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Executive Summary 

This deliverable summarizes the work associated with task 11.2 "System Software and 
Programming Environments" in the PRACE-2IP Work Package 11 "Prototyping". The goal of 
this task is to evaluate the system software that is needed in order to have a working 
prototype. 

This deliverable covers the experience of each of the prototypes in terms of: porting necessary 
system software and programming environments to the prototype platforms; the differing 
software stacks used by the prototypes; and evaluating parallel programming environments 
and system management tools for novel computing platforms. 

 

1 Introduction 

This deliverable documents the final results of Task 11.2 of the PRACE-2IP Work Package 
11. Task 11.2 focused on prototype system software evaluation. This activity was very 
beneficial for PRACE and the involved PRACE partners since it has: 

 Evaluated system software including monitoring tools; 
 Looked at the differing software for accelerators including the software stacks and 

operating systems; and 
 Evaluated application software including schedulers, system management tools, and 

parallel programming environments. 

The three selected PRACE-2IP WP11 prototypes (as documented in D11.1.1 “Prototyping 
Project Plan”) have investigated the latest cooling and hardware technologies with a goal of 
obtaining an energy efficient system. This deliverable will go through each of the items listed 
above and provide experiences and results for each prototype.  

The main audience of this deliverable are the PRACE data centre management. Its 
dissemination level is public. 

A basic description of each of the prototypes is given in Chapter 2. Chapter 3 covers the 
different operating systems that were used. Chapter 4 contains a discussion of the software 
supporting the accelerators. Chapter 5 reviews differing schedulers. An evaluation of system 
management tools is provided in Chapter 6. Parallel programming environments are discussed 
in Chapter 7. And finally a summary is provided in Chapter 8. 
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2 Prototype Overview 

The following sections provide a basic overview of each of the prototypes. D11.1.2 
“Prototyping and Technical Evaluation Summary” has a more in depth discussion of each 
prototype, their hardware, final results, and lessons learned. 

2.1 Scalable Hybrid at CSC 

The overall goal of the Scalable Hybrid prototype is to combine a number of evolutionary 
technologies that are representative of a likely next generation multi-petaflop system. The size 
of the system is intended to be sufficiently large to provide the ability to perform scalability 
tests. The purpose of this prototype is to evaluate power efficiency, manageability, and novel 
programming environments (both in terms of performance and productivity) in a system that 
combines evolutionary innovation in packaging and cooling, interconnect and accelerator co-
processing technology as well as OS and systems management solutions. The prototype is 
also used to develop parallel hybrid applications which are highly scalable due to the novel 
interconnect architecture. The prototype is designed to be large enough to enable accurate 
performance projections into the trans-petascale regime and provide a platform for 
collaboration with the EURORA consortium. 

The system was deployed in several phases (dates of deployment in parentheses): 

 T-Platforms air-cooled prototype 
o Phase 1: 10 air-cooled nodes with NVIDIA Fermi (10/2012) 
o Phase 2: Upgrade of 5 nodes with Intel Xeon Phi (03/2013) 

 Bull liquid-cooled prototype 
o Phase 1: 45 Xeon Phi nodes and racks (11/2013) 
o Phase 2: 38 Kepler K40 (03/2014) 

The original work plan was to build a liquid-cooled system with T-Platforms. However, this 
plan was not realized due to export restrictions imposed upon T-Platforms by the U.S. Bureau 
of Industry and Security (BIS) which caused stoppage of supply of key components to the 
company until the end of 2013.  

Bull was selected to provide the final, liquid-cooled prototype as they could build a similar 
system within the timeframe of the project.  

The initial test system is a T-Platforms system that consists of the following elements: 

 2 blade chassis, each with 
o 4 x 1600W PSU 
o Management processor and integrated management switch 
o 3 air-cooling modules with 120mm coaxial fans 

 10 T-Blade V-200F blades, each with 
o  2*Intel Xeon E5-2640 CPUs (Sandy Bridge) 
o 16 GB DDR3 Memory 
o 10 NVIDIA Tesla M2090 GPGPUs 

5 replaced by Intel Xeon Phi 5110P in Phase 2 

The system contained a T-Platforms software stack based on xCAT provisioning and SLURM 
batch job queuing systems. The system is connected with FDR InfiniBand using a single 
switch provided by CSC. Each blade and chassis has comprehensive power and temperature 
monitoring facilities accessible via IPMI and a Web interface. 

The prototype is located in the CSC facility in Espoo and will continue to be used for system-
level experiments such as testing new versions of software stacks. This will enable the 
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environment on the large-scale prototype to be stabilized for application development and 
porting work. 

2.2 EURORA at CINECA 

The HPC prototype system installed at CINECA is a new concept of HPC cluster cooled by a 
“hot” water cooling system. The machine is able to work at a higher temperature than 
traditional clusters. This has an interesting outcome for cooling power consumption. The 
energy used for the air conditioning systems, or to cool down the water, is lower than the 
energy used for standard water-cooling of a cluster with the same computing power. 
Furthermore, the direct-current supply lowers the power needs of the system. 

EURORA is a single rack cluster and implements Intel Xeon Sandy Bridge CPUs in 64 
double-socket nodes for a total of 1024 cores. The internal network is made of one FPGA 
(Altera Stratix V) per node, an IB QDR interconnect, and a 3D torus interconnect. Thanks to 
the innovative cooling and system engineering, EURORA was ranked in a top position of the 
Green 500 chart1 in June 2013, with a sustained performance of 3,150 MFlops/W. Intel Xeon 
Phi nodes (MIC nodes) are equipped with Intel E5-2658 Xeon Sandy Bridge with a clock of 
2.10GHz; NVIDIA K20 nodes (GPU nodes) are equipped with Intel E5-2687W Xeon Sandy 
Bridge with a clock of 3.10GHz. Both GPU and MIC nodes have 2 accelerators per node. The 
operating system running on EURORA is Centos 6.3.  
The cluster is equipped with 

 Intel Xeon E5-2687W sandy bridge processors for a total of 1024 cores hosted in  

 64 computing nodes capable of delivering 3,150 megaflops per watt of sustained 
performance. 

Each computing node is equipped with: 

 16GByte DDR3 1600MHz  

 2 NVIDIA K20 

o In half of the nodes, to be substituted (end of June 2013) with Xeon Phi cards 

 1 FPGA (Altera Stratix V) 

 IB QDR interconnect 

 3D Torus interconnect 

 160GByte SSD 

2.3 Hybrid CPU/GPU at PSNC 

The goal of the CPU/GPU prototype was to investigate the changes AMD introduced in the 
new series of GPU units. The research focused on the possibility of implementing these 
solutions in HPC as an alternative to currently used solutions. In addition, during the 
implementation phase it was possible to use warm-water cooling for both CPU and GPU. In 
the test cluster, the interworking of immersion cooling with GPU cards was observed. 

CPU/GPU is a single rack cluster built by Iceotope and funded by PRACE-1IP and PRACE-
2IP. It hosts 40 nodes running dual Xeon Sandy Bridge 2620 clocked at 2.0GHz and 2.3GHz 
when using turbo mode on all cores. Each node is equipped with 32GB ram, dual 1Gbit eth 
links, and InfiniBand QDR. One node is connected to a dedicated 10TB SSD matrix exposed 
to the nodes using Lustre. 6 nodes are connected to slave modules that host 2 AMD S9000 

                                                 
1 http://www.green500.org/ 
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GPUs each. Ubuntu 12.04 server is the selected operating system. In addition, a machine with 
Richland APU AMD A4-5300 was made available. 

The system consists of two 42U racks. One is hosting the computing system with the internal 
cooling loop. The second rack is used for the dedicated external cooling loop hydraulics and 
control. The servers are inserted into 6 chassis (3 on each side of the rack), 8 modules in each 
chassis. Each chassis may be powered by two redundant PSU modules. In the rack, only 
switches and PDU units are cooled by air. 

The compute rack consists of: 

 2xGbit ethernet switches 

 2xQDR Mellanox InfiniBand switches 

 2x power distribution units that powers up 6 PSU units (one powering 8 modules) 

 34*modules with: 

o 2*Intel Xeon Xeon(R) CPU E5-2620  

o 32GB DDR3 1600Mhz memory 

o One InfiniBand FDR Mellanox chip, 2xGbit eth ports 

o One 60GB SSD HDD 

 6*modules with: 

o 2*Intel Xeon Xeon(R) CPU E5-2620  

o 64GB DDR3 1600Mhz memory 

o One InfiniBand FDR Mellanox chip, 2xGbit eth ports 

o One 60GB SSD HDD 

o Dual PCI-e x16 external uplink ports 

 6*modules with: 

o 2*AMD S9000 GPU  

o Dual PCI-e x16 external uplink ports 

 2 redundant heat exchangers 

 2 redundant pumps 
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3 Operating System 

3.1 Linux 

3.1.1 Experiences from Scalable Hybrid 

The only options for having robust support for both Intel Xeon Phi, NVIDIA GPGPUs and 
Mellanox Infiniband were SLES and RHEL. As there was a familiarity with RHEL and it is 
used in the other clusters, CentOS, a free variant of RHEL was chosen. One issue was the 
selection of the version number. Due to limited support for the latest version of 
CentOS/RHEL (6.5 at the time) in the Xeon Phi software stack, CentOS version 6.3 was used. 
At the time of writing, support was also present for the latest version.  

One lesson learned is that the accelerator drivers and software stacks tend to have a lag from 
when they have certified support for the latest OS and kernel versions. This causes problems 
if there is an urgent need to upgrade (for example due to a security vulnerability). In general, 
the accelerator vendors should work closer with the OS suppliers during the beta testing of a 
new OS version to ensure that their products are ready and certified when the new OS version 
is released. Furthermore, vendors should test their accelerator drivers against any major 
interim kernel security updates as soon as they are released. The accelerators should not cause 
administrators significant constraints in keeping their systems up-to-date. 

3.1.2 Experiences from EURORA 

For EURORA, CentOS was chosen as it was closer to the preferred distribution Red Hat. 
EURORA had no issues with the operating system aside from ensuring that the OS had the 
current version. A learned lesson is that fixes to the kernel (especially security related) should 
be implemented despite the fact that the machine is a prototype. 

3.1.3 Experiences from CPU/GPU 

The selection of the Linux distribution for CPU/GPU was a simple one: it had to be on the 
supported list for the FirePro cards which left either Ubuntu or Red Hat releases. 

The Ubuntu server was chosen because the preferred distribution is Debian and Ubuntu is 
debian-based but more up-to date and has all proprietary drivers included in the distribution 
repositories. All of the installation and set-up was performed by the PSNC team. 

The overall experience was very good, the system is stable and there were no compatibility 
issues. The update procedures were smooth and non-disruptive even for major release 
changes (12.04 Long Time support to 14.04 and then to 14.04 LTS). All required packages, 
including monitoring and resource management, were included in the repositories so there 
was no need for manual installation of 3rd party packages. 

The only package that was installed from outside the repositories were FirePro drivers. There 
are official AMD drivers installed in the repositories but the refresh cycle of the drivers was 
not sufficient as only stable versions of the drivers are allowed to be installed in the official 
repositories. Some of the features that were to be tested were introduced in the beta-versions 
of the drivers so it was decided to manually select and install these packages. 

Because it was decided not to use the SSD drives installed in the servers to boot the machines, 
a NFS compatible release of Ubuntu was prepared. This was the only challenging task in the 
entire installation procedure. Because Ubuntu is a Debian-based distribution, all manuals and 
HOWTOs available on the Internet were almost 100% compatible and it was possible to use 
them directly. 
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4 Software Stack 

4.1 Challenges for Accelerators 

4.1.1 Experiences from Scalable Hybrid 

Both the Xeon Phi and the Tesla cards have drivers and associated software stacks which are 
certified to operate with a specified set of certified operating systems (OS). The certification 
process usually is such that there is a slight gap (2-6 months) when a new OS version is 
released to when the official support for it arrives. Typically, this happens with the next major 
or minor release of the software stack. In case of urgent kernel updates, for example due to 
security exploits, it is possible to recompile the driver for a newer kernel but there is a slight 
risk that unexpected bugs may arise.  

At the time of writing, the software stacks support the following OS versions: 

 Kepler/CUDA 6: RHEL 5.x/6.x, Fedora 19, SLES11, Ubuntu 12/13, L4T, OSX 
10.8/10.9, Windows XP/Vista/7/8.1 

 Xeon Phi/MPSS 3.2: RHEL 6.x, SLES 11, Windows 7SP1/8 Enterprise, Windows 
Server 2012/2013 

There are various unofficial guides available online to use the cards on unsupported operating 
systems but this often requires manual work and may introduce bugs. There are also other 
dependencies which can cause issues, especially if integrating accelerators to an existing 
cluster with an established software stack.  

OpenFabrics (OFED) and MPI 

Both the Tesla and Xeon Phi have developed facilities to communicate efficiently over the 
InfiniBand interface with the goal of providing Remote Direct Memory access between cards 
on different hosts. For Xeon Phi there is the SCIF virtual InfiniBand interface and for Tesla 
there is GPUDirect RDMA.  

The OpenFabrics (OFED) software stack provides a common layer between the upper-level 
interfaces such as MPI and the low-level drivers for fabrics using Remote Direct Memory 
Access (RDMA). The OFED stack is used in practically all the production clusters today.  

During its evolution, the OFED stack has diverged into the standard OFA (Open Fabrics 
Alliance) OFED and vendor-enhanced stacks from Mellanox and Intel (formerly QLogic). 
Furthermore, there are two major versions used widely today, 1.5 and 2.0, which are not 
compatible. The former is typically the standard version shipped with many OS suppliers. 

Typically the accelerators only support a specific subset of the OFED versions. In addition, 
the MPI libraries (typically OpenMPI, MVAPICH2, and Intel MPI) only support features 
such as high-performance RDMA mode with even a smaller subset of OFED and MPI 
libraries. 

4.1.2 Experiences from EURORA 

With the Intel MIC coprocessors being based on x86-compatible multiprocessor architecture, 
no critical issues concerning their configuration and integration with the operating system 
arose in the set-up of the production environment of EURORA. The standard Intel software 
suite provides, in fact, support to configure and use the MIC coprocessors through the MPSS. 
It was, however, crucial at the start to upgrade the Intel software stack to the 2.1 release in 
order to improve the stability of the nodes with the MICs. 
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The development environment for MICs is provided on EURORA by the standard Intel suite 
Cluster Studio XE 2013. Apart from the MPSS installation, no further package is required for 
the code development on the MIC cards.  

The only, additional, post-installation operation required by the MICs is the building and the 
installation of the SEP drivers on the MICs for the VTune Amplifier for performance 
analysis. Though not equipped with MICs, the software stack has been made available on 
EURORA front-end node as well, in order to allow the compilation of MIC codes without the 
need to log into a compute node hosting the coprocessors.  

The Intel suite allows the compilation of codes to be run with the MIC offload attributes and 
the cross-compilation of MIC native codes. In both cases, the setup of the proper MIC 
environment requires users to source the compilervars.sh script provided by the Intel suite. 
The sourcing of the script is also required before executing an offload program on a node 
hosting the MIC cards. For the execution of MIC native codes, once logged on the MIC it is 
instead necessary for the users to manually set the LD_LIBRARY_PATH to include the 
directory with the Intel MIC libraries (and of any other needed library such as, for instance, 
the Intel MKL). MPI applications require in addition the setting of the I_MPI_MIC 
environment variable and the standard use of IntelMPI libraries through the compiler MPI 
wrappers. 

4.1.3 Experiences from CPU/GPU 

The AMD FirePro series is a product line targeted at the professional community working 
with 3D graphics or CAD software. The S9000 is the first generation of AMD GPU units that 
were designed to offload the computational part of the graphics generation from the “normal 
GPU”. Therefore, it was not meant to work as a stand-alone unit. The software stack provided 
by AMD reflected this idea. The drivers are part of the Xorg software stack. Even though the 
cards did not have video output a full X-windows stack is needed to be operational which in 
turn caused installation and stability issues (for further information please see Chapter 4 of 
D11.1.3 “Final Prototyping and Technical Evaluation Summary”). The S9000 cards support 
only OpenCL. Unfortunately, the majority of scientific codes written with GPU acceleration 
are written using CUDA and are, therefore, NVIDIA GPU specific. Production level OpenCL 
codes ran well overall. 

Problems arose during application development. One reason being that the card does not 
automatically clean-up left over memory allocations. If an application didn’t release the 
memory and/or terminated unexpectedly, the card would freeze and force a reboot. At times it 
took multiple runs of the application, in which memory was not released, before the card 
would freeze. From the way that the card driver was written there was no way of releasing the 
memory outside of the application. Handling of such situations was better in each subsequent 
version of the driver but still the card often needed to be rebooted. 

4.1.4 Porting Example - CRANK 

As an example for an application, we ported CRANK to Scalable Hybrid CRANK is a pipeline 
for an automatic solution of protein structures from X-ray crystal diffraction data. To solve 
the X-ray crystallography phase problem, CRANK uses "experimental" phase information 
from anomalous diffraction signals of heavier atoms. The phase information is extracted from 
the data and any prior information using advanced maximum likelihood distributions are 
combined with Fourier recycling between the crystal space and the diffraction reciprocal 
space. The procedure consists of several steps using different programs employed by CRANK 
(such as BP3, Multicomb, and Refmac) in which similar maximum likelihood functions 
are used. The speed of the pipeline is heavily dependent on the efficiency of the maximum 
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likelihood functions evaluation and the speed of the Fourier recycling. As a first step, an 
attempt was made to improve the speed of the BP3 function evaluation by CPU 
parallelization and algorithmic improvements. While this was a successful step, it was not 
possible to generate a Xeon Phi version due to CRANK dependency on the CCP4 library. 
While the library source code can be downloaded, it did not compile even for CPU; the 
compiler generated cryptic compilation errors that were indecipherable. In addition, CCP4 
also does not formally support Xeon Phi and the recommended use of the library is to 
download binary files which were only provided for x86(-64) target. 

Given these issues, it was decided to not proceed any further, and instead make a claim that 
CRANK requires a substantial amount of porting efforts for Xeon Phi due to its dependency. 
The port for GPU is likely to be a major undertaking due to the low level link to the CCP4 
library which has no GPU version. Nevertheless, with sufficient funding and time, it is 
possible that this task can be successfully accomplished. 

Despite these obstacles, CRANK was both algorithmically optimized and the original code 
parallelized and the results are shown in the following table: 

	

	 Application	runtime	(seconds)	

	 1	core	 8	cores	

CPU	(original)	 60	 ‐‐‐	

CPU	(tuned)	 35	 6	

Table 1 CRANK Runtimes 

4.2 The LUA Module System 

The module command (environment-modules package) can be used to manage different 
software and library versions in a simple way. In the last decade it has become the de facto 
standard for managing application-specific environment variable settings in HPC systems. 
However, there are some limitations on how the command can deal with complex 
dependencies. Also the module command itself had a few outstanding bugs that crashed the 
user’s session if wrong module files were loaded. It has seemed that module environments 
had become an orphaned project without any active development, which has further 
encouraged a search for alternatives. 

It was decided to include our latest system upgrades the Lmod module system that was 
developed by Robert McLay at Texas Advanced Computing Center (project home page at 
TACC: https://www.tacc.utexas.edu/tacc-projects/lmod). TACC module system is a 
reimplementation of the original Tcl environment modules with several new features and 
different internal logic to ensure that the dependencies and conflicts between different 
compilers and MPI libraries are always forced. Lmod is implemented using the Lua scripting 
language and is under active development. From the end-user’s perspective most common 
module commands look similar, but there are also major differences on the way how 
commands behave. 

One additional feature of the Lmod system, that is useful with a system having a 
heterogeneous setup with ordinary and accelerator nodes, is “application properties”. System 
administrators can add different properties to module files to mark which modules are 
compiled with support (for example GPUs or Xeon Phis). These properties can, for example, 
be used to mark which MPI libraries are compiled with GPUDirect support. We expect that 
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this will make the Lmod more powerful in a complex accelerator-enabled computing 
environment. 

4.3 Bolt – AMD APU’s 

Bolt provides an STL (Standard Template Library) compatible library of high level constructs 
for creating accelerated data parallel applications. Code written using STL or other STL 
compatible libraries (example: TBB) can be converted to Bolt in minutes. In its open-source 
debut, Bolt supports C++ AMP in addition to OpenCL™ as underlying supported compute 
technologies. With Bolt, the kernel code to be accelerated is written in-line in the C++ source 
file. No OpenCL or C++ AMP API calls are required since all initialization of and 
communication with the OpenCL or C++ AMP device is handled by the library. Bolt requires 
significantly fewer lines of code and less developer effort. Bolt is straightforward to use and 
includes comprehensive documentation for the library routines, memory management, control 
interfaces, and host/device code sharing. 

In addition to adding support for C++ AMP and CPU-only systems, Bolt also includes an 
array of Bolt capabilities by including support for common compute-optimized routines 
including sort, scan, transform, and reduce operations. 

On an APU machine, the Bolt runtime library (based on the number of iterations of the given 
routine), tries to put the computation either on the GPU or CPU side of the APU. An 
implemented stream benchmark, using this library, proved to be very straight-forward, 
however, due to the dynamic switching between CPU and GPU cores the consistency of the 
result was very low. 

The second test application was a shortest route finder implemented with a genetic algorithm. 
We used a mixture of library functions (like sorting functions) and self-written chunks of 
OpenCL code. The code worked but, because of lack of full HSA hNUMA implementation, 
the performance was not at the expected level. 

The 0.1 version of the Bolt library that was tested worked only in a Windows environment 
and was not stable. 

4.4 Heterogeneous System Architecture Standard 

The HSA (Heterogeneous System Architecture) Foundation, which is a non-profit industry 
standards body, seeks to create applications that seamlessly blend scalar processing on the 
CPU, parallel processing on the GPU, and optimized processing on the DSP via high 
bandwidth shared memory access (which should enable greater application performance at 
low power consumption). The HSA Foundation defines key interfaces for parallel 
computations utilizing CPUs, GPUs, DSPs, and other programmable and fixed-function 
devices, thus supporting a diverse set of high-level programming languages and creating the 
next generation in general-purpose computing. The HSA architecture defines a set of 
hardware properties that have to be supported to be compatible with the HSA model. Being 
compatible means that the device (e.g. a GPU core) can be treated in the system as a 
specialized, general purpose core. As a result, HSA compatible compilers (C, C++, C++11, 
Fortran, Python, etc.) can directly generate a HSAIL code that can be executed on different 
kinds of devices. Starting from 2012, the AMD GPU units (both APU and discrete GPU) 
started implementing features required by the HSA standard. These features were utilized by 
higher level languages (e.g. OpenCL zero copy feature) but the changes were incremental, 
each generation presented a richer set of features. Until June 2014 the operating system of the 
HSA software stack was tightly bound to the graphics drivers which did not allow direct 
access to the HSA API. In June 2014 the first kernel module driver for AMD GPUs and APU 
units was included in the official Linux kernel source tree making writing a HSA compatible 
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code using dedicated libraries possible. The compiler support in the GCC compiler is 
currently under development and the first working version of the compiler, which will allow 
OpenMP parallelized applications to run on GPU cores, is planned to be available in 2015. 

5 Resource Managers and Schedulers 

5.1 Scheduler for Scalable Hybrid 

The SLURM (Simple Linux Utility for Resource Management) is a free and open-source job 
scheduler system. SLURM development began in Lawrence Livermore National Laboratory 
in 2002. In the last decade its popularity has increased steadily and in the latest Top500-list 5 
of the top 10 supercomputers used SLURM.  

SLURM has a plugin interface which allows for new functionality to be added in a simple 
way as independent shared libraries. Due to architectural differences, the mechanism to 
support Xeon Phi and NVIDIA Tesla are different from each other.  

The key component of the SLURM support on NVIDIA GPGPUs is the Generic Resource 
(GRES) –plugin called gpu. This controls that the GPUs are allowed for each job and no 
oversubscription of the GPUs will accidentally happen. 

1. User submits a job with a request for 2 GPUs (--gres=gpu:2) 
2. SLURM waits until there is a node with 2 GPUs available 
3. SLURM starts the job and sets the CUDA_VISIBLE_DEVICES environment variable 

to point to the 2 free GPUs 
4. The 2 GPUs are now reserved 

To configure the system, the gres.conf configuration file must be added to the SLURM 
configuration directory. The file contains a description of each GPU resource and its 
corresponding device file.  

Additionally one can include a CPUs parameter which controls what specific core in the 
system may use this resource. This is beneficial, for example, on a dual socket system where 
two GPUs are connected to different CPUs. With the parameter set properly, it is guaranteed 
that a process bound to a specific core will use the local GPU and not the one in a remote 
socket. 

Below is an example gres.conf configuration: 

Name=gpu File=/dev/nvidia0 CPUs=0-5 
Name=gpu File=/dev/nvidia1 CPUs=6-11 

One notable caveat in the configuration syntax is that the gres.conf file must be in the 
configuration path of SLURM, which on many systems is shared to ensure coherence of the 
main configuration (slurm.conf) –file across cluster nodes.  

If all the nodes have an identical GPU configuration it is ok for gres.conf to be identical but 
for clusters also containing non-GPU nodes, this causes SLURM to halt. It is possible to work 
around this by having the gres.conf in the shared directory be a symbolic link to a local file 
that has a node-specific definition of the GPU resources. For example: 

/share/slurm/gres.conf -> /etc/gres.conf 

When the initial Scalable Hybrid prototype system from T-Platforms arrived, there was no 
support for the Xeon Phi in SLURM. In order to ease further application work initial support 
was developed for SLURM on the Xeon Phi during this project. The support was introduced 
by us to SLURM 2.5, released in November 2012 and has after that been refined by us as well 
as other SLURM open source community members. 
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During the development phase, three different mechanisms were experimented for supporting 
the Xeon Phi: 

 GRES plug-in (offload model) 
 Mpirun-mic helper script (native and symmetric model) 
 Native SLURM on Xeon Phi (native and symmetric model) 

The following sections cover each model in detail. 

The mic GRES plugin functions in a fairly identical way as the GPU GRES plugin discussed 
previously.  

For example: 

1. User submits a job with a request for 2 Phis (--gres=mic:2) 
2. SLURM waits until there is a node with 2 Phis available 
3. SLURM starts the job and sets the OFFLOAD_DEVICES environment variable to 

point to the 2 free Phis 
4. The 2 Phis are now reserved 

The GRES plugin only works with the Xeon Phi offload programming model including LEO, 
OpenMP4, MKL offload and OpenCL.  

The mpirun-mic helper script, found in SLURM’s contrib directory, makes it considerably 
easier to launch serial Xeon Phi jobs or MPI jobs utilizing either Phis only or spanning Phis.  

Below is an example of running a job on a system with 2 Phis per host, using: 

 16 MPI tasks per host node 
 2 threads per host task 
 60 MPI tasks per Xeon Phi 
 4 threads per Xeon Phi task 
 CPU binary name: ./impi_native_hybrid 
 Xeon Phi binary name: ./impi_native_hybrid.mic 

export MIC_NUM_PER_HOST=2 
export OMP_NUM_THREADS=2 
export MIC_OMP_NUM_THREADS=4 
mpirun-mic -v -x 16 -c ./impi_native_hybrid -z 60 \ –m 
./impi_native_hybrid.mic 

The aforementioned mpirun-mic helper script is run on the host and tasks are launched on the 
Xeon Phi via ssh. This approach has a number of drawbacks:  

This causes the tasks on the Xeon Phi to be “loosely integrated” meaning that they are not 
under direct supervision and control of the SLURM launcher daemon. Due to this, job 
accounting does not work and stray processes may be left on the Phis as “zombies” as there is 
no strict cleanup if the job exits irregularly. 

Furthermore, the syntax of the mpirun-mic is still far from being completely user friendly.  

The ideal situation would be that the Xeon Phi native MPI tasks could be defined on the Xeon 
Phi just as the ones on CPU hosts. 

5.1.1 Native SLURM Daemon 

For these two reasons, porting the SLURM daemon natively to the Xeon Phi was also 
explored. The work itself was fairly time consuming as many dependent libraries were not 
available for the Xeon Phi and had to be cross-compiled.  
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The ported daemon worked as expected on the Xeon Phi and each Xeon Phi looked like a 
node on the cluster, only with a very large amount of cores. This also makes it possible to run 
different jobs on the host node CPUs and the Xeon Phi. This is potentially a good way to 
maximize the cluster utilization if there is a mixed workload of CPU and native Xeon Phi jobs 
running on the cluster. More performance studies are needed how this affects the performance 
of individual jobs running in such mixed nodes in practice.  

Based on our experiences, the native SLURM daemon currently has three major drawbacks 
which should be addressed:  

1. The mic GRES plugin on the hosts is not aware of the native daemon on the Xeon Phi. 
Thus if offload jobs are running on the host daemon and native jobs sent to the Xeon 
Phi daemon, it is likely that Phis get oversubscribed with both offload and native 
workload. Fixing this will likely require patching of the SLURM scheduling system. 

This is not a problem if the cluster runs only native and symmetric jobs or the offload 
jobs are segregated in separate set of nodes. However, in a cluster where jobs are 
expected to run with all Xeon Phi usage models on all nodes, this is a critical issue. 

2. Being able to enforce affinity between hosts and Phis is not simple. By default one 
may end up reserving CPU cores and Phis from different hosts across the cluster. 
While on CPU hosts this is less of an inconvenience, the reduced bandwidth and 
increased latency of Xeon Phi-to-Xeon Phi communication makes it more critical to 
have all the tasks inside the minimum amount of hosts.  

3. The memory consumption of the daemon is around 200-300MB. Due to the limited (8-
16GB) memory on the Xeon Phi, this is already a considerable amount.  

We found that it is possible to enforce affinity by setting up the topology plugin and defining 
each node and it’s MICs as being under a single “switch”. Example from a topology.conf file: 

SwitchName=n2 Nodes=node02,node02-mic0,node02-mic1 

SwitchName=n3 Nodes=node03,node03-mic0,node03-mic1 

By default the scheduler will try to place each job into the same node if possible. It is also 
possible to force the jobs into a limited set of switches (queue if there is none available) using 
the --switches flag in salloc and sbatch.  

5.1.2 Conclusions 

SLURM currently supports both GPUs and technically all the different usage models of the 
Xeon Phi.  

While GPU support is fairly simple to use and implement, Xeon Phi and its several usage 
modes makes the usage and implementation more complicated. At the moment it is possible 
to use the GRES plugin for offload jobs and the mpirun-mic wrapper scripts for native and 
symmetric runs.  

A native SLURM daemon is a better solution than the wrapper scripts, but there are several 
technical issues to solve: 

 Reduction of memory consumption 
 Awareness of the mic GRES plugin on the host side and vice versa 
 Simpler way to enforce host-Xeon Phi affinity 

5.2 Scheduler for EURORA 

This section will report and discuss the features and limitations of Altair PBSPro in terms of 
scheduling GPU and MIC jobs on the EURORA prototype. 
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PBS Professional (PBSPro) is a resource management system developed by Altair. It provides 
a common way, using jobs and queues, to deliver computing power to applications. Users 
submit jobs in the form of shell scripts that will run on the allocated resources. PBSPro 
provides support for standard (CPU, memory, walltime, etc.) and generic resources as well. 
Administrators can define a new generic resource describing its type (integer, float, Boolean, 
or string), its kind (consumable/non-consumable, static/dynamic) and its context (server, 
queue or node). This approach makes it easy to define almost any type of resource but it lacks 
in their control and usage tracking. As opposed to known typed resources such as cputime or 
memory for which PBSPro can, for example, enforce resource usage limits, for non-typed 
resources this must be implemented with other tools and/or custom scripts written ad hoc by 
system administrators. In this paper, the generic resource features for GPUs and MICs of 
version 12.2 of Altair PBSPro that is running on EURORA is discussed. 

5.2.1 NVIDIA GPU Scheduling 

On EURORA, a GPU is a consumable integer resource defined at node level: each GPU node 
has a resource ngpus=2. For scheduling purpose this configuration is acceptable: a job J 
requesting a GPU will be scheduled to one of the GPU nodes, the node allocated to job J will 
have its value of ngpus reduced by 1 and will be considered for scheduling only to other jobs 
requesting a single GPU, until job J is completed. However, because PBSPro does not provide 
a way to control the usage of the GPUs of the node allocated to job J, some issues arise: 

 job J can use any GPUs of the node (0, 1 or both); and
 job J is not guaranteed the exclusive usage of the allocated GPU. Any other single 

GPU job scheduled to the same node of job J may use the same GPU of job J (or both 
the GPUs of the node).

From this point of view this configuration provides a very basic support of special resources 
such as GPUs or MICs. 
An advanced configuration can be achieved using PBSPro virtual nodes (vnode). A vnode is 
an abstract object representing a set of resources which form a usable part of a machine. In a 
vnode based configuration each natural GPU node (nodeX) has two vnodes (nodeX-gpu0 and 
nodeX-gpu1) with ngpus=1 each representing the GPU0 and the GPU1 of the natural node. 
Since each vnode can be managed and scheduled independently, this configuration has the 
advantage of making it possible to identify which GPUs are assigned to a given job. For 
example, if the scheduler allocates the vnode nodeX-gpu0 of the nodeX to job J of the 
previous example, job J should be using GPU0 of nodeX. However, because PBSPro does not 
provide a way to bind the job to the GPU(s) assigned by the scheduler this configuration still 
suffers from the issues described above. 

An additional possibility, tested at WCSS, is the control of device access via unix rights. By 
giving the job owner exclusive read/write access during prologue (setting 600 rights to a 
device) and removing them after job completion (epilogue), it can be guaranteed that one user 
has exclusive access to a device. But another job belonging to the same user could in fact also 
access the device. The use of cgroups might address this issue but this solution has not yet 
been tested. 

Starting from CUDA version 3.1, NVIDIA provides a solution to address this scheduling 
issue. It is based on the environment variable CUDA_VISIBLE_DEVICE used for restricting 
execution to a specific device. Setting this variable to a comma-separated sequence of integers 
only the devices whose index is present in the sequence are visible to CUDA applications and 
they are enumerated in the order of the sequence. 
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Unfortunately this solution cannot be implemented on PBS-like resource management 
systems, such as PBSPro, because the environment of a PBS job is the same for all the 
processes launched within the job script. This means that a two processes job scheduled to use 
nodeX-gpu0 and nodeY-gpu1 could not have different values of this variable for processes 
running on nodeX and nodeY, where it should be CUDA_VISIBLE_DEVICE=0 and 
CUDA_VISIBLE_DEVICE=1, respectively. It would only work in the unlikely event where 
the same GPU index (e.g. GPU0) is selected on all of the nodes assigned to a job. 
Not all resource management systems are affected by this issue. For example, the Simple 
Linux Utility for Resource Management (SLURM) provides a specific generic resource 
plugin for GPUs that sets the correct environment for each job process to determine which 
GPUs are available for its use on each node. 

An alternative to the variable CUDA_VISIBLE_DEVICE that may work with PBS-like 
systems was developed by the National Center for Supercomputing Applications (NCSA) in 
2009. The CUDA wrapper library is implemented as a preloaded library. As its name 
suggests, the library intercepts the device allocation calls to CUDA in order to virtualize the 
natural GPU devices and provide NUMA affinity mapping between CPU cores and GPU 
devices. By using an appropriate job prologue script, the administrator can set up the library 
to make only the allocated GPUs visible to the processes of a job. This solution can be 
implemented with PBSPro and it is in a testing phase on EURORA. However, it seems that 
this project is no more active or at least its last modification time dates back to 2012. 

5.2.2 Intel MICs Scheduling 

Considering the common features of almost any resource manager system, Intel MIC 
coprocessors are easier to manage than GPUs because they are based on x86-compatible 
multiprocessor architecture. The Intel Manycore Platform Software Stack (MPSS) provides 
the necessary software to configure and run the MIC cards. The MPSS command micctrl is 
used to configure the MIC kernel, file system, and network as well as boot, reset, shut down, 
and get the status of the MIC cards. By using this command in the prologue/epilogue script of 
the resource manager it is possible to switch on/off the MIC cards required to run a job. 

On EURORA, each MIC natural node (nodeX) has two vnodes (nodeX-mic0 and nodeX-
mic1) representing the two MIC cards. PBSPro is configured to assign a generic resource 
nmic=1 to each vnode nodeX-micY (Y=0,1), the corresponding natural node nodeX having 
nmics=2. Jobs requesting MICs are scheduled to MIC vnodes making it possible to identify 
the MIC cards assigned to a job on each allocated node. Using the micctrl command, it is 
possible to set up and boot the MIC cards on each node before job execution (prologue) and 
to reset them after job completion (epilogue). 

On EURORA, every MIC card is switched off by default. Those selected for a job are 
switched on when a job begins its execution and they are switched off again after the job is 
completed. For example, suppose a user U of group G submits a job requesting two MICs and 
the scheduler assigns vnodes nodeX-mic0 and nodeY-mic1 to the job. Before the job begins 
its execution on nodes nodeX and nodeY, the prologue script running on the two natural 
nodes executes the following operations to set up the assigned MICs (MIC0/MIC1 on 
nodeX/nodeY): 

1. it adds user/group credentials to the MICs filesystem (e.g. on nodeX, micctrl --
useradd=U … mic0 & micctrl --groupadd=G … mic0) 

2. it boots the MIC cards waiting for completion (e.g. on nodeY, micctrl --boot --wait 
mic1) 

Once the job is completed the epilogue script restores the default configuration: 
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1. it resets the MIC cards waiting for completion (e.g. on nodeY, micctrl --reset --wait 
mic1) 

2. it removes user/group credentials from the MICs file system (e.g. on nodeX, micctrl --
userdel=U mic0 & micctrl --groupdel=G mic0) 

This approach ensures that only processes belonging to the job of user U can access the MIC 
cards assigned to that job. Moreover, it reduces the power consumption of a node by about 
210 Watts, when both MIC cards are powered off. However, there is a major drawback. We 
have measured the time needed for booting (resetting) a MIC card to be approximately one 
minute.  

Since the hook is very simple, its Hook_execution_time depends on the MIC 
booting/resetting time only. In the presence of hooks, PBSPro schedules jobs in a serial way, 
which means that, given N pending jobs requesting MICs, that could be assigned free 
resources at a given time, the Nth job will have to wait (N-1)*Hook_execution_time before 
being dispatched to the selected node/s! This problem has been observed on a cluster with 64 
nodes, and it is to be expected to be accentuated on a cluster with a higher number of nodes. 

5.3 Scheduler for CPU/GPU 

The prototype is using SLURM as a scheduler. It supports both scheduling based on generic 
resource types (NIC, CPU, and memory) and is also capable of using GPUs as a resource. 40 
nodes are configured as a single queue with no distinct GPU queue. A user can however 
specify that he/she wants to use 0, 1 or 2 GPUs when submitting the job. Currently it is not 
possible to share GPUs between different jobs. Each job is assumed to have exclusive access 
to its GPU card or cards.  

The scheduler has been configured in a way that unused nodes are put to sleep after a 
configured period of time and are waken up when additional resources are needed. Nodes 
with GPU units are not being shut down because in some cases GPU drivers handle the wake-
up procedure in an incorrect way causing system freeze.  

In addition the queue system has been provided with customized prolog and epilogue scripts 
that adjust settings of the cooling loop when jobs are starting or finishing. 

6 System Management Tools 

6.1 Power Data Aggregation Monitor (PowerDAM) 

Power Data Aggregation Monitor (PowerDAM) 234 developed at Leibniz Supercomputing 
Centre (LRZ) is a unified energy measurement and evaluation toolset. It is aimed towards 
collecting and correlating energy consumption-relevant data from different aspects of the 
High Performance Computing (HPC) data center. This collected data includes environmental 
information (e.g. outside temperature, humidity level, etc.), information on site infrastructure 

                                                 
2 Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and Petra Piochacz. Towards a unified energy efficiency 
evaluation toolset: an approach and its implementation at Leibniz Supercomputing Centre (LRZ). ICT4S 2013: Proceedings 
of the First International Conference on Information and Communication Technologies for Sustainability, pages 276-282, 
http://dx.doi.org/10.3929/ethz-a-007337628 , 2013. 
3 Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Monitoring power data: A first step towards a unified 

energy efficiency evaluation toolset for HPC data centers. Environmental Modeling & Software, Elsevier, volume 56, pages 
13‐26, http://www.sciencedirect.com/science/article/pii/S1364815213002934 , 2014. 
4 Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. A Path To Energy Efficient HPC Datacenters. 
HPCWire, http://www.hpcwire.com/2013/10/29/path-energy-efficient-hpc-datacenters/ , 2013 
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(e.g. cold and warm water cooling loops, etc.), information on IT systems (e.g. compute node 
power, load, temperature, etc.), and information on running applications on those IT systems 
(e.g. starting and ending time stamps, utilized compute nodes, etc.). This data is then 
correlated in order to better understand the interactions between different components of the 
data center and to assess the current state of Key Performance Indicators (KPIs) (such as: 
Energy-to-Solution (EtS)56 of applications; Power Usage Effectiveness (PUE); Energy Reuse 
Effectiveness (ERE); Water Usage Effectiveness (WUE); etc.7) for identifying the 
improvement areas and verifying the success of applied optimizations. Figure 1 illustrates the 
overview of the PowerDAM toolset. 

6.1.1 PowerDAM at PSNC 

PowerDAM was deployed as a part of the software monitoring stack installed on the PSNC 
prototype. It was meant to be used as an information tool for the users who would like to 
know energy consumption profiles of their applications. 

The installation procedure was as simple as unpacking the package into a system folder on the 
CPU/GPU prototype head node. Since the prototype is running Debian-based Ubuntu Linux, 
it was necessary to prepare upstart scripts for this distribution. 

The configuration was a complicated part of the deployment as, contrary to how such 
software works, basic programming experience is required as one has to implement a class in 
Python that feeds the database with the system status data. Installation and configuration of 
the database was automatic and went flawlessly. 

 

                                                 
5 Timo Minartz, JulianM. Kunkel, and Thomas Ludwig. Simulation of power consumption of energy efficient cluster 
hardware. Computer Science - Research and Development, 25 (3-4):165-175, 2010. 
6 Arndt Bode. Energy to solution: A new mission for parallel computing. In Felix Wolf, Bernd Mohr, and Dieter Mey, 
editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture Notes in Computer Science, pages 1-2. Springer Berlin 
Heidelberg, 2013. 
7 The Green Grid, http://www.thegreengrid.org , 2014. 
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Figure 1 PowerDAM Overview 

 

The toolkit is very flexible and can handle basically any readable form of sensors. In the 
PSNC case, the majority of the data that may be interesting for PowerDAM was already 
stored in a MySQL database so it was decided to have PowerDAM read from this rather than 
read the sensors locally. For some of the data, however, it was more convenient to read 
directly from the sensors; this turned out to be non-trivial. The data is gathered by running 
scripts remotely from the head node on the worker nodes. These scripts require root privileges 
but, by default, no cluster in PSNC supports password-less root command execution, 
therefore, a workaround using a special user with one command pseudo privileges was 
created. 

In our prototype, PowerDAM monitors per node information about CPU load, temperature, 
and power consumption (DC). In addition data is being collected about power consumption of 
the networking part (InfiniBand and Ethernet switches) and cooling loop. Both internal 
cooling loops (in-rack pumps) and the external one are being monitored. All this data allows 
for an accurate assessment of the EtS for each SLURM job submitted to the system. It allows 
for a partial PUE calculation of the prototype. 

The documentation provided with the package is fairly complete but was meant to be more as 
a development document rather than system administrator help. A complete sample set of 
configuration files would speed up the integration to a great degree.  

The toolkit is an interesting software package that is still being actively developed, therefore, 
all integration issues are directly related to the „non-stable-release” status of the project.  
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6.1.2 PowerDAM at CINECA 

The source code of PowerDAM was modified to make it work in push mode instead of the 
default get mode during the initial integration. However, this integration was dismissed since 
the data collection framework was directly connected with the monitoring database which 
PowerDAM now works on top of. PowerDAM was deployed on EURORA without 
significant change to the source code. 

A PBS pro job scheduler plug-in was developed to work properly with PBS jobs and manage 
invalid jobs. The EURORA sensor reader plug-in was developed to filter and manage the data 
flow from the monitoring system and to make the sampling rates of a coarser grain so that 
PowerDAM is fed with sensor values averaged over a 1 minute interval. 

The general impression of PowerDAM is that it is still weak in terms of the interaction with 
jobs and the ability to manage and customize the plugin infrastructure for the sensors could 
have been made simpler. 

Regarding the statistics, PowerDAM works properly with coarse grained samples but, due to 
the 1 minute sampling interval limitation in the provided version, it can’t be used for specific 
application power profile analysis where data needs to be collected and correlated at a higher 
sampling rate (milliseconds). 

PowerDAM is in production on EURORA and is used to collect data for special purpose 
projects or benchmarks. However, there is still a minor problem that has not yet been 
identified that, from time to time, causes PowerDAM to hang, forcing a restart once a day as a 
workaround. 

Finally, CINECA’s overall evaluation of PowerDAM is positive and will be used as a tool in 
the CINECA HPC system software stack 

6.1.3 PowerDAM at CSC 

For the Scalable Hybrid system, integration with PowerDAM was not completed at the time 
of writing as the system arrived fairly late and there were limited PMs to complete the 
integration. The initial technical issues encountered were related to the fact that a fairly new 
version of the Python interpreter is required and a number of site-specific items are hardcoded 
in the application. This feedback was provided to the development team. The data collection 
was performed by extending the existing monitoring infrastructure at CSC based on the 
Graphite and collectd tools which was fairly straightforward. This is discussed in Section 
6.2.3. 

6.1.4 Importance of Test Installations 

Thanks to PSNC’s feedback the installation procedure and requirements will be an important 
focus area for further PowerDAM development. 

Thanks to CINECA’s feedback, the execution time of the used data base queries was 
improved. Also, the current alpha version allows for both a pull and push communication 
model. Additionally, the one minute sampling interval used in the pre-alpha version of 
PowerDAM will be removed in the newer version. This is done by allowing each sensor 
reading to provide its own timestamp to PowerDAM opposite to the PowerDAM defined 
1min interval timestamps previously used. 

Thanks to the CSC feedback, PowerDAM now supports python v2.6, v2.7, and v3.x. In 
addition, the improved installer checks for required 3rd party python libraries and for a 
supported python version before installation of PowerDAM. 
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6.1.5 PowerDAM Summary 

The importance and applicability to the real-world power and energy controlling techniques 
of PowerDAM can already be seen in 8, which presents an adaptive model for application 
energy and power consumption prediction for a given number of compute nodes based on the 
PowerDAM monitored and correlated application history energy/power data. 

PowerDAM is currently under active development and is available to all PRACE-2IP WP11 
partners. Future work includes the addition of a push communication service which will allow 
the monitored entities for initiation of data collection request; in contrast to currently 
supported pull-only communication service where the data collection request is initiated by 
PowerDAM.  

The future work also includes database backend improvement for ensuring the scalability for 
myriads of sensors which are foreseen with the next generation of HPC systems as well as the 
development of a web-based graphical user interface for easy access and better view of the 
PowerDAM data. 

6.2 Monitoring 

6.2.1 Monitoring – EURORA 

Since the system did not come with an integrated self-protection system against overheating 
in case of cooling system failure, a set of scripts was created which read the temperature 
sensors present in the boards and in case of problems instructed the SNMP-capable power 
supply to cut the power. The protection mechanism takes into account boards and rootcards 
cold plate temperature and also the number of boards exceeding the temperature threshold or 
not being reachable. This system, even though still vulnerable to network problems, has 
proven to be safe enough to prevent overheating damage and as a consequence to guarantee a 
good quality of service preventing long interruptions in the production 

Additionally, sensors to detect water leakage and excessive air temperature/humidity were 
installed in the system and configured to send alarm through the proprietary RFCode Assett 
Manager and the local SNMP trap system. 

6.2.2 Monitoring – CPU/GPU 

The state of the system is collected using in-house developed scripts that gather data about the 
physical state of the servers using IPMI commands. Some of the data (e.g. components 
temperature) is collected out-of-band using ipmitool command from the head node but others 
(e.g. per-node power consumption) must be collected by running the ipmicfg command from 
each node. The data about the GPU (load, temperature) is also collected by periodical 
execution of scripts on each node. For the GPU the desired sensors are being read using the 
CLI command aticonfig with --odgc / --odgt parameters.  

All data is being read in 1 or 5 seconds intervals. Depending on how fast a given sensor can 
be queried, a 1 min average value is calculated and inserted into the MySql database.  
Data for rack power consumption and rack internal pumps is gathered using SNMP queries 
and also inserted into the same database.  

The state of the cooling loop is monitoring using the MODBUS protocol. As MODBUS is a 
serial protocol transmitted over RS485 cable, a MODBUS to Ethernet gateway was used to 

                                                 
8 Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Predicting the Energy and Power Consumption of 
Strong and Weak Scaling HPC Applications. Submitted to the Supercomputing Frontiers and Innovations international 
journal. 
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allow remote data acquisition. All data gathered from the external cooling loop controller is 
being saved in the same database as the rest of the system information. Because of the speed 
limit of the MODBUS interface, the cooling loop may be queried once every 1 minute. After 
each query, the collected data is being analyzed and, based on the external temperature and 
current power consumption of the rack, appropriate values for the rack inlet and outlet 
temperatures are being calculated and sent to the controller. In addition to the above described 
data collection, a standard Ganglia monitoring system was installed to provide an on-line 
overview of the state of computing nodes. Standard Ganglia sensors were supplemented by 
per-node power consumption, CPU and InfiniBand chip temperatures, and GPU statistics.  

A web page with on-line overview of the cooling loop state was created. It is publicly 
available at: http://brassica.man.poznan.pl 

Each node is checking its temperature of all components in 1 minute intervals. If the 
temperature of any component exceeds the threshold of 75C the node is being shut down and 
corresponding information is being logged.  

The threshold temperature, which is 15C below the thermal cut value of the CPUs, was 
selected basing on empirical experiments. It protects the Novec inside the modules from 
boiling and at the same time, it allows for 45C inlet cooling. If the Novec is at the correct 
level, the maximum temperature of any chip inside the node should not exceed 70C. In 
addition similar scripts are executed from the head node ensuring that the system is protected 
from overheating also when the OS on the node is not working properly. 

6.2.3 Monitoring (Graphite) – Scalable Hybrid 

The performance and environmental data on the Scalable Hybrid system is collected using the 
collectd (https://collectd.org/) daemon from various sources and analyzed using a graphing 
system called Graphite (http://graphite.wikidot.com/). Both tools are fairly widely used in the 
large-scale enterprise and web hosting environments and are now also becoming adopted by 
the HPC community. 

 
Figure 2 Example Graphite Chart 

While Graphite was found extremely capable and useful for real-time monitoring of system 
metrics, its lack of capability in associating metrics with individual users and jobs limits its 
applicability. We worked around this problem by creating a set of scripts which, for a given 
SLURM job id, create an URL for Graphite. Copying this URL to the browser provides 
graphs (Figure 2) for a given parameter (for example GPU temperatures) on the nodes where 
the job was running during the time period when the job was running.  

Some of the infrastructure data (for example rack inlet temperatures) were only available from 
the Siemens Desigo building automation system (see D11.1.3 “Prototyping and Technical 
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Evaluation Summary”) which could not be integrated to this system. Thus, for the 
experiments, this data was exported to an Excel file and collated manually.  

PowerDAM and Graphite could complement each other well, ideally, however, there should 
be only one data collector instance to limit the monitoring overhead. We recommend 
investigating how these two tools could leverage the same data source.  

Furthermore, the infrastructure automation vendors should be encouraged to provide open 
interfaces to their systems for reading metrics easily and securely with third party tools such 
as Graphite or PowerDAM. 

6.3 Provisioning 

6.3.1 Warewulf – Scalable Hybrid 

The Bull Scalable Hybrid prototype was provisioned using the Warewulf cluster provisioning 
system which is currently used in all CSC clusters. Warewulf was chosen due to its flexibility 
in supporting compute nodes with and without local disk and gives us the choice of which 
upper level tools to use for things such as monitoring the cluster. 

Adding the support for GPGPUs only required adding the GPU driver and CUDA library to 
the standard compute node image.  

For full support of the Xeon Phi, there are additional steps to be done during the node bootup, 
including: 

 Loading the mic.ko driver 
 Initializing the basic configuration with micctrl --initdefaults 
 Setting up the bridge interface for the Ethernet 
 Setting the IP addresses on the Xeon Phi cards 
 Setting up NFS and/or Lustre shares 
 Booting the Xeon Phi 

This functionality is included as a set of boot-time scripts in a separate package called 
warewulf-mic9. When setting up the system initially it was found that the then latest version 
of the package was designed for an older version of MPSS (2.1) and the newer versions (3.x) 
were not compatible with it anymore. This required us to do extensive changes to the 
initialization scripts. Since then, the package has been updated to support the newest versions 
of MPSS. 

6.3.2 Provisioning – CPU/GPU 

The APU units are booted from local hdd drives and no provisioning system is used. In case 
of the cluster all nodes are booted in a disk-less mode despite being equipped with 60GB local 
ssd drives.  

There is no out-of-the box system installed for provisioning the nodes. An in-house developed 
environment is being used with some additional scripts prepared to fulfill the requirements of 
the GPU drivers.  

The nodes are booted using PXE protocol and the /boot file system is exposed using TFTP 
protocol. On both APU nodes and cluster nodes users are authorized using NIS protocol. 

                                                 
9 http://warewulf.lbl.gov/downloads/releases/warewulf-mic/ 
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6.4 Management System 

6.4.1 xCAT – EURORA 

The cluster has been integrated with the xCAT management system for the installation. 

All the boards were provided with PXE network and were working immediately with the pxe 
installation method provided with xCAT. Additional custom scripts have been developed to 
install and configure the Intel Xeon Phi software stack due to its heterogeneous composition 
(rpm packages and setup scripts). 

Some difficulties also came from the configuration of the BMC (Board Management 
Controller) which shared the Ethernet port with the node and required Ethernet Trunking to be 
configured on both the switch and the nodes. 

Also the lack of a backup battery in the nodes caused the loss of BIOS and BMC settings 
every time the system was electrically powered off and basically required the system to be 
reinstalled and the BMC to be reconfigured after every power cut. 

 

7 Parallel Programming Environment 

7.1 OpenCL 

OpenCL10 (Open Computing Language) is an open standard for parallel programming of 
heterogeneous computing systems. It is composed of an API and a standard language to write 
portable code for multi-core CPUs, GPUs, APUs and other architectures, including latest Intel 
Xeon Phi accelerators. OpenCL kernels are written in a subset of the ISO C99 language that is 
compiled at runtime to target a particular computing device. The OpenCL standard supports 
both data- and task-based programming models. This technology allows the code prepared for 
Intel Xeon processors to be also run on the Intel Xeon Phi after small changes11. It might 
result in sub-optimal performance though. Intel released the new Intel SDK for OpenCL 
Applications (XE 2013 Beta), which provides a development environment for OpenCL 1.2 
applications across both Intel Xeon processor and Intel Xeon Phi coprocessor. This SDK 
includes code samples, development tools, an optimization guide, support for optimization 
tools, and OpenCL runtime for Intel CPUs and Intel Xeon Phi coprocessors. 

The standard supports a wide range of CPUs, GPUs, DSPs and other processors. It can be 
used on large-scale systems but only when used with additional communication technique, 
like MPI. There is a number of tools supporting the code development (e.g. Intel SDK for 
OpenCL Applications, ARM Mali OpenCL SDK, AMD Accelerated Parallel Processing 
(APP) SDK, NVIDIA GPU Computing SDK, IBM OpenCL Development Kit). 

The latest version of the standard, OpenCL v2.012, was announced in 18 March, 2014. 

The hardware (NVIDIA K20 GPUs and Intel Xeon Phi accelerators) available on EURORA 
support OpenCL in version 1.1 and hardware available on CPU/GPU (AMD FirePro S9000 
GPUs) support OpenCL in version 1.2. 

We ported the SHAKE and RATTLE algorithms from DL_POLY application. The RATTLE 
OpenCL algorithm shows up to 11x speedup for the test benchmark with 413896 atoms. 
Some performance bottlenecks of SHAKE OpenCL implementation have been identified - 

                                                 
10 OpenCL Khronos Group homepage, http://www.khronos.org/opencl/ 
11 PRACE Public deliverable, D7.2.1, “A Report on the Survey of HPC Tools and Techniques”, 2013, pdf: http://www.prace-
ri.eu/IMG/pdf/d7.2.1.pdf 
12 The Khronos OpenCL Registry with OpenCL 2.0 specification, http://www.khronos.org/registry/cl/ 
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initialization of the OpenCL environment, GPU I/O operations and synchronization between 
MPI processes in a multi-GPU environment. 

Also the DBSCR library from CP2K code has been ported to the OpenCL. The OpenCL 
results show a better performance to the other methods tested (OpenACC implementation, 
PGI SMM and GFortran SMM) if bigger data volume is computed on accelerator (i.e. GPU). 
In comparison with OpenACC developing OpenCL code needs more effort. 

7.2 OpenACC 

OpenACC 13is a directive-based open standard designed to simplify parallel programming of 
heterogeneous CPU/GPU systems. It is supported by NVIDIA, PGI, Cray, and originally 
CAPS. The developer can annotate C, C++ and Fortran source code to identify the areas to be 
accelerated using #pragma compiler directives and additional functions. It is portable across 
operating systems, and multi-core processors such as NVIDIA and AMD GPUs, and Intel 
Xeon Phi, but the range of target options depends on the compiler used. 

The latest version of the standard, OpenACC 2.0a, was announced on August 31, 2013. 

Introducing OpenACC into the code requires usage of a compiler which understands the 
OpenACC pragmas. There are only three such compilers so far, all commercial, delivered by 
PGI, CAPS and Cray. In some cases, for applications written in Fortran which use Fortran 
2008 extensions, it may be not straight-forward to successfully compile with PGI (as reported 
for CP2K14). The PGI 14.1 available on EURORA (and the newest version 14.3) does not 
fully support the Fortran 2008 extensions, and further problems may occur when compiling 
with optimization flags. Some disadvantage is also a long compilation time, compering to 
other compilers (e.g. GNU gfortran), but it is compensated by a very good optimization and 
short execution time. Thus, how easy is to introduce and use OpenACC depends on the 
combination of the programming environment and underlying software stack. 

At the same time, the CAPS Compiler Suite 3.4.5 for OpenACC is available, but the company 
is no longer issuing licences. In May 2014 an official statement of CAPS has been announced 
to all its customers, that the company will be closed due to financial problems, and no support 
will be provided after the end of the June, 2014. 

It must be noticed that the power of the OpenACC standard strongly depends on the 
compilers’ support. The current choice of proprietary compilers seems to be not sufficient, 
especially in the current landscape of scientific applications which often are open-source and 
developed using open tools and compilers like GCC. This may lead to compatibility issues, as 
described for CP2K. Nevertheless, OpenACC once introduced to the code, in connection with 
the compiler support for different targets, is a powerful technology. The OpenACC directives 
may be used by a compiler to generate kernels for new emerging architectures, as soon as they 
become supported. 

As an additional conclusion, introducing OpenACC to an existing application is relatively 
simpler and requires less knowledge and time from the developer than OpenCL. However, it 
still requires a good understanding of the application, its data and algorithms, and may require 
refactoring of the original code to gain a performance as expected from the GPU acceleration. 

The DBSCR library from CP2K code has been ported to the OpenACC. OpenACC directives 
are supported by only a few compilers, and the mostly used are Portland Group's PGI 
Accelerator compilers. A number of different issues were identified when building CP2K 
                                                 
13 The OpenACC 2.0a Specification (Corrected), pdf: http://www.openacc.org/sites/default/files/OpenACC.2.0a_1.pdf 
14  PRACE Public deliverable, D7.2.1, “A Report on the Survey of HPC Tools and Techniques”, 2013, pdf: 
http://www.prace-ri.eu/IMG/pdf/d7.2.1.pdf 
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with the pgfortran from the PGI compiler suite, including non-implemented FORTRAN 
functions and a segmentation fault. Slow compilation when using PGI has been a 
disadvantage. The results show that PGI compilers provide very good automatic code 
optimizations, which lead to reducing the computation time. The code compiled with Gfortran 
and the SMM library for performing matrix operations, runs slower than the code compiled 
with PGI, without the specialized library Using OpenACC gives very good results, although, 
the code compiled with PGI and SMM library shows similar performance. 

 

8 Summary 

Overall, getting a functional and stable software stack for a prototype is challenging at best. In 
many cases the software support takes much longer to mature and support new hardware than 
the procurement and installation of the hardware. Heterogeneous architectures add more 
complexity to the software stack installation by adding additional software dependencies. 

Currently, OFED (OpenFabrics) and MPI support by the accelerators is restricted to specific 
versions which might interfere with the versions for the HPC system in which the accelerators 
are installed. 

Even though GPU accelerators are nothing new for HPC the integration into the system 
scheduler is still challenging. 

Currently, SLURM supports GPUs but requires a work around if not all nodes look the same 
(same number of accelerators per node). Intel Xeon Phi support didn’t exist before and was, 
therefore, developed as part of this task. It is has become part of SLURM package since 
version 2.5. 

The PBSpro scheduler provides only basic support for GPUs. The Xeon Phi support was 
implemented via prologue and epilogue scripts, however, this solution will not scale. 

Overall, current schedulers lag advanced scheduling support for accelerators (being on-par 
with what’s possible for CPUs). 

Support for newer versions of parallel programming environments (like OpenCL, OpenACC, 
etc.) on new architectures depends strongly on compilers and vendor support. Therefore, it is 
very hard to judge when such an environment will be stable for software development on new 
architectures. 

 


