

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D12.3

Development Environment and Tools

Final

Version: 1.0
Author(s): Jose Carlos Sancho, Claudia Rosas, Vladimir Subotic, Jesus Labarta (BSC)
Date: 20.02.2013

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: PRACE Second Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: <D12.3>
Deliverable Nature: < Report >
Deliverable Level:
PU

Contractual Date of Delivery:
28 / February / 2013
Actual Date of Delivery:
28 / February / 2013

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Development Environment and Tools
ID: D12.3
Version: <1.0 > Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D12.3.docx

Authorship

Written by: Jose Carlos Sancho, Claudia Rosas,
Vladimir Subotic, Jesus Labarta (BSC)

Contributors:
Reviewed by: Miroslaw Kupczyk, PSNC; Dietmar Erwin,

Juelich
Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 28/01/2013 Draft First Draft
1.0 08/02/2013 Final version

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 ii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-283493. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2013 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 iii

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. i

Document Keywords ... ii

Table of Contents ... iii

List of Figures ... iii

List of Tables ... iv

References and Applicable Documents .. iv

List of Acronyms and Abbreviations .. iv

Executive Summary .. 1

1 Introduction ... 1

2 Task Organization ... 3

3 Project Overviews ... 4
3.1 Analysis and optimization of hybrid linear equation solver using a task-based parallel
programming model ... 4

3.2 Performance analysis of parallel applications on modern multithreaded processor architectures
 6

3.3 Parallelization of the HYDRO code and TRITON software using X10, a PGAS-type
programming language .. 9

3.4 Investigating Performance Benefits from OpenACC Kernel Directives 12

4 Summary and Conclusions ... 14

List of Figures

Figure 1: Overview of the target programming model for the different tasks... 3
Figure 2: Traces for user functions in the implementation of the Jacobi method using OmpSs
directives, problem size equal to 50, and number of tasks inside each thread equal to 4x4x4. (a) 1
thread; and (b) 2 threads .. 5
Figure 3: Total execution time in seconds when increasing the number of thread. Implementation of
the Jacobi method using OmpSs directives, problem size equal to 50, and number of tasks inside each
thread equal to 4x4x4 .. 6
Figure 4: Performance of GADGET2 ... 7
Figure 5: Hybrid programming: on each place, one activity is (remotely) launched and starts a set of
local sub-activities ... 9
Figure 6: Strong scaling behavior with Hydro .. 10
Figure 7: Strong and Weak scaling tests with Triton .. 10
Figure 8: Runtimes for a matrix-matrix multiplication with various gang and vector sizes compiled
using PGI and run on an NVIDIA M2090 GPU ... 13
Figure 9: Runtimes for a matrix-matrix multiplication with various gang and vector sizes compiled
using CAPS run on an NVIDIA M2090 GPU... 13
Figure 10: Runtimes for a classic Gram-Schmidt orothonormalisation with various gang and vector
sizes compiled using PGI run on an NVIDIA M2090 GPU GPU ... 13
Figure 11: Runtimes for a classic Gram-Schmidt orothonormalisation with various gang and vector
sizes compiled using, CAPS run on an NVIDIA M2090 GPU ... 13

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 iv

List of Tables
Table 1: Overview of efforts per partner ... 3
Table 2: Performance of codes on different SMT configurations [sec.] ... 8

References and Applicable Documents

[1] J.Dongarra et al., “The international exascale software project roadmap”, International
Journal of High Performance Computing Applications, 2011, 25(I), 3-60
[2] J.Abeles et al., “Performance Guide for HPC Applications on IBM Power 775
Systems”, Release 1.0, April 15, 2012, IBM Systems and Technology Group
[3] A.Duran, X.Teruel, R.Ferrer, X.Martorell, E.Ayguade, “Barcelona OpenMP Tasks
Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism in OpenMP”,
Proceeding ICPP '09 Proceedings of the 2009 International Conference on Parallel
Processing, p.124-131, IEEE Computer Society Washington, DC, USA
[4] J. Labarta, S. Girona, V. Pillet, L. Gregoris and T. Cortes, "Dip: A parallel program
development environment.," in Proceedings of the Second International Euro-Par Conference
on Parallel Processing, London, UK, UK, 1996, pp. 665--674.
[5] V. Pillet, J. Labarta, T. Cortes and S. Girona, "PARAVER: A Tool to Visualize and
Analyze Parallel Code," in Proceedings of WoTUG-18: Transputer and occam Developments,
1995, pp. 17--31.
[6] S. Girona, J. Labarta and R. M. Badia, "Validation of Dimemas Communication Model
for MPI Collective Communications," in Proceedings of the 7th European PVM/MPI Users'
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Passing
Interface, London, UK, UK, 2000, pp. 39--46.
[7] V. Subotic, R. Ferrer, J. C. Sancho and J. Labarta, "Quantifying the potential task-based
dataflow parallelism in MPI applications," in Proceedings of the 17th International
Conference on Parallel Processing, Bordeaux, 2011, pp. 39--51.
[8] http://www.prace-ri.eu/white-papers

List of Acronyms and Abbreviations

CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CUDA Compute Unified Device Architecture (NVIDIA)

DP Double Precision, usually 64-bit floating point numbers
DRAM Dynamic Random Access memory
EC European Community
EPCC Edinburg Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
EPSRC The Engineering and Physical Sciences Research Council (United

Kingdom)
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich

(Switzerland)

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 v

FP Floating-Point
FPGA Field Programmable Gate Array
FPU FZJ Forschungszentrum Jülich (Germany)
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)

GÉANT Collaboration between National Research and Education Networks to

build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GPGPU General Purpose GPU
GPU Graphic Processing Unit

HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing

IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)

ISC International Supercomputing Conference; European equivalent to the

US based SC0x conference. Held annually in Germany.
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LINPACK Software library for Linear Algebra

LRZ Leibniz Supercomputing Centre (Garching, Germany)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MoU Memorandum of Understanding.
MPI Message Passing Interface
NCF Netherlands Computing Facilities (Netherlands)

NDA Non-Disclosure Agreement. Typically signed between vendors and
customers working together on products prior to their general
availability or announcement.

OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 vi

PGAS Partitioned Global Address Space
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SPE Synergistic Processing Element (core of Cell processor)
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UPC Unified Parallel C

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 vii

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 1

Executive Summary

Work Package 12 (WP12) “Novel Programming Techniques” performs research and
development in four key areas for future multi-petascale and exascale systems, auto-tuned
runtimes (Task 12.1), scalable numerical algorithms (Task 12.2), development environment
and tools (Task 12.3) and file system optimization (Task 12.4).

Specifically, in this deliverable we are reporting the progress made on development
environments and tools. This task effort has been distributed among four different projects
each of which is focused on a different programming model or programming technique.

 Task-based programming model, OmpSs
 Simultaneous multithreading technique, SMT
 Programming standard for accelerators, OpenACC
 Partitioned global address space, PGAS

These projects address or suggest different tools specifically to optimize codes in each
particular programming model or technique. This deliverable provides a summary of the
results and findings achieved by the different projects. It is covering work from the start of
WP12 up to month eighteen. Along with the deliverables the researchers also produced
whitepapers for each of the projects. More detailed results and descriptions for each project
can be found in these whitepapers. They would be useful for readers that are interested in
more detailed information.

1 Introduction

The objective of this task is to develop technologies and tools that will help application
programmers to accelerate their codes on multicore processors and heterogeneous
architectures.

In the last years, we have been witnesses of a new paradigm shift in computer systems driven
by the emergence of multicore processors and heterogeneous architectures. This hardware
paradigm shift is disrupting any traditional software development tools which were basically
conceived to optimize traditional single processor architectures. As a consequence, there is
currently an urgent need to adapt software design to these new architectures. New parallel
programming languages, libraries, tools and compilers became necessary to design and
implement applications able to efficiently harness the computational potential of these
architectures.

The large variety of codes that are used today in different areas of science and industry, where
each of them is behaving differently, obviously indicates that there will not be a single
solution that optimizes all the codes at once. For this reason, we are exploring and
investigating the efficiency of current new proposed techniques and programming languages
to optimize these codes.

The research activities conducted are being focused on four different techniques to refactoring
codes. The first one is focused on refactoring codes to task-based parallel programming
languages such as OmpSs. The second one uses the technique of simultaneous multithreading
technique on current multicores processors. The third one is dedicated to the new accelerator
programming standard OpenACC and optimizes codes on heterogeneous architectures based

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 2

on GPUs. And the last one, it is focused on PGAS programming languages that exploits the
locality of codes.

A brief summary of the key research accomplishments on these four tasks are described
below.

 Task-based programming model, OmpSs. It is shown how the performance analysis
and visualization tools developed at Barcelona Supercomputing Center can help
programmers to optimize existent task-based applications. Results reported on the
Jacobi method solver show a substantial improvement of 80% in comparison with its
corresponding serial version on multicore processors.

 Simultaneous multithreading technique, SMT. This project is investigating the
optimization of codes using different simultaneous multithreading (SMT) modes
currently available on most multicore processors. Predicting which mode achieves the
best performance for a particular application is the ultimate goal. Results show a big
potential of this technique achieving up to 2X performance improvement on some
codes.

 Partitioned global address space, PGAS. This project is experimenting with the PGAS
parallel programming language X10. The HYDRO code and the TRITON software are
being ported to X10. Results shows that measured compute times show fair scalability.
However, there is still a need to develop efficient tools to better port these codes to
X10.

 Programming standard for accelerators, OpenACC. In this project, OpenACC’s loop
scheduling was varied to explore whether automatic compiler behaviour could be
improved through the use of manual scheduling clauses. Results showed a factor of
3.5X performance improvement over the traditional automatic scheduling.

The deliverable itself is quite concise in order to allow readers to easily identify the projects
that are of particular interest for them and to encourage further reading in the accompanying
white papers. The white papers can be found on the PRACE web [8].

In this work package we have not yet established a collaboration with WP11 dealing with
prototyping. It might be due to that our work was mostly focused on new programming
languages on existing computers rather than exploring these developments on new machines
as in WP11. On the other hand, we have established a successful collaboration with WP8
Community Code Scaling. There is a common agreement that it would be beneficial to
industry to show the last developments in the area of software such as the ones explored in
this work package on development environments and tools.

The rest of the deliverable is organized as follows. Chapter 2 provides a description of the
organization of Task 12.3. Brief discussions on the main research result achieved as well as
brief overviews of the projects are given in Chapter 3. And finally, Chapter 4 presents the
conclusions.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 3

2 Task Organization

Figure 1 shows the different projects and their main targeted programming language or
technique. These four projects are being carried out by four different partners located in four
different countries in Europe as can be seen in Table 1. BSC was the leader of this task and
was fully involved in organization the work and monitoring the progress of the different
partners over the duration of this task.

Project Partner Country PMs
OmpSs BSC Spain 22
SMT PSNC Poland 5
PGAs GENCI France 10
OpenACC ICHEC Ireland 5
Total 42

Table 1: Overview of efforts per partner

Furthermore, a wiki page has been used for all partners to facilitate the organization and
monitoring of the activities carried out in this task.

Figure 1: Overview of the target programming model for the different tasks

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 4

3 Project Overviews

An overview and some relevant results of the four projects that are being carried on task 12.3
are giving in the following four sections.

3.1 Analysis and optimization of hybrid linear equation solver using a task-
based parallel programming model

Supported by: C. Rosas, V. Subotic, J.C. Sancho (BSC)

Whitepaper: C. Rosas, V. Subotic, J.C. Sancho. “Analysis and optimization of hybrid linear equation solver
using a task-based parallel programming model”, PRACE technical white paper.

In the last years, the emergence of multicore processors led to an urgent need to adapt
software design. Applications must efficiently exploit the availability of parallelism that large
amount of cores are providing. In consequence, new parallel programming languages,
libraries, tools and compilers became necessary to design and implement applications able to
take advantage of the potential of parallelism. Dataflow programming models based on tasks
have been developed to harness the potential of multicore architecture, e.g. MPI/OpenMP and
MPI/OmpSs1. They combine distributed and shared memory concepts into hybrid codes.

Presently, the user/programmer is fully involved in the process of exploiting manually the
potential parallelism of the application. This process is highly inefficient and time consuming
and might prevent the programmer to port existent applications to a task-based parallel
programming model. There is no guarantee if the resulting performance improvement is
worth the programming effort.

In this project, it is shown how the performance analysis and visualization tools developed at
Barcelona Supercomputing Center can help programmers to optimize existent task-based
applications. To show the usability of these tools for the optimization process an easy
methodology has been designed and applied in a hybrid implementation of a linear equation
solver based on the Jacobi’s method. The methodology consists of three major steps: (i)
performance analysis; (ii) prediction; and (iii) implementation, which goes through a loop to
reach a more efficient implementation in each step. First, an analysis of the application must
be done in order to find possible performance issues and get some insights about the
implementation and its overall performance. Second, main proposal of performance
improvements are evaluated before modifying the original code. Finally, once the main issues
are reported and potential code optimizations are identified, e.g. defining an optimal
taskification2, users may proceed to implement and evaluate proposed solutions in a real
production machine.

The hybrid implementation of Jacobi’s method provided by EPCC combines MPI and
OpenMP programming models. Here, asynchronous communication and computation are
used to reduce undesirable synchronizations that might not scale as expected on the upcoming
exascale machines.

To analyze these applications, tools such as Extrae [4], Paraver [5], Dimemas [6], and
Tareador [7] were used, and the OmpSs programming model enabled some optimizations in
the existent code. Extrae is based on mpitrace tracing library to instrument parallel
executions. It intercepts calls to certain functions and records the events that mark these
occurrences. Paraver is a parallel program visualization and analysis tool. It provides a
qualitative perception of the application’s time-behaviour by visual inspection and a

1 OmpSs is an effort to extend OpenMP to support asynchronous parallelism and heterogeneity.
2 Divide the original code into smaller and different tasks, which can be executed in parallel

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 5

quantitative analysis of the run. Dimemas is an open-source trace file based simulator for
analysis of message-passing applications on a configurable parallel platform. It reconstructs
the time behaviour of a parallel application on a machine modelled by a set of performance
parameters. Tareador allows the programmer to start from a sequential application, and using
a set of simple constructs proposes some decomposition of the sequential code into tasks. It
dynamically instruments the annotated code and at run-time detects actual data-dependencies
among the proposed tasks. The OmpSs is based on the OpenMP programming model, with
some modifications to its execution and memory model in order to support asynchronous
parallelism and heterogeneous devices. OmpSs execution model is a thread-pool model
instead of the traditional OpenMP fork-join. The master thread starts the execution and other
threads cooperate executing the work it creates, therefore, there is no need for a parallel
region.

The test bed where the Jacobi implementations were running is called MinoTauro and is
hosted by BSC. It consists of 126 compute nodes and 2 login nodes. Every node has two
processors Intel Xeon E5649 6-Core at 2, 53 GHz running Linux operating system with 24
GB of RAM memory, 12MB of cache memory and 250 GB local disk storage.

Results from executing the original synchronous version of Jacobi annotated with OmpSs
directives are reported below. The number of cores was increased from 1 to 12. In particular,
Figure 2 shows the Paraver views for one thread and two threads. As you can see by doubling
the number of threads a reduction in total execution time is achieved. With 12 threads, it
greatly reduces total execution time in up to an 80%, in comparison with serial version
(shown in Figure 3). Extensive experimentation using MPI/OmpSs, and final comparisons
with original MPI/OpenMP implementations, are still in development and have to be reported
soon.

(a)

(b)

Figure 2: Traces for user functions in the implementation of the Jacobi method using OmpSs directives,
problem size equal to 50, and number of tasks inside each thread equal to 4x4x4. (a) 1 thread; and (b) 2

threads

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 6

Figure 3: Total execution time in seconds when increasing the number of thread. Implementation of the
Jacobi method using OmpSs directives, problem size equal to 50, and number of tasks inside each thread

equal to 4x4x4

3.2 Performance analysis of parallel applications on modern multithreaded
processor architectures

Supported by: M.Cytowski, M.Filocha, J.Katarzyński, M.Szpindler (PSNC)

Whitepaper: M.Cytowski, M.Filocha, J.Katarzyński, M.Szpindler. “Performance analysis of parallel
applications on modern multithreaded processor architectures”, PRACE technical white paper.

Introduction

Performance of today's general purpose processor architectures is driven by three main
components: clock speed, number of computational cores and number of double precision
operations per cycle. The combination of those three is widely used as a basic measure of
processors performance known as FLOPs – number of floating point operations per second.
Since further increasing clock speed and core count is technologically still very difficult,
hardware vendors continue to develop different ways to increasing single core applications
performance i.e. vector processing units, support for fused multiply and add operations and
hardware support for simultaneous processing of multiple threads, so-called multithreading.
One of the most appropriate ways to measure real performance of a given processor
architecture is to measure its efficiency when used for selected classes of scientific algorithms
and applications.

We decided to measure the performance of applications and synthetic benchmarks using
different simultaneous multithreading (SMT) modes. This specific processor architecture
feature is currently available in many petascale HPC systems. Both IBM Power7 processors
available in Power775 (IH) and IBM Power A2 processors available in Blue Gene/Q are built
upon 4-way simultaneous multithreaded cores. It should be also mentioned that
multithreading is predicted to be one of the leading features of future exascale systems
available by the end of the next decade [1].

This work was motivated by results presented in [2] which show that the performance gain
from SMT varies depending on the program execution and its execution model, the threading
mode used on the processor, and the resource utilization of the program. The gains from using
SMT modes with selected algorithms where measured using well known benchmarks: SPEC
CFP2006, NAS Parallel Benchmark Class B (OpenMP), and NAS Parallel Benchmark Class
C (MPI). One of the conclusions of the study presented in [2] was that throughput type

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 7

workloads are best suited to see gains from using higher SMT modes. On the other hand,
codes with high memory traffic will most likely not perform well when executed in SMT2 or
SMT4 mode.

Parallel applications can use the SMT modes executing with numbers of processes and/or
threads that exceed the physical number of cores available in the system. This may be
achieved by executing an application with 2x (SMT2) or 4x (SMT4) more MPI processes or
by executing an OpenMP/Pthreads code with 2x or 4x more threads or by mixing those two
MPI and multithread execution modes (e.g. in the case of hybrid MPI/OpenMP codes).

Our results show that the SMT mechanism available in modern processor chips can be
efficiently used to increase performance of applications and algorithms. On the other hand
there exists a class of algorithms and applications that does not benefit from multithreading.
In-depth investigation of the reasons of such divergence is planned as future work.

Benchmarks description and computational environment

We have measured the performance of selected scientific applications with different SMT
modes (GADGET2, WRF, CPMD, GROMACS, GPAW). The benchmarks where executed
on a Power750 system with two Power7 processors (each with 8 cores) operating at 3.5 GHz
with total of 128 GB RAM. We have also analyzed in detail the performance of one
application – GADGET2. We have measured the performance of different algorithms used in
GADGET2 code. Moreover we have decided to measure the performance of scientific
algorithms available in the BOTS benchmark [3]. The BOTS benchmark was executed on
computational nodes of the PRACE Tier-1 Boreasz system available at ICM, University of
Warsaw. Boreasz is IBM Power775 (IH) supercomputer whose computational nodes (called
octants) are composed of four Power7 processors (with 8 cores each) operating at 3.8 GHz
with total of 128 GB RAM. This gave us additional information on the type of algorithms
whose performance might benefit from SMT mechanism.

Results

All results of our work are described in the whitepaper „ Performance analysis of parallel
applications on modern multithreaded processor architectures” available on-line at
www.prace-ri.eu. Here we present the most interesting case of the GADGET-2 application.
Figure 4 shows the performance of the GADGET2 code measured against different SMT
modes. The test case of GADGET2 consisted of almost 28 million particles. As we can see
GADGET2 is an example of an application which benefits from using the SMT mechanism.
The best wall clock time results are always achieved for SMT4 mode regardless of number of
cores in use.

Figure 4: Performance of GADGET2

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 8

We decided to have a closer look at the performance of the GADGET2 code. This work was
motivated by the fact that GADGET2 benefits from using higher SMT modes but also by the
fact that it implements and uses algorithms of different computational nature: tree code, FFT,
particle computations.

 Single cpu Single node (2 cpus)

Algorithm SMT 1 SMT 2 SMT 4 SMT 1 SMT 2 SMT 4

Tree walk 51,64 33,57 25,23 26,73 18,49 13,07

SPH 81,28 56,26 42,79 42,2 31,4 22,42

Particle-Mesh 40,39 34,15 33,53 25,94 31,84 26,66

Table 2: Performance of codes on different SMT configurations [sec.]

Measurements obtained for different algorithms used in the GADGET2 code (presented in the
table above) demonstrate that the SMT mechanism is not always the key for better
performance. Especially the Particle-Mesh algorithm which extensively uses FFT
computations does not benefit from SMT 2 and SMT 4 at all. However, both Tree walk and
Smoothed Particle Hydrodynamics steps present very good performance when executed in
higher SMT modes.

Future work

The results we obtained motivated us to plan future work related to a performance study of
algorithms and applications on multithreaded and multicore architectures.

Firstly, we are very keen to know why the performance of the chosen algorithms can benefit
from using higher SMT modes while others do not. We believe that this problem might be
addressed by a detailed analysis of hardware performance counters. Currently we are
analyzing the hardware performance counters for the chosen applications from the BOTS
benchmark. We are looking for a correlation between the ability to efficiently use the SMT
mechanism and the performance profile of the given application. Such a result would lead us
to better understanding of the computational nature of different algorithms, but it could also
be used to propose an automatic heuristic algorithm (e.g. based on decision trees) to decide
which multithreaded code fragments should be using SMT2 or SMT4 mode.

Secondly, many modern HPC applications use both MPI and thread parallel model (e.g.
mixed MPI + OpenMP). Parallel processes executed on different computational nodes include
many thread parallel regions which are executed on the available computational cores. Very
often the number of threads in thread based parallelization is controlled by a single switch
(e.g. the OMP_NUM_THREADS environment variable). Since different algorithms and code
fragments may present different scalability on a given HPC platform then it would be
appropriate to choose the number of threads for execution to each parallel region individually.
Moreover such a decision could be made automatically only with a minor information
gathered from user (mainly the information about the preferred execution model of the code).

The tool that we are currently developing within PRACE-2IP project will address both above
mentioned challenges.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 9

3.3 Parallelization of the HYDRO code and TRITON software using X10, a
PGAS-type programming language

Supported by: Marc Tajchman (CEA-DEN)

Whitepaper: Marc Tajchman, “Parallelization Using a PGAS Language such as X10 in HYDRO and TRITON
Software”, PRACE technical white paper.

The HYDRO code and TRITON software are intended for 2D (Hydro) and 3D (Triton)
simulations in hydro-dynamics. They both operate on 2D or 3D meshes.

In several other contributions, implementations of Hydro have been presented and evaluated
using standard programming languages (C/C++/Fortran) and parallel paradigms (MPI,
OpenMP), as well as less-standard ones (CUDA, UPC, Chapel). The sequential version of
Hydro we used consisted of 1000+ lines of C code.

Triton is an in-house software platform developed at CEA-DEN, with a sequential
implementation in C, and parallel implementations using MPI or CUDA. Triton can be used
to test several fluid models and versions of the numerical flux computation. The sequential
version of Triton has 10000+ lines of C code.

X10 is a parallel programming language of PGAS type. The X10 execution model is different
from the MPI model (SPMD model). A code is launched on several processes (Places in
X10), but only the main process (Place 0) starts. The main process can then start activities
(execution threads) locally (i.e. on the same place) or remotely (on different places). So, a
multi-threads code (in the common sense) is defined by the developer as a single place that
launches several (local) activities. A multi-processes code (in the common sense) is simulated
by starting activities from place 0 to wake up other places. Any combination of these
examples can be implemented to model hybrid programming, in a very flexible way.
Activities are synchronous or asynchronous, and X10 defines a set of synchronization to
monitor these activities.

Figure 5: Hybrid programming: on each place, one activity is (remotely) launched and starts a set of local

sub-activities

The second main feature of X10 is the possibility to instantiate distributed arrays globally.
The developer first defines the global domain, specifies a distribution scheme (which part of
the array will be located on each place), and finally, reserves the coefficients. Read/write
access to coefficients is carried out in a standard way if the coefficient is located on the place
where access is requested. Access to a remotely located coefficient is done by launching a
remote activity. Vectorized access to several coefficients is possible if the requested
coefficients are located on the same place, and is recommended for efficiency reasons.

X10 is object-oriented, with a grammar similar to Java or C++, this characterization was used
particularly during development of X10 version of Triton.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 10

All developments were carried out starting from the sequential C versions. We made this
decision to be as little as possible influenced by parallel paradigms (e.g. MPI or OpenMP)
used in existing versions.

For Hydro, we used the particular properties of the numerical scheme: at each time-iteration,
the scheme is divided in 3 groups of independent 1D computations. Each group is separated
by a redistribution of the coefficients between the places. This implementation works well on
a small set of places (processes), but we do not expect this procedure to be scalable.

Figure 6: Strong scaling behavior with Hydro

For Triton, we implemented a sub-domains division, adding a halo of supplementary cells
around each sub-domain (this is a standard implementation for this kind of codes). The halo
allows to group transfers between places. Object-orientation of X10 is used to simplify the
scheme implementation. A working implementation has been written and checked against
sequential versions.

Figure 7: Strong and Weak scaling tests with Triton

The efficiency gap between 1 and 2-nodes runs suggests that our implementation needs to be
better optimized.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 11

We list here what we have learned during the development of X10 code versions:

 The easiest and fastest way to build a code using a PGAS language is to start from a
sequential version. The structure of the PGAS code versions is very similar to the
original sequential version, especially if we use “transparent” accesses to remote data.
But the last feature may lead to a very inefficient code, with many of hidden
movements of small packets of data between processors. See next item of this list.

 To obtain more performance, we must pack as much as possible the data exchanges
between two places (processes). In practice, the developer must maintain buffers for
data exchanges so that the code will not be as simple as we can expect.

 The X10 language (the same characteristics apply to Chapel, another PGAS language)
offers a very fine control on the parallel tasks and data distributions. The ability to
start threads in the same process or in a remote process facilitates the conception of
the control flow during the execution. Other languages, Co-Array Fortran, UPC, or
XcalableMP are less versatile, but also easier to apprehend for “PGAS programming
style” beginners.

 A very interesting aspect of PGAS languages is that there is much less possibilities of
“dead locks”. The PGAS runtime will take in charge the “details” of organizing the
communications.

 Still, the developer has to verify that there are no data races, e.g. by correctly using
synchronization mechanisms provided by the language. In the codes we consider here,
control flow is simple; we encounter no difficulties with data races. This may be more
challenging for more complex codes.

The measured compute times shows fair scalability behaviour (on the limited sets of nodes)
but remains far behind MPI/OpenMP versions. There are probably multiple reasons for that,
but, at least, our X10 source needs to be optimized and compiled properly (without assertions
and checks). Also, future versions of the X10 compiler must and will probably generate more
efficient intermediate C++ code.

The main advantages of PGAS languages for developers are the ease to implement task and
data parallelism paradigms, the flexibility of the remote data accesses and computations. The
main drawback is the performances of the binaries generated by current PGAS tools. It
remains us to check the scalability of our developments on larger sets of nodes.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 12

3.4 Investigating Performance Benefits from OpenACC Kernel Directives

Supported by: Gilles Civarioa, Benjamin Eagan (ICHEC)

Whitepaper: Gilles Civarioa, Benjamin Eagan. “Investigating Performance Benefits from OpenACC Kernel
Directives”, PRACE technical white paper.

OpenACC is a standardized programming language extension for C and Fortran with support
from PGI, CAPS, NVIDIA, and Cray. This is used to program heterogeneous systems by
placing directives to indicate which regions to offload to the acceleration device. Code is then
generated automatically for these regions. In this report, OpenACC’s loop scheduling was
varied to explore if automatic compiler behaviour could be improved through the use of
manual scheduling clauses.

Manual scheduling was achieved by providing gang and vector clauses to each loop directive,
along with the corresponding size for each value. The gang value determines the course-
grained parallelism for each loop, similar to the thread blocks in CUDA terminology, and the
vector clause dictates the fine-grained parallelism, specifying the number of threads with
access to shared memory within a gang.

Experiments were carried out using a naïve matrix-matrix multiplication code, as well as a
Classical Gram-Schmidt orthonormalisation. The PGI and CAPS implementations of
OpenACC were both explored for these examples, with Intel’s compiler handling the CPU
regions for the CAPS compilations. Experiments were run using a 2.8 Xeon GHz X5560 and
an NVIDIA Tesla M2090. Further testing was carried out using an Intel Xeon 3.30 GHz E5-
2643 with an NVIDIA K20 GPU.

On the M2090 test platform, a systematic sweep of gang and vector values was performed to
identify the performance properties of various scheduling combinations for the matrix-matrix
multiply. It was seen that the use of manual scheduling improved the runtime over the
automatic scheduling by a factor of 1.7 and 3.1 for the PGI and CAPS compilers respectively.
The results from these tests can be seen in Figure 8 and Figure 9.

The matrix-matrix multiply was then run on an Intel Xeon 3.30 GHz E5-2643 with an
NVIDIA K20 GPU. It was seen that the ideal gang and vector values from the NVIDIA
M2090 were not the ideal values for the K20. The optimal runtime was achieved by doubling
the vector size to match the architecture.

Finally, experiments were carried out using the PGI and CAPS OpenACC implementations to
parallelise a Classical Gram-Schmidt orthonormalisation code. This program involved
multiple loops of varying complexities instead of a single loop as seen with the matrix-matrix
multiply. In this case, the PGI implementation was seen to have the ideal runtime with
automatic scheduling. The CAPS implementation however benefited from manual scheduling,
with a factor of 3.5 performance improvement over the automatic scheduling. The results
from these tests can be seen in Figure 10 and Figure 11.

Overall it was seen that OpenACC’s loop scheduling clauses had a dramatic impact on
performance. In the matrix-matrix multiplication, the addition of these tuning clauses resulted
in a significant improvement for both compilers. In the Gram-Schmidt orthonormalisation, the
automatic behaviour was ideal for PGI, however CAPS benefited from manual tuning.

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 13

Figure 8: Runtimes for a matrix-matrix
multiplication with various gang and vector sizes
compiled using PGI and run on an NVIDIA M2090
GPU

Figure 9: Runtimes for a matrix-matrix
multiplication with various gang and vector sizes
compiled using CAPS run on an NVIDIA M2090
GPU

Figure 10: Runtimes for a classic Gram-Schmidt
orothonormalisation with various gang and vector
sizes compiled using PGI run on an NVIDIA
M2090 GPU GPU

Figure 11: Runtimes for a classic Gram-Schmidt
orothonormalisation with various gang and vector
sizes compiled using, CAPS run on an NVIDIA
M2090 GPU

D12.3 Development Environment and Tools

PRACE-2IP - RI-283493 20.02.2013 14

4 Summary and Conclusions

The main objective of this task is to help programmers refactoring existing codes to new
parallel programming languages or techniques in order to efficiently harness current
multiprocessor and heterogeneous architectures. This is a research activity exploring
techniques and suggesting tools to efficiently develop, port, and debug existing codes.

Four different individual projects carried out work on this task. These four projects are
focused on a different programming language or technique.

 Task-based programming model, OmpSs
 Simultaneous multithreading technique, SMT
 Programming standard for accelerators, OpenACC
 Partitioned global address space, PGAS

A variety of state-of-the-art parallel machines has been used on the experimental evaluation
such as multicore processors IBM Power7 and Intel Xeon, and NVIDIA Tesla GPUS.
Moreover, the result of this task achieved optimized versions of a variety of codes such the
Jacobi method, Classical Gram-Schmidt orthonormalisation code, matrix-multiplication code,
HYDRO, TRITON, GADGET2, WRF, CPMD, GROMACS, and GPAW.

The following summarize the experiences gained from the different projects.

In order to achieve high performance on task-based programming models it is critical to select
an optimal taskification of the code that maximizes the parallelism. Using new tools
specifically devoted for this purpose is largely helping programmers to optimize their codes.
Results showed 80% performance improvement for the Jacobi method using the optimal
taskification.

For the simultaneous multithreading technique the complexity lays on finding the best SMT
mode for a particular code. The key solution proposed in this work is to develop a tool that
determines the optimal SMT mode based on a detailed analysis of hardware performance
counters. Results show a big potential of these technique achieving up to 2X performance
improvement on some codes.

Experiments with the PGAS parallel programming language X10 on the HYDRO code and
TRITON software shows that tools are needed to debug data race conditions. Moreover, tools
to manage accesses to remote data are needed in order to prevent inefficient hidden
movements of small packets of data between processors.

And finally, when using OpenACC a key issue to help programmers optimize their code is to
assist selecting an optimal loop scheduling. Results showed a factor of 3.5X performance
improvement when managing manually the loop scheduling over the traditional automatic
scheduling.

