announcement.

NoC Network-on-a-Chip
NFS Network File System
NIC Network Interface Controller
NUMA Non-Uniform Memory Access or Architecture
OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing
OS Operating System
OSS Object Storage Server
OST Object Storage Target
PCIe Peripheral Component Interconnect express, also PCI-Express
PCI-X Peripheral Component Interconnect eXtended
PGAS Partitioned Global Address Space
PGI Portland Group, Inc.
pNFS Parallel Network File System
POSIX Portable OS Interface for Unix
PPE PowerPC Processor Element (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
QCD Quantum Chromodynamics

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 ix

QCDOC Quantum Chromodynamics On a Chip
QDR Quad Data Rate
QPACE QCD Parallel Computing on the Cell
QR QR method or algorithm: a procedure in linear algebra to compute the

eigenvalues and eigenvectors of a matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RNG Random Number Generator
RPM Revolution per Minute
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)
SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SPE Synergistic Processing Element (core of Cell processor)
SPH Smoothed Particle Hydrodynamics
SPU Synergistic Processor Unit (in each SPE)
SSD Solid State Disk or Drive
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
STT Spin-Torque-Transfer
TARA Traffic Aware Routing Algorithm
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCO Total Cost of Ownership. Includes the costs (personnel, power, cooling,

maintenance, ...) in addition to the purchase cost of a system.
TDP Thermal Design Power
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UFM Unified Fabric Manager (Voltaire)
UNICORE Uniform Interface to Computing Resources. Grid software for seamless

access to distributed resources.
UPC Unified Parallel C
UV Ultra Violet (SGI)
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description

Language

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 1

Executive Summary

This report documents the research and development carried on within Task 12.4. The main
goal of the task is to identify and address some open issues in file systems for multi-petascale
and exascale facilities, aiming to the development of solutions that can be applied to the
Lustre file system.

The addressed issues can be classified into two main areas: metadata management and data
management. Metadata handling involves dealing with huge numbers of files and their
hierarchical organization according the user’s view (including directory management and file
attributes). Data handling deals with the storage of file contents and management data; this
includes, in particular, techniques for automatic (self-tuned) placement of data on a system
with many heterogeneous devices, aiming at maximizing bandwidth and minimizing response
time.

The work carried on in the area of metadata management included the observation,
measurement and study of a large scale system currently in production, in order to identify the
key metadata-related issues; the development of a prototype aimed to improve the metadata
behaviour in such system and also to provide a framework to easily deploy novel metadata
management techniques on top of other systems; the measurement and study of specially
deployed Lustre and GPFS prototypes to validate the presence of the metadata issues
observed in current in-production systems; and finally the porting of the framework prototype
to test novel metadata management techniques on the Lustre prototype facility.

In this line we have observed that in both Lustre and GPFS there are some scalability issues
that reduce the performance of metadata operation when many files are used by the
applications or when the number of accessing clients grows. The most important observation
is that the number of files needed for the problem to appear is only a few hundreds and the
number of clients a few dozens. This clearly shows that the problem needs to be addressed.

After our mechanism has been added to the GPFS system, we have observed that the decrease
in performance that appears in the evaluated cases disappears making the system much more
scalable with the number of files and clients. The main reason for this beneficial effect is that
our middleware is able to convert not optimized cases (from GPFS point of view) into the
optimized cases of GPFS.

Regarding data management, the work carried on in the present Task is based in the study of
the limitations of current data distribution strategies, especially when dealing with sustained
growth of storage capacity.

The results consist of a proposal for a novel data re-distribution technique for increased
storage capacity, aimed to maximize bandwidth and responsiveness while minimizing the cost
of data re-distribution. This technique that redistributes data using an approach that mixes the
two current trends (deterministic and randomized placement) is able to achieve a perfect
redistribution of data with minimal data movement (like the randomized approaches) and
without the negative effects in metadata size or computing time of traditional randomized
approaches.

It is also a contribution of this work a new level in the caching hierarchy that uses a tiny
portion of all available storage systems to cache data and achieves performance results similar
to the ones obtained when the data is perfectly well distributed, but starting from data very
badly distributed.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 2

1. Introduction

The purpose of this report is to document the results obtained in Task 12.4. The final goal of
the task is to identify the open issues related to file systems for multi-petascale and exascale
facilities, and propose novel solutions that can be applied to Lustre, enabling it to manage a
huge number of files on a system with many heterogeneous devices while efficiently
delivering huge data bandwidth and low latency, minimizing the response time.

The work of the task follows two main lines: metadata handling and data storage handling.
Metadata management involves providing support for a large number of files, offering a
consistent view of their attributes and organization, according to the semantics expected by
users. On the other hand, data management focuses on optimizing the placement of data on a
large set of heterogeneous storage devices, taking into account its dynamic nature (due to the
addition of new devices to both increase the storage capacity and the replacement of old
devices).

The issues we try to solve are not specific to Lustre: all modern file systems aiming to provide
a storage solution for very large scale systems share similar goals and face related issues. For
this reason, even if the final goal is to provide novel mechanisms to enrich the Lustre
prototype, we have studied and taken advantage of the experience of large-scale production
facilities also using different file systems (e.g. GPFS[1]), and we have also evaluated policies
in simulation environments. Consequently, the results we have obtained could also be applied
directly (or ported with minimum effort) to file systems other than Lustre.

In general, file systems try to adapt to the new demands by specializing and targeting specific
kinds of workloads. As a counterpart, there is a cost in terms of performance for non-
optimized cases.

A usual way to deal with non-optimized cases is to add even more specific optimizations,
either by means of files system specific modifications (e.g. parallel creations policies in
PVFS2 [2]), or by means of a middleware targeted to fulfil the needs of specific classes of
applications (e.g. MPI-IO implementations using hierarchical striping for Lustre [3]).
Unfortunately, this approach does not deal with performance penalties caused by unforeseen
or inadequate access patterns from arbitrary applications, which are likely to occur in
heterogeneous workloads.

Our approach to handle the metadata issues consists of placing a layer on top of the file
system for decoupling the user view from the actual low-level file system organization,
allowing us to convert the application access patterns into something that can be dealt with by
underlying file system without harming the performance (instead of trying to adapt the file
system to any possible workload). In other words, the mechanism consists of improving the
file system behaviour by avoiding bottlenecks caused by application patterns, instead of
focusing only on optimizing the file system for a very specific workload.

Running on top of the file system (instead of integrating new code into it) makes development
much easier and simplifies the integration of other state-of-the-art technologies which may
help to address the issues under study. Additionally, it allows us to easily adapt the same
solutions to multiple file systems and environments.

On the other hand, regarding data, we attack the problem by proposing algorithms that can
easily adapt their placement to the changing needs of the load and the changing resources.
Both the new placement algorithm and the new hierarchy level are general enough to fit any
parallel file system and should be implemented as part of the data placement modules of such
systems.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 3

Section 2 describes the identified metadata scalability issues. Section 3 describes the COFS
(Composite File System) prototype and how it is used as a framework to integrate solutions
for the scalability issues. Section 4 summarizes the data management issues in large-scale
systems. Section 5 describes the proposals to reduce the cost of data allocation and re-
distribution. Section 6 exposes some details about the evaluations and experiments performed,
both in actual systems and in simulated environments. Finally, section 7 summarizes the
conclusions.

This document is intended for the authors of PRACE deliverables and for parallel file system
managers who can understand some limitations of their systems and see some mechanisms to
mitigate such problems. Finally, and especially the second part of the deliverable, is aimed at
parallel file system developers that may be interested in including the proposed simulated
techniques into real file systems.

2. Metadata Management Issues

Parallel file systems usually keep pace with high performance computing clusters by
incorporating optimizations targeted at specific workloads. Unfortunately, the growing
number of large scale applications increases workload heterogeneity, generating a gap
between how file systems work, and how users expect them to behave.

High performance computing is rapidly evolving into large aggregations of computing
elements in the form of big clusters. In the last few years, the size of such distributed systems
has increased from tens of nodes to thousands of nodes, and the number is still rising. Trying
to keep pace with these developments, parallel file systems try to provide mechanisms for
distributing data across a range of storage devices and making them readily available to the
computing elements.

At the other end, the final user’s view of the storage systems has not changed significantly:
for the usual case, files are organized in a hierarchical name space, much in the same way as
they were placed in a classical local file system using an attached disk in a single computer.

In this classical view, a directory was often tacitly used as a hint to indicate locality. Indeed, it
is not surprising to find a directory containing files that are going to be used together, or in a
very related way (for example, a directory containing a program’s code, the corresponding
executable, some configuration files and maybe the output of its execution).

Trying to exploit this affinity, file systems tended to group together the management
information (the metadata) about directory contents. This was favoured by the fact that this
information is relatively small, so that it is feasible to pack together information about access
permissions, statistics, and also the physical location of the data, not only for a single file, but
also for a set of related files (i.e. for files present in the same directory).

The approach of treating directory contents as a group of related objects with similar
properties is still present in modern file systems. It is common to see parallel file systems to
use directories as mount points to access different volumes or partitions with different
functionalities or, in finer grain file systems, to be able to specify directory-wide rules that
apply to directory contents.

The problem appears when, in large clusters with parallel file systems, directory contents are
semantically related according user's view, without that meaning that they are going to be
used together or in similar ways from the file system perspective. Reusing the example above,
now the program code in a directory will be compiled and linked, probably in a single node,
to generate a binary that will be read and executed simultaneously in 2,000 nodes, each of

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 4

them generating an output file to be left in the same directory, which will be collected and
read by a single post-processing tool generating some summary information. Files are indeed
related, but patterns of use are totally dissimilar.

Parallel file systems trying to keep close the apparently related fragments of metadata will end
up trying to keep consistent a relatively small pack of miscellaneous information (which is not
easy to distribute and share) while it is being simultaneously used, and probably modified, by
a large number of nodes. As a result, the pressure on metadata handling in large scale systems
will rise up, producing delays comparable to the actual data transfer times from and to the
storage systems, and jeopardizing the overall system performance.

The metadata issue has been confirmed by observations in actual systems, showing that lack
of synergy between file systems and the multiplicity of applications running on them is
increasing the pressure on metadata management, up to the level of becoming a significant
performance-killer.

The following subsections give more details about the observations of metadata behaviour in
both GPFS and Lustre file systems.

2.1. Metadata Scalability Issues in GPFS

Parallel applications on large scale parallel systems expect to be able to perform I/O
simultaneously from all the nodes as they would if it was a single node (i.e. efficiently, in
parallel and keeping the consistency). Not many file systems are able to provide such support
to applications in a reliable way. Together with Lustre, GPFS is another mature file system
aimed to large distributed clusters which has been adopted at many high performance
computing centers.

As Lustre, GPFS offers a standard POSIX interface, while having the possibility to use non-
POSIX advanced features for increased performance (e.g. for MPI-IO). Nevertheless, their
architectural approaches differ significantly. For this reason, studying its behaviour and
comparing it with Lustre’s provides useful insights regarding the different techniques
available to deal with large cluster file systems and their impact on performance.

GPFS uses block-based storage (contrary to Lustre’s Object Storage Devices [4]). A typical
configuration consists of clients which access to a set of file servers connected to the storage
devices via a Storage Area Network (SAN). Metadata is also distributed and consistency is
guaranteed by distributed locking, with the possibility of delegating control to a particular
client to increase performance in case of exclusive access.

We have been able to observe important performance drops in large production clusters using
GPFS with heterogeneous workloads, and we have been able to track the causes back to
metadata management issues that are related to the way in which applications use the file
system:

 Large parallel applications usually create per-node auxiliary files, and/or generate
checkpoints by having each participating node dumping its relevant data into a
different file; not unlikely, applications place these files in a common directory.

 On the other hand, smaller applications are typically launched in large bunches, and
users configure them to write the different output files in a shared directory, creating
something similar to a file-based results database; the overall access pattern is similar
to that from a parallel application: lots of files are being created in parallel from a
large number of nodes in a single shared directory.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 5

In both cases, typical modus operandi ends up creating large amounts of files in the same
directory; and very large directories, especially when populated in parallel, require GPFS to
use a complex and costly locking mechanism to guarantee the consistency, resulting in far-
from-optimal performance. For example, a parallel application spanning across a large
number of nodes can use an important portion of its execution time creating and writing
checkpoint files (significantly greater than what should be expected for the simple transfer of
data.) To mention another example, collection software used by computer science researchers
to obtain per-node application execution traces for performance analysis also suffer from this
inadequate metadata handling.

As an additional concern, the overhead is not limited to the infringing applications, but affects
the whole system, as file servers are busy with synchronization and all file system requests are
delayed.

We have conducted a series of experiments in a GPFS cluster to confirm that metadata
handling was a significant cause of performance drops. The situation we wanted to evaluate
essentially involved parallel metadata operations, so we used Metarates [5] as the main
benchmark. Metarates was developed by UCAR and the NCAR Scientific Computing
Division, and measures the rate at which metadata transactions can be performed on a file
system. It also measures aggregate transaction rates when multiple processes read or write
metadata concurrently. We used this application to invoke create, stat, and utime on a number
of files from the same directory in parallel. The issues identified in the production GPFS
cluster have then been used to locate potential issues in the Lustre prototype.

The measurements for GPFS have been carried out in a cluster of IBM JS21 blades, with 2
dual core processors PPC970MP at 2.3 GHz and 8 GB of RAM per blade. The
interconnection network is a 1Gb Ethernet.

The observations indicate that an important portion of the relatively large operation times is
consumed not by actual information being transmitted from the server to the clients, but by
consistency-related traffic (even when each process works on a different set of files). That
assumption would give our virtualization layer enough room to obtain a good speed-up by
reorganizing the file layout and reduce the synchronization needed among GPFS clients.

Figure 1 Utime cost for a single GPFS client node

0

0,5

1

1,5

2

2,5

1
2
2

2
7
5

4
2
6

5
7
9

7
3
2

8
8
3

1
0
3
6

1
1
8
7

1
3
4
0

1
4
9
3

1
6
4
4

1
7
9
7

1
9
4
8

2
1
0
1

2
2
5
2

2
4
0
5

2
5
5
8

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of files per directory

gpfs, single node

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 6

Figure 1 shows the average time to fulfil an utime request (changing the timestamp indicating
when the file was last modified) on a file in a directory accessed by a single client node. The
low values for small directories (about 45 microseconds) are the cost of the request when the
GPFS delegation mechanism is active (control is transferred to the client node, so that
operations can be carried on locally, without server synchronization) and represent a lower
boundary for the operation cost; beyond 1024 entries per directory, delegation is no longer
active and the operation requires remote server intervention, resulting in larger operation
times.

Figure 2 Utime cost in GPFS using multiple client nodes

The operation average times when performing simultaneous utime calls from different nodes
are shown in Figure 2. Ideally, the cost should be around 0.75ms (the cost in a single node
when a round-trip to the server is done). What we actually observe is that the cost with 2
nodes is much higher, and progressively decreases when we increase the parallelism, reaching
an optimum value for 16 nodes. Beyond that point, the system does not scale anymore and
increasing the number of nodes just increases the access conflicts, reducing the performance.

Therefore, one of the goals of our work is to reorganize accesses so that conflicts are avoided,
and the operation times are kept near the optimum values, regardless of the number of nodes
used or the size of the directories involved.

Another interesting observation from GPFS is that the average parallel creation time differs
depending on the files being created on a single shared directory or on unique directories per
processor. Figure 3 shows the large delays observed when creating files from different nodes
in the same directory. It is important to mention that each node creates a disjoint set of files;
so, the only cause of poor behaviour is the management of a shared metadata management
structure: the directory. By changing the way the metadata is organized and handled, it should
be possible to reduce this cost to levels similar to using unique directories per processor.

0

0,5

1

1,5

2

2,5

1 2 4 8 16 32 64

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

gpfs, 1024 files per node

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 7

Figure 3 Average parallel creation times in GPFS (1024 files per node)

The experiences and observations in the GPFS cluster have served two purposes: on one side,
they have guided the analysis and study of potential metadata-related performance issues in
the Lustre prototype for exascale systems (that will be commented in the following
subsection); on the other side, they have inspired the solutions developed to overcome
metadata performance issues (explained in Section 3).

2.2. Metadata Scalability Issues in Lustre

Lustre [4] is a parallel file system able to offer a POSIX compliant interface and based on
three types of components: the clients (nodes accessing the file system), the storage servers
where the data resides (based on object storage devices) and a metadata server responsible for
name space, access rights and consistency management.

One of the key characteristics of Lustre regarding metadata management is that it relies on a
single metadata server (possibly replicated for failover replacement) to handle all metadata.
This approach simplifies consistency management (compared to a fully distributed locking
mechanism for metadata management – as in GPFS).

We have executed the Metarates benchmark also in the Lustre prototype in order to compare
them with the observations in GPFS and, given the different strategies used by both systems,
and obtained thorough information about the causes of metadata performance issues and
which are the best ways to neutralize them. The client nodes of the Lustre prototype are Bullx
Inca Nehalem-based blade nodes (8 X5560 processors at 2.80 GHz).

Figure 4 shows the average time spent in a file system request (utime) in a single Lustre
client. Note that operation times are not directly comparable to GPFS due to differences in the
hardware used (both the nodes and the network), but the observations regarding the trends are
still valid.

One of the things to remark in comparison with GPFS is the absence of large differences in
operation times depending on the number of entries of the directory (compare Figure 1 with
Figure 4). This was expected, as Lustre does not use a delegation mechanism transferring the
metadata control to the client (as GPFS does), so there is not a „local-like“ behaviour and all
requests go to the remote metadata server.

0

2

4

6

8

10

12

14

2 4 8 16 32 64

A
ve
ra
ge

 f
ile

 c
re
at
io
n
 t
im

e
 (
m
s)

Number of nodes

shared directory

unique directory

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 8

As the multi-core hardware in the Lustre prototype allows us to efficiently execute several
processes in the same node, we have executed the benchmarks using 1 and 8 processes per
node. From the data in Figure 4 we can see that the Lustre client is able to parallelize requests
from different processes, resulting in an increased performance.

Figure 4 Utime cost for a single Lustre client node

The improved behaviour of Lustre when using multiple processes per node tends to converge
with the single node behaviour when the number of nodes increases (see Figure 5).

Figure 5 Utime cost for multiple Lustre client nodes (1024 files per node)

When comparing with the utime results in GPFS (see Figure 2), we see that the Lustre
prototype does not seem to suffer from clear performance degradation when we increase the
number of nodes (while GPFS does). We suspected that this difference was caused not only
by the different file system, but also due to different hardware and network configuration that
was pushing the issue beyond the number of nodes used in the experiments. We had the
opportunity to validate this assumption by running the benchmarks in a Lustre system larger
than our main Lustre prototype.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of files per directory

lustre, single node (1 proc.) lustre, single node (8 procs.)

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

2 4 8 16 32 64

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

1 proc. per node 8 procs. per node

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 9

Figure 6 Lustre utime behaviour in larger systems (1024 files per node)

Figure 6 shows that beyond 64 nodes, there is an indication of an increase of the effective
average operation time (resulting in a reduction of the performance). Possibly, this effect will
become larger with further increases in the number of nodes (but this is still to be confirmed
by experiments).

Regarding file creation, Lustre also shows differences between the creation of files in a shared
directory and in a unique directory per process (see Figure 7), though they are not so
significant as they were in GPFS.

Figure 7 Average parallel creation times in Lustre (8 procs. per node, 1024 files per node)

Another important observation from Figure 7 is that the creation operation time is
considerably longer than other metadata operations (such as utime). This may be an indication
that there is room for improvement in file creation handling.

Finally the data also offers a hint of performance degradation beyond 32 nodes, suggesting
the file system behaviour may not scale for a much larger number of nodes.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

8 16 32 64 128

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

1 proc. per node 8 procs. per node

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 4 8 16 32 64

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

shared directory unique directory

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 10

2.3. Conclusions

From the experiments, we have learned some facts about file system behaviour that may help
us to optimize the Lustre prototype and improve its scalability.

The sequential behaviour of Lustre regarding metadata operations is not significantly affected
by the number of files in the directory (differing from GPFS). The only exception is the
create request: the optimal creation ratio is reached at 1024-2048 entries per directory, and
stabilizes beyond that point.

Parallel creations on shared directories suffer from overhead with respect to parallel creations
in separate directories per process. The overhead is much more significant in GPFS than in
Lustre. One of the possible causes is that GPFS has a delegation mechanism that allows
transferring the control of metadata operations from the server to the client temporarily,
allowing near-local operation times when a node works on a directory which is uniquely
accessed by a single node. On the contrary, Lustre does not have such a mechanism and
operations to both unique and shared directories need to go to the remote metadata server
(resulting in less significant improvements for non-shared operations).

Parallel operations in Lustre scale quite well up to an optimum value about 16-32 nodes
(depending on the operation and conditions) but show hints of performance degradation
beyond that point. The goal should be avoiding the performance degradation and even
continue the performance improvement with more nodes.

Decoupling the name space from the low-level file system layout could be a way to mitigate
the issues. A virtual layer would offer large shared directory views while internally splitting
them to take advantage of non-shared operations. Moreover, this layer could be used to easily
add delegation mechanisms and coalesce requests, reducing round-trips to the metadata
server. The Composite File System (COFS), explained in section 3 was developed to validate
this approach. Section 6.1 shows some of the results obtained up to now (for the GPFS file
system).

3. Tools for Metadata Management: the COFS Framework

Given the observations on metadata behaviour described in previous sections, we have
developed the Composite File System (COFS) as a prototype to validate the assumption that it
is possible to boost the performance of a parallel file system by decoupling metadata, and
name space handling, from the underlying directory layout. COFS acts as a metadata
management layer on top of the file system, enabling the improvement of its behaviour under
high pressure situations without harming the other aspects of file system performance.

In particular, COFS has been used to evaluate the performance benefits of separating the user
view from the underlying file system structure on our systems under study. In this section we
describe its main features, focusing on the implementation aspects that are relevant to explain
the experimental results.

3.1. Principles

The main goal of the current COFS prototype is to be able to decouple the user view of the
file hierarchy, the metadata handling and the physical placement of the files. In particular, this
allows us to present the user with a virtual view of the file system directories, while the actual
layout can be optimized for the underlying file system.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 11

Regarding functionality, POSIX compliance was a strong design requirement. Apart from the
fact that this is still the dominant model for most applications, our generic goal was reducing
the operational restrictions of underlying file systems; so, limiting the semantics was not an
option: if POSIX semantics is required and the underlying file system supports it (as is the
case with Lustre), then COFS should also be able to deal with it. The current implementation
fully supports POSIX except for some functionality that was not relevant for our present work
(specifically, named pipes).

Another important point to mention is that COFS is implemented as a user-level FUSE
(Filesystem in USErspace [6]) daemon, and it is independent from the underlying file system.
The reasons for this are two-fold. First, even if one of the original motivations of this work
was mitigating potential performance drops on a specific file system, we believe that
equivalent issues affect other file systems; so, the solving mechanism should be generic
enough to be applied to any file system. Second, we plan to deploy our framework in
production-grade clusters, and having a user-land drop-in package without hard requirements
on kernel modifications, configurations or complex software packages makes it much easier
to have access to such environments, as the potential impact on the rest of the system is
minimal.

The COFS framework does not directly deal with low-level data storage. There is no explicit
management of disks, blocks or storage objects: COFS simply forwards data requests to the
underlying file systems and indicates an appropriate low level path when a file is created.
Then it is up to the underlying file system to take the decisions on low-level data server
selection, striping, block/object placement, etc. In this sense, COFS is not a complete file
system, but a tool to leverage the capabilities of underlying file systems.

On the contrary, COFS does take the responsibility on metadata management. By metadata
we specifically mean access control (owner, group and related access permissions), symbolic
and hard link management, directory management (both the hierarchy and the individual
entries) and size and time data for non-regular files (sizes and access time management for
regular files rely on the underlying file system).

Regarding security aspects, COFS relies on the underlying infrastructure: local file system
operations are already protected by FUSE's in-kernel support; communications with the
metadata service make use of the authentication mechanisms provided by the Erlang/OTP
environment [7].

3.2. Architecture

Figure 8 shows how the COFS framework integrates with an existing file system
environment. An original parallel file system is served by 3 file system servers, and n clients
contact such servers through the network. COFS introduces an extra layer on each file system
client, providing a virtual view of the file system layout. Metadata information is handled by
an additional server node. It is important to mention that even though we use a single
metadata server in the current stage of implementation, this is not forced by design, and the
framework also admits a distributed metadata service.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 12

Figure 8 Parallel file system architecture augmented with COFS virtualization layer

The COFS layer on each node offers a file system interface, so it can be mounted as any other
file system. The implementation is based on FUSE, which provides a kernel module that
exports VFS-like callbacks to user-space applications. The decision to use FUSE was driven
by both portability and level of support, as well as easy of development. FUSE is a standard
component of current linux kernels (also available for other operating systems) and provides a
stable platform for implementing a fully functional file system in a user-space program.
Considering our experimental goals, the downside of missing some kernel-level information
that is not exported or forwarded to user level, and possibly minor efficiency losses, is largely
compensated by having a drop-in environment that can be used in most linux boxes without
requiring specific kernel modifications.

Once intercepted by FUSE, file system requests are internally diverted by COFS into two
different modules (the placement and metadata drivers) with well-defined interfaces. The
placement driver is responsible for mapping the regular files into the underlying file
system(s), while the metadata driver takes care of hard and symbolic links, directories, and
generic attributes. Some operations need the collaboration of both drivers: for example,
creating a file involves creating an actual regular file on a convenient location (a placement
driver responsibility) and updating the proper entries in the directory (done by the metadata
driver). So, an interface is also defined for communication between both drivers.

3.3. Metadata service details

How to handle metadata is an important factor that must be considered carefully when dealing
with parallel and distributed file systems. This also applies to the COFS framework, as the

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 13

separation of metadata and name space handling from the actual data layout is a key feature to
obtain performance benefits.

Currently adopted solutions for metadata range from having a single centralized metadata
server (like Lustre) to fully distributing metadata (such as GPFS). While the first have
simplicity on their side, centralized approaches are suspected to become a bottleneck and
hinder scalability; on the other hand, the latter approach requires distributed locking/leasing
techniques to keep the coherence and complex fault detection and recovery mechanisms.
Other options lie in the middle, like explicitly dividing the system into smaller partitions
(Panasas) or relaxing consistency or caching to avoid synchronization needs (PVFS2). The
distributed directory service for Farsite also explores several techniques for partitioning file
system metadata while mitigating synchronization hotspots.

In COFS, we have taken a conceptually centralized approach for metadata because of its
simplicity. We dealt with scalability concerns by leveraging the well-know technology of
distributed databases: metadata can be seen as small set of tables having information about the
files and directories and, in case of need, it could be distributed into several servers by the
database engine itself (without the need of explicit file system partitions or separate volumes).

To this end, we chose the Mnesia database, which is part of the Erlang/OTP environment.
Mnesia provides a database environment optimized for simple queries in soft real time
distributed environments (with built-in support for transactions and fault tolerance
mechanisms). Additionally, the Erlang language has proven to be a good tool for fast
prototyping of highly concurrent code (the language itself internally deals with thread
synchronization and provides support for transparently distributing computations across
several nodes).

The current COFS prototype uses a single metadata server running an Erlang node with an
instance of the Mnesia database, and the COFS metadata driver on each client simply
forwards the requests to the server and handles metadata leases.

The server also keeps the current working set of metadata information as a cache of active
objects to reduce the pressure on the backend database engine, using a concurrent caching
mechanism similar to the one described by Jay Nelson. Although our performance tests show
that a single node is enough to handle the metadata, the used algorithm would be compatible
with a distributed multi-node Erlang system, if needed.

4. Data Management Issues

Metadata management represents just one of the aspects that have to be addressed in exascale
systems. Data storage and handling constitutes the other important set of issues that must be
carefully considered in order to avoid unacceptable performance losses.

Indeed, the ever-growing creation of massive amounts of data expected in exascale systems
requires highly scalable solutions. The most flexible approach is to use a pool of storage
devices that can be expanded and scaled down as needed by adding new storage devices or
removing older ones. Nevertheless, such an approach brings out the following challenges:

1. These storage systems will inevitably be composed of a collection of heterogeneous
hardware: as capacity requirements grow, new storage devices will be added to cope
with demand, but it is unlikely that these new devices have the same capacity and/or
performance that those currently in the storage system. Furthermore, when disks fail
they are usually replaced by faster and larger ones, since it ends up being cheaper than
finding a particular model of drive. In the long run, any mass storage system will have

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 14

to cope with a myriad of devices (SATA/SCSI drives, optical tapes, SSDs...) with very
different performance characteristics and capacities.

2. Storage systems must be able to scale according to the needs of the users, and they
must do so in an efficient manner. Whenever new devices are added to the system
large amounts of data must be migrated in order to keep the system’s load balanced
across devices. For large-scale storage systems the amounts of data moved can be
enormous and the required migration times impractical.

In summary, data must be carefully balanced to maintain acceptable access ratios in very large
scale systems; nevertheless, the supporting hardware will need to be expanded and replaced
continuously, which means that large amounts of existing data will have to be redistributed
and moved from the old devices to the new ones in a proper way to maintain performance
characteristics.

Research has taken some very different directions in order to solve the problem of scalability
in heterogeneous storage. Table-based strategies can provide an optimal mapping between
data blocks and storage systems, but obviously do not scale to large systems because tables
grow linearly in the number of data blocks. Rule-based methods, on the other hand, run into
fragmentation problems, so defragmentation must be performed periodically to preserve
scalability.

Hashing-based strategies use a hashing function in order to map data blocks with unique
identifiers into a set of devices, so that blocks are evenly distributed. Given a static set of
devices, it is simple to construct a hash function so that every device gets a fair share of the
data load. However, standard hashing techniques do not adapt well to a changing set of
devices.

Pseudo-randomized hashing schemes that can adapt to a changing set of devices have been
proposed and theoretically analyzed. The most popular is probably Consistent Hashing [8],
which is able to evenly distribute single copies of each data block among a set of storage
devices and to adapt to a changing number of disks. Nevertheless, these theoretically perfect
approaches suffer from heavy memory usage which limits their applicability in real
implementations.

5. Proposals for Data Management

5.1. Random Slicing

Random Slicing is a new data distribution strategy that aims to solve the problems mentioned
in Section 4 by using a pseudo-randomized distribution of data blocks coupled to a scalable
data structure that controls the mapping of sets of blocks to devices.

Random Slicing overcomes the drawbacks of randomized data distribution strategies by
incorporating lessons learned from table-based, rule-based and pseudo-randomized hashing
strategies. Random Slicing keeps a small table with information about previous storage
system insertions and removals that helps to drastically reduce the required amount of
randomness in the system and thus reduces the amount of necessary main memory by orders
of magnitude.

Random Slicing has been designed to be fair and efficient both in homogeneous and
heterogeneous environments and to adapt gracefully to changes in the number of devices.
Suppose that we have a random function ݄: ሼ1, … , ሽܯ ՜ ሾ0,1ሻ that maps data blocks
uniformly at random to real numbers in the interval ሾ0,1ሻ. Also, suppose that the relative
capacities for the ݊ given devices are ሺܿ଴, … , ܿ௡ିଵሻ א ሾ0, 1ሻ௡ and that ∑ ܿ௜ ൌ 1௡ିଵ

௜ୀ଴ .

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 15

The strategy begins by dividing the ሾ0,1ሻ range into intervals and assigning them to the
devices currently in the system. Notice that intervals do not overlap and completely cover the
ሾ0,1ሻ range. Also note that device ݅ can be responsible for several non-contiguous intervals

௜ܲ ൌ ሺܫ଴, … , ݇ ௞ሻ, whereܫ ൏ ݊, which constitute the partition of that device. To ensure an
even distribution, Random Slicing will always enforce ∑ หܫ௝ห ൌ ܿ௜

௞ିଵ
௝ୀ଴ .

In an initial phase, i.e. when the first set of storage devices enters the system, each device ݅ is
given only one interval of length ܿ௜, since this suffices to maintain a fair distribution of data.
Whenever new devices enter the system, however, relative capacities for old devices change
due to the increased overall capacity. To maintain this fairness, Random Slicing shrinks
existing partitions by splitting the intervals that compose them until their new relative
capacities are reached. The new intervals generated are used to create partitions for the newly
added devices.

First, the algorithm computes how much partitions should be shrunk in order to keep the
fairness of the distribution. Since the global capacity has increased, each partition ௜ܲ must be
reduced by ݎ௜ ൌ ܿ௜ െ ܿ௜

, , where ܿ௜
, corresponds to the new relative capacity of device ݅.

Partitions become smaller by releasing or splitting some of their intervals, thus generating
gaps, which can be used for new intervals. Notice, however, that the strategy’s memory
consumption directly depends on the number of intervals used and, therefore, the number of
splits made in each addition phase can affect scalability. For this reason, the algorithm tries to
collect as many complete intervals as possible and will only split an existing interval as a last
resort. Furthermore, when splitting an interval is the only option, the algorithm tries to expand
any adjacent gap instead of creating a new one.

The partition lengths for the old devices already represent the corresponding relative
capacities. It is only necessary to use these gaps to create new partitions for the newly added
bins. The strategy proceeds by greedily allocating the largest partitions to the largest gaps
available in order to reduce the number of new intervals even more, which ends the process.

Figure 9 Random Slicing interval reorganization for the new devices

An example of this reorganization is shown in Figure 9,where two new bins ܤଷ and ܤସ (which
account for a 50% capacity increase) are added to the bins ܤ଴, ܤଵ, and ܤଶ. Figure 9 (a) shows
the initial configuration and the relative capacities for the initial bins. Figure 9 (b) shows that
the partition of ܤ଴ must be reduced by 0.06, the partition of ܤଵ by 0.11, and the one of ܤଶ by

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 16

0.16, whereas two new partitions with a size of 0.14 and 0.19 must be created for ܤଷ and ܤସ.
The interval ሾ0.1, 0.2ሻ א ,ଵcan be completely utilized, whereas the intervals ሾ0.0ܤ 0.1ሻ א ,଴ܤ
ሾ0.2, 0.6ሻ א ,ଶ and ሾ0.7ܤ 0.9ሻ א ଵare split while trying to maximize the length of the createdܤ
gaps. Figure 9 (c) shows the completed process where, the partition for ܤଷ is composed of
intervals ሾ0.23, 0.36ሻ and ሾ0.7, 0.71ሻ, while the partition for ܤସ only contains interval
ሾ0.04, 0.23ሻ.

When all partitions are created, the location of a data block ܾ can be determined by
calculating ݔ ൌ ݄ሺܾሻ and finding the interval ܫ that contains ݔ, which in turn determines the
device. Notice that some blocks will change partition after the reorganization, but as partitions
always match their ideal capacity, only a near minimal amount of blocks will need to be
reallocated. Furthermore, if ݄ሺܾሻ is uniform enough and the number of expected blocks in the
system is significantly larger than the number of intervals (both conditions easily feasible),
the fairness of the strategy is guaranteed.

5.2. Multi-Zone Self-Caching Data Storage

As shown in [9], some workloads show relevant amounts of long-term locality, that is, data
that tends to be accessed continuously for several days or weeks. We have designed and
simulated a new allocation strategy that optimizes access times to hot data sets and maintains
an appropriate balance of data load and operations across devices.

The basic idea of this strategy is to claim a portion of each device in the storage system and
use it to create a storage zone where we can distribute active data. This effectively defines two
zones in the storage system: an archival zone and a caching zone. The strategy also keeps
track of changes to the currently active working set and updates the caching zone accordingly.

We consider that data is active when it begins receiving accesses. When this happens, the data
block is copied to the caching zone and all subsequent requests are served from it. Once data
stops being active it is copied back to the archival zone, where it will remain until it becomes
active again. Each zone can be managed with a different data allocation policy that befits the
requirements of the data that it contains, therefore combining the advantages of performance-
oriented strategies with the cost-capacity benefits of archival-oriented ones.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 17

Figure 10 Overview of an hybrid architecture with a RAID0 caching zone

Figure 10 shows an example of an architecture with RAID0 for both the caching zone and the
archival zone. The caching zone is assembled with segments from all five disks. Active data
is copied to the caching zone, where it is accessed and updated. When a data block is no
longer active, the original block is updated and the copy is removed from the caching zone.

6. Evaluations and Experimental Results

6.1. COFS

We deployed the COFS prototype to verify that it could mitigate some of the metadata
performance issues of the parallel file systems and that the benefits obtained where significant
enough to compensate the cost of adding an extra layer on top of the file system. Experiments
were run using GPFS as the underlying system in the same hardware used for the initial
measurements (described in section 2.1). The reason behind the selection of GPFS instead of
Lustre was because the installation we planed to use for the Lustre experiments was delayed
by six months and we only had time to measure the performance, but not to apply the
techniques to the system. This evaluation results over Lustre will be presented in a later
progress report.

6.1.1. Metadata virtualization results

The following measures of COFS over GPFS have been obtained in the same system
described in Section 2.1. Additionally, COFS uses IP over Myrinet for communicating
metadata service and clients.

Figure 11 shows the benefits of breaking the relationship between the virtual name space
offered by COFS (exporting a single shared directory to the application level) and the actual
layout of file in the underlying GPFS file system. By redistributing the entries into smaller

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 18

low level directories, COFS allows GPFS to fully exploit its parallel capacity by converting a
shared parallel workload into multiple local sections that do not require global
synchronization.

The improvement translates into a reduction of the average create time from more than 10 ms
in 16 nodes for GPFS to about 1 ms when using COFS over GPFS. The numbers for pure
GPFS were limited to 64 nodes because beyond that point the system was suffering severe
performance problems when running the benchmarks (that issue was not present when using
COFS over GPFS).

Figure 11 Parallel creation time improvements with COFS (1024 files per node)

Figure 12 shows the average time for utime requests. We can see that, in this case, the
overhead introduced by COFS virtualization is noticeable for a small number of nodes, but it
converges with pure GPFS results at 16 nodes. Beyond that point, we can observe that GPFS
rapidly degrades its performance as we increase the number of participating nodes; on the
contrary, COFS is able to compensate and eliminates the degradation, allowing the system to
scale better to larger number of nodes.

0

2

4

6

8

10

12

14

2 4 8 16 32 64 128 256

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

GPFS COFS + GPFS

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 19

Figure 12 Utime request scalability (1024 files per node)

COFS takes advantage of the reduced operation time when GPFS delegation is active by
redistributing the files in smaller directories and avoiding parallel accesses to such directories
when possible, thus reducing the conflicts between different nodes and allowing GPFS to
fully exploit the parallelism.

In summary, our measurements show that the virtualization of the name space provided by the
COFS framework can drastically boost the base GPFS file system for file creations on shared
parallel environments (with speed-up factors up to 10, as shown in Figure 11. For the rest of
metadata operations, performance is also boosted for large numbers of nodes, and
performance degradation due to conflicting parallel accesses is reduced.

6.1.2. Impact on data transfer bandwidth

After verifying that the benefits obtained by our prototype regarding metadata handling are
promising, and that it effectively mitigates the issues motivating the present work, we also
wanted to measure the possible impact of the virtualization environment on read/write
operations on file contents.

Altering the file hierarchy could lead the underlying file system to modify the actual location
of data, impacting negatively on read/write bandwidth; additionally, we wanted to be sure that
COFS infrastructure was not adding an unacceptable overhead to data transfer operations.
Possible causes would be FUSE's double buffer copying, round-trips to the metadata service
or caching issues.

We have used the IOR (Interleaved Or Random) benchmark to measure data I/O performance
for GPFS with and without the COFS virtual layer. Even if COFS does not deal with data I/O,
we wanted to verify that the hierarchy re-organization had no negative impact in this aspect.
IOR v2 was developed at LLNL and provides aggregate I/O data rates for both parallel and
sequential read/write operations to shared and separate files in a parallel file system. The
benchmark was executed using the POSIX interface with aggregate data sizes of 256MB,
1GB and 4GB (the individual file size when using separate files is the aggregated data size
divided into the number of participating processes.

Table 1 summarizes the results obtained with the IOR I/O benchmark in a small GPFS cluster.
Overall, COFS over GPFS is usually able to obtain a data transfer performance similar to

0

1

2

3

4

5

6

2 4 8 16 32 64 128 256

A
ve
ra
ge

 o
p
e
ra
ti
o
n
 t
im

e
 (
m
s)

Number of nodes

GPFS COFS + GPFS

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 20

native GPFS. The only remarkable exceptions occur when each node access independent
small files.

Access
Pattern

Separate files per process Single shared file

Sequential
read

COFS performance comparable to
GPFS except for small files (< 32MB
per node) where COFS suffers an
important slowdown.

COFS performance comparable to
GPFS.

Random
read

COFS performance comparable to
GPFS except for small files (<32MB
per node) where COFS suffers an
important slowdown.

COFS performance comparable to
GPFS.

Sequential
write

COFS performance drawback for single
node and performance improvements of
COFS over GPFS as the number of
nodes is increased.

COFS performance drawback for
single node and comparable
performance for multiple nodes.

Random
write

COFS performance comparable to
GPFS except for small files (<32MB
per node) where COFS suffers from
slight slowdown.

COFS performance comparable to
GPFS.

Table 1 Impact of COFS on data transfers

For operations on small separate files (less than 32MB,) pure GPFS is able to exploit its
optimizations and the cache by locally keeping both the metadata and the file contents for
read operations (files were created and written in the same node they were accessed.)
Additionally, the total benchmark time for such small files are about a few milliseconds,
which is comparable, for example, to the extra round-trips needed by COFS to access its
metadata server. In these circumstances, COFS is paying the cost of its infrastructure. The
case of writes is slightly different: not being a pure local cache operation (as data has to be
eventually sent to file servers) GPFS cannot apply all of its optimizations; consequently,
COFS benefits have room to partially mask the infrastructure costs, resulting in only slightly
lower performance. The performance penalties disappear with larger file sizes, as transfer
times become dominant compared with COFS infrastructure costs.

Noticeably, we also observed a positive effect of COFS when writing sequentially to separate
files. In this case, GPFS bandwidth suffers degradation as the number of participating nodes
was increased, while COFS was able to neutralize this effect. A closer look revealed that, for
a larger number of nodes, the increased cost of the parallel open operation was “serializing”
the data transfers (as the last node was able to open the file only much later than the first one,
it also started to transfer data later); as a result, the use of the available data bandwidth was
reduced. On the contrary, COFS reduced the open time to a minimum, allowing all nodes to
start transferring data in parallel and achieving a much better use of the network bandwidth.

In summary, we did not observe a remarkable global impact of the COFS virtualization layer
on the data transfer rates. The isolated performance drops affect only the GPFS highly
optimized cases (local accesses to independent small files) where there is little room for
improvement. Even then, the nature of the cases would make it possible to reduce the
differences by incorporating the same aggressive caching and delegation techniques for
strictly local accesses to the COFS framework.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 21

6.2. Random Slicing

In order to evaluate Random Slicing we used a simulation. To establish a relevant baseline to
compare against, we also simulate some of the best-known randomized data distribution
strategies such as Consistent Hashing[8], Redundant Share [10], and RUSH-R [11].

We distinguish between homogeneous and heterogeneous settings and also between static and
dynamic environments. We assume that each storage system in the homogeneous, static
setting can hold up to k · 500,000 data items, where k is the number of copies of each block.
Assuming a hard disk capacity of 1TByte and putting 16 hard disks in each shelf means that
each data item has a size of 2MByte. The number of placed data items is k · 250,000 times the
number of storage systems. In all cases, we compare the fairness, the memory consumption,
as well as the performance of the different strategies for a different number of storage
systems.

The heterogeneous setting assumes that in the beginning we have 128 storage systems and we
add 128 new devices each step, which have 3/2 times the size of the previously added system.
We are placing again half the number of items, which saturates all disks.

For each of the homogeneous and heterogeneous tests, we also count the number of data
items, which have to be moved in case we are adding disks, so that the data distribution
delivers the correct location for a data item after the redistribution phase. The number of
moved items has to be as small as possible to support dynamic environments, as the systems
typically tend to a slower performance during the reconfiguration process.

The dynamic behaviour can be different if the order of the k copies is important, e.g. in case
of parity RAID, Reed-Solomon codes, or EvenOdd-Codes, or if this order can be neglected in
case of pure replication strategies.

The following sections evaluate the impact of the different distribution strategies on the data
distribution quality, the memory consumption of the different strategies, their adaptability and
performance. All graphs presented in the section contain four bars for each number of storage
systems, which represent the experimental results for one, two, four, and eight copies (please
see Figure 13 for the colour codes in the legend). The white boxes in each bar represent the
range of results, e.g., between the minimum and the maximum usage. Also, the white boxes
include the standard deviation for the experiments. Small or non-existing white boxes indicate
a very small deviation between the different experiments.

6.2.1. Fairness

The first simulations evaluate the fairness of the strategies for different sets of homogeneous
disks, ranging from 8 storage systems up to 8192 storage systems (see Figure 13). A data
distribution is considered to be fair when every single storage system gets a share of the data
load which is proportional to its relative capacity with respect to the total aggregate capacity
of participating storage systems. The following graphs are normalized so that a usage of 1
indicates that the distribution is fair.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 22

(a) Consistent Hashing (b) Redundant Share

(c) RUSH-R (b) Random Slicing

Figure 13 Fairness in an homogeneous setting

Consistent Hashing has been developed to evenly distribute one copy over a set of
homogeneous disks of the same size. Figure 13 (a) shows that the strategy is able to fulfil
these demands for the test case, in which all disks have the same size. The difference between
the maximum and the average usage is always below 7% and the difference between the
minimum and average usage is always below 6%. The deviation is nearly independent from
the number of copies as well as from the number of disks in the system, so that the strategy
can be reasonably well applied.

Redundant Share uses pre-computed intervals for each disk and therefore does not rely too
much on randomization properties. The intervals exactly represent the share of each disk on
the total disk capacity, leading to a very even distribution of the data items (see Figure 13
(b)). The drawback of this version of Redundant Share is that it has linear runtime, possibly
leading to high delays in case of huge environments.

RUSH-R places objects almost ideally according to the appropriate weights, though it begins
to degrade as the number of disks grows (see Figure 13 (c)). We believe this happens due to
small variations in the probabilistic distribution, which build up for higher numbers of storage
systems.

In Random Slicing, pre-computed partitions are used to represent a disk’s share of the total
system capacity, in a similar way to Redundant Share’s use of intervals. This property, in
addition to the hash function used, enforces an almost optimal distribution of the data items,
as shown in Figure 13 (d).

The fairness of the different strategies for a set of heterogeneous storage systems is depicted
in Figure 14. As previously described, we start with 128 storage systems and add every time
128 additional devices with 3/2-times the capacity of the previously added.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 23

(a) Consistent Hashing (b) Redundant Share

(c) RUSH-R (b) Random Slicing

Figure 14 Fairness in an heterogeneous setting

The fairness of Consistent Hashing shows apparent deviations from the ideal load (see Figure
14 (a)). The difference between the maximum, respectively minimum and the average usage
is around 10% and increases slightly with the number of copies.

Both Redundant Share and Random Slicing show again a nearly perfect distribution of data
items over the storage systems, due to their precise modelling of disk capacities and the
uniformity of the distribution functions (see Figure 14 (b) and Figure 14 (d), respectively).
RUSH-R, on the other hand, does a good distribution job for 1, 2, and 4 copies but seems to
degrade with 8 copies showing important deviations from the optimal distribution (Figure 14
(c)).

6.2.2. Memory Consumption and Computation Time

The memory consumption, as well as the performance of the different data distribution
strategies, has a strong impact on the applicability of the different strategies. The bars in the
graphs of Figure 15 represent the average allocated memory, the white bars on top the peak
consumption of virtual memory over the different tests. The points in that figure represent the
average time required for a single request. These latencies include confidence intervals.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 24

(a) Consistent Hashing (b) Redundant Share

(c) RUSH-R (b) Random Slicing

Figure 15 Memory consumption and performance in an heterogeneous setting

The memory consumption of Consistent Hashing only depends on the number and kind of
disks in the system, while the number of copies k has no influence on it (see Figure 15 (a)).
The time to calculate the location of a data item only depends on the number of copies, as
Consistent Hashing is implemented as a O(1)-strategy for a single copy.

Redundant Share (Figure 15 (b)) has very good properties concerning memory usage, but the
computation time grows linearly in the number of storage systems. Even the calculation of a
single item for 128 storage systems takes 145 μs. Using 8 copies increases the average access
time for all copies to 258 μs, which is 50 μs for each copy, making it unsuitable for large-
scale environments.

RUSH-R shows good results both in memory consumption and in computation time (see
Figure 15 (c)). The reduced memory consumption is explained because the strategy does not
need a great deal of in-memory structures in order to maintain the information about clusters
and storage nodes. Lookup times depend only on the number of clusters in the system, which
can be kept comparatively small for large systems.

Random Slicing shows very good behaviour concerning memory consumption and
computation time, as both depend only on the number of intervals I currently managed by the
algorithm (see Figure 15 (d)). In order to compute the position of a data item , the strategy
only needs to locate the interval containing , which can be done O(log I) using and
appropriate interval tree structure. Furthermore, the algorithm strives to reduce the number of
intervals created in each step in order to minimize memory consumption as much as possible.
In practice, this yields an average access time of 5μs for a single data item and 13μs for 8
copies, while keeping a memory footprint similar to that of Redundant Share.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 25

6.2.3. Adaptability

Adaptability to changing environments is an important requirement for data distribution
strategies and one of the main drawbacks of standard RAID approaches. Adding a single disk
to a RAID system typically requires either the replacement of all data items in the system or
splitting the RAID environment into multiple independent domains.

The theory behind randomized data distribution strategies claims that these strategies are able
to compete with a best possible strategy in an adaptive setting. This means that the number of
data movements to keep the properties of the strategy after a storage system has been inserted
or deleted can be bounded against the best possible strategy. We assume in the following that
a best possible algorithm just moves as much data from old disks to new disks, respectively
from removed disks to remaining disks, as necessary to have the same usage on all storage
systems. All bars in Figure 16 have been normalized to this definition of an optimal
algorithm.

(a) Consistent Hashing (b) Redundant Share

(c) RUSH-R (b) Random Slicing

Figure 16 Adaptability in an heterogeneous setting

Furthermore, we distinguish between placements, where the ordering of the data items is
relevant and where it is not. The first case occurs, e.g., for standard parity codes, where each
data item has a different meaning: if a client accesses the third block of a parity set, then it is
necessary to receive exactly that block. In contrast, the second case occurs for RAID 1 sets,
where each copy has the same content and receiving any of these blocks is sufficient. The first
situation is labelled “moved keeping order” in Figure 16, whereas the second is labelled
“moved changing order”. We will see in the following that not having to keep the order
strongly simplifies the rebalancing process.

We start our tests in all cases with 128 storage systems and increase the number of storage
systems by 1, 2, 3, 5, 7, 11, or 13 storage systems. The new storage systems have 1.5-times
the capacity of the original system.

Figure 16 (a) shows the adaptability of Consistent Hashing in case that the number of points
is fixed for each individual storage system and only depends on its own capacity. We use

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 26

2,400 points for the smallest storage system and use a proportional higher number of points
for bigger storage systems. In this case the insertion of new storage systems only leads to data
movements from old systems to the new ones and not between old ones and therefore the
adaptability is very good in all cases.

The adaptability of Redundant Share for adding new storage systems is nearly optimal, which
is in line with the proofs presented in [12]. Nevertheless, Redundant Share is only able to
achieve an optimal competitiveness if a new storage system is inserted that is at least as big as
the previous ones. Otherwise it can happen that Redundant Share is only log n-competitive
(see Figure 16 (b)).

Figure 16 (c) shows that RUSH-R performs nearly optimal when storage nodes are added.
Note, however, that we did not evaluate the effect on replica ordering because the current
implementation does not support replicas as distinct entities. Instead, RUSH-R distributes all
replicas within one cluster.

Figure 16 (d) shows that the adaptability of Random Slicing is very good in all cases. This is
explained because intervals for new storage systems are always created from fragments of old
intervals, thus forcing data items to migrate only to new storage systems.

6.3. Multi-Zone Self-Caching Data Storage

The methodology we followed to evaluate Multi-Zone Self-Caching data storage strategy is
analytical. We have created a trace-fed simulator that models large-scale storage architectures
and we used it to evaluate our prototype strategy. Individual disks are simulated using the
well-know DiskSim [13] simulator. In order to see if our strategy offers any significant
improvement we also evaluated several well-known allocation strategies to establish a
relevant baseline to compare against.

We have evaluated the new strategy against the following baseline policies:

 RAID0: RAID0 divides data in stripes that are distributed in a round-robin fashion
across all devices. With a carefully chosen stripe size, this strategy provides extremely
good results regarding response time (as requests are split and served in parallel by
devices) and load balance.

 SEQUENTIAL: SEQUENTIAL places data sequentially in a device. When the device
is full, sequential chooses the next device and proceeds to fill it sequentially, as well.
This strategy offers very poor results regarding performance (a request can only be
served by one or two devices at most) and also poor load balance (data fills up the
disks one at a time, leaving the others unused).

By now, our mechanism supports the following combinations of policies for the caching zone
and the archival zone:

 RAID0+SEQUENTIAL: This variant uses a sequential strategy for the archival zone
and a RAID0 strategy for the caching zone. We want to evaluate how much of a
benefit the caching zone can provide when the archival zone uses an unsuitable policy.

 RAID0+RAID0: This variant uses RAID0 both for the caching zone and the archival
zone. We want to see if there is any improvement when comparing it with a traditional
RAID0 approach.

For our simulations, we used the CELLO99, DEASNA [14], HOME02 [14], WEB-USERS and
WEB-RESEARCH [15]. For each experiment we configured the simulator with 50 disks with a
capacity of 146GBytes and speed of 7,200 rpm. The allocation policy uses 0.02% of each disk
to create the caching zone, because this value is not sufficient to contain the active working

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 27

set and will produce extra disk traffic due to data evictions. We decided to evaluate the
behaviour of the cache with a simple LRU replacement policy. All RAID0 instances used a
stripe size of 128KBytes and the SEQUENTIAL policy used the same value as block size.

6.3.1. Response time

Figure 17 shows the average response time for read requests for the traces simulated with the
respective strategies. As expected, requests are significantly slower in sequential than in
RAID0, with response times in general between one and two orders of magnitude slower.
Notice that in most cases, the performance of RAID0+SEQUENTIAL is similar to that of
RAID0 which validates our hypothesis that there’s no need to optimize the data placement of
all the data space. In addition, notice that the performance of RAID0+RAID0 shown in Figure
17(a), Figure 17(d) and Figure 17(e) is slightly better than that of RAID0. This can happen
because currently active data is clustered in the caching zone which favours spatial locality.
Interestingly, the performance gains for WEB-RESEARCH and WEB-USERS are lower than
for others workloads, which might imply that RAID0 is not being exploited to its full
potential.

(a) CELLO99 (b) DEASNA (c) HOME02

(d) WEB-RESEARCH (e) WEB-USERS

Figure 17 Average response time for read operations

Bar plots in Figure 18 show the average response time for writes requests, however. We can
see the same behaviour than in the previous experiment: the response times of the hybrid
strategies are similar to those of RAID0 even taking into account the simple LRU replacement
policy and the extra overhead added by replacing data from the caching zone.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 28

(a) CELLO99 (b) DEASNA (c) HOME02

(d) WEB-RESEARCH (e) WEB-USERS

Figure 18 Average response time for write operations

6.3.2. Load Balance

Figure 19 and Figure 20 show the cumulative distribution function (CDF) over time of the
standard deviation from an ideal load balance displayed by the devices. Every minute of
simulation, we compute the I/O load of each device and how it deviates from an ideal load
distribution. Therefore, an ideal load balance corresponds to a value of 1, whereas a value of 2
means that the distribution was twice as unbalanced as the ideal load. Since the experiments
use 50 disks, an unbalance index of sqrt(50) ≈ 7.07 is the maximum load unbalance possible,
and can only happen when all data access is directed towards only one device. The y axis
represents the accumulated frequency (in measurement intervals) where a balancing index
was observed, e.g.: Figure 19 (a) shows that, for RAID0, 90% of observations displayed a
balancing index of 1.8 or less.

As expected, sequential is highly unbalanced both for read and write operations in all the
simulations. RAID0 is significantly more balanced in all simulations except for the WEB-
RESEARCH and WEB-USERS workloads (Figure 19 (d), Figure 19 (e), Figure 20 (d) and
Figure 20 (e)). Since these workloads are from web servers, the distribution of requests
probably is more random than those coming from human users, which might explain this
variation. Furthermore, a stripe size of 128KBytes might be too large for this data workload,
which would render the parallelism and load balance provided by RAID0 useless. This
question deserves a careful examination and we plan to examine it in the future. Nevertheless,
the hybrid strategy RAID0+SEQUENTIAL is successful in reducing the I/O unbalance of
SEQUENTIAL, displaying results similar to those of RAID0, both for reads and for writes.
This supports our assumption that the caching zone is able to absorb most of the requests and
can distribute them effectively across all devices.

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 29

(a) CELLO99 (b) DEASNA (c) HOME02

(d) WEB-RESEARCH (e) WEB-USERS

Figure 19 Deviation from ideal load for read operations

Most interestingly, RAID0+RAID0 provides a better load balance than RAID0 in some cases.
The set of active data we’re considering is significantly smaller than the entire data space (≈
0.02%) and most requests are directed to it which probably makes it easier to effectively
balance it.

(a) CELLO99 (b) DEASNA (c) HOME02

(d) WEB-RESEARCH (e) WEB-USER

Figure 20 Deviation from ideal load for write operations

D12.4 Performance Optimized Open Lustre

PRACE-2IP - RI-283493 25.08.2012 30

7. Conclusions

This document presents evaluations to detect problems in both metadata and data
management in large-scale storage systems.

We have evaluated the effect the number of files and clients have on the performance of
metadata operations in both Lustre and GPFS. In this evaluation we have detected that both
the parameters have a significant negative effect in the obtained performance and we have
proposed to use COFS a middleware to handle metadata. COFS is a middleware that
decouples the view the user has from the one implemented by the file system and thus is able
to transparently convert not optimized cases from the parallel file system point of view into
optimized ones, thus getting all the benefits without asking the user to change their
behaviours.

The information provided by the metadata performance measurements will help to tune the
large scale PRACE systems (and high performance systems in general), as well as algorithms
and specific applications, by showing which situations are likely to produce performance
issues when accessing the storage systems and avoiding them. To this end, the current COFS
implementation is available and can be used to mitigate certain metadata performance issues.
The flexible architecture of COFS allows using it both as a transparent layer covering a whole
file system, and as a tool to improve the behaviour of individual applications, without
affecting the rest of the system.

We have also proposed some data distribution policies that are able to dynamically adapt to
the increasing number of storage devices and still obtain the desired performance benefits
guaranteeing minimal data movement among devices. These policies are based on a data
distribution where blocks are placed by applying a function that is half randomized and half
deterministic, and by increasing the caching hierarchy with one level built from a tiny portion
of all available disks. The new data distribution policies will be used to enable the capacity
upgrade of future large scale storage systems at a much lower cost than current algorithms.

We expect to take more measurements in the PRACE Lustre prototype and other large scale
systems; any new developments and information acquired will be documented in a Progress
Report at month 18.

