

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2011-2.3.5 – Second Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-2IP

PRACE Second Implementation Project

Grant Agreement Number: RI-283493

D12.2

Exploration of Scalable Numerical Algorithms

Final

Version: 1.0
Author(s): Cevdet Aykanat, Ata Turk (Bilkent University)
Date: 27.08.2012

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-283493
Project Title: PRACE Second Implementation Project
Project Web Site:http://www.prace-project.eu
Deliverable ID: <D12.2>
Deliverable Nature: < Report>
Deliverable Level:
PU *

Contractual Date of Delivery:
31 / August / 2012
Actual Date of Delivery:
31 / August / 2012

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Exploration of Scalable Numerical Algorithms
ID:D12.2
Version:<1.0> Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D12.2.docx

Authorship

Written by: Cevdet Aykanat, Ata Turk (Bilkent
University), Ata Turk

Contributors:
Reviewed by: Micael Oliveira, Coimbra; Dietmar Erwin,

JUELICH
Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 25/07/2012 Draft First draft
0.2 24/08/2012 Draft Second Draft
1.0 27/08/2012 Final version

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 ii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n°RI-283493. It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2012 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-283493 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 iii

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. i

Document Keywords ... ii

Table of Contents ... iii

List of Figures ... iv

List of Tables ... iv

References and Applicable Documents ... v

List of Acronyms and Abbreviations ... vii

Executive Summary .. 1

1 Introduction ... 2

2 Task Organization ... 3

3 Task 12.2 Key Research Topics and Project Overviews .. 5
3.1 Reducing Synchronization Overhead in Iterative Solvers ... 5

3.2 Enhancing Parallel Hybrid Sparse Solvers for Scalability .. 5

3.3 Topology-Aware Mapping .. 6

3.4 Enabling Hybridization in Heterogeneous Architectures .. 6

3.5 Application Scalability .. 7

4 Detailed Project Descriptions ... 8
4.1 Asynchronous Algorithms for Large Sparse Linear Systems .. 8

4.2 Designing and Implementing a Single-Phase Row-Column-Parallel Sparse Matrix Vector
Multiplication Algorithm based on 2D Matrix Partitioning ... 9

4.3 Implementation and Performance Evaluation of the CA-CG Algorithm on Massively Parallel
HPC-Clusters .. 11

4.4 Permuting Sparse Square Matrices into Block Diagonal Form with Overlap for Parallel Hybrid
Sparse Solvers ... 12

4.5 A Parallel Sparse Hybrid Solver and Its Relation to Graphs and Hypergraphs 14

4.6 Topology-Aware Subdomain-to-Processor Assignment ... 16

4.7 Multicore Parallelization of Block Cyclic Reduction Algorithm ... 17

4.8 Enabling FFTE library and FFTW3 Threading in the Quantum Espresso 19

4.9 A Hybrid Hermitian General Eigenvalue Solver .. 22

4.10 A Generic Library for Stencil Computations.. 23

4.11 Design and Implementation of New Hybrid Algorithm and Solver for Large Sparse Linear
Systems .. 25

4.12 Scalable and Improved SuperLU on GPU for Heterogeneous Systems.. 27

4.13 Optimization of SHAKE and RATTLE Algorithms .. 28

4.14 Optimization of FHP Algorithms ... 30

4.15 FETI Coarse Problem Parallelization Strategies and Their Comparison 32

4.16 Computer Modeling and Simulations In Strongly Heterogeneous Nonlinear Media 34

4.17 Cfd-Investigations For Assessing Aneurysm Rupture Risk For Individual Patient Using Ct
Visual Diagnostics .. 36

5 Summary and Conclusions ... 38

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 iv

List of Figures

Figure 1: Projects in Task 12.2 .. 3
Figure 2: An example project wiki page. .. 4
Figure 3: Thematic overview of projects in Task 12.2. ... 4
Figure 4: BDO form of a matrix and its oVS representation... 13
Figure 5: Speedup curves for the solution of four different linear systems on a 64-processor system. 15
Figure 6: Speedup curves of the two parallel algorithms on a single SMP node of Vargas. 19
Figure 7: Performance of QE FFTE extension compared with the QE FFTW3 implementation: (a)
Execution times of QE FFTW3/FFTE codes for different number of MPI processes; (b) Speedup in the
execution time of QE FFTW3/FFTE codes as functions of a number of MPI processes; (c) QE
FFTW3/FFTE execution times as functions of 3D FFT mesh size. .. 21
Figure 8: Performance of the pure MPI, implicit and explicit QE FFTW3 hybrid extensions, and QE
FFTW hybrid code for various numbers of CPU cores used: (a)Execution times when pure MPI and 2
threads per MPI process hybrid versions are used; (b) Execution times when 4 and 8 threads per MPI
process hybrid versions are used. .. 21
Figure 9: Time to solution of double complex general eigensolver with matrix size 8000. On the left
the whole eigenspace is computed, on the right only 10% of the eigenvectors. 22
Figure 10: Time to solution for different number of GPUs of double complex general eigensolver with
matrix size 15000 and whole eigenspace. ... 23
Figure 11: Comparison of GSCL and C99 code on (a) 2D and (b) 3D grids. The fused version
(GSL_do_reduce fussed) is algorithmically equivalent to the C version, while the other
(GSL_do+all+do_reduce) does an additional scan of the memmory since the loops are not fused. 24
Figure 12: Running GSCL code on a Cray XT5 machine. Each node has 24 cores divided in two
sockets. (a) One MPI process per node is used and then a varying number of OpenMP threads for
process are used. (b) The node is half filled with MPI processes and none or 2 OpenMP threads are
utilized. .. 25
Figure 13: Speed up for matrix RAND_40K_3. .. 26
Figure 14: Average wall clock time as a function of various sparsity levels for randomly located sparse
matrices. .. 26
Figure 15: Speed up for matrix RAND_40K_3. ... 28
Figure 16: Average wall clock time as a function of various sparsity levels for randomly located sparse
matrices. .. 28
Figure 17: CUDA vs OpenCL kernels for DL_POLY constraints shake component. 29
Figure 18: CUDA vs OpenCL I/O and communication for DL_POLY constraints shake component. 30
Figure 19: FHP III collision rules .. 31
Figure 20: Car engine block – total displacement distribution .. 34
Figure 21: Sensitivity of the solution strategy (2) to Nred ... 34
Figure 22: Inserted RF Probe and the corresponding FEM mesh ... 35

List of Tables
Table 1: Overview of efforts per partner ... 3
Table 2: HECToR MPI results summary .. 9
Table 3: HECToR SHMEM result summary .. 9
Table 4: Speedup values obtained on a 16-processor system. ... 10
Table 5: Performance comparison of the baseline and oGPVS algorithms in terms of total overlap size
and load imbalance for different number of processors (K). ... 13
Table 6: Performance improvement of HP over GP in terms of solution times on a 64-processor
system averaged over different problem categories. ... 15
Table 7: Average task degrees for the task interaction graphs (RN = row-net, CN = column-net) 16
Table 8: Maximum hops for each topology .. 17
Table 9: Percentage improvement (%) for tested matrices .. 17

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 v

Table 10: Wall clock time for randomly located sparse matrices as sparsity level decreases with 64
core (8x8) .. 27
Table 11: Wall clock time using SuperLU_MT for randomly located sparse matrices as sparsity level
decreases with 16 cores ... 28
Table 12: Execution times for the RATTLE algorithm integrated with the DL_POLY code (in
seconds). .. 30
Table 13: Computational, cost and power efficiency of FHP implementations on different processing
unit types. .. 32
Table 14: Results of the best strategy (2) for the problem size 98,214,55 and the number of cores
(subdomains) 5,012 ... 34
Table 15: Comparison on two meshes .. 35
Table 16: The number of the nodes and the different type of elements use in the discretizations. 36
Table 17: CPU time for solving the Navier-Stokes equation on the IBM Blue Gene/P computer in
Sofia .. 37

References and Applicable Documents
[1] U. V. Catalyurek and C. Aykanat, “Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-
Matrix Vector Multiplication”, IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp. 673-
693, 1999
[2] T. A. Davis, “University of Florida sparse matrix collection”, NA Digest, 1997.
[3] U. V. Çatalyürek, C. Aykanat, and B. Uçar, “On two-dimensional sparse matrix partitioning: Models,
methods, and a recipe”, SIAM Journal on Scientific Computing, Vol. 32, pp. 656--683, 2010.
[4] L. N. Trefethen and D. Bau, Numerical Linear Algebra, SIAM, 1997.
[5] M. Benzi, “Preconditioning Techniques for Large Linear Systems: A Survey”, Journal of Computational
Physics, 182 (2002), pp. 418 – 477.
[6] R. Barret, J. Demmel, J. Dongarra, “Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods”, SIAM, 1994.
[7] S. Balay, J. Brown, K. Buschelman, “PETSc Users Manual”, ANL-95/11 – Revision 3.3, 2012.
[8] M. A. Heroux, R. A. Bartlett, V. E. Howle, “An Overview of the Trilinos Project”, ACM Transaction on
Mathematical Software, vol. 31, pp. 397-423, 2005.
[9] TOP500 PROJECT, www.top500.org
[10] M. Hoemmen, “Communication Avoiding Krylov Subspace Methods”, Ph.D. thesis, 2010.
[11] J. Demmel, M. Hoemmen, M. Mohiyuddin and A. Yelick, “Avoiding Communication In Computing
Krylov Subspace”, Technical Report No. UCB/EECS-2007-123, University of California, Berkeley, 2007.
[12] IBM PLX, www.hpc.cineca.it/hardware/ibm-plx
[13] IBM BG/Q FERMI, www.hpc.cineca.it/hardware/ibm-bgq-fermi
[14] G. A. A. Kahou, E. Kamgnia, and B. Philippe, “Parallel Implementation of an Explicit Formulation of the
Multiplicative Schwarz Preconditioner”, in CdROM Proceedings of IMACS05, 2005.
[15] M. Naumov, M. Manguoglu, and A. H. Sameh, “A Tearing-Based Hybrid Parallel Sparse Linear System
Solver”, Journal of Computational and Applied Mathematics, 234 (2010), pp. 3025 – 3038.
[16] G. A. A. Kahou, E. Kamgnia, and B. Philippe, “An Explicit Formulation Of The Multiplicative Schwarz
Preconditioner”, Applied Numerical Mathematics, 57 (2007), pp. 1197 – 1213.
[17] G. A. A. Kahou, L. Grigori, and M. Sosonkına, “A Partitioning Algorithm for Block-Diagonal Matrices
With Overlap”, Parallel Computing, 34 (2008), pp. 332 – 344.
[18] M. Manguoglu, “A Domain-Decomposing Parallel Sparse Linear System Solver”, Journal of
Computational and Applied Mathematics, 236(3), pp.319-325, 2011.
[19] T. A. Davis, “University Of Florida Sparse Matrix Collection,” NA Digest, 1997.
[20] A. Bhatele, “Automating Topology Aware Mapping for Supercomputers”, PhD Thesis,
[21] The TopoManager API: http://charm.cs.uiuc.edu/research/topology
[22] R.W. Hockney, “A Fast Direct Solution Of Poisson’s Equation Using Fourier Analysis”, Journal of Asso.
Comput. Mach, v 8, 1965.
[23] B.L. Buzbee, G.H Golub, C.W. Nielson, “On Direct Methods for Solving Poisson’s Equation”, SIAM J.
Numerical Analysis, v 7, 1970.
[24] P. Giannozzi, S. Baroni, N. Bonini, et al., “Quantum Espresso: A Modular and Open-Source Software
Project for Quantum Simulations Of Materials”, J. Phys.: Condens. Matter 21, 2009
[25] FFTE: A Fast Fourier Transform Package official web site: http://www.ffte.jp/

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 vi

[26] M. Frigo, S. G. Johnson, "The Design and Implementation of FFTW3", Proceedings of the IEEE 93
(2005) 216
[27] A. Sunderland, S. Pickles, M. Nikolic, et al., “An Analysis of FFT Performance in PRACE Application
Codes”, PRACE-1IP T7.5 Whitepaper (2012)
[28] Developer’s Manual for Quantum ESPRESSO (v. 5.0) http://www.quantum-espresso.org/wp-
content/uploads/Doc/developer_man.pdf
[29] QE-SCL, Quantum Espresso extended with FFTE library and FFTW3 threading support
http://www.scl.rs/QE-SCL/
[30] Quantum Espresso official web site http://www.quantum-espresso.org/
[31] NIIFI SC, http://www.niif.hu/en/niif_institute/supercomputing_service/
[32] F. Spiga, Implementing and Testing Mixed Parallel Programming Model into Quantum ESPRESSO,
Science and Supercomputing in Europe – research highlights 2009, ISBN 978-88-86037-23-5, pp. 6
[33] P. Kent, “Computational Challenges Of Large-Scale, Long-Time, First Principles Molecular Dynamics”,
Journal of Physics: Conference Series, vol. 125, no. 1, p. 012058, 2008. [Online]. Available:
http://stacks.iop.org/1742-6596/125/i=1/a=012058
[34] T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer, B. Lang, H. Lederer, and P.
R. Willems, “Parallel Solution Of Partial Symmetric Eigenvalue Problems From Electronic Structure
Calculations”, Parallel Comput., vol. 37, no. 12, pp. 783–794, Dec. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.parco.2011.05.002
[35] A. Haidar, H. Ltaief, and J. Dongarra, “Parallel Reduction To Condensed Forms For Symmetric
Eigenvalue Problems Using Aggregated Fine-Grained And Memory-Aware Kernels”, in SC11: International
Conference for High Performance Computing, Networking, Storage and Analysis, Seattle, WA, USA, November
12-18 2011.
[36] http://user.cscs.ch/hardware/castor_ibm_idataplex/index.html
[37] X. S. Li, J. W. Demmel, J. R. Gilbert, L. Grigori, M. Shao, and I. Yamazaki, “SuperLU Users' Guide”,
Tech. Report UCB, Computer Science Division, University of California, Berkeley, CA, 1999, update: 2011.
[38] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, “A Fully Asynchronous Multifrontal Solver
Using Distributed Dynamic Scheduling”, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 15–41.
[39] O. Schenk and K. Gartner, “Solving Unsymmetric Sparse Systems of Linear Equations with Pardiso”,
Future Generation Computer Systems, 20 (2004), pp. 475-487.
[40] O. Schenk and K. Gartner, “On Fast Factorization Pivoting Methods For Sparse Symmetric Indefinite
Systems”, Electronic Transactions on Numerical Analysis, 23 (2006), pp. 158 – 179.
[41] A. Duran and B.D. Saunders, Gen_SuperLU package (version 1.0, August 2002).
[42] A. Duran, B. D. Saunders and Z. Wan, “Hybrid Algorithms For Rank Of Sparse Matrices”, Proceedings
of the SIAM International Conference on Applied Linear Algebra (SIAM-LA), VA, July 15-19, 2003.
[43] L. Li, L. Li and Y. Guangwen, “A Highly Efficient Gpu-Cpu Hybrid Parallel Implementation Of Sparse
Lu Factorization”, Chinese J. of Electronics, 21:7-12, 2012.
[44] J.W. Demmel, J.R. Gilbert, and X.S. Li, “An Asynchronous Parallel Supernodal Algorithm For Sparse
Gaussian Elimination”, SIAM J. Matrix Analysis and Applications, 20(4):915-952, 1999.
[45] X.S. Li, “Evaluation Of Sparse Lu Factorization And Triangular Solution On Multicore Platforms”,
VECPAR 2008, Springer.
[46] X. S. Li and J. W. Demmel, “Superlu-Dist: A Scalable Distributed-Memory Sparse Direct Solver For
Unsymmetric Linear Systems”, ACM Trans. Math. Softw., 29 (2003), pp. 110–140.
[47] L. Grigori, J.W. Demmel, and X.S. Li. “Parallel Symbolic Factorization For Sparse Lu With Static
Pivoting”, SIAM J. Scientific Computing, 29(3):1289-1314, 2007.
[48] M.S. Celebi, A. Duran, M.Tuncel, B. Akaydin, “Scalability of SuperLU Solvers for Large Scale Complex
Reservoir Simulations”, SPE and SIAM Conference on Mathematical Methods in Fluid Dynamics and
Simulation of Giant Oil and Gas Reservoirs, Istanbul, Turkey, September 3-5, 2012.
[49] I.S. Duff and J. Koster, “The Design and Use of Algorithms for Permuting Large Entries to the Diagonal
of Sparse Matrices”, SIAM J. Matrix Anal. Appl. 20 (4) (1999) 889–901.
[50] G. Karypis, K. Schloegel, and V. Kumar, “ParMeTiS, version 3.1”, http://www-
users.cs.umn.edu/~karypis/metis/parmetis/.
[51] Karypis and V. Kumar, “MeTiS, version 4.0”, http://www-users.cs.umn.edu/~karypis/metis/.
[52] http://www.uybhm.itu.edu.tr/eng/inner/duyurular.html#karadeniz
[53] nPartition Administrator's Guide, HP part number: 5991-1247B, 1st Edition, February 2007, Hewlett-
Packard Development Company.
[54] DL_POLY Molecular Simulation Package home page:
http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.aspx
[55] The DL_POLY_4 User Manual:
ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DOCUMENTS/USRMAN4.01.pdf

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 vii

[56] The DL_POLY test data: ftp://ftp.dl.ac.uk/ccp5/DL_POLY/DL_POLY_4.0/DATA/
[57] GeForce 400 series: http://en.wikipedia.org/wiki/GeForce_400_Series
[58] AMD Radeon HD 6900: http://www.amd.com/us/products/notebook/graphics/amd-radeon-6000m/amd-
radeon-6900m/Pages/amd-radeon-6900m.aspx
[59] PRACE-1IP Public deliverable - HPC Programming Techniques: http://www.prace-
ri.eu/IMG/pdf/d7.5_1ip.pdf
[60] U. Frish, et al., “Lattice-Gas Automata for the Navier-Stokes Equation”, Phys. Rev. Lett. Vol 56: 1505-
1508 (1986).
[61] O. Bandman, “Using Cellular Automata for Porous Media Simulation”, The Journal of Supercomputing
57(2): 121-131 (2011)
[62] Y. Arai, et al., “A Latice Gas Cellular Automata Simulator on the Cell Broadband Engine”, Parallel
Computing: Architectures, Algorithms and Applications Vol. 38: 459-466 (2007).
[63] N. Kosturski, S. Margenov, and Y. Vutov, “Balancing the Communications and Computations in Parallel
FEM Simulations on Unstructured Grids”, Parallel Processing and Applied Mathematics, LNCS, vol. 7204, pp
211-220, 2012

List of Acronyms and Abbreviations

AMD Advanced Micro Devices
AMG Algebraic MultiGrid
API Application Programming Interface
BDO Block-Diagonal with Overlap
BiCGStab Bi-Conjugate Gradient Stabilized
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CEA Commissariat à l’EnergieAtomique (represented in PRACE by GENCI,

France)
CFD Computational Fluid Dynamics
CINECA ConsorzioInteruniversitario, the largest Italian computing centre (Italy)
CN Column-Net
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CSR Compressed Sparse Row (for a sparse matrix)
CT Computer Tomography
CUDA Compute Unified Device Architecture (NVIDIA)
DEISA Distributed European Infrastructure for Supercomputing

Applications.EU project by leading national HPC centres.
DMA Direct Memory Access
DNA DeoxyriboNucleic Acid
DRAM Dynamic Random Access memory
DSA Digital Subtraction Angiography
EC European Community
EESI European Exascale Software Initiative
EPCC Edinburg Parallel Computing Centre (represented in PRACE by

EPSRC, United Kingdom)
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich

(Switzerland)
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
FEM Finite Element Method

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 viii

FETI Finite Element Tearing and Interconnect
FFT Fast Fourier Transform
FP Floating-Point
FPU Floating-Point Unit
FZJ Forschungszentrum Jülich (Germany)
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GÉANT Collaboration between National Research and Education Networks to

build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de CalculIntensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GigE Gigabit Ethernet, also GbE
GLSL OpenGL Shading Language
GNU GNU’s not Unix, a free OS
GP Graph Partitioning
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GS Gram-Schmidt
GWU George Washington University, Washington, D.C. (USA)
HDD Hard Disk Drive
HE High Efficiency
HECToR High-End Computing Terascale Resource
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HP Hypergraph Partitioning
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing
HPCC HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/
HPCS High Productivity Computing System (a DARPA program)
HPL High Performance LINPACK
IBM Formerly known as International Business Machines
IDRIS Institut du Développementet des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
IPB Institute of Physics Belgrade
IMB Intel MPI Benchmark
I/O Input/Output
ITU-UHeM Istanbul Technical University – Center of High Performance Computing
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LLNL Laurence Livermore National Laboratory, Livermore, California (USA)
LQCD Lattice QCD

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 ix

LRZ Leibniz Supercomputing Centre (Garching, Germany)
LS Local Store memory (in a Cell processor)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MDT Meta Data Target
MFC Memory Flow Controller
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MGS Modified Gram-Schmidt
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MoU Memorandum of Understanding
Mups Million lattice site updates per second
MPI Message Passing Interface
NCSA The National Centre for Supercomputing Applications (Sofia, Bulgaria)
oGPVS ordered Graph Partitioning by Vertex Separators
OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing
OS Operating System
OSS Object Storage Server
OST Object Storage Target
oVS ordered Vertex Seperator
PSNC Poznan Supercomputing and Networking Center
PGI Portland Group, Inc.
pNFS Parallel Network File System
POSIX Portable OS Interface for Unix
PPE PowerPC Processor Element (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
QE Quantum Espresso
QR QR method or algorithm: a procedure in linear algebra to compute the

eigenvalues and eigenvectors of a matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RN Row-Net
RNG Random Number Generator
RPM Revolution per Minute
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)
SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 x

SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric Multi Processing
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SpMxV Sparse Matrix Vector multiplication
SPU Synergistic Processor Unit (in each SPE)
SSD Solid State Disk or Drive
SSE Streaming SIMD Extensions
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UFL University of Florida
UNICORE Uniform Interface to Computing Resources. Grid software for seamless

access to distributed resources.

VSB Technical University of Ostrava

WCSS Wrocławskie Centrum Sieciowo-Superkomputerowe (Wrocław Centre
for Networking and Supercomputing)

WP Work Package

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 xi

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 1

Executive Summary

Work Package 12 (WP12) “Novel Programming Techniques” performs research and
development in four key areas for future multi-petascale and exascale systems. The work in
WP12 focuses on auto tuned and automatic techniques to be applied in parallel programming
model runtimes (Task 12.1: “Auto-tuned runtime Environments”), performance tools (Task
12.3: “Development environments and tools”) and file systems (Task 12.4: “File system
optimization”). Furthermore, as it is widely accepted that the key to exploiting future high-
end systems will be based on research on new numerical algorithms as well as advancing the
parallel processing technology used for higher scalability in numerical applications;
consequently WP12 also focuses on research studies exposing more scalability for numerical
algorithms (Task 12.2: “Scalable numerical algorithms”).

The key research topics investigated in Task 12.2 are:

 Reducing Synchronization Overhead in Iterative Solvers
 Enhancing Parallel Hybrid Sparse Solvers for Scalability
 Topology-Awareness
 Enabling Hybridization in Heterogeneous Architectures
 Application Scalability

Task 12.2 evaluated different algorithms, methods, and approaches and demonstrated the
scalability of the algorithms using simple ad-hoc programs. In total 17 complementary areas
organized as individual projects were covered. This document is a summary of the projects’
results. It contains high-level summaries of all projects as well as brief description of covered
topics. In most of the summaries, links to PRACE white papers or scientific publications are
given for those readers that are interested in more detailed information.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 2

1 Introduction

It is widely accepted that new numerical algorithms will be key to exploit future high-end
systems and the focus of this deliverable is on exploring new algorithms and methods for
enhancing the scalability of parallel numerical algorithms to meet the demands of petascale
computing. The aim of Task 12.2 “Exploration of Scalable Numerical Algorithms” is to
address the scalability of parallel numerical algorithms by focusing research on the following
key topics:

 Reducing Synchronization Overhead in Iterative Solvers: Exploring new numerical
algorithms and parallel computing methodologies to reduce the synchronization
overhead in parallel iterative solvers,

 Enhancing Parallel Hybrid Sparse Solvers for Scalability: Exploiting algorithms and
solvers that contain both direct and iterative components to reduce the global
synchronization overhead by efficient and effective preconditioning that decrease the
number of iterations while increasing the amount of computation per iteration,

 Topology-Awareness: Achieving topology-awareness in task-to-processor mapping to
minimize the adverse effect of large processor-to-processor distances on
communication overhead in large-scale parallel systems,

 Enabling Hybridization in Heterogeneous Architectures: Enabling hybridization of
numerical operations and kernels via combining MPI programming paradigm with
OpenMP-, threading-, CUDA- and OpenCL-based approaches,

 Application Scalability: Facilitating the usage and the embedding of state-of-the-art
parallel processing technology to some target applications for enhancing scalability.

The focus of this deliverable is on the algorithms and methods but not on their integration on
specific production applications. However, along with simple ad-hoc programs demonstrating
the scalability of the algorithms, whenever possible, efforts towards initial embeddings of the
proposed schemes to existing and widely used scientific applications are performed as well.

The deliverable itself is quite concise in order to allow people to easily identify the projects
that are of particular interest for them and to encourage further reading in the accompanying
white papers or the referred publications.

The rest of the deliverable is organized as follows. Chapter 2 provides a description of the
organization of Task 12.2. Brief discussions on the main research topics as well as brief
overviews of the Task 12.2 projects categorized according to these key topics are given in
Chapter 3. Chapter 4 provides detailed descriptions of the Task 12.2 projects along with
obtained results and discussions. Chapter 5 presents the conclusions.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 3

2 Task Organization

Table 1 displays a rough per partner PM distribution of Task 12.2. Around 130 PMs were
allocated for this work and experts from nine countries are participating in Task 12.2. In total
17 projects have been completed. Most of the projects have been carried out with 4-7 PMs.

Country Partner PMs
France IDRIS 6.0
UK EPCC 7.0
Switzerland ETHZ 14.0
Poland WCSS 7.0
Turkey UHeM-ITU 12.0

Bilkent 36.0
Bulgaria NCSA 12.0
Czech Republic VSB 25.0
Serbia IPB 4.0
Italy CINECA 6.0
 Sum 129

Table 1: Overview of efforts per partner

List of projects in Task 12.2 and their distribution among the 3rd parties is given in Figure 1.

Figure 1: Projects in Task 12.2

In order to structure work in Task 12.2, firstly, all projects defined the extent and purpose of
their works in short statement of works (SOWs). Following these SOWs, to allow easy
overview of all projects and to ensure that progress of all projects could be easily monitored,
dedicated wiki pages have been set up and augmented with regular status reports. Figure 2
shows an example screen shot of one of the project wiki pages.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 4

Figure 2: An example project wiki page.

As stated before, Task 12.2 covers topics such as topology-awareness, reducing synchrony,
and new numerical algorithms. Figure 3 gives a schematic overview of the projects in Task
12.2; it also illustrates how the covered major topics are distributed across projects.

Figure 3: Thematic overview of projects in Task 12.2.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 5

3 Task 12.2 Key Research Topics and Project Overviews

In this section, we present an overview of the 17 projects in Task 12.2 categorized according
to the above-mentioned key research topics. For each topic, we also provide a brief
introduction stating the importance of each topic.

3.1 Reducing Synchronization Overhead in Iterative Solvers

Iterative algorithms have become the de-facto approach for the solution of sparse linear
systems of equations on large-scale parallel systems due to their amenability to
parallelization. Iterative algorithms have been successfully used for the solution of such linear
systems on small-to-medium scale parallel systems. However, especially under peta-scale
computing setups, bottlenecks in the parallelization of these algorithms have been observed.
All iterative algorithms used for the solution of linear systems require a number of global
synchronization operations (e.g., all_reduce) for computing global scalars as well as a number
of local synchronization operations due to the point-to-point communications incurred by the
sparse matrix-vector operations. These local and global synchronization operations create
barriers beyond which computation cannot proceed until all participating processors have
reached that point. Projects in Sections 4.1, 4.2, and 4.3 can be considered as research efforts
towards reducing synchronization overheads.

Section 4.1, entitled “Asynchronous Algorithms for Large Sparse Linear Systems” exploits
asynchronous techniques that avoid the blocking behavior of synchronization operations by
permitting processors to operate on whatever data they have, even if new data has not yet
arrived from other processors. This project provides an experimental evaluation of the
asynchronous approach on the Jacobi method, which is one of the simplest iterative
algorithms.

Section 4.2, entitled “Designing and Implementing a Single-Phase Row-Column-Parallel
Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning” proposes to
address the two-phase communication bottleneck of the row-column-parallel SpMxV
operation so that 2D nonzero-based matrix partitioning models and methods can be
successfully utilized. This project also proposes and implements a two-stage approach to
produce a good partition for the proposed single-phase row-column-parallel SpMxV
algorithm.

Section 4.3, entitled “Implementation and Performance Evaluation of the CA-CG Algorithm
on Massively Parallel HPC-Clusters”, tries to deepen the understanding of an emerging class
of methods (Communication Avoiding Krylov subspace methods) devised to overcome
limitations due to synchronization issues in parallel sparse linear system solvers. The project
evaluates the feasibility of implementation and testing the overall performance of the CA-CG
algorithm on a set of benchmark platforms.

3.2 Enhancing Parallel Hybrid Sparse Solvers for Scalability

Recently a number of hybrid algorithms and solvers that contain both direct and iterative
components are proposed. These algorithms are promising in terms of robustness and
scalability on parallel computing platforms. These algorithms are also utilized for reducing
the above-mentioned global synchronization overhead by efficient and effective
preconditioning that decreases the number of iterations while increasing the amount of
computation per iteration. Here, effectiveness refers to decrease in the number of iterations
required to convergence, whereas efficiency refers to the computational overhead introduced
by the preconditioning steps and the amenability of the preconditioning operations to

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 6

parallelization. Projects in Sections 4.4 and 4.5 can be considered as research efforts towards
reducing synchronization overheads through the use of hybrid linear system solvers.

Section 4.4, entitled “Permuting Sparse Matrices into Block Diagonal Form with Overlap”,
proposes and implements a matrix reordering scheme for permuting a square sparse matrix
into block-diagonal form with overlap for efficient parallelization of the multiplicative
Schwarz and the DDKrylov preconditioners. The permutation objective of minimizing the
overlap size also has a positive impact on the effectiveness of the Shwarz preconditioner via
minimizing an upper bound on the iteration count.

Section 4.5, entitled “A Parallel Sparse Hybrid Solver and Its Relations to Graphs and
Hypergraphs”, proposes and implements two different (graph- and hypergraph-based) matrix
reordering schemes that enables the extraction of a small reduced system from a square sparse
matrix for a successful DS factorization preconditioning scheme.

3.3 Topology-Aware Mapping

The task-to-processor mapping in parallel systems can be vital for the performance of the
executed programs. Especially for architectures that consist of thousands of processors (such
as IBM BlueGene/P), the poor mapping of tasks to processors can lead to message contention
since the network resources are usually shared by multiple communication tasks. This causes
increase in message latencies and degrades the overall system performance. In such
architectures, the message latencies are not independent of the number of links between two
processors, which is counter to the assumption made by the cut-through and wormhole
routing. Hence, the number of links (or hops) between processors becomes important when
mapping tasks to processors. Taking this observation into account, careful mapping of tasks to
processors which exploits the topology of the parallel architecture and the interaction between
tasks can be very beneficial for the overall performance of the parallel system.

Section 4.6, entitled “Topology-aware subdomain-to-processor assignment” proposes and
implements a two-phase framework for topology-aware task-to-processor mapping by
considering both the task interaction and processor organization graphs. The first phase
groups highly interacting tasks into K clusters, where K is equal to the number of processors,
and the second phase performs one-to-one task-cluster-to-processor mapping with the
objective of minimizing a metric defined on the volumes and distances of communication
operations.

3.4 Enabling Hybridization in Heterogeneous Architectures

The hybrid approach, combining MPI programming paradigm across computing nodes and
OpenMP-, threading-, CUDA- and OpenCL-based approach within individual nodes, have
been widely adopted by the computational science community for developing programs that
execute on heterogeneous platforms (CPU multi-core processors combined with multi-core
and/or accelerator technology). Sections 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 are all
efforts towards exploiting the benefits of hybridization in large-scale computing performance.

Section 4.7, entitled “Multicore Parallelization of Block Cyclic Reduction Algorithm”
investigates efficient parallelization of the Buneman’s variant of block cyclic reduction
algorithm for the solution of linear systems with coefficient matrices of block-tridiagonal
form. Performance comparisons are given for a small-scale system using OpenMP and MPI.

Section 4.8, entitled “Enabling FFTE Library and FFTW3 Threading in the Quantum
Espresso” investigates the effects of replacing the FFT routines in Quantum Espresso with
better performing FFTE and FFTW3 libraries that support hybrid OpenMP + MPI approach.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 7

Section 4.9, entitled “A Hybrid Hermitian General Eigenvalue Solver” proposes and develops
general dense eigenvalue solvers based on single-node CPUs + GPU and CPUs + GPUs
hybridization. The project provides an experimental comparison of the developed hybrid
eigenvalue solvers against both a shared memory and a distributed memory library.

Section 4.10, entitled “A Generic Library for Stencil Computations” investigates the
programmability issues, such as productivity and portable efficiency in parallel algorithm
design and software development for HPC clusters and machines with accelerators. To this
end, the project develops a domain specific C++ generic library for stencil computations, like
PDE solvers. The library features high level constructs such as do_all and do_reduce and
allows the development of parallel stencil computations with very limited effort.

Section 4.11, entitled “Design and Implementation of New Hybrid Algorithm and Solver for
Large Sparse Linear Systems” describes the efforts towards improving the scalability of the
direct linear system solver SuperLU via utilizing the MPI+OpenMP hybrid programming
approach that combines the advantages of the two SuperLU libraries that are available for
distributed and shared memory architectures.

Section 4.12, entitled “Scalable and Improved SuperLU on GPU for Heterogeneous Systems”
describes the efforts towards improving the scalability of the direct linear system solver
SuperLU via utilizing the MPI+CUDA hybrid programming approach.

Section 4.13, entitled “Optimization of Shake and Rattle Algorithms”, investigates
optimization of SHAKE and RATTLE algorithms, which are widely used in molecular
dynamics simulations, through embedding CUDA and OpenCL implementations of these
algorithms into the DL_POLY molecular simulation package.

Section 4.14, entitled “Optimization of FHP Algorithms” investigates the possibility of
accelerating FHP algorithms, which are used to solve Navier-Stokes equations derived from
Newtonian Mechanics to describe the motion of fluid substances, using POSIX Threads, MPI,
SSE, AVX and NVIDIA CUDA.

3.5 Application Scalability

In the parallelization of applications, both due to the nature of the underlying application
together with the adopted parallelization scheme certain parallelization overheads such as
sequential components, synchronization overheads, and load imbalance may be tolerable up
to a certain number of processors. However, when the level of parallelization reaches towards
petascale, each of these parallelization overheads should be investigated and minimized in
order to achieve a decent speedup on such large-scale systems. Sections 4.15, 4.16, and 0 are
all efforts towards exploiting various algorithms and methods for increasing the scalability of
the parallelization of their target applications.

Section 4.15, entitled “FETI Coarse Problem Parallelization Strategies and Their
Comparison” investigates the parallelization of the Finite Element Tearing and
Interconnecting (FETI) methods. For small-to-medium scale parallelization, the coarse-grain
problem, which is obtained from subdomain interfaces, is solved sequentially on the master
core. However, this is infeasible for petascale computing settings, because of the increase in
memory requirements and decrease in scalability, which is due to the substantial increase in
number of subdomains. The project investigates a number of methods for improving the
scalability via parallel solution of the coarse system at different parallelization and redundant
computation levels.

Section 4.16, entitled “Computer Modeling and Simulations in Strongly Heterogeneous
Nonlinear Media” investigates incorporating selection of efficient parallel preconditioners,

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 8

parallel implementation of aggressive coarsening algorithms and adaptive time-stepping in the
parallelization of the Finite Element Method (FEM) simulation of thermal and electrical fields
in strongly heterogeneous nonlinear media on structured and unstructured meshes.

Section 0, entitled “CFD-Investigations for Assessing Aneurysm Rupture Risk for Individual
Patient Using CT Visual Diagnostics” perform numerical experiments using the
preconditioned BiCGStab (Bi-conjugate gradient stabilized) algorithm with incomplete
factorization for the parallel solution of 3D Navier-Stokes equations for incompressible fluids,
which is used in the modeling of the blood flow in cerebral aneurisms.

4 Detailed Project Descriptions

In this chapter, detailed descriptions of the Task 12.2 projects along with obtained results and
discussions are provided. All projects contain links to accompanying white papers or
publications. All PRACE technical white papers are available on the PRACE-RI web site
[https://bscw.zam.kfa-juelich.de/bscw/bscw.cgi/787675].

4.1 Asynchronous Algorithms for Large Sparse Linear Systems

Supported by: Mark Bull and Iain Bethune (EPCC, University of Edinburgh)

Whitepaper: Mark Bull and Iain Bethune, “Asynchronous Algorithms for Large Sparse Linear Systems ”,
http://eprints.ma.man.ac.uk/1838/.

Modern high-performance computing systems are typically composed of many thousands of
cores linked together by high bandwidth and low latency interconnects. Over the coming
decade core counts will continue to grow as efforts are made to reach Exaflop performance. In
order to continue to exploit these resources efficiently, new software algorithms and
implementations will be required that avoid tightly-coupled synchronization between
participating cores and that are resilient in the event of failure.

This project investigates one such class of algorithms. The solution of systems of linear
equations of the form Ax=b, where A is a large, sparse n by n matrix and x and b are column
vectors of size n, lies at the heart of a large number of scientific computing kernels, and so
efficient solution implementations are crucial. Existing iterative techniques for solving such
systems in parallel are typically synchronous, in that all processors must exchange updated
vector information at the end of every iteration, and scalar reductions may be required by the
algorithm. This creates barriers beyond which computation cannot proceed until all
participating processors have reached that point, i.e. the computation is globally synchronized
at each iteration. Such approaches are unlikely to scale to millions of cores.

This project is focused on developing asynchronous techniques that avoid this blocking
behavior by permitting processors to operate on whatever data they have, even if new data has
not yet arrived from other processors. To date there has been work on both the theoretical and
the practical aspects of such algorithms. To reason about these algorithms one needs to
understand what drives the speed of their convergence, but existing results merely provide
sufficient conditions for the algorithms to converge, and do not help in answering some of the
questions arising in the use of asynchronous techniques in large, tightly coupled parallel
systems of relevance to exascale computing. This project tries to obtain insights by
investigating the performance of the algorithms experimentally.

Taking Jacobi's method, one of the simplest iterative algorithms, one traditional synchronous
and two asynchronous variants are implemented, using three parallel programming models -
MPI, SHMEM and OpenMP. The performance of these implementations is investigated in

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 9

detail at scale on a Cray XE6, and some counter-intuitive properties which are of great
interest when implementing such methods are discussed.

The performance of these algorithms depends on two key factors - the efficiency and
scalability of the implementation, and the effect of asynchrony on the number of iterations
taken to converge - both of which vary with the number of cores used. Table 2 and Table 3
show the number of iterations and execution time required to converge a heat diffusion
problem on HECToR, a Cray XE6 system with 32 AMD Interlagos cores per node. sync is the
synchronous version, async is a race-free asynchronous version and racy is an easier-to-
program asynchronous version that includes deliberate race conditions: all three version are
implemented in both MPI and SHMEM.

Results presented in Table 2 and Table 3 show that (except on the very largest core counts)
SHMEM can provide a more efficient implementation of asynchronous message-passing than
MPI, and that for problems that require on the order of thousands of cores, asynchronous
algorithms can outperform their synchronous counterparts by around 10%. OpenMP (results
not shown here) was found to give good performance for asynchronous algorithms, and was
also very easy to program compared to either MPI or SHMEM. Although it has limited
scalability due to the number of cores in a shared memory node, we suggest that OpenMP
might be applicable in a hybrid model with MPI, for example, particularly since we found
asynchronous Jacobi in OpenMP to be 33% faster than the synchronous equivalent even on a
relatively modest 32 cores. In addition, asynchronous algorithms are expected to be tolerant to
hardware performance defects, which could be an advantage on systems with millions of
cores.

Table 2: HECToR MPI results summary Table 3: HECToR SHMEM result summary

4.2 Designing and Implementing a Single-Phase Row-Column-Parallel
Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning

Supported by: B. Ucar (CNRS), E. Kayaaslan, O. Ozturk, C. Aykanat (Bilkent University)

Whitepaper: E. Kayaaslan, B. Ucar, O. Ozturk, C. Aykanat, “Designing and Implementing a Single-Phase Row-
Column-Parallel Sparse Matrix Vector Multiplication Algorithm based on 2D Matrix Partitioning”, PRACE
technical white paper.

Sparse matrix vector multiplication (SpMxV) is a kernel operation repeatedly performed in
iterative linear system solvers. There are mainly three types of parallel SpMxV algorithms
used in the scientific community: row-parallel, column-parallel and row-column-parallel. The
row-parallel algorithm involves expand-type point-to-point communication operations on the
local input vector entries before the local SpMxV operations; whereas column-parallel

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 10

algorithm involves fold-type point-to-point communication operations on the local output
vector results after the local SpMxV operations. The row-column-parallel algorithm
necessitates two-phase communication: expand operation before local SpMxVs and fold
operation after the local SpMxVs. 1D rowwise and columnwise partitioning of the coefficient
matrix are used for row-parallel and column-parallel SpMxV algorithms, respectively,
whereas 2D-nonzero partitioning of the coefficiant matrix is used for row-column-parallel
SpMxV algorithms. Several hypergraph partitioning models and methods have been
successfully used for sparse matrix partitioning for efficient row-parallel, column-parallel and
row-column-parallel SpMxV operations. In all these models the partitioning objective is to
minimize the total volume of communication whereas the partitioning constraint is to
minimize the computational load balance. 2D nonzero based partitioning models are both
more scalable and perform considerably better than the 1D partitioning models in terms of
communication volume metric. However, 1D models perform considerably better than 2D
models in terms of speedup values due to the increased number of messages in the row-
column-parallel SpMxV algorithm. In this project, a one-phase row-column-parallel SpMxV
algorithm is proposed to address this bottleneck of the row-column-parallel SpMxV operation
so that 2D nonzero-based matrix partitioning models and methods can be successfully
utilized.

In this project, a two-stage approach is proposed and adopted to produce a good partition for
the above-mentioned one-phase row-column-parallel SpMxV algorithm. In the first stage, a
K-way row/column partition and initial nonzero partition, either using one-dimensional
(coarse-grain) [1] or two-dimensional (fine-grain) [3] partitioning approaches, is obtained for
a K processor system. At the end of this stage, for each ordered pair of parts a submatrix
whose nonzeros will be determined to be hold by either receiver or sender processor is
obtained. The second stage refines the nonzero partition obtained in the first stage by using
Dulmage-Mendhelson decomposition of these submatrices. In case of one-dimensional
partitioning in the first stage, the off-diagonal submatrices are used, whereas in case of two-
dimensional partitioning, in order to keep load balance, for each ordered pair of parts, the
subset of the off-diagonal submatrix that is comprised of only nonzeros assigned to neither
receiver nor sender processor is used. In the refinement step, the nonzeros that lie inside the
horizontal blocks are assigned to sender, and the remaining nonzeros of the submatrices are
assigned to receiver processor.

Parallel algorithm row-parallel column-parallel row-column-parallel
of communication phases 1 phase 1 phase 2 phase 1 phase
Part. scheme in first stage 1D 1D 2D 1D 2D

bundle1 8.326 8.003 5.739 5.918 8.342
cbuckle 9.545 10.622 8.612 9.819 10.605
finan512 13.575 13.504 11.640 13.677 13.682
poisson3Da 6.892 6.907 4.154 7.179 6.718
rgg_n_2_17_s0 12.701 13.240 11.137 13.180 12.868
shuttle_eddy 6.079 5.991 3.743 6.177 6.180
tube1 11.263 11.233 9.505 11.149 8.668

vibrobox 5.181 6.017 3.415 6.123 4.933
ASIC_320ks 11.504 11.578 10.422 12.104 12.293
msc10848 11.789 11.786 9.862 11.539 11.466

Table 4: Speedup values obtained on a 16-processor system.

The validity of the proposed one-phase row-column-parallel SpMxV and the associated two-
stage partitioning schemes is experimentally evaluated in terms of speedup values obtained on
a 16-node PC-cluster located at Bilkent University. The test matrices are obtained from the

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 11

Florida Matrix Collection [2]. Table 4 presents these speedup values. In the table, a bold value
in a row indicates the best speedup value obtained for the parallelization of the SpMxV
associated with the respective test matrix. As seen in the table, these initial results are
promising and extensive experimentation on a 512-node system is underway.

4.3 Implementation and Performance Evaluation of the CA-CG Algorithm on
Massively Parallel HPC-Clusters

Supported by: G. Erbacci, M. Culpo, M. Guarrasi (CINECA)

Sparse linear systems lie at the core of many scientific computing applications. They can be
solved by direct or iterative methods; the former preferred for their robustness when the
problem size is small enough to make them affordable, the latter preferred due to their better
asymptotic complexity and the high degree of parallelism they generally expose [4] when the
systems to be solved are large enough.

In particular, fostered by the need to solve engineering problems of ever-growing complexity,
modern iterative methods based on Krylov subspaces received a lot of attention in the last two
decades [5]. This led to remarkable improvements in the underlying mathematical algorithms
and to careful studies on the optimal way to implement them [6], producing as a result a
number of widely known software packages that are proven to scale up to roughly a few
thousands cores [7], [8].

While this state-of-the-art fits nicely into the framework of Tier-1 supercomputers, it becomes
soon inadequate if Tier-0 resources are instead to be efficiently exploited. The main cause of
this inadequacy is to be found in the current trends driving the HPC world towards
architectures composed of millions of relatively slow cores that can reach, nowadays,
performances up to almost 20 PetaFlop/s [9]. A rough comparison with the architecture of
previous generation machines makes evident that algorithms need to increase their scalability
by almost two orders of magnitude to effectively exploit the latest technologies. A request of
such a kind cannot be satisfied by the standard Krylov subspace algorithms, as the amount
and type of communications they require makes them too much synchronous for this task.

This project tries therefore to deepen the understanding of an emerging class of methods
(Communication Avoiding Krylov subspace methods) [10], [11] precisely devised to
overcome these limitations. This is done by evaluating the feasibility of implementation and
testing the overall performance of the CA-CG algorithm on a set of benchmark platforms.

CA methods are based on the assumption that the cost of an algorithm includes both
computations and communications1: rather than minimizing the computational cost only, they
try therefore to minimize the overall cost. As for technological reasons communication costs
are much higher than computational costs, this directly leads to the key idea that the best
performance is obtained trying to avoid communication as much as possible, even if this may
require some redundant arithmetic operations.

This strategy is realized in the CA-CG algorithm through the use of the Matrix Power Kernel
and Block Inner Product algorithms. Though for a mathematically sound treatment the
interested reader is referred to [10], it is anticipated that the CA-CG algorithms will require in
the end a factor of Θ(s) fewer messages if compared to standard CG, where s is the number of
basis vectors generated by the matrix power kernels.

The framework used for the parallel implementation of the CA-CG algorithm is the one
provided by PETSc [7], as this choice allows for a fair comparison with the standard CG

1 The term “communications” includes in this framework both the bandwidth terms (communication among
different memory levels) and the latency terms (communication among different nodes)

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 12

algorithm available in the library. The two algorithms have been tested on a selected set of
Sparse Positive Definite (SPD) matrices taken from the UFL database [2]. Finally, the tests
have been conducted on both PLX [12] and FERMI [13] supercomputers.

While for the detailed results of the benchmarks we refer to the associated white paperwe can
say that in many cases non-negligible increases of performances were found. This
strengthened our conviction on the fact the CA algorithms may be considered the most
promising line of research among the ones trying to improve parallelism and performance of
Krylov subspace linear solvers.

In the near future CINECA plans to continue the testing activity on CA algorithms even
outside of the PRACE framework, probing in particular the effectiveness of the currently
available preconditioners for CA-CG and the efficiency of others CA algorithms (e.g. CA-
GMRES) on a wider set of benchmarks. The long term aim in case of sufficiently good results
is to incorporate these algorithms in production codes that are commonly used on FERMI.

4.4 Permuting Sparse Square Matrices into Block Diagonal Form with
Overlap for Parallel Hybrid Sparse Solvers

Supported by: S. Acer, E. Kayaaslan, C. Aykanat, T. Dayar (Bilkent University)

Whitepaper: S. Acer, E. Kayaaslan, T. Dayar, C. Aykanat, “Permuting Sparse Matrices into Block Diagonal
Form with Overlap for Parallel Hybrid Sparse Solvers”, PRACE technical white paper.

In this project, the problem of symmetrically permuting a sparse square matrix into block
diagonal form with overlap (BDO form) is defined and a graph partitioning algorithm for
solving this problem is proposed. Results show the validity of the proposed algorithm.

A K-way BDO form contains K diagonal blocks such that each two consecutive diagonal
block may overlap (see Figure 4(a)). The problem of permuting a matrix into BDO form has
the objective of minimizing total overlap size, i.e., sum of the number of rows/columns in
overlaps, while having the constraint of maintaining balance on the number of nonzeros of the
diagonal blocks.

This permutation problem arises in the parallelization of an explicit formulation of the
multiplicative Schwarz preconditioner [14] and the DDKrylov scheme [15]. In these
parallelizations, each diagonal block and its associated computations are assigned to a distinct
processor. The permutation objective of minimizing total overlap size corresponds to
minimizing communication volume [14], [15] and minimizing the size of the balance system
[15], and the permutation constraint of maintaining balance on the number of nonzeros of
diagonal blocks relates to maintaining balance on the computational loads of processors
during the iterations [14]. In addition to these relations, minimizing total overlap size
corresponds to minimizing an upper bound on the number of iterations for convergence [16].

As the ring/chain topology can be easily embedded in almost all of the interconnection
topologies utilized in large scale systems, the BDO form ensures nearest neighbour (one-hop)
communication in which each processor communicates only with its left and right neighbor.
The objective of minimizing the number of off-diagonal-block entries may incur network
congestion in the point-to-point communications despite worm-hole routing. The adverse
effect of multihop distant messages on the performance of the large scale parallel system has
been recently reported in the literature and the need for topology-aware mapping is addressed.
The nearest neighbor communication pattern achieved due to the BDO form leads to the
contention-free communication on the fly.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 13

(a) BDO form of
matrix A

(b) Decomposition of a diagonal
block

(c) oVS form

Figure 4: BDO form of a matrix and its oVS representation.

A graph partitioning problem, namely K-way ordered Graph Partitioning by Vertex
Separators problem (oGPVS), which is equivalent to the above permutation problem is
defined as follows: For the standard graph representation of a given matrix, find a partition of
its vertices into K ordered vertex parts and K-1 ordered vertex separators such that each two
consecutive vertex parts can only be connected through a distinct vertex separator and each
vertex separator can only connect those consecutive vertex parts and the vertex separators
neighbouring those vertex parts. This form of a given graph is referred as the Ordered Vertex
Seperator (oVS) form (see Figure 4(c)). The partitioning objective is to minimize the sum of
the number of vertices in the vertex separators, whereas the partitioning objective is to
maintain balance on the vertex part weights, where the weight of each vertex is assigned as
the number of nonzeros in its corresponding row/column of the given matrix.

In this project, a new oGPVS algorithm that utilizes the existing graph partitioning tools is
proposed to solve this partitioning problem, hence the permutation problem. This algorithm
recursively bisects the graph with an existing graph partitioning tool such that the resulting
two vertex parts are connected through a vertex separator at each recursion, and vertex parts
and the vertex separators are ordered in the final partition.

This permutation problem is addressed only in a recent work by Kahou et al [17], and a
bottom-up graph-partitioning algorithm is proposed. This algorithm and the proposed
algorithm are tested over 237 matrices collected from UFL matrix database for K = 4, 8, 16,
32, 64, 128, and 256-way permutations. Since the objective is to minimize the total overlap
size in the permuted matrix while maintaining balance on the number of non-zeros of
diagonal blocks, the results of both algorithms are compared in terms of the total overlap size
and the imbalance ratio on the number of nonzeros and these results are presented in Table 5.
On average, 23-35% improvement is achieved in terms of total overlap size for different K
values as seen in the last column of Table 5.

K
Number of
Matrices

Baseline Algorithm oGPVS Algorithm oGPVS/Baseline
(Overlap) Imbalance Overlap Imbalance Overlap

4 205 3.62% 2.65% 2.36% 4.08% 0.65
8 183 6.55% 5.13% 4.60% 7.42% 0.70

16 155 9.42% 9.07% 6.62% 9.57% 0.70
32 106 9.91% 9.45% 7.63% 9.38% 0.77
64 63 9.63% 10.26% 7.39% 9.34% 0.77

128 38 10.89% 8.27% 22.22% 6.11% 0.74
256 24 12.64% 9.13% 17.86% 5.46% 0.60

Table 5: Performance comparison of the baseline and oGPVS algorithms in terms of total overlap size and

load imbalance for different number of processors (K).

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 14

4.5 A Parallel Sparse Hybrid Solver and Its Relation to Graphs and
Hypergraphs

Supported by: M. Gundogan (Bilkent University), M. Manguoglu (METU), C. Aykanat (Bilkent University)

Whitepaper: M. Gundogan, M. Manguoglu, C. Aykanat, “A Parallel Sparse Hybrid Solver and Its Relation to
Graphs and Hypergraphs”, PRACE technical white paper.

Given a system of equations of the form Ax = f, where A is large and sparse, it is known that
hybrid solvers that contain both direct and iterative components are promising in terms of
robustness and scalability on parallel computing platforms. A state-of-the-art hybrid solver,
which uses the generalized form parallel DS factorization, is the focus of this work [18]. In the
DS factorization scheme, D is the block diagonal of A, and the factor S, given by D−1A
(assuming D is nonsingular), consists of the block diagonal identity matrix modified by
“spikes” to the right and left of each partition. The generalized DS factorization of the system
involves reordering A to extract the block diagonal D, then, multiplying both sides of the
system with D−1, from the left side. The resulting multiplied system contains a smaller
reduced system of equations based on the nonzero entries in off-diagonal blocks of the
reordered system. The solution of the original system, Ax = f, can be obtained from the
solution of this reduced system, which can be solved independently. After DS factorization, the
process of solving Ax = f reduces to a sequence of steps that are ideally suited for parallel
execution and performance. In general, the scalability of this factorization scheme depends on
decreasing the solution time of the reduced system. Among other factors, the solution time of
the reduced system depends on the size and the number of nonzeros of the reduced system.

In this project two different reordering strategies are investigated for a successful DS
factorization preconditioning scheme: Reordering via graph partitioning (GP) and reordering
via hypergraph partitioning (HP). In the GP scheme, the standard graph representation G(A)
on matrix A is used. In the HP scheme, the column-net hypergraph model [1] Hcn(A) of matrix
A is used.

For a K processor system, in the GP and HP schemes, a K-way partitioning is performed on
G(A) and H(A), respectively, and the resulting partition is decoded as inducing a K-way
symmetric permutation on the rows and columns of [1]. In both schemes, the partitioning
constraint of maintaining balance on the part weights corresponds to maintaining balance on
the nonzero counts of the diagonal blocks of the reordered matrix. In the GP scheme, the
partitioning objective of minimizing the edge cutsize corresponds to minimizing the total
number of nonzeros in the off-diagonal blocks of the reordered matrix. In the HP scheme, the
partitioning objective of minimizing the cutsize according to the cut-net metric corresponds to
minimizing the total number of nonzero columns in the off-diagonal blocks of the reordered
matrix. The partitioning objective of the GP scheme relates to minimizing the number of
nonzeros in the reduced system, whereas the partitioning objective of the HP scheme exactly
models minimizing the size of the reduced system. Hence, the HP scheme can be expected to
achieve better preconditioning compared to the GP scheme.

In this project, the experimental performance comparison of the proposed GP and HP
schemes for preconditioning with DS factorization are investigated by using the successful
multi-level graph and hypergraph partitioning tools MeTiS and PaToH [1] on 71 matrices
selected from UFL sparse matrix collection [19]. The biconjugate gradient stabilized
(BiCGStab) solver is used as an iterative solver for both inner and outer systems, whereas
PARDISO is used as a direct solver for the diagonal blocks. The target parallel architecture is
an Intel cluster of 46 nodes located at Middle East Technical University, where each node
contains 2 Intel Xeon E5430 Quad-Core CPUs. Table 6 displays the performance
improvement of the HP and GP schemes over the unordered scheme in terms of solution
times on a 64-processor system averaged over different problem categories.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 15

Problem Category
of

matrices GP HP HP/GP
Chemistry 14 20.8% 26.7% 0.93
Circuit Simulation 9 22.3% 30.6% 0.89
Computational Fluid Dynamics 9 15.6% 27.8% 0.86
Modeling 6 26.1% 17.8% 1.11
Structural 7 18.9% 20.4% 0.98
Other 26 21.5% 32.9% 0.85

Table 6: Performance improvement of HP over GP in terms of solution times on a 64-processor system
averaged over different problem categories.

As seen in Table 6, HP and GP schemes achieve 10-30% improvement in the solution times
for different problem categories on average. The last column of Table 6 displays the ratio of
the solution times of HP and GP schemes averaged over problem categories. Values smaller
than one indicate the categories where HP scheme performs better than the GP scheme on
average. As seen in the last column of Table 6, the HP scheme performs considerably better
than the GP scheme in all problem categories except the “Modeling” category.

Figure 5 displays speedup curves for the solution of four different linear systems selected
from the list of matrices used in the experiments. As seen in the figure, HP achieves
considerably better speedup than GP and with increasing number of processors the
performance gap slightly increases in favor of HP.

Figure 5: Speedup curves for the solution of four different linear systems on a 64-

processor system.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 16

4.6 Topology-Aware Subdomain-to-Processor Assignment

Supported by: R. O. Selvitopi, A. Turk, A. Guvenir, C. Aykanat, (Bilkent University)

Whitepaper: R. O. Selvitopi, A. Turk, A. Guvenir, C. Aykanat, “Topology-Aware Subdomain-to-Processor
Assignment”, PRACE technical white paper.

The task/process to processor mapping in parallel systems can be vital for the performance of
the executed programs. Especially for architectures that consist of thousands of processors
(such as IBM BlueGene/P), the poor mapping of tasks to processors can lead to contention
since the network resources are usually shared by multiple tasks. This causes increase in
message latencies and degrades the overall system performance. In such architectures, the
message latencies are not independent of the number of links between two processors, which
is counter to the assumption made by the cut-through and wormhole routing. Hence, the
number of links (or hops) between processors becomes important while mapping tasks to
processors. Taking this observation into account, careful mapping of tasks to processors
which exploits the topology of the parallel architecture and the interaction between tasks can
be very beneficial for the overall performance of the parallel system.

In this project, an iterative-improvement-based algorithm is proposed and implemented for
mapping tasks to processors. The algorithm utilizes the topology of the parallel architecture
and the interaction between tasks. The algorithm starts from a random initial mapping and
improves this mapping by a number swaps between tasks. Given n processors with topology
information and n tasks with interaction information between the tasks, the proposed
algorithm finds a one-to-one mapping so as to minimize the communicated volume between
tasks using hop-bytes metric [20]. The hop-bytes for a total of N messages is computed as
∑ , where is the size of message in bytes and is the number of links message
uses.

Using the interaction graphs for standard parallel SpMxV application, the proposed algorithm
is tested for various test matrices collected from the UFL matrix database. The parallelization
of the application is done via utilizing the row-net and column-net hypergraph partitioning
models [1]. The number of tasks/processors is varied from 64 to 2048. Table 7 presents the
maximum task interaction degrees for the tested matrices under both row-net (RN) and
column-net (CN) models.

 Matrices

 2cubessphere fullb G3_circuit language stokes128 ted_A tmt_sym

ntasks

RN CN RN CN RN CN RN CN RN CN RN CN RN CNnprocs

64 12,3 12,3 7,3 7,2 5,1 5,3 63,0 62,8 5,0 5,1 4,6 4,4 5,3 5,2

128 13,5 13,3 7,9 7,7 5,3 5,2 123,4 122,2 5,6 5,5 6,2 6,0 5,5 5,4

256 13,8 13,8 8,3 8,1 5,7 5,6 201,7 197,7 5,7 5,7 8,6 9,7 5,7 5,7

512 14,2 14,0 9,3 9,3 5,9 6,0 224,7 221,6 6,0 6,0 12,1 13,5 5,8 5,7

1024 14,4 14,6 9,7 9,6 6,6 6,6 176,6 184,2 6,2 6,3 15,9 18,9 5,8 5,9

2048 14,5 14,6 9,7 9,6 6,6 7,7 115,3 124,3 6,6 6,6 21,0 28,6 5,9 5,9

Table 7: Average task degrees for the task interaction graphs (RN = row-net, CN = column-net)

Table 8 presents the maximum hops of the tested topologies. These topologies are extracted
from JUGENE Blue Gene/P system using the TopoManager API [21]. The maximum hops is
defined as the maximum shortest path between two processors.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 17

Number of processors
in the topology

Maximum hops

64 9

128 13

256 17

512 12

1024 16

2048 24

Table 8: Maximum hops for each topology

As mentioned, our algorithm improves an initial random assignment. The improvement
percentage values compared to a random mapping of tasks to processors are given in Table 9.
As seen in the table, improvements ranging from 14% to 63% are observed in terms of the
hop bytes metric.

 Matrices

 2cubessphere fullb G3_circuit language stokes128 ted_A tmt_sym

ntasks
nprocs

RN CN RN CN RN CN RN CN RN CN RN CN RN CN

64 37.5 38.7 48.4 48.7 45.4 41.4 14.0 16.2 55.9 46.3 51.3 53.2 47.8 40.2

128 48.1 43.2 52.4 50.0 48.3 51.7 17.6 18.9 57.2 53.8 55.9 58.6 51.8 57.4

256 51.6 52.9 51.3 54.2 53.2 56.9 19.3 23.0 57.2 55.1 57.4 55.8 56.0 56.9

512 51.8 51.8 54.0 54.4 59.5 58.2 18.7 20.2 56.0 56.7 55.7 55.8 57.7 56.7

1024 55.3 53.5 59.8 59.5 62.1 62.0 20.2 23.8 61.5 61.6 58.6 58.3 60.2 60.3

2048 59.1 57.2 59.8 58.7 61.5 62.5 21.9 25.6 63.0 63.1 58.1 57.2 62.5 62.9

Table 9: Percentage improvement (%) for tested matrices

4.7 Multicore Parallelization of Block Cyclic Reduction Algorithm

Supported by: D. Lecas (IDRIS), R. Chevalier (IDRIS), P. Joly (LJLL)

Whitepaper: D. Lecas, R. Chevalier, P. Joly, “Multicore Parallelization of Block Cyclic Reduction Algorithm”,
PRACE technical white paper.

The goal of this project is to evaluate how to parallelize the block cyclic reduction using MPI
and OpenMP. This algorithm is used to solve elliptic problems much faster than the
traditional iterative methods. Suppose the linear system can be written as follows, where B
and T are two square matrices, U is the unknown, and F is the right hand side.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 18

The concept of block cyclic reduction is to iteratively eliminate half of the unknowns until
there is an only single block system which can be solved directly. After the k-th elimination
we have this kind of system:

After solving the only block equation, the « odd » values are computed using the « even »
values that were computed in the previous step. Buneman’s variant is selected due to it
numerically stable results [22].

In summary, the Buneman’s variant of block cyclic reduction takes the following form:

1. Computation of Buneman’s series (P and Q)

For 1, … , 2 1

 0 and

For 1, … , 1
For 1, … , 2 1

2. Solve the single block equation

For 1

3. Backward substitution

For 1 , … , 1
For 2, … , 2 1

For 1

For 2

In this algorithm, there are two levels of parallelization; the j-loop can be distributed and the
 result in computing 2r resolution of linear system with Cholesky decomposition.

Two parallel versions of this algorithm are implemented, one with OpenMP and the other
with MPI. The two-level parallelization forces the use of group of processors. With MPI, this
is easy using communicators, but there is no such feature in OpenMP. So the OpenMP
version cannot use the work-sharing directives (DO, SINGLE, ...), all the distribution is made
explicitly using rank of threads.

Figure 6 shows the speedup curves of the two parallel algorithms on a single SMP node of
Vargas, which is an IBM Power 6 composed of 112 SMP nodes p575 IH with 32 cores Power
6 per node. As seen in the figure, the OpenMP version has a lower scalability because of the

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 19

global barrier used when a group barrier is needed. Managing the load balance is not easy in
Buneman’s series computation and this affect the scalability of the algorithm.

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35 Comparison between OpenMP / MPI

 on VARGAS (n = 2^13)
S

p
e

e
d

u
p

Number of processus/tasks

 MPI

 OpenMP

 ideal speedup

Figure 6: Speedup curves of the two parallel algorithms on a single SMP node of Vargas.

In conclusion, it’s possible to parallelize the Buneman’s variant of the block cyclic reduction,
but there are some load balancing issues. A possible improvement is to use the task feature of
OpenMP for better load balancing. Also there is a Fourier variation that exhibits more
parallelism [23].

4.8 Enabling FFTE library and FFTW3 Threading in the Quantum Espresso

Supported by: D. Stankovic, D. Vudragovic, V. Slavnic, A. Jovic, P. Jovanovic (Institute of Physics Belgrade,
Serbia)

Whitepaper: D. Stankovic, D. Vudragovic, V. Slavnic, A. Jovic, P. Jovanovic, “Enabling FFTE library and
FFTW3 Threading in the Quantum Espresso”, PRACE technical white paper.

In this project, Quantum Espresso [24] computing codes are extended to use the FFTE [25]
numerical library, as well as a threaded version of FFTW3 [26] numerical library. The work
has been motivated by excellent performance results of FFTE described in [27], and by the
expectation that the Quantum Espresso FFTW3 hybrid approach will achieve better
performance compared to the existing MPI implementation. The development is done
according to [28], which defines guidelines regarding programming style (variable naming
and capitalization, indentation style, use of automatic variables, use of pointers, etc.). The
latest version of the modified code is available at the URL given in [29].

The development used Quantum Espresso (QE) version 5.0 (currently the latest version) as
the baseline, and it focused on the parts of the code responsible for FFT. Detailed analysis of
the QE code shows that all FFT routines are located in Modules/fft_scalar.f90 file of the
distribution. Routines for 1D, 2D, and 3D FFT, defined in this file, serve as wrappers and
invoke corresponding FFT routines of the supported numerical libraries (FFTW, FFTW3,
ESSL, SCSL, MathKeisan and Sunperf). Specification of the particular FFT numerical library
is performed by conditional compilation. Using the pre-processor directives (#ifdef, #elif,
etc.), individual sections of the Modules/fft_scalar.f90 file are compiled, depending on which

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 20

parameter macros are defined. In the case when the configuration process is successfully
performed and any of the QE supported FFT numerical libraries is available in the
environment, matching macros will be listed in the parameters section of the Makefile. For
example, __FFTW3 macro parameter will be generated in the Makefile parameters section if
the FFTW3 numerical library is available.

The project extends the QE code to use the FFTE numerical library following the described
conventions. The new FFTE-specific macro parameter is introduced and named __FFTE.
Further, FFTE-specific invoke routines are placed in Modules/fft_scalar.f90 file, accompanied
by the appropriate pre-processor directives. Variables required to initialize and execute FFTE
are introduced so as to be easily distinguishable by their prefix (ffte_). The new code is
compatible with the FFTE version 5.0 (currently the latest version).

In the second part of the project, the threading support for the FFTW3 numerical library is
implemented together with the existing QE MPI parallelization, creating a hybrid mode. Two
realizations of threading are provided:

 implicit mode - FFTW3 library with OpenMP support is used instead of a serial
FFTW3 library,

 explicit mode - inside of an OpenMP parallel region, a serial FFTW3 library is called.

Implementation of the explicit mode is facilitated by QE FFT computation implementation.
Since it is divided in many FFT 1D and 2D calls, it is possible to efficiently distribute
workload among the threads. Furthermore, FFTW3 routines are thread-safe, and therefore
they can be called from the multiple threads at the same time.

In order to enable threading support for the FFTW3 numerical library in QE, it is necessary to
initiate configuration with --enable-openmp flag, and to edit make.sys file after the
configuration process. Implicit mode is enabled by defining -D__FFTW3 (instead of -
D__FFTW) and -D__FFTW3_OMP_IMPL macro parameters in make.sys DFLAGS variable.
In addition, it is necessary to specify FFTW3 library location within FFT_FLAGS variable (-
L/path/to/FFTW3), as well as FFTW3 linker flags in the same line (-lfftw3_omp -lfftw3).
Explicit mode can be enabled using -D__FFTW3_OMP_EXPL macro parameters (instead of
-D__FFTW3_OMP_IMPL), and -L/path/to/FFTW3-lfftw3 as linker flags.

Performance of the extended QE using its PW and CP components are measured. Initial
configuration input files for these components are obtained from the download page of the QE
web site [30], subsection Benchmarks for PW and CP components.

Execution times and scalability of the QE FFTE extension is compared with QE FFTW3
implementation. Results are obtained using NIIFI SC in Hungary [31], a 2x12-cores AMD
Magny-Cours Opteron 6174 cluster with Infiniband interconnection.

Figure 7(a) shows that the FFTE extension has better overall execution times for different
numbers of MPI processes. Since the results are obtained using the fixed three-dimensional
FFT mesh (125x125x125), the difference between execution times slowly decreases with an
increasing number of MPI processes. This is more obvious from Figure 7(b), which shows
speedup in the execution time over the same number of MPI processes. Although the speedup
of FFTW3 library is better, execution times are smaller for FFTE library. On the other hand,
larger FFT mesh will increase the time each process spends in FFT routine, and thus
performance of QE FFTE part of the code will be more significant. This is illustrated in
Figure 7(c), where execution time is given as a function of the FFT mesh size. Again, it is
possible to observe that FFTE library outperforms FFTW3.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 21

(a) (b) (c)

Figure 7: Performance of QE FFTE extension compared with the QE FFTW3 implementation: (a)
Execution times of QE FFTW3/FFTE codes for different number of MPI processes; (b) Speedup in the

execution time of QE FFTW3/FFTE codes as functions of a number of MPI processes; (c) QE
FFTW3/FFTE execution times as functions of 3D FFT mesh size.

The project also compares performance of the implicit and explicit QE FFTW3 hybrid
extensions with the internal QE FFTW hybrid support at PARADOX Cluster at IPB, a 2x4-
cores Intel Xeon E5345 cluster with Gigabit Ethernet interconnection. Figure 8(a) shows
execution times obtained for pure MPI version and hybrid ones when 2 threads are used per
MPI process, while Figure 8(b) illustrates the case when 4 and 8 threads are used per MPI
process. Both QE FFTW3 hybrid codes produced in this project give shorter execution times
compared to the default QE FFTW hybrid code and no significant difference in performance
between the two versions of FFTW3 hybrid implementations was noticed when using this
particular QE input dataset and computing infrastructure.

(a) (b)

Figure 8: Performance of the pure MPI, implicit and explicit QE FFTW3 hybrid extensions, and QE
FFTW hybrid code for various numbers of CPU cores used: (a)Execution times when pure MPI and 2
threads per MPI process hybrid versions are used; (b) Execution times when 4 and 8 threads per MPI

process hybrid versions are used.

QE FFT extension produced in this project shows better performance compared to the default
QE FFT. In the case of FFTE extension, this performance improvement could be significant
when large charge density FFT mesh is required by the configuration of physical system. QE
FFTW3 hybrid implicit and explicit extensions illustrate better performance compared to QE
FFTW internal hybrid approach, but still worse than the pure MPI one. As evidenced in [32],
this is probably because the overhead related to thread management outweighs the benefits of
reduced MPI communication, up to a certain number of MPI processes.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 22

4.9 A Hybrid Hermitian General Eigenvalue Solver

Supported by: R. Solcà (ETH Zürich)

Whitepaper: R. Solcà, T. C. Schulthess, A. Haidar, S. Tomov, I. Yamazaki, J. Dongarra, “A hybrid Hermitian
general eigenvalue solver”, http://arxiv.org/abs/1207.1773

In this project the focus is on dense eigensolvers, and in particular, generalized Hermitian-
definite problems of the form Ax=λBx, where A is a Hermitian dense matrix and B is
Hermitian positive definite.

Many scientific computing applications, ranging from computing frequencies of waves that
will propagate through a medium, to earthquake response of a bridge, or energy levels of
electrons in nanostructure materials, require the solution of eigenvalue problems. These
solvers are also needed for solving electronic structure problems in material science and
chemistry [33]. In particular we will focus on algorithms that can compute either the complete
eigenspace, or a fraction (typically 10-20%) of it.

Particularly problems with modest matrix dimensions of a few thousand to ten or twenty
thousand seem to pose a challenge for most practical purposes. Typically these problems must
be solved many times in the context of a parallel code. The known power limits in current
processors, that would prevent the clock frequency to keep increasing with time, necessitates
the solution of the eigenvalue problem on nodes with larger number of threads that are
executed on slower cores.

In this project, in collaboration with the Innovative Computing Laboratory of University of
Tennessee, in the context of the MAGMA project, single node hybrid (CPUs + GPU, and
CPUs + GPUs) general eigenvalue solvers are being developed.

Figure 9: Time to solution of double complex general eigensolver with matrix size 8000. On the left the
whole eigenspace is computed, on the right only 10% of the eigenvectors.

Figure 9 shows the results of the hybrid algorithms compared with a shared memory library
(MKL) and a distributed memory library (ELPA) [34] with two different algorithms. To have
a fair comparison on a node of the Castor cluster located at CSCS (Each node is a dual 6-
cores Intel Xeon 5650 with two Nvidia M2090 system) we compare our hybrid routines,
tested with six threads on one CPU socket and one GPU, against non-GPU routines tested
using both the CPU’s sockets – 12 threads for shared-memory routines and 12 processes for
distributed-memory processes [36]The two algorithms differ in the tridiagonalisation step.
The one-stage approach reduces the matrix to tridiagonal in one step using Householder
transformations. This approach spends most of the time in the tridiagonalisation that is
inefficient since half of the operation are level 2 BLAS (memory bounded) operations. The
two-stage approach [35] first reduces the matrix to a band matrix and then, using a bulge
chasing technique, reduces the band matrix to be tridiagonal. Unfortunately this increases the
time needed for the transformation of the eigenvectors.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 23

Both the one-stage and two-stage approaches are comparable while computing the whole
eigenspace, whereas the two-stage approach is faster when only a fraction of the eigenvectors
is computed.

The maximum matrix size that can be used in the solver is limited by the memory available
on the GPU. One possibility to get around this problem is to implement the algorithm on a
multiGPU system.

Figure 10 shows the time spent in each step of the multiGPU one-stage algorithm on a 2 6-
cores Intel Xeon 5660 and an 8 Nvidia M2090 system.

Figure 10: Time to solution for different number of GPUs of double complex general eigensolver with

matrix size 15000 and whole eigenspace.

4.10 A Generic Library for Stencil Computations

Supported by: M. Bianco (ETH Zurich/CSCS)

Whitepaper:M.Bianco, U.Varetto,“A Generic Library for Stencil Computations”, http://arxiv.org/abs/1207.1746

This project develops the GSCL (Generic Stencil Computing Library) to let application
programmers specify quite general and widely used algorithms in a very synthetic way,
namely the solution of finite difference equations on regular grids and lattice methods, for
instance for fluidodynamics. The resulting pattern is more general and allows the use of
GSCL in other contexts, for instance many typical dynamic programming algorithms such as
longest common subsequence.

Given the heterogeneity of current computer architectures, raising the level of abstraction can
be a useful solution to exploit such diversity. Stating for all elements of the grids apply the
function operator is a very general way of expressing the need of the computation that can be
then implemented specifically for each particular platform. In general, raising the level of
abstraction is suitable for specific classes of computations, as in the case of this project, to
limit the complexity of the resulting language, in our case at a level of a C++ library.

In the development, the approach of generic programming is followed, in which there always
exists a generic (possibly) slow implementation for any construct. If some other
implementation is found that is better suited for the platform or the input, then it is selected
and used in the implementation. Ideally, the efficient implementation is developed by some
library developer that may or may not be acquainted with the application domain of the final
application. This may sound not satisfactory to the application developer, since the library
developer’s response may not be fast enough. By keeping GSCL architecture as simple as
possible, the possibility for the user to implement, and possibly contribute, to the GSCL itself,

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 24

with their own specific implementations is left open. From the productivity point of view, this
has the advantage that, if the proper specialization already exists, the user can remain at the
high level of abstraction and obtain the best sustained performance; while if this is not the
case, the development is naturally split in two phases. Initially there is a quick deployment of
the program at high-level, and then increasingly more efficient versions can be produced.
Those versions do not impact the high level code which can still be read and understood by
the application programmers in a much better way than the low-level dirty-but-fast detailed
implementation targeted to the architecture.

The diversity of the available platforms imposes certain restrictions in the high-level
constructs that the GSCL supply and their relations. The consequences of this are tried to be
kept at a minimum, but they have impact on the guaranteed semantics of the operations
performed by a program. Many restrictions are due to the limitations of the C++ language,
others are dictated by the need of exploiting accelerators like GPUs, nominally capable of
high throughput that is the main characteristic needed by a stencil computation. Also these
problems could be removed if GSCL was a stand-alone language. A library development
instead of a new language is preferred in order to utilize all the features of an existing
language, like abstraction mechanisms, and the availability of a highly sophisticated, reliable,
and widely adopted compiler technology.

Figure 11 compares GSCL and C on a sample application that runs an averaging followed by
a reduction to check convergence for different input sizes. Figure 11 (a) and Figure 11 (b)
show the results for 2D and 3D cases, respectively. The given times are the average time
spent on an element of the grid.

As seen in Figure 11(a), in the 2D case, the GSCL version with a single fused reduction is on
par with the C version. The peaks at certain given sizes are due to memory architecture issues.
It is interesting to note that the implementation with two distinct iteration spaces has a more
stable behavior than the other two, even though it tends to be slower in the best case. The
reason is due to the cache of the system is less stressed by splitting the operations, thus
behaving more smoothly.

(a) (b)

Figure 11: Comparison of GSCL and C99 code on (a) 2D and (b) 3D grids. The fused version (GSL_do_reduce
fussed) is algorithmically equivalent to the C version, while the other (GSL_do+all+do_reduce) does an additional

scan of the memmory since the loops are not fused.

In Figure 11(b) the results show that GSCL is still the fastest, but the two-iteration spaces
implementation is actually faster than the others. This is again due to the memory pressure
since the stencil operator accesses 6 elements at different strides instead of 4 in the 2D case.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 25

The two algorithmic equivalent versions are still on par up to a 6400x6400 input size. After
that the C++ version exhibits slightly higher execution times. Note that, all the optimizations
available for the C version could be applied to the GSCL versions, with the advantage that
main application code is not affected. Also, the difference between the two iteration spaces
and the fused operators versions differ by only a couple of lines of code.

(a) (b)

Figure 12: Running GSCL code on a Cray XT5 machine. Each node has 24 cores divided in two sockets. (a) One
MPI process per node is used and then a varying number of OpenMP threads for process are used. (b) The node

is half filled with MPI processes and none or 2 OpenMP threads are utilized.

To prove that GSCL can run efficiently on traditional parallel machines, the same application
used in Figure 11 is implemented in C, and compiled using MPI and OpenMP. A weak
scaling experiment, in which each MPI process has a tile of 6000x6000 elements, is
performed. Results shown in Figure 12(a) place a single MPI process in a node of the
machine. The process then employs from 1 to 24 openMP threads to work on the tile. As can
be seen, the time with one OpenMP thread is the same as the sequential time shown in Figure
11(a). With increasing number of OpenMP threads the execution time improves as expected.

Figure 12 (b) shows the same experiment by placing 12 MPI processes on each node. As
expected, the execution time increases due to contention of the many processes. The weak
scalability of the application is, however, very good.

4.11 Design and Implementation of New Hybrid Algorithm and Solver for
Large Sparse Linear Systems

Supported by: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel (ITU-UHeM)

Whitepaper: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel, “Design and Implementation of New
Hybrid Algorithm and Solver for Large Sparse Linear Systems”, PRACE technical white paper. Related academic
publication "Scalability of SuperLU solvers for large sparse linear systems" has been accepted for oral presentation at the SPE & SIAM
Conference on "Mathematical Methods in Fluid Dynamics and Simulation of Giant Oil and Gas Reservoirs", 3-5 September 2012, Istanbul,
Turkey.

It is important to have a fast, robust and scalable algorithm to solve a sparse linear system
AX=B in many science and engineering applications. In this project, a new hybrid algorithm
and solver for large sparse linear systems is designed and implemented. Scalable direct
solvers are considered for various reasons. First, the effectiveness of the SuperLU_DIST 3.0
for distributed memory and SuperLU_MT 2.0 for shared memory parallel machines among
several sparse direct solvers is examined (see [37], [38], [39], [40], [41], [42]).

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 26

SuperLU_MT (see [44]) has three major steps including sparsity ordering, factorization that
arranges partial pivoting, symbolic factorization and numerical factorization steps to perform
in an alternating fashion, and triangular solution. While SuperLU_DIST uses BLAS 3 for
factorization, SuperLU_MT has only BLAS 2.5 with multiple matrix vector multiplication.
Therefore, SuperLU_DIST outperforms SuperLU_MT (see [45]). SuperLU_DIST (see [46])
uses static pivoting [47] instead of partial pivoting because the implementation of numerical
pivoting is complicated on distributed memory architecture. It is advantageous that symbolic
and numerical factorization steps can be separated due to the static pivoting. On the other
hand, the backward error of a matrix cannot be decreased to machine precision and
SuperLU_DIST may be considered for a certain types of matrices. Therefore, it is important
to determine and classify those matrices where SuperLU_DIST works well. The maximum
matching algorithm (see Duff and Koster [49]) is utilized to maximize the product of the
magnitudes of the diagonal entries for a matrix. SuperLU_DIST can use ParMeTiS [50] or
MeTiS [51] ordering on the structure of A+AT in addition to the multiple minimum degree
ordering on the structure of A+AT

 or ATA for fill-in reducing preordering. Unlike sequential
SuperLU, SuperLU_DIST does not have a COLAMD option that works well for many
unsymmetric sparse matrices to reduce fill-ins.

In this work, advantages and limitations of the SuperLU solvers are discussed. Although the
existing versions of SuperLU are scalable and tuned for many matrices, they are sensitive to
tuning and needs further customization for various large sparse matrices. Therefore, a
collection of large patterned and random sparse matrices, which are larger than most of the
real matrices from the University of Florida sparse matrix collection [19], are generated.
Sensitivity analyses for several parameters including number of nonzero (NNZ) and sparsity
level for randomly located sparse matrices are performed. SuperLU_DIST shows scalable
speed-up between 256 and 512 cores for many test matrices, for example in Figure 13, on the
Linux Nehalem Cluster available at UHeM [52]. On the other hand, for randomly located
large sparse matrices, numerical factorization, symbolic factorization, and consequently wall
clock time spike up around the sparsity level of 7 related to the ability to find supernodes, for
example see Figure 14 and Table 10. The wall clock time decreases gradually as sparsity level
decreases from 9 to 75 with a slow rise at 100 number of nonzeros per row. Moreover, the
memory overhead coming from ParMeTiS becomes one of the dominating factors in the
overall runtime on n-diagonal sparse matrices. Furthermore, new unsymmetric matrices,
which consist of the lower triangular part of a symmetric matrix and an upper subdiagonal
with d distance from the main diagonal are also generated. While SuperLU_DIST performs
properly for symmetric matrices, it produces segmentation fault for the corresponding new
unsymmetric matrices.

Figure 13: Speed up for matrix RAND_40K_3.

Figure 14: Average wall clock time as a function of
various sparsity levels for randomly located sparse

matrices.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400 450 500 550

��
��

��
��

 �
��

��
��

��
�

��
 �

�
��

��
�

������ �� �����

������� ���� ��� �

speedup
ideal

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100

��
��

 �
��

��
 �

��
�

������ �� �������� ��� ���

������� ���� ����� ���� ��� �������� ������� ������ ��������

time

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 27

NNZ per

row 3 5 7 9 11 30 50 75 100

Wall
clock
time

6187 352.10 721.95 583.15 527.20 500.66 465.00 450.08 553.23

Table 10: Wall clock time for randomly located sparse matrices as sparsity level decreases with 64 core
(8x8)

The code of SuperLU_MT has been tested up to 64 threads for all sparse matrices in the list
on the HP Integrity Superdome SD32B (see[53]) computing server available at UHeM.
Speedup between 4 and 32 is achieved depending on the sparsity level, NNZ and structural
symmetry, as shown in [44] with different machines. Finally, very large sparse matrices with
less sparsity for which SuperLU_DIST works well while SuperLU_MT gives segmentation
fault related to memory usage are also generated.

In this project the scalability of the SuperLU solver is improved via several ways. A new
hybrid algorithm utilizing the MPI+OpenMP hybrid programming approach that combines the
advantages of SuperLU_DIST and SuperLU_MT and diminishes some of their limitations is
proposed so that it is possible to avoid extra communication overhead with MPI within nodes.

4.12 Scalable and Improved SuperLU on GPU for Heterogeneous Systems

Supported by: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel (ITU-UHeM)

Whitepaper: A. Duran (ITU), M. S. Celebi (ITU-UHeM), M. Tuncel, “Scalable and improved SuperLU on
GPU for heterogeneous systems”, PRACE technical white paper.

It is important to use graphic processing units (GPU) as accelerators when we consider a fast,
robust and scalable solver for a sparse linear system AX=B in many science and engineering
applications. In this project, a new parallel hybrid direct solver is designed and implemented
on GPU for large sparse linear systems. In particular, GPU programming using directive
based Open ACC is used in order to obtain a scalable and improved SuperLU on CPU+GPU
heterogeneous systems.

As a first step, the effectiveness of the SuperLU_DIST 3.0 for distributed memory and
SuperLU_MT 2.0 for shared memory parallel machines among several sparse direct solvers
(see [37],[38],[39],[40],[41],[42]) on CPU and (see [43] for small matrices) on CPU-GPU are
studied. SuperLU_MT (see [44]) has three major steps including sparsity ordering,
factorization that arranges partial pivoting, symbolic factorization and numerical factorization
steps to perform in an alternating fashion, and triangular solution. While SuperLU_DIST uses
BLAS 3 for factorization, SuperLU_MT has only BLAS 2.5 with multiple matrix vector
multiplication. SuperLU_DIST (see [46]) uses static pivoting [47] instead of partial pivoting
because the implementation of numerical pivoting is complicated on distributed memory
architecture. It is advantageous that symbolic and numerical factorization steps can be
separated due to the static pivoting. Therefore, SuperLU_DIST outperforms SuperLU_MT
(see [45] and [48]) for many sparse matrices.

Second, SuperLU is a complex algorithm and it is important to choose right combination for
better intra-node communications and inter-node communications within CPU+GPU
heterogeneous systems, given current technology limitations and developments. While
SuperLU_MT is a good starting reference for intra-node communications, SuperLU_DIST is
more appealing for GPU clusters having inter-node communications using infiniband (IB)
network among its several advantages. In this project, SuperLU_DISTs features such as the
usage of the extract parallelism reducing communication by avoiding and defining
dependencies of data in addition to the usage of static pivoting and BLAS 3 for factorization

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 28

are utilized. Moreover, utilization of multicore approach inside node analogous to
SuperLU_MT is also performed. The first goal is to complete intra-node multi-GPU
programming. Next step would be inter-node multi-GPU programming.

Figure 15: Speed up for matrix
RAND_40K_3.

Figure 16: Average wall clock time as a function of
various sparsity levels for randomly located sparse

matrices.

NNZ per row 3 5 7 9 11 30

Wall clock time 124.46 750.10 1448.22 2003.09 2346.67 3062.57

Table 11: Wall clock time using SuperLU_MT for randomly located sparse matrices as sparsity level
decreases with 16 cores

The code of SuperLU_MT has been tested up to 64 threads for randomly located sparse
matrices on HP Integrity Superdome SD32B (see [53]) computing server available at UHeM.
Almost linear speedup is achieved (see for example Figure 15 for RAND_40K_3). Moreover,
the scalability of SuperLU_MT depending on the sparsity level in terms of NNZ per row is
also tested. Figure 16 and Table 11 show that average wall clock time increases slowly as
sparsity levels decrease for randomly located sparse matrices of order 30000.

In sum, after obtaining a robust version of scalable SuperLU, a new hybrid algorithm for
CPU+GPU heterogeneous systems by taking SuperLU_DIST as a starting reference is
designed in this project. Directive based parallelization approach using OpenACC for
CPU+GPU heterogeneous systems is implemented.

4.13 Optimization of SHAKE and RATTLE Algorithms

Supported by: M. Uchroński (WCSS), M. Gębarowski (WCSS), A. Kwiecień (WCSS)

Whitepaper: M. Uchroński, M. Gębarowski, A. Kwiecień, “Optimization of SHAKE and RATTLE
Algorithms”, PRACE technical white paper.

This project is focused on optimization of SHAKE and RATTLE algorithms using the
DL_POLY Molecular Simulation Package [54]. The project evaluates these algorithms and
develops the OpenCL versions of the main parts of them (Leapfrog Verlet and Velocity Verlet
integration schemes). The main goal is to increase the potential of the algorithms to support
asynchrony and check the possibility of improving the accuracy of the GPU code.

The SHAKE is a two stage algorithm based on the Leapfrog Verlet integration scheme. The
RATTLE algorithm fits within the concept of the Velocity Verlet integration scheme [55].
These algorithms are widely used in molecular dynamics simulations and for this reason are
relevant for a broad range of scientific applications. DL_POLY application already contains

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 29

implementations of the SHAKE and RATTLE algorithms (on CPU and some parts on GPU
using CUDA), and an OpenCL partial implementation, developed by WCSS (within Work
Package 7 of PRACE-1IP [59]).

In this project, implementation of the SHAKE algorithm for DL_POLY application has been
continued and the code has been analyzed for further optimizations. Tests have been
performed on local WCSS GPU machines (2x GTX480 [57], 2x AMD Radeon HD 6900
Series [58]). Performance results for H2O benchmark show that the OpenCL implementation
runs slower than the CUDA version of the same algorithms (Figure 17). The biggest
performance difference between the NVIDIA-CUDA and the NVIDIA-OpenCL
implementations occurs for kernels: k1_th (OpenCL code is 10 times slower than CUDA
code), and install_red_struct (OpenCL code is 5.5 times slower than CUDA code). For other
kernels OpenCL calls are 2 times slower than particular CUDA calls.

Figure 17: CUDA vs OpenCL kernels for DL_POLY constraints shake component.

The results presented in Figure 18 reveal some of the performance bottlenecks of SHAKE
OpenCL implementation. In this table, the kernels gather_dv_scatter_hs and
gather_hs_scatter_dv are both used for improving efficiency of data transfers between host
(_hs) and GPU device (_dv). The data transfers are required for a synchronization of MPI
processes and they are large in volume. The kernels are packing or unpacking data in parallel
on a device, depending on a direction of communication:

 Initialization of the OpenCL environment – a possible solution for this issue is to
divide the OpenCL routines to separate contexts, for example create one OpenCL
context for SHAKE algorithm and another OpenCL context for RATTLE algorithm;

 GPU I/O operations – this is a well known issue for GPU computations;
 Synchronization between MPI processes in a multi-GPU environment – this kind of

synchronization requires copying data from GPU memory to local memory,
synchronizing the data and then copying synchronized data back to the GPU memory.
So far, the only solution for this issue in MPI+OpenCL code is to minimize the
number of synchronization operations.

k1_th k1_bh
install_red_stru

ct
correct_positio

ns

CUDA 3E‐05 2,5E‐05 4,2E‐05 1,1E‐05

OpenCL NVIDIA 0,000366 4,6E‐05 0,000232 2,3E‐05

OpenCL AMD 0,000371 0,000209 0,000307 9,4E‐05

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

0,0004

av
e
ra
ge

 d
u
ra
ti
o
n

p
e
r
in
vo

ca
ti
o
n
 [
s]

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 30

Figure 18: CUDA vs OpenCL I/O and communication for DL_POLY constraints shake component.

The RATTLE algorithm has been analyzed and parts of it identified as good candidates for
optimization by moving computations to GPU. These parts have been successfully ported to
OpenCL and partially integrated with the DL_POLY application. Results for a subset of test
cases [56] are presented in Table 12. Tests have been performed at WCSS (2x GTX480). The
results are promising, but as for the SHAKE algorithm the OpenCL environment initialization
and I/O operations constitute performance bottlenecks. Performance results in general show
that selected parts of Fortran code can be executed faster on GPU using OpenCL (kernel
computation time) but the bottlenecks have a great influence on overall computation time.
Further optimization work should be focused on decreasing this influence.

Benchmark Fortran
OpenCL

Speedup
Initialization, I/O Kernels Overall

H2O 0.001101 0,001792 0,000294 0,002086 0,5278

TEST3 0,152225 0,011471 0,008079 0,01955 7,7864

TEST4 1,247404 0,048104 0,062032 0,110136 11,3260

TEST7 0,134984 0,022904 0,017279 0,040183 3,3592

TEST8 1,09763 0,075339 0,136363 0,211702 5,1847

TEST13 0,162882 0,02114 0,018883 0,040023 4,0697

TEST14 1,280869 3,031746 0,088209 3,119955 0,4105

Table 12: Execution times for the RATTLE algorithm integrated with the DL_POLY code (in seconds).

4.14 Optimization of FHP Algorithms

Supported by: S. Szkoda (WCSS), A. Kwiecień (WCSS)

Whitepaper: S. Szkoda, Z. Koza, M. Tykierko “Accelerating cellular automata simulations using AVX and
CUDA”, http://arxiv.org/abs/1208.2428.

The FHP model [60] was introduced by Frish, Hasslacher and Pomeau in 1986 as a Cellular
Automaton algorithm which is designed to solve the Navier-Stokes equation derived from
Newtonian Mechanics to describe the motion of fluid substances. Throughout the years many
researchers have examined FHP usability and compared it to methods that have an established
position in science, like Finite Element Method or Lattice Boltzmann Method. FHP methods
are used for Computational Fluid Dynamics (CFD) simulations and the area in which they are
most useful is Physics of Porous Media [61]. For simulating even very small porous specimen

read write
gather_dv_
scatter_hs

gather_hs_
scatter_dv

CUDA 2,2E‐05 0,000041 3,2E‐05 3,5E‐05

OpenCL NVIDIA 4E‐05 0,000108 6,1E‐05 6,2E‐05

OpenCL AMD 0,000172 0,000599 0,000252 0,000257

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

av
e
ra
ge

 d
u
ra
ti
o
n

p
e
r
in
vo

ca
ti
o
n
 [
s]

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 31

a very large cellular automata lattice is needed, which is why a well optimized parallel
implementation usage is essential [62]. Every step of a system evolution in the FHP algorithm
is split in two sub-steps: motion and collision. In the first sub-step particles move to the
nearest neighbor node according to their velocity, which for every particle is given by:

cos
3

, sin
3

, 1, … ,6

In the second sub-step the state of the system is changed through collisions with respect to the
rules shown on Figure 19.

Figure 19: FHP III collision rules

This project investigates the possibility of accelerating FHP algorithms using the Single
Instruction, Multiple Data (SIMD) approach. The overall goal of the optimization is to
increase the asynchrony and performance of the algorithms by making better use of today's
multi-core architectures. The work focuses on modifications of the FHP algorithms and
addresses the memory access and domain decomposition schemes.

The FHP algorithm was implemented with the use of main parallel programming
technologies: POSIX Threads, MPI, SSE, AVX and NVIDIA CUDA. Each of the
implementations was compared to a single-core code, optimized only with the “-O3” GNU
GCC compiler flag. Hardware used for testing was a variety of common desktop and server
processors. Correctness of each implementation has been tested by measuring tortuosity and
mass conservation law.

The general idea for the domain decomposition is to divide a grid of nodes into pieces from
which each one is calculated on a separate processing unit. For implementations using
different technologies some optimizations to the decomposition scheme are introduced, taking
into account memory access and communication patterns. The scheme adopted for the single
GPGPU implementation assumes that sub-domains occurring in collision simulation step are
independent so a simple division is sufficient. In the motion step each sub-domain has to
exchange the information about its outermost nodes with its neighbors. The developed
solution expands all sub-domains so that they overlap their outermost parts, what reduces the
communication and memory copies. The size of a sub-domain is set up so that it fits in a
shared memory of a graphics processing unit. In the case of implementations done with the
use of Pthreads and SSE/AVX the domain decomposition for the motion step is simply done
by splitting it between the CPU cores. Each core collectively moves particles from the grid
nodes (16 in SSE, 32 in AVX) in each direction. A synchronization of the edges of sub-
domains has to be done. The collision step is implemented by look-up table so the vector
extensions are not used. The MPI implementation extends previous ones by running multiple
MPI-processes which may use CPU cores or GPGPUs for calculations. In the motion step
MPI processes have to exchange with their neighbors the boundary columns of sub-domains
assigned to them.

The computational efficiency of each implementation has been measured in Million lattice
site updates per second (Mups). The cost of processing units and electric power consumption
during computations was estimated and the cost and energy efficiency of each implementation
calculated. Example results are shown in Table 13 (full table is available in the whitepaper).

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 32

 single-core
multi-core
Pth+SSE

multi-core
MPI

multi-core
Pth+AVX

single-
GPGPU

multi-
GPGPU

Processing
unit type

Intel i7
3.2GHz

Intel i7
3.2GHz

2x Intel Xeon
2.67GHz

Intel E3-1270
3.4GHz

Nvidia
GTX480

2x Nvidia
GTX480

Total CPU
cores

1 4 12 4 1 2

Total CPU
threads

1 4 12 8 1 2

Mups 21 340 230 657 1746 3493

USD/Mups 14,29 0,88 8,70 0,52 0,46 0,37

W/Mups 6,19 0,38 0,83 0,12 0,30 0,27

Table 13: Computational, cost and power efficiency of FHP implementations on different processing unit
types.

The cost of hardware components (in USD) is taken as a market prize in July 2012. For the
GPGPUs the cost incorporates the corresponding CPUs. The power consumption (in watts) is
estimated based on nominal values delivered by producers. The analysis of the power and cost
efficiency reveals that, in case of the FHP algorithms runs, modern multi-core CPUs are able
to compete with the GPGPUs, if the economic factors are taken into account.

Main results of the work are:

1. 160 times acceleration of single-core calculations via CUDA, MPI and two
NVIDIA GTX480 graphics cards.

2. Possibility of reducing this enormous disproportion in calculation speed from 160
times to 10 times using a full functionality of a common desktop processor
(i7 960, Pthreads+ SSE) and to 5 times with the use of a modern powerful server
computing unit, like Intel Xeon E3-1270 (Pthreads+AVX).

4.15 FETI Coarse Problem Parallelization Strategies and Their Comparison

Supported by: T. Kozubek (VSB), D. Horak (VSB), V. Hapla (VSB)

Whitepaper: T. Kozubek, D. Horak, V. Hapla, “FETI Coarse Problem Parallelization Strategies and Their
Comparison” and T. Kozubek,_, M. Jarosova, M. Mensik, A. Markopoulos, “Hybrid Total FETI Method”,
PRACE technical white papers.

Parallelization of FETI/TFETI (Finite Element Tearing and Interconnecting / Total FETI) can
be implemented mostly using data-parallel technique – distributing matrix portions among
processing units. This allows algorithms to be almost the same for the sequential and parallel
case; only data structure implementation differs. Most of computations (subdomain problems)
appearing are purely local and therefore parallelizable without any data transfers. However, if
we want to accelerate also dual actions, some communication is needed due to the primal-dual
transition. Distribution of primal matrices is quite straightforward as every subblock reflects a
subdomain. They can be implemented using general distributed column-block or row-block
matrix type with nonzeros only in diagonal blocks. However, some of the primal data possess
nice block-diagonal layout and can be implemented more sophisticatedly using block-
diagonal composite type, where subblocks are ordinary sequential matrices and every node
holds an array of them. Nevertheless this is not directly implemented in most of
parallelization libraries.

A natural effort using massively parallel computers is to maximize the number of subdomains
so that sizes of subdomain system matrices (stiffness matrices in mechanics) are reduced

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 33

which accelerates their factorization and subsequent pseudoinverse application, which belong
to the most time consuming actions. On the other hand, the negative effect of that is an
increase of the null space dimension and the number of Lagrange multipliers on subdomain
interfaces, i.e. dual dimension, so that the bottleneck of the TFETI method becomes in this
case the action of the projector Q=GT(GGT) -1G on a vector which includes the solution of the
coarse problem GGT x = b for given vector b and the rectangular matrix G = RTBT. Here B
denotes the constraint matrix ensuring the gluing and Dirichlet conditions and columns of R
span the kernel of the system matrix. We verified that for given vectors v and w the actions
Gv and GTw take approximately the same time for different G matrix distributions (assembled
distributed into horizontal blocks, assembled distributed into vertical blocks, unassembled
kept in the form RTBT). Consequently the Q action time and level of communication depend
first of all on the solution strategy used to solve the coarse problem itself. This can be hardly
implemented sequentially on the master core for large scale problems because of increasing
memory requirements and losing parallel scalability.

In this project, the set of parallelization strategies tested within PRACE-1IP [7.5]are extended
by new strategies based on orthonormalization of G and exploiting MUMPS library. These
strategies are tested and compared on both academic and complex engineering benchmarks
and their implementation details are discussed in the context of the FLLOP (Feti Light Layer
on Petsc) library regarding to computational and programming effectiveness. The machine
used for benchmarking is the Hector system at the EPCC site.

The tested strategies are as follows: (1) iteratively using PCG, (2) directly using Cholesky
factorization, (3) applying explicit inverse of GGT, (4) eliminating the coarse problem -
provided that the rows of G are orthonormalized.

The groups of cores used for parallel solution of coarse problem - so called
subcommunicators - arise from splitting all cores in the global “world” communicator using
PETSc built-in pseudopreconditioner PCREDUNDANT specifying by Nred the number of
these subcommunicators (number of cores doing redundant work), i.e., the number of cores in
each subcommunicator is equal to the number of cores / Nred.

Here only the results of the most successful method, which is strategy (2) with Cholesky
factorization implemented using MUMPS, are reported. Initially, the whole G matrix is
transferred to all subcommunicators, which compute GGT using matrix-matrix multiplication.
Then the coarse problem is solved directly using the Cholesky factorization implemented in
parallel using MUMPS on subcommunicators. This strategy has a big advantage consisting in
the reduction of memory requirements comparing to the factorization on the master core.
Practically, there are no limits because of possible attachments of more cores into the
subcommunicators.

Numerical experiments were run on matrices and vectors obtained from the decomposition
and the discretization of real world elastostatic problem of the car engine block (Figure 20).

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 34

Figure 20: Car engine block – total displacement distribution

The sensitivity of the solution strategy (2) to the number of cores Nred doing redundant work
is shown in Figure 21 for a problem of size 2,839,734 and the number of cores (subdomains)
1,014. We see that the optimal Nred is about 75.

Figure 21: Sensitivity of the solution strategy (2) to Nred

The performance of strategy (2) with Nred=75 for a problem size of 98,214,55 and the
number of cores (subdomains) 5,012 is highlighted in Table 14.

Parallelization strategy Coarse problem

preproc. [sec]
All coarse problem
solutions [sec]

All Q actions
[sec]

Total solution
time [sec]

(2) MUMPS, Nred=75 3.2 77.9 110 220

Table 14: Results of the best strategy (2) for the problem size 98,214,55 and the number of cores
(subdomains) 5,012

4.16 Computer Modeling and Simulations In Strongly Heterogeneous
Nonlinear Media

Supported by: S. Margenov, Y. Vutov, N. Kosturski, K. Georgiev (NCSA Bulgaria)

Whitepaper: S. Margenov, Y. Vutov, N. Kosturski, K. Georgiev, Academic publications [63] and “Computer
Simulation of RF Liver Ablation” to be published in Proceedings of the American Institute of
Physics (http://2012.eac4amitans.eu/resources/amitansabsbook1.pdf)

The focus of this project is the Finite Element Method (FEM) simulation of thermal and
electrical fields in strongly heterogeneous nonlinear media on structured and unstructured
meshes. New developed and tuned algorithms and codes for massively parallel platform like
IBM BlueGene/P computer are integrated and tested. Mass and heat transfer and coupled
electrical processes involved in the radio–frequency (RF) hepatic tumor ablation are
considered. Note that RF ablation is a modern low invasive technique for efficient treatment
of metastatic tumors, destroying the tumor cells by heating avoiding open surgery. The RF
ablation procedure starts by placing the straight RF probe inside the tumor. The surgeon
performs this under computer tomography (CT) or ultrasound guidance. Once the probe is in
place, the electrodes are deployed and RF current is initiated. Both the surfaces areas of the
uninsulated part of the trocar and the electrodes conduct RF current. An important part of the
work is related to the construction/selection of efficient parallel preconditioners. Among
others, the parallel implementation of aggressive coarsening Algebraic Multigrid (AMG)
algorithms and adaptive time stepping are studied. MPI and MPI+OpenMP programming

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

16,0

18,0

4 8 16 32 64 128 256 512
Nred

Solution time

All Q actions

CP preproc.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 35

models are used in the developed algorithms. The work includes both, developing new
algorithms and modifying some existing ones. The parallel algebraic multigrid
implementation BoomerAMG is successfully used at the framework of the developed new
composite iterative solvers in space.

a) RF probe b) FEM mesh

Figure 22: Inserted RF Probe and the corresponding FEM mesh

Tests of the basic FEM modules on IBM BlueGene/P supercomputer in Sofia (Bulgaria) are
performed on both structured (voxel) and unstructured meshes. The results obtained during
the developments of the computer models and their parallel implementations include: (a)
creation of patient specific benchmark data based on a properly tuned segmentation of a high
resolution 3D CT (Computer Tomography) medical image of the human body including the
liver (see Figure 22 to see the inserted RF probe and the FEM mesh); (b) improved
mathematical model of the heat transfer due to the capillary flow of the blood in the hepatic
porous media.

Pad position N P Timestep [sec.] Ni t CPU in sec.

front 2 183 424 128 5.00 420 1545

front 17 467 392 1024 1.25 1128 5711

back 2 183 424 128 5.00 420 1584

back 17 467 392 1024 1.25 1136 5720

everywhere 2 183 424 128 5.00 420 1582

everywhere 17 467 392 1024 1.25 1153 5723

Table 15: Comparison on two meshes

Scalability analysis results are presented in Table 15 by increasing both the problem size (N)
and the number of processors (P) by a factor of eight. It is well seen that when the time given
for a timestep (see the fourth column in Table 15) decreases four times and therefore the
number of timesteps increases four times, the run time increase is less than four (see the last
column of Table 15). The total number of inner PCG iterations (Ni t) is less than four times
bigger for the larger problem. As a result, we solve 32 times bigger problem on eight times
more CPUs less than four times slower, which shows good scalability of the method.

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 36

4.17 Cfd-Investigations For Assessing Aneurysm Rupture Risk For Individual
Patient Using Ct Visual Diagnostics

Supported by: S. Markov, S. Radev, S. Margenov, G. Bencheva (NCSA Bulgaria)

3D Navier-Stokes equations for incompressible fluids are used for computer modeling of the
blood flow in cerebral aneurisms. Realistic blood properties are incorporated in the model.
Appropriate boundary conditions are imposed on the inflow, outflow and walls of the vessels.
The computational domain is a patient specific blood vessel with two aneurisms close to each
other. It is extracted using a proper setting of the software GIMIAS (Graphical Interface for
Medical Image Analysis and Simulation) from a set of 225 images in DICOM format
obtained after digital subtraction angiography (DSA) with application of contrast media. At
the first step, appropriate transfer function is applied to the medical data saved in vtk format.
The Visualization ToolKit (vtk) is an open source, freely available software system for 3D
computer graphics, image processing, and visualization) in order to visualize the blood
vessels and a parallelogram containing the aneurysm is cropped. Next, binary threshold
segmentation is performed with respect to the voxel intensity. The threshold interval in the
gray scale corresponds to blood presence is taken to be 195-280 (determined by the trial-error
approach) and can be additionally tuned to fit more precisely the form of the blood vessels.
Afterwards, the marching cubes algorithm and Taubin smoothing are applied to obtain the 3D
geometry. At the third stage, the main surface is extracted and after additional smoothing of
the domain, the data is stored in STL format. This file is then used in Netgen mesh generator
to create a tetrahedral mesh. The output of Netgen is converted to the file format of the FEM
(finite element method) software package Elmer. The initial mesh consists of 3500 nodes and
13000 elements (4500 elements being on the domain boundary). After using a procedure for
uniform compression the three meshes presented in Table 16 are obtained:

Mesh Nodes Elements Elements on the boundary

1 22 710 106 992 18 168

2 161 495 855 936 72 672

3 1 215 261 6 847 488 290 688

Table 16: The number of the nodes and the different type of elements use in the discretizations.

In the performed numerical tests, the preconditioned BiCGStab (Bi-conjugate gradient
stabilized) algorithm with incomplete factorization is used. The currently obtained results for
the three meshes show a good scalability for the stationary problem. The development of this
subtask is based on the recent installation of Elmer on IBM BlueGene/P supercomputer in
Sofia (Bulgaria). The output results about the CPU time in seconds for solving the stationary
Naiver-Stockes equation form the runs using 1, 2, 4, 8, 16 and 32 processors are presented in
Table 17.

Mesh
Number of processors

1 2 4 8 16 32

1 492.39 316.16 195.98 124.96 85.45 80.03

2 2 820.79 1 568.68 1 128.66 703.79 696.58

3 6 518.13 6 487.84

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 37

Table 17: CPU time for solving the Navier-Stokes equation on the IBM Blue Gene/P computer in Sofia

The reason for the empty boxes in Table 17 is that the memory of 2 GB per node of the IBM
BlueGene/P computer is not enough for solving the problem on one processor over mesh 2
and on less than 16 processors over mesh 3. The results for runs on 16 processors show that
when the size of the problem increases 7.1 times the CPU time for execution increase 8.7
times (mesh 1 to mesh 2) and that when the size of the problem increases 7.5 times the CPU
time for execution increase 9.3 times (mesh 2 to mesh 3). The conclusion which can be made
when 32 processors are used is that when the size of the problem increases 7.1 times the CPU
time for execution increase 8.2 times (mesh 1 to mesh 2) and that when the size of the
problem increases 7.5 times the CPU time for execution increase again 9.3 times (mesh 2 to
mesh 3).

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 38

5 Summary and Conclusions

The main focus of WP12 is to perform research and development on four key areas for future
multipetascale and exascale systems: Auto tuned and automatic techniques to be applied in
parallel programming model runtimes, performance tools, file systems, and scalable
numerical algorithms.

Task 12.2 (Scalable Numerical Algorithms), which covers many different algorithms,
methods, and approaches along with simple ad-hoc programs demonstrating the scalability of
the algorithms, is composed of 17 projects that evaluate different directions for improving
scalability in algorithms often encountered in relevant numerical problems. The findings and
the approaches proposed and implemented in some of these projects have the potential to be
integrated into production level numerical applications.

The five key research areas that were under investigation in this task are:

• Reducing Synchronization Overhead in Iterative Solvers
• Enhancing Parallel Hybrid Sparse Solvers for Scalability
• Topology-Awareness
• Enabling Hybridization in Heterogeneous Architectures
• Application Scalability

The projects within the deliverable are grouped according to these research areas. The
following paragraphs summarize the experiences gained from the different projects.

Two projects on “Reducing Synchronization Overhead in Iterative Solvers” try to reduce
synchronization overheads of parallel sparse iterative solvers in petascale computing settings
via two different approaches. One of them exploits asynchronous techniques that avoid
blocking behavior of synchronization operations and by permitting processors to operate on
whatever data they have, even if new data has not yet arrived from other processors. The other
one proposes and implements a single-phase row-column parallel SpMxV scheme in order to
address the two-phase communication bottleneck of the conventional row-column-parallel
algorithm that utilize successful two-dimensional sparse matrix partitioning schemes.

Two projects on “Enhancing Parallel Hybrid Sparse Solvers for Scalability” investigate
parallel hybrid sparse solvers that contain both direct and iterative components, which are
promising in terms of robustness and scalability. Both projects propose, implement and
investigate reordering sparse matrices into specific forms that enhances the scalability of the
DDKrylov and DS factorization preconditioning schemes, respectively.

One project on “Topology-Awareness” tries to avoid message contention that can be observed
in architectures consisting of thousands of processors (such as IBM Blue/Gene P) due to poor
mapping of tasks to processors. For this purpose the project proposes and implements a two-
phase framework for topology-aware task-to-processor mapping by considering both the task
interaction and processor organization graphs.

Seven projects on “Enabling Hybridization in Heterogeneous Architectures” investigate the
hybrid programming approach where MPI programming across computing nodes is combined
with OpenMP-, threading-, CUDA- and OpenCL-based programming within individual
nodes. The proposed schemes utilize the hybrid approach on enhancing the performance of
several numerical applications such as block-cyclic reduction, FFT, general eigenvalue solver,
stencil computations, direct linear system solver, molecular dynamic simulation, and Navier-
Stokes solver.

Three projects on “Application Scalability” address the elimination of parallelization
overheads encountered in specific numerical applications due to the desire for petascale-level

D12.2 Exploration of Scalable Numerical Algorithms

PRACE-2IP - RI-283493 27.08.2012 39

parallelism. The first project investigates parallelizing sequential component that arises in the
FETI method. The second and third projects mainly investigate utilization of appropriate
parallel preconditioners for the solution of FEM simulation of thermal and electrical fields in
strongly heterogeneous nonlinear media and parallel solution of 3D Navier-Stokes equations
for incompressible fluids.

