

SEVENTH FRAMEWORK PROGRAMME

Research Infrastructures

INFRA-2010-2.3.1 – First Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-1IP

PRACE First Implementation Project

Grant Agreement Number: RI-261557

D9.2.2
Final Software Evaluation Report

Final version

Version: 1.0
Author(s):

Jose Carlos (BSC),
Guillaume Colin de Verdière (CEA),
Matthieu Hautreux (CEA),
Giannis Koutsou (CaSToRC)

Date: 23.07.2012

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 ii

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-261557

Project Title: PRACE First Implementation Project

Project Web Site: http://www.prace-project.eu

Deliverable ID: D9.2.2

Deliverable Nature: < Report>

Deliverable Level:

PU *

Contractual Date of Delivery:

31 / July / 2012

Actual Date of Delivery:

31 / July / 2012

EC Project Officer: Leonardo Flores Añover

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: Final Software Evaluation Report

ID: D9.2.2

Version: 1.0 Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2007

File(s): D9.2.2.docx

Authorship Written by: Jose Carlos (BSC),
Guillaume Colin de Verdière (CEA),
Matthieu Hautreux (CEA),
Giannis Koutsou (CaSToRC)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 iii

Contributors: Sadaf Alam (CSCS)
Stephanos Androutsellis (GRNET)
Axel Auweter (LRZ)
Holger Brunst (TU Dresden)
Carlo Cavazzoni (CINECA)
Daniela Galetti (CINECA)
Marcin Gebarowski (WCNS)
Jose Gracia (HLRS)
Erik Hagersten (Rogue Wave)
Willy Homberg (FZJ)
Radoslaw Januszewski (PSNC)
Ivo Kabadshow (FZJ)
Damian Kaliszan (PSNC)
Jochen Kreutz (FZJ)
Agnieszka Kwiecien (WCNS)
Jesus Labarta (BSC)
Can Ozturan (Bogazici University)
Federico Paladin (CINECAf)
Dirk Pleiter (FZJ)
Roland Poppenreiter (JKU)
Jeffrey Poznanovic (CSCS)
Seren Soner (Bogazici University)
Alexei Strelchenko (CaSToRC)
Stephane Thiell (CEA)
Mariusz Uchronski (WCNS)
Andrea Vanni (CINECA)
Torsten Wilde (LRZ)

Reviewed by: Florian Berberich, JUELICH
Dietmar Erwin,, FZJ

Approved by: MB/TB

Document Status Sheet

Version Date Status Comments

0.1 28/June/2012 Draft

0.2 16/July/2012 Draft Accommodated internal
reviewer comments

1.0 24/July/2012 Final version Accommodated further
comments by reviewers
and finalized

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 iv

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Software Evaluation, Exascale,
Supercomputing

Disclaimer

This deliverable has been prepared by the responsible Work Package of the Project in
accordance with the Consortium Agreement and the Grant Agreement n° RI-261557 . It solely
reflects the opinion of the parties to such agreements on a collective basis in the context of the
Project and to the extent foreseen in such agreements. Please note that even though all
participants to the Project are members of PRACE AISBL, this deliverable has not been
approved by the Council of PRACE AISBL and therefore does not emanate from it nor
should it be considered to reflect PRACE AISBL’s individual opinion.

Copyright notices

 2012 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-261557 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 v

Table of Contents
Project and Deliverable Information Sheet .. ii

Document Control Sheet ... ii

Document Status Sheet .. iii

Document Keywords .. iv

Table of Contents .. v

List of Figures .. vii

List of Tables ... viii

References and Applicable Documents .. viii

List of Acronyms and Abbreviations ... x

Executive Summary .. 1

1 Introduction ... 1

2 Programming Languages .. 2
2.1 CUDA and MPI ... 2

2.1.1 Description ... 2
2.1.2 Code Examples ... 3
2.1.3 Experiences and Results ... 5
2.1.4 Pros and Cons .. 6
2.1.5 Conclusions and recommendations .. 7

2.2 OpenCL .. 7
2.2.1 Desription ... 7
2.2.2 OpenCL Code Example .. 8
2.2.3 Experience & Results ... 9
2.2.4 Pros & cons .. 15
2.2.5 Recommendations ... 16

2.3 OpenACC ... 17
2.3.1 Description ... 17
2.3.2 Code examples .. 17
2.3.3 Experience & results .. 18
2.3.4 Pros & Cons ... 22
2.3.5 Recommendations ... 23

2.4 OmpSs .. 24
2.4.1 Description ... 24
2.4.2 Porting a scientific application to OmpSs .. 24
2.4.3 Experimental results ... 26
2.4.4 Pros and Cons .. 27
2.4.5 Recommendations ... 28

2.5 UPC ... 29
2.5.1 Description ... 29
2.5.2 Description of work done ... 30
2.5.3 Experimental outcomes and discussion .. 31
2.5.4 Pros and Cons .. 38
2.5.5 Conclusions and recommendations .. 39

3 System software ... 40
3.1 Introduction ... 40

3.2 Operating System and System Management... 40
3.2.1 Energy Aware System Software (LRZ) ... 40

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 vi

3.2.2 Monitoring with Hierarchical Nagios (Hnagios) (CINECA) ... 41
3.2.3 Technical recommendations ... 42
3.2.4 Summary ... 44

3.3 Resources management ... 45
3.3.1 Integer programming based scheduler for heterogeneous systems in SLURM (Bogazici Univ.) 45
3.3.2 Managing GPUs using PBSPro (CINECA) .. 45
3.3.3 Integration of rCUDA with SLURM resource management (CSCS) .. 46
3.3.4 Technical recommendations ... 47
3.3.5 Summary ... 50

3.4 Data management .. 50
3.4.1 JSC I/O prototype evaluations (CSCS) ... 50
3.4.2 GPFS and Lustre evaluations (CINECA) ... 51
3.4.3 Technical recommendations ... 51
3.4.4 Summary ... 53

3.5 MPI and Communication libraries .. 54
3.5.1 MVAPICH2-GPU evaluation (CSCS) .. 54
3.5.2 Evaluation of Infiniband routing schemes (CSCS) ... 55
3.5.3 Technical recommendations ... 58
3.5.4 Summary ... 59

3.6 Conclusions .. 60

4 Recommendations on HPC tools .. 61
4.1 Task-based/asynchronous support ... 62

4.1.1 Recommendation evidences on existing tools ... 63
4.1.2 European contributors .. 63

4.2 Intelligence ... 64
4.2.1 Recommendation evidences on existing tools ... 65
4.2.2 European contributors .. 67

4.3 Models .. 67
4.3.1 Recommendation evidences on existing tools ... 68
4.3.2 European contributors .. 69

4.4 Scalability ... 70
4.4.1 Recommendation evidences on existing tools ... 71
4.4.2 European contributors .. 72

4.5 Specific recommendations from PRACE prototypes ... 73

5 Hardware recommendations .. 74
5.1 Lessons learned and Recommendations .. 74

5.1.1 Accelerators .. 74
5.1.2 I/O ... 77
5.1.3 Energy efficiency .. 78
5.1.4 Interconnects .. 79

5.2 Summary .. 80

6 Conclusions .. 81

7 Annex .. 83
7.1 Energy Aware System Software ... 83

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 vii

List of Figures

Figure 1: Results of our adapted STREAM benchmark. We show results for the memory bandwidth
within the GPU (left), between GPUs on the same PCIe bus (centre) and for off-node GPUs,
connected over a QDR Infiniband interconnect (right). .. 6
Figure 2 Simple OpenCL kernel ... 9
Figure 3. CUDA vs OpenCL for DL_POLY constraints shake component ... 11
Figure 4. CUDA vs OpenCL for DL_POLY constraints shake component ... 11
Figure 5. CUDA vs OpenCL for DL_POLY constraints shake component ... 11
Figure 6 OpenCL mod2am results: DP (left), SP (right) .. 13
Figure 7 OpenCL mod2as results: DP (left), SP (right) .. 13
Figure 8 OpenCL mod2f results: DP (left), SP (right) .. 14
Figure 9: OpenCL mod2am results on APU (SP) ... 15
Figure 10: Competitive kernel performance. The chart above shows Hydro's kernel performance
compared between the hand-written CUDA and directive-based OpenACC implementations. For all of
Hydro's intensive code regions, OpenACC kernel performance is very competitive (sometimes faster,
sometimes slower) to the associated hand-written CUDA kernels. As previously mentioned, note that
make_boundary uses the same CUDA implementation for both versions; however, this function
does not include any performance-critical loops. Comparisons were made using CUDA 4.1 and a
Cray CCE 8.1 pre-release compiler, and the runs used a single Cray XK6 node (X2090 GPU) with the
following Hydro parameters: nx=ny=7500, nxystep=1500. .. 21
Figure 11: Competitive performance at scale. This chart gives the results of strong scaling experiments
between the MPI+CUDA and MPI+OpenACC implementations of Hydro. As previously mentioned,
the MPI+OpenACC implementation uses the CUDA make_boundary implementation via the
OpenACC host_data directive as a temporary workaround; however, the vast majority of the GPU
application runs with OpenACC. Each time-to-solution point was obtained from the average of five
independent runs of 500 timesteps, nx=ny=30000 and nxystep=1500. Like before, comparisons
were made using CUDA 4.1 and a Cray CCE 8.1 pre-release compiler, and parallel runs were
performed with a single MPI process per XK6 GPU node. .. 21
Figure 12: Taskification with OmpSs of the hydro_goduno() routine. .. 25
Figure 13: Functions and data dependencies in a slice of the hydro_godunov iteration 26
Figure 14: Runtime of HYDRO when scaling the number of MPI processes 27
Figure 15: Performance of UPC Hydro code implementation, as the number of cores and nodes is
increased, for (a) 100x100 input data size, (b) 250x250 and (c) 1000x1000. Each line corresponds to a
different number of nodes and/or block size. .. 34
Figure 16: Scalability of code for in-affinity and out-of-affinity memory accesses 35
Figure 17: Performance degradation due to out-of-affinity memory accesses. 35
Figure 18: Schematic representation of the main shared data structure of the Hydro code 37
Figure 19: The effect of shared pointer handling on performance. The top set of lines shows the
performance degradation when directly accessing the shared data structure, instead of using a local
pointer for indirection. ... 38
Figure 20: 2D torus topology & the 8-ports switch layout .. 55
Figure 21: Impact of optimized routing schemes on the two test partitions: 36-ports QDR switch with
the deualt routing (castor-128), 2D torus setup with LASH-DOR (pollux-128 (LASH-DOR)), and with
Torus QoS (pollux-128 (torus-2QoS)). ... 56
Figure 22: Monitoring of the network congestion using the UFM tool .. 57
Figure 23: Impact of network traffic routing ... 57
Figure 24: Example of data dependency graph among tasks in the Temanejo tool. 63
Figure 25: Clustering the IPC .. 65
Figure 26: Cluster distribution over time .. 66
Figure 27: Opacity selector in Vampir. ... 66
Figure 28: A 3D view of several processes arranged in a sphere showing the computation time (shown
on the left) and their associated communication wait states (shown on the right). 69
Figure 29: Speedup when one task is speeded up by 2× in the Cholesky application. 69

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 viii

Figure 30: Pixel bar-charts for performance visualization of I/O events in a million-process run 71
Figure 31: Original full 64-processes GROMACS trace .. 72
Figure 32: 15% of records from the 64-processes GROMACS trace ... 72

List of Tables
Table 1: A list of advantages and disadvantages in using hybrid CUDA+MPI programming for
multiple GPUs, based on our experience in this work. ... 7
Table 2: OpenCL pros and cons .. 16
Table 3: Advantages and disadvantages of using OpenACC, based on our experiences within this
work. .. 23
Table 4: Pros and Cons of the OmpSs programming language. .. 28
Table 5: Pros and cons table of UPC ... 39
Table 6: Technical recommendations for operating systems and system management design. Where
appropriate, the PRACE prototype utilized for the study is listed in the first column. 44
Table 7: Technical recommendations based on our study of resource management software. Where
appropriate, the PRACE prototype utilized for the study is listed in the first column. 50
Table 8: Data management software recommendations. Where appropriate, the PRACE prototype
utilized for the study is listed in the first column. ... 53
Table 9: Technical recommendations for communication libraries. Where appropriate, the PRACE
prototype utilized for the study is listed in the first column. ... 59
Table 10: European contributors for the recommendations for the support of task-based parallel
programming languages. ... 64
Table 11: European contributors for the recommendations on intelligence. ... 67
Table 12: European contributors for the recommendations on models. .. 70
Table 13: European contributors for the recommendations on scalability. ... 72
Table 14: Energy-to-solution prototype from from JKU. ... 75
Table 15: Interconnect Virtualisation prototype from CaSToRC. .. 75
Table 16: Interconnect Virtualisation prototype from CSCS. ... 76
Table 17: Interconnect Virtualisation prototype from CINECA. .. 77
Table 18: Novel MPP Exascale system I/O prototype from FZJ. ... 77
Table 19: The Exascale I/O prototype from CEA et al. .. 78
Table 20: Energy-to-solution prototype from LRZ. .. 79
Table 21: Energy-to-solution prototype from BSC. .. 79
Table 22: NUMA-CIC prototype from UiO. ... 80

References and Applicable Documents

[1] NVIDIA GPUDirect, http://developer.nvidia.com/gpudirect
[2] OpenCL - The open standard for parallel programming of heterogeneous systems,

http://www.khronos.org/opencl/
[3] PRACE Deliverable D6.6, Report on petascale software libraries and programming

models.
[4] PRACE-1IP Deliverable D9.2.1 First Report on Multi-Petascale to Exascale Software.
[5] OpenCL 1.2 Specification, http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
[6] ViennaCL (Linear Algebra and Iterative Solvers) with support for NVIDIA and

AMD/ATI GPUs, http://viennacl.sourceforge.net/
[7] Intel SDK for OpenCL Applications, http://software.intel.com/en-us/articles/vcsource-

tools-opencl-sdk/
[8] SNU-SAMSUNG OpenCL Framework, http://opencl.snu.ac.kr/

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 ix

[9] IBM OpenCL Development Kit for Linux on Power
http://www.alphaworks.ibm.com/tech/opencl

[10] Java Bindings to OpenCL (JOCL, enables applications running on the JVM to use
OpenCL 1.1), http://jogamp.org/jocl/www/

[11] PyOpenCL (access to the OpenCL API from Python, supports OpenCL 1.1),
http://mathema.tician.de/software/pyopencl

[12] PGI OpenCL Compiler for ARM, http://www.pgroup.com/products/pgcl.htm
[13] OpenCL 1.1 Specification, http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
[14] Sean Rul, Hans Vandierendonck, Joris D’Haene and Koen De Bosschere, An

experimental study on performance portability of OpenCL kernels, Application
Accelerators in High Performance Computing, 2010 Symposium, Papers (2010).

[15] Purnomo, Budirijanto and Rubin, Norman and Houston, Michael, ATI Stream Profiler:
a tool to optimize an OpenCL kernel on ATI Radeon GPUs, ACM SIGGRAPH 2010
Posters.

[16] Kazuhiko Komatsu, Katsuto Sato, Yusuke Arai, Kentaro Koyama, H. Takizawa, H.
Kobayashi, Evaluating Performance and Portability of OpenCL Programs, Science
And Technology, p. 781-784, 2010.

[17] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C.,
Skeel, R. D., Kalé, L. and Schulten, K. (2005), Scalable molecular dynamics with
NAMD. J. Comput. Chem., 26: 1781–1802. doi: 10.1002/jcc.20289.

[18] NAMD, http://www.ks.uiuc.edu/Research/namd/
[19] The Graph 500 list, http://www.graph500.org/
[20] LRZ, Energy Aware System Software, PRACE-1IP WP9, 2012
[21] http://www.nagios.org/about/overview/
[22] http://mathias-kettner.de/checkmk_livestatus.html
[23] D. Galetti and F. Paladin, Design, development and improvement of Nagios system

monitoring for large clusters, White-paper to appear in http://prace-ri.eu/white-papers
[24] S. Soner, C. Özturan, Integer programming based heterogeneous CPU-GPU

cluster scheduler for SLURM resource manager, 14th IEEE International Conference
on High Performance Computing and Communications (HPCC-2012), June, 2012.

[25] Seren Soner, Can Özturan, Oğuz Tosun, Poster: Co-allocation based scheduling for
parallel systems, Supercomputing 2011.

[26] S. Soner and C. Özturan, Integer Programming Based Heterogeneous CPU-GPU
Cluster Scheduler for SLURM Resource Manager, White-paper to appear in
http://prace-ri.eu/white-papers

[27] Altair, Scheduling Jobs onto NVIDIA Tesla GPU Computing Processors using PBS
Professional,Resource Library, 2010

[28] J.Duato, F.D.Igual, R.Mayo, A. J.Peña, E.S.Quintana-Ortí, and F.Silla, An efficient
implementation of GPU virtualization in high performance clusters, Euro-Par 2009
Workshops, 2009

[29] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ortí, erformance of CUDA
virtualized remote GPUs in high performance clusters, International Conference on
Parallel Processing (ICPP), 2011

[30] http://lammps.sandia.gov/
[31] Hao Wang, Sreeram Potluri, Miao Luo, Ashish Kumar Singh, Sayantan Sur,

Dhabaleswar K. Panda, MVAPICH2-GPU: Optimized GPU to GPU Communication for
InfiniBand Clusters,International Supercomputing Conference (ISC'11) , 2011

[32] Sreeram Potluri, Hao Wang, Devendar Bureddy, Ashish Kumar Singh, Carlos Rosales,
Dhabaleswar K. Panda, Optimizing MPI Communication on Multi-GPU Systems using
CUDA Inter-Process Communication,International Workshop on Accelerator and
Hybrid Exascale Systems (AsHES) with IEEE International Parallel & Distributed

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 x

Processing Symposium (IPDPS'12), 2012
[33] http://www2.fz-juelich.de/jsc/jugene
[34] http://www.hlrs.de/systems/platforms/cray-xe6-hermit/
[35] http://www.fujitsu.com/global/about/tech/k/
[36] http://www-hpc.cea.fr/en/complexe/tgcc-curie.htm
[37] M. Gusat, D. Craddock, W. Denzel, T. Engbersen, N. Ni, G. Pfister, W. Rooney, and J.

Duato, Congestion Control in InfiniBand Networks,Proceedings of the 13th Symposium
on High Performance Interconnects(HOTI'05),2005

[38] Barcelona Supercomputing Center. http://www.bsc.es/computer-sciences/performance-
tools. Performance Tools. [En línea] [Citado el: 1 de June de 2012.]

[39] Temanejo- a debugger for task based parallel programming models. Steffen Brinkmann,
Jose Gracia, Christoph Niethammer, and Rainer Keller. Ghent, Belgium : s.n., 2011.
International Conference on Parallel Computing.

[40] The Scalasca performance toolset architecture. Markus Geimer, Felix Wolf, Brian J. N.
Wylie, Erika Ábrahám, Daniel Becker, and Bernd Mohr. 6, s.l. : Concurrency and
Computation: Practice and Experience, 2010, Vol. 22. pp. 702-719.

[41] Automatic Performance Analysis of Large Scale Simulations. S. Benedict, M. Gerndt,
V. Petkov, M. Brehm, C. Guillen, and W. Hesse. Delft : Workshop on Productivity and
Performance (PROPER 2009) in conjunction with Euro-Par 2009, 2009. LNCS 6043,
pp. 199-207.

[42] Nagel, Wolfgang E. http://vampir.eu/. Vampir - Performance Optimization. [En línea]
[Citado el: 1 de 6 de 2012.]

[43] Tallada, Marc Gonzàlez.
http://personals.ac.upc.edu/marc/Marc_Gonzalez_Home_page/Welcome_PoTra.html

[44] Brief announcement: Lower bounds on communication for sparse Cholesky
factorization of a model problem. Laura Grigori, Pierre-Yves David, James W.
Demmel, and Sylvain Peyronnet. New York, NY, USA : s.n., 2010. Proceedings of the
22nd ACM symposium on Parallelism in algorithms and architectures (SPAA '10).

[45] BSC, Programming Models @. http://pm.bsc.es/ompss. [En línea] Barcelona
Supercomputing Center. [Citado el: 1 de 6 de 2012.]

[46] Quantifying the potential task-based dataflow. Vladimir Subotic, Jose Carlos Sancho,
Jesus Labarta, and Mateo Valero. Bordeaux, France : Euro-Par Conference, Lecture
Notes in Computer Science (LNCS), 2011.

List of Acronyms and Abbreviations

ACML AMD Core Math Library
AMD Advanced Micro Devices
AMR Adaptive Mesh Refinement
ANSI American National Standards Institute
API Application Programming Interface
APPML AMD Accelerated Processing Math Libraries
APU Accelerated Processing Unit
ARM Advanced RISC Machines
BADW Bayerische Akademie der Wissenschaften
BG/Q BlueGene/Q
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CaSToRC Computation-based Science and Technology Research Center

(Cyprus)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 xi

CCGRID Cluster Computing and the Grid
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CentOS Community Enterprise Operating System
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur

(represented in PRACE by GENCI, France)
CooLMUC Cooled Linux Cluster Munich
COP Coefficient of Performance
COTS Commercial Off The Shelf
CPU Central Processing Unit
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland
CUDA Compute Unified Device Architecture
DAS Direct Attached Storage
DDR Double Data Rate
DMA Direct Memory Access
DNS Domain Name Service
DP Double Precision
DSP Digital Signal Processing
DVFS Dynamic Voltage Frequency Scaling
EDA Electronic Design Automation
ESP Effective System Performance
EtS Estimated time to Solution
EU European Union
FC Fiber Channel
FFT Fast Fourier Transform
FIFO First In First Out
FP Floating Point
FPGA Field Programmable Gate Array
FZJ Forschungszentrum Juelich
GbE Gigabit Ethernet
GCC GNU Compiler Collection
GDDR Graphics Double Data Rate
GPFS General Parallel File System
GPGPU General Purpose Graphics Processing Unit
GPL General Public License
GPU Graphics Processing Unit
HDMI High-definition Multimedia Interface
HLRS High Performance Computing Center Stuttgart
HP Hewlett Packard
HPC High Performance Computing
HW Hardware
IB Infiniband
IBM Formerly known as International Business Machines
ICHEC Ireland’s High Performance Computing Center
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IO (I/O) Input/Output
IPC Inter Process Communication

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 xii

JKU Johannes Kepler Universität
JSC Juelich Supercomputing Center
JVM Java Virtual Machine
LDAP Lightweight Directory Access Protocol
LNET Lightweight Network Library
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LU Lower/Upper (decomposition)
MD Molecular Dynamics
MIC Many Integrated Core
MKL Math Kernel Library
MPI Message Passing Interface
MPP Massively Parallel Processing
MS Microsoft
NAMD Not Another Molecular Dynamics program
NAND Not AND gate
NASA National Aerospace Agency
NP Non-deterministic Polynomial
NTP Network Time Protocol
NUMA Non-Uniform Memory Access
NUMA-CIC NUMAscale Cache-coherent Interconnect
NVVP NVIDIA Virtual Profiler
OFED Open Fabrics Enterprise Distribution
OpenCL Open Compute Language
OpenMP Open Multi-Processing
OpenSM Open Subnet Manager
OS Operating System
OTF Open Trace Format
PCI Peripheral Component Interconnect
PDU Power Distribution Unit
PGAS Partitioned Global Address Space
PGI Portland Group Inc.
POSIX Portable Operating System Interface
POTRA Power Trace Analyzer
PRACE Partnership for Advanced Computing in Europe
PSNC Poznan Supercomputing and Networking Centre (Poland)
PUE Power Usage Effectiveness
QDR Quad Data Rate
QoS Quality of Service
QPI Quick Path Interconnect
QR QR method or algorithm: a procedure in linear algebra to compute the

eigenvalues and eigenvectors of a matrix
RAID Redundant Array of Independent Disks
RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RNG Random Number Generator
RPM Revolution per Minute
RT Run Time
RTC Real Time Clock
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 xiii

SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SLURM Simple Linux Utility for Resource Management
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SoC System on Chip
SP Single Precision, usually 32-bit floating point numbers
SPMV Sparse Matrix Vector Multiplication
SRAM Static Random Access Memory
SSD Solid State Disk or Drive
SSU Scalable Storage Unit
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
TAU Tuning and Analysis Utilities
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCP Transmission Control Protocol
TDP Thermal Design Power
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

TUM Technische Universität München
UiO University of Oslo
UNICORE Uniform Interface to Computing Resources. Grid software for seamless

access to distributed resources.
UPC Unified Parallel C
USB Universal Serial Bus
UV Ultra Violet (SGI)
UVAS Unified Virtual Address Space
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description

Language
WCNS Wroclaw Centre for Networking and Supercomputing
WP Work Package

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 xiv

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 1

Executive Summary
This deliverable reports on the latest software developments in high performance computing,
as identified by the PRACE-1IP, WP9 members. The developments reported on here are the
result of experiments and measurements carried out by the project members on PRACE
prototype computer architectures. The characteristics of these prototypes were selected in
order to allow investigation into a number of key aspects relevant to high performance
computing, namely interconnects, I/O, energy efficiency and accelerators. In this document a
presentation of this work has been prepared under four major topics: programming languages,
system software and software tools and a preliminary look on hardware. With a view towards
Exascale computing, we will present our results and findings for each of these topics, based
on which we will conclude with a set of recommendations.

1 Introduction

As the Exascale milestone approaches, academic and industrial institutions in the field of
HPC have identified a number of issues that need to be overcome for the development of a
practical and efficient Exaflop supercomputer. As an example, if one simply scales the power
consumption of a Petaflop supercomputer by one thousand, it is clear that major
breakthroughs in power efficiency and cooling are required to arrive at an architecture which
would be viable at Exascale. Although power consumption is an obvious example of this need
for innovation, other, perhaps more subtle, issues are identified, such as interconnect
architectures, I/O systems and the need for dense massively-multithreaded devices to serve as
coprocessors.

The methodology of WP9 of PRACE-1IP, which identified these topics early on in the
Preparatory Phase of the project, is to develop and investigate each of these issues on
dedicated hardware, through measurements and experiments on prototype architectures which
have been designed to each address a subset of the outlined bottlenecks. The members of this
WP enjoy access to a number of diverse architectures, such as GPU, FPGA and DSP clusters,
clusters of directly water cooled nodes, ARM processor clusters, a system with cache-
coherent shared-memory over hundreds of CPU cores and two prototypes with a novel
parallel I/O design. This makes our consortium an ideal forum for identifying innovative
solutions and proposing recommendations for next generation software and hardware designs.

The current document has precisely this goal.We focus on the status of software while giving
a brief overview of the conclusions we have arrived regarding hardware design. Our
presentation begins with an investigation in programming languages in Chapter 2, where we
document the work carried out to assess developments in CUDA and OpenCL, some insight
into pragma-based languages such as OpenACC and OmpSs and an assessment of the state of
the PGAS version of C, namely UPC. Chapter 3 deals with system software, and will detail
the achievements in issues related to operating systems and system management, resource
management, data management and the MPI implementation and other communication
libraries. In Chapter 4 we present the work done concerning various software tools, such as
tools for the support of task-based and asynchronous programming, developments in
intelligent collection and filtering of trace data, modelling of parallel applications and tools
which assess the scalability of parallel software codes. An outlook towards hardware designs
is presented in Chapter 5. Each chapter, or chapter section, concludes with a set of
recommendations arrived to and justified by the results presented in this document. We
conclude with a summary of our findings (Chapter 6). In the Annex of this, in section 7.1, we
include a detailed description of the work carried out on Energy Aware System Software.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 2

2 Programming Languages

In this chapter, we present the results of our investigation into a select set of programming
languages, or programming models, which are targeting high performance computing
systems.

Most of this chapter deals with developments in GPU programmability: first of all, the latest
developments in mixing CUDA with MPI have been investigated, developments which
mainly improve access to main memory. Secondly, we look into OpenCL where a number of
kernels have been ported and compared with optimized C and CUDA. The third section is an
initial investigation of the pragma-based OpenACC language which has been carried out with
comparisons of performance and a look at ease of programmability.

The remaining two sections of this chapter deal with two programming languages: OmpSs
and UPC. In both these sections, a port of the synthetic “Hydro” benchmark is carried out
through which aspects such as scalability, performance and correctness, amongst others, are
investigated.

For each language, a short description is given, with some code snippets when appropriate.
After the presentation of our results we rate each language with a positive or negative mark
(with the appropriate justification) in seven areas: scalability, performance, productivity,
sustainability, correctness, portability and availability. Our conclusions are presented, with an
attempt to give some specific recommendations concerning each programming language.

2.1 CUDA and MPI

2.1.1 Description

Nowadays Graphics Processing Units (GPUs) have been established as an excellent power-
efficient solution for modern HPC systems and have already proved advantageous for certain
classes of algorithms over traditional CPU clusters or massively parallel supercomputers. One
of the most challenging issues here is to develop applications for multi-GPU systems since it
is very often impossible to accommodate a problem on a single GPU on one hand and, on the
other hand, one has to deal with a complex memory hierarchy of the underlying
heterogeneous system.

Currently there are two APIs available for heterogeneous computing: the NVIDIA Compute
Unified Device Architecture (CUDA) designed mainly for NVIDIA GPUs and OpenCL, an
open source project hosted by the Khronos Group. While the later provides tools for
developing cross-platform applications (also for multi-core x86 micro-architectures), the
former API has a significant advantage due to recently introduced features that allow direct
memory access (DMA) engines to access GPU data directly, moving memory from one GPU
to another within the same node.

In particular, these features include GPUdirect technology [1] that enables peer-to-peer data
transmission between peer-accessible-devices, i.e. those that are attached to the same IOH
chip or different IOH chips if they are linked, e.g., via AMD’s HyperTransport interconnect
(currently, Intel’s QPI and PCIe protocols are incompatible, so it’s impossible to establish
direct communication between GPUs that are connected to different Intel mainboard
chipsets.) Another multi-GPU technology introduced in recent CUDA releases is CUDA IPC
that allows different host (for example, MPI) processes to access the same GPU buffer if the
processes operate on the same compute node.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 3

The important underlying ingredient for both technologies is a Unified Virtual Address Space
(UVAS), where each process within a node running on a 64bit OS can use a single address
space for the host and all available CUDA devices of compute capability 2.0 and higher (e.g.
for Fermi and Kepler GPUs). In particular, this address space is used for all allocations in host
memory via the cudaHostAlloc()CUDA Run Time (RT) API function (or corresponding
CUDA driver API function) and in any of the device memories via cudaMalloc() or
cudaMallocAsync()RT API functions (or their driver API counterparts). Thus, any host
pointer returned by cudaHostAlloc() can be used directly within CUDA kernels running
on GPUs. An essential limitation of this GPUdirect technology is that it is restricted to a
single host process: a virtual address from one process cannot be dereferenced in the address
space of another. This limitation is diminished by a new family of CUDA IPC functions
which provide the capability of exporting a memory handle to a GPU memory allocation from
one process directly into the address space of another process within the same compute node.
The API functions also provide an IPC mechanism for passing CUDA events between
processes.

Below we detail some basic interface functions for both APIs (taken from the CUDA Toolkit
reference manual, version 4.2).

1. GPUdirect:

cudaDeviceCanAccess() – enquiries peer-accessibility of a given device in the
system for the current device.

cudaDeviceEnablePeerAccess() – enables registering memory on peer device for
direct access from the current device.

cudaMemcpyPeer() – copies memory from device to another (peer-accessible) device.
This function is asynchronous with respect to the host but serialized with respect to the all
pending and future asynchronous work in the current device (cudaMemcpyPeerAsync()
avoids this synchronization).

2. CUDA IPC:

cudaIpcGetMemHandle() – gets an interprocess memory handle for an existing device
memory allocation.

cudaIpcOpenMemHandle() – opens an interprocess memory handle exported from
another process and returns a device pointer usable in the local process.

cudaIpcCloseMemHandle() – unmaps memory returned by the previous API function.
This does not affect the original allocation in the exporting process as well as imported
mapping in other processes.

2.1.2 Code Examples

Example 1: Peer-to-peer communications between GPUs within the same process

Assume two GPUs on the system, with the ids marked by gpuA and gpuB:
int is_p2p_accessible = 0;

cudaSetDevice(gpuA); //switch to device ‘A’

cudaMalloc(&d_A, bytes); //allocate memory on the device ‘A’

cudaDeviceCanAccessPeer(&is_p2p_accessible, gpuB, gpuA);

if(is_p2p_accessible){

 cudaSetDevice(gpuB); //switch to device ‘B’

 cudaDeviceEnablePeerAccess(gpuA, 0);

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 4

 kernelB<<<...>>>(..., d_A, …);

 //kernelB has access to ptr d_A

 cudaDeviceDisablePeerAccess(gpuA);

}

or:
if(is_p2p_accessible){

 cudaSetDevice(gpuB); //switch to device ‘B’

 cudaMalloc(&d_B, bytes); //allocate memory on the device ‘B’

 cudaDeviceEnablePeerAccess(gpuA, 0);

 cudaMemcpyPeer(d_B, gpuB, d_A, gpuA, bytes);

 //copy d_A to d_B

 cudaDeviceDisablePeerAccess(gpuA);

}

Note, while in this example kernelB is executed on device ‘B’, it has access to memory
allocated on device ‘A’ (if device ‘A’ is peer-accessible for ‘B’) via the PCIe bus. As was
mentioned above, this requires the application to be run on a 64-bit OS and devices of
compute capability 2.0 and higher.

Example 2: GPU – Aware MPI

Code example without MPI integration:

//Process A (sender):

cudaMalloc(&s_device_ptr, bytes);

void *s_host_buffer = malloc(bytes);

cudaMemcpy(s_host_buffer, s_device_ptr, bytes, cudaMemcpyDeviceToHost);

MPI_Send(s_host_buffer, bytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD);
…

//Process B (receiver):

void *r_host_buffer = malloc(bytes);

cudaMalloc(&r_device_ptr, bytes);

MPI_Recv(r_host_buffer, bytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req);

cudaMemcpy(r_device_ptr, s_host_buffer, bytes, cudaMemcpyHostToDevice);

 Code example with MPI integration (enable MPI_Send/Recv directly from/to GPU):

//Process A (sender):

cudaMalloc(&s_device, bytes);
//work with s_device buffer on GPU A

MPI_Send(s_device, bytes, MPI_CHAR, 1, 1, MPI_COMM_WORLD);
//Process B (receiver):

cudaMalloc(&r_device, bytes);

MPI_Recv(r_device, bytes, MPI_CHAR, 0, 1, MPI_COMM_WORLD, &req);

Note that the second pattern exploits the UVAS property exposed by the CUDA 4.0 (and
later) toolkit. It is currently supported by the MVAPICH2 MPI library.

Example 3: CUDA IPC technology

Code example of peer-to-peer communication for two MPI processes within a compute node
(assume that each process operates a separate GPU):

//Process A (sender):

cudaIpcMemHandle_t s_handle;

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 5

cudaMalloc(&s_dev, bytes);

cudaIpcGetMemHandle(&s_handle, s_dev);

MPI_Isend(s_handle, sizeof(cudaIpcMemHandle_t), ...);
…

//Process B (receiver):

cudaIpcMemHandle_t r_handle;

MPI_Irecv(r_handle, sizeof(cudaIpcMemHandle_t), ...);

cudaIpcOpenMemHandle(&r_dev, r_handle, cudaIpcMemLazyEnablePeerAccess);

kernelB<<<...>>>(...,r_dev, ...);

cudaIpcCloseMemHandle(r_handle);

The IPC functionality is restricted to devices with support of unified addressing on Linux
operation systems. The cudaIpcOpenMemHandle() function in this example can attempt
to enable peer access between two devices as if the user called
cudaDeviceEnablePeerAccess(), as demonstrated in Example 1.

2.1.3 Experiences and Results

In order to test the CUDA UVAS based technologies we modified the STREAM benchmark
suit that was available for single GPU bandwidth measurements. All test runs were performed
on CaSToRC‘s prototype machine that comprises of 8 GPU nodes (2 NVIDIA M2070 GPUs
per compute node) with Mellanox interconnect. Each node is equipped with a two-socket
mainboard, with Nehalem Xeon CPUs operating at 2.7GHz. The software configuration used
for the benchmark includes the CUDA 4.1toolkit (with NVIDIA driver version 285.xx.xx.xx),
the GNU compiler v 4.4.5 and MVAPICH2 (1.8a2) for MPI.

The latest version of MVAPICH2 incorporates optimized support for GPU to GPU
communications via the standard MPI interface. In particular, it includes support for point-to-
point and collective operations, pipelined data transfer with automatically provided
optimizations, GPUdirect (peer-to-peer) and CUDA IPC.

Taking the CUDA version of the STREAM benchmark as a template we implemented three
types of tests: 1) for ‘pure’ intranode peer-to-peer communication within a single host
process, 2) for intranode/internode MPI communications using CUDA IPC 3) standard MPI
communications that served in our case as a reference implementation. (As in the standard
STREAM benchmark we considered both double and float data types). All versions provided
no difficulties in implementation. However the first two cases required much less
programming efforts due to UVAS technology. In general, the advantage of the later is that
the programmer does not need to keep account of which memory space a given pointer
belongs to, and also does not need to explicitly indicate the direction of memory copies (e.g.
device-to-host, host-to-device and device-to-device). The only consideration here is that the
host memory must be page-locked, something which may potentially degrade overall system
performance if too much memory is allocated. Due to its simplicity, it is quite straightforward
to incorporate these technologies in existing MPI-CUDA applications.

In Figure 1 we show results obtained using our adapted STREAM benchmark. We see that in
all three cases, and more importantly in the case of peer-to-peer communications and MPI
communication, we obtain values of the sustained bandwidth as expected given the PCIe
specification and QDR Infiniband respectively. This shows that the overheads involved in the
NVIDIA stack which abstracts the memory hierarchy, e.g. translating addresses and setting up
the buffers for the node-to-node communication, have minimal effect on the sustained
bandwidth.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 6

Figure 1: Results of our adapted STREAM benchmark. We show results for the memory bandwidth
within the GPU (left), between GPUs on the same PCIe bus (centre) and for off-node GPUs, connected
over a QDR Infiniband interconnect (right).

2.1.4 Pros and Cons

In Table 1 we have tabulated the Pros and Cons of using this hybrid model for programming
systems of distributed GPUs.

 Pros Cons

Scalability The main objective of the considered
technologies is to avoid unnecessary
system memory copies that will
considerably reduce interprocess
communication time and, as a
consequence, improve scalability of
a Multi-GPU application.

Performance The technology will improve
performance if communication is the
main bottleneck.

Currently it is supported for intra-
node data transfers, and even in
this case is restricted to single IOH
chip configurations in the case of
Intel hardware.

Productivity Code development is straightforward
and similar to standard MPI
communication patterns. The UVAS
eliminates necessity to distinguish
between host and device pointers
which simplifies code structure and
provides more flexibility for
programming on heterogeneous
systems.

It may require minor code
redesign for existing CUDA
applications, especially if they rely
on old communication patterns, in
which one creates an intermediate
buffer on the host

Sustainability CUDA has become the de facto
programming environment for

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 7

 Pros Cons

hybrid HPC systems with NVIDIA
GPUs. In particular, taking into
account that NVIDIA has already
cooperated with interconnect
vendors to incorporate their Multi-
GPU solutions into the HPC market,
the technologies considered here are
expected to become standard
approaches in the development of
large-scale CUDA applications

Correctness The detailed multi-GPU
technologies introduce no further
complexities in code debugging

Portability Code may be run on any accelerator
cluster with NVIDIA GPUs, even if
there is no interconnect supporting
these technologies

Currently, there is only one MPI
implementation that supports
GPUdirect with the CUDA API,
and this is MVAPICH2

Availability Both the NVIDIA CUDA toolkit and
MVAPICH are freely available

Table 1: A list of advantages and disadvantages in using hybrid CUDA+MPI programming for multiple
GPUs, based on our experience in this work.

2.1.5 Conclusions and recommendations

At present, MPI + CUDA still remains the most straight forward and portable way of writing
multi-GPU code for NVIDIA devices. Ease of programmability is set aside in favour of code
performance; explicitly managing data transfers between devices means more control over
where data buffers reside, which usually leads to better memory management and therefore
more optimal code.

In this specific work we have taken a closer look at the latest developments NVIDIA has
incorporated in its software, which primarily concern data transfers to and from the GPU,
which is the main bottleneck in most multi-GPU codes. Developments such as the Uniform
Virtual Address Space and direct communication over PCIe indicate that NVIDIA is looking
into ways of making data accesses from the GPU both faster and less cumbersome for the
developer. This fact, along with the established de facto status of MPI in parallel
programming, encourages further use and maintenance of code-bases written in CUDA/MPI.

2.2 OpenCL

2.2.1 Desription

OpenCL (Open Computing Language) is an open, royalty-free standard for general-purpose
parallel programming of heterogeneous systems, maintained by the Khronos Group [2]. It
provides a framework for cross-platform computing on a range of modern processors,
including CPUs, GPUs and APUs. The framework includes a programming language, based
on C99, and an API. The language is used for writing specific functions (kernels) executed on
OpenCL devices.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 8

OpenCL supports both data-parallel programming and task-parallel programming. It is also
interoperable with MPI and other standard libraries. An overview of the OpenCL architecture,
its execution and memory model are described in [3].

Since the publication of the PRACE-PP deliverable D6.6 [3] and PRACE-1IP deliverable
D9.2.1 [4] a new version of OpenCL has been released: the OpenCL 1.2 Specification (rev.
15, November 15, 2011) and OpenCL 1.2 Extensions Specification (rev. 15, November 15,
2011) [5]. OpenCL 1.2 retains backwards compatibility with previous 1.0 and 1.1 versions,
but enhances functionalities and performance with new features. The most important for high
performance computing are: custom devices and kernels, device partitioning and separate
compilation and linking of objects.

OpenCL (v1.0, v1.1 or v1.2) supports a range of processors found in personal computers,
servers and handheld/embedded devices, including NVIDIA GPUs, AMD Fusion APU series,
AMD GPUs and CPUs, ARM GPU, Intel CPUs and IBM servers.

Libraries for scientific computing in OpenCL include: APPML (BLAS, FFT) for AMD GPUs
(earlier delivered as part of ACML), CUBLAS (BLAS) and CUFFT (FFT) for NVIDIA
GPUs, ViennaCL (Linear Algebra and Iterative Solvers) with support for NVIDIA and
AMD/ATI GPUs [6], CMSoft OpenCL FFT and Linear Algebra.

Tools and development kits for OpenCL software development are available and evolving.
The main programming environment is the AMD Accelerated Parallel Processing SDK, with
full support for OpenCL 1.2. The SDK includes the AMD APP Profiler for performance
analysis of the code, and the AMD APP KernelAnalyzer – a tool for static analysis of the
performance of OpenCL C kernels. There is also the AMD CodeAnalyst for Windows with
OpenCL support, which collects and analyses the OpenCL API execution performance from
both CPUs and GPUs.

The gDEBugger may also support software developers in the process of debugging
applications, including the OpenCL kernels [6]. It is available as a Microsoft Visual Studio
plug-in on Windows and a standalone program on Linux. There are also other SDKs and
frameworks available, delivered by Intel [7], SNU-SAMSUNG [8] and IBM [9]. The Java
Bindings to OpenCL (JOCL) enable applications running on the JVM to use OpenCL [10],
and PyOpenCL allows access to the OpenCL API from Python [11]. There is also a PGI
OpenCL compiler for ARM CPUs which support OpenCL 1.1 [12].

2.2.2 OpenCL Code Example

An OpenCL kernel is expressed as a C-language routine (Figure 2).

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 9

Figure 2 Simple OpenCL kernel

2.2.3 Experience & Results

The work done within this task concentrated on an evaluation of OpenCL as a programming
language and a development environment for efficient scientific computations. We also
considered the porting effort and differences between OpenCL and CUDA, as the most
mature and most widely used development platform for GPGPUs. The evaluation started by
implementing several synthetic kernels in OpenCL (from the Euroben benchmark set), and
after observing promising results, we continued with more realistic scientific applications,
namely DL_POLY and NAMD. The early results regarding Euroben were reported in [4].
Experiences and results are discussed below for each application.

1. DL_POLY

DL_POLY is a molecular dynamics simulation application developed by the Science and
Technology Facilities Council in Daresbury Laboratory, UK. A domain decomposition
approach has been used for parallelizing DL_POLY using the MPI library. DL_POLY is
highly efficient and scalable to thousands of CPU cores. A DL_POLY port for GPUs exists
with NVIDIA CUDA, which has been developed by the Irish Centre for High-End Computing
(ICHEC) in collaboration with Daresbury Laboratory. A “constraints shake” DL_POLY
component has been ported to OpenCL by the Wroclaw Centre for Networking and
Supercomputing (WCNS) in collaboration with ICHEC and Daresbury Laboratory.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 10

DL_POLY’s “constraints shake” component has been ported to OpenCL from existing CUDA
code. During this porting work several OpenCL language properties and limitations have been
identified. The two programming languages differ at most in handling data structures. In the
CUDA version of the component the structures are widely used both in the host code and in
the GPU kernels. According to the OpenCL 1.1 specification, section 6.8 [13], structures in
this language cannot contain OpenCL objects (buffers, images etc.). Attempts to use
structures with buffers (a direct port from the CUDA code) failed, as the data inside a buffer
were not accessible from the kernel code. This problem has forced a change in the way of
handling data structures and passing individual objects to kernels directly as arguments, one
by one.

Another difference is the way one defines the number of threads in groups, with no
straightforward transition. CUDA uses specific operators <<<…>>> in which a developer
declares two dim3 structures (one for the number of groups and one for the number of
threads). For example, a declaration <<<(1, 300, 1), 64>>> tells the CUDA API to
run 300 groups in the 2nd dimension, each with 64 threads.

In OpenCL a developer must declare how many threads as a whole will be used to execute the
kernel. Initially these numbers were declared in the following way: number of threads in
group as (1, 64, 1), and number of threads globally as (1, 300×64, 1). This solution gave 300
groups in the 2nd dimension, with 64 threads each. Unfortunately it turned out that, with the
above settings, the threads in OpenCL were placed in the 2nd dimension, while in the original
CUDA code threads were located in the 1st dimension. Correct size declarations in OpenCL
are respectively: (64, 1, 1) and (64, 300, 1). That still gives 300 groups in the 2nd dimension
with 64 threads placed in the 1st dimension.

We propose a simple algorithm for converting CUDA group sizes into OpenCL compatible
ones:

CUDA groups and threads: <<<(a, b, c), (i, j, k)>>>

OpenCL group threads: (i, j, k)

OpenCL all threads: (a*i, b*j, c*k)

The differences presented above were the most significant ones encountered while porting the
“constraints_shake” module. If a developer is familiar with both languages and knows
about the differences between them, the code can be ported faster and with fewer mistakes.

It must be mentioned that a direct port will usually not use all the advantages of OpenCL and
the resulting code needs further optimization in this respect.

OpenCL limitations which make a developer’s life harder:

 no C++ like templates in the kernel code – this limitation results in increasing the number
of lines of OpenCL code,

 no support for passing structures as OpenCL kernel arguments if the structure elements are
pointers – this limitation means that each pointer field must be passed to the OpenCL
kernel separately and the size of the OpenCL code grows.

The great improvement for developers is the AMD gDEBugger tool, which lets one debug
OpenCL kernel code. Still, the tool was not always working properly with the rest of the
OpenCL environment (SDK, drivers) and for a period of time was not available on Linux in
the newest version. The debugger together with the new tools for code analysis (AMD APP
Kernel Analyzer and AMD Code Analyst) is simplifying the development and performance
tuning of OpenCL applications for AMD target architectures.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 11

DL_POLY test runs have been executed on a local WCNS GPU machine – 2× AMD Radeon
HD 6950 and on Tesla M2050 GPUs, at CEA. Test runs were performed for 2 MPI processes
and 2 OpenMP threads on the TEST7 (Gramicidin A, molecules in Water) benchmark for
double floating point precision. The test case is an example of a real scientific problem.
Figure 3, Figure 4 and Figure 5 show the average duration time per invocation for the
“constraints_shake” component initialization, particular kernel calls, and read/write
from/to GPU operations.

Figure 3. CUDA vs OpenCL for DL_POLY constraints shake component

Figure 4. CUDA vs OpenCL for DL_POLY constraints shake component

Figure 5. CUDA vs OpenCL for DL_POLY constraints shake component

Performance results show that the OpenCL implementation works slower than the CUDA
version of almost all “constraints_shake” component algorithms. The biggest
difference between average duration time per invocation for Tesla M2050 GPU is for the

0

0,0005

0,001

0,0015

0,002

0,0025

0,003

0,0035

read write gather_dv_scatter_hs gather_hs_scatter_dv

CUDA Tesla M2050 OpenCL Tesla M2050 OpenCL AMD

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

k1_th k1_bh install_red_struct correct_positions

CUDA Tesla M2050 OpenCL Tesla M2050 OpenCL AMD

0

0,01

0,02

0,03

0,04

constraints_shake initialise

CUDA Tesla M2050 OpenCL Tesla M2050 OpenCL AMD

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 12

write operations (OpenCL code is 5× slower than CUDA code) and the kernel
gather_dv_scatter_hs (OpenCL code is 3× slower than CUDA code). For other
kernels OpenCL calls are 2-3× slower than particular CUDA calls. OpenCL execution times
on AMD GPUs are shorter than for Tesla M2050 GPUs for initialization, write and
install_red_struct and k1_th kernels. For other calls, execution times on AMD
GPUs are longer than for CUDA code run on Tesla M2050. The reason for this difference in
execution times on different hardware is that the OpenCL code was written for NVIDIA
GPUs, and so does not take into account the specificities of AMD GPUs.

Work on an OpenCL port of DL_POLY’s algorithms is continuing within the PRACE-2IP
project.

2. NAMD

NAMD is a parallel molecular dynamics code which performs simulations of large
biomolecular systems [17]. The application is parallelized based on Charm++ parallel objects
and scales to hundreds of processors on high-end parallel platforms and tens of processors on
commodity clusters.

NAMD is partly ported to CUDA, and thus able to take advantage from resources equipped
with NVIDIA GPUs. The application uses the GPU for nonbonded force evaluation. PSNC,
with support from WCNS, started to work on the OpenCL port to enable the application to run
on other GPU architectures. NAMD authors were contacted, and they are aware of these
efforts. There was no closer collaboration established.

The main task was to implement an OpenCL version of the kernel performing the nonbonded
force evaluation. The automated translators from CUDA to OpenCL were also tested (i.e.
SWAN), for comparison purposes, with no positive results. The CUDA kernel is quite
complex, includes macros, and the tools couldn’t cope with this complexity.

Preliminary tests of the OpenCL and CUDA implementation were performed using the test
case “apoa1”, downloaded from the official NAMD website [18]. A comparison of the results
generated by the OpenCL and CUDA kernels revealed differences and correctness problems
in the OpenCL kernel. Further improvements have been introduced into the kernel, but the
process is still ongoing due to difficulties with tools for debugging a certain kernel code
encountered during the project timeframe.

Several environments have been tested, including the NVIDIA Nsight and AMD gDEBugger.
On the GPU cluster at PSNC (available in PRACE as a Tier-1 machine) one node was
‘isolated’ with a Windows 7 OS on-board and MS Visual 10 with the NVIDIA Nsight Profiler
installed, but the profiler supports only OpenCL API calls and no kernel debugging. The
gDEBugger installed on the PRACE prototype at PSNC with AMD Brazos (E-350) was
difficult to be used remotely due to problems with a GPU’s visibility. Local usage works fine,
but is not always possible, depending on the location and accessibility of the target
architecture.

Work on the OpenCL port of NAMD is continuing within the PRACE-2IP project. The new
tools from AMD are being evaluated and it will be seen if they address previous problems
with the debugging and the analysis process.

3. Euroben

The Euroben benchmarks mod2am/MxM, mod2as/SPMV and mod2f/FFT were ported to
OpenCL at WCNS and PSNC. We report benchmarks results on NVIDIA GTX480,
AMD/ATI Radeon HD 6950 and AMD Brazos platform (Zacate E-350: CPU 1.6 GHz 2
cores, with AMD Radeon HD 6310 492 MHz). They are compared to sequential benchmarks

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 13

written in the C language, with results gathered on an x86_64 machine with Intel Core i7 CPU
3.20 GHz.

Figure 6 OpenCL mod2am results: DP (left), SP (right)

The AMD Brazos platform supports only single-precision floating-point arithmetic. Thus, for
comparison purposes, the benchmarks have been run in both double- (DP) and single-
precision (SP). Figure 6, Figure 7 and Figure 8 show results of all the benchmarks.

Figure 7 OpenCL mod2as results: DP (left), SP (right)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 14

Figure 8 OpenCL mod2f results: DP (left), SP (right)

Results of the mod2am and mod2f benchmarks (Figure 6 and Figure 7), for both DP and SP,
show that the OpenCL GPU version reaches better performance for bigger problems. The
mod2am implementation gets better results on NVIDIA on smaller problems, probably
because of higher clock frequency, while AMD is better for bigger problems.

In Figure 8, one can see that OpenCL implementations of mod2as have worse performance
on all devices than the C CPU version. This is probably because of the high number of
memory operations in this benchmark and the higher clock frequency of the CPU. The best
OpenCL result was achieved by NVIDIA in both DP and SP tests.

GPUs achieved less Mflop/s in double-precision than in single-precision in every run. This
loss of performance is due to increasing of the precision, but also inability to use the texture
memory, as there is no image format for double values in OpenCL.

The preliminary results presented above gathered on the APU were, as expected, worse than
on other platforms, due to the smaller clock frequency of both the CPU and the GPU. The
APU is designed for low power consumption so the charts could change completely if the
power consumption factor would be also considered.

In order to better test the AMD Brazos platform the mod2am benchmark was also prepared
using an OpenCL BLAS implementation (APPML). We have tested BLAS 1.6 and 1.8
versions of the library. The porting proved to be very simple and required only few
modifications in the code, namely changing:

clGetDeviceIDs (CL_DEVICE_TYPE_GPU) to

clGetDeviceIDs (CL_DEVICE_TYPE_CPU).

As a result we tested several different versions of the benchmark: the PRACE reference
implementation, an optimized CPU implementation (using either ACML or MKL libraries)
and the OpenCL BLAS implementation for both CPUs and GPUs (Figure 9).

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 15

Figure 9: OpenCL mod2am results on APU (SP)

As expected, the results show very good performance of the optimized libraries compared to
the basic implementations. For small problem sizes the performance of the OpenCL
implementations seem to be inferior compared to the ACML version. One of the reasons is an
overhead of calling the complex OpenCL stack versus just calling a simple routine. It can be
seen that as the size of the problem grows, the OpenCL CPU version is able to achieve similar
results to that of the specialized library, which shows that the OpenCL code can be efficient
also for x86 CPU cores. The cause for the regression of the performance of the OpenCL
version for the largest matrix size is currently under investigation.

The immense increase in performance of the GPU versions starting from a certain size can be
explained by the logic of the APPML library – if the problem size is not large enough the
library will use only a limited number of cores. That, in conjunction with the low GPU clock
frequency, results in low performance for small cases and high performance when the
parallelism of the GPU can be fully exploited.

2.2.4 Pros & cons

Table 2 lists our understanding of the pros and cons of using OpenCL, based on our
experiences within this work.

 Pros Cons

Scalability Massive data parallel language.
Scales extremely well and achieves
very high performance on SMP
systems.

Performance Has big potential for massive-
parallelism. It is possible to achieve
very high performance on
inexpensive GPU hardware.

The code should be architecture-
oriented. PCI bus data transfer is
still a bottleneck.

Productivity Developing code is quite easy for
developers that are familiar to
programming in C or CUDA. Tools
exist for simplifying software
development, and scientific libraries
are evolving.

Obtaining very efficient kernel code
may require more effort, experience
and using device specific
information. Tools for memory
problem detection and debugging
are not always sufficient for target
architectures other than AMD.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10 20 50 100 500 1000

M
Fl
o
p
/s

problem size

reference

ACML

OpenCL 1.6 GPU

OpenCL 1.6 CPU

OpenCL 1.8 GPU

OpenCL 1.8 CPU

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 16

 Pros Cons

Sustainability The Khronos Group consists of many
industry-leading companies and
institutions including AMD, IBM,
Intel and NVIDIA.

-

Correctness - -

Portability

Excellent, as it may run on a number
of architectures. The kernel code can
be easily transferred from one
architecture to another. The compiler
is built into the runtime.

To reach optimal performance it
may be required to adjust the code
to a specific device.

Availability Open and royalty-free standard. It is
actively maintained and developed.

Table 2: OpenCL pros and cons

2.2.5 Recommendations

OpenCL itself is a powerful tool offering great possibilities to HPC. The standard is evolving,
and it may be seen that the Khronos Group takes into account the developer’s community
requests.

Developing OpenCL code still needs more effort than developing CUDA code. The
programming environments and tools are becoming more mature, especially regarding
debugging and performance analysis, but tools for different target architectures vary in both
quantity and quality. OpenCL is a natural choice if an application is to be developed for AMD
target architectures, since on this architecture one finds the most mature tool chain and
support available (e.g. community forums).

OpenCL code can be run on different platforms – GPUs, APUs and multicore CPUs from
different vendors. Although it is possible, the results presented above and previous research
[14][15][16] show that OpenCL code still may require some optimization to achieve good
performance on different hardware. Thus OpenCL is a natural choice in cases where
portability is one of the most important factors of the application. Where, for instance, it is
important that the application runs on the latest architectures, as long as they are OpenCL
enabled. Subsequent adjustments can then be made if performance becomes critical.

In the case where one wishes to port a code from CUDA to OpenCL, the application model
and algorithms involved need to be reconsidered. This is important due to several
performance improvements available, when considering the hardware characteristics, and
differences with other frameworks, like CUDA. Porting may require changes, in the data
structures as well as in other aspects, to achieve good performance.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 17

2.3 OpenACC

2.3.1 Description

OpenACC is an open standard for directive-based programming of heterogeneous computers.
The porting process involves incrementally adding directives to existing CPU code. More
specifically, OpenACC supports the host-device execution model, where the majority of
computation occurs on the host (e.g. CPU) and the compute-intensive code regions are
offloaded to the accelerator device (e.g. GPU). The host is in charge of coordinating both host
and device execution. Directives are used for mapping the code’s loop-level parallelism to the
various levels of hardware concurrency on the accelerator.

Since OpenACC is for programming in the host-device execution model, it is important to
note that the host and device often have separate memory spaces. Therefore, OpenACC
includes the ability to manage data movement between the host and device. Directives are
used to inform the compiler about data movement, and the compiler then generates runtime
library calls to perform the data movement. Various directives allow the programmer to keep
the data resident on the device across accelerator region launches. Additionally, in order to
allow tuning for the accelerator’s on-board memory hierarchy, OpenACC includes directives
that provide cache hints to the compiler.

Hybrid OpenACC programming is currently supported with distributed memory-based
approaches. Also, it is possible to use OpenMP alongside OpenACC. In addition, OpenACC
provides a directive to make the address of device data available on the host – this feature
allows mixing of OpenACC with other accelerator languages (e.g. NVIDIA’s CUDA) and
numerical libraries.

Currently, three compiler vendors support all or part of the OpenACC standard: CAPS, Cray
and PGI. Since the standard is so new, programming tools such as debuggers and performance
profilers are in the early stages of support. In terms of performance analysis tools, there are a
number of vendors that appear to have at least some support (e.g. University of Oregon’s
TAU, Cray’s perftools, CAPS Performance Analyzer, NVIDIA’s NVVP, etc). Debugger
support is claimed by Allinea’s DDT product and Rogue Wave’s TotalView product;
however, we have had some challenges using these tools on non-trivial OpenACC codes.

Although OpenACC is currently only supported on NVIDIA-based systems, there are no
constraints within the specification that limit hardware support for other vendors. Looking
toward the future, OpenACC can be seen as a precursor to a possible upcoming OpenMP
standard that supports accelerators. The creators of the OpenACC API (CAPS, Cray,
NVIDIA, and PGI) are all members of the OpenMP Working Group on Accelerators. In order
to address the complexities of heterogeneous systems, a new OpenMP standard would need to
feature the following: coordination of host-device execution, explicit management of data
movement, and enhanced control for mapping loop-level parallelism onto the appropriate
levels of hardware.

2.3.2 Code examples

// Example #1: Simple kernel execution with asynchronous launches

// Asynchronously issue work to the accelerator
#pragma acc parallel loop copy(a[0:n]) async(async_id)

for(i = 0; i < n; i++) {

 a[i] += value;

}

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 18

// Host does some work (e.g. counting) while waiting for acc region to
finish
while(!acc_async_test(async_id)) {

 counter++;

}

// Example #2: OpenACC and CUDA interoperability

// Wrapper for launching the CUDA kernel

void smul_vector_cuda(real_t vin[], real_t vout[], int vsize) {
 smul_vector<<<NBLOCKS, NTHREADS>>>(vin, vout, vsize);

}

// Allocate and initialize the device data and then call the CUDA wrapper

void cuda_interop() {

 [...]
 #pragma acc data create(vin[0:VSIZE]) copyout(vout[0:VSIZE]) {

 // Initialize the data on the device
 #pragma acc parallel loop

 for (i = 0; i < VSIZE; i++) {

 vin[i] = ((float)i);

 vout[i] = 0.0f;

 }

 // Call the wrapper to launch the CUDA kernel
 #pragma acc host_data use_device(vin, vout)

 smul_vector_cuda(vin, vout, VSIZE);

 }

}

2.3.3 Experience & results

In order to investigate the programmability of OpenACC and the performance of the
associated compilers, we ported the Hydro benchmark to use OpenACC. This provides an
interesting comparison against the existing CUDA implementation of Hydro. This study
mainly used the Cray and PGI compilers because these were already available on our systems
at CSCS. In the future, we look forward to study the CAPS compiler’s features and
performance in greater depth.

As a first step, we ported the simplest existing Hydro implementation to OpenACC. This was
straightforward; however, the implementation was not amenable to the GPU architecture
because the amount of work per loop structure was too small. This issue caused a large
amount of overhead due to the outer loop launching many kernels that each operated on a
small amount of data. With this initial implementation, the trade-off was between the number
of kernel launches and the amount of work per kernel. Performance was very poor compared
to the CPU-only version.

Due to this problem, we focused on a slightly more complex version of Hydro that allowed a
variable amount of work per loop structure – the initial “2D sweep” version is called
HydroC99_2Dmpi. The first step for porting this code was to ensure the x86 code was
properly vectorized with each compiler. Since this code is C-based and uses pointer arrays,
we needed to ensure the compiler understood that there were no vectorization hindrances due
to overlapping arrays – the C restrict keyword was used to accomplish this. Additionally,
the various compilers had difficulty vectorizing some of the multi-dimensional array accesses;
so, these were converted to 1-D arrays, which was time-consuming. With OpenACC, the goal

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 19

of the developer is to expose parallelism to the compiler, and similar loop-level and data
optimizations are beneficial to both CPU and accelerator architectures.

After the appropriate unfolding to 1-D arrays was achieved, allowing the compilers to
vectorize efficiently the array accesses, we focused on adding OpenACC accelerator region
directives to each of the important loop structures in the main hydro_godunov solver.
Since the current compilers support different accelerator region types (parallel vs
kernels) two separate versions of the application were created. Both implementations also
needed explicit loop directives at the various levels of loop hierarchy. Additionally, the PGI
compiler required an independent clause on the loop directives in order to enable
parallelization due to potential dependencies with array index calculations. However, the most
challenging effort here was to ensure that the direction of data movement between each
accelerator region was correct – this is specified with copy(), copyin() and copyout()
clauses on each accelerator region. During this step, it was essential to monitor the correctness
of the results in order to fix data movement bugs. At this early stage in the porting process, it
is important to note that performance was far worse than simply running the x86 version.
Essentially, each accelerator region generated a number of costly data transfers to and from
the device, and this completely dominated the runtime of the application.

After all of the hydro_godunov solver’s loops were running on the accelerator, the next
step was to ensure the many arrays were resident on the device for as long as possible during
the execution of the hydro_godunov solver. There were many arrays that needed to be
added to an OpenACC data region that surrounded the hydro_godunov solver’s outer
loop. At this level in the code, the majority of the arrays could simply be allocated on the
device using a create() clause, while the uold array was copied to and from the device
using a copy() clause. Additionally, all of the hydro_godunov solver’s accelerator
regions were updated to use the present() clause, which tells the compiler and runtime
that the specified arrays already exist on the device. Although this incremental step provided a
huge performance increase over the non-resident data version, the performance was still quite
slow due to costly work in the function compute_deltat() for each timestep.

For the next optimization step, we discovered that some of the loops were not being
parallelized in an efficient manner. For the Cray implementation with parallel accelerator
regions, collapse clauses had to be added to all of the triply nested loops because the outer
loop had a small trip count, which caused the number of thread blocks to be small with lots of
serial work. The collapse clause caused a compiler loop transformation that ensured a
large number of thread blocks with many threads per block. For the PGI implementation with
kernels accelerator regions, the gang and vector clauses were used to explicitly manage
the loop scheduling, which provided a performance improvement.

Next, we looked at how to expand the number of loops that run on the accelerator since each
timestep also calls compute_deltat(). Two more loop structures were accelerated and a
more encompassing data region was utilized for uold in order to minimize data transfers of
this array. One required code change was related to two reduction variables in
courantOnXY(). The two variables were actually pointers to double data types, and this
caused issues for the compilers, so local reduction variables were created and then the results
were copied to each pointer’s data. This was a minimal code modification. After these
optimizations, the MPI+CUDA implementation was still running about 2.3x faster than the
MPI+OpenACC implementation; this was due to the large data transfers that were occurring
since the uold array needed to be copied multiple times within each timestep. However, the
OpenACC accelerator regions themselves were running at competitive performance to the
corresponding CUDA kernels.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 20

At this point in the porting process, we realized that the only way to improve the data transfer
behaviour was to also add the make_boundary() kernels and data transfers (called inside
the hydro_godunov solver) to the accelerator code as well. Without this addition, the large
data transfers of uold occurred multiple times at every call of hydro_godunov, which
was highly inefficient. To do this, we began by adding accelerator regions to all of the major
loop structures in make_boundary, as well as a nested data region for the local data. With
some of the accelerator regions, we hit compiler errors related to trouble parallelizing loops,
and we were therefore unable to finish porting the make_boundary section of code within
the timeframe for this document. As a temporary workaround until the compiler errors are
diagnosed, we used the OpenACC host_data directive to make a call to the pre-existing
CUDA version of the make_boundary code. This feature tells the compiler to use the
device address of the associated array when calling the CUDA make_boundary code.
While the make_boundary code itself is not performance critical, this simple workaround
provided the final step for keeping most of the data resident on the accelerator (minimizing
data transfers) – since all intensive sections of code within the solver were now ported to the
GPU. The Cray 8.1 compiler currently supports the host_data directive, while the PGI
compiler is expected to support this feature in their upcoming 12.5 version.

The performance characteristics of the final MPI+OpenACC Hydro benchmark are shown in
Figure 10 and Figure 11. We chose to compare performance to the existing MPI+CUDA
version because we were interested in investigating whether the OpenACC compilers can
produce well-optimized executables compared to hand-written CUDA. Additionally, multi-
node runs were performed to verify that the hybrid parallelization approach was working
efficiently. Tests were performed on a Cray XK6 system. It features 176 nodes, each one
equipped with 16-core AMD Opteron CPU, 32 GB DDR3 memory and one NVIDIA Tesla
X2090 GPU with 6 GB of GDDR5 memory. The Cray compiler v8.1 and CUDA 4.1 were
used for these specific experiments.

Future work will focus on fixing the handful of make_boundary’s OpenACC accelerator
regions, so that the whole application relies solely on OpenACC. We do not expect any major
challenges here, only more time to diagnose the issues and possibly pass comments on to the
compiler vendors. Additionally, we expect to gain access to the CAPS implementation of
OpenACC and this compiler will be investigated further. Finally, much work needs to be
completed in order to understand the specific performance-related strengths and weaknesses
of each of the compilers.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 21

Figure 11: Competitive performance at scale. This chart gives the results of strong scaling experiments
between the MPI+CUDA and MPI+OpenACC implementations of Hydro. As previously mentioned, the
MPI+OpenACC implementation uses the CUDA make_boundary implementation via the OpenACC
host_data directive as a temporary workaround; however, the vast majority of the GPU application
runs with OpenACC. Each time-to-solution point was obtained from the average of five independent
runs of 500 timesteps, nx=ny=30000 and nxystep=1500. Like before, comparisons were made using
CUDA 4.1 and a Cray CCE 8.1 pre-release compiler, and parallel runs were performed with a single
MPI process per XK6 GPU node.

Figure 10: Competitive kernel performance. The chart above shows Hydro's kernel performance
compared between the hand-written CUDA and directive-based OpenACC implementations. For all of
Hydro's intensive code regions, OpenACC kernel performance is very competitive (sometimes faster,
sometimes slower) to the associated hand-written CUDA kernels. As previously mentioned, note that
make_boundary uses the same CUDA implementation for both versions; however, this function does
not include any performance-critical loops. Comparisons were made using CUDA 4.1 and a Cray CCE
8.1 pre-release compiler, and the runs used a single Cray XK6 node (X2090 GPU) with the following
Hydro parameters: nx=ny=7500, nxystep=1500.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 22

2.3.4 Pros & Cons

In Table 3, we list the pros and cons of using OpenACC as we experienced them during the
porting of the Hydro code.

 Pros Cons

Scalability (Not directly applicable; OpenACC
works with distributed memory
approaches)

(Not directly applicable)

Performance The reported Hydro kernel
performance shows that OpenACC
compilers are capable of competing
with hand-written CUDA. The
OpenACC standard allows for a
significant amount of tuning via cache
hints, loop-level parallelization hints
and data movement control. However,
if the kernel performance is lacking for
a given application, the OpenACC
standard allows for simple integration
of external accelerator numerical
libraries and/or low-level
implementations (e.g. highly-tuned
CUDA kernels). Other features such as
‘async’ allow for greater simultaneous
work of the host and device (i.e. the
host can do work or communication
while waiting for the device to finish
intensive calculations).

Similar to all accelerator-targeting
programming languages, the ability
to achieve accelerator data locality
is crucial. The OpenACC standard
provides mechanisms to accomplish
this; however, the beta status of the
compilers sometimes makes this
challenging to achieve due to
missing support for complicated
data structures, unsupported
portions of the standard, etc. Also,
the current OpenACC standard does
not directly address the opportunity
for host-device work sharing for a
given parallel loop. Finally, other
lower-level approaches (e.g. CUDA
or OpenCL) give the programmer
greater flexibility when hand-
tuning.

Productivity The directives allow for incremental
development of a given code, which
can be very beneficial for productivity
(e.g. starting with a scalar code, then
porting it to OpenMP, and then
OpenACC). This style of development
focuses on exposing parallelism to the
compiler, so it can also be beneficial
for the same code base in terms of
improving x86 vector performance.

The beta status of the compilers
causes some productivity slow
downs – each compiler has varying
levels of support for each of the
features. Some issues we have
previously experienced include:
compiler bugs that caused excessive
data movement, lack of support for
complicated data structures,
challenges parallelizing certain
types of loops, etc.

Sustainability Concepts from OpenACC seem likely
to be pushed into an upcoming
OpenMP standard, which might
promote further compiler and
architecture support. Many specific
OpenACC features seem applicable to
future node architectures, for example:
fine control over loop-level parallelism
and hints for placement of data at
various levels of the memory

With many upcoming architectural
examples like fused CPU-GPU and
heterogeneous x86 cores with
automatic OS scheduling, it is not
completely clear if a host-device
style programming model will be
required in the future.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 23

 Pros Cons

hierarchy.

Correctness It is possible to incrementally develop
for the accelerator using the same code
base (i.e. starting with scalar code, then
porting to OpenMP, then porting to
OpenACC). As opposed to lower-level
accelerator programming (e.g. with
CUDA or OpenCL) where the code
base must be changed, this incremental
development approach improves
correctness because results can be
easily debugged at each development
step.

Data movement can sometimes be a
challenge for correctness; for
example, a common pitfall is to
mistakenly assume that values
computed on the device have been
transferred to the host, or vice versa.
Additionally, current debuggers
only provide beta support for
OpenACC, so complex codes can
sometimes be challenging to get
working with debuggers. Also, not
all compilers are generating
sufficient debug information, and
there are other general issues
regarding accelerator kernel
characteristics changing when the
debug flag is enabled.

Portability Currently, there are three different
compilers that accept OpenACC
directives. PGI and CAPS are
available for many flavours of
accelerator-based systems. Codes that
are implemented with OpenACC can
be run on CPU-only or heterogeneous
accelerator systems by telling the
compiler whether to accept the
OpenACC directives or not. This type
of single source code portability is one
of the strongest benefits of OpenACC.

Currently only NVIDIA GPUs are
supported as an accelerator target,
although there is no reason why
other accelerator targets cannot be
supported. Cray’s compiler is not
portable to other non-Cray systems;
however, the OpenACC code itself
is portable. In terms of language
portability, it is unclear whether
OpenACC makes sense to use with
object-oriented approaches (e.g.
C++) – this is an area for further
investigation.

Availability PGI, Cray and CAPS all recently had
early releases of compilers that support
all or a portion of the standard. Having
many available compilers directly
equates to a better user experience –
the user can swap compilers if
functionality or performance is lacking
for a given compiler on a given
application.

Beta status of the compilers means
that progress can be hindered by
availability of upcoming releases
that contain specific bug fixes.
Additionally, there are currently no
widely available open-source
OpenACC compilers (probably
because they require significant
auto-vectorization capability)

Table 3: Advantages and disadvantages of using OpenACC, based on our experiences within this work.

2.3.5 Recommendations

Through the work detailed above we have arrived at a set of recommendations concerning the
usefulness of OpenACC:

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 24

1. Encourage accelerator directive integration into the larger, more widespread OpenMP
standard

2. Motivate tool developers (e.g. debuggers and performance analysis tools) to support the
various OpenACC implementations

3. Create more application benchmarks and micro-benchmarks to investigate performance
characteristics among the various OpenACC compilers

4. Create feature benchmarks to test newly implemented OpenACC features, such as:
asynchronous data transfers, asynchronous kernel launches, and cache placement hints

5. Investigate whether these directives are useable with object-oriented languages (e.g.
using the declare directive).

2.4 OmpSs

2.4.1 Description

OmpSs is based on the OpenMP programming model with some modifications to its
execution and memory model in order to support asynchronous parallelism and heterogeneous
devices such as GPUs. It is open source and available for download at:
https://pm.bsc.es/ompss.

In particular, the OmpSs execution model is a thread-pool model instead of the traditional
OpenMP fork-join model. The master thread starts the execution and other threads cooperate
executing the work it creates (whether it is from worksharing or task constructs). Therefore,
there is no need for a parallel region. Nesting of constructs allows other threads to become
work generators as well. On the other hand, the OmpSs memory model assumes a non-
homogeneous disjoint memory address space. As such, shared data may reside in memory
locations that are not directly accessible from some of the computational resources. Therefore,
all parallel code can only safely access private data, while for shared data it must specify how
this is going to be used (see below). This assumption is true even for SMP machines as the
implementation may reallocate shared data taking into account memory effects (e.g., NUMA).
In order to support OmpSs, programs must be modified to reflect this runtime model. This
process is referred to here as “taskification”.

Furthermore, OmpSs allows annotating task constructs with three additional clauses: Input,
Output, Inout and Target. Input specifies that the construct depends on some input
data, and therefore, is not eligible for execution until any previous construct with an output
clause over the same data is completed. Output specifies that the construct will generate
some output data, and therefore, is not eligible for execution until any previous construct with
an input or output clause over the same data is completed. Inout specifies a combination of
input and output over the same data.

Finally, to support heterogeneity and data motion between address spaces a new construct is
introduced: the target construct. It allows one to specify on which devices the construct
should be targeting (e.g.,cell, gpu, smp, etc.) and also specifies that a set of shared data may
need to be transferred to the device before the associated code will be executed. In addition,
there is a specific construct called implements which specifies that the code is an alternate
implementation of the target devices of the function name in this clause. This alternate clause
can be used instead of the original one if the implementation considers it appropriate.

2.4.2 Porting a scientific application to OmpSs

The application “HYDRO” was chosen to evaluate the OmpSs programming language.
HYDRO is a simplified version of the astrophysical code RAMSES, in that it lacks Adaptive

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 25

Mesh Refinement (AMR). It is effectively a 2D Computational Fluid Dynamics code of
reasonable size (~1500 lines for the sequential F90 version). The space domain is rectangular
two-dimensional, split into a regular Cartesian mesh. The code solves compressible Euler
equations of hydrodynamics based on finite volume numerical methods, using a second order
Godunov scheme. Also, a Riemann solver computes numerical flux at the interface of two
neighbouring computational cells on a regular 2D mesh. These functions are in the
hydro_godunov.c and are the best candidates in HYDRO to parallelize using OpenMP
and OmpSs.

Initially, we took a C version of HYDRO in the PRACE_HYDRO_V1 package to port to
OmpSs. In this version, we took a similar approach as in OpenMP, namely taskificating in a
fine-grain approach the iteration loops. These loops proved to be too-fine grain in the end,
however, leading to too much overhead.

A more recent version of HYDRO takes a more coarse-grain approach, something which
facilitates better the porting to CUDA. The reason for this is because it is structured in a much
cleaner way, where data structures are more visible and it is also easier to identify the
computation blocks in order to facilitate the porting to CUDA. The name of this last version is
HydroReference20120210. The results presented in this document are from this last version.
In this version, we parallelized, using OmpSs, the main iteration of the Godunov scheme
which is implemented in the routing hydro_goduno().

Figure 12: Taskification with OmpSs of the hydro_goduno() routine.

Figure 12 shows the taskification with OmpSs of the main routing hydro_goduno(). The
taskification consists on adding OmpSs pragmas inside the loop iterated by j, in order to
taskify for each loop iteration in each of the two dimensions. A synchronization OmpSs
pragma was added at the end to wait for the finalization of the previous launched tasks in the
loop iterated by j. These changes are emphasized in bold in Figure 12. Also, we allocate and

 for (idimIndex = 0; idimIndex < 2; idimIndex++) {

 make_boundary();

 Allocate local variables

 for (j = Hmin; j < Hmax; j += Hstep) {

#pragma omp task concurrent (*uold)
{
 Allocate local work space for 1D sweeps

 gatherConservativeVars();

 constoprim();

 equation_of_state();

 slope ();

 trace();

 qleftright();

 riemann();

 cmpflx();

 updateConservativeVars();

 Deallocate local work space
}
 }

#pragma omp taskwait
}

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 26

deallocate the required local work space for each task every time that the task is created. As
can be seen, the taskification granularity is selected to be a slice for each X and Y dimension.
In each slice a gather operation is performed to copy the required data in a temporal buffer,
then all the computation operations are performed in this buffer, and at the end, the results are
placed in the original locations in memory.

A finer-grained taskification is tested which consists on taskificating every computational
function in a slice. However, due to the data dependencies among these functions this did not
achieve any parallelization of the computation. Figure 13 shows the functions and data
structures used in these functions, and the data dependencies among them. As you can see,
there are data dependencies among the functions that prevent parallelizing the computations
in a slice.

Figure 13: Functions and data dependencies in a slice of the hydro_godunov iteration

2.4.3 Experimental results

The selected application benchmark HYDRO is run with different configurations of numbers
of nodes to evaluate the scalability of the code. The number of MPI processes used is 32, 64,
128, 256, 512, and 360 using two threads per MPI process.

The machine used is a cluster that comprises of 126 compute nodes. Every node has two Intel
Xeon E5649 6-Core processors at 2,53 GHz running a Linux operating system with 24 GB of
RAM, 12MB of cache memory and 250 GB local disk storage. They are also equipped with 2
NVIDIA M2090 cards each, with 512 CUDA Cores and 6GB of GDDR5 Memory. The
interconnect network is non-blocking and is based on QDR InfiniBand with a bandwidth of
40Gbps.

The input deck used is the typical one for scalability studies called
input_sedov_10000x10000.nml where the problem size is nx=10000 and
ny=10000 and runs 100 iterations.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 27

Figure 14 shows the runtime of the MPI version of HYDRO with OmpSs as a function of the
number of MPI processes. Two threads per MPI process are used in all cases and 6 MPI
processes were placed per node. As can be seen, HYDRO scales quite well with the number
of MPI processes. The execution time is 36 seconds at 35 MPI processes and decreases down
to 7 seconds on 320 MPI processes.

Figure 14: Runtime of HYDRO when scaling the number of MPI processes

2.4.4 Pros and Cons

Table 4 summarizes the pros and cons of the OmpSs programming language for various areas
including scalability, performance, sustainability, portability, availability, and productivity.
The major advantage of OmpSs is that its main objective is to extend the well-known standard
OpenMP with new directives to support asynchronous parallelism and heterogeneous devices.
This allows to achieve a higher communication-computation overlap so codes are able to
scale better at large scale where communications are inevitably becoming the major
bottleneck. Furthermore, OmpSs is open source and can be freely download.

Area Pros Cons

Scalability Higher communication-computation
overlap is achieved in order to hide
the communication overheads
occurring at large scale. It supports
both shared and distributed memory
systems.

Manual taskification of the
communications is required,
independently from the
computations.

Performance Allows for asynchronous
parallelism. It also supports
heterogeneous devices.

The overhead of task spawning and
bookkeeping could degrade the
performance if the computation
granularity of the tasks is very
small. Performance is limited to the
capabilities of user in creating data
dependency and extracting

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 28

Area Pros Cons

parallelism

Sustainability BSC is providing support It is not yet a standard

Portability Runs on standard x86 and x64
processors. The source code of the
application remains the same.

Requires the Mercurium compiler
and the Nanos++ runtime.

Availability Open source developed actively by
the BSC.

Productivity Very short, readable code. Easy to
program and maintain. Clear and
powerful concepts for parallel
programming extended from the
standard OpenMP.

Practically no tools are supported
for assisting the porting and
development of applications.
Additionally, development time is
affected to some extent due to
unavailability of debuggers.

Correctness Caution is required to make sure that
data dependencies are correct.

Table 4: Pros and Cons of the OmpSs programming language.

2.4.5 Recommendations

When porting HYDRO to OmpSs we identified several recommendations for programmers in
order to write a much cleaner and portable code when programming with a task-based parallel
programming language. These are simplifying data indexing, pushing data allocation close to
where it is needed, customizing blocking size, and using a top-down approach for
taskification. These are briefly described below:

1. Simplify data indexing: The data structures such as arrays and matrices used in the
computations are declared in a way that their size is explicit, without requiring to perform
any index arithmetic. This enormously facilitates the programmer to identify data
dependences among the computations and consequently propose an efficient taskification
of the application’s code.

2. Pushing data allocation close to where it is needed: We have found that the common
practice today is to allocate the data required in tasks globally, i.e. outside of the task
declaration. The advantage of doing this is that it minimizes the overhead of allocating
data, because it is performed only once regardless of the number of tasks. However, this
approach might be prone to generate data dependencies among tasks due to sharing the
same data structure. These data dependencies are unfortunately sequentializing tasks and
thus prevent the parallezation of the code. This problem can be easily solved by allocating
the particular data required for each task close to where the task needs it. By doing so,
data dependencies among tasks are minimized. The only drawback of doing this is that it
may generate a higher overhead due to the allocating/de-allocating of data for every task.

3. Customizing blocking size: When taskifying code it is desirable to have the flexibility to
adjust the computation granularity of the tasks. This can be achieved by customizing the
block size when partitioning the space domain of the scientific applications. Finding an
optimal computation granularity is critical to performance in order to balance the
overhead of spawning multiple tasks with the performance improvement achieved by
having a higher parallelism.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 29

Identifying the optimal granularity is non-trivial, because it depends on many parameters
such as the underlying machine. Thus an auto-tune tool may be interesting to use during
the runtime of the application, to find the optimal block size.

4. Top-down approach for taskification: One interesting approach when taskifying an
application is that the taskification process should be able to follow a top-down approach.
With this approach programmers are able to go from a coarse-grained to finer-grained
computations in order to have the flexibility to control the task granularity more
efficiently. A coarse-grained approach would involve taskifying an application’s routines,
and a finer-grained approach might be based on taskifying loops. For the latter, it might be
interesting to structure the computation in nested loops.

2.5 UPC

2.5.1 Description

In this Section we briefly introduce the concepts of UPC, its main features and constructs, and
the most prominent compilers and tools currently available.

A very brief introduction to UPC

UPC is a Partitioned Global Address Space (PGAS) language. It is an extension of ANSI C
that provides access to a shared, partitioned address space (any valid C program is also a valid
UPC program). The variables stored in this shared address space can be directly used by any
thread/processor, however each variable is associated with (or has affinity to) a specific,
single thread. This allows programs to be more easily written with a view of the entire
memory available to all processes, and at the same time to exploit data locality (affinity) for
boosting performance. UPC programs follow the “Single Program / Multiple Data” execution
model, and instantiate a number of threads that operate on either private data, or the shared
data within the global address space. The number of threads can be declared during
compilation or at the moment of running. Qualifier keywords are used to declare whether data
is private or shared, as well as how arrays could be distributed among threads. Being derived
from C, UPC supports pointers. UPC pointers can be declared as either shared or private, and
they can point to either shared or private memory. Because UPC pointers have to keep track
of more than simply the memory location they point to, their representation has considerable
impact on code performance. UPC contains its own language primitives to provide dynamic
allocation of shared variables, data movement between local and remote memories, collective
movements between threads, etc. Parallelism is most often implemented by looping over all
the data items, and having each thread or process only operate on the data that has affinity to
them. UPC adds a special type of loop to accomplish this task.

Main features and constructs

We briefly review some of the key distinguishing features and language constructs of UPC:

1. Identifying threads: The number of threads available to the program is maintained by the
THREADS variable, whereas each running thread is identified by the variable MYTHREAD.

2. Synchronisation: Synchronisation between different threads is achieved through a set of
functions such as barriers, locks.

The UPC construct upc_forall is an iteration statement similar to the C for loop, with
one additional argument that determines which thread executes a given iteration, or in

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 30

other words to which thread this iteration has affinity. This argument can be either an
integer (in which case the affinity matches the THREAD numbers), or a pointer to shared
memory (in which case the affinity is that of the object pointed to). Finally some functions
in UPC are collective, i.e. they are executed by one thread, but they affect all of the
threads.

3. Allocation and sharing of data: In UPC, dynamic allocation of shared memory is
achieved through the collective functions upc_global_alloc, upc_all_alloc
(the latter is a collective version of the former), and upc_alloc, which allocates shared
memory with affinity to the calling thread. The memory is allocated according to the
declaration:

shared [blocksize] char[nblocks * blocksize]

The above declaration dictates the affinity of each block of the allocated array to a specific
thread. Specifically, the first blocksize bytes have affinity to thread 0, the next
blocksize bytes to thread 1, etc. Upc_free is used for freeing such allocated
memory. Data is transferred between shared/non-shared memory with the functions
memget and memput.

Main compilers and implementations

UPC compilers are compliant to a UPC specification that is not part of the ANSI C standard.

Prominent compiler implementations include the following1:

 HP UPC (commercial) [http://h30097.www3.hp.com/upc/]
 Cray UPC (commercial) [http://www.cray.com/Home.aspx]
 GCC UPC (free, developed by Intrepid) [http://www.gccupc.org]
 Berkeley UPC (free) [http://upc.lbl.gov/]
 Michigan Tech MuPC (free) [http://www.upc.mtu.edu/]
 IBM UPC Alpha Edition (commercial).

2.5.2 Description of work done

We now describe the main focus of our investigations and experiments on UPC.

Main topics of investigation

Our goal was to evaluate the feasibility and practicality of porting non-trivial code to UPC, to
be executed over a large number of nodes in a HPC system. In particular, we were interested
in the following aspects of the language:

 Ease of implementation and porting to UPC
 Adaptation to shared memory model, and issues with affinity
 Identification of issues relevant to synchronization between threads
 Performance, optimization and scalability

In our studies, it soon became apparent that there was a trade-off between the above aspects of
the language, which warranted deeper investigation. More specifically:

 Shared memory model allows simpler implementation: The shared global address
space model allows programs to be ported to UPC with potentially limited effort, since

1 see also http://upc.wikinet.org/wiki/Compiler_Software

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 31

the developer can consider the entire shared memory to be available to all threads and
processes.

 Lack of affinity causes performance degradation: On the other hand, we find that
performance degradation is bound to occur if data locality and affinity issues are not
taken into account in the implementation.

 Enforcing affinity adds code complexity: However in order to adapt one’s
implementation so that it will take into account data locality and affinity, more complex
and intricate code needs to be written, to an extent undoing some of the benefits of the
shared memory’s model.

 Code complexity makes synchronization more difficult: Finding the optimal amount
of thread synchronization required to ensure correct execution may not be trivial. The
increased code complexity may lead to excessive use of synchronization constructs
(barriers, locks, etc), possibly resulting in performance degradation or even race
conditions.

In our experiment we came across all of the above issues, and we discuss them in more detail
below.

Ported code and description of experimental setup

We initially focused on porting the Graph500 [19] benchmark code to UPC. We found the
code’s complexity to be prohibitive, and the documentation somewhat lacking, so after some
issues with library functions that we had difficulty in porting we decided to shift our focus to
the Hydro code, which was suggested within the scope of the project.

The Hydro code was suggested by the CEA/IDRIS teams. We ported it to UPC, performed
various cycles of optimization, and ran extensive experiments focusing on performance,
scalability, shared memory allocation and synchronization. Our results are discussed in
Section 2.5.3.

Finally we also developed our own synthetic benchmarks targeting performance, affinity and
cross-node memory access issue. Following are the key details of our experiments, platforms
and tools:

 Compilers used:
- Berkeley UPC
- gcc-upc.

 Machines used:
- First experiments on HLRS Nehalem cluster.
- More experiments on HLRS Cray XE6 Hermit.

 Experimented with different:
- Synchronisation schemes (barriers, locks)
- Memory/pointer sharing and accessing approaches
- Input data sizes
- Numbers of threads, cores, nodes

In the following section we present and discuss our findings.

2.5.3 Experimental outcomes and discussion

In our experiments we tried to address and study various issues that impacted our outcomes,
some of which have also been identified in other similar studies. We present and discuss them
together with our experimental results.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 32

Ease of implementation, coding and productivity

Porting the code to UPC required some effort in getting acquainted with the language’s
additional syntax and constructs, as well as issues of thread handling, shared memory
allocation, etc.

A first running version was achieved with reasonable effort. However several further stages of
improvements and optimizations were carried out those tried to address issues of
synchronization, performance and scalability, memory affinity, handling of shared pointers as
well as others and are described below. In order to completely address all of the above issues
a considerable study and re-design of the entire algorithm would be required.

We were forced to address the fact that, although in principle we could consider all of the
shared memory as available to all threads, there was no (obvious) way to ensure that each
thread would only access the memory that was within its affinity, for maximum performance.

The code readability inevitably suffered as provisions were included for the above issues,
resulting in a more complex software artefact.

According to our developers’ diaries, the initial port took roughly 4 weeks, followed by
various cycles of new optimised versions weekly.

 Synchronisation issues

Synchronisation between threads in UPC is handled through locks and barriers. In a first
implementation it is easy to “over-engineer” the problem, inserting more locks and barriers
than is absolutely necessary, to ensure that the code will be executed in the required fashion.
It was immediately apparent that this caused performance delays, and even risked to create
race conditions.

Reaching the optimal amount of synchronization can be tricky, especially as the code
becomes more complex due to other requirements.

We managed to improve the performance of a correctly running version of our code by about
one order of magnitude by optimizing synchronization.

Performance and scalability

We ran experiments based on the Hydro code, as well as on synthetic benchmark code we
created, which could be tuned to perform either completely in-affinity memory accesses, or
mostly out-of-affinity memory accesses. The synthetic benchmark was used to study both
issues of performance and memory affinity.

Figure 16 and Figure 17 refer to the synthetic benchmarks runs. The execution time scales
linearly with the problem size and number of available cores for a given number of nodes.
However we observe some clear performance issues which we attributed to shared memory
affinity. In short our findings suggest that:

 Performance scales as expected across number of threads.

 A significant degradation occurs in memory accesses outside threads’ affinity, especially
when accessing memory across nodes.

Figure 15 refers to our runs with the ported Hydro code, which includes a considerable
amount of out-of-affinity memory accesses.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 33

Overall, we have ran our experiments on configurations of up to 128 nodes and almost 4096
cores, we have exhausted the available input data sizes, and we have observed and described
the performance and scalability patterns of this application.

We show the results of running three different input data sizes, namely 100x100, 250x250 and
1000x1000. We observe a similar performance pattern up to a certain number of cores
(different for each input data size and BLOCKSIZE used), and then a turning point as
performance begins to deteriorate. We believe that two effects come into play:

 As the number of cores increases, at a certain point the computation/communication ration
becomes so small for each thread that the communication overhead dominates the thread
time, and the computational gain is lost. That’s where we observe the turning point in the
curves. We identify these at roughly 200 cores for the 100x100 input, at 500 cores for the
250x250 input, and probably over 5000 cores for the 1000x1000 input. This suggests a
limit for the number of cores that it is reasonable to deploy for a problem of such size.

 Another factor that we expected would affect our results is the fact that for a specific input
size and BLOCKSIZE, there’s a limit to the number of threads that can be utilized to solve
the problem. More threads should simply not be assigned any task. In some of our runs,
e.g. in the 1000x1000 data size, we expected this to show up in our graphs. Specifically
we expected that adding more than 1000 cores in this case would not improve overall
performance. However we were surprised to see that it does. One theory is that as there
are more than one independent upc_forall loops, perhaps the additional cores are
more efficiently allocated so that different cores are used in the different loops (if
available).

(a)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 34

(b)

(c)

Figure 15: Performance of UPC Hydro code implementation, as the number of cores and nodes is
increased, for (a) 100x100 input data size, (b) 250x250 and (c) 1000x1000. Each line corresponds to a
different number of nodes and/or block size.

Shared memory locality and affinity

In order to investigate further how performance is affected by issues of memory locality and
affinity, we devised a simpler, synthetic benchmark that however handled shared memory in
the same way that our main program (the Hydro code) did. We ran experiments in which we
would select to have memory accesses either only within affinity, or mostly out of affinity.
We ran these across different numbers of cores and nodes. The results can be seen in Figure
16.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 35

Figure 16: Scalability of code for in-affinity and out-of-affinity memory accesses

The figure (note that both axes are logarithmic) shows an almost perfect performance
scalability as the number of cores/nodes increases. The lower-left group of curves are from
the in-affinity runs. The upper-right group are froming the out-of-affinity runs. We see that
there is a performance degradation there, which as expected increases as the number of nodes
involved in the experiment also increases. Figure 17 shows how the number of nodes affects
the performance degradation for out-of-affinity runs in the Hermit Cray XE6. We plot the
ratio of average time to run with out-of-affinity accesses over average time to run with in-
affinity accesses, against the number of nodes. Specifically we see that running on 32 nodes
causes performance to degrade by roughly 300% (i.e. become 3 times slower).

Figure 17: Performance degradation due to out-of-affinity memory accesses.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 36

So to summarize, that for the given ration of in/out of affinity memory accesses scalability is
almost perfect while increasing the number of threads and nodes (seen in Figure 16). This is
an important characteristic of UPC, as it suggests that for a specific ratio of in/out affinity
accesses and for specific sizes of problems, UPC can offer very good scalability. However in
the case of the Hydro code performance suffers due to data localization/affinity issues,
especially across nodes. As seen in Figure 15, the performance is not optimal, and as the
number of nodes increases it is affected by out-of-affinity memory accesses as described
above.

Unfortunately ensuring that the code will always perform memory accesses that are within
affinity is not at all straightforward. An example of a data affinity issue we encountered with
the Hydro code is briefly outlined in Figure 18, and discussed below.

This figure shows the main shared data structure used by the Hydro code (uold). Uold
effectively consists of a 3D “cube” of data, (along axes i,j,v), but is stored as a 1D array.
UPC only allows splitting the array in a series of contiguous blocks of fixed size, and giving
affinity of each block to one thread in a periodic, round-robin fashion.

The algorithm will at some point want to assign blocks with a common value of j (such as the
horizontal slice shown in the figure) to one thread, whereas at other points it will want to
assign blocks with a common value of i to one thread. And on top of that, it will perform
some additional boundary operations, working on neighbouring slices. However there is no
way to arrange the data within the 1D array such that these blocks will always be contiguous.
For example in the figure we see that the values corresponding to the horizontal slice are
dispersed throughout the entire array. In order to achieve some (not complete) affinity, very
specific conditions should apply, e.g.

(nx*ny) mod (blocksize*nthreads) = 0

But this is rarely the case, resulting in performance degradation when memory accesses out of
the thread’s affinity occur.

In contrast, a language such as MPI is not restricted by a linear, periodic, BLOCKSIZE-based
array affinity model, like UPC. In MPI, the decomposition of a 2D or 3D problem (like the
hydro problem) can be performed based on a set of tools, such as the MPI_CART set of
functions. These create communicators based on Cartesian topologies, according to the
programmer’s specifications. A memory “grid“ is thus created and stored (size, shape, map of
processes to blocks, etc), and each process can then access this information by calling other
MPI_CART functions. This makes it a lot more feasible to break down the problem into units
that will be processed within each thread’s affinity.

When we changed the code to avoid these out-of-affinity accesses (but then the resulting code
didn’t perform the correct operations), we saw that we were able to avoid the performance
penalties.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 37

Figure 1.1.3

Figure 18: Schematic representation of the main shared data structure of the Hydro code

Shared pointer handling

We give an example of how incorrect handling of a shared pointer can cause dramatic
performance degradation of at least 1-2 orders of magnitude. We allocate a shared
global array as:

uold = (shared[BLOCKSIZE] double *)
 upc_global_alloc(numberofblocks, BLOCKSIZE*sizeof(double));

Then within each thread we access it, in two different ways:

 We directly access it with:

x = uold[i];
uold[j] = y;

 We define a local variable and set it to point to the global array:

shared[BLOCKSIZE] double *puold;

puold = Hv->uold;

and we access the shared memory as:
x = puold[i];

pould[j] = y;

The first version degraded performance by one to two orders of magnitude, due to the
fact that the global shared pointer to the shared array belonged to one thread (thread 0),
so all other threads would have to access thread 0 to read the pointer value at every
access, whereas in the second version thread 0 only needed to be accessed once, to

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 38

copy its value to the local pointer. In Figure 19, the top group of curves show the effect
on performance of the first version. The second version, however, may impose stricter
synchronisation requirements.

Figure 19: The effect of shared pointer handling on performance. The top set of lines shows the
performance degradation when directly accessing the shared data structure, instead of using a local
pointer for indirection.

2.5.4 Pros and Cons

We have rated UPC in seven aspects based on our experiences in this work. These ratings are
shown in Table 5.

 Pros Cons

Scalability Good when thread has affinity to the
memory it is accessing.

One may need to employ practices
which require explicit knowledge of
the memory model to obtain good
scaling. In such cases, the benefit of
using UPC over MPI is not obvious.

Performance In the serial sections, UPC is identical
to C, with the well known benefits in
performance associated.

Productivity For some simple parallel applications,
implementing an algorithm in UPC can
be much faster than in MPI.

For complex data accesses, where
threads need to access non-local
data, the developer may require to
explicitly take care of data accesses,
leading to considerably more
complex code.

Sustainability The first version of UPC was released
in 1999 and development of UPC

Although versions have been
released continuously for almost 15

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 39

 Pros Cons

compilers is still ongoing. years, UPC is still not considered a
mature programming language for
parallel architectures

Correctness C debugging tools can be used for the
serial versions of the code

Portability Porting from C to UPC can be trivial
for kernels where threads operate on
local data

For more complex kernels where
threads operate on data local to
other threads, one may require
increased effort for porting as well
as a detailed understanding of the
application’s details such as data
paths.

Availability A number of open-source and
commercial implementations are
available. The specification itself has
reached a level of maturity to allow for
a several conforming compilers.

Table 5: Pros and cons table of UPC

2.5.5 Conclusions and recommendations

UPC is a language that, under certain conditions, can achieve excellent scalability and
performance. The shared memory model allows ease of programming, provided that the
algorithm to be implemented allows taking full advantage of its capabilities, without
stumbling upon affinity and locality issues.

Being a relatively contained extension of the C programming language, it reduces the entry
barrier for new programmers.

In terms of maturity, the tool support for UPC may not be sufficient yet, and it is also not
clear how committed a community of users exists, however there are already various compiler
implementations at relatively stable stages. Having said this, there are some cross-compiler
portability issues that still need to be addressed.

The shared memory space model promises ease of implementation, however for top
performance it must in essence be managed as if it were distributed. This may require
considerable software engineering and programming skills, and can come at a cost to code
readability. Perhaps a non-computer scientist porting their code to UPC would have some
difficulties, compared to other models, e.g. OpenMP.

Regarding performance and scalability, our experimental results are not conclusive.

Additional issues with UPC include:

 BLOCKSIZE is required to be known at compile time. So a less flexible round-robin
thread distribution approach is used, that has poorer performance.

 Array distributions in UPC are one-dimensional. A 2D-block distribution is not possible,
as discussed in the previous examples.

 It lacks the programming tools that, for example, MPI or OpenMP offer, for distributed
execution, communication and synchronization.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 40

 Some performance variations were observed that we were not able to explain (they could
be due to the runtime infrastructure).

In summary, UPC is a language definitely worth keeping an eye on, but some improvements
would considerably increase its capabilities.

3 System software

3.1 Introduction

This section focuses on the various studies related to system software that were completed in
the PRACE-1IP WP9 work package or are still ongoing on the associated prototypes. The
chapter is separated into four sections corresponding to “Operating System and System
Management”, “Resources management”, “Data management” and “MPI and Communication
libraries”.

For each subtopic, the motivation, description and results of the studies achieved by the
WP9.2 task contributors are detailed. In order to provide technical insights for the deliverable,
every prototype owner and task contributor was asked to provide their technical
recommendations based on their own work. The associated sets of recommendations are
presented for each subtopic. These recommendations provide the overview of the envisioned
issues and solutions for upcoming system designs. They are outlined in four summary
subsections, below each topic.

3.2 Operating System and System Management

3.2.1 Energy Aware System Software (LRZ)

Motivation

With energy efficiency being one of the major problems to overcome in the Exascale
challenge, future HPC system software needs to become energy aware. Energy awareness at
the system software level encompasses two aspects. First, power consumption of the system
needs to be monitored in order to measure the energy required to run a given application (i.e.
Energy-to-Solution). Second, the operational parameters influencing the power and
performance characteristics of the system need to be tuned to improve Energy-to-Solution.

Description of the work

The CooLMUC prototype, at BADW-LRZ, uses smart power distribution units (PDUs) to
monitor the power consumption of every compute node in the cluster. In addition, the power
consumption of the cooling equipment is monitored using a digital three-phase current and
voltage meter. An Energy-to-Solution system has been implemented on this prototype to first
obtain the power readings of the components and second, calculate the Energy-to-Solution for
a given application considering the power and estimated cooling consumptions of every
allocated node.

Evaluations of the modification of the maximum frequency of the allocated cores, helped by a
proper configuration of the SLURM resource manager, have been performed in order to
assess the possible benefit of DVFS (Dynamic Voltage Frequency Scaling) for applications
using the APEX MAP benchmark. This benchmark performs memory operations according to
a selectable pattern. Thus, the study compares a randomly distributed access patterns to a
stridden pattern, which is comparable to the STREAM benchmark.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 41

Results

As expected, the study outlines that the power consumption is higher at higher processor
frequencies. Since the benchmark workload is the same across the frequencies, higher
processor frequencies also cause shorter application run times. Yet, in case of the random
memory access pattern, the results show that the performance increase at higher frequencies
cannot justify the increase in power, as opposed to the stridden case. Thus, Energy-to-
Solution is best at the highest frequency in the stridden case while it is best at an intermediate
frequency level for the random case. The study [20] confirms that adjusting system
parameters can optimize the energy consumption of scientific applications. A more detailed
description of the work carried out within this subsection is included in section 7.1 in the
Annex of this document.

3.2.2 Monitoring with Hierarchical Nagios (Hnagios) (CINECA)

Motivation

Monitoring has always been an important part of the management system activities. With the
increase of the number of server nodes of a computing cluster and the resulting raise of the
probability of failures, monitoring is becoming even more important. Between the different
monitoring solutions, Nagios is one of the most implemented open source solutions in the IT
field. Some improvements are however required to make it a useful component for the proper
management of High Performance systems.

Description of the work

The Nagios monitoring system [21] provides a central view of the system’s status. Different
dashboards provide at-a-glance access to monitoring information and views provide users
with quick access to the information they find most useful. Alerts can be sent via email or
mobile text messages, providing details, useful for starting the resolution process
immediately. A basic configuration of a monitoring system with Nagios is composed of a
central server which collects the results of active and/or passive checks on different hosts and
related services. For each host of the system, a list of services to monitor can be defined. This
works well for regular aggregation of hosts but for large systems with complex topologies,
adapted views are required. Thus, for an efficient management of the entire system, a
customized configuration and scripting of the Nagios installation is mandatory.

In order to manage the high number of alarms required to monitor all the nodes of the HPC
clusters and their services, it was necessary to only use passive checks to distribute the
execution of the tests on the monitoring targets and to spread the execution of the checks on
the time frame in order to avoid overloading the Nagios server, thus improving its availability.
Despite this design, the quantity of signals to handle on the server side is still very large and
spotting critical situations and handling efficiently emergencies is very difficult. To overcome
that issue, a hierarchical organization of the components only sending critical summaries with
alarms and information organized in synthetic views is chosen. It allows system
administrators to distinguish between critical and non-critical events.

For that purpose, Mathias Ketner’s Nagios MK livestatus plug-in [22] is installed and
configured to collect all the signals and organize and filter them before transmission to the
server. It results in an architecture where each cluster has its standard Nagios server running
on the cluster management node. This server is the peripheral Nagios instance that manages
the nodes in sets of common types (compute, login, storage, etc.), summarizes cluster status,

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 42

and sends the result to a second level of the Nagios instance. This instance, the central Nagios,
is the only component that sends alerts.

Results

These customized changes, combined together, allow one to distinguish at a glance between
more and less critical status without loss of information. Indeed, the peripheral Nagios server
can be used to find the details of a particular alarm. The consequence is an easier management
of the priorities and organization of the repair service in a way suitable for the whole
production of the computing system, modulating the time reaction for each event. All these
improvements, designed and developed during the PRACE-1IP project, have already become
an important part of the management of the High Performance Systems of CINECA. Such an
architecture being very scalable and easily adaptable to different topologies or node
hierarchies is a good candidate for a monitoring schema usable with Exascale dimension.
More details concerning these improvements to HNagios can be found in Ref. [23].

3.2.3 Technical recommendations

A set of technical recommendations was compiled based on the results as presented in this
section. These recommendations are shown in Table 6.

Task contributor/

Prototype
Lessons learned Recommendations

LRZ - CoolMUC The 1 minute read interval for some
power sensors is not good enough
for detailed power analysis of jobs.
It is usable for Energy to Solution
(EtS) measurements for jobs
typically running longer than an
hour.

Future systems might need a
partition of nodes that are equipped
with fine grain power measuring
equipment for detailed power
analysis.

LRZ – CoolMUC Monitoring the energy consumption
of all jobs running on the system
(178 nodes) produces a lot of data
over time even with a coarse grain
solution of 1 minute (node power
measurement, node load, CPU
temperatures, system cooling power
measurement, rack network
equipment power measurement).

Future systems with >10000 of
nodes need to have ways for
defining the level of detail for power
measurements required for each job.
For example a simple 3 level
approach can be envisioned. Level 1
would store power data at the
resolution rate of the measuring
equipment, level 2 would store data
in specific intervals (e.g. every 5
min) and level 3 would just store the
EtS for the job.

LRZ – CoolMUC Although the Energy-to-Solution
system implemented in the prototype
through the resource manager
Prologue and Epilogue scripts yields

Future Exascale-ready resource
managers should include the ability
to adjust the power related control
knobs by default and further work

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 43

Task contributor/

Prototype
Lessons learned Recommendations

the desired settings to efficiently
tune the power profile of an
application, it requires manual work
by both, the system administrator
and the user.

should be done on automating the
process of tuning these knobs for the
best energy efficiency on the
resource manager level.

LRZ – CoolMUC The failure of the cluster
management node resulted in a
“zombie” system.

Single point of failures need to be
removed from future systems. Every
important part required for system
management need to be redundant.

LRZ – CoolMUC The separation from management,
service and HPC interconnect
network allowed for system
management even though the HPC
interconnect was experiencing some
connectivity issues.

Future systems should provide
different system networks for
different duties and responsibilities

LRZ – CoolMUC The redundant remote access to the
cluster system management node via
the service network and HPC
network allowed for an easy upgrade
of the HPC network stack.

Remote access to the system
management node via all available
system networks should be standard
for future systems.

LRZ – CoolMUC The separation from management,
service and HPC interconnect
network allowed for system
management even though the HPC
interconnect was experiencing some
connectivity issues.

Future systems should provide
different system networks for
different duties and responsibilities

LRZ - CoolMUC A pump failure in the infrastructure
water loop running through the HPC
system water heat exchanger was not
detected because the temperature
sensor on the infrastructure side
before the heat exchanger showed
correctly normal temperature but the
HPC system water temperature
increased till an emergency
shutdown occurred.

It is important to not just monitor the
system infrastructure but also to
monitor the building infrastructure
correctly. It is also important to think
about all possible failure scenarios
and to put appropriate sensors on the
right places and integrate them with
the system monitoring system.
Cooling loops for instance need not
just temperature sensors but flow
sensors as well.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 44

Task contributor/

Prototype
Lessons learned Recommendations

CINECA Nagios can be configured for
monitor hybrid cluster easily

Configure Nagios for provide
different dashboards in order to
collect or provide different views for
different goals.

Configure Nagios in hierarchic way
for clearer cluster views.

Deploy Nagios in Central –
Peripheral configuration for more
flexible maintenance

CEA – Exascale
I/O

Diskless boot of the embedded
server modules is useful for system
management. For example it eases
embedded server module
replacement.

We recommend diskless boot of
embedded server, along with a
resilient diskless boot service
provider (e.g., high-availability of
the administration nodes).

Table 6: Technical recommendations for operating systems and system management design. Where
appropriate, the PRACE prototype utilized for the study is listed in the first column.

3.2.4 Summary

Software provisioning is one of the key aspects of system management. Diskless boot
provides quick return to service in case of failure of hardware components. Indeed, it
automates the process of associating the hardware with the particular software stack and
configurations that make it work as expected. A fault-tolerant diskless provisioning system
can thus greatly help to reduce the unavailability time of broken components. Network errors
are common errors and the resiliency of a system can be enhanced using multiple networks
shared by the nodes. A strong fault-tolerance of the services hosted by the management nodes
over a robust multiple lanes network is mandatory. Every important part for system
management needs to be redundant.

Efficient and scalable monitoring of both systems and facility equipment like power supply or
cooling supply, is necessary to understand the failure scenario and its origins in order to take
the right decisions to reduce the intervention time before returning to proper service of the
systems.

Power management requires adapted sensors at every level of the systems and a correctly
sized analysis back-end to handle the large amount of data to store and process. Big data tools
and methodologies must be followed with great attention in this context.

Power information collection is the first step to improve power efficiency. Power efficiency
requires additional primitives at both the operating system and the resource management
levels to provide and leverage a fine grained control of the applications requirements. More
work is required in state-of-the-art resource managers and operating systems to facilitate the

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 45

configuration of runtime and better adapt low level performances to application
characteristics.

3.3 Resources management

3.3.1 Integer programming based scheduler for heterogeneous systems in SLURM
(Bogazici Univ.)

Motivation

State-of-the art supercomputers are heterogeneous employing both CPU cores and GPUs. Yet,
scheduling algorithms employed on these systems are based on the traditional CPU-only
scheduling algorithms. Schedulers need to consider multiple criteria such as GPU awareness,
interconnection topology and energy. Hence, the optimization problems to be solved by a
scheduler become more complex and need more advanced general optimization tools. Integer
programming (IP) techniques provide a general framework for solving complex optimization
problems. Development of an IP based SLURM scheduler can be quite useful, since SLURM
is used on at least 40% of the supercomputers in the Top 500 list.

Description of the work

A SLURM scheduler plug-in called IPSCHED employing CPLEX IP solver is developed.
The scheduler takes windows of jobs and solves an assignment problem that matches jobs to
CPU-GPU resources. The plug-in is available at http://code.google.com/p/slurm-ipsched/. The
plug-in can also be used to implement custom schedulers by just changing the IP formulation.
The performance of the plug-in has been tested by actual SLURM emulation that made it
possible to realistically compare SLURM’s original best fit scheduler with that of IPSCHED.

Results

Various tests have been carried out using the ESP synthetic workloads. Results show that
parallel CPLEX could solve the resulting hard optimization problems involving thousands of
variables in about 3 seconds, hence making it possible to use CPLEX in production
environments. It is also observed that utilization of resources is increased when compared
with the SLURM’s own scheduler plug-in. Detailed discussion of implementation and results
are provided in Refs. [24], [25] and in the PRACE white-paper in Ref. [26].

3.3.2 Managing GPUs using PBSPro (CINECA)

Motivation

The job schedulers play an important role in the optimization of the resources employment
and exploitation. In a batch system configuration it is possible to choose among different sets
of rules, either simple or complex, for scheduling jobs. CINECA tested on their Tier-1 hybrid
CPU-GPGPU system a batch system that differs from the one installed on the prototype, in
order to raise the possibility to find what will best fit with future Exascale systems.

Description of the work

PBS Professional is the professional version of the Portable Batch System (PBS), a workload
management solution, originally developed to manage aerospace computing resources at
NASA. The PBSPro version installed in CINECA (10.4) did not provide built-in support or
integration with the vendor drivers and development and runtime libraries of the graphic card

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 46

(CUDA). The scheduler is capable of allocating GPUs as resources only with a proper custom
configuration but does not bind jobs to a single specific GPU device. At the moment of the
tests, PBSPro couldn’t take advantage of the new features introduced in new versions of
CUDA.

PBSWorks had provided in October 2010 a technical paper [27] where two different
approaches to GPUs scheduling are proposed: a “Basic” one and an “Advanced” one. In the
basic scheduling, GPUs are configured as single custom resources, while in the advanced
configurations GPUs are PBSpro virtual nodes (vnodes).

As the Basic GPUs scheduling solution is more flexible, it better fits with the CINECA
heterogeneous system load. Furthermore, it is easier to implement and configure for end
users. This solution for GPU assignment allocates them as exclusive, enumerable and
consumable resources. On the other hands the CUDA runtime libraries support GPU sharing
across multiple threads, allowing, in principle, to have more mixed GPUs and CPUs jobs
within the same node. This CUDA feature is not explicitly supported by PBS and, as a result,
the exclusive allocation of GPU resources places some constraints on job placement on nodes.
In order to avoid conflicts between different jobs and, at the same time, take advantage of the
whole computational power of the system, CINECA is encouraging users to allocate full
nodes and use both GPUs and CPUs in their applications.

Results

The PBSPro features for handling GPUs resources suffer from the recent usage of these cards
in the HPC area. The main consequences are highlighted by missing features to share or split
the resources of the cards. At the present time the GPU cards are allocated like an on/off
switch. Altair already announced an Exascale road-map, so future improvements are expected.

3.3.3 Integration of rCUDA with SLURM resource management (CSCS)

Motivation

As the GPGPU accelerator based systems are increasingly targeted for scientific applications,
the efficient use of these devices has become a critical consideration for HPC centers as well
as application developers and end users. Remote CUDA (rCUDA) provides a virtualized
access to GPU resources in a GPU cluster by eliminating the tight coupling of host CPU and
GPU and allowing users to target as many or fewer resources per CPU required by an
application [28][29]. At the same time, the HPC centers have deployment and operational
flexibility to allowing them to serve diverse sets of workloads without compromising of
wasted resources. We attempted to integrate rCUDA into a scalable resource management
infrastructure called SLURM, which has been deployed to multiple, Petascale HPC sites.
This integration would allow users to transparently request the required resources independent
of underlying hardware features.

Description of the work

In a system employing rCUDA, CUDA applications seamlessly interact with virtual GPU
devices representing those which are remotely accessible, offered by the rCUDA servers.
However, the current scheduling scheme is not suitable for pools of resources decoupled from
computing nodes. For this new approach to be integrated into SLURM, a different way of
allocating resources is needed. As a resource can now be allocated independently from its
physical location, global resource counters have to be used. As rCUDA enables GPU sharing
among processes, we propose SLURM to allow two execution modes regarding remote GPU

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 47

allocation: exclusive and non-exclusive, selected by the system administrator. Non-exclusive
mode will maximize resource utilization, at the expense of attaining lower performance, while
exclusive mode will lead to maximum performance. Both modes still bring the previously
mentioned advantages: a decoupled pool of resources introduce.

The described functionality still requires the development of a new Gres (aka generic
resources) plug-in for SLURM, possibly based on the existing one. At this moment, for
testing purposes, on the SLURM submission script rCUDA servers have to be explicitly
started on the desired nodes prior to start the client tasks.

This work has been conducted in collaboration with Antonio Penya, University of Valencia,
Spain.

Results

The computer used to setup the experiments was the cluster named “fuji” from CSCS. It has
five compute nodes, each equipped with two Intel Xeon E5670 processors and 24 GB of main
memory. Two of the nodes -“fuji1” and “fuji2”- are also equipped with two NVIDIA Tesla
C2050 GPUs each, while the rest of the cluster nodes do not have any GPU installed, which
fits the rCUDA target environment. The Operating Systems running in the cluster nodes are
heterogeneous, being the GPGPU servers a Red Hat Enterprise Linux Server release 5.5 and a
CentOS Linux release 6.0, and the GPGPU client nodes, Scientific Linux release 6.1. This
does not pose any particular inconvenience for the rCUDA framework itself, as all the OSs
are 64-bit versions, therefore matching the rCUDA requirement of all clients and servers
executing the same bitwise architecture. The compute nodes are connected through a Gigabit
Ethernet network and a QDR Infiniband interconnect. Mellanox OFED v1.5.3-3.0.0, CUDA
3.2 and 4.0 with NVIDIA Developer Drivers for Linux 270.41.19, and SLURM 2.4.0-pre1 are
installed across the whole cluster. This experiment runs LAMMPS with the input “in.lj”
employing the mvapich provided by Mellanox OFED employing the LAMMPS CUDA
library and the rCUDA free version [30]. It spawns two MPI tasks on fuji1 and employs the
GPUs located at fuji2. The rCUDA servers are supposed to be already running, although they
can also be easily started and terminated within the SLURM script.

3.3.4 Technical recommendations

In Table 7 we list a set of recommendations based on our study on resource management
software.

Task contributor /
Prototype

Lessons learned Recommendations

Bogazici University Heterogeneous CPU-GPU
supercomputers are being built.
Yet, scheduling algorithms
employed on these systems are
based on the traditional CPU-
only scheduling algorithms. In
particular, best-fit type algorithms
that only make decisions based
on available CPU core counts
may introduce problems by
filling nodes with jobs that use
only CPU-cores and hence may

Job schedulers need to look
beyond the first job in the job
queue not just for backfill-jobs
but also for jobs that require GPU
resources. Combinatorial
optimization algorithms that take
into consideration both CPU and
GPU resources need to be
designed.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 48

Task contributor /
Prototype

Lessons learned Recommendations

be preventing the use of GPUs by
other jobs.

Bogazici University Integer programming techniques
provide general frameworks for
solving NP-hard combinatorial
problems. Relaxations of integer
programming formulations and
solution of relaxed versions by
linear programming can help us
to develop heuristics for NP-hard
problems.

Integer programming and linear
programming techniques can be
utilized in job scheduling to solve
combinatorial optimization
problems.

Bogazici University Besides the GPU resources,
schedulers for state-of-the-art
supercomputers need to consider
other criteria like the
interconnection topology and
energy. As a result, the
optimization problems to be
solved by the scheduler become
more complex and need more
advanced general optimization
tools.

Industrial strength integer
programming package like the
parallel CPLEX can be used to
solve complex scheduling
optimization problems fast. For
SLURM, IP-SCHED plug-in
developed as part of WP9.2 and
available at available at
http://code.google.com/p/slurm-
ipsched can be used as a template
to develop other customized
integer programming based plug-
ins.

Bogazici University Tests carried out with our IP-
SCHED scheduler plug-in
showed that commercial CPLEX
can run in parallel and be able to
solve integer programming
problems with thousands of
variables fast. Free Lp_solve
package on the other hand is
quite slow and can handle only
small number of variables.

It is recommended that CPLEX
be used in a scheduler plug-in
and not the free lp_solve.

Bogazici University To evaluate the performance of
SLURM and in-house developed
schedulers, workloads from the
Parallel Workload Archive and
ESP workloads are used.

Realistic heterogeneous CPU-
GPU workloads need to be
generated synthetically and/or
CPU-GPU supercomputer sites
should make available

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 49

Task contributor /
Prototype

Lessons learned Recommendations

However, these are geared
towards CPU-only architectures.
Hence, for heterogeneous CPU-
GPU systems, they need to be
modified by introduction of CPU-
GPU jobs.

anonymously their workloads to
researchers.

Bogazici University It is observed in various SLURM
emulation tests that large sized
jobs (jobs using large number of
cores) are not delayed so as to
have lower average waiting
times. In the literature, it is
suggested by Kraken
supercomputer administrators
that large jobs should be
favoured. However, jobs using
GPUs may be using smaller
number of cores. Hence,
favouring of small sized jobs may
lead to lower average waiting
times.

The issue of whether we should
favor scheduling of large or small
sized jobs needs to be further
studied especially on
heterogeneous CPU-GPU
systems.

CSCS – Interconnect
Vertualization

CSCS has been investigating
rCUDA (remote CUDA)
virtualization interface and its
integration to the SLURM
resource management system,
which is a site-wide job
management and accounting
system, in collaboration with the
University of Valencia.
Currently, a custom job script is
required as the GPU resources are
not provided by the SLURM as
independent resources and
therefore cannot be scheduled
without allocating the host CPU.
Currently, the prototype is setup
in exclusive mode, where a job
has exclusive access to compute
resources.

An additional SLURM plug-in is
needed for independently
allocating and binding CPU and
GPU devices to support rCUDA
client/server model. This study
demonstrates how a solution
devised for small-scale clusters
can be extended to large-scale
installations, where users
typically use a job scheduling
interface. There are still several
challenges but the CSCS
prototype has provided a platform
to explore a solution in
collaboration with international
researchers and potentially
SLURM developers

JUELICH – Novel Flash memory cards add an Develop new resource

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 50

Task contributor /
Prototype

Lessons learned Recommendations

Exascale I/O internal storage resource to HPC
systems which needs to be
managed to facilitate job
processing on I/O nodes, e.g.,
data staging between external and
internal storage.

management concepts and their
integration into the system
management tools and batch
queuing systems.

Table 7: Technical recommendations based on our study of resource management software. Where
appropriate, the PRACE prototype utilized for the study is listed in the first column.

3.3.5 Summary

The recent evolutions of system architecture favour the usage of accelerators in addition or in
complement of traditional CPUs. Resource managers now need to deal not only with the CPU
and memory resources but also with accelerators, whether shipped on node or placed in
dedicated farms. New storage devices enable to introduce new layers in data hierarchies and
can also be viewed as new resources to manage. The support of all these new resources are
too limited in current solutions and more work is required to fully benefit from the
heterogeneous computing and storage capacities offered by modern and future systems.

Advanced scheduling of jobs on the available resources is still based on heuristics and best
effort algorithms that are hard to implement in an efficient way with an increasing number of
resource types and constraints. More deterministic approaches, trying to solve the associated
NP-complete problem in the most efficient manner, are promising solutions that need to be
moved from the research area to the industrial usage. They help to define a generic way to
manage the scheduling problem applying a same strategy to multiple set of resource types.
The integration of Integer programming and Linear programming solvers in state-of-the-art
resource managers is an interesting path to follow. These methodologies rely on dedicated
mathematics libraries. Currently, no open source solution is viable compared to proprietary
one. Open-source alternatives should be enhanced for more independence on a midterm basis.

3.4 Data management

3.4.1 JSC I/O prototype evaluations (CSCS)

Motivation

Next generations of HPC systems have different requirements for network, computing,
storage and applications etc. The requirements concerning the I/O subsystems are more
critical due to the continuously growing gap between computing and I/O performance
increase during the past. The goal of this project is to deploy a PCI-E SSD cards on x86
cluster followed by adding SSD cards to the new IBM Blue Gene series system called BG/Q.

Description of the work

This effort involved evaluation of hardware and low-level software. Specifically, the SSD
cards have been successfully integrated and their correct functionality performance has been
heavily tested using synthetic benchmarks.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 51

Results

The target parallel file system, GPFS, drivers and benchmarks tuning are taking place during
this period on the BG/Q to sustain the peak performance of the SSDs.

Important steps for the Future:

 Promoting SSDs integrations in HPC systems.

 Develop and implement concepts which improves the usability of SSDs integrated into
HPC systems

 Proving the concepts of scaling SSDs in HPC and Parallel file systems.

 Running real application that includes IO benchmark to address the benefits.

 Include QoS in the file system

3.4.2 GPFS and Lustre evaluations (CINECA)

Motivation

Data are increasing their importance together with the performances of the supercomputers.
The choice of parallel file system that best fit the load requirement and its planning,
installation and configuration is fundamental in order to maximize performance and limit the
impact of HPC infrastructure problems.

Description of the work

GPFS (General Parallel File System) is a full featured POSIX IBM product. It was tested on
the CINECA tier 1 system, a Linux cluster where about 300 nodes are GPFS clients, with six
disk servers with six fiber channel (FC4) links. The file system is about 90 TB with a block
size of 4 MB (minimum fragmentation 128KB), with data and meta-data mixed on same
disks. It is configured to relay on RDMA data transport on Infiniband QDR, single rail switch.
The back-end Storage consists of 12 RAID6 arrays of disks (8+2 1TB 7.2Krpm SATA disks).

Lustre file system is a full featured POSIX Open Source product maintained and developed
by Whamcloud. It was tested on a different hardware/storage: four client nodes and three
servers with four fiber channel (FC8) links. The file system was about 40 TB with a block
size of 1 MB. Data and meta-data weren’t mixed by design. The data transport was LNET
over TCP/IP (10 GbE). The back-end Storage consisted of RAID6 arrays of disks (10+2 2TB
10Krpm SATA disks, but meta-data on DAS).

Results

Scalability of disk arrays numbers is good in both file systems. The scalability issue of GPFS
comes from the number of supported clients. Vice versa, the issue scalability of Lustre is due
to the Meta data server and the centralized meta-data management, which is also a single
point of failure. In addition, all GPFS server functions and meta-data can be replicated and
disks can replaced without production interrupt, invoking simple management commands.
GPFS is preferable from the point of view of availability and resiliency and for easier
management.

3.4.3 Technical recommendations

We provide a set of technical recommendations on data management software in Table 8.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 52

Task contributor /

Prototype
Lessons learned Recommendations

CINECA CPUs based jobs are less I/O
intensive than the GPUs ones.

Deploy parallel file system taking
in account CPUs GPUs hosts or
only CPUs hosts.

Separation between data and
meta-data.

Deploy different parallel file
system for different usages.

JUELICH – Novel
Exascale I/O

Various challenges to integrate
flash memory into massively
parallel HPC architectures and to
enable its efficient use remain to
be addressed.

Further explore the design space
and foster the integration of
additional storage levels into
parallel file systems and the
development of I/O middleware.

JUELICH – Novel
Exascal I/O

Significant efforts are needed to
adapt applications for making
efficient use of additional storage
level implemented using flash
memory.

Foster development of I/O
interfaces which facilitate optimal
use of the available resources.

Provide support for application
developers to adapt their
applications.

CEA – Exascale I/O The scalability of the system
management provided with the
Xyratex solution is limited. The
use of SSUs (“Scalable Storage
Units”) is very convenient and
scale in terms of hardware and
Lustre performance, however, we
encountered several scalability
issues with “only” 9 SSUs. For
example, the default
configuration management tool
used (puppet) doesn’t scale.

Foster vendors to improve their
system management software in
order to scale for larger systems.
Vendors are not always aware of
this issue until they build a large
system.

CEA – Exascale I/O The integration of the Xyratex
Lustre storage solution to our
R&D compute center
environment was not trivial.
External services provisioning
like NTP, DNS was supported,
but more complex LDAP
settings, specific Infiniband
partition key (P_key) or Lustre
Network (LNET) index were not

System management
developments remain in order to
facilitate the integration of such
Lustre storage solution in existing
production HPC environments.
Such systems should remain open
to allow on-site specific
configuration to be supported,
especially for large HPC compute

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 53

Task contributor /

Prototype
Lessons learned Recommendations

configurable without bypassing
Xyratex system management.
The good point is, however, that
the use of a standard Linux
distribution based on Red Hat
Enterprise Linux 6 with open
source tools allowed us to do it
without much pain.

centers.

CEA – Exascale I/O Software RAID using Linux
device-mapper can be used to
build embedded high-end storage
systems. Expected system
performance were reached,
however, some system failures
were encountered that may be
related to the RAID stack.

Don’t ban the use of new RAID
engine for disk arrays, like
device-mapper based RAID. Still,
more work and research have to
be done in terms of software
RAID resiliency.

Table 8: Data management software recommendations. Where appropriate, the PRACE prototype
utilized for the study is listed in the first column.

3.4.4 Summary

Nodes and system architectures are constantly evolving. Accelerated nodes tend to produce
and or access more data than traditional nodes. The balance between performances and IO
bandwidth must be adapted to that aggregation. More bandwidth and capacity are required to
store the information produced and consumed by next generation systems. Meta-data is an
important criterion that can severely limit the efficiency of a file system.

An IO back-end must be scalable and adaptable in terms of provided services but also in
terms of required services. Indeed, to be fully operational, a file system needs to be properly
integrated in the data center. Administrators must be able to manage and configure the whole
system efficiently at scale, including start/stop of the back-end as well as software upgrade.
An open-source solution is more reactive. By enhancing it “on need”, it is possible to adapt
the existing components and cope with unexpected requirements or behaviour that are
inherent to state-of-the-art HPC installations.

By reducing the usage of dedicated hardware, software RAID is promising even if not yet
completely mature. More work is required to ensure the resiliency of software RAID stacks.

Data hierarchies are evolving too. Depending on the I/O workloads, it can be necessary to
think about providing multiple sets of file systems and data back-ends, either local or remote,
in order to provide the most adapted solutions to the various requirements of the applications.
This can be done transparently or on demand, using a yet to define API, depending on the
targeted efficiency.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 54

3.5 MPI and Communication libraries

3.5.1 MVAPICH2-GPU evaluation (CSCS)

Motivation

MVAPICH2-GPU provides an optimized GPU-GPU communication interface for MPI
communication for clusters with NVIDIA GPU devices and Infiniband interconnection
network [31], [32]. This effort aims at investigating the feasibility of this interface for
application development and characterizing performance of end-to-end GPU-to-GPU
communication over the interconnection network to the hardware and tools developers. The
MVAPICH2-GPU interface provides a direct mechanism to transfer a buffer from a host GPU
to the destination GPU memory without explicitly copying data between host and GPU
memories. In order to avoid memory copying from the GPU buffer to the network buffer,
NVIDIA provides a feature called GPUDirect, which enables the GPU and the Infiniband
driver to share their address spaces. Existing applications can gain 10-15% performance
improvement by simply linking to the MVAPICH2 MPI library that has been CUDA enabled.

The final goal of this work is to completely bypass the host memory copying. With the latest
announcement of GPUDirect-RDMA for the next generation GPU devices codenamed
Kepler, we expect performance and scaling efficiencies to improve significantly as data from
GPU devices can be copied over to the network buffer without intermediate copying into the
host address space.

Description of the work

The CSCS prototype system, which is composed of dual-socket Intel Westmere nodes and
two NVIDIA M2090 GPU devices and QDR Infiniband interconnect, has been used to deploy
the MVAPICH2-GPU. The system has been setup with the latest stable release of CUDA and
driver that support both the GPUDirect and the uniform memory address space capabilities.
CUDA version 4.1 and the driver version 295 have been used for the experiments.
MVAPICH2 version 1.8 has been installed on the system, which has been built with CUDA
4.1. In order to perform the performance characterization, the MPI micro-benchmarking code
for latency and bandwidth experiments have been extended to include GPU bindings. This
work has been done in close collaboration with Professor D. K. Panda and his group at the
Ohio State University, USA.

Results

Data transfers between host to memory using the pinned GPU memory has typically highest
bandwidth values, while the data transfers from GPU memory to the host is the slowest path.
The MPI bandwidth over the Infiniband is typically lowest on a QDR platform. Hence, in an
optimal case, the application should experience no less than the peak MPI bandwidth. The
results with MVAPCIH2-GPU confirm that the overheads are negligible for different message
sizes and communication patterns. Typically the performance is limited by transfer bandwidth
between the host and the GPU devices. Furthermore, optimization with NVIDIA GPU to
GPU peer-to-peer communication interface can also be exploited by MVAPICH2-GPU
implementation and our experiments on the iDataPlex prototype, single node with 2 GPU
devices, demonstrate this capability.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 55

3.5.2 Evaluation of Infiniband routing schemes (CSCS)

Motivation

A number of high-end computing platforms, especially the ones with a few tens of thousands
of nodes, have network topologies that are scalable both in terms of aggregate bandwidth and
cost. This includes torus topologies of BlueGene and Cray XT and XE series systems, where
the interconnect switching and routing schemes are co-designed together with the MPI
implementation [33][34][35].

High-end systems based on the commodity Infiniband interconnect have traditional
hierarchical topologies that have been constructed using switches. These include fat tree and
Clos, which have been developed using switches with large number of ports. The cost of the
switches does not scale linearly with the number of ports [36]. Thus, the main drawback is
extensibility in a cost effective manner. We therefore attempt to design and evaluate
performance of two-dimensional torus topology interconnect using low-port count & cost
effective Infiniband switches.

Description of the work

The study has been performed in multiple phases. The first phase was designing and
deployment of a prototype using multiple of 8-ports switches. The targeted platform was
consisted of 32 IBM iDataPlex M3 nodes and two different interconnect partitions. Each IBM
iDataPlex node was composed of two 6-cores Intel Westmere processors and two NVIDIA
M2090 GPU devices. In addition, there was a 36-ports Infiniband QDR switch and 16, 8-ports
QDR, unmanaged switches for the 2D torus topology. The design of the 2D torus topology
using 8-ports switches is shown in figure below.

Figure 20: 2D torus topology & the 8-ports switch layout

Two partitions were designed to comparatively evaluate performance of a full crossbar 36-
ports switch and with the 2D topology setup. The results are comparable since the node
design and system software is identical on both partitions.

As a consequence, the second phase of the study was the deployment of the two partitions in
an optimal manner. This includes an optimal routing scheme for the given topology and
development of topology aware MPI.

The final phase was the evaluation of the two topologies using extensive micro-
benchmarking. We deploy Infiniband monitoring and management tools to perform

1 2 3 4

13 14 15 16

5 6 7 8

9 10 11 12

5

13

1 2

4 3

16

6

8 7

9 10

12 11

14

15

483 mm

2U = 89 mm

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 56

measurements on the switches themselves while running micro-benchmarking applications on
the node to validate performance results and to identify any network related issues, for
example, network congestion [37].

Results

Both partitions have Linux version 2.6.32 and MVAPICH version 1.8 built with GCC 4.6
compiler. On the 36-ports partition, the standard minimum hop routing scheme was
implemented while on the 2D torus partition torus-2QoS was implemented. In order to
measure the improvements with the optimized routing scheme with the given topology, we
compared results using a non-optimized scheme called LASH-DOR. The results showed a
significant improvement in performance, by a factor of 2 or more, with the optimized routing
scheme. The results were comparable with the 36-ports QDR switch while for some message
sizes, the 2D topology yielded better performance for MPI collective communication
operations as shown in Figure 21 using the Intel MPI benchmarks for the MPI_Allreduce
operations. We observed similar behavior for the point to point benchmarks. All tests were
performed for 128 MPI tasks.

Figure 21: Impact of optimized routing schemes on the two test partitions: 36-ports QDR switch with the
deualt routing (castor-128), 2D torus setup with LASH-DOR (pollux-128 (LASH-DOR)), and with Torus
QoS (pollux-128 (torus-2QoS)).

We deployed the Unified Fabric Management (UFM) utility from Mellanox to observe
network patterns on different nodes and switches. The results with the monitoring tool
confimed the slowdown due to network congestion. A snapshot of the tools is shown in
Figure 22.

1�

10�

100�

1000�

10000�

100000�

1000000�

1
�

2
�

4
� 8
�

1
6
�

3
2
�

6
4
�

1
2
8
�

2
5
6
�

5
1
2
�

1
0
2
4
�

2
0
4
8
�

4
0
9
6
�

8
1
9
2
�

1
6
38

4�

3
2
7
6
8
�

6
5
53

6�
1
3
1
0
7
2
�

2
6
2
1
4
4
�

5
2
4
2
8
8
�

1
0
4
8
5
7
6
�

2
0
9
7
1
5
2
�

4
1
9
4
3
0
4
�

La
te
n
cy
�(
u
se
c)
�

Message�size�(bytes)�

Intel�MPI�(IMB)�Exchange�Benchmark�

castor‐128�

pollux‐128�(LASH‐DOR

pollux‐128�(torus‐2Qo

1�

10�

100�

1000�

10000�

100000�

1000000�

4
� 8
�

1
6
�

3
2
�

6
4
�

1
2
8
�

2
5
6
�

5
1
2
�

1
0
2
4
�

2
0
4
8
�

4
0
9
6
�

8
1
9
2
�

1
6
3
8
4
�

3
2
7
6
8
�

6
5
5
3
6
�

1
3
1
0
7
2
�

2
6
2
1
4
4
�

5
2
4
2
8
8
�

1
0
4
8
5
7
6
�

2
0
9
7
1
5
2
�

4
1
9
4
3
0
4
�

La
te
n
cy
�(
u
se
c)
�

Message�size�(bytes)�

Intel�MPI�(IMB)�Allreduce�Benchmark�

castor‐128�

pollux‐128�(LASH‐DOR

pollux‐128�(torus‐2Qo

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 57

Figure 22: Monitoring of the network congestion using the UFM tool

On the 2D torus network, we also investigated the whether or not topology awareness plays a
critical role. We collected message injection rates using the OSU MPI micro-benchmarks with
regular and random node ordering. Results are shown in Figure 23. For small message sizes,
communication between adjacent nodes yield better performance results. As the message
sizes increase and the communication becomes bandwidth bound, the difference between
regular and radom ordering diminishes.

Figure 23: Impact of network traffic routing

0�

5000�

10000�

15000�

20000�

25000�

30000�

6
4
�

1
2
8
�

2
5
6
�

5
1
2
�

1
0
2
4
�

2
0
4
8
�

4
0
9
6
�

8
1
9
2
�

1
6
3
8
4
�

3
2
7
6
8
�

6
5
5
3
6
�

1
3
1
0
7
2
�

2
6
2
1
4
4
�

5
2
4
2
8
8
�

M
B
/s
�

Message�size�(bytes)�

OSU�Mul ‐BW�MB/s�

Uniform�ordering

Random�ordering

0�
1000000�
2000000�
3000000�
4000000�
5000000�
6000000�
7000000�
8000000�
9000000�

1
�

4
�

1
6
�

6
4
�

2
5
6
�

1
02

4
�

4
09

6
�

16
3
8
4
�

65
5
3
6
�

2
62

1
4
4
�

M
e
ss
a
ge
s/
s�

Message�size�(bytes)�

OSU�Mul ‐BW�Messages/s�

Uniform�ordering

Random�ordering

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 58

3.5.3 Technical recommendations

We list technical recommendations for communication libraries in Table 9.

Task contributor /
Prototype

Lessons learned Recommendations

CSCS – Interconnect
Virtualization

System engineers and
administrators need to carefully
evaluate IB routing schemes for
unconventional IB topologies
using unconventional switching
components. We experimented
with different topologies (2D
mesh and torus) and routing
schemes (LASH, DOR and
Torus-2QoS) to identify system
throughput bottlenecks. MPI
library also needs to be topology
aware.

As regression suite is needed for
setting up direct-connect, high
dimensional topologies to tune
and troubleshoot functionality and
performance issues. Currently
manual intervention and expert
knowledge is needed to
accomplish this task. This could
also be a co-design opportunity
between process and interconnect
vendors, system software and
library developers to provide
highly efficient I/O
implementation to users.

CSCS – Interconnect
Virtualization

MPI communication without
explicit memory transfers is
currently available in
MVAPICH2-GPU MPI library
implementation.

Experiments show high
throughput and high productivity
for different communication
patterns. This work is done in
close collaboration with Prof. DK
Panda group at the Ohio State
University and the prototype
provided a collaboration
opportunity.

We need to collaborate with other
MPI developers and probably
with MPI forum to offer code and
performance portable
implementations. In order to
ensure wider adoption together
with code and performance
portability, interoperability with
other accelerator paradigms must
be investigated.

CSCS – Interconnect
Virtualization

Designing direct-connected
topologies using InfiniBand 8-
ports (unmanaged) switches
requires an in-depth
understanding of the cabling from
processor and between switches.
This is not scalable to large scale
installations using open source
management, trouble-shooting
and diagnostics interfaces.
Incorrect cabling from processors
and between switches can
severely impact communication

In order to introduce cost
effective and scalable
interconnect topologies using
commodity components,
especially unmanaged switches,
further research and investment is
needed both at the fabrics level
and also for the management and
troubleshooting tools such as
OpenSM.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 59

Task contributor /
Prototype

Lessons learned Recommendations

throughput.

CSCS – Interconnect
Virtualization

Currently, PCIe peer-to-peer
communication is not fully
supported by many vendors.
Hence, a true host bypass, which
CSCS GPU virtualization
prototype intended to evaluate,
could only be implemented
through a software layer to
communicate between GPU and
the network interface. This is
also a performance critical design
component for clusters based on
PCIe accelerators.

As accelerators become central to
the node design, direct
communication channels must be
provided by vendors and should
be supported by Linux kernels to
allow for direct memory transfers
between the accelerator memories
and the network interface, without
an intermediate copying step to
the host memory.

Research and development is
needed for the Linux kernel
extensions in collaboration with
vendors and could be a co-design
opportunity for PRACE.

Table 9: Technical recommendations for communication libraries. Where appropriate, the PRACE
prototype utilized for the study is listed in the first column.

3.5.4 Summary

Data hierarchies and system architecture are evolving to integrate the ever increasing number
of components included in successive state-of-the-art supercomputers. The topologies
involved at every level of the supercomputers have consequences on the performance of the
whole systems. The mostly used interconnect topologies does not scale well in terms of prices
and cabling.

It is necessary to find solutions to reduce the price of the interconnection network for larger
machines while still providing sufficient behaviours in terms of bandwidth, latency,
manageability and resiliency. Intra-node topologies are more and more complicated and
require a perfect knowledge of the interaction to choose and tied the components that have to
work together. The frontier between intra-node and inter-node topologies must be observed
with great attention to maximize the usage of the external connections of the nodes.

Software stacks involved in the communication of parallel applications at every level must be
mature enough to leverage all the primitives offered by the underlying hardware. The only
way to achieve the highest performance is to use the most advanced features of the involved
hardware.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 60

3.6 Conclusions

The topics discussed in the previous sections outline several problems that can be mapped to
five transverse key concepts that have already been identified by the WP9 community and
expressed in the D.9.1.2 deliverable.

Scalability, addressed since many years up to the Petascale level, is one of the key issues and
becomes more and more problematic not only on the computing side but also on the I/O and
the management sides. Every part of a system must now be designed with that goal in mind.
Vendors take that consideration into account more than ever and this is a good sign for the
future of HPC.

Heterogeneous architecture as well as new Data and Memory hierarchies bring additional
complexity that must be addressed at every level of the software stack, from the operating
system to the communication libraries and primitives, taking into account the final goal of
scheduling jobs in the most efficient manner on the set of interconnected resources. All the
components glued together in modern supercomputers are not sufficiently managed in a
coherent way and more work is required to leverage all the capabilities of the hardware as
well as to select efficiently the most adapted resources for the different applications.

The efficiency of the next systems in term of energy consumption will be one of the most
observed elements. Taking power and cooling consumptions into account in the system
software stack will help to optimize the amount of power required to execute the various
workload. We are still at the beginning of the power aware era in HPC. Sensors still need to
be enhanced and better integrated in the system management tools. Power and cooling are far
from being treated as the resources they are in a scheduling point of view.

Despite the fact that fault-tolerance is discussed and predicted as the next level challenge
since many years now, it has always been tackled by improved reliability of the
supercomputer’s building block and optimized checkpoint/restart strategies. However, the
scale required to achieve the ExaFlop/s, associated with the heterogeneity and the complexity
of the building block of next systems could make this prediction come true. Resiliency of the
systems must be guaranteed to reduce the mean time to interrupt of applications. Failures need
to be treated as a possible and manageable input in application runtimes and no longer as the
final output of computations. A lot of work is required in that area. 2IP-WP11 should bring
useful insights in this field.

The next hurdles to clear are high. First steps have been done but the goal is still far. The
different elements included in the system software stack must be co-designed to leverage
every single feature. To have the best interconnect topology or routing schema may not
suffice since the resource manager may only allocate rows of nodes. To have the most
coupled topology and scheduling strategy is good, but if the application processes are spread
in an incoherent manner or if the I/O bandwidth is too tight, it will waste cycles in pending
communications. Information for adapted actions is a way to make things work efficiently.
Systems have to be co-designed with applications. Applications will need to co-exist with
system components, processing live information to adapt their behaviour to the different
volatile characteristics.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 61

4 Recommendations on HPC tools

This section identifies research on tools for High Performance Computing (HPC). These tools
are particularly focused on performance analysis, debugging, optimizing, and monitoring that
should be supported in order to enable applications to scale to large systems, in special, in
order to reach Exascale performance.

The objective is to avoid “flying blind in the midst” of programming and optimizing codes for
very large scale. The behaviour of applications on complex systems is often different from the
programmer’s assumptions or models in mind. In current practice, decisions to implement
certain optimizations are based on not sufficiently detailed data and certainly on limited
information of the expected gain that a given code restructuring will obtain. This obviously
results in poor application performance especially at the large scale.

The HPC landscape is getting more complex and changing in many dimensions. Architectures
are mostly based on multi-core processors with deep memory hierarchies. It is typical today to
see at least three cache levels where the top level of cache is shared among all cores in the
processor. Processor architectures are also showing a wide variety with different features and
performance. Examples of this are the traditional Intel x86, IBM Power processors, the
integrated approach with AMD Fusion – which combines CPU and GPUs on a chip – ARM
processors to tackle the market of low power, and the MIC many core processors from Intel.
This complex environment is making the optimization of applications more difficult, because
what it is working for some architecture usually is not the case for another different one, and
thus it requires specialized tools to effectively deal with this.

At the same time, there is a strong demand for more parallelism at the chip level and also at
the system level mostly driven by the need to reach exascale. Applications should be able to
exploit this huge amount of parallelism in order to harness the potential of exascale machines.
However, most of today’s applications do not properly scale at this level. For this reason,
there is a strong need for performance tools to analyze and optimize these applications for
large systems.

In addition, there are new user groups that are starting to use HPC systems that are requiring
better tools to assist them in properly using these complex systems. These user groups are
coming from emerging application areas such as Linguistics and Biology. These groups are
experts in their field which is quite different from computer science. Because of that they
have little knowledge in how to efficiently optimize applications for large scale. Therefore,
they need tools for performance analysis, debugging, and optimizing their applications with a
special emphasis on easy-to-use and automate code transformations. In particular, they are
interested in tools as simple as click one button to get an instant advice and/or automatic
translation to an optimized version of their code.

The last driver that we have identified for needing better tools for HPC is due to the recent
moving trend of HPC to the industry and commercial sectors. One popular commercial sector
is the financial services where HPC is being used to substantially improve risk management,
trading analytics, and wealth management. In this environment providing a low time-to-
market, higher productivity and reliability are key to success. For this purpose, better tools to
are needed in order to support these critical commercial application requirements.

We have identified four areas that need support for advancing HPC tools in the future: Task-
based/asynchronous, intelligence, models, and scalability. These are described in more detail
in the following sections.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 62

4.1 Task-based/asynchronous support

Task-based dataflow programming models such as OpenMP and OmpSs [38] are showing to
be very powerful in exposing high level of parallelism in a wide range of scientific
applications. It has been shown that they are very efficient for shared memory machines and
allow exploiting the potential of multicore processors and accelerators such as GPUs. In
addition, there is a hybrid dataflow programming model MPI/OpenMP and MPI/OmpSs that
parallelizes computation on the distributed-memory nodes using MPI.

Task-based parallel programming languages require the programmer to partition the
traditional sequential code into smaller tasks in order to take advantage of the existing
dataflow parallelism inherent in the applications. The programmer indicates data
dependencies between parts of the code which become tasks and then are scheduled by an
execution framework at runtime. The major advantage is that it can “react” on internal
irregularities, e.g. differences in execution time of each task, and external conditions, such as
hybrid architectures. Furthermore, it has the potential of taking advantage of very distant
parallelism – parallelism of code sections that are mutually far from each other.

Debugging refers to be able to seeing and controlling the execution of a program. Traditional
debuggers for sequential programs such as gdb are not sufficient for dealing with the
complexity of task-based parallel programming languages. Traditional debuggers work at a
single thread and working at a line level in the code. They are good in checking serial
correctness of the code. However, traditional debuggers are not enough to deal with the
complexity of multiple threads running concurrently in the application. A task-based parallel
program differs from debugging an otherwise parallelized program as the parallelization is
determined by data dependencies instead of explicit scheduling of tasks and synchronization
between them. For debugging task-based parallel programming languages it would be
interesting to see which is the status of each task, which is the function that it is executing and
in which thread is executing this task. For task dependencies it would be interesting to see
which memory addresses cause some dependency with other tasks and which tasks depend on
each other.

In addition, it is necessary to control the execution by stepping through the application task-
wise. Debugger users should be able to block tasks and even prioritized tasks in order to see
what the impact on performance and correctness of such as transformations are. Furthermore,
it will be necessary to add/remove data dependencies among tasks.

Therefore, the development of new debugging tools capable of assisting the programmer with
debugging task-based parallel programs is a crucial condition for effectively exploiting the
possibilities of these models.

Another recommendation is about the lack of support of metrics and models developed
specifically for task-based parallel programming languages. This models and metrics may be
interesting to support in current tools in order to understand the behaviour of individual tasks
that run in an application. In particular, it would provide insights in what are the critical tasks
that are likely to have a biggest impact on the performance of the application. Also it could
help answer the question of what would be the impact on the overall application performance
and when to accelerate/optimize a particular task in the application. Answering these
questions and measuring the impact of them is crucial for the optimization of the task-based
parallel programming languages.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 63

Figure 24: Example of data dependency graph among tasks in the Temanejo tool.

4.1.1 Recommendation evidences on existing tools

An illustrative example to show these recommendations is found in the Temanejo tool [39].
Temanejo is a debugger for task-based parallel programming languages. It is still under
development. Figure 24 shows a screenshot of the task dependencies among tasks for some
example code in Temanejo. Also, the memory addresses that actually are creating data
dependencies can be seen. This tool provides full support for the OmpSs programming
language [38], but not standard OpenMP. In addition, it only provides basic support for MPI
by allowing only one thread per MPI process.

As can be seen, the visualization of the data dependency graph is a flat graph. It would be
interesting to support hierarchical dependency graph visualization. This is critical for more
complex applications where the number of tasks is huge. In this scenario, providing a
hierarchical view would enormously facilitate the debugging of applications.

Moreover, it would be interesting to support some kind of analysis of the dependency graph in
such a way that it could identify the critical path of the execution and the highest and lowest
possible concurrency during the execution.

4.1.2 European contributors

In Europe there are two strong teams that are contributing to these different areas. They are
briefly described below in Table 10.

Recommendation
area

European
institution/Country

Tool name Description

Metric/models
for task-based
programming
models

JÜLICH
SUPERCOMPUTING
CENTRE (JSC) /
Germany

Scalasca [40] A performance
analysis toolset that
has been specifically
designed for use on

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 64

Recommendation
area

European
institution/Country

Tool name Description

large-scale systems
supporting MPI and
MPI/OpenMP

Debugging for
task-based
programming
models

High Performance
Computing Center
Stuttgart (HLRS) /
Germany

Temanejo [39] A debugger for
applications
parallelized with the
use of the OmpSs
programming model

Table 10: European contributors for the recommendations for the support of task-based parallel
programming languages.

4.2 Intelligence

The amount of information collected when tracing applications is growing at a fast pace. As
applications run on ever larger parallel computers the larger is the amount of information
collected. Also, applications are getting more complex involving the simulation of multiple
physical models or multiple simultaneous physical phenomena. For example, combining
chemical kinetics and fluid mechanics or combining finite elements with molecular dynamics.
This is inevitable requiring the need of smarter tools to deal with this huge amount of
information. Furthermore, there are new user groups that are starting to use HPC systems that
are requiring better tools to assist them in properly using these complex systems.

There are two basic directions for future development on providing more intelligence to the
existing tools. One direction is to address the scalability issue by deciding what information is
relevant to capture from the traces obtained in the parallel execution. Blindly capturing
everything from all the processes during the whole duration of the application is impossible.
Some aspects to consider for reducing the size of the traces are:

1. If the application behaviour is very repetitive a few iterations would be enough, but the
tool has to detect the period. Also, the tool would need to be able to detect whether this
behaviour changes over time or not. In case it changes, it should obtain the new behaviour
of the new period.

2. Improvement of sampling techniques by automatic detection of the optimal sampling
frequency of applications. It is possible to extract this frequency using spectral analysis. It
is shown that the optimal frequency is very useful to extract significant performance
information very efficiently and accurately showing their internal iterative structure of the
application without recording everything from the application.

3. Highlight interesting data. Not every MPI call has the same amount of information. i.e.
many Iprobes are in sequence and therefore only the first, the last and the number of
messages in the sequence are needed. Interestingly, it might still be useful only to select at
random a portion of the records.

4. Only recording MPI calls that imply long delays. These calls have a high probability to
negatively impact the execution time of an application.

The second direction is focused on increasing the insight of information that can be extracted
from the raw data in the trace. Instead of depicting the huge number of information from the
traced data which is nearly impossible, it will be more practical to find/show/map only the
interesting data which is typically very small compared with the whole data trace.

There are several techniques that can be developed in this direction:

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 65

1. Spectral analysis. This technique is based on applying wavelet transform, Fourier
transforms or other transformation to the trace in order to easily detect the most important
frequencies of the application execution. These main frequencies are strongly related to
the internal loops of the application' source code. Therefore, it automatically obtains the
structure of the application in phases where these phases are clearly repetitive over time.

2. Clustering. The idea is to identify computation regions of similar behaviour. For example,
areas that shows similar in terms of duration or hardware counters regardless if they are
the same or a different routine. It might be that different routines in the application may
have similar behaviour or one routine may show different behaviours overtime. These
kinds of effects can be detectable with these kinds of techniques.

3. Automated detection of known problems. For example, scalability problems due to load
imbalance can be automatically detected. Moreover, these techniques can identify the
problem, localize in the code where it is happening, and finally provide some solutions in
order to fix it.

4.2.1 Recommendation evidences on existing tools

To illustrate the clustering technique we will use the EXTRAE tracing tool. Figure 25 shows
the clustering of the IPC metric for a 64-process run of the application SPECFEM3D. As you
can see, it allows us to quickly identify two areas of the code with a quite different IPC value
between them – one has a high IPC in between 0.6 and 0.8, and the other a very low IPC in
between 0.1 and 0.3.

The interesting thing is that this IPC does not belong to different functions, but to the same
function executing in a different processor. This is illustrated in Figure 26 where we can see
the distribution over time of the different computation regions showed before in Figure 25. As
you can see, there are only a couple of processors that shows this low value of the IPC. This
finding would be very difficult to detect in large traces. Clustering allows you quickly
pinpoint these performance problems.

Figure 25: Clustering the IPC

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 66

Figure 26: Cluster distribution over time

This clustering technique could be also applied to task-based parallel programming languages.
In this context, it will be useful for instance to identified different performances of the same
task on different processors and also characterize the behaviour of the different tasks trying to
optimize the task with low performance.

Additionally, in Vampir we can find an interesting utility that is based on changing the
opacity of the colours when we are visualizing the trace. Figure 27 shows a trace with
different communication and computation records where it is visualized using a high opacity
factor. As you can see, using a high opacity factor it easily highlights the records with red
colour that corresponds to communication operations. This is a technique that follows the
approach of find/show/map only the interesting data in the whole data trace, in this particular
case the communication operations.

Figure 27: Opacity selector in Vampir.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 67

4.2.2 European contributors

Table 11 summaries the European institutions that are developing tools with emphasis of
providing more intelligence in order to better analyze the huge information in raw data.

Recommendation
area

European
institution/Country

Tool name Description

Spectral Barcelona
Supercomputing
Center (BSC) / Spain

Paraver [38] Performance visualization
and analysis tool based on
traces

Clustering Barcelona
Supercomputing
Center (BSC) / Spain

EXTRAE [38] A tracing tool to extract
computation and
communication events
from applications

Clustering Technische Universität
München (TUM) /
Germany

Periscope [41] A scalable automatic
performance analysis tool

Highlight
interesting data

Technische Universität
Dresden/Germany

Vampir [42] Vampir provides an easy
to use analysis framework
which enables developers
to quickly display program
behaviour at any level of
detail

Table 11: European contributors for the recommendations on intelligence.

4.3 Models

As the cost of developing, deploying and maintaining high performance systems rises, it
becomes more and more important to predict system performance in advance. This can be
achieved by using analytical model of applications. These models will be used to analyze,
predict, and calibrate performance for the systems of interest. They are becoming the overall
predictors of how the whole system performs.

Concretely, a performance model analyzes both application and system characteristics.
Application characteristics are defined uniquely for each application and include processor
flow, data structures used, frequency of use and mapping onto the system, and their potential
for resource contention. System characteristics include node configuration (processors per
node, shared resources) and inter-processor communication (latency, bandwidth, topology).
Many of these are measured for an existing system or need to be specified/simulated for a
future system. A separate performance model is usually developed for each application of
interest and thus the approach is application-centric.

Performance modelling can be applied to every stage of the design of a large scale system.
Specifically, in an early stage, they are becoming very important to guide system development
and procurement decisions of large scale parallel systems. Then as the hardware becomes
available, they will validate their predictions with real-world tests. Moreover, in this later
stage they can be also used to understand the complex interaction between applications,
software environments and computer hardware in order to achieve higher performance by
optimizing the system.

We can identify various main areas of further development on performance modelling:

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 68

1. Root cause. An automatic methodology able to show general but non-trivial performance
trends. An analytical model which consists on several performance factors is used to
underpin the root cause of application performance degradation. It tackles the problem
raised when the temporal or spatial distance between cause and symptom of a
performance problem constitutes a major difficulty in deriving helpful conclusions from
performance data.

2. Methodological. It is related to the development of models to understand better the
algorithms used in the applications. These models can be used to drive the development of
new algorithms that are more efficient. There is some recent work that has shown a model
for determining the lower bounds on the number of words moved between processes in a
direct linear algebra algorithm (matrix multiply, LU, Cholesky, QR factorizations, and so
on). This information can be used to find algorithms that attain these lower bounds,
specifically on interesting classes of sparse matrices.

3. What-if models. Instead of building an accurate model of the application, they are focused
on modelling a particular performance factor of the application. Using simulations tools
they are able to predict the application’s performance when this factor is improved by
several times. Analyzing what-if scenarios are interesting to evaluate whether some code
modification is worth to pursing or not.

4. Power models. Building power models based on hardware counters available on multicore
architectures. It is based on actual power measurements. The counters are sampled at
regular intervals and the activity in each component in the processor is linearly correlated
with the actual power consumption. Stochastic methods are usually used to help on
building these power models.

4.3.1 Recommendation evidences on existing tools

The root cause approach can be found in the Scalasca tool [40]. Figure 28 shows a 3D view of
the processes from the Zeus MP/2 astrophysics code arranged in a sphere showing the
computation time (shown on the left) and their associated communication wait states (shown
on the right). As can be seen on the left graph, the processes in the outer region of the sphere
are the ones waiting longer on communication operations (shown with the red colour).
Looking at the root cause of this phenomenon in Scalasca it is displayed on the right graph the
computation time of the processes. There is a strong correlation in between the computation
times and the high wait delays. Processes in the inner region of the sphere topology carry
more computation load than the outer region. Therefore, processes at the rim of the inner
region delay those farther outside producing these longer wait times.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 69

Figure 28: A 3D view of several processes arranged in a sphere showing the computation time (shown on
the left) and their associated communication wait states (shown on the right).

Another illustrative example found in today’s tools for the recommendation on What-if
models is provided by the tool Mpisstrace. This is shown in the Figure 29 where a particular
task out of the four tasks that the Cholesky application is composed of is sped up 2× in the
different number of cores. As you can see, this tool is able to predict for each number of cores
which is the most effective task to sped up. In particular, the sgemm_tile task is the one
that delivers the highest improvement in performance for Cholesky when it might be sped up
by a factor of 2× for the case of one core. Based on this information programmers could focus
on optimizing the right task avoiding a waste of time optimizing other tasks that are not
having a bigger performance impact.

Figure 29: Speedup when one task is speeded up by 2× in the Cholesky application.

4.3.2 European contributors

In Europe there are two strong teams that are contributing to these different areas. They are
briefly described below in Table 12.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 70

Recommendation
area

European
institution/Country

Tool name Tool description

Root cause JÜLICH
SUPERCOMPUTING
CENTRE (JSC) /
Germany

Scalasca [40] A performance analysis
toolset that has been
specifically designed for
use on large-scale
systems supporting MPI
and MPI/OpenMP

What-if models Barcelona
Supercomputing Center
(BSC) / Spain

Mpisstrace [43] A debugger for
applications parallelized
with the use of the
OmpSs programming
model

Power models Barcelona
Supercomputing Center
(BSC) / Spain

POTRA [44] A framework for
Building Power Models
For Next Generation
Multicore Architectures

Table 12: European contributors for the recommendations on models.

4.4 Scalability

The most important aspect of any tool designed for exascale computing is scalability. Some
current approaches like offline filtering and processing of traces will partially solve the
problem in terms of analysing smaller regions. Storing large amounts of data in the order of
terabytes (or even petabytes) (e.g. for the original/full trace) will be costly at exascale. Even if
other approaches such as event based or data-size based tracing might be effective they are
not completely beneficial because the traces get too big as well. We need a very fine detail of
what is going on in the application and we are overwhelmed by huge amounts of data.
Managing and storing efficiently this data is becoming critical for performance analysis.

There are some approaches that look promising to tackle the problem of scalability: Sampling
techniques and intelligence based monitoring techniques can substantially increase the
scalability of the tools as mentioned early in Section 4.2.

1. In-memory or online processing: It allows tools to identify the important events during
the execution of the application, and hence reduces the overall data volume to store.

2. Management data by re-structuring of traces: There are several techniques such as
partitioning traces into different files using OTF (Open Trace Format), segmenting traces
and pre-computing general summaries.

3. Parallelizing tools for visualizing large sets of trace data: One approach in this
direction allows the analysis of traces immediately after they run by using cores from the
original CPU set.

4. Automatic reduction/compression to manageable size: Compression techniques can be
applied to drastically reduce the size of the traces. Also Lossy compression techniques to
further be applied to further reduce the size of traces.

5. Multi-scale: Many scientific applications are based on multi-scale modelling which
calculates material properties or system behaviours on one level using information or
models from different levels. On each level particular approaches are used for the
description of a system. For example in physics there are level of quantum mechanical
models (information about electrons is included), level of molecular dynamics models

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 71

(information about individual atoms is included), meso-scale or nano level (information
about groups of atoms and molecules is included), level of continuum models and level of
device models. In this context, performance tools might also follow this approach of
multi-scaling by tracing and analyzing one level at a time rather than the whole program.

6. Pixel-bar charts: These charts allow for visualizing large amounts of multi-attribute data.
The approach is a generalization of traditional bar charts and x-y diagrams, which avoids
the problem of losing information by aggregation or over plotting large amounts of data
points. The basic idea is to use the pixels within the bars to present the detailed
information of the data records. Our so- called pixel bar charts retain the intuitiveness of
traditional bar charts while allowing very large data sets to be visualized in an effective
way.

4.4.1 Recommendation evidences on existing tools

Figure 30 illustrates using Vampir [42] a pixel bar chart for performance visualization of I/O
events in a million-process run of some scientific application. As we can see, it is possible to
easily have a global overview of size, duration, and bandwidth of the I/O operations for very
large process counts (one million) overtime. Time corresponds to the X axis and processor is
shown in the Y axis. For example, it is possible to see in the Size bar, that there are few
processes among the million that send very large I/O files (red dots) and these ones are also
causing a big delay as it is shown in the Duration bar (yellow and red dots).

Figure 30: Pixel bar-charts for performance visualization of I/O events in a million-process run

Another interesting example to illustrate how existing tools are coping with scalability issue
in analysing large data set is shown in Figure 31 and Figure 32. Figure 31 depicts the full
trace from a 64-process run of the GROMACS application. It shows the various iterations and
the communication operations performed during each iteration. The same behaviour of the
application can also be observed in Figure 32 where it shows only 15% of the trace records
from the full trace. This example demonstrates that there is no need to store the full trace
because a small portion of it is enough to still see the full behaviour of the application. This is
a technique that belongs to the smart approaches based on sampling techniques.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 72

Figure 31: Original full 64-processes GROMACS trace

Figure 32: 15% of records from the 64-processes GROMACS trace

4.4.2 European contributors

In Europe there are two strong teams that are contributing to these different areas. They are
briefly described below in Table 13.

Recommendation
area

European
institution/Country

Tool name Tool description

Data
management

JÜLICH
SUPERCOMPUTING
CENTRE (JSC) /
Germany

Scalasca [40] A performance
analysis toolset that
has been specifically
designed for use on
large-scale systems
supporting MPI and
MPI/OpenMP

Data
management

Technische
Universität
Dresden/Germany

Vampir [42] Vampir provides an
easy to use analysis
framework which
enables developers to
quickly display
program behaviour at
any level of detail

Online
techniques

Barcelona
Supercomputing
Center (BSC) / Spain

EXTRAE [38] A tracing tool to
extract computation
and communication
events from
applications

Table 13: European contributors for the recommendations on scalability.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 73

4.5 Specific recommendations from PRACE prototypes

This section summarizes the specific technical recommendations from prototypes owners
about the further development in HPC tools.

1. Portability. Portability of the software tools to support different hardware and
programming models (e.g. NVIDIA/ATI, CUDA/OpenCL) will be very useful.

2. GPU communication support. Benchmarks measuring bandwidth and latency between
GPUs are indispensable for the performance analysis of multi-GPU codes. Enable tools
like the parallel ping-pong test program LinkTest to support GPU-GPU communication.

3. Support for analysing communication-computation overlap. Trace-based, timeline-
style performance analysis tools can greatly enhance the ability of a programmer to
identify opportunities for optimization of accelerator codes. The timeline-style view
shows when host and device events occur; using this feature, the programmer can easily
spot inefficiencies and look for opportunities for overlap. A particularly useful example of
this technology is Vampir.

4. Support for accelerator dataflow visualization. Tools that help to visualize an
accelerator application's host-device data flow characteristics would be useful. This is
essential when optimizing for data locality in order to reduce costly host-device data
transfers.

5. Directive-based support. Many performance analysis and debugging tools do not yet
support directive-based accelerator programming models. This suggests that performance
analysis and debugger tool vendors should support directive-based approaches.

6. Proprietary tools needs more data analysis support. Relying on basic NVIDIA tools
turned out to be the only stable, efficient and highly scalable approach. Data analysis
requires a bit of hand-coded post processing of textual output. Third party tools generally
need deep testing prior adoption in a production/highly parallel/hybrid environment.

7. Support for I/O performance counters. Integrate monitoring and analysis of I/O
performance counters into performance analysis tools. Application developers today have
very limited options to retrieve performance data concerning the I/O sub-system. This
becomes even more critical if complexity increases due to additional storage levels.

8. Power analysis. Future systems with more than 100,000 of nodes need to have ways for
defining the level of detail for power measurements required for each job. For example a
simple 3 level approach can be envisioned. Level 1 would store power data at the
resolution rate of the measuring equipment, level 2 would store data in specific intervals
(e.g. every 5 min) and level 3 would just store the Energy to Solution (energy consumed)
for the job.

9. Memory layout support. Integrate/provide specialized performance counter (cf.
hpmcount/IBM) in performance analysis tools. Provide extended compiler support to
tailor memory layout onto the nodes (NUMA-aware compiler).

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 74

5 Hardware recommendations

Having looked at recent developments in programming languages for high performance
computing, we turn our focus to hardware and the associated technologies being developed as
we target Exascale systems. In this chapter we will present some of the results of the
evaluation of the prototype hardware which we have carried out within this work package,
and arrive at a number of recommendations this evaluation has led to.

5.1 Lessons learned and Recommendations

The prototypes evaluated under PRACE-1IP WP9 have proven to be an extremely valuable
source of information. By experimenting on novel computer architectures, we have evaluated
the potential of certain technologies to evolve into Exascale supercomputers. An important
result of this work was to confirm current trends in academia and in industry and to provide
quantitative results on such aspects as power efficiency and scalability, results which can be
used to make explicit recommendations on which architectures have a potential to scale to
Exascale.

The conclusion of this study is that there are a number of promising technologies, however no
single architecture prevails. On the other hand, there are certain technologies that are optimal
for certain classes of problems, depending on the specific work-load and computational needs
(e.g., I/O intensive, memory intensive, floating point intensive, etc.). Our findings are
presented the form of a set of tables, where the recommendations reflect the lessons learned
from each prototype architecture.

5.1.1 Accelerators

Accelerators are currently subject to intense research. GPUs, DSPs or FPGAs demonstrate
great potential in power efficiency (i.e. Watt per Flop ratio). They are seen as the most
obvious path to the Exaflop at a reasonable power budget. The first section of this chapter
therefore investigates accelerators, namely an FPGA (Table 14) cluster and three GPGPU
clusters (Table 15, Table 16 and Table 17).

Lessons learned from the prototype Recommendations

Our prototyping efforts of a matrix
multiplication accelerator support the general
wisdom that special-purpose accelerators are
2-3 orders of magnitudes more energy-
efficient than today’s general-purpose
multicore processors.

To achieve the desired energy-efficiency for
next-generation supercomputers, we
recommend replacing assemblies of COTS
general-purpose processors with low-power
processors with attached accelerators, such as
reconfigurable logic.

Our FPGA accelerator prototype shows that
today’s FPGA’s are capable of delivering
competitive double-precision floating-point
performance with 2 orders of magnitude
higher energy efficiency than general-
purpose multicores. This assumes that the
accelerator architecture achieves a high
utilization of the special-purpose hardware of
FPGA’s, such as multiply-and-accumulate or
SRAM arrays.

We recommend considering reconfigurable
logic (FPGA’s) as an energy-efficient
accelerator platform for double-precision
floating-point computations.

Accelerator design requires experienced We recommend a concerted educational

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 75

Lessons learned from the prototype Recommendations

designers with interdisciplinary skills in
algorithms, computer architecture, hardware
design, and EDA tools.

effort to focus on interdisciplinary
engineering curricula on the skill set required
for designers of future accelerator
architectures.

Summary

Our accelerator design and prototyping efforts corroborate the potential of accelerated
computing for improving energy-efficiency by 2-3 orders of magnitude compared to general-
purpose multicore processors. We have demonstrated competitive double-precision floating-
point performance on reconfigurable logic (Xilinx FPGA’s) with significant reductions in
energy consumption. Thus, we believe that FPGA’s have the potential to evolve into a
competitive accelerator platform for future exascale supercomputer nodes.

Table 14: Energy-to-solution prototype from from JKU.

The results of an investigation in GPUs for General Purpose computing (GPGPUs) are
described in Table 15, Table 16 and Table 17. The prototype at CaSToRC shows that a
substantial amount of work to adapt codes is required, while the prototype from CSCS
emphasizes the necessary links between hardware and software at the system level. The
CINECA prototype demonstrates the significance of handling hardware failures, which have a
probability of occurrence proportional to the size of the machine.

Lessons learned from the prototype Recommendations

Performance and energy efficiency of
modern HPC clusters can be noticeably
improved by the use of GPUs as accelerators.

Do further investigations on GPU computing
to enlarge the field of application for hybrid
clusters.

GPU communication in hybrid clusters is a
crucial point and still poses a challenge.

Continue work on improvement of GPU
communications, both intra and inter node, to
mitigate possible bottlenecks

Approaches like GPUDirect and
collaborations between vendors as with
NVIDIA and Mellanox for improvement of
GPU inter-node communications looks
promising.

Implement a standard protocol that can be
used to improve communications between
different PCI devices.

Summary

GPU communication in hybrid clusters still poses a challenge but approaches such as
GPUDirect and collaborations between different vendors for improvement of GPU inter-
node communications appear promising.

Table 15: Interconnect Virtualisation prototype from CaSToRC.

Lessons learned from the prototype Recommendations

Designing directly-connected topologies
using InfiniBand 8-port (unmanaged)
switches requires an in-depth understanding
of the cabling from processor and between
switches. This is not scalable to large scale
installations using open source management,
trouble-shooting and diagnostics interfaces.

In order to introduce cost effective and
scalable interconnect topologies using
commodity components, especially
unmanaged switches, further research and
investment is needed both at the fabrics level
and also for the management and
troubleshooting tools such as OpenSM.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 76

Lessons learned from the prototype Recommendations

Incorrect cabling from processors and
between switches can severely impact
communication throughput.

Currently, PCIe peer-to-peer communication
is not fully supported by many vendors.
Hence, a true host bypass, which CSCS GPU
virtualization prototype intended to evaluate,
could only be implemented through a
software layer to communicate between the
GPU and the network interface. This is also a
performance critical design component for
clusters based on PCIe accelerators.

As accelerators become central to the node
design, direct communication channels must
be provided by vendors and should be
supported by Linux kernels to allow for
direct memory transfers between the
accelerator memories and the network
interface, without an intermediate copying
step to the host memory. Research and
development is needed for the Linux kernel
extensions in collaboration with vendors and
this could be a co-design opportunity for
PRACE.

GPU to GPU direct memory transfers over
PCIe is supported by NVIDIA drivers.
Currently, this is limited to single IO hubs,
therefore, we cannot develop a multi-GPU
server for GPU virtualization using
commodity components.

There could be different solutions: (1) a PCIe
bus can be introduced that is extensible to
multiple ports without a significant
performance loss; (2) there could be PCIe
chipsets that could provide extensible peer-
to-peer interfaces; (3) a GPU/accelerator
could be a standalone unit (self-hosted) and
could initiate communications to other GPU
devices and CPUs in the cluster.

Summary

As accelerators become central to the node design, direct communication channels must be
provided by vendors and should be supported by Linux kernels to allow for direct memory
transfers between the accelerator memories and the network interface, without an
intermediate copying step to the host memory.

Table 16: Interconnect Virtualisation prototype from CSCS.

Lessons learned Recommendations

Hybrid CPUs + GPUs architecture is
affected by more HW failures and damages
compared to uniform clusters. This is related
to the large amount of HW components:
more available devices increases the rate of
failure events.

It is mandatory to provide a semi-automatic
monitoring system which will alert the
system administrators for possible failures.

CPU or GPU HW component failures could
put off line an entire CPU-GPU host and
vice versa. This kind of event may affect all
jobs running on the host even if these jobs
do not belong to the same user.

Again, host failures may affect CPU and
GPU jobs running on the same server.

A predictive failure tool could help prevent
user job failures by, e.g. draining the host in
advance.

Direct and indirect power consumption of In order to optimize power consumption,

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 77

Lessons learned Recommendations

hybrid CPU and GPU clusters is less than
the combined consumption of 2 separate
clusters. On the other hand, idle GPUs or
CPUs still consume power.

fully hybrid CPU-GPU clusters may not be
the optimal solution. During the planning
stage it may be import to evaluate the needs
of the users, and thus deploy clusters
equipped with a non-uniform ratio of CPUs
and GPUs.

Summary

On a hybrid cluster it is crucial to deploy a tool for predicting and/or preventing hardware
failures.

Table 17: Interconnect Virtualisation prototype from CINECA.

5.1.2 I/O

As machines get larger, the possible simulation sizes increase accordingly, thus increasing
requirements on storage and I/O bandwidth. Designing an efficient I/O subsystem for
Exascale computing has evolved into a challenge itself. The prototype from FZJ casts light on
the coming massive usage of flash technologies in the HPC world, detailed in Table 18.

Lessons learned from the prototype Recommendations

NAND flash memory card technology
becomes more mature and provides a real
opportunity to mitigate the performance gap
between volatile and non-volatile
memory/storage access.

Promote the integration of flash memory card
technologies into future HPC architectures.

Various challenges to integrate flash memory
into a massively parallel HPC architecture
and to enable its efficient use remain to be
addressed.

Further explore the design space and foster
the integration of additional storage levels
into parallel file systems and the
development of I/O middleware.

Summary

NAND flash memory is the only technology which in the near future allows to significantly
mitigate the I/O performance bottleneck. The integration of these technologies into massively
parallel HPC systems will be an important step towards the design of an Exascale I/O
subsystem.

Table 18: Novel MPP Exascale system I/O prototype from FZJ.

The second I/O prototype is installed at CEA (in collaboration with BSC, CINES, Daresbury,
FZJ and HLRS), and focuses on the evolution of the storage system (Table 19). The goal is to
study how to efficiently store the Petabytes of data that will be produced by an Exascale
machine.

Lessons learned from the prototype Recommendations

The reduced overall hardware components
involved in Xyratex’s Lustre storage solution
(ClusterStor 3000), with embedded server
modules, allow for a faster deployment than
with a solution based on I/O nodes plus
standard DAS or SAN disk arrays. It also

Foster the use of embedded servers in storage
systems for Exascale I/O.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 78

Lessons learned from the prototype Recommendations

shows good performance per spindle and
eases the whole system maintenance.

Software RAID using Linux device-mappers
can be used to build embedded high-end
storage systems. Expected system
performance was reached, however, some
system failures were encountered that may be
related to the RAID stack.

Do not discourage using new RAID engines
for disk arrays, like device-mapper based
RAID. On the other hand, more work and
research have to be invested in terms of
software RAID resiliency.

Summary

The use of embedded server modules in a high-performance Lustre storage system has
demonstrated competitive performance, energy consumption and manageability. Resiliency
of Linux software RAID needs to be investigated and improved in the long run.

Table 19: The Exascale I/O prototype from CEA et al.

5.1.3 Energy efficiency

A general awareness on energy preservation, the ever increasing price of energy and the
impact of HPC on the global environment have encouraged us to design new computing
centres (infrastructure) as well as new types of nodes (hardware architecture). The Energy-to-
Solution prototype at LRZ (Table 20) provides insights on energy efficiency as we scale
towards Exaflops.Table 21, which presents the results of the BSC prototype, shows how high
density nodes can be made of low power, commodity components such as those available in
the embedded world or in the phone/tablet market.

Lessons learned from the prototype Recommendations

Increased leakage currents at higher water
temperatures and relative lower efficiency of
current adsorption machines reduce the
benefits of hot water reuse through
adsorption refrigeration.

In order to benefit from reusing hot water for
cooling, components with low leakage
currents should be used and the efficiency of
adsorption refrigeration machines should be
improved.

A water cooled systems and compressors that
produce cool air using the system water
cooling loop work well to create a room
neutral rack system. But the compressor
power consumption at higher water
temperatures negate possible benefits of
adsorption when compared with free cooling.

Cool all components with water so that the
compressors can be removed from the
system. This should allow future HPC
centres to take advantage of possible hot
water recycling via adsorption.

A pump failure in the infrastructure water
loop running through the HPC system water
heat exchanger was not detected because the
temperature sensor on the infrastructure side
before the heat exchanger showed correctly
normal temperature but the HPC system
water temperature increased till an
emergency shutdown occurred.

It is important to not just monitor the system
infrastructure but also to monitor the building
infrastructure correctly. It is also important to
think about all possible failure scenarios and
to put appropriate sensors in the right places
and integrate them with the system
monitoring system. Cooling loops for
instance need not just temperature sensors
but flow sensors as well.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 79

Lessons learned from the prototype Recommendations

Disassembling and moving a water cooled
rack system is currently not easy because all
water pipes are soldered.

Having a connector based system for the
water pipes between racks would make
assembly, disassembly and extension much
easier.

The 1 minute read interval for some power
sensors is not good enough for detailed
power analysis of jobs. It is usable for
Energy to Solution (EtS) measurements for
jobs typically running longer than an hour.

Future systems might need a partition of
nodes that are equipped with fine grain
power measuring equipment for detailed
power analysis.

The water cooled prototype in combination
with free cooling shows a PUE of less than
1.2. This is much better than traditional air
cooled systems (> 1.4).

Water cooling in combination with free
cooling should become the standard cooling
technology for future generation HPC
systems.

Summary

Future systems should use direct water cooling of all components. Energy conservation and
recovery options should be considered including adsorption, free cooling and hot water
reuse.

Table 20: Energy-to-solution prototype from LRZ.

Lessons learned from the prototype Recommendations

Per SoC compute density is not enough to
dominate total node and blade power
consumption.

Increase compute density by replacing SoC
with one which has more cores (e.g. Tegra
3).

Compute node (and SoC as well) has
unnecessary components which consume
power but are not used for computation.

The node that we are using is designed for
embedded development, and has many
components that are not needed in HPC. One
solution is to remove all unnecessary
electronics like the RTC (Real Time Clock),
USBs, HDMIs etc. If possible, consult SoC
maker for stripped down version of SoC.

Blade power supply has huge intrinsic losses. Size and/or design power supply properly so
that the expected consumption is on the point
of best power supply efficiency.

Summary

It is important to increase compute density, such that the power consumption of the processor
is a significant portion of the power consumption of the node

Table 21: Energy-to-solution prototype from BSC.

5.1.4 Interconnects

Not all algorithms can be easily decomposed into MPI tasks. For such codes, a finer grain
parallelism offers the possibility to increase performance. Large NUMA nodes have a
significant advantage for such classes of codes. The prototype of UiO demonstrates this
potential, as is described in Table 22.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 80

Lessons learned from the prototype Recommendations

Shared memory architectures promote the
use of parallel computers for “not yet
parallel” application codes via a) a simple
global memory model b) simple and fast
“one-sided” memory access (copy) c) small
latencies compared to distributed memory
systems. The number of synchronization
points and buffer memory in the FMM can
be reduced compared to distributed memory
systems through direct access.

Further explore and adapt the NUMA design
to increase the number of cores per node.

Summary

NUMA architectures bridge the gap between non-parallel applications and HPC codes via a
simple memory model. NUMA nodes, as part of a larger distributed system, will be an
important step to designing Exascale machines. NUMA nodes allow dynamic and effective
workload balancing for non-static workload problems (e.g. MD).

Table 22: NUMA-CIC prototype from UiO.

5.2 Summary

We provide the following summary of the recommendations in this chapter, concerning the
path towards Exascale supercomputers:

 Acceleration: Accelerated nodes will most likely form a significant component of an
Exascale system, however further experiments are required to identify whether this
acceleration will be based on GPU, FPGA, DSP or other emerging architectures. An
important effort must be made for improving communication as well as developing tools
or methods to track (and possibly correct) hardware failures.

 Compactness: The density of nodes must increase yet with no significant penalty on
power consumption. The impact of ARM based architectures must be studied as soon as
they will be more widely available.

 Maintain a partition of “fat” nodes: As some workloads cannot be scaled to highly
parallel nodes, a proportion of large NUMA nodes, with a high core count, should be
present in an Exascale machine, to accommodate all classes of applications.

 Efficient I/O subsystem. Performing I/O at scale should be taken into account when
designing an Exascale machine. Flash based technology has been shown to be a path to
fast, scalable and resilient nodes. Embedded server modules will help build a manageable
and efficient storage system without scarifying energy efficiency.

 Energy efficiency: Node design (and accordingly, the computer centre architecture) must
evolve towards a PUE of less than 1.2. Watercooling is the most promising technology as
of today.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 81

6 Conclusions

So far, international efforts have highlighted that a number of solutions in power efficiency,
interconnect scaling and I/O, among others, are required to meet the Exascale milestone. The
current document reports on results and outcomes of an investigation into a rich set of novel
computer architectures, with the intention of contributing to this global effort in reaching the
level of innovation required for Exascale computing. The work detailed here has looked into
programming languages designed for HPC, system software, tools for analyzing and
monitoring parallel applications as well as certain aspects of hardware design. Here we
summarize with an overview of the conclusions and recommendations presented in this
document.

For the case of programming languages, we have looked more closely into accelerators, and
more precisely GPUs. We conclude that certain pragma-based languages, such as OpenACC
and OmpSs show promising results, however are still rather immature and not suitable for
production-level software. When investigating OpenCL and CUDA, we find that although the
former has reached a certain level of maturity, positive developments made by NVIDIA in
their hardware prove difficult to accommodate in OpenCL. This means that developers of
GPU applications are more likely to persist on using CUDA for their production level codes.
In terms of multi-GPU programming, we found that the combination of MPI+CUDA allows
access to the latest technological innovations in GPU/CPU decoupling.

The work carried out in system software has highlighted the importance of co-design in the
Exascale era. More precisely, regarding fault tolerance, we have identified that in current
systems this is achieved by combining all the more reliable hardware with efficient
checkpoint and restart mechanisms. For Exascale, however, this may prove unrealistic. It is
therefore crucial that system software be made resilient to hardware faults. Another important
outcome of this work has been the identification of the need for more hardware-aware system
software, namely system software which can adapt according to, e.g. power consumption and
which is aware of the locality of the compute nodes and the interconnect topology.

This work has also identified a number of requirements for software development tools, i.e.
applications that assist the development of software, for next generation supercomputer
architectures. Firstly, it is crucial that tools be developed for accelerated architectures, and
namely tools which can trace the movement of data between GPUs and between GPU and
main memory. Additionally, we found that tools which can report on I/O performance and
which register I/O counters are lacking or insufficient, something especially important given
that I/O is expected to be a major bottleneck in need of significant innovation on the path
towards Exaflop. However, more generally, we have identified a need for innovation in the
reporting and filtering of traces and debugging information. Major steps are required in the
presentation of hardware counters and program flows from millions of cores for these to be
useful to the programmer.

Finally, we looked at certain aspects of hardware and their suitability within Exascale. Apart
from the need for more dense computational units, such as accelerators, we found that there is
much room for improvement in terms of I/O and energy efficiency. Flash based storage
devices have proven to be most effective in this area, while we have had positive results with
the warm water cooled prototype.

This document has reported on the status of the research achievements of a pan-European
collaboration of computer centers in the area of HPC innovation. Driven by the particular
interests of each individual center, and simultaneously by the common European goal of
maintaining competitiveness as we approach the Exascal milestone, our intention is to
compose a valuable resource, partly served by this deliverable, for the relevant HPC

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 82

stakeholders in Europe. We believe that the result of this ongoing collaboration has been
successful in identifying and evaluating promising computer architectures as part of Europe’s
efforts towards Exascale computing. The results presented here will guide further
investigations into novel computer architectures, which is an ongoing activity in PRACE.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 83

7 Annex

7.1 Energy Aware System Software

In the next pages, a write-up detailing the results on “Energy Aware System Software”
follows, as outlined in Subsection 3.2.1 of the main text

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 84

ENERGY AWARE SYSTEM SOFTWARE
With energy efficiency being one of the major problems to overcome in the Exascale challenge, we predict that

future HPC system software needs to become energy aware. Energy awareness at the system software level

encompasses two aspects. First, the power consumption of the system needs to be monitored in order to

measure the energy required to run a given application (i.e. Energy‐to‐Solution). Second, the operational

parameters influencing the power and performance characteristics of the system need to be tuned to improve

the Energy‐to‐Solution.

POWER MONITORING AND ENERGY‐TO‐SOLUTION

In the CooLMUC prototype at BADW‐LRZ, we have implemented an Energy‐to‐Solution system that is sketched

in Figure1. CooLMUC uses smart power distribution units (PDUs) to monitor the power consumption of every

compute node in the cluster. In addition, the power consumption of the cooling equipment is monitored using

a digital three‐phase current and voltage meter. The obtained power readings are forwarded via Ethernet to a

virtual machine where the values are stored in a database. In addition, the database also holds the resource

manager’s accounting data.

Figure1. Energy‐to‐Solution setup of the CooLMUC PRACE Prototype

To calculate the Energy‐to‐Solution for a given application, the accounting data is used to determine when and

on which of the compute nodes the application had been run. Then, the power consumption of these nodes

during the runtime of the application can be obtained from the database as a series of power readings over

time. Since the resource manager ensures that only one application can use a node at a given time, the entire

power consumption of the node can be attributed to the application.

Power Data
Aggregation &
Monitoring (VM)

N
o
d
e
1

...

Smart PDU

N
o
d
e
2

N
o
d
e
3

N
o
d
e
4

N
o
d
e
5

N
o
d
e
 6

N
o
d
e
 n

Power Readings

User & Node Allocation
(Accounting) Data

Three‐Phase Current Meter

Cooling System (Pumps, Compressors, Control)

Resource Manager
(Slurm)

Energy‐to‐Solution

Node Allocation
& Job Execution

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 85

In order to include the power for the cooling system into the Energy‐to‐Solution metric, we assume that all

energy consumed by the compute nodes has to be cooled due to the principle of energy conservation. Yet, in

our prototype setup, we can only measure the power consumption of the entire cooling system at once. Thus,

we attribute the total power consumption of the cooling system to the individual nodes according to their own

power consumption as measured in the smart PDUs.

By integrating the power readings of all nodes on which an application was run and their respective fraction of

the cooling power, we obtain the Energy‐to‐Solution which is reported in kWh back to the user.

TUNING THE ENERGY‐TO‐SOLUTION USING SYSTEM CONFIGURATION PARAMETERS

Several control knobs exist to tune the performance and power characteristics of HPC systems, such as:

 Power gating (shutting down of unused parts of a chip, such as entire CPU cores)

 Dynamic voltage and frequency scaling (including technologies like Intel TurboMode)

 Enabling or disabling of HyperThreading

 Mapping configuration of threads to cores (pinning)

Making use of these knobs can help to fine‐tune the system for improved energy efficiency. However, it is

important to note that each HPC application has a characteristic profile. Therefore it is necessary to find the

best settings to optimize the Energy‐to‐Solution for every application individually.

We have chosen to investigate the impact of dynamic voltage and frequency scaling on the Energy‐to‐Solution.

For this, we have extended the Slurm resource manager with the ability to set fixed CPU frequencies for given

applications through the existing Prologue/Epilogue mechanisms. In theory, applications that are memory or

interconnect network bound can be run at lower CPU clock rates without sacrificing performance. Since lower

clock rates result in lower power being consumed the Energy‐to‐Solution will improve whenever the lower

clock rates do not significantly improve the application runtimes.

For our analysis, we have selected the APEX MAP benchmark which performs memory operations according to

a selectable pattern. We compare a randomly distributed access pattern to a strided pattern which is

comparable to the STREAM benchmark. The runs are monitored using our Energy‐to‐Solution setup described

in the previous section.

Figure2 and Figure3 show the power profiles of the benchmark runs for the random case and the strided case,

respectively. As expected, the power consumption is higher at higher processor frequencies. Since the

benchmark workload is the same across the frequencies, higher processor frequencies also cause shorter

application runtimes. Yet, in case of the random memory access pattern (Figure2), we observe that the

performance increase at higher frequencies cannot justify the increase in power, opposite to the strided

case(Figure3). Thus, the Energy‐to‐Solution is best at the highest frequency in the strided case and it is best at

1400 MHz for the random case (Figure4).

Hence, we have shown that adjusting system parameters can optimize the energy consumption of scientific

applications.

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 86

Figure2. Power profiles of the APEX MAP benchmark on CooLMUC (Random Memory Access) at different CPU frequencies

Figure3. Power profiles of the APEX MAP benchmark on CooLMUC (Strided Memory Access) at differernt CPU frequencies

0 50 100 150 200 250
100

120

140

160

180

200

220

240

APEX MAP Benchmark

Random Memory Access

800 MHz

1100 MHz

1400 MHz

1700 MHz

2000 MHz

Benchmark Runtime (Minutes)

P
o
w
er
 C
o
n
su

m
p
ti
o
n
 (
W
)

0 50 100 150 200 250
100

120

140

160

180

200

220

240

260

APEX MAP Benchmark

Strided Memory Access

800 MHz

1100 MHz

1400 MHz

1700 MHz

2000 MHz

Benchmark Runtime (Minutes)

P
o
w
er
 C
o
n
su

m
p
ti
o
n
 (
W
)

D9.2.2 Final Software Evaluation Report

PRACE-1IP - RI-261557 23.07.2012 87

Figure4. Energy‐to‐Solution of APEX MAP at different frequency levels

Although our implementation through Prologue and Epilogue scripts yields the desired settings, it requires

manual work by both, the system administrator and the user. Future Exascale‐ready resource managers should

include the ability to adjust the above mentioned control knobs by default and further work should be done on

automating the process of tuning the knobs for the best energy efficiency on the resource manager level.

800 MHz 1100 MHz 1400 MHz 1700 MHz 2000 MHz
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

APEX MAP Benchmark

Energy‐to‐Solution

Random Access

Strided Access

E
n
er
g
y‐
to
‐S
o
lu
ti
o
n
 (
kW

h
)

