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Executive Summary 
This deliverable reports on the latest software developments in high performance computing, 
as identified by the PRACE-1IP, WP9 members. The developments reported on here are the 
result of experiments and measurements carried out by the project members on PRACE 
prototype computer architectures. The characteristics of these prototypes were selected in 
order to allow investigation into a number of key aspects relevant to high performance 
computing, namely interconnects, I/O, energy efficiency and accelerators. In this document a 
presentation of this work has been prepared under four major topics: programming languages, 
system software and software tools and a preliminary look on hardware. With a view towards 
Exascale computing, we will present our results and findings for each of these topics, based 
on which we will conclude with a set of recommendations. 

1 Introduction 

As the Exascale milestone approaches, academic and industrial institutions in the field of 
HPC have identified a number of issues that need to be overcome for the development of a 
practical and efficient Exaflop supercomputer. As an example, if one simply scales the power 
consumption of a Petaflop supercomputer by one thousand, it is clear that major 
breakthroughs in power efficiency and cooling are required to arrive at an architecture which 
would be viable at Exascale. Although power consumption is an obvious example of this need 
for innovation, other, perhaps more subtle, issues are identified, such as interconnect 
architectures, I/O systems and the need for dense massively-multithreaded devices to serve as 
coprocessors.  

The methodology of WP9 of PRACE-1IP, which identified these topics early on in the 
Preparatory Phase of the project, is to develop and investigate each of these issues on 
dedicated hardware, through measurements and experiments on prototype architectures which 
have been designed to each address a subset of the outlined bottlenecks. The members of this 
WP enjoy access to a number of diverse architectures, such as GPU, FPGA and DSP clusters, 
clusters of directly water cooled nodes, ARM processor clusters, a system with cache-
coherent shared-memory over hundreds of CPU cores and two prototypes with a novel 
parallel I/O design. This makes our consortium an ideal forum for identifying innovative 
solutions and proposing recommendations for next generation software and hardware designs.  

The current document has precisely this goal.We focus on the status of software while giving 
a brief overview of the conclusions we have arrived regarding hardware design. Our 
presentation begins with an investigation in programming languages in Chapter 2, where we 
document the work carried out to assess developments in CUDA and OpenCL, some insight 
into pragma-based languages such as OpenACC and OmpSs and an assessment of the state of 
the PGAS version of C, namely UPC. Chapter 3 deals with system software, and will detail 
the achievements in issues related to operating systems and system management, resource 
management, data management and the MPI implementation and other communication 
libraries. In Chapter 4 we present the work done concerning various software tools, such as 
tools for the support of task-based and asynchronous programming, developments in 
intelligent collection and filtering of trace data, modelling of parallel applications and tools 
which assess the scalability of parallel software codes. An outlook towards hardware designs 
is presented in Chapter 5. Each chapter, or chapter section, concludes with a set of 
recommendations arrived to and justified by the results presented in this document. We 
conclude with a summary of our findings (Chapter 6). In the Annex of this, in section 7.1, we 
include a detailed description of the work carried out on Energy Aware System Software. 
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2 Programming Languages 

In this chapter, we present the results of our investigation into a select set of programming 
languages, or programming models, which are targeting high performance computing 
systems. 

Most of this chapter deals with developments in GPU programmability: first of all, the latest 
developments in mixing CUDA with MPI have been investigated, developments which 
mainly improve access to main memory. Secondly, we look into OpenCL where a number of 
kernels have been ported and compared with optimized C and CUDA. The third section is an 
initial investigation of the pragma-based OpenACC language which has been carried out with 
comparisons of performance and a look at ease of programmability. 

The remaining two sections of this chapter deal with two programming languages: OmpSs 
and UPC. In both these sections, a port of the synthetic “Hydro” benchmark is carried out 
through which aspects such as scalability, performance and correctness, amongst others, are 
investigated. 

For each language, a short description is given, with some code snippets when appropriate. 
After the presentation of our results we rate each language with a positive or negative mark 
(with the appropriate justification) in seven areas: scalability, performance, productivity, 
sustainability, correctness, portability and availability. Our conclusions are presented, with an 
attempt to give some specific recommendations concerning each programming language. 

2.1 CUDA and MPI 

2.1.1 Description 

Nowadays Graphics Processing Units (GPUs) have been established as an excellent power-
efficient solution for modern HPC systems and have already proved advantageous for certain 
classes of algorithms over traditional CPU clusters or massively parallel supercomputers. One 
of the most challenging issues here is to develop applications for multi-GPU systems since it 
is very often impossible to accommodate a problem on a single GPU on one hand and, on the 
other hand, one has to deal with a complex memory hierarchy of the underlying 
heterogeneous system. 

Currently there are two APIs available for heterogeneous computing: the NVIDIA Compute 
Unified Device Architecture (CUDA) designed mainly for NVIDIA GPUs and OpenCL, an 
open source project hosted by the Khronos Group. While the later provides tools for 
developing cross-platform applications (also for multi-core x86 micro-architectures), the 
former API has a significant advantage due to recently introduced features that allow direct 
memory access (DMA) engines to access GPU data directly, moving memory from one GPU 
to another within the same node. 

In particular, these features include GPUdirect technology [1] that enables peer-to-peer data 
transmission between peer-accessible-devices, i.e. those that are attached to the same IOH 
chip or different IOH chips if they are linked, e.g., via AMD’s HyperTransport interconnect 
(currently, Intel’s QPI and PCIe protocols are incompatible, so it’s impossible to establish 
direct communication between GPUs that are connected to different Intel mainboard 
chipsets.) Another multi-GPU technology introduced in recent CUDA releases is CUDA IPC 
that allows different host (for example, MPI) processes to access the same GPU buffer if the 
processes operate on the same compute node.   
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The important underlying ingredient for both technologies is a Unified Virtual Address Space 
(UVAS), where each process within a node running on a 64bit OS can use a single address 
space for the host and all available CUDA devices of compute capability 2.0 and higher (e.g. 
for Fermi and Kepler GPUs). In particular, this address space is used for all allocations in host 
memory via the cudaHostAlloc()CUDA Run Time (RT) API function (or corresponding 
CUDA driver API function) and in any of the device memories via cudaMalloc() or 
cudaMallocAsync()RT API functions (or their driver API counterparts). Thus, any host 
pointer returned by cudaHostAlloc() can be used directly within CUDA kernels running 
on GPUs. An essential limitation of this GPUdirect technology is that it is restricted to a 
single host process: a virtual address from one process cannot be dereferenced in the address 
space of another. This limitation is diminished by a new family of CUDA IPC functions 
which provide the capability of exporting a memory handle to a GPU memory allocation from 
one process directly into the address space of another process within the same compute node. 
The API functions also provide an IPC mechanism for passing CUDA events between 
processes.  

Below we detail some basic interface functions for both APIs (taken from the CUDA Toolkit 
reference manual, version 4.2). 

1. GPUdirect: 

cudaDeviceCanAccess() – enquiries peer-accessibility of a given device in the 
system for the current device. 

cudaDeviceEnablePeerAccess() – enables registering memory on peer device for 
direct access from the current device. 

cudaMemcpyPeer() – copies memory from device to another (peer-accessible) device. 
This function is asynchronous with respect to the host but serialized with respect to the all 
pending and future asynchronous work in the current device (cudaMemcpyPeerAsync() 
avoids this synchronization). 

2. CUDA IPC: 

cudaIpcGetMemHandle() – gets an interprocess memory handle for an existing device 
memory allocation. 

cudaIpcOpenMemHandle() – opens an interprocess memory handle exported from 
another process and returns a device pointer usable in the local process. 

cudaIpcCloseMemHandle() – unmaps memory returned by the previous API function. 
This does not affect the original allocation in the exporting process as well as imported 
mapping in other processes. 

2.1.2  Code Examples  

Example 1: Peer-to-peer communications between GPUs within the same process 

Assume two GPUs on the system, with the ids marked by gpuA and gpuB: 
int is_p2p_accessible = 0; 

cudaSetDevice(gpuA);       //switch to device ‘A’ 

cudaMalloc(&d_A, bytes);   //allocate memory on the device ‘A’ 

cudaDeviceCanAccessPeer(&is_p2p_accessible, gpuB, gpuA); 

if(is_p2p_accessible){ 

      cudaSetDevice(gpuB); //switch to device ‘B’ 

      cudaDeviceEnablePeerAccess(gpuA, 0); 
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      kernelB<<<...>>>(..., d_A, …);  

                          //kernelB has access to ptr d_A 

      cudaDeviceDisablePeerAccess(gpuA); 

}  

or: 
if(is_p2p_accessible){ 

      cudaSetDevice(gpuB);       //switch to device ‘B’ 

      cudaMalloc(&d_B, bytes);   //allocate memory on the device ‘B’ 

      cudaDeviceEnablePeerAccess(gpuA, 0); 

      cudaMemcpyPeer(d_B, gpuB, d_A, gpuA, bytes);  

                                 //copy d_A to d_B 

      cudaDeviceDisablePeerAccess(gpuA); 

} 

Note, while in this example kernelB is executed on device ‘B’, it has access to memory 
allocated on device ‘A’ (if device ‘A’ is peer-accessible for ‘B’) via the PCIe bus. As was 
mentioned above, this requires the application to be run on a 64-bit OS and devices of 
compute capability 2.0 and higher. 

Example 2:  GPU – Aware MPI 

Code example without MPI integration: 

//Process A (sender): 

cudaMalloc(&s_device_ptr, bytes); 

void *s_host_buffer = malloc(bytes); 

cudaMemcpy(s_host_buffer, s_device_ptr, bytes, cudaMemcpyDeviceToHost); 

MPI_Send(s_host_buffer, bytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD ); 
… 

//Process B (receiver): 

void *r_host_buffer = malloc(bytes); 

cudaMalloc(&r_device_ptr, bytes); 

MPI_Recv(r_host_buffer, bytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req); 

cudaMemcpy(r_device_ptr, s_host_buffer, bytes, cudaMemcpyHostToDevice); 

 

 Code example with MPI integration (enable MPI_Send/Recv directly from/to GPU): 

//Process A (sender): 

cudaMalloc(&s_device, bytes); 
//work with s_device buffer on GPU A 

MPI_Send(s_device, bytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD ); 
//Process B (receiver): 

cudaMalloc(&r_device, bytes); 

MPI_Recv(r_device, bytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req); 

Note that the second pattern exploits the UVAS property exposed by the CUDA 4.0 (and 
later) toolkit. It is currently supported by the MVAPICH2 MPI library. 

Example 3: CUDA IPC technology 

Code example of peer-to-peer communication for two MPI processes within a compute node 
(assume that each process operates a separate GPU): 

//Process A (sender): 

cudaIpcMemHandle_t s_handle; 
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cudaMalloc(&s_dev, bytes); 

cudaIpcGetMemHandle(&s_handle, s_dev); 

MPI_Isend(s_handle, sizeof(cudaIpcMemHandle_t), ... ); 
… 

//Process B (receiver): 

cudaIpcMemHandle_t r_handle; 

MPI_Irecv(r_handle, sizeof(cudaIpcMemHandle_t), ... ); 

cudaIpcOpenMemHandle(&r_dev, r_handle, cudaIpcMemLazyEnablePeerAccess); 

kernelB<<<...>>>(...,r_dev, ...); 

cudaIpcCloseMemHandle(r_handle); 

The IPC functionality is restricted to devices with support of unified addressing on Linux 
operation systems. The cudaIpcOpenMemHandle() function in this example can attempt 
to enable peer access between two devices as if the user called 
cudaDeviceEnablePeerAccess(), as demonstrated in Example 1. 

2.1.3  Experiences and Results  

In order to test the CUDA UVAS based technologies we modified the STREAM benchmark 
suit that was available for single GPU bandwidth measurements. All test runs were performed 
on CaSToRC‘s prototype machine that comprises of 8 GPU nodes (2 NVIDIA M2070 GPUs 
per compute node) with Mellanox interconnect. Each node is equipped with a two-socket 
mainboard, with Nehalem Xeon CPUs operating at 2.7GHz. The software configuration used 
for the benchmark includes the CUDA 4.1toolkit (with NVIDIA driver version 285.xx.xx.xx), 
the GNU compiler v 4.4.5 and MVAPICH2 (1.8a2) for MPI. 

The latest version of MVAPICH2 incorporates optimized support for GPU to GPU 
communications via the standard MPI interface. In particular, it includes support for point-to-
point and collective operations, pipelined data transfer with automatically provided 
optimizations, GPUdirect (peer-to-peer) and CUDA IPC. 

Taking the CUDA version of the STREAM benchmark as a template we implemented three 
types of tests: 1) for ‘pure’ intranode peer-to-peer communication within a single host 
process, 2) for intranode/internode MPI communications using CUDA IPC 3) standard MPI 
communications that served in our case as a reference implementation. (As in the standard 
STREAM benchmark we considered both double and float data types). All versions provided 
no difficulties in implementation. However the first two cases required much less 
programming efforts due to UVAS technology. In general, the advantage of the later is that 
the programmer does not need to keep account of which memory space a given pointer 
belongs to, and also does not need to explicitly indicate the direction of memory copies (e.g. 
device-to-host, host-to-device and device-to-device). The only consideration here is that the 
host memory must be page-locked, something which may potentially degrade overall system 
performance if too much memory is allocated. Due to its simplicity, it is quite straightforward 
to incorporate these technologies in existing MPI-CUDA applications. 

In Figure 1 we show results obtained using our adapted STREAM benchmark. We see that in 
all three cases, and more importantly in the case of peer-to-peer communications and MPI 
communication, we obtain values of the sustained bandwidth as expected given the PCIe 
specification and QDR Infiniband respectively. This shows that the overheads involved in the 
NVIDIA stack which abstracts the memory hierarchy, e.g. translating addresses and setting up 
the buffers for the node-to-node communication, have minimal effect on the sustained 
bandwidth. 
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Figure 1: Results of our adapted STREAM benchmark. We show results for the memory bandwidth 
within the GPU (left), between GPUs on the same PCIe bus (centre) and for off-node GPUs, connected 
over a QDR Infiniband interconnect (right). 

2.1.4  Pros and Cons  

In Table 1 we have tabulated the Pros and Cons of using this hybrid model for programming 
systems of distributed GPUs. 

 Pros Cons 

Scalability The main objective of the considered 
technologies is to avoid unnecessary 
system memory copies that will 
considerably reduce interprocess 
communication time and, as a 
consequence, improve scalability of 
a Multi-GPU application. 

 

Performance The technology will improve 
performance if communication is the 
main bottleneck. 

Currently it is supported for intra-
node data transfers, and even in 
this case is restricted to single IOH 
chip configurations in the case of 
Intel hardware. 

Productivity Code development is straightforward 
and similar to standard MPI 
communication patterns. The UVAS 
eliminates necessity to distinguish 
between host and device pointers 
which simplifies code structure and 
provides more flexibility for 
programming on heterogeneous 
systems. 

It may require minor code 
redesign for existing CUDA 
applications, especially if they rely 
on old communication patterns, in 
which one creates an intermediate 
buffer on the host  

Sustainability CUDA has become the de facto 
programming environment for 
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 Pros Cons 

hybrid HPC systems with NVIDIA 
GPUs. In particular, taking into 
account that NVIDIA has already 
cooperated with interconnect 
vendors to incorporate their Multi-
GPU solutions into the HPC market, 
the technologies considered here are 
expected to become standard 
approaches in the development of  
large-scale CUDA applications  

Correctness The detailed multi-GPU 
technologies introduce no further 
complexities in code debugging  

 

Portability Code may be run on any accelerator 
cluster with NVIDIA GPUs, even if 
there is no interconnect supporting 
these technologies 

Currently, there is only one MPI 
implementation that supports 
GPUdirect with the CUDA API, 
and this is MVAPICH2 

Availability Both the NVIDIA CUDA toolkit and 
MVAPICH are freely available 

 

Table 1: A list of advantages and disadvantages in using hybrid CUDA+MPI programming for multiple 
GPUs, based on our experience in this work. 

2.1.5 Conclusions and recommendations 

At present, MPI + CUDA still remains the most straight forward and portable way of writing 
multi-GPU code for NVIDIA devices. Ease of programmability is set aside in favour of code 
performance; explicitly managing data transfers between devices means more control over 
where data buffers reside, which usually leads to better memory management and therefore 
more optimal code. 

In this specific work we have taken a closer look at the latest developments NVIDIA has 
incorporated in its software, which primarily concern data transfers to and from the GPU, 
which is the main bottleneck in most multi-GPU codes. Developments such as the Uniform 
Virtual Address Space and direct communication over PCIe indicate that NVIDIA is looking 
into ways of making data accesses from the GPU both faster and less cumbersome for the 
developer. This fact, along with the established de facto status of MPI in parallel 
programming, encourages further use and maintenance of code-bases written in CUDA/MPI.  

2.2 OpenCL 

2.2.1 Desription 

OpenCL (Open Computing Language) is an open, royalty-free standard for general-purpose 
parallel programming of heterogeneous systems, maintained by the Khronos Group [2]. It 
provides a framework for cross-platform computing on a range of modern processors, 
including CPUs, GPUs and APUs. The framework includes a programming language, based 
on C99, and an API. The language is used for writing specific functions (kernels) executed on 
OpenCL devices.  
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OpenCL supports both data-parallel programming and task-parallel programming. It is also 
interoperable with MPI and other standard libraries. An overview of the OpenCL architecture, 
its execution and memory model are described in [3].  

Since the publication of the PRACE-PP deliverable D6.6 [3] and PRACE-1IP deliverable 
D9.2.1 [4] a new version of OpenCL has been released: the OpenCL 1.2 Specification (rev. 
15, November 15, 2011) and OpenCL 1.2 Extensions Specification (rev. 15, November 15, 
2011) [5]. OpenCL 1.2 retains backwards compatibility with previous 1.0 and 1.1 versions, 
but enhances functionalities and performance with new features. The most important for high 
performance computing are: custom devices and kernels, device partitioning and separate 
compilation and linking of objects. 

OpenCL (v1.0, v1.1 or v1.2) supports a range of processors found in personal computers, 
servers and handheld/embedded devices, including NVIDIA GPUs, AMD Fusion APU series, 
AMD GPUs and CPUs, ARM GPU, Intel CPUs and IBM servers. 

Libraries for scientific computing in OpenCL include: APPML (BLAS, FFT) for AMD GPUs 
(earlier delivered as part of ACML), CUBLAS (BLAS) and CUFFT (FFT) for NVIDIA 
GPUs, ViennaCL (Linear Algebra and Iterative Solvers) with support for NVIDIA and 
AMD/ATI GPUs [6], CMSoft OpenCL FFT and Linear Algebra. 

Tools and development kits for OpenCL software development are available and evolving. 
The main programming environment is the AMD Accelerated Parallel Processing SDK, with 
full support for OpenCL 1.2. The SDK includes the AMD APP Profiler for performance 
analysis of the code, and the AMD APP KernelAnalyzer – a tool for static analysis of the 
performance of OpenCL C kernels. There is also the AMD CodeAnalyst for Windows with 
OpenCL support, which collects and analyses the OpenCL API execution performance from 
both CPUs and GPUs.  

The gDEBugger may also support software developers in the process of debugging 
applications, including the OpenCL kernels [6]. It is available as a Microsoft Visual Studio 
plug-in on Windows and a standalone program on Linux. There are also other SDKs and 
frameworks available, delivered by Intel [7], SNU-SAMSUNG [8] and IBM [9]. The Java 
Bindings to OpenCL (JOCL) enable applications running on the JVM to use OpenCL [10], 
and PyOpenCL allows access to the OpenCL API from Python [11]. There is also a PGI 
OpenCL compiler for ARM CPUs which support OpenCL 1.1 [12]. 

2.2.2 OpenCL Code Example  

An OpenCL kernel is expressed as a C-language routine (Figure 2). 
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Figure 2 Simple OpenCL kernel 

2.2.3 Experience & Results   

The work done within this task concentrated on an evaluation of OpenCL as a programming 
language and a development environment for efficient scientific computations. We also 
considered the porting effort and differences between OpenCL and CUDA, as the most 
mature and most widely used development platform for GPGPUs. The evaluation started by 
implementing several synthetic kernels in OpenCL (from the Euroben benchmark set), and 
after observing promising results, we continued with more realistic scientific applications, 
namely DL_POLY and NAMD. The early results regarding Euroben were reported in [4]. 
Experiences and results are discussed below for each application. 

1. DL_POLY 

DL_POLY is a molecular dynamics simulation application developed by the Science and 
Technology Facilities Council in Daresbury Laboratory, UK. A domain decomposition 
approach has been used for parallelizing DL_POLY using the MPI library. DL_POLY is 
highly efficient and scalable to thousands of CPU cores. A DL_POLY port for GPUs exists 
with NVIDIA CUDA, which has been developed by the Irish Centre for High-End Computing 
(ICHEC) in collaboration with Daresbury Laboratory. A “constraints shake” DL_POLY 
component has been ported to OpenCL by the Wroclaw Centre for Networking and 
Supercomputing (WCNS) in collaboration with ICHEC and Daresbury Laboratory. 
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DL_POLY’s “constraints shake” component has been ported to OpenCL from existing CUDA 
code. During this porting work several OpenCL language properties and limitations have been 
identified. The two programming languages differ at most in handling data structures. In the 
CUDA version of the component the structures are widely used both in the host code and in 
the GPU kernels. According to the OpenCL 1.1 specification, section 6.8 [13], structures in 
this language cannot contain OpenCL objects (buffers, images etc.). Attempts to use 
structures with buffers (a direct port from the CUDA code) failed, as the data inside a buffer 
were not accessible from the kernel code. This problem has forced a change in the way of 
handling data structures and passing individual objects to kernels directly as arguments, one 
by one. 

Another difference is the way one defines the number of threads in groups, with no 
straightforward transition. CUDA uses specific operators <<<…>>> in which a developer 
declares two dim3 structures (one for the number of groups and one for the number of 
threads). For example, a declaration <<<(1, 300, 1), 64>>> tells the CUDA API to 
run 300 groups in the 2nd dimension, each with 64 threads.  

In OpenCL a developer must declare how many threads as a whole will be used to execute the 
kernel. Initially these numbers were declared in the following way: number of threads in 
group as (1, 64, 1), and number of threads globally as (1, 300×64, 1). This solution gave 300 
groups in the 2nd dimension, with 64 threads each. Unfortunately it turned out that, with the 
above settings, the threads in OpenCL were placed in the 2nd dimension, while in the original 
CUDA code threads were located in the 1st dimension. Correct size declarations in OpenCL 
are respectively: (64, 1, 1) and (64, 300, 1). That still gives 300 groups in the 2nd dimension 
with 64 threads placed in the 1st dimension.  

We propose a simple algorithm for converting CUDA group sizes into OpenCL compatible 
ones: 

CUDA groups and threads:  <<<(a, b, c), (i, j, k)>>> 

OpenCL group threads:  (i, j, k) 

OpenCL all threads:   (a*i, b*j, c*k) 

The differences presented above were the most significant ones encountered while porting the 
“constraints_shake” module. If a developer is familiar with both languages and knows 
about the differences between them, the code can be ported faster and with fewer mistakes.  

It must be mentioned that a direct port will usually not use all the advantages of OpenCL and 
the resulting code needs further optimization in this respect. 

OpenCL limitations which make a developer’s life harder: 

 no C++ like templates in the kernel code – this limitation results in increasing the number 
of lines of OpenCL code,  

 no support for passing structures as OpenCL kernel arguments if the structure elements are 
pointers – this limitation means that each pointer field must be passed to the OpenCL 
kernel separately and the size of the OpenCL code grows. 

The great improvement for developers is the AMD gDEBugger tool, which lets one debug 
OpenCL kernel code. Still, the tool was not always working properly with the rest of the 
OpenCL environment (SDK, drivers) and for a period of time was not available on Linux in 
the newest version. The debugger together with the new tools for code analysis (AMD APP 
Kernel Analyzer and AMD Code Analyst) is simplifying the development and performance 
tuning of OpenCL applications for AMD target architectures. 
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DL_POLY test runs have been executed on a local WCNS GPU machine – 2× AMD Radeon 
HD 6950 and on Tesla M2050 GPUs, at CEA. Test runs were performed for 2 MPI processes 
and 2 OpenMP threads on the TEST7 (Gramicidin A, molecules in Water) benchmark for 
double floating point precision. The test case is an example of a real scientific problem. 
Figure 3, Figure 4 and Figure 5 show the average duration time per invocation for the 
“constraints_shake” component initialization, particular kernel calls, and read/write 
from/to GPU operations.  

 
Figure 3. CUDA vs OpenCL for DL_POLY constraints shake component 

 
Figure 4. CUDA vs OpenCL for DL_POLY constraints shake component 

 
Figure 5. CUDA vs OpenCL for DL_POLY constraints shake component 

Performance results show that the OpenCL implementation works slower than the CUDA 
version of almost all “constraints_shake” component algorithms. The biggest 
difference between average duration time per invocation for Tesla M2050 GPU is for the 
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write operations (OpenCL code is 5× slower than CUDA code) and the kernel 
gather_dv_scatter_hs (OpenCL code is 3× slower than CUDA code). For other 
kernels OpenCL calls are 2-3× slower than particular CUDA calls. OpenCL execution times 
on AMD GPUs are shorter than for Tesla M2050 GPUs for initialization, write and 
install_red_struct and k1_th kernels. For other calls, execution times on AMD 
GPUs are longer than for CUDA code run on Tesla M2050. The reason for this difference in 
execution times on different hardware is that the OpenCL code was written for NVIDIA 
GPUs, and so does not take into account the specificities of AMD GPUs. 

Work on an OpenCL port of DL_POLY’s algorithms is continuing within the PRACE-2IP 
project. 

2. NAMD 

NAMD is a parallel molecular dynamics code which performs simulations of large 
biomolecular systems [17]. The application is parallelized based on Charm++ parallel objects 
and scales to hundreds of processors on high-end parallel platforms and tens of processors on 
commodity clusters. 

NAMD is partly ported to CUDA, and thus able to take advantage from resources equipped 
with NVIDIA GPUs. The application uses the GPU for nonbonded force evaluation. PSNC, 
with support from WCNS, started to work on the OpenCL port to enable the application to run 
on other GPU architectures. NAMD authors were contacted, and they are aware of these 
efforts. There was no closer collaboration established. 

The main task was to implement an OpenCL version of the kernel performing the nonbonded 
force evaluation. The automated translators from CUDA to OpenCL were also tested (i.e. 
SWAN), for comparison purposes, with no positive results. The CUDA kernel is quite 
complex, includes macros, and the tools couldn’t cope with this complexity. 

Preliminary tests of the OpenCL and CUDA implementation were performed using the test 
case “apoa1”, downloaded from the official NAMD website [18]. A comparison of the results 
generated by the OpenCL and CUDA kernels revealed differences and correctness problems 
in the OpenCL kernel. Further improvements have been introduced into the kernel, but the 
process is still ongoing due to difficulties with tools for debugging a certain kernel code 
encountered during the project timeframe. 

Several environments have been tested, including the NVIDIA Nsight and AMD gDEBugger. 
On the GPU cluster at PSNC (available in PRACE as a Tier-1 machine) one node was 
‘isolated’ with a Windows 7 OS on-board and MS Visual 10 with the NVIDIA Nsight Profiler 
installed, but the profiler supports only OpenCL API calls and no kernel debugging. The 
gDEBugger installed on the PRACE prototype at PSNC with AMD Brazos (E-350) was 
difficult to be used remotely due to problems with a GPU’s visibility. Local usage works fine, 
but is not always possible, depending on the location and accessibility of the target 
architecture.  

Work on the OpenCL port of NAMD is continuing within the PRACE-2IP project. The new 
tools from AMD are being evaluated and it will be seen if they address previous problems 
with the debugging and the analysis process. 

3. Euroben 

The Euroben benchmarks mod2am/MxM, mod2as/SPMV and mod2f/FFT were ported to 
OpenCL at WCNS and PSNC. We report benchmarks results on NVIDIA GTX480, 
AMD/ATI Radeon HD 6950 and AMD Brazos platform (Zacate E-350: CPU 1.6 GHz 2 
cores, with AMD Radeon HD 6310 492 MHz). They are compared to sequential benchmarks 
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written in the C language, with results gathered on an x86_64 machine with Intel Core i7 CPU 
3.20 GHz. 

 
Figure 6 OpenCL mod2am results: DP (left), SP (right) 

The AMD Brazos platform supports only single-precision floating-point arithmetic. Thus, for 
comparison purposes, the benchmarks have been run in both double- (DP) and single-
precision (SP). Figure 6, Figure 7 and Figure 8 show results of all the benchmarks. 

 

 
Figure 7 OpenCL mod2as results: DP (left), SP (right) 
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Figure 8 OpenCL  mod2f results: DP (left), SP (right) 

Results of the mod2am and mod2f benchmarks (Figure 6 and Figure 7), for both DP and SP, 
show that the OpenCL GPU version reaches better performance for bigger problems. The 
mod2am implementation gets better results on NVIDIA on smaller problems, probably 
because of higher clock frequency, while AMD is better for bigger problems. 

In Figure 8, one can see that OpenCL implementations of mod2as have worse performance 
on all devices than the C CPU version. This is probably because of the high number of 
memory operations in this benchmark and the higher clock frequency of the CPU. The best 
OpenCL result was achieved by NVIDIA in both DP and SP tests. 

GPUs achieved less Mflop/s in double-precision than in single-precision in every run. This 
loss of performance is due to increasing of the precision, but also inability to use the texture 
memory, as there is no image format for double values in OpenCL. 

The preliminary results presented above gathered on the APU were, as expected, worse than 
on other platforms, due to the smaller clock frequency of both the CPU and the GPU. The 
APU is designed for low power consumption so the charts could change completely if the 
power consumption factor would be also considered.  

In order to better test the AMD Brazos platform the mod2am benchmark was also prepared 
using an OpenCL BLAS implementation (APPML). We have tested BLAS 1.6 and 1.8 
versions of the library. The porting proved to be very simple and required only few 
modifications in the code, namely changing: 

clGetDeviceIDs (CL_DEVICE_TYPE_GPU) to 

clGetDeviceIDs (CL_DEVICE_TYPE_CPU). 

As a result we tested several different versions of the benchmark: the PRACE reference 
implementation, an optimized CPU implementation (using either ACML or MKL libraries) 
and the OpenCL BLAS implementation for both CPUs and GPUs (Figure 9).  
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Figure 9: OpenCL mod2am results on APU (SP) 

As expected, the results show very good performance of the optimized libraries compared to 
the basic implementations. For small problem sizes the performance of the OpenCL 
implementations seem to be inferior compared to the ACML version. One of the reasons is an 
overhead of calling the complex OpenCL stack versus just calling a simple routine. It can be 
seen that as the size of the problem grows, the OpenCL CPU version is able to achieve similar 
results to that of the specialized library, which shows that the OpenCL code can be efficient 
also for x86 CPU cores. The cause for the regression of the performance of the OpenCL 
version for the largest matrix size is currently under investigation.  

The immense increase in performance of the GPU versions starting from a certain size can be 
explained by the logic of the APPML library – if the problem size is not large enough the 
library will use only a limited number of cores. That, in conjunction with the low GPU clock 
frequency, results in low performance for small cases and high performance when the 
parallelism of the GPU can be fully exploited. 

2.2.4 Pros & cons 

Table 2 lists our understanding of the pros and cons of using OpenCL, based on our 
experiences within this work. 

  Pros Cons

Scalability  Massive data parallel language. 
Scales extremely well and achieves 
very high performance on SMP 
systems. 

 

Performance  Has big potential for massive-
parallelism. It is possible to achieve 
very high performance on 
inexpensive GPU hardware. 

The code should be architecture-
oriented. PCI bus data transfer is 
still a bottleneck. 

Productivity  Developing code is quite easy for 
developers that are familiar to 
programming in C or CUDA. Tools 
exist for simplifying software 
development, and scientific libraries 
are evolving. 

Obtaining very efficient kernel code 
may require more effort, experience 
and using device specific 
information. Tools for memory 
problem detection and debugging 
are not always sufficient for target 
architectures other than AMD. 
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  Pros Cons

Sustainability  The Khronos Group consists of many 
industry-leading companies and 
institutions including AMD, IBM, 
Intel and NVIDIA. 

-

Correctness  -  -

Portability 

 

 

 

Excellent, as it may run on a number 
of architectures. The kernel code can 
be easily transferred from one 
architecture to another. The compiler 
is built into the runtime. 

To reach optimal performance it 
may be required to adjust the code 
to a specific device. 

Availability  Open and royalty-free standard. It is 
actively maintained and developed. 

 

Table 2: OpenCL pros and cons 

2.2.5 Recommendations 

OpenCL itself is a powerful tool offering great possibilities to HPC. The standard is evolving, 
and it may be seen that the Khronos Group takes into account the developer’s community 
requests.  

Developing OpenCL code still needs more effort than developing CUDA code. The 
programming environments and tools are becoming more mature, especially regarding 
debugging and performance analysis, but tools for different target architectures vary in both 
quantity and quality. OpenCL is a natural choice if an application is to be developed for AMD 
target architectures, since on this architecture one finds the most mature tool chain and 
support available (e.g. community forums). 

OpenCL code can be run on different platforms – GPUs, APUs and multicore CPUs from 
different vendors. Although it is possible, the results presented above and previous research 
[14][15][16] show that OpenCL code still may require some optimization to achieve good 
performance on different hardware. Thus OpenCL is a natural choice in cases where 
portability is one of the most important factors of the application. Where, for instance, it is 
important that the application runs on the latest architectures, as long as they are OpenCL 
enabled. Subsequent adjustments can then be made if performance becomes critical. 

In the case where one wishes to port a code from CUDA to OpenCL, the application model 
and algorithms involved need to be reconsidered. This is important due to several 
performance improvements available, when considering the hardware characteristics, and 
differences with other frameworks, like CUDA. Porting may require changes, in the data 
structures as well as in other aspects, to achieve good performance. 

  



D9.2.2 Final Software Evaluation Report 

PRACE-1IP - RI-261557  23.07.2012 17

2.3 OpenACC 

2.3.1 Description 

OpenACC is an open standard for directive-based programming of heterogeneous computers. 
The porting process involves incrementally adding directives to existing CPU code. More 
specifically, OpenACC supports the host-device execution model, where the majority of 
computation occurs on the host (e.g. CPU) and the compute-intensive code regions are 
offloaded to the accelerator device (e.g. GPU). The host is in charge of coordinating both host 
and device execution. Directives are used for mapping the code’s loop-level parallelism to the 
various levels of hardware concurrency on the accelerator. 

Since OpenACC is for programming in the host-device execution model, it is important to 
note that the host and device often have separate memory spaces. Therefore, OpenACC 
includes the ability to manage data movement between the host and device. Directives are 
used to inform the compiler about data movement, and the compiler then generates runtime 
library calls to perform the data movement. Various directives allow the programmer to keep 
the data resident on the device across accelerator region launches. Additionally, in order to 
allow tuning for the accelerator’s on-board memory hierarchy, OpenACC includes directives 
that provide cache hints to the compiler. 

Hybrid OpenACC programming is currently supported with distributed memory-based 
approaches. Also, it is possible to use OpenMP alongside OpenACC. In addition, OpenACC 
provides a directive to make the address of device data available on the host – this feature 
allows mixing of OpenACC with other accelerator languages (e.g. NVIDIA’s CUDA) and 
numerical libraries.  

Currently, three compiler vendors support all or part of the OpenACC standard: CAPS, Cray 
and PGI. Since the standard is so new, programming tools such as debuggers and performance 
profilers are in the early stages of support. In terms of performance analysis tools, there are a 
number of vendors that appear to have at least some support (e.g. University of Oregon’s 
TAU, Cray’s perftools, CAPS Performance Analyzer, NVIDIA’s NVVP, etc). Debugger 
support is claimed by Allinea’s DDT product and Rogue Wave’s TotalView product; 
however, we have had some challenges using these tools on non-trivial OpenACC codes. 

Although OpenACC is currently only supported on NVIDIA-based systems, there are no 
constraints within the specification that limit hardware support for other vendors. Looking 
toward the future, OpenACC can be seen as a precursor to a possible upcoming OpenMP 
standard that supports accelerators. The creators of the OpenACC API (CAPS, Cray, 
NVIDIA, and PGI) are all members of the OpenMP Working Group on Accelerators. In order 
to address the complexities of heterogeneous systems, a new OpenMP standard would need to 
feature the following: coordination of host-device execution, explicit management of data 
movement, and enhanced control for mapping loop-level parallelism onto the appropriate 
levels of hardware. 

2.3.2 Code examples 

// Example #1:  Simple kernel execution with asynchronous launches 

// Asynchronously issue work to the accelerator 
#pragma acc parallel loop copy(a[0:n]) async(async_id) 

for(i = 0; i < n; i++) { 

 a[i] += value; 

} 
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// Host does some work (e.g. counting) while waiting for acc region to 
finish 
while(!acc_async_test(async_id)) { 

 counter++; 

}  

 

// Example #2:  OpenACC and CUDA interoperability  

// Wrapper for launching the CUDA kernel 

void smul_vector_cuda(real_t vin[], real_t vout[], int vsize) { 
 smul_vector<<<NBLOCKS, NTHREADS>>>(vin, vout, vsize); 

} 

// Allocate and initialize the device data and then call the CUDA wrapper 

void cuda_interop() { 

 [...] 
 #pragma acc data create(vin[0:VSIZE])  copyout(vout[0:VSIZE]) { 

  // Initialize the data on the device 
  #pragma acc parallel loop 

  for (i = 0; i < VSIZE; i++) { 

   vin[i] = ((float)i); 

   vout[i] = 0.0f; 

  } 

  // Call the wrapper to launch the CUDA kernel 
  #pragma acc host_data use_device(vin, vout)  

  smul_vector_cuda(vin, vout, VSIZE);       

 } 

} 

2.3.3 Experience & results 

In order to investigate the programmability of OpenACC and the performance of the 
associated compilers, we ported the Hydro benchmark to use OpenACC. This provides an 
interesting comparison against the existing CUDA implementation of Hydro. This study 
mainly used the Cray and PGI compilers because these were already available on our systems 
at CSCS. In the future, we look forward to study the CAPS compiler’s features and 
performance in greater depth. 

As a first step, we ported the simplest existing Hydro implementation to OpenACC. This was 
straightforward; however, the implementation was not amenable to the GPU architecture 
because the amount of work per loop structure was too small. This issue caused a large 
amount of overhead due to the outer loop launching many kernels that each operated on a 
small amount of data. With this initial implementation, the trade-off was between the number 
of kernel launches and the amount of work per kernel. Performance was very poor compared 
to the CPU-only version. 

Due to this problem, we focused on a slightly more complex version of Hydro that allowed a 
variable amount of work per loop structure – the initial “2D sweep” version is called 
HydroC99_2Dmpi. The first step for porting this code was to ensure the x86 code was 
properly vectorized with each compiler. Since this code is C-based and uses pointer arrays, 
we needed to ensure the compiler understood that there were no vectorization hindrances due 
to overlapping arrays – the C restrict keyword was used to accomplish this. Additionally, 
the various compilers had difficulty vectorizing some of the multi-dimensional array accesses; 
so, these were converted to 1-D arrays, which was time-consuming. With OpenACC, the goal 
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of the developer is to expose parallelism to the compiler, and similar loop-level and data 
optimizations are beneficial to both CPU and accelerator architectures. 

After the appropriate unfolding to 1-D arrays was achieved, allowing the compilers to 
vectorize efficiently the array accesses, we focused on adding OpenACC accelerator region 
directives to each of the important loop structures in the main hydro_godunov solver. 
Since the current compilers support different accelerator region types (parallel vs 
kernels) two separate versions of the application were created. Both implementations also 
needed explicit loop directives at the various levels of loop hierarchy. Additionally, the PGI 
compiler required an independent clause on the loop directives in order to enable 
parallelization due to potential dependencies with array index calculations. However, the most 
challenging effort here was to ensure that the direction of data movement between each 
accelerator region was correct – this is specified with copy(), copyin() and copyout() 
clauses on each accelerator region. During this step, it was essential to monitor the correctness 
of the results in order to fix data movement bugs. At this early stage in the porting process, it 
is important to note that performance was far worse than simply running the x86 version. 
Essentially, each accelerator region generated a number of costly data transfers to and from 
the device, and this completely dominated the runtime of the application. 

After all of the hydro_godunov solver’s loops were running on the accelerator, the next 
step was to ensure the many arrays were resident on the device for as long as possible during 
the execution of the hydro_godunov solver. There were many arrays that needed to be 
added to an OpenACC data region that surrounded the hydro_godunov solver’s outer 
loop. At this level in the code, the majority of the arrays could simply be allocated on the 
device using a create() clause, while the uold array was copied to and from the device 
using a copy() clause. Additionally, all of the hydro_godunov solver’s accelerator 
regions were updated to use the present() clause, which tells the compiler and runtime 
that the specified arrays already exist on the device. Although this incremental step provided a 
huge performance increase over the non-resident data version, the performance was still quite 
slow due to costly work in the function compute_deltat() for each timestep. 

For the next optimization step, we discovered that some of the loops were not being 
parallelized in an efficient manner. For the Cray implementation with parallel accelerator 
regions, collapse clauses had to be added to all of the triply nested loops because the outer 
loop had a small trip count, which caused the number of thread blocks to be small with lots of 
serial work. The collapse clause caused a compiler loop transformation that ensured a 
large number of thread blocks with many threads per block. For the PGI implementation with 
kernels accelerator regions, the gang and vector clauses were used to explicitly manage 
the loop scheduling, which provided a performance improvement. 

Next, we looked at how to expand the number of loops that run on the accelerator since each 
timestep also calls compute_deltat(). Two more loop structures were accelerated and a 
more encompassing data region was utilized for uold in order to minimize data transfers of 
this array. One required code change was related to two reduction variables in 
courantOnXY(). The two variables were actually pointers to double data types, and this 
caused issues for the compilers, so local reduction variables were created and then the results 
were copied to each pointer’s data. This was a minimal code modification. After these 
optimizations, the MPI+CUDA implementation was still running about 2.3x faster than the 
MPI+OpenACC implementation; this was due to the large data transfers that were occurring 
since the uold array needed to be copied multiple times within each timestep. However, the 
OpenACC accelerator regions themselves were running at competitive performance to the 
corresponding CUDA kernels. 
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At this point in the porting process, we realized that the only way to improve the data transfer 
behaviour was to also add the make_boundary() kernels and data transfers (called inside 
the hydro_godunov solver) to the accelerator code as well. Without this addition, the large 
data transfers of uold occurred multiple times at every call of hydro_godunov, which 
was highly inefficient. To do this, we began by adding accelerator regions to all of the major 
loop structures in make_boundary, as well as a nested data region for the local data. With 
some of the accelerator regions, we hit compiler errors related to trouble parallelizing loops, 
and we were therefore unable to finish porting the make_boundary section of code within 
the timeframe for this document. As a temporary workaround until the compiler errors are 
diagnosed, we used the OpenACC host_data directive to make a call to the pre-existing 
CUDA version of the make_boundary code. This feature tells the compiler to use the 
device address of the associated array when calling the CUDA make_boundary code. 
While the make_boundary code itself is not performance critical, this simple workaround 
provided the final step for keeping most of the data resident on the accelerator (minimizing 
data transfers) – since all intensive sections of code within the solver were now ported to the 
GPU. The Cray 8.1 compiler currently supports the host_data directive, while the PGI 
compiler is expected to support this feature in their upcoming 12.5 version. 

The performance characteristics of the final MPI+OpenACC Hydro benchmark are shown in 
Figure 10 and Figure 11. We chose to compare performance to the existing MPI+CUDA 
version because we were interested in investigating whether the OpenACC compilers can 
produce well-optimized executables compared to hand-written CUDA. Additionally, multi-
node runs were performed to verify that the hybrid parallelization approach was working 
efficiently. Tests were performed on a Cray XK6 system. It features 176 nodes, each one 
equipped with 16-core AMD Opteron CPU, 32 GB DDR3 memory and one NVIDIA Tesla 
X2090 GPU with 6 GB of GDDR5 memory. The Cray compiler v8.1 and CUDA 4.1 were 
used for these specific experiments. 

Future work will focus on fixing the handful of make_boundary’s OpenACC accelerator 
regions, so that the whole application relies solely on OpenACC. We do not expect any major 
challenges here, only more time to diagnose the issues and possibly pass comments on to the 
compiler vendors. Additionally, we expect to gain access to the CAPS implementation of 
OpenACC and this compiler will be investigated further. Finally, much work needs to be 
completed in order to understand the specific performance-related strengths and weaknesses 
of each of the compilers. 
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Figure 11: Competitive performance at scale. This chart gives the results of strong scaling experiments 
between the MPI+CUDA and MPI+OpenACC implementations of Hydro. As previously mentioned, the 
MPI+OpenACC implementation uses the CUDA make_boundary implementation via the OpenACC 
host_data directive as a temporary workaround; however, the vast majority of the GPU application 
runs with OpenACC. Each time-to-solution point was obtained from the average of five independent 
runs of 500 timesteps, nx=ny=30000 and nxystep=1500. Like before, comparisons were made using 
CUDA 4.1 and a Cray CCE 8.1 pre-release compiler, and parallel runs were performed with a single 
MPI process per XK6 GPU node. 

 
Figure 10: Competitive kernel performance. The chart above shows Hydro's kernel performance 
compared between the hand-written CUDA and directive-based OpenACC implementations. For all of 
Hydro's intensive code regions, OpenACC kernel performance is very competitive (sometimes faster, 
sometimes slower) to the associated hand-written CUDA kernels. As previously mentioned, note that 
make_boundary uses the same CUDA implementation for both versions; however, this function does 
not include any performance-critical loops.  Comparisons were made using CUDA 4.1 and a Cray CCE 
8.1 pre-release compiler, and the runs used a single Cray XK6 node (X2090 GPU) with the following 
Hydro parameters: nx=ny=7500, nxystep=1500. 
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2.3.4 Pros & Cons 

In Table 3, we list the pros and cons of using OpenACC as we experienced them during the 
porting of the Hydro code. 

 Pros Cons 

Scalability (Not directly applicable; OpenACC 
works with distributed memory 
approaches) 

(Not directly applicable) 

Performance The reported Hydro kernel 
performance shows that OpenACC 
compilers are capable of competing 
with hand-written CUDA.  The 
OpenACC standard allows for a 
significant amount of tuning via cache 
hints, loop-level parallelization hints 
and data movement control.  However, 
if the kernel performance is lacking for 
a given application, the OpenACC 
standard allows for simple integration 
of external accelerator numerical 
libraries and/or low-level 
implementations (e.g. highly-tuned 
CUDA kernels). Other features such as 
‘async’ allow for greater simultaneous 
work of the host and device (i.e. the 
host can do work or communication 
while waiting for the device to finish 
intensive calculations).   

Similar to all accelerator-targeting 
programming languages, the ability 
to achieve accelerator data locality 
is crucial.  The OpenACC standard 
provides mechanisms to accomplish 
this; however, the beta status of the 
compilers sometimes makes this 
challenging to achieve due to 
missing support for complicated 
data structures, unsupported 
portions of the standard, etc.  Also, 
the current OpenACC standard does 
not directly address the opportunity 
for host-device work sharing for a 
given parallel loop. Finally, other 
lower-level approaches (e.g. CUDA 
or OpenCL) give the programmer 
greater flexibility when hand-
tuning. 

Productivity The directives allow for incremental 
development of a given code, which 
can be very beneficial for productivity 
(e.g. starting with a scalar code, then 
porting it to OpenMP, and then 
OpenACC).  This style of development 
focuses on exposing parallelism to the 
compiler, so it can also be beneficial 
for the same code base in terms of 
improving x86 vector performance. 

The beta status of the compilers 
causes some productivity slow 
downs – each compiler has varying 
levels of support for each of the 
features.  Some issues we have 
previously experienced include: 
compiler bugs that caused excessive 
data movement, lack of support for 
complicated data structures, 
challenges parallelizing certain 
types of loops, etc. 

Sustainability Concepts from OpenACC seem likely 
to be pushed into an upcoming 
OpenMP standard, which might 
promote further compiler and 
architecture support.  Many specific 
OpenACC features seem applicable to 
future node architectures, for example:  
fine control over loop-level parallelism 
and hints for placement of data at 
various levels of the memory 

With many upcoming architectural 
examples like fused CPU-GPU and 
heterogeneous x86 cores with 
automatic OS scheduling, it is not 
completely clear if a host-device 
style programming model will be 
required in the future.   
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 Pros Cons 

hierarchy. 

Correctness It is possible to incrementally develop 
for the accelerator using the same code 
base (i.e. starting with scalar code, then 
porting to OpenMP, then porting to 
OpenACC).  As opposed to lower-level 
accelerator programming (e.g. with 
CUDA or OpenCL) where the code 
base must be changed, this incremental 
development approach improves 
correctness because results can be 
easily debugged at each development 
step.   

Data movement can sometimes be a 
challenge for correctness; for 
example, a common pitfall is to 
mistakenly assume that values 
computed on the device have been 
transferred to the host, or vice versa.  
Additionally, current debuggers 
only provide beta support for 
OpenACC, so complex codes can 
sometimes be challenging to get 
working with debuggers.  Also, not 
all compilers are generating 
sufficient debug information, and 
there are other general issues 
regarding accelerator kernel 
characteristics changing when the 
debug flag is enabled. 

Portability Currently, there are three different 
compilers that accept OpenACC 
directives.  PGI and CAPS are 
available for many flavours of 
accelerator-based systems.  Codes that 
are implemented with OpenACC can 
be run on CPU-only or heterogeneous 
accelerator systems by telling the 
compiler whether to accept the 
OpenACC directives or not.  This type 
of single source code portability is one 
of the strongest benefits of OpenACC. 

Currently only NVIDIA GPUs are 
supported as an accelerator target, 
although there is no reason why 
other accelerator targets cannot be 
supported.  Cray’s compiler is not 
portable to other non-Cray systems; 
however, the OpenACC code itself 
is portable.  In terms of language 
portability, it is unclear whether 
OpenACC makes sense to use with 
object-oriented approaches (e.g. 
C++) – this is an area for further 
investigation.   

Availability PGI, Cray and CAPS all recently had 
early releases of compilers that support 
all or a portion of the standard.  Having 
many available compilers directly 
equates to a better user experience – 
the user can swap compilers if 
functionality or performance is lacking 
for a given compiler on a given 
application.  

Beta status of the compilers means 
that progress can be hindered by 
availability of upcoming releases 
that contain specific bug fixes. 
Additionally, there are currently no 
widely available open-source 
OpenACC compilers (probably 
because they require significant 
auto-vectorization capability) 

Table 3: Advantages and disadvantages of using OpenACC, based on our experiences within this work. 

2.3.5 Recommendations 

Through the work detailed above we have arrived at a set of recommendations concerning the 
usefulness of OpenACC: 
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1. Encourage accelerator directive integration into the larger, more widespread OpenMP 
standard 

2. Motivate tool developers (e.g. debuggers and performance analysis tools) to support the 
various OpenACC implementations 

3. Create more application benchmarks and micro-benchmarks to investigate performance 
characteristics among the various OpenACC compilers  

4. Create feature benchmarks to test newly implemented OpenACC features, such as: 
asynchronous data transfers, asynchronous kernel launches, and cache placement hints 

5. Investigate whether these directives are useable with object-oriented languages (e.g. 
using the declare directive). 

2.4  OmpSs 

2.4.1 Description 

OmpSs is based on the OpenMP programming model with some modifications to its 
execution and memory model in order to support asynchronous parallelism and heterogeneous 
devices such as GPUs. It is open source and available for download at: 
https://pm.bsc.es/ompss. 

In particular, the OmpSs execution model is a thread-pool model instead of the traditional 
OpenMP fork-join model. The master thread starts the execution and other threads cooperate 
executing the work it creates (whether it is from worksharing or task constructs). Therefore, 
there is no need for a parallel region. Nesting of constructs allows other threads to become 
work generators as well. On the other hand, the OmpSs memory model assumes a non-
homogeneous disjoint memory address space. As such, shared data may reside in memory 
locations that are not directly accessible from some of the computational resources. Therefore, 
all parallel code can only safely access private data, while for shared data it must specify how 
this is going to be used (see below). This assumption is true even for SMP machines as the 
implementation may reallocate shared data taking into account memory effects (e.g., NUMA). 
In order to support OmpSs, programs must be modified to reflect this runtime model. This 
process is referred to here as “taskification”. 

Furthermore, OmpSs allows annotating task constructs with three additional clauses: Input, 
Output, Inout and Target. Input specifies that the construct depends on some input 
data, and therefore, is not eligible for execution until any previous construct with an output 
clause over the same data is completed. Output specifies that the construct will generate 
some output data, and therefore, is not eligible for execution until any previous construct with 
an input or output clause over the same data is completed. Inout specifies a combination of 
input and output over the same data. 

Finally, to support heterogeneity and data motion between address spaces a new construct is 
introduced: the target construct. It allows one to specify on which devices the construct 
should be targeting (e.g.,cell, gpu, smp, etc.) and also specifies that a set of shared data may 
need to be transferred to the device before the associated code will be executed. In addition, 
there is a specific construct called implements which specifies that the code is an alternate 
implementation of the target devices of the function name in this clause. This alternate clause 
can be used instead of the original one if the implementation considers it appropriate. 

2.4.2 Porting a scientific application to OmpSs 

The application “HYDRO” was chosen to evaluate the OmpSs programming language. 
HYDRO is a simplified version of the astrophysical code RAMSES, in that it lacks Adaptive 
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Mesh Refinement (AMR). It is effectively a 2D Computational Fluid Dynamics code of 
reasonable size (~1500 lines for the sequential F90 version). The space domain is rectangular 
two-dimensional, split into a regular Cartesian mesh. The code solves compressible Euler 
equations of hydrodynamics based on finite volume numerical methods, using a second order 
Godunov scheme. Also, a Riemann solver computes numerical flux at the interface of two 
neighbouring computational cells on a regular 2D mesh. These functions are in the 
hydro_godunov.c and are the best candidates in HYDRO to parallelize using OpenMP 
and OmpSs.  

Initially, we took a C version of HYDRO in the PRACE_HYDRO_V1 package to port to 
OmpSs. In this version, we took a similar approach as in OpenMP, namely taskificating in a 
fine-grain approach the iteration loops. These loops proved to be too-fine grain in the end, 
however, leading to too much overhead. 

A more recent version of HYDRO takes a more coarse-grain approach, something which 
facilitates better the porting to CUDA. The reason for this is because it is structured in a much 
cleaner way, where data structures are more visible and it is also easier to identify the 
computation blocks in order to facilitate the porting to CUDA. The name of this last version is 
HydroReference20120210. The results presented in this document are from this last version. 
In this version, we parallelized, using OmpSs, the main iteration of the Godunov scheme 
which is implemented in the routing hydro_goduno().  

 

Figure 12: Taskification with OmpSs of the hydro_goduno() routine. 

Figure 12 shows the taskification with OmpSs of the main routing hydro_goduno(). The 
taskification consists on adding OmpSs pragmas inside the loop iterated by j, in order to 
taskify for each loop iteration in each of the two dimensions. A synchronization OmpSs 
pragma was added at the end to wait for the finalization of the previous launched tasks in the 
loop iterated by j. These changes are emphasized in bold in Figure 12. Also, we allocate and 

 
 for (idimIndex = 0; idimIndex < 2; idimIndex++) { 
 
    make_boundary(); 
 
    Allocate local variables  
    
    for (j = Hmin; j < Hmax; j += Hstep) { 
       
#pragma omp task concurrent (*uold) 
{ 
      Allocate local work space for 1D sweeps 
       
      gatherConservativeVars(); 
 
      constoprim(); 
 
      equation_of_state(); 
 
      slope (); 
 
      trace(); 
 
      qleftright(); 
 
      riemann(); 
 
      cmpflx(); 
 
      updateConservativeVars(); 
 
      Deallocate local work space 
} 
    }                           
 
#pragma omp taskwait 
} 
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deallocate the required local work space for each task every time that the task is created. As 
can be seen, the taskification granularity is selected to be a slice for each X and Y dimension. 
In each slice a gather operation is performed to copy the required data in a temporal buffer, 
then all the computation operations are performed in this buffer, and at the end, the results are 
placed in the original locations in memory.  

A finer-grained taskification is tested which consists on taskificating every computational 
function in a slice. However, due to the data dependencies among these functions this did not 
achieve any parallelization of the computation. Figure 13 shows the functions and data 
structures used in these functions, and the data dependencies among them. As you can see, 
there are data dependencies among the functions that prevent parallelizing the computations 
in a slice.  

 

Figure 13: Functions and data dependencies in a slice of the hydro_godunov iteration 

2.4.3 Experimental results  

The selected application benchmark HYDRO is run with different configurations of numbers 
of nodes to evaluate the scalability of the code. The number of MPI processes used is 32, 64, 
128, 256, 512, and 360 using two threads per MPI process. 

The machine used is a cluster that comprises of 126 compute nodes. Every node has two Intel 
Xeon E5649 6-Core processors at 2,53 GHz running a Linux operating system with 24 GB of 
RAM, 12MB of cache memory and 250 GB local disk storage. They are also equipped with 2 
NVIDIA M2090 cards each, with 512 CUDA Cores and 6GB of GDDR5 Memory. The 
interconnect network is non-blocking and is based on QDR InfiniBand with a bandwidth of 
40Gbps. 

The input deck used is the typical one for scalability studies called 
input_sedov_10000x10000.nml where the problem size is nx=10000 and 
ny=10000 and runs 100 iterations. 
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Figure 14 shows the runtime of the MPI version of HYDRO with OmpSs as a function of the 
number of MPI processes. Two threads per MPI process are used in all cases and 6 MPI 
processes were placed per node. As can be seen, HYDRO scales quite well with the number 
of MPI processes. The execution time is 36 seconds at 35 MPI processes and decreases down 
to 7 seconds on 320 MPI processes. 

 
Figure 14: Runtime of HYDRO when scaling the number of MPI processes 

2.4.4 Pros and Cons 

Table 4 summarizes the pros and cons of the OmpSs programming language for various areas 
including scalability, performance, sustainability, portability, availability, and productivity. 
The major advantage of OmpSs is that its main objective is to extend the well-known standard 
OpenMP with new directives to support asynchronous parallelism and heterogeneous devices. 
This allows to achieve a higher communication-computation overlap so codes are able to 
scale better at large scale where communications are inevitably becoming the major 
bottleneck. Furthermore, OmpSs is open source and can be freely download. 

Area Pros Cons 

Scalability  Higher communication-computation 
overlap is achieved in order to hide 
the communication overheads 
occurring at large scale. It supports 
both shared and distributed memory 
systems. 

Manual taskification of the 
communications is required, 
independently from the 
computations. 

Performance  Allows for asynchronous 
parallelism. It also supports 
heterogeneous devices. 

The overhead of task spawning and 
bookkeeping could degrade the 
performance if the computation 
granularity of the tasks is very 
small. Performance is limited to the 
capabilities of user in creating data 
dependency and extracting 
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Area Pros Cons 

parallelism 

Sustainability BSC is providing support It is not yet a standard 

Portability Runs on standard x86 and x64 
processors. The source code of the 
application remains the same. 

Requires the Mercurium compiler 
and the Nanos++ runtime.  

Availability Open source developed actively by 
the BSC. 

 

Productivity Very short, readable code. Easy to 
program and maintain. Clear and 
powerful concepts for parallel 
programming extended from the 
standard OpenMP.  

Practically no tools are supported 
for assisting the porting and 
development of applications. 
Additionally, development time is 
affected to some extent due to 
unavailability of debuggers. 

Correctness  Caution is required to make sure that 
data dependencies are correct. 

 
Table 4: Pros and Cons of the OmpSs programming language. 

2.4.5 Recommendations 

When porting HYDRO to OmpSs we identified several recommendations for programmers in 
order to write a much cleaner and portable code when programming with a task-based parallel 
programming language. These are simplifying data indexing, pushing data allocation close to 
where it is needed, customizing blocking size, and using a top-down approach for 
taskification. These are briefly described below: 

1. Simplify data indexing: The data structures such as arrays and matrices used in the 
computations are declared in a way that their size is explicit, without requiring to perform 
any index arithmetic. This enormously facilitates the programmer to identify data 
dependences among the computations and consequently propose an efficient taskification 
of the application’s code.  

2. Pushing data allocation close to where it is needed: We have found that the common 
practice today is to allocate the data required in tasks globally, i.e. outside of the task 
declaration. The advantage of doing this is that it minimizes the overhead of allocating 
data, because it is performed only once regardless of the number of tasks. However, this 
approach might be prone to generate data dependencies among tasks due to sharing the 
same data structure. These data dependencies are unfortunately sequentializing tasks and 
thus prevent the parallezation of the code. This problem can be easily solved by allocating 
the particular data required for each task close to where the task needs it. By doing so, 
data dependencies among tasks are minimized. The only drawback of doing this is that it 
may generate a higher overhead due to the allocating/de-allocating of data for every task. 

3. Customizing blocking size: When taskifying code it is desirable to have the flexibility to 
adjust the computation granularity of the tasks. This can be achieved by customizing the 
block size when partitioning the space domain of the scientific applications. Finding an 
optimal computation granularity is critical to performance in order to balance the 
overhead of spawning multiple tasks with the performance improvement achieved by 
having a higher parallelism.  
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Identifying the optimal granularity is non-trivial, because it depends on many parameters 
such as the underlying machine. Thus an auto-tune tool may be interesting to use during 
the runtime of the application, to find the optimal block size.  

4. Top-down approach for taskification: One interesting approach when taskifying an 
application is that the taskification process should be able to follow a top-down approach. 
With this approach programmers are able to go from a coarse-grained to finer-grained 
computations in order to have the flexibility to control the task granularity more 
efficiently. A coarse-grained approach would involve taskifying an application’s routines, 
and a finer-grained approach might be based on taskifying loops. For the latter, it might be 
interesting to structure the computation in nested loops.  

2.5 UPC 

2.5.1 Description 

In this Section we briefly introduce the concepts of UPC, its main features and constructs, and 
the most prominent compilers and tools currently available. 

 

A very brief introduction to UPC 

UPC is a Partitioned Global Address Space (PGAS) language. It is an extension of ANSI C 
that provides access to a shared, partitioned address space (any valid C program is also a valid 
UPC program). The variables stored in this shared address space can be directly used by any 
thread/processor, however each variable is associated with (or has affinity to) a specific, 
single thread. This allows programs to be more easily written with a view of the entire 
memory available to all processes, and at the same time to exploit data locality (affinity) for 
boosting performance. UPC programs follow the “Single Program / Multiple Data” execution 
model, and instantiate a number of threads that operate on either private data, or the shared 
data within the global address space. The number of threads can be declared during 
compilation or at the moment of running. Qualifier keywords are used to declare whether data 
is private or shared, as well as how arrays could be distributed among threads. Being derived 
from C, UPC supports pointers. UPC pointers can be declared as either shared or private, and 
they can point to either shared or private memory. Because UPC pointers have to keep track 
of more than simply the memory location they point to, their representation has considerable 
impact on code performance. UPC contains its own language primitives to provide dynamic 
allocation of shared variables, data movement between local and remote memories, collective 
movements between threads, etc. Parallelism is most often implemented by looping over all 
the data items, and having each thread or process only operate on the data that has affinity to 
them. UPC adds a special type of loop to accomplish this task. 

Main features and constructs  

We briefly review some of the key distinguishing features and language constructs of UPC: 

1. Identifying threads: The number of threads available to the program is maintained by the 
THREADS variable, whereas each running thread is identified by the variable MYTHREAD. 

2.  Synchronisation: Synchronisation between different threads is achieved through a set of 
functions such as barriers, locks. 

The UPC construct upc_forall is an iteration statement similar to the C for loop, with 
one additional argument that determines which thread executes a given iteration, or in 
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other words to which thread this iteration has affinity. This argument can be either an 
integer (in which case the affinity matches the THREAD numbers), or a pointer to shared 
memory (in which case the affinity is that of the object pointed to). Finally some functions 
in UPC are collective, i.e. they are executed by one thread, but they affect all of the 
threads. 

3. Allocation and sharing of data: In UPC, dynamic allocation of shared memory is 
achieved through the collective functions upc_global_alloc, upc_all_alloc 
(the latter is a collective version of the former), and upc_alloc, which allocates shared 
memory with affinity to the calling thread. The memory is allocated according to the 
declaration: 

shared [blocksize] char[nblocks * blocksize]

The above declaration dictates the affinity of each block of the allocated array to a specific 
thread. Specifically, the first blocksize bytes have affinity to thread 0, the next 
blocksize bytes to thread 1, etc. Upc_free is used for freeing such allocated 
memory. Data is transferred between shared/non-shared memory with the functions 
memget and  memput. 

Main compilers and implementations 

UPC compilers are compliant to a UPC specification that is not part of the ANSI C standard. 

Prominent compiler implementations include the following1: 

 HP UPC (commercial) [http://h30097.www3.hp.com/upc/] 
 Cray UPC (commercial)  [http://www.cray.com/Home.aspx] 
 GCC UPC (free, developed by Intrepid) [http://www.gccupc.org] 
 Berkeley UPC (free) [http://upc.lbl.gov/] 
 Michigan Tech MuPC (free) [http://www.upc.mtu.edu/]  
 IBM UPC Alpha Edition (commercial).  

2.5.2 Description of work done 

We now describe the main focus of our investigations and experiments on UPC. 

Main topics of investigation 

Our goal was to evaluate the feasibility and practicality of porting non-trivial code to UPC, to 
be executed over a large number of nodes in a HPC system. In particular, we were interested 
in the following aspects of the language: 

 Ease of implementation and porting to UPC 
 Adaptation to shared memory model, and issues with affinity 
 Identification of issues relevant to synchronization between threads 
 Performance, optimization and scalability 

In our studies, it soon became apparent that there was a trade-off between the above aspects of 
the language, which warranted deeper investigation. More specifically: 

 Shared memory model allows simpler implementation: The shared global address 
space model allows programs to be ported to UPC with potentially limited effort, since 

                                                 
1 see also http://upc.wikinet.org/wiki/Compiler_Software 
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the developer can consider the entire shared memory to be available to all threads and 
processes. 

 Lack of affinity causes performance degradation: On the other hand, we find that 
performance degradation is bound to occur if data locality and affinity issues are not 
taken into account in the implementation. 

 Enforcing affinity adds code complexity: However in order to adapt one’s 
implementation so that it will take into account data locality and affinity, more complex 
and intricate code needs to be written, to an extent undoing some of the benefits of the 
shared memory’s model. 

 Code complexity makes synchronization more difficult: Finding the optimal amount 
of thread synchronization required to ensure correct execution may not be trivial. The 
increased code complexity may lead to excessive use of synchronization constructs 
(barriers, locks, etc), possibly resulting in performance degradation or even race 
conditions. 

In our experiment we came across all of the above issues, and we discuss them in more detail 
below. 

Ported code and description of experimental setup 

We initially focused on porting the Graph500 [19] benchmark code to UPC. We found the 
code’s complexity to be prohibitive, and the documentation somewhat lacking, so after some 
issues with library functions that we had difficulty in porting we decided to shift our focus to 
the Hydro code, which was suggested within the scope of the project. 

The Hydro code was suggested by the CEA/IDRIS teams. We ported it to UPC, performed 
various cycles of optimization, and ran extensive experiments focusing on performance, 
scalability, shared memory allocation and synchronization. Our results are discussed in 
Section 2.5.3. 

Finally we also developed our own synthetic benchmarks targeting performance, affinity and 
cross-node memory access issue. Following are the key details of our experiments, platforms 
and tools: 

 Compilers used: 
- Berkeley UPC  
- gcc-upc. 

 Machines used: 
- First experiments on HLRS Nehalem cluster. 
- More experiments on HLRS Cray XE6 Hermit. 

 Experimented with different: 
- Synchronisation schemes (barriers, locks) 
- Memory/pointer sharing and accessing approaches 
- Input data sizes 
- Numbers of threads, cores, nodes 

 

In the following section we present and discuss our findings. 

2.5.3 Experimental outcomes and discussion 

In our experiments we tried to address and study various issues that impacted our outcomes, 
some of which have also been identified in other similar studies. We present and discuss them 
together with our experimental results. 
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Ease of implementation, coding and productivity 

Porting the code to UPC required some effort in getting acquainted with the language’s 
additional syntax and constructs, as well as issues of thread handling, shared memory 
allocation, etc. 

A first running version was achieved with reasonable effort. However several further stages of 
improvements and optimizations were carried out those tried to address issues of 
synchronization, performance and scalability, memory affinity, handling of shared pointers as 
well as others and are described below. In order to completely address all of the above issues 
a considerable study and re-design of the entire algorithm would be required. 

We were forced to address the fact that, although in principle we could consider all of the 
shared memory as available to all threads, there was no (obvious) way to ensure that each 
thread would only access the memory that was within its affinity, for maximum performance.  

The code readability inevitably suffered as provisions were included for the above issues, 
resulting in a more complex software artefact. 

According to our developers’ diaries, the initial port took roughly 4 weeks, followed by 
various cycles of new optimised versions weekly. 

 Synchronisation issues 

Synchronisation between threads in UPC is handled through locks and barriers. In a first 
implementation it is easy to “over-engineer” the problem, inserting more locks and barriers 
than is absolutely necessary, to ensure that the code will be executed in the required fashion. 
It was immediately apparent that this caused performance delays, and even risked to create 
race conditions.  

Reaching the optimal amount of synchronization can be tricky, especially as the code 
becomes more complex due to other requirements. 

We managed to improve the performance of a correctly running version of our code by about 
one order of magnitude by optimizing synchronization. 

Performance and scalability 

We ran experiments based on the Hydro code, as well as on synthetic benchmark code we 
created, which could be tuned to perform either completely in-affinity memory accesses, or 
mostly out-of-affinity memory accesses. The synthetic benchmark was used to study both 
issues of performance and memory affinity. 

Figure 16 and Figure 17 refer to the synthetic benchmarks runs. The execution time scales 
linearly with the problem size and number of available cores for a given number of nodes. 
However we observe some clear performance issues which we attributed to shared memory 
affinity. In short our findings suggest that: 

 Performance scales as expected across number of threads. 

 A significant degradation occurs in memory accesses outside threads’ affinity, especially 
when accessing memory across nodes. 

Figure 15 refers to our runs with the ported Hydro code, which includes a considerable 
amount of out-of-affinity memory accesses.  
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Overall, we have ran our experiments on configurations of up to 128 nodes and almost 4096 
cores, we have exhausted the available input data sizes, and we have observed and described 
the performance and scalability patterns of this application. 

We show the results of running three different input data sizes, namely 100x100, 250x250 and 
1000x1000. We observe a similar performance pattern up to a certain number of cores 
(different for each input data size and BLOCKSIZE used), and then a turning point as 
performance begins to deteriorate. We believe that two effects come into play: 

 As the number of cores increases, at a certain point the computation/communication ration 
becomes so small for each thread that the communication overhead dominates the thread 
time, and the computational gain is lost. That’s where we observe the turning point in the 
curves. We identify these at roughly 200 cores for the 100x100 input, at 500 cores for the 
250x250 input, and probably over 5000 cores for the 1000x1000 input. This suggests a 
limit for the number of cores that it is reasonable to deploy for a problem of such size. 

 Another factor that we expected would affect our results is the fact that for a specific input 
size and BLOCKSIZE, there’s a limit to the number of threads that can be utilized to solve 
the problem. More threads should simply not be assigned any task. In some of our runs, 
e.g. in the 1000x1000 data size, we expected this to show up in our graphs. Specifically 
we expected that adding more than 1000 cores in this case would not improve overall 
performance. However we were surprised to see that it does. One theory is that as there 
are more than one independent upc_forall loops, perhaps the additional cores are 
more efficiently allocated so that different cores are used in the different loops (if 
available). 
 
 

 

(a) 
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(b) 

 

(c) 

Figure 15: Performance of UPC Hydro code implementation, as the number of cores and nodes is 
increased, for (a) 100x100 input data size, (b) 250x250 and (c) 1000x1000. Each line corresponds to a 
different number of nodes and/or block size. 

Shared memory locality and affinity 

In order to investigate further how performance is affected by issues of memory locality and 
affinity, we devised a simpler, synthetic benchmark that however handled shared memory in 
the same way that our main program (the Hydro code) did. We ran experiments in which we 
would select to have memory accesses either only within affinity, or mostly out of affinity. 
We ran these across different numbers of cores and nodes. The results can be seen in Figure 
16. 
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Figure 16: Scalability of code for in-affinity and out-of-affinity memory accesses 

The figure (note that both axes are logarithmic) shows an almost perfect performance 
scalability as the number of cores/nodes increases. The lower-left group of curves are from 
the in-affinity runs. The upper-right group are froming the out-of-affinity runs. We see that 
there is a performance degradation there, which as expected increases as the number of nodes 
involved in the experiment also increases. Figure 17 shows how the number of nodes affects 
the performance degradation for out-of-affinity runs in the Hermit Cray XE6. We plot the 
ratio of average time to run with out-of-affinity accesses over average time to run with in-
affinity accesses, against the number of nodes. Specifically we see that running on 32 nodes 
causes performance to degrade by roughly 300% (i.e. become 3 times slower). 

 

 
Figure 17: Performance degradation due to out-of-affinity memory accesses. 
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So to summarize, that for the given ration of in/out of affinity memory accesses scalability is 
almost perfect while increasing the number of threads and nodes (seen in Figure 16). This is 
an important characteristic of UPC, as it suggests that for a specific ratio of in/out affinity 
accesses and for specific sizes of problems, UPC can offer very good scalability. However in 
the case of the Hydro code performance suffers due to data localization/affinity issues, 
especially across nodes. As seen in Figure 15, the performance is not optimal, and as the 
number of nodes increases it is affected by out-of-affinity memory accesses as described 
above. 

Unfortunately ensuring that the code will always perform memory accesses that are within 
affinity is not at all straightforward. An example of a data affinity issue we encountered with 
the Hydro code is briefly outlined in Figure 18, and discussed below.  

This figure shows the main shared data structure used by the Hydro code (uold). Uold 
effectively consists of a 3D “cube” of data, (along axes i,j,v), but is stored as a 1D array. 
UPC only allows splitting the array in a series of contiguous blocks of fixed size, and giving 
affinity of each block to one thread in a periodic, round-robin fashion. 

The algorithm will at some point want to assign blocks with a common value of j (such as the 
horizontal slice shown in the figure) to one thread, whereas at other points it will want to 
assign blocks with a common value of i to one thread. And on top of that, it will perform 
some additional boundary operations, working on neighbouring slices. However there is no 
way to arrange the data within the 1D array such that these blocks will always be contiguous. 
For example in the figure we see that the values corresponding to the horizontal slice are 
dispersed throughout the entire array. In order to achieve some (not complete) affinity, very 
specific conditions should apply, e.g. 

(nx*ny) mod (blocksize*nthreads) = 0 

But this is rarely the case, resulting in performance degradation when memory accesses out of 
the thread’s affinity occur. 

In contrast, a language such as MPI is not restricted by a linear, periodic, BLOCKSIZE-based 
array affinity model, like UPC. In MPI, the decomposition of a 2D or 3D problem (like the 
hydro problem) can be performed based on a set of tools, such as the MPI_CART set of 
functions. These create communicators based on Cartesian topologies, according to the 
programmer’s specifications. A memory “grid“ is thus created and stored (size, shape, map of 
processes to blocks, etc), and each process can then access this information by calling other 
MPI_CART functions. This makes it a lot more feasible to break down the problem into units 
that will be processed within each thread’s affinity. 

When we changed the code to avoid these out-of-affinity accesses (but then the resulting code 
didn’t perform the correct operations), we saw that we were able to avoid the performance 
penalties. 
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Figure 1.1.3 

Figure 18: Schematic representation of the main shared data structure of the Hydro code 

Shared pointer handling 

We give an example of how incorrect handling of a shared pointer can cause dramatic 
performance degradation of at least 1-2 orders of magnitude. We allocate a shared 
global array as: 

uold = (shared[BLOCKSIZE] double *) 
       upc_global_alloc(numberofblocks, BLOCKSIZE*sizeof(double)); 

 

Then within each thread we access it, in two different ways: 

 We directly access it with: 

x = uold[i]; 
uold[j] = y; 

 
 We define a local variable and set it to point to the global array: 

shared[BLOCKSIZE] double *puold;

puold = Hv->uold; 

 

and we access the shared memory as: 
x = puold[i]; 

pould[j] = y; 

 

The first version degraded performance by one to two orders of magnitude, due to the 
fact that the global shared pointer to the shared array belonged to one thread (thread 0), 
so all other threads would have to access thread 0 to read the pointer value at every 
access, whereas in the second version thread 0 only needed to be accessed once, to 
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copy its value to the local pointer. In Figure 19, the top group of curves show the effect 
on performance of the first version. The second version, however, may impose stricter 
synchronisation requirements. 

 
Figure 19: The effect of shared pointer handling on performance. The top set of lines shows the 
performance degradation when directly accessing the shared data structure, instead of using a local 
pointer for indirection. 

2.5.4 Pros and Cons 

We have rated UPC in seven aspects based on our experiences in this work. These ratings are 
shown in Table 5. 

 Pros Cons 

Scalability Good when thread has affinity to the 
memory it is accessing. 

One may need to employ practices 
which require explicit knowledge of 
the memory model to obtain good 
scaling. In such cases, the benefit of 
using UPC over MPI is not obvious. 

Performance In the serial sections, UPC is identical 
to C, with the well known benefits in 
performance associated. 

 

Productivity For some simple parallel applications, 
implementing an algorithm in UPC can 
be much faster than in MPI. 

For complex data accesses, where 
threads need to access non-local 
data, the developer may require to 
explicitly take care of data accesses, 
leading to considerably more 
complex code. 

Sustainability The first version of UPC was released 
in 1999 and development of UPC 

Although versions have been 
released continuously for almost 15 
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 Pros Cons 

compilers is still ongoing. years, UPC is still not considered a 
mature programming language for 
parallel architectures 

Correctness C debugging tools can be used for the 
serial versions of the code 

 

Portability Porting from C to UPC can be trivial 
for kernels where threads operate on 
local data 

For more complex kernels where 
threads operate on data local to 
other threads, one may require 
increased effort for porting as well 
as a detailed understanding of the 
application’s details such as data 
paths. 

Availability A number of open-source and 
commercial implementations are 
available. The specification itself has 
reached a level of maturity to allow for 
a several conforming compilers. 

 

Table 5: Pros and cons table of UPC 

2.5.5 Conclusions and recommendations 

UPC is a language that, under certain conditions, can achieve excellent scalability and 
performance. The shared memory model allows ease of programming, provided that the 
algorithm to be implemented allows taking full advantage of its capabilities, without 
stumbling upon affinity and locality issues. 

Being a relatively contained extension of the C programming language, it reduces the entry 
barrier for new programmers. 

In terms of maturity, the tool support for UPC may not be sufficient yet, and it is also not 
clear how committed a community of users exists, however there are already various compiler 
implementations at relatively stable stages. Having said this, there are some cross-compiler 
portability issues that still need to be addressed. 

The shared memory space model promises ease of implementation, however for top 
performance it must in essence be managed as if it were distributed. This may require 
considerable software engineering and programming skills, and can come at a cost to code 
readability. Perhaps a non-computer scientist porting their code to UPC would have some 
difficulties, compared to other models, e.g. OpenMP. 

Regarding performance and scalability, our experimental results are not conclusive. 

Additional issues with UPC include: 

 BLOCKSIZE is required to be known at compile time. So a less flexible round-robin 
thread distribution approach is used, that has poorer performance. 

 Array distributions in UPC are one-dimensional. A 2D-block distribution is not possible, 
as discussed in the previous examples. 

 It lacks the programming tools that, for example, MPI or OpenMP offer, for distributed 
execution, communication and synchronization. 
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 Some performance variations were observed that we were not able to explain (they could 
be due to the runtime infrastructure). 

In summary, UPC is a language definitely worth keeping an eye on, but some improvements 
would considerably increase its capabilities. 

3 System software 

3.1 Introduction 

This section focuses on the various studies related to system software that were completed in 
the PRACE-1IP WP9 work package or are still ongoing on the associated prototypes. The 
chapter is separated into four sections corresponding to “Operating System and System 
Management”, “Resources management”, “Data management” and “MPI and Communication 
libraries”. 

For each subtopic, the motivation, description and results of the studies achieved by the 
WP9.2 task contributors are detailed. In order to provide technical insights for the deliverable, 
every prototype owner and task contributor was asked to provide their technical 
recommendations based on their own work. The associated sets of recommendations are 
presented for each subtopic. These recommendations provide the overview of the envisioned 
issues and solutions for upcoming system designs. They are outlined in four summary 
subsections, below each topic. 

3.2 Operating System and System Management 

3.2.1 Energy Aware System Software (LRZ) 

Motivation 

With energy efficiency being one of the major problems to overcome in the Exascale 
challenge, future HPC system software needs to become energy aware. Energy awareness at 
the system software level encompasses two aspects. First, power consumption of the system 
needs to be monitored in order to measure the energy required to run a given application (i.e. 
Energy-to-Solution). Second, the operational parameters influencing the power and 
performance characteristics of the system need to be tuned to improve Energy-to-Solution. 

Description of the work 

The CooLMUC prototype, at BADW-LRZ, uses smart power distribution units (PDUs) to 
monitor the power consumption of every compute node in the cluster. In addition, the power 
consumption of the cooling equipment is monitored using a digital three-phase current and 
voltage meter. An Energy-to-Solution system has been implemented on this prototype to first 
obtain the power readings of the components and second, calculate the Energy-to-Solution for 
a given application considering the power and estimated cooling consumptions of every 
allocated node. 

Evaluations of the modification of the maximum frequency of the allocated cores, helped by a 
proper configuration of the SLURM resource manager, have been performed in order to 
assess the possible benefit of DVFS (Dynamic Voltage Frequency Scaling) for applications 
using the APEX MAP benchmark. This benchmark performs memory operations according to 
a selectable pattern. Thus, the study compares a randomly distributed access patterns to a 
stridden pattern, which is comparable to the STREAM benchmark. 
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Results 

As expected, the study outlines that the power consumption is higher at higher processor 
frequencies. Since the benchmark workload is the same across the frequencies, higher 
processor frequencies also cause shorter application run times. Yet, in case of the random 
memory access pattern, the results show that the performance increase at higher frequencies 
cannot justify the increase in power, as opposed to the stridden case. Thus, Energy-to-
Solution is best at the highest frequency in the stridden case while it is best at an intermediate 
frequency level for the random case. The study [20] confirms that adjusting system 
parameters can optimize the energy consumption of scientific applications. A more detailed 
description of the work carried out within this subsection is included in section 7.1 in the 
Annex of this document. 

3.2.2 Monitoring with Hierarchical Nagios (Hnagios) (CINECA) 

Motivation 

Monitoring has always been an important part of the management system activities. With the 
increase of the number of server nodes of a computing cluster and the resulting raise of the 
probability of failures, monitoring is becoming even more important. Between the different 
monitoring solutions, Nagios is one of the most implemented open source solutions in the IT 
field. Some improvements are however required to make it a useful component for the proper 
management of High Performance systems. 

Description of the work 

The Nagios monitoring system [21] provides a central view of the system’s status. Different 
dashboards provide at-a-glance access to monitoring information and views provide users 
with quick access to the information they find most useful. Alerts can be sent via email or 
mobile text messages, providing details, useful for starting the resolution process 
immediately. A basic configuration of a monitoring system with Nagios is composed of a 
central server which collects the results of active and/or passive checks on different hosts and 
related services. For each host of the system, a list of services to monitor can be defined. This 
works well for regular aggregation of hosts but for large systems with complex topologies, 
adapted views are required. Thus, for an efficient management of the entire system, a 
customized configuration and scripting of the Nagios installation is mandatory. 

In order to manage the high number of alarms required to monitor all the nodes of the HPC 
clusters and their services, it was necessary to only use passive checks to distribute the 
execution of the tests on the monitoring targets and to spread the execution of the checks on 
the time frame in order to avoid overloading the Nagios server, thus improving its availability. 
Despite this design, the quantity of signals to handle on the server side is still very large and 
spotting critical situations and handling efficiently emergencies is very difficult. To overcome 
that issue, a hierarchical organization of the components only sending critical summaries with 
alarms and information organized in synthetic views is chosen. It allows system 
administrators to distinguish between critical and non-critical events. 

For that purpose, Mathias Ketner’s Nagios MK livestatus plug-in [22] is installed and 
configured to collect all the signals and organize and filter them before transmission to the 
server. It results in an architecture where each cluster has its standard Nagios server running 
on the cluster management node. This server is the peripheral Nagios instance that manages 
the nodes in sets of common types (compute, login, storage, etc.), summarizes cluster status, 
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and sends the result to a second level of the Nagios instance. This instance, the central Nagios, 
is the only component that sends alerts. 

Results 

These customized changes, combined together, allow one to distinguish at a glance between 
more and less critical status without loss of information. Indeed, the peripheral Nagios server 
can be used to find the details of a particular alarm. The consequence is an easier management 
of the priorities and organization of the repair service in a way suitable for the whole 
production of the computing system, modulating the time reaction for each event. All these 
improvements, designed and developed during the PRACE-1IP project, have already become 
an important part of the management of the High Performance Systems of CINECA. Such an 
architecture being very scalable and easily adaptable to different topologies or node 
hierarchies is a good candidate for a monitoring schema usable with Exascale dimension. 
More details concerning these improvements to HNagios can be found in Ref. [23]. 

3.2.3 Technical recommendations 

A set of technical recommendations was compiled based on the results as presented in this 
section. These recommendations are shown in Table 6. 

Task contributor/ 

Prototype 
Lessons learned Recommendations 

LRZ - CoolMUC The 1 minute read interval for some 
power sensors is not good enough 
for detailed power analysis of jobs. 
It is usable for Energy to Solution 
(EtS) measurements for jobs 
typically running longer than an 
hour. 

 

Future systems might need a 
partition of nodes that are equipped 
with fine grain power measuring 
equipment for detailed power 
analysis. 

 

LRZ – CoolMUC Monitoring the energy consumption 
of all jobs running on the system 
(178 nodes) produces a lot of data 
over time even with a coarse grain 
solution of 1 minute (node power 
measurement, node load, CPU 
temperatures, system cooling power 
measurement, rack network 
equipment power measurement). 

 

Future systems with >10000 of 
nodes need to have ways for 
defining the level of detail for power 
measurements required for each job. 
For example a simple 3 level 
approach can be envisioned. Level 1 
would store power data at the 
resolution rate of the measuring 
equipment, level 2 would store data 
in specific intervals (e.g. every 5 
min) and level 3 would just store the 
EtS for the job. 

 

LRZ – CoolMUC Although the Energy-to-Solution 
system implemented in the prototype 
through the resource manager 
Prologue and Epilogue scripts yields 

Future Exascale-ready resource 
managers should include the ability 
to adjust the power related control 
knobs by default and further work 
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Task contributor/ 

Prototype 
Lessons learned Recommendations 

the desired settings to efficiently 
tune the power profile of an 
application, it requires manual work 
by both, the system administrator 
and the user. 

 

should be done on automating the 
process of tuning these knobs for the 
best energy efficiency on the 
resource manager level. 

LRZ – CoolMUC The failure of the cluster 
management node resulted in a 
“zombie” system. 

 

Single point of failures need to be 
removed from future systems. Every 
important part required for system 
management need to be redundant. 

 

LRZ – CoolMUC The separation from management, 
service and HPC interconnect 
network allowed for system 
management even though the HPC 
interconnect was experiencing some 
connectivity issues. 

Future systems should provide 
different system networks for 
different duties and responsibilities 

LRZ – CoolMUC The redundant remote access to the 
cluster system management node via 
the service network and HPC 
network allowed for an easy upgrade 
of the HPC network stack. 

 

Remote access to the system 
management node via all available 
system networks should be standard 
for future systems. 

 

LRZ – CoolMUC The separation from management, 
service and HPC interconnect 
network allowed for system 
management even though the HPC 
interconnect was experiencing some 
connectivity issues. 

 

Future systems should provide 
different system networks for 
different duties and responsibilities 

 

LRZ - CoolMUC A pump failure in the infrastructure 
water loop running through the HPC 
system water heat exchanger was not 
detected because the temperature 
sensor on the infrastructure side 
before the heat exchanger showed 
correctly normal temperature but the 
HPC system water temperature 
increased till an emergency 
shutdown occurred. 

It is important to not just monitor the 
system infrastructure but also to 
monitor the building infrastructure 
correctly. It is also important to think 
about all possible failure scenarios 
and to put appropriate sensors on the 
right places and integrate them with 
the system monitoring system. 
Cooling loops for instance need not 
just temperature sensors but flow 
sensors as well. 
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Task contributor/ 

Prototype 
Lessons learned Recommendations 

 

CINECA Nagios can be configured for 
monitor hybrid cluster easily 

 

Configure Nagios for provide 
different dashboards in order to 
collect or provide different views for 
different goals. 

Configure Nagios in hierarchic way 
for clearer cluster views.  

Deploy Nagios in Central –
Peripheral configuration  for more 
flexible maintenance  

 

CEA – Exascale 
I/O 

Diskless boot of the embedded 
server modules is useful for system 
management. For example it eases 
embedded server module 
replacement. 

 

We recommend diskless boot of 
embedded server, along with a 
resilient diskless boot service 
provider (e.g., high-availability of 
the administration nodes). 

Table 6: Technical recommendations for operating systems and system management design. Where 
appropriate, the PRACE prototype utilized for the study is listed in the first column. 

3.2.4 Summary 

Software provisioning is one of the key aspects of system management. Diskless boot 
provides quick return to service in case of failure of hardware components. Indeed, it 
automates the process of associating the hardware with the particular software stack and 
configurations that make it work as expected. A fault-tolerant diskless provisioning system 
can thus greatly help to reduce the unavailability time of broken components. Network errors 
are common errors and the resiliency of a system can be enhanced using multiple networks 
shared by the nodes. A strong fault-tolerance of the services hosted by the management nodes 
over a robust multiple lanes network is mandatory. Every important part for system 
management needs to be redundant. 

Efficient and scalable monitoring of both systems and facility equipment like power supply or 
cooling supply, is necessary to understand the failure scenario and its origins in order to take 
the right decisions to reduce the intervention time before returning to proper service of the 
systems. 

Power management requires adapted sensors at every level of the systems and a correctly 
sized analysis back-end to handle the large amount of data to store and process. Big data tools 
and methodologies must be followed with great attention in this context. 

Power information collection is the first step to improve power efficiency. Power efficiency 
requires additional primitives at both the operating system and the resource management 
levels to provide and leverage a fine grained control of the applications requirements. More 
work is required in state-of-the-art resource managers and operating systems to facilitate the 
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configuration of runtime and better adapt low level performances to application 
characteristics. 

3.3 Resources management 

3.3.1 Integer programming based scheduler for heterogeneous systems in SLURM 
(Bogazici Univ.) 

Motivation 

State-of-the art supercomputers are heterogeneous employing both CPU cores and GPUs. Yet, 
scheduling algorithms employed on these systems are based on the traditional CPU-only 
scheduling algorithms. Schedulers need to consider multiple criteria such as GPU awareness, 
interconnection topology and energy. Hence, the optimization problems to be solved by a 
scheduler become more complex and need more advanced general optimization tools. Integer 
programming (IP) techniques provide a general framework for solving complex optimization 
problems. Development of an IP based SLURM scheduler can be quite useful, since SLURM 
is used on at least 40% of the supercomputers in the Top 500 list. 

Description of the work 

A SLURM scheduler plug-in called IPSCHED employing CPLEX IP solver is developed. 
The scheduler takes windows of jobs and solves an assignment problem that matches jobs to 
CPU-GPU resources. The plug-in is available at http://code.google.com/p/slurm-ipsched/. The 
plug-in can also be used to implement custom schedulers by just changing the IP formulation. 
The performance of the plug-in has been tested by actual SLURM emulation that made it 
possible to realistically compare SLURM’s original best fit scheduler with that of IPSCHED.  

Results 

Various tests have been carried out using the ESP synthetic workloads. Results show that 
parallel CPLEX could solve the resulting hard optimization problems involving thousands of 
variables in about 3 seconds, hence making it possible to use CPLEX in production 
environments. It is also observed that utilization of resources is increased when compared 
with the SLURM’s own scheduler plug-in.  Detailed discussion of implementation and results 
are provided in Refs. [24], [25] and in the PRACE white-paper in Ref. [26]. 

3.3.2 Managing GPUs using PBSPro (CINECA) 

Motivation 

The job schedulers play an important role in the optimization of the resources employment 
and exploitation. In a batch system configuration it is possible to choose among different sets 
of rules, either simple or complex, for scheduling jobs. CINECA tested on their Tier-1 hybrid 
CPU-GPGPU system a batch system that differs from the one installed on the prototype, in 
order to raise the possibility to find what will best fit with future Exascale systems. 

Description of the work 

PBS Professional is the professional version of the Portable Batch System (PBS), a workload 
management solution, originally developed to manage aerospace computing resources at 
NASA. The PBSPro version installed in CINECA (10.4) did not provide built-in support or 
integration with the vendor drivers and development and runtime libraries of the graphic card 
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(CUDA). The scheduler is capable of allocating GPUs as resources only with a proper custom 
configuration but does not bind jobs to a single specific GPU device. At the moment of the 
tests, PBSPro couldn’t take advantage of the new features introduced in new versions of 
CUDA. 

PBSWorks had provided in October 2010 a technical paper [27] where two different 
approaches to GPUs scheduling are proposed: a “Basic” one and an “Advanced” one. In the 
basic scheduling, GPUs are configured as single custom resources, while in the advanced 
configurations GPUs are PBSpro virtual nodes (vnodes). 

As the Basic GPUs scheduling solution is more flexible, it better fits with the CINECA 
heterogeneous system load. Furthermore, it is easier to implement and configure for end 
users. This solution for GPU assignment allocates them as exclusive, enumerable and 
consumable resources. On the other hands the CUDA runtime libraries support GPU sharing 
across multiple threads, allowing, in principle, to have more mixed GPUs and CPUs jobs 
within the same node. This CUDA feature is not explicitly supported by PBS and, as a result, 
the exclusive allocation of GPU resources places some constraints on job placement on nodes. 
In order to avoid conflicts between different jobs and, at the same time, take advantage of the 
whole computational power of the system, CINECA is encouraging users to allocate full 
nodes and use both GPUs and CPUs in their applications. 

Results 

The PBSPro features for handling GPUs resources suffer from the recent usage of these cards 
in the HPC area. The main consequences are highlighted by missing features to share or split 
the resources of the cards. At the present time the GPU cards are allocated like an on/off 
switch. Altair already announced an Exascale road-map, so future improvements are expected. 

3.3.3 Integration of rCUDA with SLURM resource management (CSCS) 

Motivation 

As the GPGPU accelerator based systems are increasingly targeted for scientific applications, 
the efficient use of these devices has become a critical consideration for HPC centers as well 
as application developers and end users.  Remote CUDA (rCUDA) provides a virtualized 
access to GPU resources in a GPU cluster by eliminating the tight coupling of host CPU and 
GPU and allowing users to target as many or fewer resources per CPU required by an 
application [28][29]. At the same time, the HPC centers have deployment and operational 
flexibility to allowing them to serve diverse sets of workloads without compromising of 
wasted resources.  We attempted to integrate rCUDA into a scalable resource management 
infrastructure called SLURM, which has been deployed to multiple, Petascale HPC sites.  
This integration would allow users to transparently request the required resources independent 
of underlying hardware features. 

Description of the work 

In a system employing rCUDA, CUDA applications seamlessly interact with virtual GPU 
devices representing those which are remotely accessible, offered by the rCUDA servers.  
However, the current scheduling scheme is not suitable for pools of resources decoupled from 
computing nodes. For this new approach to be integrated into SLURM, a different way of 
allocating resources is needed. As a resource can now be allocated independently from its 
physical location, global resource counters have to be used. As rCUDA enables GPU sharing 
among processes, we propose SLURM to allow two execution modes regarding remote GPU 
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allocation: exclusive and non-exclusive, selected by the system administrator. Non-exclusive 
mode will maximize resource utilization, at the expense of attaining lower performance, while 
exclusive mode will lead to maximum performance. Both modes still bring the previously 
mentioned advantages: a decoupled pool of resources introduce. 

The described functionality still requires the development of a new Gres (aka generic 
resources) plug-in for SLURM, possibly based on the existing one. At this moment, for 
testing purposes, on the SLURM submission script rCUDA servers have to be explicitly 
started on the desired nodes prior to start the client tasks. 

This work has been conducted in collaboration with Antonio Penya, University of Valencia, 
Spain. 

Results 

The computer used to setup the experiments was the cluster named “fuji” from CSCS. It has 
five compute nodes, each equipped with two Intel Xeon E5670 processors and 24 GB of main 
memory. Two of the nodes -“fuji1” and “fuji2”- are also equipped with two NVIDIA Tesla 
C2050 GPUs each, while the rest of the cluster nodes do not have any GPU installed, which 
fits the rCUDA target environment. The Operating Systems running in the cluster nodes are 
heterogeneous, being the GPGPU servers a Red Hat Enterprise Linux Server release 5.5 and a 
CentOS Linux release 6.0, and the GPGPU client nodes, Scientific Linux release 6.1. This 
does not pose any particular inconvenience for the rCUDA framework itself, as all the OSs 
are 64-bit versions, therefore matching the rCUDA requirement of all clients and servers 
executing the same bitwise architecture. The compute nodes are connected through a Gigabit 
Ethernet network and a QDR Infiniband interconnect. Mellanox OFED v1.5.3-3.0.0, CUDA 
3.2 and 4.0 with NVIDIA Developer Drivers for Linux 270.41.19, and SLURM 2.4.0-pre1 are 
installed across the whole cluster.  This experiment runs LAMMPS with the input “in.lj” 
employing the mvapich provided by Mellanox OFED employing the LAMMPS CUDA 
library and the rCUDA free version [30]. It spawns two MPI tasks on fuji1 and employs the 
GPUs located at fuji2. The rCUDA servers are supposed to be already running, although they 
can also be easily started and terminated within the SLURM script. 

3.3.4 Technical recommendations 

In Table 7 we list a set of recommendations based on our study on resource management 
software. 

Task contributor / 
Prototype 

Lessons learned Recommendations 

Bogazici University Heterogeneous CPU-GPU 
supercomputers are being built. 
Yet, scheduling algorithms 
employed on these systems are 
based on the traditional CPU-
only scheduling algorithms.  In 
particular, best-fit type algorithms 
that only make decisions based 
on available CPU core counts 
may introduce problems by 
filling nodes with jobs that use 
only CPU-cores and hence may 

Job schedulers need to look 
beyond the first job in the job 
queue not just for backfill-jobs 
but also for jobs that require GPU 
resources. Combinatorial 
optimization algorithms that take 
into consideration both CPU and 
GPU resources need to be 
designed. 
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Task contributor / 
Prototype 

Lessons learned Recommendations 

be preventing the use of GPUs by 
other jobs. 

 

Bogazici University Integer programming techniques 
provide general frameworks for 
solving NP-hard combinatorial 
problems. Relaxations of integer 
programming formulations and 
solution of relaxed versions by 
linear programming can help us 
to develop heuristics for NP-hard 
problems. 

 

Integer programming and linear 
programming techniques can be 
utilized in job scheduling to solve 
combinatorial optimization 
problems. 

 

Bogazici University Besides the GPU resources, 
schedulers for state-of-the-art 
supercomputers need to consider 
other criteria like the 
interconnection topology and 
energy. As a result, the 
optimization problems to be 
solved by the scheduler become 
more complex and need more 
advanced general optimization 
tools. 

 

Industrial strength integer 
programming package like the 
parallel CPLEX can be used to 
solve complex scheduling 
optimization problems fast.  For 
SLURM, IP-SCHED plug-in 
developed as part of WP9.2 and 
available at available at 
http://code.google.com/p/slurm-
ipsched can be used as a template 
to develop other customized 
integer programming based plug-
ins.     

 

Bogazici University Tests carried out with our    IP-
SCHED scheduler plug-in 
showed that commercial CPLEX 
can run in parallel and be able to 
solve integer programming 
problems with thousands of 
variables fast.  Free Lp_solve
package on the other hand is 
quite slow and can handle only 
small number of variables. 

 

It is recommended that CPLEX 
be used in a scheduler plug-in 
and not the free lp_solve. 

 

Bogazici University To evaluate the performance of 
SLURM and in-house developed 
schedulers, workloads from the 
Parallel Workload Archive and 
ESP workloads are used. 

Realistic heterogeneous CPU-
GPU workloads need to be 
generated synthetically and/or 
CPU-GPU supercomputer sites 
should make available 
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Task contributor / 
Prototype 

Lessons learned Recommendations 

However, these are geared 
towards CPU-only architectures. 
Hence, for heterogeneous CPU-
GPU systems, they need to be 
modified by introduction of CPU-
GPU jobs. 

 

anonymously their workloads to 
researchers. 

 

Bogazici University It is observed in various SLURM 
emulation tests   that large sized 
jobs (jobs using large number of 
cores) are not delayed so as to 
have lower average waiting 
times.  In the literature, it is 
suggested by Kraken 
supercomputer administrators 
that large jobs should be 
favoured. However, jobs using 
GPUs may be using smaller 
number of cores.  Hence, 
favouring of small sized jobs may 
lead to lower average waiting 
times.   

 

The issue of whether we should 
favor scheduling of large or small 
sized jobs needs to be further 
studied especially on 
heterogeneous CPU-GPU 
systems. 

 

CSCS – Interconnect 
Vertualization 

CSCS has been investigating 
rCUDA (remote CUDA) 
virtualization interface and its 
integration to the SLURM 
resource management system, 
which is a site-wide job 
management and accounting 
system, in collaboration with the 
University of Valencia. 
Currently, a custom job script is 
required as the GPU resources are 
not provided by the SLURM as 
independent resources and 
therefore cannot be scheduled 
without allocating the host CPU. 
Currently, the prototype is setup 
in exclusive mode, where a job 
has exclusive access to compute 
resources. 

 

An additional SLURM plug-in is 
needed for independently 
allocating and binding CPU and 
GPU devices to support rCUDA 
client/server model.  This study 
demonstrates how a solution 
devised for small-scale clusters 
can be extended to large-scale
installations, where users 
typically use a job scheduling 
interface.  There are still several 
challenges but the CSCS 
prototype has provided a platform 
to explore a solution in 
collaboration with international 
researchers and potentially 
SLURM developers 

 

JUELICH – Novel Flash memory cards add an Develop new resource 
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Task contributor / 
Prototype 

Lessons learned Recommendations 

Exascale I/O internal storage resource to HPC 
systems which needs to be 
managed to facilitate job 
processing on I/O nodes, e.g., 
data staging between external and 
internal storage. 

 

management concepts and their 
integration into the system 
management tools and batch 
queuing systems. 

 

Table 7: Technical recommendations based on our study of resource management software. Where 
appropriate, the PRACE prototype utilized for the study is listed in the first column. 

3.3.5 Summary 

The recent evolutions of system architecture favour the usage of accelerators in addition or in 
complement of traditional CPUs. Resource managers now need to deal not only with the CPU 
and memory resources but also with accelerators, whether shipped on node or placed in 
dedicated farms. New storage devices enable to introduce new layers in data hierarchies and 
can also be viewed as new resources to manage. The support of all these new resources are 
too limited in current solutions and more work is required to fully benefit from the 
heterogeneous computing and storage capacities offered by modern and future systems. 

Advanced scheduling of jobs on the available resources is still based on heuristics and best 
effort algorithms that are hard to implement in an efficient way with an increasing number of 
resource types and constraints. More deterministic approaches, trying to solve the associated 
NP-complete problem in the most efficient manner, are promising solutions that need to be 
moved from the research area to the industrial usage. They help to define a generic way to 
manage the scheduling problem applying a same strategy to multiple set of resource types. 
The integration of Integer programming and Linear programming solvers in state-of-the-art 
resource managers is an interesting path to follow. These methodologies rely on dedicated 
mathematics libraries. Currently, no open source solution is viable compared to proprietary 
one. Open-source alternatives should be enhanced for more independence on a midterm basis. 

3.4 Data management 

3.4.1 JSC I/O prototype evaluations (CSCS) 

Motivation 

Next generations of HPC systems have different requirements for network, computing, 
storage and applications etc. The requirements concerning the I/O subsystems are more 
critical due to the continuously growing gap between computing and I/O performance 
increase during the past. The goal of this project is to deploy a PCI-E SSD cards on x86 
cluster followed by adding SSD cards to the new IBM Blue Gene series system called BG/Q. 

Description of the work 

This effort involved evaluation of hardware and low-level software.  Specifically, the SSD 
cards have been successfully integrated and their correct functionality performance has been 
heavily tested using synthetic benchmarks.  
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Results 

The target parallel file system, GPFS, drivers and benchmarks tuning are taking place during 
this period on the BG/Q to sustain the peak performance of the SSDs. 

Important steps for the Future:  

 Promoting SSDs integrations in HPC systems. 

 Develop and implement concepts which improves the usability of SSDs integrated into 
HPC systems 

 Proving the concepts of scaling SSDs in HPC and Parallel file systems. 

 Running real application that includes IO benchmark to address the benefits. 

 Include QoS in the file system 

3.4.2 GPFS and Lustre evaluations (CINECA) 

Motivation 

Data are increasing their importance together with the performances of the supercomputers. 
The choice of parallel file system that best fit the load requirement and its planning, 
installation and configuration is fundamental in order to maximize performance and limit the 
impact of HPC infrastructure problems. 

Description of the work 

GPFS (General Parallel File System) is a full featured POSIX IBM product. It was tested on 
the CINECA tier 1 system, a Linux cluster where about 300 nodes are GPFS clients, with six 
disk servers with six fiber channel (FC4) links. The file system is about 90 TB with a block 
size of 4 MB (minimum fragmentation 128KB), with data and meta-data mixed on same 
disks. It is configured to relay on RDMA data transport on Infiniband QDR, single rail switch. 
The back-end Storage consists of 12 RAID6 arrays of disks (8+2 1TB 7.2Krpm SATA disks). 

Lustre file system is a full featured POSIX Open Source product maintained and developed 
by Whamcloud. It was tested on a different hardware/storage: four client nodes and three 
servers with four fiber channel (FC8) links. The file system was about 40 TB with a block 
size of 1 MB. Data and meta-data weren’t mixed by design. The data transport was LNET 
over TCP/IP (10 GbE). The back-end Storage consisted of RAID6 arrays of disks (10+2 2TB 
10Krpm SATA disks, but meta-data on DAS). 

Results 

Scalability of disk arrays numbers is good in both file systems. The scalability issue of GPFS 
comes from the number of supported clients. Vice versa, the issue scalability of Lustre is due 
to the Meta data server and the centralized meta-data management, which is also a single 
point of failure. In addition, all GPFS server functions and meta-data can be replicated and 
disks can replaced without production interrupt, invoking simple management commands. 
GPFS is preferable from the point of view of availability and resiliency and for easier 
management. 

3.4.3 Technical recommendations 

We provide a set of technical recommendations on data management software in Table 8. 
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Task contributor /  

Prototype 
Lessons learned Recommendations 

CINECA CPUs based jobs are less I/O
intensive than the GPUs ones.  

 

Deploy parallel file system taking 
in account CPUs GPUs hosts or 
only CPUs hosts. 

Separation between data and 
meta-data. 

Deploy different parallel file 
system for different usages. 

JUELICH – Novel 
Exascale I/O 

Various challenges to integrate 
flash memory into massively 
parallel HPC architectures and to 
enable its efficient use remain to 
be addressed. 

 

Further explore the design space 
and foster the integration of 
additional storage levels into 
parallel file systems and the 
development of I/O middleware. 

 

JUELICH – Novel 
Exascal I/O 

Significant efforts are needed to 
adapt applications for making 
efficient use of additional storage 
level implemented using flash 
memory. 

 

Foster development of I/O 
interfaces which facilitate optimal 
use of the available resources. 

Provide support for application 
developers to adapt their 
applications. 

CEA – Exascale I/O The scalability of the system 
management provided with the 
Xyratex solution is limited. The 
use of SSUs (“Scalable Storage 
Units”) is very convenient and 
scale in terms of hardware and 
Lustre performance, however, we 
encountered several scalability 
issues with “only” 9 SSUs. For 
example, the default 
configuration management tool 
used (puppet) doesn’t scale. 

 

Foster vendors to improve their 
system management software in 
order to scale for larger systems. 
Vendors are not always aware of 
this issue until they build a large 
system. 

 

CEA – Exascale I/O The integration of the Xyratex 
Lustre storage solution to our 
R&D compute center 
environment was not trivial. 
External services provisioning 
like NTP, DNS was supported, 
but more complex LDAP 
settings, specific Infiniband 
partition key (P_key) or Lustre 
Network (LNET) index were not 

System management 
developments remain in order to 
facilitate the integration of such 
Lustre storage solution in existing 
production HPC environments. 
Such systems should remain open 
to allow on-site specific 
configuration to be supported, 
especially for large HPC compute 
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Task contributor /  

Prototype 
Lessons learned Recommendations 

configurable without bypassing 
Xyratex system management. 
The good point is, however, that 
the use of a standard Linux 
distribution based on Red Hat 
Enterprise Linux 6 with open 
source tools allowed us to do it 
without much pain. 

centers. 

 

CEA – Exascale I/O Software RAID using Linux 
device-mapper can be used to 
build embedded high-end storage 
systems. Expected system 
performance were reached, 
however, some system failures 
were encountered that may be 
related to the RAID stack. 

 

Don’t ban the use of new RAID 
engine for disk arrays, like 
device-mapper based RAID. Still, 
more work and research have to 
be done in terms of software 
RAID resiliency. 

 

Table 8: Data management software recommendations. Where appropriate, the PRACE prototype 
utilized for the study is listed in the first column. 

3.4.4 Summary 

Nodes and system architectures are constantly evolving. Accelerated nodes tend to produce 
and or access more data than traditional nodes. The balance between performances and IO 
bandwidth must be adapted to that aggregation. More bandwidth and capacity are required to 
store the information produced and consumed by next generation systems. Meta-data is an 
important criterion that can severely limit the efficiency of a file system. 

An IO back-end must be scalable and adaptable in terms of provided services but also in 
terms of required services. Indeed, to be fully operational, a file system needs to be properly 
integrated in the data center. Administrators must be able to manage and configure the whole 
system efficiently at scale, including start/stop of the back-end as well as software upgrade. 
An open-source solution is more reactive. By enhancing it “on need”, it is possible to adapt 
the existing components and cope with unexpected requirements or behaviour that are 
inherent to state-of-the-art HPC installations. 

By reducing the usage of dedicated hardware, software RAID is promising even if not yet 
completely mature. More work is required to ensure the resiliency of software RAID stacks.  

Data hierarchies are evolving too. Depending on the I/O workloads, it can be necessary to 
think about providing multiple sets of file systems and data back-ends, either local or remote, 
in order to provide the most adapted solutions to the various requirements of the applications. 
This can be done transparently or on demand, using a yet to define API, depending on the 
targeted efficiency. 
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3.5 MPI and Communication libraries  

3.5.1 MVAPICH2-GPU evaluation (CSCS) 

Motivation 

MVAPICH2-GPU provides an optimized GPU-GPU communication interface for MPI 
communication for clusters with NVIDIA GPU devices and Infiniband interconnection 
network [31], [32]. This effort aims at investigating the feasibility of this interface for 
application development and characterizing performance of end-to-end GPU-to-GPU 
communication over the interconnection network to the hardware and tools developers. The 
MVAPICH2-GPU interface provides a direct mechanism to transfer a buffer from a host GPU 
to the destination GPU memory without explicitly copying data between host and GPU 
memories.  In order to avoid memory copying from the GPU buffer to the network buffer, 
NVIDIA provides a feature called GPUDirect, which enables the GPU and the Infiniband 
driver to share their address spaces.  Existing applications can gain 10-15% performance 
improvement by simply linking to the MVAPICH2 MPI library that has been CUDA enabled. 

The final goal of this work is to completely bypass the host memory copying.  With the latest 
announcement of GPUDirect-RDMA for the next generation GPU devices codenamed 
Kepler, we expect performance and scaling efficiencies to improve significantly as data from 
GPU devices can be copied over to the network buffer without intermediate copying into the 
host address space. 

Description of the work 

The CSCS prototype system, which is composed of dual-socket Intel Westmere nodes and 
two NVIDIA M2090 GPU devices and QDR Infiniband interconnect, has been used to deploy 
the MVAPICH2-GPU.  The system has been setup with the latest stable release of CUDA and 
driver that support both the GPUDirect and the uniform memory address space capabilities.  
CUDA version 4.1 and the driver version 295 have been used for the experiments.  
MVAPICH2 version 1.8 has been installed on the system, which has been built with CUDA 
4.1.  In order to perform the performance characterization, the MPI micro-benchmarking code 
for latency and bandwidth experiments have been extended to include GPU bindings. This 
work has been done in close collaboration with Professor D. K. Panda and his group at the 
Ohio State University, USA. 

Results 

Data transfers between host to memory using the pinned GPU memory has typically highest 
bandwidth values, while the data transfers from GPU memory to the host is the slowest path.  
The MPI bandwidth over the Infiniband is typically lowest on a QDR platform.  Hence, in an 
optimal case, the application should experience no less than the peak MPI bandwidth.  The 
results with MVAPCIH2-GPU confirm that the overheads are negligible for different message 
sizes and communication patterns. Typically the performance is limited by transfer bandwidth 
between the host and the GPU devices.  Furthermore, optimization with NVIDIA GPU to 
GPU peer-to-peer communication interface can also be exploited by MVAPICH2-GPU 
implementation and our experiments on the iDataPlex prototype, single node with 2 GPU 
devices, demonstrate this capability. 
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3.5.2 Evaluation of Infiniband routing schemes (CSCS) 

Motivation 

A number of high-end computing platforms, especially the ones with a few tens of thousands 
of nodes, have network topologies that are scalable both in terms of aggregate bandwidth and 
cost. This includes torus topologies of BlueGene and Cray XT and XE series systems, where 
the interconnect switching and routing schemes are co-designed together with the MPI 
implementation [33][34][35]. 

High-end systems based on the commodity Infiniband interconnect have traditional 
hierarchical topologies that have been constructed using switches. These include fat tree and 
Clos, which have been developed using switches with large number of ports. The cost of the 
switches does not scale linearly with the number of ports [36]. Thus, the main drawback is 
extensibility in a cost effective manner. We therefore attempt to design and evaluate 
performance of two-dimensional torus topology interconnect using low-port count & cost 
effective Infiniband switches. 

Description of the work 

The study has been performed in multiple phases.  The first phase was designing and 
deployment of a prototype using multiple of 8-ports switches. The targeted platform was 
consisted of 32 IBM iDataPlex M3 nodes and two different interconnect partitions. Each IBM 
iDataPlex node was composed of two 6-cores Intel Westmere processors and two NVIDIA 
M2090 GPU devices. In addition, there was a 36-ports Infiniband QDR switch and 16, 8-ports 
QDR, unmanaged switches for the 2D torus topology. The design of the 2D torus topology 
using 8-ports switches is shown in figure below.  

 

 
Figure 20: 2D torus topology & the 8-ports switch layout 

 

 

Two partitions were designed to comparatively evaluate performance of a full crossbar 36-
ports switch and with the 2D topology setup. The results are comparable since the node 
design and system software is identical on both partitions. 

As a consequence, the second phase of the study was the deployment of the two partitions in 
an optimal manner. This includes an optimal routing scheme for the given topology and 
development of topology aware MPI. 

The final phase was the evaluation of the two topologies using extensive micro-
benchmarking. We deploy Infiniband monitoring and management tools to perform 
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measurements on the switches themselves while running micro-benchmarking applications on 
the node to validate performance results and to identify any network related issues, for 
example, network congestion [37]. 

Results 

Both partitions have Linux version 2.6.32 and MVAPICH version 1.8 built with GCC 4.6 
compiler. On the 36-ports partition, the standard minimum hop routing scheme was 
implemented while on the 2D torus partition torus-2QoS was implemented. In order to 
measure the improvements with the optimized routing scheme with the given topology, we 
compared results using a non-optimized scheme called LASH-DOR. The results showed a 
significant improvement in performance, by a factor of 2 or more, with the optimized routing 
scheme. The results were comparable with the 36-ports QDR switch while for some message 
sizes, the 2D topology yielded better performance for MPI collective communication 
operations as shown in Figure 21 using the Intel MPI benchmarks for the MPI_Allreduce 
operations. We observed similar behavior for the point to point benchmarks. All tests were 
performed for 128 MPI tasks. 

 

Figure 21: Impact of optimized routing schemes on the two test partitions: 36-ports QDR switch with the 
deualt routing (castor-128), 2D torus setup with LASH-DOR (pollux-128 (LASH-DOR)), and with Torus 
QoS (pollux-128 (torus-2QoS)). 

We deployed the Unified Fabric Management (UFM) utility from Mellanox to observe 
network patterns on different nodes and switches. The results with the monitoring tool 
confimed the slowdown due to network congestion. A snapshot of the tools is shown in 
Figure 22.  
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Figure 22: Monitoring of the network congestion using the UFM tool 

 

On the 2D torus network, we also investigated the whether or not topology awareness plays a 
critical role. We collected message injection rates using the OSU MPI micro-benchmarks with 
regular and random node ordering. Results are shown in Figure 23. For small message sizes, 
communication between adjacent nodes yield better performance results. As the message 
sizes increase and the communication becomes bandwidth bound, the difference between 
regular and radom ordering diminishes.  

 

Figure 23: Impact of network traffic routing 
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3.5.3 Technical recommendations 

We list technical recommendations for communication libraries in Table 9. 

Task contributor / 
Prototype 

Lessons learned Recommendations 

CSCS – Interconnect 
Virtualization 

System engineers and 
administrators need to carefully 
evaluate IB routing schemes for 
unconventional IB topologies 
using unconventional switching 
components. We experimented 
with different topologies (2D 
mesh and torus) and routing 
schemes (LASH, DOR and 
Torus-2QoS) to identify system 
throughput bottlenecks. MPI 
library also needs to be topology 
aware. 

 

As regression suite is needed for 
setting up direct-connect, high 
dimensional topologies to tune 
and troubleshoot functionality and 
performance issues.  Currently 
manual intervention and expert 
knowledge is needed to 
accomplish this task.  This could 
also be a co-design opportunity 
between process and interconnect 
vendors, system software and 
library developers to provide 
highly efficient I/O 
implementation to users. 

 

CSCS – Interconnect 
Virtualization 

MPI communication without 
explicit memory transfers is 
currently available in 
MVAPICH2-GPU MPI library 
implementation. 

Experiments show high 
throughput and high productivity 
for different communication 
patterns. This work is done in 
close collaboration with Prof. DK 
Panda group at the Ohio State 
University and the prototype 
provided a collaboration 
opportunity.   

We need to collaborate with other 
MPI developers and probably 
with MPI forum to offer code and 
performance portable 
implementations. In order to 
ensure wider adoption together 
with code and performance 
portability, interoperability with 
other accelerator paradigms must 
be investigated. 

 

CSCS – Interconnect 
Virtualization 

Designing direct-connected 
topologies using InfiniBand 8-
ports (unmanaged) switches 
requires an in-depth 
understanding of the cabling from 
processor and between switches. 
This is not scalable to large scale 
installations using open source 
management, trouble-shooting
and diagnostics interfaces. 
Incorrect cabling from processors 
and between switches can 
severely impact communication 

In order to introduce cost 
effective and scalable 
interconnect topologies using 
commodity components, 
especially unmanaged switches, 
further research and investment is 
needed both at the fabrics level 
and also for the management and 
troubleshooting tools such as 
OpenSM. 
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Task contributor / 
Prototype 

Lessons learned Recommendations 

throughput. 

 

CSCS – Interconnect 
Virtualization 

Currently, PCIe peer-to-peer 
communication is not fully 
supported by many vendors. 
Hence, a true host bypass, which 
CSCS GPU virtualization 
prototype intended to evaluate, 
could only be implemented 
through a software layer to 
communicate between GPU and 
the network interface.  This is 
also a performance critical design 
component for clusters based on 
PCIe accelerators. 

 

As accelerators become central to 
the node design, direct 
communication channels must be 
provided by vendors and should 
be supported by Linux kernels to 
allow for direct memory transfers 
between the accelerator memories 
and the network interface, without 
an intermediate copying step to 
the host memory. 

Research and development is 
needed for the Linux kernel 
extensions in collaboration with 
vendors and could be a co-design 
opportunity for PRACE. 

 

Table 9: Technical recommendations for communication libraries. Where appropriate, the PRACE 
prototype utilized for the study is listed in the first column. 

 

3.5.4  Summary 

Data hierarchies and system architecture are evolving to integrate the ever increasing number 
of components included in successive state-of-the-art supercomputers. The topologies 
involved at every level of the supercomputers have consequences on the performance of the 
whole systems. The mostly used interconnect topologies does not scale well in terms of prices 
and cabling. 

It is necessary to find solutions to reduce the price of the interconnection network for larger 
machines while still providing sufficient behaviours in terms of bandwidth, latency, 
manageability and resiliency. Intra-node topologies are more and more complicated and 
require a perfect knowledge of the interaction to choose and tied the components that have to 
work together. The frontier between intra-node and inter-node topologies must be observed 
with great attention to maximize the usage of the external connections of the nodes. 

Software stacks involved in the communication of parallel applications at every level must be 
mature enough to leverage all the primitives offered by the underlying hardware. The only 
way to achieve the highest performance is to use the most advanced features of the involved 
hardware. 
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3.6 Conclusions 

The topics discussed in the previous sections outline several problems that can be mapped to 
five transverse key concepts that have already been identified by the WP9 community and 
expressed in the D.9.1.2 deliverable. 

Scalability, addressed since many years up to the Petascale level, is one of the key issues and 
becomes more and more problematic not only on the computing side but also on the I/O and 
the management sides. Every part of a system must now be designed with that goal in mind. 
Vendors take that consideration into account more than ever and this is a good sign for the 
future of HPC. 

Heterogeneous architecture as well as new Data and Memory hierarchies bring additional 
complexity that must be addressed at every level of the software stack, from the operating 
system to the communication libraries and primitives, taking into account the final goal of 
scheduling jobs in the most efficient manner on the set of interconnected resources.  All the 
components glued together in modern supercomputers are not sufficiently managed in a 
coherent way and more work is required to leverage all the capabilities of the hardware as 
well as to select efficiently the most adapted resources for the different applications. 

The efficiency of the next systems in term of energy consumption will be one of the most 
observed elements. Taking power and cooling consumptions into account in the system 
software stack will help to optimize the amount of power required to execute the various 
workload. We are still at the beginning of the power aware era in HPC. Sensors still need to 
be enhanced and better integrated in the system management tools. Power and cooling are far 
from being treated as the resources they are in a scheduling point of view. 

Despite the fact that fault-tolerance is discussed and predicted as the next level challenge 
since many years now, it has always been tackled by improved reliability of the 
supercomputer’s building block and optimized checkpoint/restart strategies. However, the 
scale required to achieve the ExaFlop/s, associated with the heterogeneity and the complexity 
of the building block of next systems could make this prediction come true. Resiliency of the 
systems must be guaranteed to reduce the mean time to interrupt of applications. Failures need 
to be treated as a possible and manageable input in application runtimes and no longer as the 
final output of computations. A lot of work is required in that area. 2IP-WP11 should bring 
useful insights in this field. 

The next hurdles to clear are high. First steps have been done but the goal is still far. The 
different elements included in the system software stack must be co-designed to leverage 
every single feature. To have the best interconnect topology or routing schema may not 
suffice since the resource manager may only allocate rows of nodes. To have the most 
coupled topology and scheduling strategy is good, but if the application processes are spread 
in an incoherent manner or if the I/O bandwidth is too tight, it will waste cycles in pending 
communications. Information for adapted actions is a way to make things work efficiently. 
Systems have to be co-designed with applications. Applications will need to co-exist with 
system components, processing live information to adapt their behaviour to the different 
volatile characteristics.   
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4 Recommendations on HPC tools 

This section identifies research on tools for High Performance Computing (HPC). These tools 
are particularly focused on performance analysis, debugging, optimizing, and monitoring that 
should be supported in order to enable applications to scale to large systems, in special, in 
order to reach Exascale performance. 

The objective is to avoid “flying blind in the midst” of programming and optimizing codes for 
very large scale. The behaviour of applications on complex systems is often different from the 
programmer’s assumptions or models in mind. In current practice, decisions to implement 
certain optimizations are based on not sufficiently detailed data and certainly on limited 
information of the expected gain that a given code restructuring will obtain. This obviously 
results in poor application performance especially at the large scale. 

The HPC landscape is getting more complex and changing in many dimensions. Architectures 
are mostly based on multi-core processors with deep memory hierarchies. It is typical today to 
see at least three cache levels where the top level of cache is shared among all cores in the 
processor. Processor architectures are also showing a wide variety with different features and 
performance. Examples of this are the traditional Intel x86, IBM Power processors, the 
integrated approach with AMD Fusion – which combines CPU and GPUs on a chip – ARM 
processors to tackle the market of low power, and the MIC many core processors from Intel. 
This complex environment is making the optimization of applications more difficult, because 
what it is working for some architecture usually is not the case for another different one, and 
thus it requires specialized tools to effectively deal with this.  

At the same time, there is a strong demand for more parallelism at the chip level and also at 
the system level mostly driven by the need to reach exascale. Applications should be able to 
exploit this huge amount of parallelism in order to harness the potential of exascale machines. 
However, most of today’s applications do not properly scale at this level. For this reason, 
there is a strong need for performance tools to analyze and optimize these applications for 
large systems.  

In addition, there are new user groups that are starting to use HPC systems that are requiring 
better tools to assist them in properly using these complex systems. These user groups are 
coming from emerging application areas such as Linguistics and Biology. These groups are 
experts in their field which is quite different from computer science. Because of that they 
have little knowledge in how to efficiently optimize applications for large scale. Therefore, 
they need tools for performance analysis, debugging, and optimizing their applications with a 
special emphasis on easy-to-use and automate code transformations. In particular, they are 
interested in tools as simple as click one button to get an instant advice and/or automatic 
translation to an optimized version of their code.  

The last driver that we have identified for needing better tools for HPC is due to the recent 
moving trend of HPC to the industry and commercial sectors. One popular commercial sector 
is the financial services where HPC is being used to substantially improve risk management, 
trading analytics, and wealth management. In this environment providing a low time-to-
market, higher productivity and reliability are key to success. For this purpose, better tools to 
are needed in order to support these critical commercial application requirements.   

We have identified four areas that need support for advancing HPC tools in the future: Task-
based/asynchronous, intelligence, models, and scalability. These are described in more detail 
in the following sections.  
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4.1 Task-based/asynchronous support  

Task-based dataflow programming models such as OpenMP and OmpSs [38] are showing to 
be very powerful in exposing high level of parallelism in a wide range of scientific 
applications. It has been shown that they are very efficient for shared memory machines and 
allow exploiting the potential of multicore processors and accelerators such as GPUs. In 
addition, there is a hybrid dataflow programming model MPI/OpenMP and MPI/OmpSs that 
parallelizes computation on the distributed-memory nodes using MPI.  

Task-based parallel programming languages require the programmer to partition the 
traditional sequential code into smaller tasks in order to take advantage of the existing 
dataflow parallelism inherent in the applications. The programmer indicates data 
dependencies between parts of the code which become tasks and then are scheduled by an 
execution framework at runtime. The major advantage is that it can “react” on internal 
irregularities, e.g. differences in execution time of each task, and external conditions, such as 
hybrid architectures. Furthermore, it has the potential of taking advantage of very distant 
parallelism – parallelism of code sections that are mutually far from each other. 

Debugging refers to be able to seeing and controlling the execution of a program. Traditional 
debuggers for sequential programs such as gdb are not sufficient for dealing with the 
complexity of task-based parallel programming languages. Traditional debuggers work at a 
single thread and working at a line level in the code. They are good in checking serial 
correctness of the code. However, traditional debuggers are not enough to deal with the 
complexity of multiple threads running concurrently in the application. A task-based parallel 
program differs from debugging an otherwise parallelized program as the parallelization is 
determined by data dependencies instead of explicit scheduling of tasks and synchronization 
between them. For debugging task-based parallel programming languages it would be 
interesting to see which is the status of each task, which is the function that it is executing and 
in which thread is executing this task. For task dependencies it would be interesting to see 
which memory addresses cause some dependency with other tasks and which tasks depend on 
each other. 

In addition, it is necessary to control the execution by stepping through the application task-
wise. Debugger users should be able to block tasks and even prioritized tasks in order to see 
what the impact on performance and correctness of such as transformations are. Furthermore, 
it will be necessary to add/remove data dependencies among tasks. 

Therefore, the development of new debugging tools capable of assisting the programmer with 
debugging task-based parallel programs is a crucial condition for effectively exploiting the 
possibilities of these models.  

Another recommendation is about the lack of support of metrics and models developed 
specifically for task-based parallel programming languages. This models and metrics may be 
interesting to support in current tools in order to understand the behaviour of individual tasks 
that run in an application. In particular, it would provide insights in what are the critical tasks 
that are likely to have a biggest impact on the performance of the application. Also it could 
help answer the question of what would be the impact on the overall application performance 
and when to accelerate/optimize a particular task in the application. Answering these 
questions and measuring the impact of them is crucial for the optimization of the task-based 
parallel programming languages. 
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Figure 24: Example of data dependency graph among tasks in the Temanejo tool. 

4.1.1 Recommendation evidences on existing tools 

An illustrative example to show these recommendations is found in the Temanejo tool [39]. 
Temanejo is a debugger for task-based parallel programming languages. It is still under 
development. Figure 24 shows a screenshot of the task dependencies among tasks for some 
example code in Temanejo. Also, the memory addresses that actually are creating data 
dependencies can be seen. This tool provides full support for the OmpSs programming 
language [38], but not standard OpenMP. In addition, it only provides basic support for MPI 
by allowing only one thread per MPI process. 

As can be seen, the visualization of the data dependency graph is a flat graph. It would be 
interesting to support hierarchical dependency graph visualization. This is critical for more 
complex applications where the number of tasks is huge. In this scenario, providing a 
hierarchical view would enormously facilitate the debugging of applications. 

Moreover, it would be interesting to support some kind of analysis of the dependency graph in 
such a way that it could identify the critical path of the execution and the highest and lowest 
possible concurrency during the execution. 

4.1.2 European contributors 

In Europe there are two strong teams that are contributing to these different areas. They are 
briefly described below in Table 10. 

Recommendation 
area 

European 
institution/Country 

Tool name Description 

Metric/models 
for task-based 
programming 
models 

JÜLICH 
SUPERCOMPUTING 
CENTRE (JSC) / 
Germany 

Scalasca [40] A performance 
analysis toolset that 
has been specifically 
designed for use on 
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Recommendation 
area 

European 
institution/Country 

Tool name Description 

large-scale systems 
supporting MPI and 
MPI/OpenMP 

Debugging for 
task-based 
programming 
models 

High Performance 
Computing Center 
Stuttgart (HLRS) / 
Germany 

Temanejo [39] A debugger for 
applications 
parallelized with the 
use of the OmpSs 
programming model 

Table 10: European contributors for the recommendations for the support of task-based parallel 
programming languages. 

4.2 Intelligence 

The amount of information collected when tracing applications is growing at a fast pace. As 
applications run on ever larger parallel computers the larger is the amount of information 
collected. Also, applications are getting more complex involving the simulation of multiple 
physical models or multiple simultaneous physical phenomena. For example, combining 
chemical kinetics and fluid mechanics or combining finite elements with molecular dynamics. 
This is inevitable requiring the need of smarter tools to deal with this huge amount of 
information. Furthermore, there are new user groups that are starting to use HPC systems that 
are requiring better tools to assist them in properly using these complex systems. 

There are two basic directions for future development on providing more intelligence to the 
existing tools. One direction is to address the scalability issue by deciding what information is 
relevant to capture from the traces obtained in the parallel execution. Blindly capturing 
everything from all the processes during the whole duration of the application is impossible. 
Some aspects to consider for reducing the size of the traces are: 

1. If the application behaviour is very repetitive a few iterations would be enough, but the 
tool has to detect the period. Also, the tool would need to be able to detect whether this 
behaviour changes over time or not. In case it changes, it should obtain the new behaviour 
of the new period. 

2. Improvement of sampling techniques by automatic detection of the optimal sampling 
frequency of applications. It is possible to extract this frequency using spectral analysis. It 
is shown that the optimal frequency is very useful to extract significant performance 
information very efficiently and accurately showing their internal iterative structure of the 
application without recording everything from the application.  

3. Highlight interesting data. Not every MPI call has the same amount of information. i.e. 
many Iprobes are in sequence and therefore only the first, the last and the number of 
messages in the sequence are needed. Interestingly, it might still be useful only to select at 
random a portion of the records. 

4. Only recording MPI calls that imply long delays. These calls have a high probability to 
negatively impact the execution time of an application. 

The second direction is focused on increasing the insight of information that can be extracted 
from the raw data in the trace. Instead of depicting the huge number of information from the 
traced data which is nearly impossible, it will be more practical to find/show/map only the 
interesting data which is typically very small compared with the whole data trace.  

There are several techniques that can be developed in this direction: 
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1. Spectral analysis. This technique is based on applying wavelet transform, Fourier 
transforms or other transformation to the trace in order to easily detect the most important 
frequencies of the application execution. These main frequencies are strongly related to 
the internal loops of the application' source code. Therefore, it automatically obtains the 
structure of the application in phases where these phases are clearly repetitive over time.  

2. Clustering. The idea is to identify computation regions of similar behaviour. For example, 
areas that shows similar in terms of duration or hardware counters regardless if they are 
the same or a different routine. It might be that different routines in the application may 
have similar behaviour or one routine may show different behaviours overtime. These 
kinds of effects can be detectable with these kinds of techniques. 

3. Automated detection of known problems. For example, scalability problems due to load 
imbalance can be automatically detected. Moreover, these techniques can identify the 
problem, localize in the code where it is happening, and finally provide some solutions in 
order to fix it. 

4.2.1 Recommendation evidences on existing tools 

To illustrate the clustering technique we will use the EXTRAE tracing tool. Figure 25 shows 
the clustering of the IPC metric for a 64-process run of the application SPECFEM3D. As you 
can see, it allows us to quickly identify two areas of the code with a quite different IPC value 
between them – one has a high IPC in between 0.6 and 0.8, and the other a very low IPC in 
between 0.1 and 0.3. 

The interesting thing is that this IPC does not belong to different functions, but to the same 
function executing in a different processor. This is illustrated in Figure 26 where we can see 
the distribution over time of the different computation regions showed before in Figure 25. As 
you can see, there are only a couple of processors that shows this low value of the IPC. This 
finding would be very difficult to detect in large traces. Clustering allows you quickly 
pinpoint these performance problems. 

 

Figure 25: Clustering the IPC 
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Figure 26: Cluster distribution over time 

This clustering technique could be also applied to task-based parallel programming languages. 
In this context, it will be useful for instance to identified different performances of the same 
task on different processors and also characterize the behaviour of the different tasks trying to 
optimize the task with low performance. 

Additionally, in Vampir we can find an interesting utility that is based on changing the 
opacity of the colours when we are visualizing the trace. Figure 27 shows a trace with 
different communication and computation records where it is visualized using a high opacity 
factor. As you can see, using a high opacity factor it easily highlights the records with red 
colour that corresponds to communication operations. This is a technique that follows the 
approach of find/show/map only the interesting data in the whole data trace, in this particular 
case the communication operations. 

 

Figure 27: Opacity selector in Vampir. 
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4.2.2  European contributors 

Table 11 summaries the European institutions that are developing tools with emphasis of 
providing more intelligence in order to better analyze the huge information in raw data. 

Recommendation 
area 

European 
institution/Country 

Tool name Description 

Spectral Barcelona 
Supercomputing 
Center (BSC) / Spain 

Paraver [38] Performance visualization 
and analysis tool based on 
traces 

Clustering Barcelona 
Supercomputing 
Center (BSC) / Spain 

EXTRAE [38] A tracing tool to extract 
computation and 
communication events 
from applications 

Clustering Technische Universität 
München (TUM) / 
Germany 

Periscope [41] A scalable automatic 
performance analysis tool 

Highlight 
interesting data 

Technische Universität 
Dresden/Germany 

Vampir [42] Vampir provides an easy 
to use analysis framework 
which enables developers 
to quickly display program 
behaviour at any level of 
detail 

Table 11: European contributors for the recommendations on intelligence.                                                                                  

4.3 Models 

As the cost of developing, deploying and maintaining high performance systems rises, it 
becomes more and more important to predict system performance in advance. This can be 
achieved by using analytical model of applications. These models will be used to analyze, 
predict, and calibrate performance for the systems of interest. They are becoming the overall 
predictors of how the whole system performs.  

Concretely, a performance model analyzes both application and system characteristics. 
Application characteristics are defined uniquely for each application and include processor 
flow, data structures used, frequency of use and mapping onto the system, and their potential 
for resource contention. System characteristics include node configuration (processors per 
node, shared resources) and inter-processor communication (latency, bandwidth, topology). 
Many of these are measured for an existing system or need to be specified/simulated for a 
future system. A separate performance model is usually developed for each application of 
interest and thus the approach is application-centric. 

Performance modelling can be applied to every stage of the design of a large scale system. 
Specifically, in an early stage, they are becoming very important to guide system development 
and procurement decisions of large scale parallel systems. Then as the hardware becomes 
available, they will validate their predictions with real-world tests. Moreover, in this later 
stage they can be also used to understand the complex interaction between applications, 
software environments and computer hardware in order to achieve higher performance by 
optimizing the system. 

We can identify various main areas of further development on performance modelling: 
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1. Root cause. An automatic methodology able to show general but non-trivial performance 
trends. An analytical model which consists on several performance factors is used to 
underpin the root cause of application performance degradation. It tackles the problem 
raised when the temporal or spatial distance between cause and symptom of a 
performance problem constitutes a major difficulty in deriving helpful conclusions from 
performance data.  

2. Methodological. It is related to the development of models to understand better the 
algorithms used in the applications. These models can be used to drive the development of 
new algorithms that are more efficient. There is some recent work that has shown a model 
for determining the lower bounds on the number of words moved between processes in a 
direct linear algebra algorithm (matrix multiply, LU, Cholesky, QR factorizations, and so 
on). This information can be used to find algorithms that attain these lower bounds, 
specifically on interesting classes of sparse matrices.  

3. What-if models. Instead of building an accurate model of the application, they are focused 
on modelling a particular performance factor of the application. Using simulations tools 
they are able to predict the application’s performance when this factor is improved by 
several times. Analyzing what-if scenarios are interesting to evaluate whether some code 
modification is worth to pursing or not. 

4. Power models. Building power models based on hardware counters available on multicore 
architectures. It is based on actual power measurements. The counters are sampled at 
regular intervals and the activity in each component in the processor is linearly correlated 
with the actual power consumption. Stochastic methods are usually used to help on 
building these power models.  

4.3.1 Recommendation evidences on existing tools 

The root cause approach can be found in the Scalasca tool [40]. Figure 28 shows a 3D view of 
the processes from the Zeus MP/2 astrophysics code arranged in a sphere showing the 
computation time (shown on the left) and their associated communication wait states (shown 
on the right). As can be seen on the left graph, the processes in the outer region of the sphere 
are the ones waiting longer on communication operations (shown with the red colour). 
Looking at the root cause of this phenomenon in Scalasca it is displayed on the right graph the 
computation time of the processes. There is a strong correlation in between the computation 
times and the high wait delays. Processes in the inner region of the sphere topology carry 
more computation load than the outer region. Therefore, processes at the rim of the inner 
region delay those farther outside producing these longer wait times.  

 



D9.2.2 Final Software Evaluation Report 

PRACE-1IP - RI-261557  23.07.2012 69

 

Figure 28: A 3D view of several processes arranged in a sphere showing the computation time (shown on 
the left) and their associated communication wait states (shown on the right). 

Another illustrative example found in today’s tools for the recommendation on What-if  
models is provided by the tool Mpisstrace. This is shown in the Figure 29 where a particular 
task out of the four tasks that the Cholesky application is composed of is sped up 2× in the 
different number of cores. As you can see, this tool is able to predict for each number of cores 
which is the most effective task to sped up. In particular, the sgemm_tile task is the one 
that delivers the highest improvement in performance for Cholesky when it might be sped up 
by a factor of 2× for the case of one core. Based on this information programmers could focus 
on optimizing the right task avoiding a waste of time optimizing other tasks that are not 
having a bigger performance impact. 

 

Figure 29: Speedup when one task is speeded up by 2× in the Cholesky application. 

4.3.2 European contributors 

In Europe there are two strong teams that are contributing to these different areas. They are 
briefly described below in Table 12. 
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Recommendation 
area 

European 
institution/Country 

Tool name Tool description 

Root cause JÜLICH 
SUPERCOMPUTING 
CENTRE (JSC) / 
Germany 

Scalasca [40] A performance analysis 
toolset that has been 
specifically designed for 
use on large-scale 
systems supporting MPI 
and MPI/OpenMP 

What-if models Barcelona 
Supercomputing Center 
(BSC) / Spain 

Mpisstrace [43] A debugger for 
applications parallelized 
with the use of the 
OmpSs programming 
model 

Power models Barcelona 
Supercomputing Center 
(BSC) / Spain 

POTRA [44] A framework for 
Building Power Models 
For Next Generation 
Multicore Architectures 

Table 12: European contributors for the recommendations on models. 

4.4 Scalability  

The most important aspect of any tool designed for exascale computing is scalability. Some 
current approaches like offline filtering and processing of traces will partially solve the 
problem in terms of analysing smaller regions. Storing large amounts of data in the order of 
terabytes (or even petabytes) (e.g. for the original/full trace) will be costly at exascale. Even if 
other approaches such as event based or data-size based tracing might be effective they are 
not completely beneficial because the traces get too big as well. We need a very fine detail of 
what is going on in the application and we are overwhelmed by huge amounts of data. 
Managing and storing efficiently this data is becoming critical for performance analysis.  

There are some approaches that look promising to tackle the problem of scalability: Sampling 
techniques and intelligence based monitoring techniques can substantially increase the 
scalability of the tools as mentioned early in Section 4.2. 

1. In-memory or online processing: It allows tools to identify the important events during 
the execution of the application, and hence reduces the overall data volume to store. 

2. Management data by re-structuring of traces: There are several techniques such as 
partitioning traces into different files using OTF (Open Trace Format), segmenting traces 
and pre-computing general summaries.  

3. Parallelizing tools for visualizing large sets of trace data: One approach in this 
direction allows the analysis of traces immediately after they run by using cores from the 
original CPU set. 

4. Automatic reduction/compression to manageable size: Compression techniques can be 
applied to drastically reduce the size of the traces. Also Lossy compression techniques to 
further be applied to further reduce the size of traces. 

5. Multi-scale: Many scientific applications are based on multi-scale modelling which 
calculates material properties or system behaviours on one level using information or 
models from different levels. On each level particular approaches are used for the 
description of a system. For example in physics there are level of quantum mechanical 
models (information about electrons is included), level of molecular dynamics models 



D9.2.2 Final Software Evaluation Report 

PRACE-1IP - RI-261557  23.07.2012 71

(information about individual atoms is included), meso-scale or nano level (information 
about groups of atoms and molecules is included), level of continuum models and level of 
device models. In this context, performance tools might also follow this approach of 
multi-scaling by tracing and analyzing one level at a time rather than the whole program. 

6. Pixel-bar charts: These charts allow for visualizing large amounts of multi-attribute data. 
The approach is a generalization of traditional bar charts and x-y diagrams, which avoids 
the problem of losing information by aggregation or over plotting large amounts of data 
points. The basic idea is to use the pixels within the bars to present the detailed 
information of the data records. Our so- called pixel bar charts retain the intuitiveness of 
traditional bar charts while allowing very large data sets to be visualized in an effective 
way. 

4.4.1 Recommendation evidences on existing tools 

Figure 30 illustrates using Vampir [42] a pixel bar chart for performance visualization of I/O 
events in a million-process run of some scientific application. As we can see, it is possible to 
easily have a global overview of size, duration, and bandwidth of the I/O operations for very 
large process counts (one million) overtime. Time corresponds to the X axis and processor is 
shown in the Y axis. For example, it is possible to see in the Size bar, that there are few 
processes among the million that send very large I/O files (red dots) and these ones are also 
causing a big delay as it is shown in the Duration bar (yellow and red dots).  

 

 

Figure 30: Pixel bar-charts for performance visualization of I/O events in a million-process run 

Another interesting example to illustrate how existing tools are coping with scalability issue 
in analysing large data set is shown in Figure 31 and Figure 32. Figure 31 depicts the full 
trace from a 64-process run of the GROMACS application. It shows the various iterations and 
the communication operations performed during each iteration. The same behaviour of the 
application can also be observed in Figure 32 where it shows only 15% of the trace records 
from the full trace. This example demonstrates that there is no need to store the full trace 
because a small portion of it is enough to still see the full behaviour of the application. This is 
a technique that belongs to the smart approaches based on sampling techniques. 
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Figure 31: Original full 64-processes GROMACS trace 

 
Figure 32: 15% of records from the 64-processes GROMACS trace 

4.4.2 European contributors 

In Europe there are two strong teams that are contributing to these different areas. They are 
briefly described below in Table 13. 

Recommendation 
area 

European 
institution/Country 

Tool name Tool description 

Data 
management 

JÜLICH 
SUPERCOMPUTING 
CENTRE (JSC) / 
Germany 

Scalasca [40] A performance 
analysis toolset that 
has been specifically 
designed for use on 
large-scale systems 
supporting MPI and 
MPI/OpenMP 

Data 
management 

Technische 
Universität 
Dresden/Germany 

Vampir [42] Vampir provides an 
easy to use analysis 
framework which 
enables developers to 
quickly display 
program behaviour at 
any level of detail 

Online 
techniques 

Barcelona 
Supercomputing 
Center (BSC) / Spain 

EXTRAE [38] A tracing tool to 
extract computation 
and communication 
events from 
applications 

Table 13: European contributors for the recommendations on scalability. 
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4.5 Specific recommendations from PRACE prototypes 

This section summarizes the specific technical recommendations from prototypes owners 
about the further development in HPC tools. 

1. Portability. Portability of the software tools to support different hardware and 
programming models (e.g. NVIDIA/ATI, CUDA/OpenCL) will be very useful. 

2. GPU communication support. Benchmarks measuring bandwidth and latency between 
GPUs are indispensable for the performance analysis of multi-GPU codes. Enable tools 
like the parallel ping-pong test program LinkTest to support GPU-GPU communication.  

3. Support for analysing communication-computation overlap. Trace-based, timeline-
style performance analysis tools can greatly enhance the ability of a programmer to 
identify opportunities for optimization of accelerator codes. The timeline-style view 
shows when host and device events occur; using this feature, the programmer can easily 
spot inefficiencies and look for opportunities for overlap. A particularly useful example of 
this technology is Vampir. 

4. Support for accelerator dataflow visualization. Tools that help to visualize an 
accelerator application's host-device data flow characteristics would be useful. This is 
essential when optimizing for data locality in order to reduce costly host-device data 
transfers. 

5. Directive-based support. Many performance analysis and debugging tools do not yet 
support directive-based accelerator programming models. This suggests that performance 
analysis and debugger tool vendors should support directive-based approaches. 

6. Proprietary tools needs more data analysis support. Relying on basic NVIDIA tools 
turned out to be the only stable, efficient and highly scalable approach. Data analysis 
requires a bit of hand-coded post processing of textual output. Third party tools generally 
need deep testing prior adoption in a production/highly parallel/hybrid environment. 

7. Support for I/O performance counters. Integrate monitoring and analysis of I/O 
performance counters into performance analysis tools. Application developers today have 
very limited options to retrieve performance data concerning the I/O sub-system. This 
becomes even more critical if complexity increases due to additional storage levels. 

8. Power analysis. Future systems with more than 100,000 of nodes need to have ways for 
defining the level of detail for power measurements required for each job. For example a 
simple 3 level approach can be envisioned. Level 1 would store power data at the 
resolution rate of the measuring equipment, level 2 would store data in specific intervals 
(e.g. every 5 min) and level 3 would just store the Energy to Solution (energy consumed) 
for the job. 

9. Memory layout support. Integrate/provide specialized performance counter (cf. 
hpmcount/IBM) in performance analysis tools. Provide extended compiler support to 
tailor memory layout onto the nodes (NUMA-aware compiler). 

  



D9.2.2 Final Software Evaluation Report 

PRACE-1IP - RI-261557  23.07.2012 74

5 Hardware recommendations 

Having looked at recent developments in programming languages for high performance 
computing, we turn our focus to hardware and the associated technologies being developed as 
we target Exascale systems. In this chapter we will present some of the results of the 
evaluation of the prototype hardware which we have carried out within this work package, 
and arrive at a number of recommendations this evaluation has led to. 

5.1 Lessons learned and Recommendations 

The prototypes evaluated under PRACE-1IP WP9 have proven to be an extremely valuable 
source of information. By experimenting on novel computer architectures, we have evaluated 
the potential of certain technologies to evolve into Exascale supercomputers. An important 
result of this work was to confirm current trends in academia and in industry and to provide 
quantitative results on such aspects as power efficiency and scalability, results which can be 
used to make explicit recommendations on which architectures have a potential to scale to 
Exascale. 

The conclusion of this study is that there are a number of promising technologies, however no 
single architecture prevails. On the other hand, there are certain technologies that are optimal 
for certain classes of problems, depending on the specific work-load and computational needs 
(e.g., I/O intensive, memory intensive, floating point intensive, etc.). Our findings are 
presented the form of a set of tables, where the recommendations reflect the lessons learned 
from each prototype architecture.  

5.1.1 Accelerators 

Accelerators are currently subject to intense research. GPUs, DSPs or FPGAs demonstrate 
great potential in power efficiency (i.e. Watt per Flop ratio). They are seen as the most 
obvious path to the Exaflop at a reasonable power budget. The first section of this chapter 
therefore investigates accelerators, namely an FPGA (Table 14) cluster and three GPGPU 
clusters (Table 15, Table 16 and Table 17). 

Lessons learned from the prototype Recommendations 

Our prototyping efforts of a matrix 
multiplication accelerator support the general 
wisdom that special-purpose accelerators are 
2-3 orders of magnitudes more energy-
efficient than today’s general-purpose 
multicore processors. 

To achieve the desired energy-efficiency for 
next-generation supercomputers, we 
recommend replacing assemblies of COTS 
general-purpose processors with low-power 
processors with attached accelerators, such as 
reconfigurable logic. 

Our FPGA accelerator prototype shows that 
today’s FPGA’s are capable of delivering 
competitive double-precision floating-point  
performance with 2 orders of magnitude 
higher energy efficiency than general-
purpose multicores. This assumes that the 
accelerator architecture achieves a high  
utilization of the special-purpose hardware of 
FPGA’s, such as multiply-and-accumulate or 
SRAM arrays. 

We recommend considering reconfigurable 
logic (FPGA’s) as an energy-efficient 
accelerator platform for double-precision 
floating-point computations. 

Accelerator design requires experienced We recommend a concerted educational  
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Lessons learned from the prototype Recommendations 

designers with interdisciplinary skills in 
algorithms, computer architecture, hardware 
design, and EDA tools. 

effort to focus on interdisciplinary  
engineering curricula on the skill set required 
for designers of future accelerator 
architectures. 

Summary 

Our accelerator design and prototyping efforts corroborate the potential of accelerated 
computing for improving energy-efficiency by 2-3 orders of magnitude compared to general-
purpose multicore processors. We have demonstrated competitive double-precision floating-
point performance on reconfigurable logic (Xilinx FPGA’s) with significant reductions in 
energy consumption. Thus, we believe that FPGA’s have the potential to evolve into a 
competitive accelerator platform for future exascale supercomputer nodes. 

Table 14: Energy-to-solution prototype from from JKU. 

The results of an investigation in GPUs for General Purpose computing (GPGPUs) are  
described in Table 15, Table 16 and Table 17. The prototype at CaSToRC shows that a 
substantial amount of work to adapt codes is required, while the prototype from CSCS 
emphasizes the necessary links between hardware and software at the system level. The 
CINECA prototype demonstrates the significance of handling hardware failures, which have a 
probability of occurrence proportional to the size of the machine. 

Lessons learned from the prototype Recommendations 

Performance and energy efficiency of 
modern HPC clusters can be noticeably 
improved by the use of GPUs as accelerators. 

Do further investigations on GPU computing 
to enlarge the field of application for hybrid 
clusters.  

GPU communication in hybrid clusters is a 
crucial point and still poses a challenge. 

Continue work on improvement of GPU 
communications, both intra and inter node, to 
mitigate possible bottlenecks 

Approaches like GPUDirect and 
collaborations between vendors as with 
NVIDIA and Mellanox for improvement of 
GPU inter-node communications looks 
promising. 

Implement a standard protocol that can be 
used to improve communications between 
different PCI devices.  

Summary 

GPU communication in hybrid clusters still poses a challenge but approaches such as  
GPUDirect and collaborations between different vendors for improvement of GPU inter-
node communications appear promising. 

Table 15: Interconnect Virtualisation prototype from CaSToRC. 

Lessons learned from the prototype Recommendations 

Designing directly-connected topologies 
using InfiniBand 8-port (unmanaged) 
switches requires an in-depth understanding 
of the cabling from processor and between 
switches.  This is not scalable to large scale 
installations using open source management, 
trouble-shooting and diagnostics interfaces. 

In order to introduce cost effective and 
scalable interconnect topologies using 
commodity components, especially 
unmanaged switches, further research and 
investment is needed both at the fabrics level 
and also for the management and 
troubleshooting tools such as OpenSM. 
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Lessons learned from the prototype Recommendations 

Incorrect cabling from processors and 
between switches can severely impact 
communication throughput. 

Currently, PCIe peer-to-peer communication 
is not fully supported by many vendors.  
Hence, a true host bypass, which CSCS GPU 
virtualization prototype intended to evaluate, 
could only be implemented through a 
software layer to communicate between the 
GPU and the network interface. This is also a 
performance critical design component for 
clusters based on PCIe accelerators. 

As accelerators become central to the node 
design, direct communication channels must 
be provided by vendors and should be 
supported by Linux kernels to allow for 
direct memory transfers between the 
accelerator memories and the network 
interface, without an intermediate copying 
step to the host memory. Research and 
development is needed for the Linux kernel 
extensions in collaboration with vendors and 
this could be a co-design opportunity for 
PRACE. 

GPU to GPU direct memory transfers over 
PCIe is supported by NVIDIA drivers. 
Currently, this is limited to single IO hubs, 
therefore, we cannot develop a multi-GPU 
server for GPU virtualization using 
commodity components.   

There could be different solutions: (1) a PCIe 
bus can be introduced that is extensible to 
multiple ports without a significant 
performance loss; (2) there could be PCIe 
chipsets that could provide extensible peer-
to-peer interfaces; (3) a GPU/accelerator 
could be a standalone unit (self-hosted) and 
could initiate communications to other GPU 
devices and CPUs in the cluster. 

Summary 

As accelerators become central to the node design, direct communication channels must be 
provided by vendors and should be supported by Linux kernels to allow for direct memory 
transfers between the accelerator memories and the network interface, without an 
intermediate copying step to the host memory. 

Table 16: Interconnect Virtualisation prototype from CSCS. 

Lessons learned Recommendations 

Hybrid CPUs + GPUs architecture is 
affected by more HW failures and damages 
compared to uniform clusters. This is related 
to the large amount of HW components: 
more available devices increases the rate of 
failure events. 

It is mandatory to provide a semi-automatic 
monitoring system which will alert the 
system administrators for possible failures. 

CPU or GPU HW component failures could 
put off line an entire CPU-GPU host and 
vice versa. This kind of event may affect all 
jobs running on the host even if these jobs 
do not belong to the same user.  

Again, host failures may affect CPU and 
GPU jobs running on the same server. 

A predictive failure tool could help prevent 
user job failures by, e.g. draining the host in 
advance. 

Direct and indirect power consumption of In order to optimize power consumption, 
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Lessons learned Recommendations 

hybrid CPU and GPU clusters is less than 
the combined consumption of 2 separate 
clusters. On the other hand, idle GPUs or 
CPUs still consume power.  

fully hybrid CPU-GPU clusters may not be 
the optimal solution. During the planning 
stage it may be import to evaluate the needs 
of the users, and thus deploy clusters 
equipped with a non-uniform ratio of CPUs 
and GPUs. 

Summary 

On a hybrid cluster it is crucial to deploy a tool for predicting and/or preventing hardware 
failures. 

Table 17: Interconnect Virtualisation prototype from CINECA. 

5.1.2 I/O 

As machines get larger, the possible simulation sizes increase accordingly, thus increasing 
requirements on storage and I/O bandwidth. Designing an efficient I/O subsystem for 
Exascale computing has evolved into a challenge itself. The prototype from FZJ casts light on 
the coming massive usage of flash technologies in the HPC world, detailed in Table 18. 

Lessons learned from the prototype Recommendations 

NAND flash memory card technology 
becomes more mature and provides a real 
opportunity to mitigate the performance gap 
between volatile and non-volatile 
memory/storage access. 

Promote the integration of flash memory card 
technologies into future HPC architectures. 

Various challenges to integrate flash memory 
into a massively parallel HPC architecture 
and to enable its efficient use remain to be 
addressed. 

Further explore the design space and foster 
the integration of additional storage levels 
into parallel file systems and the 
development of I/O middleware. 

Summary 

NAND flash memory is the only technology which in the near future allows to significantly 
mitigate the I/O performance bottleneck. The integration of these technologies into massively 
parallel HPC systems will be an important step towards the design of an Exascale I/O 
subsystem. 

Table 18: Novel MPP Exascale system I/O prototype from FZJ. 

The second I/O prototype is installed at CEA (in collaboration with BSC, CINES, Daresbury, 
FZJ and HLRS), and focuses on the evolution of the storage system (Table 19). The goal is to 
study how to efficiently store the Petabytes of data that will be produced by an Exascale 
machine. 

Lessons learned from the prototype Recommendations 

The reduced overall hardware components 
involved in Xyratex’s Lustre storage solution 
(ClusterStor 3000), with embedded server 
modules, allow for a faster deployment than 
with a solution based on I/O nodes plus 
standard DAS or SAN disk arrays. It also 

Foster the use of embedded servers in storage 
systems for Exascale I/O. 
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Lessons learned from the prototype Recommendations 

shows good performance per spindle and 
eases the whole system maintenance. 

Software RAID using Linux device-mappers 
can be used to build embedded high-end 
storage systems. Expected system 
performance was reached, however, some 
system failures were encountered that may be 
related to the RAID stack. 

Do not discourage using new RAID engines 
for disk arrays, like device-mapper based 
RAID. On the other hand, more work and 
research have to be invested in terms of 
software RAID resiliency. 

Summary 

The use of embedded server modules in a high-performance Lustre storage system has 
demonstrated competitive performance, energy consumption and manageability. Resiliency 
of Linux software RAID needs to be investigated and improved in the long run. 

Table 19: The Exascale I/O prototype from CEA et al. 

5.1.3 Energy efficiency 

A general awareness on energy preservation, the ever increasing price of energy and the 
impact of HPC on the global environment have encouraged us to design new computing 
centres (infrastructure) as well as new types of nodes (hardware architecture). The Energy-to-
Solution prototype at LRZ (Table 20) provides insights on energy efficiency as we scale 
towards Exaflops.Table 21, which presents the results of the BSC prototype, shows how high 
density nodes can be made of low power, commodity components such as those available in 
the embedded world or in the phone/tablet market. 

Lessons learned from the prototype Recommendations 

Increased leakage currents at higher water 
temperatures and relative lower efficiency of 
current adsorption machines reduce the 
benefits of hot water reuse through 
adsorption refrigeration. 

In order to benefit from reusing hot water for 
cooling, components with low leakage 
currents should be used and the efficiency of 
adsorption refrigeration machines should be 
improved. 

A water cooled systems and compressors that 
produce cool air using the system water 
cooling loop work well to create a room 
neutral rack system. But the compressor 
power consumption at higher water 
temperatures negate possible benefits of 
adsorption when compared with free cooling. 

Cool all components with water so that the 
compressors can be removed from the 
system. This should allow future HPC 
centres to take advantage of possible hot 
water recycling via adsorption. 

A pump failure in the infrastructure water 
loop running through the HPC system water 
heat exchanger was not detected because the 
temperature sensor on the infrastructure side 
before the heat exchanger showed correctly 
normal temperature but the HPC system 
water temperature increased till an 
emergency shutdown occurred. 

It is important to not just monitor the system 
infrastructure but also to monitor the building 
infrastructure correctly. It is also important to 
think about all possible failure scenarios and 
to put appropriate sensors in the right places 
and integrate them with the system 
monitoring system. Cooling loops for 
instance need not just temperature sensors 
but flow sensors as well. 
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Lessons learned from the prototype Recommendations 

Disassembling and moving a water cooled 
rack system is currently not easy because all 
water pipes are soldered. 

Having a connector based system for the 
water pipes between racks would make 
assembly, disassembly and extension much 
easier. 

The 1 minute read interval for some power 
sensors is not good enough for detailed 
power analysis of jobs. It is usable for 
Energy to Solution (EtS) measurements for 
jobs typically running longer than an hour. 

Future systems might need a partition of 
nodes that are equipped with fine grain 
power measuring equipment for detailed 
power analysis.  

The water cooled prototype in combination 
with free cooling shows a PUE of less than 
1.2. This is much better than traditional air 
cooled systems (> 1.4). 

Water cooling in combination with free 
cooling should become the standard cooling 
technology for future generation HPC 
systems. 

Summary 

Future systems should use direct water cooling of all components. Energy conservation and 
recovery options should be considered including adsorption, free cooling and hot water 
reuse. 

Table 20: Energy-to-solution prototype from LRZ. 

Lessons learned from the prototype Recommendations 

Per SoC compute density is not enough to 
dominate total node and blade power 
consumption.  

Increase compute density by replacing SoC 
with one which has more cores (e.g. Tegra 
3).  

Compute node (and SoC as well) has 
unnecessary components which consume 
power but are not used for computation. 

The node that we are using is designed for 
embedded development, and has many 
components that are not needed in HPC. One 
solution is to remove all unnecessary 
electronics like the RTC (Real Time Clock), 
USBs, HDMIs etc. If possible, consult SoC 
maker for stripped down version of SoC. 

Blade power supply has huge intrinsic losses. Size and/or design power supply properly so 
that the expected consumption is on the point 
of best power supply efficiency. 

Summary 

It is important to increase compute density, such that the power consumption of the processor 
is a significant portion of the power consumption of the node 

Table 21: Energy-to-solution prototype from BSC. 

5.1.4 Interconnects 

Not all algorithms can be easily decomposed into MPI tasks. For such codes, a finer grain 
parallelism offers the possibility to increase performance. Large NUMA nodes have a 
significant advantage for such classes of codes. The prototype of UiO demonstrates this 
potential, as is described in Table 22. 
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Lessons learned from the prototype Recommendations 

Shared memory architectures promote the 
use of parallel computers for “not yet 
parallel” application codes via a) a simple 
global memory model b) simple and fast 
“one-sided” memory access (copy) c) small 
latencies compared to distributed memory 
systems. The number of synchronization 
points and buffer memory in the FMM can 
be reduced compared to distributed memory 
systems through direct access. 

Further explore and adapt the NUMA design 
to increase the number of cores per node. 

Summary 

NUMA architectures bridge the gap between non-parallel applications and HPC codes via a 
simple memory model. NUMA nodes, as part of a larger distributed system, will be an 
important step to designing Exascale machines. NUMA nodes allow dynamic and effective 
workload balancing for non-static workload problems (e.g. MD). 

Table 22: NUMA-CIC prototype from UiO. 

5.2 Summary 

We provide the following summary of the recommendations in this chapter, concerning the 
path towards Exascale supercomputers: 

 Acceleration: Accelerated nodes will most likely form a significant component of an 
Exascale system, however further experiments are required to identify whether this 
acceleration will be based on GPU, FPGA, DSP or other emerging architectures. An 
important effort must be made for improving communication as well as developing tools 
or methods to track (and possibly correct) hardware failures. 

 Compactness: The density of nodes must increase yet with no significant penalty on 
power consumption. The impact of ARM based architectures must be studied as soon as 
they will be more widely available. 

 Maintain a partition of “fat” nodes: As some workloads cannot be scaled to highly 
parallel nodes, a proportion of large NUMA nodes, with a high core count, should be 
present in an Exascale machine, to accommodate all classes of applications. 

 Efficient I/O subsystem. Performing I/O at scale should be taken into account when 
designing an Exascale machine. Flash based technology has been shown to be a path to 
fast, scalable and resilient nodes. Embedded server modules will help build a manageable 
and efficient storage system without scarifying energy efficiency. 

 Energy efficiency: Node design (and accordingly, the computer centre architecture) must 
evolve towards a PUE of less than 1.2. Watercooling is the most promising technology as 
of today. 
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6 Conclusions 

So far, international efforts have highlighted that a number of solutions in power efficiency, 
interconnect scaling and I/O, among others, are required to meet the Exascale milestone. The 
current document reports on results and outcomes of an investigation into a rich set of novel 
computer architectures, with the intention of contributing to this global effort in reaching the 
level of innovation required for Exascale computing. The work detailed here has looked into 
programming languages designed for HPC, system software, tools for analyzing and 
monitoring parallel applications as well as certain aspects of hardware design. Here we 
summarize with an overview of the conclusions and recommendations presented in this 
document. 

For the case of programming languages, we have looked more closely into accelerators, and 
more precisely GPUs. We conclude that certain pragma-based languages, such as OpenACC 
and OmpSs show promising results, however are still rather immature and not suitable for 
production-level software. When investigating OpenCL and CUDA, we find that although the 
former has reached a certain level of maturity, positive developments made by NVIDIA in 
their hardware prove difficult to accommodate in OpenCL. This means that developers of 
GPU applications are more likely to persist on using CUDA for their production level codes. 
In terms of multi-GPU programming, we found that the combination of MPI+CUDA allows 
access to the latest technological innovations in GPU/CPU decoupling. 

The work carried out in system software has highlighted the importance of co-design in the 
Exascale era. More precisely, regarding fault tolerance, we have identified that in current 
systems this is achieved by combining all the more reliable hardware with efficient 
checkpoint and restart mechanisms. For Exascale, however, this may prove unrealistic. It is 
therefore crucial that system software be made resilient to hardware faults. Another important 
outcome of this work has been the identification of the need for more hardware-aware system 
software, namely system software which can adapt according to, e.g. power consumption and 
which is aware of the locality of the compute nodes and the interconnect topology.  

This work has also identified a number of requirements for software development tools, i.e. 
applications that assist the development of software, for next generation supercomputer 
architectures. Firstly, it is crucial that tools be developed for accelerated architectures, and 
namely tools which can trace the movement of data between GPUs and between GPU and 
main memory. Additionally, we found that tools which can report on I/O performance and 
which register I/O counters are lacking or insufficient, something especially important given 
that I/O is expected to be a major bottleneck in need of significant innovation on the path 
towards Exaflop. However, more generally, we have identified a need for innovation in the 
reporting and filtering of traces and debugging information. Major steps are required in the 
presentation of hardware counters and program flows from millions of cores for these to be 
useful to the programmer. 

Finally, we looked at certain aspects of hardware and their suitability within Exascale. Apart 
from the need for more dense computational units, such as accelerators, we found that there is 
much room for improvement in terms of I/O and energy efficiency. Flash based storage 
devices have proven to be most effective in this area, while we have had positive results with 
the warm water cooled prototype.  

This document has reported on the status of the research achievements of a pan-European 
collaboration of computer centers in the area of HPC innovation. Driven by the particular 
interests of each individual center, and simultaneously by the common European goal of 
maintaining competitiveness as we approach the Exascal milestone, our intention is to 
compose a valuable resource, partly served by this deliverable, for the relevant HPC 
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stakeholders in Europe. We believe that the result of this ongoing collaboration has been 
successful in identifying and evaluating promising computer architectures as part of Europe’s 
efforts towards Exascale computing. The results presented here will guide further 
investigations into novel computer architectures, which is an ongoing activity in PRACE. 
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7 Annex 

7.1 Energy Aware System Software 

In the next pages, a write-up detailing the results on “Energy Aware System Software” 
follows, as outlined in Subsection 3.2.1 of the main text 
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ENERGY AWARE SYSTEM SOFTWARE 
With energy efficiency being one of the major problems to overcome in the Exascale challenge, we predict that 

future HPC system software needs to become energy aware. Energy awareness at the system software  level 

encompasses  two  aspects.  First,  the power  consumption of  the  system needs  to be monitored  in order  to 

measure  the  energy  required  to  run  a  given  application  (i.e.  Energy‐to‐Solution).  Second,  the  operational 

parameters influencing the power and performance characteristics of the system need to be tuned to improve 

the Energy‐to‐Solution. 

POWER  MONITORING  AND  ENERGY‐TO‐SOLUTION  

In the CooLMUC prototype at BADW‐LRZ, we have implemented an Energy‐to‐Solution system that is sketched 

in Figure1. CooLMUC uses smart power distribution units  (PDUs)  to monitor  the power consumption of every 

compute node in the cluster. In addition, the power consumption of the cooling equipment is monitored using 

a digital three‐phase current and voltage meter. The obtained power readings are forwarded via Ethernet to a 

virtual machine where the values are stored  in a database.  In addition, the database also holds the resource 

manager’s accounting data. 

 

Figure1. Energy‐to‐Solution setup of the CooLMUC PRACE Prototype 

To calculate the Energy‐to‐Solution for a given application, the accounting data is used to determine when and 

on which of the compute nodes the application had been run. Then, the power consumption of these nodes 

during the runtime of the application can be obtained  from the database as a series of power readings over 

time. Since the resource manager ensures that only one application can use a node at a given time, the entire 

power consumption of the node can be attributed to the application. 
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In order  to  include  the power  for  the cooling system  into  the Energy‐to‐Solution metric, we assume  that all 

energy consumed by the compute nodes has to be cooled due to the principle of energy conservation. Yet, in 

our prototype setup, we can only measure the power consumption of the entire cooling system at once. Thus, 

we attribute the total power consumption of the cooling system to the individual nodes according to their own 

power consumption as measured in the smart PDUs. 

By integrating the power readings of all nodes on which an application was run and their respective fraction of 

the cooling power, we obtain the Energy‐to‐Solution which is reported in kWh back to the user. 

TUNING  THE  ENERGY‐TO‐SOLUTION  USING  SYSTEM  CONFIGURATION  PARAMETERS 

Several control knobs exist to tune the performance and power characteristics of HPC systems, such as: 

 Power gating (shutting down of unused parts of a chip, such as entire CPU cores) 

 Dynamic voltage and frequency scaling (including technologies like Intel TurboMode) 

 Enabling or disabling of HyperThreading 

 Mapping configuration of threads to cores (pinning) 

Making use of  these  knobs  can help  to  fine‐tune  the  system  for  improved energy efficiency. However,  it  is 

important to note that each HPC application has a characteristic profile. Therefore  it  is necessary to find the 

best settings to optimize the Energy‐to‐Solution for every application individually. 

We have chosen to investigate the impact of dynamic voltage and frequency scaling on the Energy‐to‐Solution. 

For this, we have extended the Slurm resource manager with the ability to set fixed CPU frequencies for given 

applications  through  the existing Prologue/Epilogue mechanisms.  In  theory, applications  that are memory or 

interconnect network bound can be run at lower CPU clock rates without sacrificing performance. Since lower 

clock  rates  result  in  lower power being  consumed  the Energy‐to‐Solution will  improve whenever  the  lower 

clock rates do not significantly improve the application runtimes. 

For our analysis, we have selected the APEX MAP benchmark which performs memory operations according to 

a  selectable  pattern.  We  compare  a  randomly  distributed  access  pattern  to  a  strided  pattern  which  is 

comparable to the STREAM benchmark. The runs are monitored using our Energy‐to‐Solution setup described 

in the previous section. 

Figure2 and Figure3 show the power profiles of the benchmark runs  for the random case and the strided case, 

respectively.  As  expected,  the  power  consumption  is  higher  at  higher  processor  frequencies.  Since  the 

benchmark workload  is  the  same  across  the  frequencies,  higher  processor  frequencies  also  cause  shorter 

application  runtimes.  Yet,  in  case  of  the  random  memory  access  pattern  (Figure2),  we  observe  that  the 

performance  increase  at  higher  frequencies  cannot  justify  the  increase  in  power,  opposite  to  the  strided 

case(Figure3). Thus, the Energy‐to‐Solution  is best at the highest frequency  in the strided case and  it is best at 

1400 MHz for the random case (Figure4). 

Hence, we have  shown  that adjusting  system parameters can optimize  the energy consumption of  scientific 

applications. 
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Figure2. Power profiles of the APEX MAP benchmark on CooLMUC (Random Memory Access) at different CPU frequencies 

 

Figure3. Power profiles of the APEX MAP benchmark on CooLMUC (Strided Memory Access) at differernt CPU frequencies 
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Figure4. Energy‐to‐Solution of APEX MAP at different frequency levels 

Although  our  implementation  through  Prologue  and  Epilogue  scripts  yields  the  desired  settings,  it  requires 

manual work by both, the system administrator and the user. Future Exascale‐ready resource managers should 

include the ability to adjust the above mentioned control knobs by default and further work should be done on 

automating the process of tuning the knobs for the best energy efficiency on the resource manager level.  
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