

SEVENTH FRAMEWORK PROGRAMME

Research Infrastructures

INFRA-2010-2.3.1 – First Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-1IP

PRACE First Implementation Project

Grant Agreement Number: RI-261557

D9.2.1

First Report on Multi-Petascale to Exascale Software

Final

Version: 1.1

Author(s): Volker Strumpen, JKU
 Iris Christadler, LRZ
 Guillaume Colin de Verdiere, CEA
 Matthieu Hautreux, CEA

Date: 21.04.2011

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-261557

Project Title: PRACE First Implementation Project

Project Web Site: http://www.prace-project.eu

Deliverable ID: D9.2.121

Deliverable Nature: <DOC_TYPE: Report / Other>

Deliverable Level:

PU / PP / RE / CO *

Contractual Date of Delivery:

30 / April / 2011

Actual Date of Delivery:

30 / April / 2011

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: First Report on Multi-Petascale to Exascale Software

ID: <D9.2.1>

Version: <1.1 > Status: Final

Available at: http://www.prace-project.eu

Software Tool: Microsoft Word 2007

File(s): D9.2.1.docx

 Written by: Volker Strumpen, JKU

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 ii

Authorship Contributors: Computer Systems:

Riccardo Brunino (CINECA), Carlo
Cavazzoni (CINECA), Willy Homberg
(FZJ), Herbert Huber (LRZ), Radek
Januszewski (PSNC), Jochen Kreutz (FZJ),
Jacques-Charles Lafoucriere (CEA), ,
Stephan Michael (FZJ), Stefan Riha (JKU),
Alam Sadaf Roohi (CSCS), Ramnath Sai
Sagar (BSC), Michael Schliephake (KTH)

Programming Languages:

Ricardo Brunino (CINECA), Iris
Christadler (LRZ), Tiziano Diamanti
(CINECA), Okan Dogru (UYBHM),
Federico Ficarelli (CINECA), Ivan Girotto
(ICHEC), Jose Gracia (HLRS), Giannis
Koutsou (CaSToRC), Agnieszka Kwiecien
(PSNC/WCNS), Pierre-François Lavallée
(IDRIS), Ioannis Liabotis (GRNET), Murat
Manguoglu (UYBHM), Martin Polak
(JKU), Mariusz Uchronski (PSNC/WCNS),
Alam Sadaf Roohi (CSCS), Ramnath Sai
Sagar (BSC), Philippe Wautelet (IDRIS),
Volker Weinberg (LRZ)

System Software:

Axel Auweter (LRZ), Daniela Galetti
(CINECA), Matthieu Hautreux (CEA),
Herbert Huber (LRZ), Can Ozturan
(UYBHM), Alam Sadaf Roohi (CSCS),
Andrea Vanni (CINECA)

Reviewed by: Tim Robinson (CSCS), Dietmar Erwin
(JSC)

Approved by: MB/TB

Document Status Sheet

Version Date Status Comments

1.0 11/April/2011 Draft version

1.1 21/April/2011 Final version

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 iii

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure

Copyright notices

 2011 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-261557 for reviewing and dissemination
purposes.

All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 iv

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet ... ii

Document Keywords .. iii

Table of Contents ... iv

List of Figures ... vi

List of Tables .. vii

References and Applicable Documents .. ix

List of Acronyms and Abbreviations ... xii

Executive Summary .. 1

1 Introduction ... 3

2 Computer Architectures ... 5

2.1 Hardware Implications on Software for Exascale .. 5

2.2 Promising Hardware Technologies for Exascale HPC ... 6

2.2.1 Intel SandyBridge ... 6

2.2.2 IBM Power 7 .. 7

2.2.3 IBM BG/Q ... 8

2.2.4 AMD Fusion ... 9

2.2.5 NVIDIA Tegra .. 11

2.2.6 NVIDIA Tesla ... 12

2.2.7 INTEL MIC ... 14

2.2.8 FPGA .. 15

2.2.9 DSP: Texas Instruments C6000 Multicore ... 17

2.2.10 Tilera TilePro64 ... 18

2.3 Analysis of the Hardware Survey ... 19

2.3.1 Scalability ... 19

2.3.2 Performance ... 20

2.3.3 Productivity .. 21

2.3.4 Sustainability .. 22

2.3.5 Portability ... 22

2.3.6 Availability ... 23

2.3.7 Resilience .. 24

2.4 Trends to Watch in the Coming Year .. 24

3 Programming Languages .. 26

3.1 Description & Results for Each Language .. 26

3.1.1 CUDA ... 26

3.1.2 CUDA+MPI ... 30

3.1.3 OpenCL .. 32

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 v

3.1.4 Hybrid Multicore Parallel Programming workbench (HMPP) .. 34

3.1.5 Portland Group (PGI) Fortran and C compiler for accelerators .. 37

3.1.6 OpenMP+MPI .. 38

3.1.7 Coarray Fortran (CAF) .. 40

3.1.8 Unified Parallel C (UPC) ... 42

3.1.9 Chapel .. 44

3.1.10 StarSuperscalar (StarSs) Programming Model.. 46

3.1.11 Cilk ... 47

3.1.12 Intel Array Building Blocks (ArBB) ... 50

3.1.13 Intel Threading Building Blocks (TBB) .. 52

3.1.14 Hierarchically Tiled Array (HTA) .. 54

3.2 Summary of new Programming Languages and Paradigms ... 56

3.2.1 Brief Overview and Classification.. 56

3.2.2 Availability and Sustainability ... 58

4 System Software .. 60

4.1 Operating System .. 60

4.1.1 Survey ... 60

4.1.2 Analysis .. 61

4.1.3 Conclusions .. 61

4.2 System Management ... 62

4.2.1 Survey ... 62

4.2.2 Analysis .. 64

4.2.3 Conclusions .. 65

4.3 Data Management ... 65

4.3.1 Survey ... 65

4.3.2 Analysis .. 66

4.3.3 Conclusions .. 67

4.4 MPI and Communication Libraries... 67

4.4.1 Survey ... 67

4.4.2 Analysis .. 68

4.4.3 Conclusions .. 69

4.5 Resource Management .. 69

4.5.1 Survey ... 69

4.5.2 Analysis .. 72

4.5.3 Conclusions .. 73

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 vi

List of Figures

Figure 1 Simple CUDA kernel .. 27

Figure 2 CUDA host code ... 27

Figure 3 Comparison between CUBLAS, MKL and phiGEMM (DGEMM) 28

Figure 4 Comparison between CUBLAS, MKL and phiGEMM (DGEMM, PINNED memory
used) 28

Figure 5 Weak scaling plot of Quda BiCGstab inverter performance ... 31

Figure 6 Strong scaling plot of Quda BiCGstab inverter performance. ... 31

Figure 7 OpenCL performance of mod2am ... 33

Figure 8 OpenCL performance of mod2am including memory copies ... 33

Figure 9 HMPP callsite example ... 35

Figure 10 HMPP codelet example ... 35

Figure 11 Comparison of implementations using HMPP and the PGI compiler with CUDA versions.
The upper row shows the performance for mod2am, the lower row the performance for mod2as, both
for single (left) and double precision (right). .. 36

Figure 12 PGI C code example .. 37

Figure 13 OpenMP+MPI speedup of HYDRO on BG/P ... 39

Figure 14 SMPSs Implementation ... 46

Figure 15 StarSs blocked main routine with function call. .. 47

Figure 16 StarSs function with pragma. .. 47

Figure 17 Comparison of various ArBB implementations with MKL and a naïve implementation.
The upper row shows the performance for mod2am/MxM, the lower row the performance for
mod2as/SpMV, both for single (left) and double (right) precision. .. 51

Figure 18 TBB speedup of molecular dynamics code ... 53

Figure 19 Wall clock time (in seconds) as the number of cores increase for our implementation and
built-in matrix-matrix multiplication routine. Tile size is the same for both implementation and fixed.
 55

Figure 20 Wall clock time (in seconds) as we increase tile size for our implementation and build-in
matrix-matrix multiplication routine ... 56

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 vii

List of Tables
Table 1 Contributing PRACE sites ... 4

Table 2 INTEL Sandy Bridge pros and cons .. 6

Table 3 IBM Power 7 pros and cons .. 8

Table 4 IBM BG/Q pros and cons .. 8

Table 5 AMD Fusion pros and cons ... 10

Table 6 NVIDIA Tegra pros and cons.. 12

Table 7 NVIDIA Tesla series GPUs pros and cons .. 14

Table 8 INTEL MIC pros and cons .. 15

Table 9 FPGA pros and cons .. 16

Table 10 TI C6000 pros and cons ... 18

Table 11 Tilera TilePro64 pros and cons .. 19

Table 12 CUDA pros and cons ... 29

Table 13 CUDA+MPI pros and cons ... 31

Table 14 OpenCL pros and cons .. 34

Table 15 HMPP pros and cons ... 37

Table 16 PGI compiler pros and cons .. 38

Table 17 OpenMP+MPI pros and cons .. 39

Table 18 CAF performance of mod2am/MxM in MFlop/s for 400 x 400 matrices 41

Table 19 CAF performance of mod2f/FFT in MFlop/s (bits=16 and length=65536) 41

Table 20 CAF pros and cons .. 42

Table 21 UPC performance of mod2am/MxM in MFlop/s for 800 x 800 matrices 43

Table 22 UPC performance of mod2as/SpMV in MFlop/s for 10000 x 10000 matrices (3.5% fill) 43

Table 23 UPC performance of mod2f/FFT in MFlop/s (bits=16 and length=65536) 43

Table 24 UPC pros and cons .. 44

Table 25 Chapel pros and cons ... 46

Table 26 StarSs pros and cons .. 47

Table 27 MIT Cilk results on an SGI Altix 4700, using 256 Itanium2 cores @1.6GHz 49

Table 28 Intel CilkPlus results on an Altix ICE 8200 node, using 8 Nehalem-EP cores @2.8Ghz . 49

Table 29 Cilk pros and cons ... 50

Table 30 ArBB pros and cons .. 52

Table 31 TBB pros and cons .. 54

Table 32 HTA pros and cons .. 56

Table 33 Parallel programming languages and environments. ... 57

Table 34 Language classification by method for expression parallelism. .. 58

Table 35 Availability and indicators for sustainability of programming languages 59

Table 36 Operating systems used at PRACE sites ... 61

Table 37 System management software used at PRACE sites, Part I .. 63

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 viii

Table 38 System management software used at PRACE sites, Part II ... 64

Table 39 Data management systems used at PRACE sites .. 66

Table 40 MPI and communication libraries used at PRACE sites ... 68

Table 41 Scheduling software, policies and capabilities used at PRACE sites 72

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 ix

References and Applicable Documents

[1] P. Andrews, P. Kovatch, V. Hazlewood, T.Baer, Scheduling a 100,000 Core Supercomputer for
Maximum Utilization and Capability, 39th International Conference on Parallel Processing
Workshops (ICPPW), 2010.

[2] Berkley UPC project http://upc.lbl.gov.

[3] F. Cappello, Resilience: One of the main challenges for Exascale Computing, EESI 2010.

[4] M. Clark, R. Babich and B.Joo, Parallelizing the QUDA Library for Multi-GPU Calculations in
Lattice Quantum Chromodynamics, arXiv:1011.0024[hep-lat].

[5] M. Clark, R. Babich, K. Barros, R. Brower, and C. Rebbi, Solving Lattice QCD systems of
equations using mixed precision solvers on GPUs, Comp. Phys. Comm. 181, 1517 (2010).

[6] Co-Array Fortran, http://www.co-array.org/

[7] Condor High Throughput Computing, http://www.cs.wisc.edu/condor/

[8] Cray Compiler Environment for CAF and UPC (details available at: http://docs.cray.com/).

[9] CUDA zone, http://www.NVIDIA.com/object/cuda_home_new.html

[10] Jack Dongarra et al., International Exascale Software Project Roadmap, work in progress,
www.exascale.org/iesp

[11] M. Fatica, Accelerating LINPACK with CUDA on heterogeneous clusters. GPGPU-2:
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing Units
(New York, NY, USA), ACM, 2009, pp. 46–51.

[12] Faq on Fault-tolerance for parallel MPI jobs, http://www.open-mpi.org/faq/?category=ft

[13] Y. Georgiou, Resource and Job Management in High Performance Computing, PhD Thesis,
Joseph Fourier University, France, 2010.

[14] GASNet communication system http://gasnet.cs.berkeley.edu/

[15] General-Purpose Computation on Graphics Hardware, http://gpgpu.org/

[16] NVIDIA, High Performance Computing - Supercomputing with Tesla GPUs,
http://www.NVIDIA.com/object/tesla_computing_solutions.html

[17] http://computing.ornl.gov/HMC/documents/HMC_AppsBreakout_day2.pdf

[18] http://polaris.cs.uiuc.edu/hta/

[19] http://software.intel.com/en-us/articles/intel-cilk-plus

[20] http://www.anandtech.com/show/4023/the-brazos-performance-preview-amd-e350-
benchmarked

[21] http://www.conveycomputer.com/, Convey Computer

[22] http://www.heise.de/newsticker/meldung/SC-2010-IBM-zeigt-BlueGene-Q-mit-17-Kernen-
1138226.html

[23] http://www.hpcwire.com/features/Argonne-Orders-10-Petaflop-Blue-GeneQ-Super-
115593779.html

[24] http://www.hpcwire.com/features/Lawrence-Livermore-Prepares-for-20-Petaflop-Blue-GeneQ-
38948594.html

[25] http://www.intel.com/technology/architecture-silicon/index.htm

[26] http://www.khronos.org/registry/cl/

[27] http://www.maxeler.com/, Maxeler Technologies

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 x

[28] http://www.prace-project.eu

[29] http://www-03.ibm.com/systems/deepcomputing/solutions/bluegene/index.html

[30] IBM OpenCL Development Kit for Linux on Power and IBM XL C for OpenCL compiler
(OpenCL 1.0) http://www.alphaworks.ibm.com/tech/opencl

[31] Intel Parallel Studio XE CAF (details available at: http://software.intel.com).

[32] Java Bindings to OpenCL (JOCL, enables applications running on the JVM to use OpenCL 1.1),
http://jogamp.org/jocl/www/

[33] Ian Kuon, Jonathan Rose: Measuring the Gap Between FPGAs and ASICs,
http://www.eecg.toronto.edu/~ikuon/pubs/fpga2006_kuon.pdf.

[34] Peter Kogge at el., ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems, 2008, http://www.er.doe.gov/ascr/Research/CS/DARPA exascale - hardware
(2008).pdf

[35] K. Kandalla, H. Subramoni, A. Vishnu, D.K. Panda, Designing Topology-Aware Collective
Communication Algorithms for Large-Scale Infiniband Clusters: Case Studies with Scatter and
Gather, IPDPS, 2010.

[36] Charles E. Leiserson, The Cilk++ concurrency platform, in proceedings DAC’09, p.522.

[37] Olav Lindtjørn, Robert G. Clapp, Oliver Pell, Oskar Mencer, Michael J Flynn Surviving the End
of Scaling of Traditional Micro Processors in HPC.
http://www.hotchips.org/uploads/archive22/HC22.23.120-1-Lindtjorn-End-Scaling.pdf

[38] LoadLeveler Scheduler, IBM, http://www-03.ibm.com/systems/software/loadleveler/

[39] Lustre Scalability, Sun Microsystems, 2009, www.nccs.gov/wp-
content/uploads/2009/03/lustrescalabilitywp_updated.pdf

[40] Netlib web-page; http://www.netlib.org/

[41] NVIDIA CUDA C Programming Guide Version 3.2. 11 September 2010,
http://developer.download.NVIDIA.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Progr
amming_Guide.pdf

[42] NVIDIA CUDA ZONE; http://NVIDIA.com/cuda

[43] Oar Resource Manager, http://oar.imag.fr/

[44] OpenCL - The open standard for parallel programming of heterogeneous systems,
http://www.khronos.org/opencl/

[45] Oracle Grid Engine, http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html

[46] PBS Professional, PBS Works, http://www.pbsworks.com/

[47] Platform LSF, Platform Computing, http://www.platform.com/

[48] PRACE Deliverable D6.6, Report on petascale software libraries and programming models,
http://www.prace-project.eu/documents/public-deliverables-1/public-deliverables-1/public-
deliverables-1/public-deliverables-1/public-deliverables-1/public-deliverables-1/public-
deliverables-1/public-deliverables-1/public-deliverables-1/public-deliverables/d6-6.pdf

[49] PRACE Workshop on New Languages & Future Technology Prototypes (March 1-2, 2010),
http://www.prace-
project.eu/documents/prace_workshop_on_new_languages_and_future_technology_prototypes.
pdf

[50] PyOpenCL (access to the OpenCL API from Python, supports OpenCL 1.1),
http://mathema.tician.de/software/pyopencl

[51] I. Raicu, Z. Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra, B. Clifford, Toward Loosely
Coupled Programming on Petascale Systems, IEEE/ACM Supercomputing 2008.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 xi

[52] Redefining what it’s possible. Scientific Computing. January 7, 2001.
http://www.scientificcomputing.com/articles-HPC-GPGPU-Redefining-What-is-Possible-
010711.aspx

[53] Rice University CAF 2.0 http://caf.rice.edu/

[54] G.M. Shipman, S. Poole, P. Shamis, I. Rabinovitz, X-SRQ – Improving Scalability and
Performance of Multi-Core Infiniband Clusters, Euro PVM/MPI, 2008.

[55] G.M. Shipman, T.S. Woodall, R.L. Graham, A.B. Maccabe, and P.G. Bridges, InfiniBand
Scalability in Open MPI, IPDPS, 2006.

[56] SAMSUNG OpenCL Framework, http://opencl.snu.ac.kr/

[57] SLURM: A Highly Scalable Resource Manager,
https://computing.llnl.gov/linux/slurm/slurm.html

[58] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick, System Noise, OS Clock Ticks, and
Fine-grained Parallel Applications, ICS, 2005.

[59] Texas Instruments : TMS320C6678 MulticoreFixed and Floating-Point Digital Signal
Processor. Literature Number SPRS691, November 2010.

[60] Texas Instruments: TI's new C66x Fixed- and Floating-Point DSP Core Conquers the 'Need for
Speed'. White paper by Arnon Friedman. Literature Number SPRY147, November 2010.

[61] Texas Instruments: TMS320C6672/74/78 High-performance multicore fixed- and floating-point
DSPs – Product Bulletin. Literature Number SPRT577a, Februar 2011.

[62] TORQUE, MOAB, MAUI, Adaptive Computing,
http://www.adaptivecomputing.com/resources/docs/

[63] Unified Parallel C (UPC) http://upc.gwu.edu/

[64] ViennaCL (Linear Algebra and Iterative Solvers) with support for NVIDIA and AMD/ATI
GPUs, http://viennacl.sourceforge.net/

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 xii

List of Acronyms and Abbreviations

AMD Advanced Micro Devices

API Application Programming Interface

APU Accelerated Processing Unit

ArBB Array Building Blocks (Intel)

ARM Advanced RISC Machines

ASIC Application-Specific Integrated Circuit

ATI Array Technologies Incorporated (AMD)

BLAS Basic Linear Algebra Subprograms

BSC Barcelona Supercomputing Center (Spain)

CaSToRC Computation-based Science and Technology Research Center (of the
 Cyprus Institute)

CAF Co-Array Fortran

CCE Cray Compiler Environment

CCNUMA Cache Coherent NUMA

CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,
France)

CILK Multithreaded Programming Language

CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)

Chapel Cascade High-Productivity Language (Cray)

CLE Cray Linux Environment

CPU Central Processing Unit

CSC Finnish IT Centre for Science (Finland)

CSCS The Swiss National Supercomputing Centre (represented in PRACE by
ETHZ, Switzerland)

COTS Commercial Off-The-Shelf

CUDA Compute Unified Device Architecture (NVIDIA)

CUBLAS CUDA BLAS Library

DARPA Defense Advanced Research Projects Agency

DDN DataDirect Networks

DDR Double Data Rate

DGEMM Double precision General Matrix Multiply

DMA Direct Memory Access

DNA DeoxyriboNucleic Acid

DP Double Precision, usually 64-bit floating point numbers

DVFS Dynamic Voltage and Frequency Scaling

EC European Commission

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 xiii

ECC Error-Correcting Code

EESI European Exascale Software Initiative

EP Efficient Performance, e.g., Nehalem-EP (Intel)

EPCC Edinburg Parallel Computing Centre (represented in PRACE by
EPSRC, United Kingdom)

EX Expandable, e.g., Nehalem-EX (Intel)

Flop/s Floating point operations per second

FFT Fast Fourier Transform

FP Floating-Point

FPGA Field Programmable Gate Array

FPU Floating-Point Unit

FZJ Forschungszentrum Jülich (Germany)

GASNet Global Address Space Networking

GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte

Gb/s Giga (= 109) bits per second, also Gbit/s

GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s

GDDR Graphic Double Data Rate memory

GENCI Grand Equipement National de Calcul Intensif (France)

GFlop/s Giga (= 109) Floating point operations (usually in 64-bit) per second

GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second

GNU GNU’s not Unix, a free OS

GPGPU General Purpose GPU

GPU Graphic Processing Unit

GRNET Greek Research and Technology Network

HE High Efficiency

HLRS High Performance Computing Center (Stuttgart)

HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)

HP Hewlett-Packard

HPC High Performance Computing; Computing at a high performance level
at any given time; often used synonym with Supercomputing

HPL High Performance LINPACK

HT HyperTransport channel (AMD)

HTA Hierarchically Tiled Array programming environment

IB InfiniBand

IBM International Business Machines

ICE (SGI)

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 xiv

ICHEC Irish Center for High-End Computing

IDRIS Institut du Développement et des Ressources en Informatique
Scientifique (represented in PRACE by GENCI, France)

IEEE Institute of Electrical and Electronic Engineers

IL Intermediate Language

IMB Intel MPI Benchmark

I/O Input/Output

IOR Interleaved Or Random

IPB Interprocessor Bus

IPMI Intelligent Platform Management Interface

ISA Instruction Set Architecture

ISC International Supercomputing Conference; European equivalent to the
US based SC0x conference. Held annually in Germany.

JKU Johannes Kepler University (Austria)

JSC Jülich Supercomputing Centre (FZJ, Germany)

KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,
Sweden)

LINPACK Software library for Linear Algebra

LLNL Laurence Livermore National Laboratory, Livermore, California (USA)

LRZ Leibniz Supercomputing Centre (Garching, Germany)

MFlop/s Mega (= 106) Floating point operations (usually in 64-bit) per second

MKL Math Kernel Library (Intel)

MPI Message Passing Interface

MTBF Mean Time Between Failures

MxM Double-Precision matrix-by-matrix multiplication mod2am of the
 EuroBen kernels

NoC Network-on-a-Chip

NFS Network File System

NIC Network Interface Controller

NUMA Non-Uniform Memory Access or Architecture

OpenCL Open Computing Language

OpenGL Open Graphic Library

OpenMP Open Multi-Processing

OMPSs Programming model based on OpenMP and StarSs developed at BSC

OS Operating System

PCIe Peripheral Component Interconnect express, also PCI-Express

PGAS Partitioned Global Address Space

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 xv

PGI Portland Group, Inc.

POSIX Portable OS Interface for Unix

PRACE Partnership for Advanced Computing in Europe; Project Acronym

PSNC Poznan Supercomputing and Networking Centre (Poland)

RDMA Remote Data Memory Access

RVDS RealView Development Suite (ARM)

SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)

SDK Software Development Kit

SGEMM Single precision General Matrix Multiply, subroutine in the BLAS

SGI Silicon Graphics, Inc.

SIMD Single Instruction Multiple Data

SMP Symmetric Multi-Processor

SMT Simultaneous Multi-Threading

SNIC Swedish National Infrastructure for Computing (Sweden)

SoC System on a Chip

SP Single Precision, usually 32-bit floating point numbers

SSD Solid State Disk or Drive

StarSs Programming Model for Multicores developed at BSC

STFC Science and Technology Facilities Council (represented in PRACE by
EPSRC, United Kingdom)

TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte

TBB Thread Building Blocks (Intel)

TDP Thermal Design Power

TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit) per second

Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this
context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

ULP Ultra Low Power

UPC Unified Parallel C

UV Ultra Violet (SGI)

UYBHM National Center for High Performance Computing of Turkey

VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description
Language

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 1

Executive Summary

This report investigates the transition of applications from multi-petascale to exascale
performance. Since the recent end of frequency scaling, we observe a rapid evolution of
power-efficient computer architectures. Thus, we believe that an investigation of future
software systems requires an understanding of future hardware architectures. To that end we
have surveyed and evaluated the state-of-the-art in high-performance computer systems,
parallel programming languages, and system software and tools. Our goal is to identify trends
and developments that have the potential to shape the era of exascale supercomputing.

We summarize our findings separately by topic: computer systems, parallel programming
languages and system software and tools.

Computer Systems

We have surveyed state-of-the-art computer systems to assess the implications on future
exascale software systems. Due to the accelerated evolution of power-efficient high-
performance computers, industry presents us with a multi-faceted variety of designs. We
considered mature systems as well as prototypes, ranging from hybrid architectures to IBM's
BG/Q supercomputer.

High-performance computer architecture has bifurcated into (1) clusters of multicore chips,
driven by the mainstream computer market, and (2) accelerated hybrid systems that combine
different architectures such as CPUs and GPUs on the board or chip level. At this point in
time, it is unclear whether these two directions will reconverge or coexist in future exascale
systems. For the programmer, both directions impose a common serious challenge, the lack of
programming language support. As a result, programmers have adopted pragmatic hybrid
programming techniques, trying to understand and learn how to use these architectures
efficiently. On clusters of multicores, the most prevalent programming paradigm is a
combination of MPI and OpenMP, and for GPU-accelerated systems programmers combine
MPI with Cuda. Consequently, programmer productivity remains a primary concern, in
particular for exascale systems.

Our differentiated technology assessment yields the following conclusions. Microprocessor
vendors rely on another decade of Moore's law to scale the number of cores per chip, which
we expect to exacerbate the efficiency problems caused by the memory wall. Accelerator
architectures have the potential to out-perform traditional CPU-based multicore architectures,
but the current generation of accelerators fails to deliver a significant advantage in terms of
floating-point performance. Furthermore, today's accelerators do not offer the productivity,
portability, availability, and resilience of traditional multicore-based systems.

In summary, we are experiencing an era of rapid evolution towards power-efficient high-
performance computer systems. Although the outcome is difficult to predict (we're relying on
the 1IP-WP9 prototypes to gain deeper insights), current trends are likely to magnify the need
for better parallel programming models.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 2

Parallel Programming Languages

We have evaluated a dozen parallel programming languages for (1) traditional parallel
systems based on CPUs with shared-memory and distributed-memory architectures, (2) single
and multiple GPUs, and (3) accelerated nodes consisting of both CPU and GPU.

Current de-facto standard for programming traditional clusters of multicores is a pragmatic
combination of MPI and OpenMP, and, in addition, Cuda is the de-facto standard for
programming NVIDIA GPUs. This mixed programming environment delivers the desired
performance up to multi-petaflops.

Most of the evaluated parallel programming languages, including PGAS languages, CAF and
UPC, ArBB, Cilk, StarSS, OpenCL, or HMPP, are considered potential candidates for
programming exascale applications. At this point in time, we propose to focus on one or very
small subset of languages to (1) prepare these languages for exascale computing and (2) offer
a clear perspective to application programmers about the languages that are likely to be
supported in the future. We have established a framework for the selection process based on
benchmarks and a set of evaluation criteria, incl. Performance, productivity, correctness, and
sustainability.

System Software and Tools

We have surveyed the system software and tools used to administrate and operate the
supercomputers of the PRACE partners, and observe these trends:

1. Linux has become the dominant operating system used at 80% of all sites.

2. The majority of the tools for system management, data management, monitoring, and
resource management are either open-source software of vendor-optimized variants,
often based on open-source software.

3. Scalability issues are known for several mission-critical components, including system
administration tools, MPI libraries, parallel file systems, and scheduling algorithms for
heterogeneous resource management, that require R&D to prepare these components for
exascale.

4. Energy management has yet to be introduced to the HPC community that still focuses on
raw performance.

We note that much of the system software infrastructure is open-source software, which we
suggest to embrace as a powerful means towards developing a common set of tools for
exascale machines.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 3

1 Introduction

Supercomputing is an essential part of our daily life, ranging from large-scale computations
such as weather forecasting to information retrieval via search engines. Today, the PRACE
partners operate two petascale supercomputers with the goal to harness and develop the
potential of computational science in Europe. Petascale machines offer a peak performance in
excess of 1015 operations per second. While such machines serve scientists today, the next
frontier, exascale machines with 1018 operations per second, shall be reached within the
decade.

In this first of two reports on multi-peta to exascale software, we offer the perspective of the
PRACE partners on the current state of the art in European petascale computing. Since the
end of frequency scaling in 2005, the quest for exascale machines has hit the so-called power
wall. Microprocessor speed has topped out at clock frequencies around 2-4 GHz, because
dissipating heat beyond about 100 W per chip is not economically viable. Petascale
supercomputers are assembled from hundreds of thousands of microprocessors, and consume
up to 10 MW of electricity, enough to power thousands of homes. Simply increasing the
number of microprocessors to hundreds of millions for an exascale machine would require on
the order of 10 GW of electricity, requiring at least one dedicated a power plant. For
comparison, such a machine would consume almost one per mille of the world's total energy
consumption.

Since alternative low-power technologies to integrated circuits on silicon are not in sight,
computer engineers experiment with architectural modifications to the general-purpose
programmable von Neumann processor. It is widely known that special-purpose VLSI
circuits, for example to compute Fourier transforms, deliver a performance-power ratio
roughly three orders of magnitude higher than a software implementation executed on a
general-purpose processor. The wide spectrum between special-purpose circuits and general-
purpose processor hardware constitutes a broad playground for innovation, with a direct
impact on design and use of exascale computers.

Over the past years, the PRACE community has evaluated and experimented with various
programming languages, tools, operating environments, and computer architectures, including
multicores, manycores, and accelerated hybrid architectures. Each architecture introduces
different challenges to the programmer and operator. The trend towards specialized hardware
also presents an opportunity to identify new computational fabrics that are particularly suited
for computational science. Therefore, we have evaluated state-of-the-art systems from the
perspectives of the scientist, computer engineer, and proficient parallel programmer. This
report offers an account of these efforts, and an outlook of the opportunities and challenges
ahead of us on the road towards exascale computing.

This report reflects the knowledge and experience of the PRACE partners. At the time of this
writing, they operate a network of high-performance machines including those shown in
Table 1 below. The European PRACE community faces its own challenges and opportunities,
and shares many of the problems with other communities. Therefore, the discriminating
reader may view the report at hand as complementing other reports on exascale efforts by the
US supercomputing community [34] and the International supercomputing community [10].

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 4

Site Vendor Type Model Process
or
archite
cture

of
nodes

of
cores

Mem
per
core
(MB
yte)

Inter-
connect
network

Netwo
rk
topolo
gy

Intern
al IO
nodes

Exter
nal IO
nodes

BSC IBM SMP JS21 Powerp
c

2560 10240 2048 Myrinet Fat
Tree

N Y

CEA BULL ccNUMA S6010

S6030

x86_64

4000 128000 2048 IB QDR Pruned
Tree

Y Y

CINE
CA

IBM ccNUMA P575 Power 168 5376 4096 IB Mesh Y N

CSCS CRAY ccNUMA XT5 x86 1844 22128 1300 CRAY
SeaStar
2+

3D
Torus

Y N

EPCC CRAY ccNUMA XE6 x86_64 1856 44544 1300 CRAY
Gemini

3D
Torus

Y Y

FZJ IBM SMP Blue
Gene/P

Power 73728 294912 512 proprieta
ry

3D
Torus

Y N

HLRS NEC ccNUMA x86_64 711 5688 +

accelera
tors

1500 IB Tree Y Y

ICHE
C

SGI ccNUMA Altix
ICE
8200 EX

x86_64 320 3840 2048 IB DDR Hyper-
cube

Y N

IPB PARAD
OX

ccNUMA x86_64 84 672 1024 GbE Star N N

JKU SGI ccNUMA Altix
4700

IA64 1

(SSI)

256 4096 NUMAL
ink 4

Fat
Tree

Y N

KTH CRAY CCNUM
A

XE6 x86_64 1516 36384 1333 CRAY
Gemini

3D
Torus

Y N

LRZ SGI ccNUMA Altix
4700

IA64 19
(SSI)

9728 4096 NUMAL
ink 4

Fat
Tree +
2D
mesh

N

(SAN)

N

(SAN)

STFC IBM SMP BlueGen
e/P

x86_64 1024 4096 512 Proprieta
ry

3D
Torus

Y N

UYBH
M

HP ccNUMA x86_64 192 1004 2048 IB Fat
Tree

Y Y

Table 1 Contributing PRACE sites

The remainder of this report consists of three sections. Section 2 assesses the state-of-the-art
computer architectures for high-performance computing. Section 3 covers developments in
programming languages and environments. Section 4 discusses trends in system management
software and tools for high-performance computing.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 5

2 Computer Architectures

2.1 Hardware Implications on Software for Exascale

In this chapter, we survey the state-of-the-art of high-performance computer hardware from
the software perspective, and attempt to deduce trends that affect the transition from petascale
to exascale supercomputing. Our survey focuses on hardware features with a dominant impact
on the feasibility and viability of scalable software systems for exascale machines.

Our analysis is based on the assessment of advantages and disadvantages of the various
hardware platforms with respect to the following criteria:

1. Scalability: Multicore and manycore chips raise the issue of scalability within a chip
to the same level of concern as scalability across chips. The central issue from the
programmer's perspective is the scalability of hybrid programming models for systems
of multicores and accelerated architectures, as are details such as architectural support
for high-level parallel programming languages and efficient communication.

2. Performance: Besides the traditional peak Flop/s or Linpack sustained Flop/s
measure, today's supercomputers may be characterized by means of various
complementary performance measures, including Flop/$s, Flop/Ws, efficiency relative
to peak, etc.

3. Productivity: We are concerned about programmability in terms of availability of
programming languages, operating systems, tools, as well as comparing the effort
required to obtain correct and efficient programs.

4. Sustainability: Since supercomputing is a tiny market segment, the affinity of
hardware products to the mass market is important to assemble affordable machines
from COTS parts, and to ensure competitive upgrades depending on the refresh rate of
vendors' offers.

5. Portability: Scalable software must be portable across the parts of a large machine,
even if different parts are operated at different levels of upgrades. Ideally, runtime
systems automate aspects like process placement and load balancing, so that portable
programs can be oblivious to the number processors, the network topology, and
memory hierarchy.

6. Availability: Large-scale machines require adequate manufacturing volumes; supply
should match the demand during the construction period with associated cost
constraints.

7. Resilience: Large-scale machines require fault-tolerance provisions to increase the
uptime (MTBF). For example, at the hardware level, ECC protected memories,
including caches and hard disks are effective. At the software level, increasing
attention is paid to tolerating correctness and efficiency bugs.

Based on the expertise of the PRACE partners, we compile a survey of state-of-the-art
hardware in Section 2.2. In Section 2.3, we summarize the trends from the perspective of
scalable software systems. Furthermore, we shed some light on complementary research
topics pursued with the WP9 prototype projects. In Section 2.4, we provide a watch list of
topics that we recommend to be monitored throughout the upcoming year in preparation of
PRACE deliverable D9.2.2 “Second Report on Multi-Peta- to Exascale Software” at project
month 22.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 6

Disclaimer: Our survey of compute hardware is by no means complete. We have included
those systems in Section 2.2 that are available to the PRACE partners, and the partners have
gathered sufficient experience as of March 2011 to suggest that this hardware offers a
promising contribution towards an exascale system.

2.2 Promising Hardware Technologies for Exascale HPC

2.2.1 Intel SandyBridge

Intel's SandyBridge architecture exemplifies of the evolution of mainstream multicore
microprocessor architecture. Integrated on-chip is a special-purpose video processing engine
that will be programmable with OpenCL (windows only today).

Intel Sandy
Bridge

Pros Cons

Scalability Intel Sandy Bridge is re-designed version
of the Nehalem architecture, so we
expect similar on-chip scalability. A 16
core version of the chip is expected.
Better power management should allow
for denser packaging.

No plans for 8+ socket configuration
in the next 2 years. Server chip will
not have GPU cores.

Performance Additional set of instructions (AVX) and
changes in the architecture (physical
register file, Out-of-order cluster,
execution cluster and memory cluster)
should result in reducing the gap
between real life and theoretical
performance. Tests and benchmarking
will be performed after the hardware
shipment.

The integrated GPU cores are
programmable yet no experiments are
known as of now; therefore it may be
difficult to use them for calculations
(especially with the server version
which lacks of the GPU part). No
plans for releasing math libraries
using the GPU cores. The theoretical
peak performance stays at the same
level as in Nehalem.

Productivity No special languages required, all
binaries should work more efficient
without any changes.

Using AVX requires either new
libraries or rewriting part of the
codes. Currently there is no simple
way to use the GPU cores for
calculations.

Sustainabilit
y

Sandy Bridge and its shrunken version
Ivy Bridge will form the backbone of the
Intel offer in the next 2 years

Portability All standard compilers with support for
x86 will work.

AVX instruction set must be
supported by the compiler. AVX is
not backwards compatible

Availability Desktop and mobile versions will are
already available. Server 2P
configurations will be available 4Q 2011.

4P servers will not be available
during PRACE-1IP.

Resilience Server version will support ECC memory

Table 2 INTEL Sandy Bridge pros and cons

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 7

The Sandy Bridge architecture is an evolutionary step towards better performance and lower
power consumption compared to its predecessor Nehalem. Some interesting changes in the
architecture resulted in reduced power consumption and increased performance. Intel
promotes x86 as a general platform that should cover all possible markets. GPU cores
introduced in some of the models have decent performance but since the cores have fixed
functionality it may be difficult if not impossible to use them for HPC. In contrast to AMD,
who strongly supports accelerated processing units, Intel is more conservative improving the
performance with a traditional multicore architecture, new engineering solutions, and adding
new instructions.

2.2.2 IBM Power 7

Released in 2010, it is a RISC processor in 45nm technology. The chip contains 4, 6, or 8
cores, each 4-way SMT-capable, operating at a frequency of 3.0 GHz to 4.25 GHz. As
established in the tradition of Power, the SIMD unit (AltiVec) plays a limited role (with
respect to the Intel CPUs), but to exploit the power is necessary to use all four FPUs and the
Fused Multiply-Add instruction. The chip contains three levels of cache, the first two, 64 kB
L1 and 256 kB L2, are private to the core and the 32 MB L3 is shared (but it may be set with
core-private partitions).

IBM Power7 Pros Cons

Scalability Up to 256 cores, and 1024 threads. SMT not very efficient, at least under Linux
OS. Comparisons made in similar conditions
(applications and number of physical cores)
show that using SMT either with MPI or
OpenMP do not bring better results
(compared to SMT turned off). This is in
contrast with Power6 processors.

Performance Peak performance of 8-core
Power7 is 265 GFlop/s at 4GHz,
or 1.25 GFlop/Ws.

Programming for high-performance requires
keeping the 4 FPUs busy, and carefully using
the cache.

Productivity Linux based system: established
tools are available.

GNU compilers and tools suite do not
support Power7 extensions yet.

Sustainability IBM Power processors are on the
HPC market since the early 1990s.

-

Portability Good for Linux based system. In
fact no main problems are
expected in porting application
from other Linux based HPC
systems like BG/P, BG/Q, Cray,
Linux clusters.

Problem may arise for the IBM XL compiler
suite, due to the limited support for C++
recently introduced standard feature (e.g.
Boost library does not compile)

Availability Good. Product line includes
workstations, blade systems and
supercomputers.

-

Resilience High. Power7 is designed to
support PERCS (Productive,
Easy-to-use, Reliable Computer
System) project in US, so

-

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 8

IBM Power7 Pros Cons

resilience has been taken into
account by design.

Table 3 IBM Power 7 pros and cons

The architectural characteristic of Power7 promotes the use of hybrid MPI and OpenMP
programming model and cache blocked algorithms.

2.2.3 IBM BG/Q

The Blue Gene Q (BG/Q) architecture represents a supercomputer architecture that focuses on
maximizing the Flop/Ws ratio. Although Blue Gene belongs to the class of general-purpose
computers, it is a niche product for supercomputing that has not penetrated the mass market.

IBM BG/Q Pros Cons

Scalability System is designed to be extremely
scalable up to more than 2M cores.
Improved communication network (5-
D topology), compared to BG/P

No full (non blocking) fat tree network
topology

Performance Very high MF/W ratio target (>2500)
(leading Green500 list). System with
20 PFlop/s will be installed at LLNL

Only a first, less efficient prototype
system is listed in the Green500

Productivity Standard MPI, OpenMP
programming environment with
optimized compilers for standard
C/C++ and Fortran available. No
hardware specific adaption necessary,
compatible to BG/P

System is only really suitable for high
scaling applications with more than 16k
tasks/threads, nevertheless minimal job
size can be 256 tasks/threads without
wasting resources. Limited amount of
memory per core.

Sustainability 3rd version in Blue Gene series (not
COTS but still sustained)

-

Portability Very high, no special, hardware
specific programming
model/language required

Pure MPI applications might no longer
suitable to utilize full performance
capability of (this/all) many core
architectures. Hybrid programming
models might be necessary

Availability Planned to be generally available in
4Q/2011

Hardware more expensive than x86
solution, but much more power efficient
=> TCO might be comparable.

Resilience Proven high resilience features from
BG/P improved like full system
hardware counter collection and real
time analyses for pre-emptive
hardware replacement strategy (HW
will be replaced when recoverable
error counters go up before hard
errors occure)

-

Table 4 IBM BG/Q pros and cons

Upgraded features of BG/Q compared to predecessor BG/P:

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 9

 4x increased number of cores per node: 16 (+1)

 2x clock speed: 1.6 Ghz

 64-bit architecture

 2x SIMD width: 4-wide double-precision SIMD unit

 4-way SMT allows up to 64 (MPI) threads per node

 16 GB DDR3 memory per node

The new hardware features increase the peak floating-point performance from 13.6 GFlop/s of
one BG/P node to 205 GFlop/s for one BG/Q node.

Applications can benefit from SMT to hide latencies due to communication and cache misses,
provided the application generates a sufficient number of threads (POSIX, OpenMP) per
node. Using too many MPI threads per node (max. 64 per node) can be detrimental, because
MPI buffers reduce the otherwise available memory capacity and increase the thread
scheduling overhead.

The new 5-D topology of the BG/Q interconnection network is transparent to the user. The
choice of up to five dimensions should be useful for communication patterns that do not
match BG/P's 3-D topology. The optimized MPI communication library folds 3-D patterns
automatically into the new 5-D topology.

Two new and unique features in BG/Q are transactional memory and thread level speculation.
These features permit executing serial threads speculatively in parallel, and aim at increasing
the utilization of the 16-core, 4-way SMT processing node, and to support auto-parallelization
of application programs.

2.2.4 AMD Fusion

AMD's Fusion accelerated processing unit (APU) is another hybrid architecture that integrates
a CPU and a GPU on a single chip to share resources and to increase the bandwidth between
the two units.

AMD Fusion Pros Cons

Scalability The x86 CPU cores are a simplified version of
those used in server Magny-Cours chips. Thus,
we expect the scalability within the chip to be
similar to that of server CPUs. Current releases
offer up to 16 cores. The integrated GPU
stream cores are equivalent to the Radeon HD
6310. The internal scalability is limited only
by the TDP of the enclosure since this
architecture is targeting laptops or handheld
devices.

In order to take full advantage of the
accelerated processor programmers must use
either OpenCL or proprietary Stream
technology.

Current releases are equipped with a Gigabit
Ethernet NIC, but it is possible to attach a
PCIe card with IB or FC cards.

Current Fusion chips are designed
for the low-power, portable
device market. Support of multi-
socket configurations is missing.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 10

AMD Fusion Pros Cons

Performance The Brazos (AMD) platform has a theoretical
peak performance of about 8 GFlop/Ws using
single-precision operations.

We expect that the integration of CPU and
GPU improves the communication latency
between the two units, closing the gap between
real and theoretical peak performance.

We are awaiting shipment of the machines and
updated drivers supporting OpenCL.

The memory controller is shared
between the GPU and CPU cores.
The GPU uses slower DDR3
memory rather than standard
GDDR5.

Productivity - The GPU cores are programmed
with OpenGL or DirectX
libraries, both of which offer little
support for scientific applications.
Current drivers support Stream
libraries only, although support
for OpenCL should be added in
the next version.

Sustainability Fusion is an upcoming product. Today,
vendors of consumer electronics (Sony, MSI,
Toshiba, Asus, HP, etc.) begin shipment of
solutions based on the Brazos platform. There
are plans for employing the Zacate version of
the APU in tablets.

-

Portability The x86 “bobcat” core is fully compatible with
x86_64 instruction set. Using the GPU cores
requires using the Stream or OpenCL libraries.
The GPU-enabled MKL libraries should work
without any changes in the code.

-

Availability The Brazos family is represented by the “E”
family of low power APUs. Integration of the
GPU cores resulted in a cost-reduction.

There are no plans for multi-
socket configurations.

Resilience - Current releases have no ECC
protected memory.

OpenCL is supported neither in
the drivers for Windows nor
Linux.

Table 5 AMD Fusion pros and cons

The Brazos family (of AMD's Fusion APUs) aims at the low and ultra-low power for the
portable consumer electronics market. Tests performed [20] on the first samples of the Brazos
platform showed that the performance and power consumption surpassed currently used low
power platforms.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 11

2.2.5 NVIDIA Tegra

The Tegra chip is NVIDIA's flagship product representative for a new breed of system-on-a-
chip (SOC) hybrid architectures. Tegra 3 contains three building blocks, a quad-core CPU, a
12-core GPU, and a special-purpose H.264 video decoder. The Tegra SOC is designed to
achieve high efficiency with low power consumption on a broad range of applications.

NVIDIA
Tegra

Pros Cons

Scalability Tegra scales across SMP cores with
shared memory parallel programming
models and across multiple nodes with
message passing.

On board DDR2-667 memory with peak
bandwidth of 5.3 GB/s for a 2 GFlop
(peak) chip, which is 2.6 bytes/Flop.

Capable of exploiting hybrid shared-
memory + MPI programming

Capable of exploiting hybrid CPU +
GPU programming (Tegra 3)

On board storage enables fast
checkpoint/restart operations as well as
storing large temporary files

Relatively small on-chip memory
capacity of 1GB limits size of working
set and number of threads of many HPC
applications.

Off-chip Ethernet connectivity limits the
bandwidth of data transfer across nodes.

Performance Uses Quad core low power ARM
processor (Tegra 3).

Good latency hiding through out-of-
order execution and block prefetching

Supports double-precision floating-
point

ARM processor: High performance /
power ratio: 2 - 4 GFlop/Ws

ULP GeForce GPU, with a good
performance

Separate ARM7 processor is available
for power handling and DVFS support.

Hardware counters on ARM processors
are not exposed. Detailed analysis and
user level optimization is not possible.

Currently no optimized open source
scientific libraries available for ARM
processors.

No detailed information on GPU
performance (Hardware counters are not
exposed to the user/not present at all)

Productivity Support for multicore programming:
OpenMP (gcc for ARM back-end) and
OMPSs; and SPMD based
programming: MPICH2.

Contains ARM RDVS tool chain with
compiler, profiler & debugger

NVIDIA SDK and PDK are aids
application development

GPU PROGRAMMING:

Limited support for GPU programming
with OpenGL (no CUDA available
before a year or so).

Efficient Profilers and debuggers are
also unavailable for OpenGL.

Sustainability Quad Core Tegra 3 released within one
year after Tegra 2 in 2010.

Support for CUDA or may be even
OpenCL can be expected in future
Tegra.

Tegra’s design is targeted towards
handheld and netbook devices. It might
restrict its widespread application.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 12

NVIDIA
Tegra

Pros Cons

Portability Multicore applications are easily ported
to ARM processor

Limitation in porting from and to
OpenGL based GPU applications.

Availability Low cost for the relatively high
performance offered.

Simple, cost effective installation &
maintenance without the need for
complex cooling system.

Tegra has not been introduced by
NVIDIA in large scale HPC market.

NVIDIA might be unprepared for
sudden request for creating large-scale
HPC cluster.

Table 6 NVIDIA Tegra pros and cons

We expect several promising features from upcoming releases of NVIDIA's Tegra
architecture. First, we expect faster CPU processors to appear (Tegra 3 to house Cortex A9
running at 1.5GHz). NVIDIA has announced plans to use ARM's Cortex A-15 processors. To
match the performance increase of the CPU, we also expect faster and more GPU cores to be
integrated on future chips, with support for CUDA and OpenCL.

Second, NVIDIA envisions support for cache-coherent shared memory between the ARM
cores. No cache coherence is planned between the CPU and GPU, though. Memory shall be
protected by ECC, and increased memory bandwidth shall support the growing number of
cores. To support performance tuning, future Tegra releases shall provide access to hardware
counters. Also, higher interconnect bandwidth is expected with multiple Gigabit interfaces
and higher PCI Express bandwidth.

Third, we expect improved software support as a result of ARM partnering with NVIDIA,
such as open-source scientific libraries tuned for ARM processors, software-controllable
voltage and frequency scaling, and optimized versions of the Ubuntu Linux operating system.

2.2.6 NVIDIA Tesla

NVIDIA's Tesla architecture is the most widely used, programmable GPU in the area of high-
performance scientific computing. Attached to a CPU, node-level hybrid systems of CPU and
GPU form an important class of contemporary, accelerated supercomputer systems.

NVIDIA
Tesla

Pros Cons

Scalability Support for 10k+ threads of execution
per device

Data parallel programming at low
cost ($).

On-chip memory bandwidth, and off-
chip memory bandwidth to graphics
memory (GDDR5) is very high.

Architecture has the potential to scale
because of memory design and
execution model in terms of # of
threads

In chip: adapt the thread to properly hide
latency. Poor down-scaling because of
high latencies, e.g. of register file accesses.

Memories are too small to support the
large number of available threads. Thread
array (CTA) limit results in code bloat and
coding complexity when using more than
512 threads.

Limited off-chip bandwidth to host
memory and I/O subsystems with respect
to the number of threads limits
performance benefits of accelerator.

Performance With native double precision (DP)
support in Tesla-20 series, improved
floating-point performance for
scientific applications (double-

Programs should be mostly data parallel
(long vectors, few conditionals).

Explicit data transfer between host and

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 13

NVIDIA
Tesla

Pros Cons

precision throughput was 1/8th of
single-precision on Tesla 10-series)
with similar cost envelopes.

Effective latency hiding with large
number of threads.

Realistic improvement in double-
precision floating-point performance
of about 2-4 times compared to a x86
multi-core chip.

Flop/Ws ratio improved by about 2
times compared to contemporary
multi-core.

GPU is bottleneck (disjoint address
spaces)

Rapidly evolving HW and SW stack
require continuous tuning and code
reengineering to sustain performance.

Availability of tools is relatively limited.

Productivity Higher-level languages than CUDA
are emerging, e.g. HMPP, PGI,
GPUSS, (OpenMP working group on
GPGPU [15]) that promise increased
productivity.

CUDA provides a high productivity-
to-performance ratio due to tight
coupling of hardware and software
stacks.

Higher abstractions, for instance,
directives based programming approaches
currently do not deliver high performance,
and require extensive tuning on individual
devices such as different variants of GPUs
as well as CPUs.

High programming complexity to obtain
high performance.

Intimate understanding of hardware
required to obtain high performance.

Rapidly evolving HW and SW stack
require continuous tuning and code
reengineering to sustain performance.

Sustainability We expect the mass market of
graphics applications to drive the
evolution of GPUs.

Diverging requirements between graphics
and HPC applications, e.g. more memory,
higher-precision floating-point operations,
and tighter integration with host may not
be sustainable HPC-specific
enhancements.

Portability CUDA offers (code) portability
between NVIDIA devices and
generations.

OpenCL and other high level
interfaces attempt to provide (code
and performance) portability across
other acceleratored systems

CUDA is a vendor specific language.

Code developers typically design and
develop codes for both host and GPU.

Performance portability using high level
interfaces and OpenCL is lacking.

Availability We expect wide-spread availability to
continue during the next 3 years, and
similar technologies from competitors
may surface as alternatives.

Since the business model of NVIDIA is to
sell graphics cards as a consumer product,
it is unclear whether there will be a wide-
spread adoption of Tesla devices at HPC
centers, and how the use in HPC centers
will affect NVIDIA's R&D, the cost and
availability of Tesla chips.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 14

NVIDIA
Tesla

Pros Cons

Resilience ECC available on GDDR4. No ECC on instruction paths.

Power cycling required in case of buggy
GPU programs.

Table 7 NVIDIA Tesla series GPUs pros and cons

The Tesla 10 and 20 (Fermi) series devices, along with the CUDA programming environment
from NVIDIA have revolutionized the adoption of GPUs as accelerators for scientific
computing. Characteristic features include the availability of ECC protected memory, double-
precision floating-point arithmetic, and interoperability with communication libraries (MPI)
and system management environments have made Tesla series devices a mainstay for high-
end, floating-point intensive computing. As a cost-effective product, Tesla GPUs can be
considered to be a promising building block for Exascale computing.

We expect that the programming environments, CUDA and OpenCL, continue to evolve, and
single address spaces will become available. As of today, PRACE partners are actively
targeting and evaluating Tesla hardware, system software and programming environments as
a path for Exascale computing.

2.2.7 INTEL MIC

Intel's Many-Integrated-Core (MIC) architecture is an x86-multicore accelerator chip
connected to a host CPU via a PCIe bus. The MIC architecture has evolved from the 80-core
Tera-scale research chip, the single-chip cloud computer chip, and the Larrabee project.

Many Intel
Core (MIC)

Pros Cons

Scalability The first Intel MIC product will be made on
Intel's 22-nanometer manufacturing process,
and will scale to more than 50 cores on a
single chip. Each x86 processor core is
augmented by a 512-bit wide vector
processing unit. All cores are interconnected
via a bi-directional on-chip ring network.

Not applicable since MIC is not a
product yet.

Performance Not applicable since MIC is not a product yet. Not applicable since MIC is not a
product yet.

Productivity A key advantage for Intel MIC products is the
ability to use standard, existing programming
tools and methods. Intel MIC cores can be
programmed using standard C, C++, and
FORTRAN source code. MIC also supports
shared memory programming models such as
OpenMP and threads.

Not applicable since MIC and it’s
software stack are not a product
yet.

Sustainability Not applicable Not applicable

Portability MIC supports the classical shared-memory
programming paradigm. The same program
source code written for Intel Many Integrated

Not applicable since MIC and its
software stack are not a product
yet.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 15

Many Intel
Core (MIC)

Pros Cons

Core products can be compiled and run on a
standard Intel Xeon processor.

Availability MIC development kits, codenamed "Knights
Ferry," are already shipping to selected
software developers.

The first Intel MIC product is codenamed
“Knights Corner”. The official product launch
is expected not to happen before 2012.

MIC is not yet available as
official product.

Resilience Not applicable since MIC is not a product yet. Not applicable since MIC is not a
product yet.

Table 8 INTEL MIC pros and cons

2.2.8 FPGA

Field programmable gate arrays (FPGA) are gaining momentum in the HPC world, because
Moore's law continues to guarantee growing numbers of logic cells that permit synthesizing
increasingly complex algorithms directly into hardware.

The application of FPGAs for accelerated HPC can be divided into three groups.

 Accelerated systems with programmable accelerator architectures inside the FPGA,
e.g. Convey Computer's vector personality or Mitrionic's Mitrion Virtual Processor.

 Accelerated systems with application programs synthesized directly into one or
multiple FPGAs, e.g. Maxeler Technologies Ltd [37].

 Standalone systems based on one or multiple FPGAs, e.g. Pico Computing.

FPGA Pros Cons

Scalability On-chip: very good scalability, because
of a large amount of regular structures
with up to 120000 slices and 950000 flip
flops, well suited for applications with
regular computational patterns.

Across chips: very good, with high speed
interconnects using up to 48 high speed
GTX transceivers; maximum GTX
transceiver data rate: 4.25 – 6.5 Gb/s.

Requires hybrid programming: special tool
chains for programming accelerator
architectures inside FPGAs or synthesizing
FPGA cores. Host applications use accelerated
kernels through library calls. Data needs to be
copied between host and accelerator memories
explicitly. Although commercial solutions exist
for point solutions, FPGA-based acceleration
remains subject of ongoing research.

Performance Selected applications have been
accelerated successfully: bioinformatics
speedups 15x-100x [21], financial
analytics speedup 47x, compression
speedup 10x, seismic imaging speedups
73x-100x, sparse matrix speedups 20x-
40x.

Typical operating points are:

clock frequency: 100-300 MHz

Compared to ASIC designs [33]:

Flops/Ws: about 12x worse

Performance: 3-4x worse

Area: 20-40x larger

Results are very application dependent.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 16

FPGA Pros Cons

power consumption: 10-40 W

I/O bandwidth: 30 GB/s

memory bandwidth: 35 GB/s

double-precision floating point: 160
GFlop/s

single-precision floating point: 480
GFlop/s

Performance and capacity double every
year.

Productivity Tools: Vendors supply tool chains for
programming, testing, and optimization
with every new FPGA generation. High
level languages are available, such as
HDL's, SystemC, etc.

Tools: Automatic synthesis of algorithmic
kernels may produce inefficient results. A
programmer needs to have expertise in circuit
design. Circuit design must be adapted for
every new FPGA generation.

Flop/programmer: worse than with GPU
accelerators. User needs programming and
circuit design skills.

Sustainability FPGAs are an established mass market
with a high product refresh rate. Vendors
release new FPGA generations every two
years and clock rates are still increasing.

Application dependent.

Portability Verilog and VHDL is widely supported. Not portable: each FPGA requires different
synthesis and explicit data movements.
Vendors supply their own non-portable runtime
environments. There is no standardization, and
interoperability is limited among the different
solutions [27].

Availability At least 2 big vendors, Xilinx and Altera. Order backlog indicates that manufacturers
underestimate or undersupply the market.

High unit prices: 1000$ - 17000$

Resilience MTBF: same as microprocessors with the
same manufacturing process.

ECC can be implemented as part of the
accelerator core design process.

Can be improved with task duplication.

Debugging: user needs to be hardware
designer to understand the implementation and
the timing of a design.

Application dependent.

Table 9 FPGA pros and cons

The value of worldwide FPGA shipments is expected to increase from $1.9 billion in 2005 to
over $3 billion by 2011, with much of the revenue coming from low-volume shipments,
according to a high-tech market research firm. In 2010, the largest end-user segments were
communications and industrial, with a combined FPGA market share of 76.8 percent, up from
73.8 percent in 2005, according to a new In-Stat (Scottsdale, Ariz.) report. The HPC market
received its last significant investments by FPGA vendors in 2005.

The HPC market potential is not lost on FPGA vendors: some customers are starting to buy
thousands of FPGAs to accelerate applications like financial or oil and gas, but are often
forced to purchase consultancy, in parts because of a lack of standardization and proprietary
technologies. Moreover, most contemporary solutions are oriented toward hardware design
rather than software programming.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 17

2.2.9 DSP: Texas Instruments C6000 Multicore

Digital signal processing arose soon after digital electronics became available. Programs have
been implemented on standard devices like computers, microcontrollers and FPGAs as well as
on specialized processors like ASICs and digital signal processors (DSP). The typical
applications like audio, image, and video processing or signal analysis require a very high
number of mathematical operations on large data sets. Specialized DSPs have been tuned to
provide high performance at low costs including features like low power consumption and
operation at higher temperatures. Recent DSPs benefit from the introduction of increased
clock frequencies, IEEE-754 compliant single and double precision floating-point arithmetic
and multi core chip designs. The assessment in the table reflects the features of DSP’s from
the Texas Instruments’ TMS320C66x series presented in Fall 2010.

Texas
Instruments

TMS320C6678

Pros Cons

Scalability Good scalability on-chip: 8 DSP cores and other
subsystems (memory, peripherals, accelerators)
connected by a programmable interconnect (Keystone
Multicore Architecture, comprising Multicore
Navigator, TeraNet, Multicore Shared Memory
Controller, Hyperlink)

High-speed I/O: PCIe Gen2, Serial RapidIO, TSIP,
DDR3-1600, Hyperlink (to other chips)

-

Performance 160 Gflop/s at 1.25 GHz

Caches: L1 32kB program, 32kB data, L2 512kB per
core, 4 MB shared memory for 8 cores

2 Tbps Teranet on-chip interconnect

DDR3 ECC memory at 1600 MHz

Hyperlink up to 50 Gbps

2 PCIe Gen2 lanes with 5 Gbps

4 SRIO lanes with 5 Gbps

<10W at 1 GHz, Operation up to 100°C

-

Productivity Software Development Tools:

– Code Composer Studio™ Integrated Development
Environment (IDE), including Editor
C/C++/Assembly

– Code Generation, and Debug plus additional
development tools

– Scalable, Real-Time Foundation Software
(DSP/BIOS™), which provides the basic run-time
target software needed to support any DSP
application.

Hardware Development Tools:

– Extended Development System (XDS™) Emulator
(supports C6000™ DSP multiprocessor system
debug)

– EVM (Evaluation Module)

-

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 18

Texas
Instruments

TMS320C6678

Pros Cons

Sustainability Expected to be high. Targeted at large markets and
broad application range

-

Portability MS Windows and Linux environment

Several application specific libraries available, e.g.
BLAS

Specific processor

Availability Available

Product family from 2 to 8 cores per DSP at a price from
40 to 200 USD

-

Resilience ECC memory -

Table 10 TI C6000 pros and cons

The TMS320C6678 is an example of a recent DSP development using modern fabrication
facilities and technological paradigms. This allowed adding numerous features useful in many
computational intense applications like medical imaging and aerospace applications. Another
aspect considered during the chip design was to combine the DSP’s with general processors
aside their standalone usage. DSP’s as accelerators could contribute to the performance and
robustness for example in multimedia systems guaranteeing power and space efficiency at the
same time. Therefore it is obviously important to evaluate these processors in the field of
HPC too.

2.2.10 Tilera TilePro64

Tilera's TilePro64 architecture exemplifies general-purpose manycore architecture, featuring a
grid network of identical RISC processors on a single chip. Past programming experience
shows that Tilera can offer power efficient solutions for selected applications with reasonable
programming effort.

Tilera
TilePro64

Pros Cons

Scalability Good scalability on-chip: the 8x8 grid
of identical RISC processor cores (tiles)
is suited for both signal processing and,
in principle, general-purpose computing.

-

Performance Up to 443 billion operations per second
(BOPS) at 866MHz

37 Tbps of on-chip mesh interconnect

Up to 50 Gbps of I/O bandwidth

22W at 700MHz

No floating point units

32-bit architecture

Productivity C/C++, full SDK under Linux, pthreads

Can be used in a standalone machine (ie
Linux bootable)

No Fortran

Large programming effort to utilize
cores with small cache capacity.

Sustainability Used in network and video products

Portability Linux environment

Supports SMP Linux with 2.6 kernel

Accelerates pThreaded and shared-

Proprietary C/C++ compiler (will be
replaced by Gcc in 2011)

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 19

Tilera
TilePro64

Pros Cons

memory code

iLib™ API's for efficient inter-tile
communication

Advanced profiling and debugging
designed for multicore programming

Specific processor

Availability Available TilePro64 is now “old”, it will be
replaced by TileproGX in 2011 (64 bits,
100 tiles)

Resilience ECC memory -

Table 11 Tilera TilePro64 pros and cons

The Tilera architecture targets massive multi-threading, signal processing and networking
applications, relying on its massive internal bandwidth. Lack of floating-point support
disqualifies the product for scientific applications.

2.3 Analysis of the Hardware Survey

In this Section we identify common trends of the computer hardware surveyed in Section 2.2.
To capture the various facets of the technology, we analyse the trends from the perspective of
each of the criteria outlined in Section 1.2. Our discussion focuses on the implications of the
hardware trends on the software for exascale supercomputer systems.

2.3.1 Scalability

Computer architects have acknowledged the end of performance growth by frequency scaling
at about 4 GHz, because of the power wall. Consequently, industry has refocused, but
continues to rely on Moore's law to double the number of transistors per chip about every two
years. Hence, we observe the common trend to grow performance by increasing the number
of cores per chip without changing the clock frequency. We expect this development to
dominate the quest for scalable processor designs in the foreseeable future at the risk of
bumping into the memory.

To facilitate large-scale machines, board designers assemble one or more multicore chips into
so-called fat nodes, featuring cache-coherent shared-memory architecture. This architectural
trend emphasizes backward compatibility with existing software stacks. Among the surveyed
systems, we find this trend represented by Intel's SandyBridge designs as well as IBM's
Power7 and BG/Q. We note that the scalability of fat nodes is limited by the effectiveness of
the cache-coherence protocol, just like traditional SMP's in the past. Thus, we expect typical
HPC applications to scale up to several tens of cores within a fat node.

In contrast to the traditional fat-node design as an SMP, alternative architectures have entered
the market, that we classify as accelerators, typically attached to a CPU. Today's accelerators
feature larger numbers of smaller cores than in fat nodes and alternative interconnect
networks without support for cache-coherence. The most prominent accelerator products are
NVIDIA's Tesla, Intel MIC and FPGAs (DSPs from Texas Instruments tailored for scientific
computing entered the market recently). AMD's Fusion and NVIDIA's Tegra are hybrid
designs that integrate CPUs and GPUs on a single chip. Accelerated nodes consist of CPUs
and accelerators, and promise to scale beyond fat nodes at the expense of an increased
programming effort.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 20

Tilera's TilePro64 is the only architecture in our collection that can be classified as both
cache-coherent SMP and accelerator, with a larger number of smaller cores than competing
designs. The cores of the TilePro64 chip are so small, however, in parts because they lack a
floating-point unit, disqualifying this product for traditional HPC applications.

A de-facto standard has emerged among the programming environments for machines with
multiple fat nodes, such as IBM's BG/Q and x86-based clusters. We find that most
supercomputer programmers use a pragmatic hybrid model: traditional language
environments, including C/C++, Fortran, OpenMP, etc., are used to program each fat node,
and a communication library, usually some MPI variant, is used to cope with the distributed-
memory architecture when crossing nodes. Alternative parallel programming languages, such
as partitioned global address space (PGAS) languages, including CAF and UPC, are neither
widely available nor used.

The programming task of an accelerated node may be viewed as a superset of programming a
fat node, because most accelerated nodes consist of multiple cores plus one or more
accelerators. Programming the accelerator requires additional effort. The de-facto standard for
NVIDIA GPUs is the CUDA extension of C. Other programming environments, including
OpenCL, HMPP, and PGI Accelerator, fail to be widely available or used. FPGA-based
accelerators require hardware design skills and experience with hardware description
languages like Verilog or VHDL.

In summary, as primary architectural trend we observe the bifurcation into fat nodes and
accelerated nodes. Today, both directions lack proper high-level programming environments.
Therefore, it remains unclear, which of the two directions will succeed to offer exascale
computing systems with adequate software stacks beyond targeting expert programmers.
Furthermore, we are witnessing a period of rapid evolution towards power-efficient high-
performance hardware that should be considered an active field of research, and deserves
being monitored sharply in the coming years.

2.3.2 Performance

The notion of performance has changed since we hit the power wall in 2005. The traditional
measure of Flop/s is gradually superseded by Flop/Ws. Despite this change, raw performance
growth remains the hallmark of supercomputing.

 We observe the general trend to improve the performance-to-power ratio as primary system
design goal, as exemplified by IBM's Blue Gene supercomputer. Expectations are that
exascale machines will have to deliver at least 50 GFlop/Ws to be economically viable.
Current architectures are about two to three orders of magnitude off target. However,
accelerated architectures attack this goal more aggressively than traditional fat-node
architectures by augmenting general-purpose CPUs with power-efficient compute fabrics,
leveraging technologies borrowed from the embedded world, as seen for instance in
NVIDIA's Tegra. This hardware-centric design direction has the potential to succeed, despite
criticisms about their programmability. Obviously, power-efficient high-performance
hardware is necessary for exascale machines, yet not sufficient if it requires a disproportional
programming effort. Thus, we foresee increased investments in programming environments to
complement research on accelerated architectures, including optimizing compilers, runtime
systems and performance tools for HPC applications to explore and identify the most
promising accelerator architectures.

Most accelerator designs emphasize the performance-to-power ratio at the chip level. Other
contenders for low-power chip-level designs may emerge from the embedded market. For
example, the ARM instruction set architecture dominates the contemporary mobile market, as

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 21

it requires less energy per instruction than general-purpose architectures. For exascale
machines, at least as much attention must be paid to the energy consumption of the
interconnection network, the memory, and I/O subsystems. Today, IBM's Blue Gene is the
hallmark of a balanced (but expensive) design. Despite increasing node performance,
hundreds of thousands of nodes will be required for exascale computing. At this scale, the
programming challenge will be to utilize such a large number of cores efficiently. It remains
unclear how many HPC applications may approach a reasonable efficiency level when
programmed with today's programming models, even if traditional fat-node architectures can
be employed.

In summary, we consider the programming challenge for exascale applications at least as
serious as the design of power-efficient chip and system design. Today's programmers focus
on raw performance by exploiting various degrees of threading from few fat nodes (OpenMP)
to massively data-parallel GPUs (CUDA/OpenCL). Tomorrow's expert programmers may
have to worry explicitly about power consumption as well. We expect to see a major leap
beyond contemporary hybrid programming with MPI, OpenMP, and CUDA/OpenCL before
all but expert programmers will achieve exascale performance.

2.3.3 Productivity

The evolution of power-efficient hardware is an ongoing process that can only yield winners
if both hardware and software in combination achieve exascale performance. While systems
based on fat nodes support existing software stacks, new accelerator-based systems offer both
challenge and opportunity for new software stacks.

Systems with fat-nodes are in production use today, including IBM's Blue Gene and Power7
systems, as well as Intel-based clusters from various vendors. Contemporary installations
operate under the Linux operation system and support traditional programming environments,
including Fortran, C/C++, OpenMP, MPI, as well as debugger and performance analysis
tools. We expect the software stack to evolve hand-in-hand with advances in hardware. This
path to exascale hinges on improvements in power efficiency, and a proportional increase of
the number of cores. Thus, productivity is likely to remain at similar levels as today.

Systems with accelerated nodes present a disruptive change not only to the HPC community.
Porting legacy codes to new programming environments like CUDA or to FPGAs is often
considered too difficult or even technically infeasible. Since the evolution of accelerators is in
full swing, the decision to develop new applications for these devices is risky, even when
using existing software tool chains. Over the past several years, NVIDIA's CUDA
environment for Tesla has matured and is in common use. However, the software stack for
Tegra is widely considered unusable for HPC applications. AMD supports OpenCL for its
Fusion architecture, which is much less mature than CUDA, and still lacks tools incl.
debuggers and performance analysers. Transliterating legacy codes from Fortran to CUDA or
OpenCL is not considered productive at this stage. To develop reasonably fast circuits for
FPGA accelerators, digital design expertise is required that is neither widely nor readily
available to HPC projects.

In summary, the productivity of systems with fat nodes is considered acceptable (albeit low),
with the expectation that the event of exascale hardware will not deteriorate the situation
disproportionally. Accelerated systems, on the other hand, are still at an experimental stage,
precluding a judgement about their productivity.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 22

2.3.4 Sustainability

Over the past decades, sustainability has been associated with the rate of performance growth:
the peak floating-point performance of supercomputers has increased roughly by a factor of
1000 per decade. Chances are that the end of frequency scaling causes this rate to decrease
soon.

The predominant method to guarantee sustained performance growth in the recent past has
been to assemble supercomputers as clusters from COTS parts. Besides reaping the economic
benefits of a mass market, this method also ensures a high degree of backward compatibility
on the software side. The following components in Section 2.2 have the potential to remain or
become COTS parts in the foreseeable future: IBM Power7, Intel SandyBridge, AMD Fusion,
NVIDIA Tesla and, perhaps, Tegra.

A product exposes a medium risk with respect to its expected success to sustain performance
growth, if it appears as a niche product targeting the HPC market or if it occupies an unrelated
mass market without supporting HPC. IBM's Blue Gene line of supercomputers is a niche
product targeting the HPC market. We expect that Blue Gene continues to evolve if IBM can
establish a profitable market for this line of supercomputer product.

Prototypical systems expose the highest risk for sustainability, yet present the best opportunity
for early adopters to explore or even steer the evolution of alternative architectures. Intel's
MIC and Tilera's TilePro64 can be considered prototypes at this stage. FPGA-based
accelerated systems have come and gone, for example the Cray XT5h. Although FPGAs have
not established their presence in HPC, their potential to outperform other technologies has
been demonstrated in several application segments. Therefore, progress of FPGA-based
accelerators should be monitored closely. The extended possibilities of DSPs are allowing
their usage in HPC as accelerators as well as in a standalone manner are new. This technology
is promising. Regardless that it will probably have a high sustainability because the
processors will be widely used in many products one hast to see it with respect to HPC as in a
very early stage due to the lack of experience at the moment.

From a software perspective, backward compatibility has been the prerequisite for the
acceptance of new hardware. With the event of new hardware architectures, in particular
accelerated architectures, this stance may weaken in the near future. Unless traditional
clusters of fat nodes continue to sustain performance growth with lower power consumption,
accelerated architectures are likely offer a significantly better performance-to-power ratio. At
this point, we expect major investments to port legacy codes to new environments. Today, we
have not reached this point yet. To assess the need for such investments, the PRACE partners
are actively exploring and evaluating contemporary accelerated architectures.

2.3.5 Portability

Computer architecture enables portability if it supports a commonly used software stack, in
particular programming environments and operating system. In HPC, we distinguish
functional portability, the capability to execute a program on a different architecture without
major adaptations other than recompilation, and performance portability, the ability of a
program to achieve similar levels of efficiency across architectures.

Clusters of fat nodes guarantee functional portability. The Linux operating system is
established as de-facto standard for high-performance computing on these systems.
Furthermore, the Linux environment supports the most common HPC programming
languages, C/C++ and Fortran, and MPI and OpenMP for parallel programming. We expect to
be able to port programs between IBM's Power7 and Intel's SandyBridge without major code

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 23

changes, unless proprietary software is used. In contrast, performance portability remains a
serious problem. Efficiency varies easily by an order of magnitude from system to system,
unless the program restricts its performance critical functionalities to common vendor-tuned
libraries. Otherwise, significant algorithmic and machine-specific expertise and programming
effort are required to obtain efficient programs even on traditional clusters of fat nodes. We
expect similar performance portability problems with future exascale systems.

Programs are not portable across accelerated systems at this point in time. Each system comes
with its own programming environment. For example, NVIDIA supports CUDA on its GPUs
while AMD supports OpenCL. OpenCL might offer functional portability in the near future
through a wide adoption. FPGAs can be programmed with high-level hardware description
languages, but commonly lack functional portability even across generations of the same
vendor. We should keep in mind, however, that the ecosystem of accelerated architectures is
rapidly evolving. The challenge of designing power-efficient high-performance systems
leaves little room for portability concerns. Yet computer scientists have to address this issue
since most programs will be developed on small systems which may differ significantly in
their characteristics from their large-scale counterparts.

2.3.6 Availability

A product is readily available if it can be purchased for a reasonable price to be delivered
within an agreeable time frame. Availability is a function of market size, supply and demand,
and size and strength of the vendor.

On the hardware and systems side, today's HPC market has two big companies, IBM and
Intel, several mid-sized companies, including AMD and NVIDIA, potentially ARM, Xilinx,
and Altera, and a number of smaller companies, including Bull and Cray. In contrast, the
software side of the HPC market is dominated by free software; in particular operating system
and programming environments, although the majority of HPC applications are proprietary
developments pursued within public or private research projects. Furthermore, commercial
tools and libraries are in use where highly optimized architecture-specific solutions are
required, including optimizing compilers (icc, xlc), scalable debuggers (DDT), and scientific
libraries (NAG, MKL, ESSL).

Today's major market drivers are Internet and mobile applications that have relatively little in
common with HPC applications from science and engineering. The primary effect of the big
market segments is their pull on the evolution of accelerated architectures, such as low-power
SOC's, GPUs, FPGAs, and DSP's, including AMD's Fusion, NVIDIA's Tegra, and Tilera's
TilePro64. We observe that new hardware releases tend to be in high demand, and feature low
availability within the first quarters of their life cycle, in terms of both high price and long
delivery periods. In contrast, multicore chips tend to be readily available, perhaps because
they serve a mature market that enables vendors to plan ahead.

Availability of components affects the assembly of today’s petascale computers already,
which tends to be on the order of one year. Even if we assemble an exascale machine from
traditional fat nodes, the assembly period may stretch across multiple technology generations,
leading to a high degree of heterogeneity to cope with. We should be prepared to include
portability and availability as primary factors in future purchasing decisions.

The availability of vendor-optimized high-performance software is a prerequisite for
purchasing any architecture. The core architecture of contemporary multicore chips requires
heroic programming efforts without optimizing compilers and high-performance libraries.
This situation deteriorates dramatically for accelerated systems, even for well understood
vector extensions as found in Intel's MIC. Once again, the market will drive the investments

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 24

of the vendors in the software stacks (such as Apple pushing OpenCL), potentially widening
the gap between the needs of the mass market and the HPC segment.

2.3.7 Resilience

Resilience characterizes the ability of a system to survive hard-errors and soft-errors. The
miniaturization of silicon technology and the scale of numbers of exascale computing systems
require hardware and software techniques to ensure a reasonable uptime and correct
execution.

Transient soft-errors, e.g. due to alpha particle hits, as well as manufacturing variability, have
already caused some vendors to protect the memories, including caches, with error-correcting
codes (ECC) in hardware. These include Intel's SandyBridge, IBM's Power7 and BG/Q. In
contrast, products targeting the consumer market lack ECC, incl. NVIDIA's Tegra and AMD's
Brazos family.

Software bugs cause machine failures as well. Some machines require a reboot if a user
exceeds limits due to careless resource allocation, e.g. the number of threads or processes or
the number virtual memory pages. In the worst case, a power-cycle can be required. We
observe that the design of an exascale machine requires profound experience with the
selection of components, both hardware and software, that extends well beyond the evaluation
of a small prototype system.

Henceforth, tackling resilience problems is a very active field of research, with no tangible
results yet. It encompasses every actor ranging from the hardware manufacturers to the
application developers. Many leads are pursued such as fault-tolerant MPI or using different
programming languages. Resilience is yet another field to watch closely in the coming years.

2.4 Trends to Watch in the Coming Year

At the time of writing this document, there are more open than answered questions about the
future of exascale hardware and software. The evolution of power-efficient high-performance
computer systems has only just begun. Vendors are experimenting with different
architectures, and are in the process of crystallizing their own philosophies about the
architecture of an exascale machine. Thus, it is difficult if not impossible at this time to
conclusively identify a common trend towards exascale software. We can, however, offer a
list of indicative trends to watch over the coming year.

1. Low-power architecture: We expect alternative instruction set architectures to push
into the general-purpose processor market. How would a shift from the dominant x86
ISA to another low-power ISA such as ARM's affect HPC? Are our applications
sufficiently independent of the ISA to be portable, provided that optimizing compilers
and high-performance libraries become available?

2. Accelerated systems: We expect the node architecture to evolve towards modestly
parallel multicores and massively parallel accelerated nodes. Do our applications exhibit
sufficient parallelism to match such architectures, or do these architectures exacerbate
the memory wall problem so as to be ill-suited for HPC?

3. Memory systems/Interconnect: We expect vendors to differentiate their HPC offers
through variations of their memory systems and interconnect design. Such system
architectures may improve programmability, and accelerate the proliferation of
alternative programming models, such as PGAs. Can our applications benefit from such
improvements?

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 25

4. Programming environment: We expect the evolution of accelerated architectures to
produce either a winner or a convergence of programming environments. Such
developments may affect the sustainability of HPC applications, for example if CUDA
or OpenCL gain momentum at the expense of OpenMP. Are we exposed to such
developments, and if yes what are the implications?

5. Market forces: We expect the evolution of low-power technologies to impact future
COTS components. Are these components suited to assemble high-end exascale
machines, or will they cause promising high-performance technologies to disappear?

6. Education: Watch the curricula of Universities and HPC professional training. Are we
preparing the next generation of scientists properly to cope with the challenges ahead of
us?

Deliverable D9.2.2 will answer some of these important questions (issues) and formulate
recommendations on Software for Exascale machines.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 26

3 Programming Languages

The assessment of programming languages started in the PRACE Preparatory Project
(PRACE-PP). First results were published in [48]. A partial update appeared in the PRACE
Workshop on “New Languages & Future Technology Prototypes” (March 1-2, 2010) [49].
Since then, the focus or our work as shifted from evaluating multicore CPUs and a plethora of
accelerator systems such as GPUs, Cell, Clearspead, and FPGAs, to evaluating a plethora of
programming languages for two types of systems, traditional multicore CPUs and GPU-based
accelerators. The languages under consideration are CUDA (+MPI), OpenCL, CAPS hmpp,
PGI Accelerator Compiler, OpenMP+MPI, UPC, CAF, Chapel, StarSs (+UPC), Cilk
(+UPC/MPI), ArBB, TBB and HTA.

Section 3.1 offers an overview for each language, including a description of the programming
and memory model, a code example, information on available libraries and tools, and reports
experimental results. Section 3.2 summarizes our assessment.

3.1 Description & Results for Each Language

3.1.1 CUDA

Description

CUDA (Compute Unified Device Architecture) is a quickly maturing software development
environment provided free of charge by NVIDIA to develop applications for NVIDIA
graphics processors. Today, CUDA is the most mature and most widely used development
platform for GPGPUs [52]. It is an extension of the C programming language to program
NVIDIA GPUs attached to a host CPU. The CUDA programmer must expose enough data
parallelism to mask the latencies of multithreaded GPU resources. For further information see
Section “Description of Programming and Memory Model” in [48] and [41].

A CUDA program consists of one or more sections that are executed on either the host CPU
or a GPU device. The device is used commonly as an accelerated coprocessor where data
parallel portions of an application are executed as a kernel which runs in parallel on many
threads. A kernel is expressed as a C-language subroutine that uses data allocated in the GPU
memory (Figure 1).

Apart from the subroutine arguments, a call to a kernel includes the specification of an
execution configuration, added between triple angle brackets “<<<” and “>>>”. The
configuration parameters define the mapping of threads to GPU resources (Figure 2). The
product of the first two parameters between the angle brackets defines the total number of
simultaneously running threads for a given kernel, see [48] and [41].

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 27

Figure 1 Simple CUDA kernel

Figure 2 CUDA host code

Free libraries, software tools, and development kits such as the NVIDIA CUDA SDK are
available to assist the CUDA programmer. Both NVIDIA and the CUDA developer
community [42] continue to develop and improve the libraries and software environment.
New SDK releases appear approximately every six months.

Experience & Results

This section reports ongoing work at ICHEC on the phiGEMM library for accelerated matrix
multiplication routines on GPUs.

BLAS 3 routines, such as [S/D/Z]GEMM, are widely used in many scientific applications.
NVIDIA has improved the CUBLAS library in the last years, achieving significant
performance (e.g.~350GFlop/s double precision for a DGEMM-kernel on the GPU). For
medium to large sized datasets, the time required to move data between the host and the
device still represents a bottleneck, even though the peak performance is quite impressive.

Starting from a previous NVIDIA project [11], ICHEC has developed the phiGEMM library.
This library allows the target application to perform [S/D/Z]GEMM operations using both
CPU and GPU simultaneously. It implements both the data transfer management and the split
logic (amount of computation to be performed in parallel on each device, CPU and GPU, in
order to achieve an optimal load balance). Since phiGEMM follows standard BLAS [40]

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 28

interfaces, the users just need to link to the library, like any other common library such as
MKL, ACML, ESSL, GotoBLAS, etc. The phiGEMM matrix-matrix multiplication calls
simultaneously an external BLAS library (single- or multi-threaded) for the CPU-side and a
CUBLAS kernel instance on the GPU, as efficiently as possible.

Figure 3 shows the performance of the phiGEMM DGEMM implementation compared to
CUBLAS. The split factor is calculated starting from the pure CUBLAS performance and the
pure CPU performance, for every test performed varying the matrix size. Figure 4 reports the
same tests using page-locked (or pinned) memory. We achieved great performance increasing
the matrix sizes in the range from 512x512 up to 10240x10240 that represents almost the limit
of the GPU memory. The usage of page-locked memory on the host allows the phiGEMM
library to overlap efficiently the CPU computation and both the CUBLAS call and the
asynchronous host-to-device data transfers.

All tests were performed using CUBLAS v3.2 on a GPU TESLA C2050 (448 cores and
3GByte of memory on the card) and the latest multi-threaded Intel MKL library on an Intel
Xeon CPU X5650 (6 cores, 2.67 GHz).

Figure 3 Comparison between CUBLAS, MKL and phiGEMM (DGEMM)

Figure 4 Comparison between CUBLAS, MKL and phiGEMM (DGEMM, PINNED

memory used)

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 29

Pros & Cons

 Pros Cons
Scalability Massive data parallel language. Easy to

scale on multiple GPUs with both
OpenMP within a single node and MPI
across distributed nodes.

Only CUDA 4.0, which still is in the
status of a “candidate release”, provides
RDMA functionality to allow direct data
exchange between GPU and GPU both
intra- and inter-nodes.

Performance Applications have been sped up to one,
two and even three orders of magnitudes.
Currently the best supported language for
NVIDIA hardware.

Rather low level programming
language. Hardware driven performance
tuning is often necessary and might
become counter-productive on further
generation of NVIDIA technology. Effort
needed to port an application has to be
considered while estimating
performance benefits.

Productivity The CUDA programming model is easy to
learn and maintain. Its nature as a C
extension language along with many
useful C++ features makes it easily
programmable and readable. The SDK
offers a number of productivity tools free
of charge (e.g. debugger, profilers,
memory checker).

Large effort in performance tuning is
commonly requested. NVIDIA CUDA is
C/C++ only. Porting codes from other
languages implies porting to C/C++
beforehand. PGI provides a CUDA
Fortran compiler, but it has to be
procured in addition to the free NVIDIA
environment.

Sustainability By far the most widely adopted and
mature language for GPU computing.
Strong support and investment by NVIDIA
on both hardware and software. Large
ecosystem already developed, with ported
codes, library and development tools.

Long-term support of CUDA
programming language is fully under
NVIDIA’s control. Exploitation of both
hardware and software of further
generations might require substantial
code changes.

Correctness Perfect integration with the hardware,
which now supports ECC correction and
IEEE floating point arithmetic. Effective
tools for memory problem detection and
debugging are available.

Trickier to handle than high-level
languages. It’s massively parallel nature
along with its characteristic to be a
separated entity makes it harder to
debug than standard code.

Portability Very good ascending compatibility from a
software and hardware point of view.
Work on all shipped NVIDIA CUDA
enabled device.

Only available for NVIDIA CUDA
enabled GPU. Software features
improvement often depends on
hardware support. Some optimizations
implemented for specific target can
become counter-productive on a
different one.

Availability CUDA is delivered as free software from
NVIDIA web site. It’s actively maintained
and developed.

Only available for NVIDIA CUDA
enabled architecture.

Table 12 CUDA pros and cons

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 30

3.1.2 CUDA+MPI

Description

Hybrid CUDA+MPI, along with hybrid OpenCL+MPI, are the two programming
environments that offer most control to the developer for programming today's clusters of
GPGPU systems. This level of control sacrifices code simplicity, because hybrid
programming requires explicit programming of two architectures. Hybrid CUDA+MPI
programs consist of both code for the host CPU and the kernel code for the GPU device. In
principle, the host code can be written in any language interoperable with MPI and CUDA.
The kernel code is typically written in CUDA.

The developer is responsible for managing data transfers between (1) the host memory of the
CPU and the device memory of the GPU and (2) between MPI processes. Explicit
programming of data transfers results in more complex codes, but gives the developer an
opportunity to fine tune placement and timing of transfers, e.g. to exploit latency hiding.

To date, direct GPU-GPU communication bypassing the host is not feasible. Instead,
applications must be aware of the memory hierarchy. The memory hierarchy introduces high
latencies for data transfers between GPUs, which may affect scalability. The forthcoming
CUDA toolkit release (version 4.0) will offer two optimizations for multi-GPU programming:
(1) GPUs on the same node may communicate directly through PCIe, and (2) modifications to
MPI permit inter-GPU communication.

Experience & Results

This section reports on the QUDA library developed at CaSToRC, the Cyprus Institute.

QUDA is a publicly available library that provides mixed-precision implementations of the
CGNR and BiCGstab sparse linear solvers for inverting Wilson-Dirac matrix on NVIDIA
CUDA platforms [5]. The current release includes optimized solvers for a variety of fermion
actions, while also providing a C interface to allow integration into existing applications. A
parallel version is also available, however at the moment this version has beta status [4].

Programming with MPI on heterogeneous systems, one needs to take into account the
memory communication patterns. To fully utilize the PCIe bus, one can use the so-called
asynchronous memory copy methods provided by the CUDA API that operate with page-
locked host buffers. These non-blocking copies allow overlapping data transfer with other
operations, either on the host or on the device. However current network devices can directly
access only non-pinned host buffers for communication, which means either synchronous
device-to-host (or vice versa) data transfer can be used, or otherwise extra memory operations
on the host are required.

In QUDA, parallelization of the Wilson-Dirac matrix inversion across multiple GPUs is done
by partitioning the time direction of the lattice while spatial directions reside on a single GPU.
Hence, the application of the Wilson-Dirac matrix on the spinor field is performed by
computing the inner sites, communicating the neighbors, or boundaries, and finally computing
the boundary sites. The first two steps can be overlapped, which is achieved using CUDA's
streaming capabilities. This is done in conjunction with asynchronous data transfers between
device and host, as well as non-blocking MPI communications.

We performed scaling tests on our local Tesla S1070 cluster of 7 GPU nodes with Infiniband
SDR fabric. The single precision BiCGstab solver with overlapping MPI communications was
run. Figure 5 shows a weak scaling test. A near linear scaling is observed, with 1 TFlop/s
sustained performance on 14 GPUs. We note that the problem size in this situation is very
asymmetric, meaning such geometry would not be used in a typical production run. Strong
scaling is shown in Figure 6. Because of GPU memory requirements, we reduced the local

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 31

volume to allow more subdivisions of the global problem size. This geometry represents a
more natural choice, suitable for production runs. Under this conditions, the code scales
poorly since increasing the surface to volume ratio results in the application being
communication bound, with the compute kernels completing earlier than the memory
transfers. Reducing latency is a key to improving this situation, which will be addressed in
new hardware and software developments.

Figure 5 Weak scaling plot of Quda
BiCGstab inverter
performance

Figure 6 Strong scaling plot of Quda
BiCGstab inverter
performance.

Pros & Cons

 Pros Cons
Scalability Excellent, MPI is the most well

established paradigm for programing
distributed memory HPC systems.

Depending on the underlying
communication schemes scalability
might be limited by the host-GPU
communication bottleneck.

Performance C for host and its extension for device
code (C for CUDA) can achieve
excellent performance.

-

Productivity - Complex code is required to manage
two architectures and two-level
memory hierarchy.

Sustainability Excellent for MPI. Not clear whether OpenCL will replace
CUDA as a standard for programing
accelerators.

Correctness - The well-known pitfalls in MPI
programing apply here. Debugging
GPU kernels can also be difficult due
to large number of threads.

Portability MPI is a standard and implementations
are available on any HPC system.

CUDA restricts to NVIDIA GPUs.

Availability Excellent. MPI available on effectively
any HPC system. CUDA available on
any NVIDIA HPC system.

-

Table 13 CUDA+MPI pros and cons

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 32

3.1.3 OpenCL

Description

OpenCL (Open Computing Language) is an open, royalty-free standard for general-purpose
parallel programming of heterogeneous systems. It provides a framework for multi-processor
computing and for parallel programming of GPUs. The framework includes a programming
language, based on C99, for writing functions (kernels) executed on OpenCL devices, and an
API. An overview of the OpenCL architecture, its execution and memory model are described
in [48]. OpenCL supports both data-parallel programming and task-parallel programming.
Furthermore, OpenCL is interoperable with MPI and other standard libraries.

Since the publication of PRACE-PP deliverable D6.6 [48] a new version of OpenCL has been
released by the Khronos Group: the OpenCL 1.1 Specification (rev. 36, September 30, 2010)
and OpenCL 1.1 C++ Bindings Specification (rev. 4, June 14, 2010) [26]. OpenCL 1.1 adds
functionalities for enhanced parallel programming flexibility and performance, including
host-thread safety, sub-buffer objects, 3-component vector data types, and new OpenCL built-
in C functions.

OpenCL (v1.0 or v1.1) supports a range of hardware from mobile technologies to HPC,
including:

1. NVIDIA GPUs (Tesla, Quadro, GeForce and ION),

2. AMD Fusion APU series (hybrid CPU+GPU),

3. AMD/ATI GPU series (Radeon HD, FirePro),

4. AMD x86 CPU SSE 2.x or later,

5. ARM Mali-T604 GPU,

6. Intel CPU series (e.g. Intel Core i7, Intel Xeon 7500),

7. IBM Cell/BE

8. IBM Power servers,

9. built-in graphic cores of Intel Sandy Bridge and Ivy Bridge processors.

Libraries for scientific computing written in OpenCL include:
1. ACML (BLAS, LAPACK, FFT, RNG) for AMD/ATI GPUs,

2. CUBLAS (BLAS) and CUFFT (FFT) for NVIDIA GPUs,

3. and ViennaCL (Linear Algebra and Iterative Solvers) with support for NVIDIA and
AMD/ATI GPUs [64].

Tools for OpenCL software development include:
1. gDEBugger CL (visual debugger),

2. Swan (tool for porting CUDA to OpenCL),

3. AMD Accelerated Parallel Processing SDK v2.3 with full support for OpenCL 1.1,

4. SNU-SAMSUNG OpenCL Framework (supports multiple target machines such as Cell
BE processors, ARM processors, DSP processors) [56]

5. IBM OpenCL Development Kit for Linux on Power and IBM XL C for OpenCL
compiler (OpenCL 1.0) [30],

6. Java Bindings to OpenCL (JOCL, enables applications running on the JVM to use
OpenCL 1.1) [32]

7. PyOpenCL (access to the OpenCL API from Python, supports OpenCL 1.1) [50].

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 33

OpenCL Code Example

Experience & Results

The Euroben benchmark mod2am/MxM was ported to OpenCL at PSNC/WCNS. We report
the benchmark results on NVIDIA GTX480, AMD/ATI Radeon HD 5970 and AMD/ATI
Radeon HD 5870.

The benchmark uses single-precision floating-point arithmetic. The results in Figure 7 and
Figure 8 exhibit performance improvements compared to the results reported in the PRACE-
PP tests on NVIDIA Tesla (2xC1060 GPU board). The Radeon HD 5970 is supported in
single-GPU mode only. This, along with the lower clock rate, is the main reason why the
newer card shows worse performance for HPC compared to the older 5870. Benchmarks with
cryptography problems revealed that the code needs adaptation in order to reach optimal
performance on GPU architectures. The preliminary conclusion is that even if the single GPU
from AMD/ATI shows better performance than NVIDIA, their solutions for HPC are still not
mature.

Figure 7 OpenCL performance of
mod2am

Figure 8 OpenCL performance of
mod2am including memory
copies

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 34

Pros & Cons

 Pros Cons
Scalability Scales extremely well and achieves very

high performance on SMP systems.
-

Performance Has big potential for massive-
parallelism. It is possible to achieve very
high performance on inexpensive GPU
hardware.

The code should be architecture-
oriented. PCI bus data transfer is still a
bottleneck.

Productivity Developing code is quite easy for people
that are used to program in C or CUDA.

Obtaining very efficient kernel code
and optimal performance requires
more effort, experience and using
device specific information.

Sustainability The Khronos Group consists of many
industry-leading companies and
institutions including AMD, IBM, Intel
and NVIDIA.

-

Correctness - -
Portability May run on a number of architectures.

The kernel code can be reasonably easy
transferred from one architecture to
another. The compiler is built into the
runtime.

To reach optimal performance the code
should be written for specific device.

Availability Open and royalty-free standard.
Tools simplifying software development
and scientific libraries exist.

-

Table 14 OpenCL pros and cons

3.1.4 Hybrid Multicore Parallel Programming workbench (HMPP)

Description

HMPP offers a high level abstraction for hybrid programming of (multi-)GPU systems
without the complexity associated with GPU programming. HMPP syntax consists of
annotations for C and FORTRAN programs with pragma directives similar to OpenMP.

The HMPP Workbench contains C and Fortran compiler drivers, target code generators which
support both CUDA and OpenCL, and a runtime library for the execution of parallel hybrid
applications. Details can be found in Section 6.4 of [48].

The programmer adds a “pragma hmpp codelet” to declare that a function shall execute on an
accelerator and a “callsite” pragma before the function call. The HMPP code generators auto-
parallelize the code and translate the accelerator function into CUDA or OpenCL. Hidden
from the user, the GPU-vendor SDK is then used to compile the generated code and create a
dynamic library which is loaded by the HMPP runtime. The HMPP runtime also takes care of
the GPU allocation and all data transfers.

HMPP offers pragmas to define which data must be copied in or out the GPU, to schedule
pre-allocation of the GPU and prefetching of data before the codelet call. Furthermore, HMPP
offers pragmas to define which data shall be stored in host memory after codelet execution on
the GPU is complete, and to specify when the GPU can be safely released. The concept of
codelet groups introduces device resident data, which may reduce the overhead caused by
data transfers. It is possible to “pin” several codelets to one specific GPU.

HMPP and OpenMP are interoperable, and of interest to program GPUs and multicore CPUs.
HMPP and MPI should be interoperable, but we did not verify this capability yet. If

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 35

necessary, the programmer may edit the generated CUDA/OpenCL code and include library
calls manually.

The PRACE Deliverable D6.6 [48] described HMPP release 2.0. Newer releases include
support for HMPP regions, the OpenCL code generator and support for several other
compilers (SunStudio, Open64, PGI compilers, Absoft Pro Fortran compiler) in addition to
GNU and Intel compilers, a Microsoft Windows version of HMPP, a new plugin for Eclipse
Galileo and the integration with the Vampir profiling tool and Allinea DDT. We mention that
PathScale and CAPS have joined forces in June 2010 to push the HMPP model as a new
standard for GPGPU programming (“HMPP Open Standard”). The new PathScale ENZO
Compiler Suite supports GPUs using HMPP’s directive-based programming model.

Figure 9 HMPP callsite example

Figure 10 HMPP codelet example

Experience & Results

This section reports benchmark results for Euroben kernels mod2am and mod2as, performed
at LRZ.

We have compared the performance of mod2am/MxM and mod2as/SpMV using HMPP and
the PGI accelerator compiler with CUDA implementations. Figure 11 shows the performance

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 36

on NVIDIA Tesla C1060 and C2050 (“Fermi”) GPUs. The optimized HMPP version uses
prefetching and various loop manipulating directives like unrolling.

Figure 11 Comparison of implementations using HMPP and the PGI compiler with CUDA
versions. The upper row shows the performance for mod2am, the lower row the
performance for mod2as, both for single (left) and double precision (right).

 Pros Cons
Scalability HMPP runtime library can dispatch

computations on multi-GPU systems.
-

Performance - Rather low compared with CUDA.
Productivity Main strength of HMPP. Simple

OpenMP-like directives enable rapid
development.

Productivity is always a combination
of development time (+) and
performance (-).

Sustainability PathScale and CAPS joined to establish
the HMPP Open Standard.

Unclear whether the “HMPP Open
Standard” will be implemented by
other vendors and accepted by the
community.

Correctness Much less error-prone than CUDA. -
Portability High. Code generators for CUDA and

OpenCL (NVIDIA & AMD ATI) are
-

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 37

available
Availability Both Linux and Windows are supported. Very high license costs for CAPS

HMPP.
Table 15 HMPP pros and cons

3.1.5 Portland Group (PGI) Fortran and C compiler for accelerators

Description

The PGI compilers were among the first to include a backend for C and Fortran targeting
GPUs. The idea is to simplify porting existing C or Fortran codes without the need to rewrite
the code in a language for the accelerator, e.g. CUDA. To date, all NVIDIA CUDA enabled
GPUs are supported, ranging from NVIDIA CUDA architecture 1.0 (GeForce GTX 8800) to
2.0 (Fermi architecture). A particular architecture is specified by compiler command line
options.

Directives must be used to identify those portions of a program to be executed on the
accelerator. In C, these directives are pragmas, and in Fortran comments with a specific
syntax. For example, C pragma “#pragma acc region” tells the compiler that the code block
following the pragma shall be compiled and executed on the accelerator rather than the host.
The general syntax of an accelerator directive for C is:

 #pragma acc directive-name [clause [,clause]…] new-line

In Fortran, directives are specified in free-form source files as

 !$acc directive-name [clause [,clause]…]

Figure 12 PGI C code example

Since accelerators have their own memory, the compiler generates the code to copy data from
host memory to GPU memory. Similar to CAPS HMPP, the programmer can choose various
optional features within the pragma to control the data transfer.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 38

Pros & Cons

 Pros Cons
Scalability - The performance relative to hand

coded CUDA will be multiplied by the
number of accelerators in the cluster

Performance - Lower than hand coded CUDA
Productivity It’s the main strength of the product, the

idea is to have minimal changes to
existing code

Handling pragmas in the best way for
the compiler can require time and
effort, less than hand coded CUDA,
but good performance is not
automatically achieved

Sustainability The accelerators part of the compiler is
only one of the many features, so it’s not
a huge risk for PGI to support them

-

Correctness Using pragmas and letting the compiler
deal with the details of CUDA
programming is less error-prone than
hand coded CUDA

-

Portability Theoretically the compiler could
generate code for any kind of accelerator
(AMD, FPGA, and so on)

Currently only CUDA enabled devices
are supported

Availability Currently available -
Table 16 PGI compiler pros and cons

3.1.6 OpenMP+MPI

Description

Today, mixing OpenMP and MPI constitutes the de-facto standard among the programming
environments for petascale machines. Programs are parallelized in two stages. OpenMP is
used to program the cores within a node, and MPI to communicate across nodes. Compared to
using MPI within a node, OpenMP exploits the shared-memory architecture of the nodes
better, and incurs lower communication and synchronization overheads. This programming
paradigm has been described in detail in PRACE-PP deliverable D6.6 [48].

Experience & Results

In this section we report performance results of an OpenMP/MPI CFD program, developed
and measured at IDRIS.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 39

Figure 13 OpenMP+MPI speedup of HYDRO on BG/P

HYDRO is a 2D Computational Fluid Dynamics code (~1500 lines), that solves Euler’s
equation with a Finite Volume Method using Godunov’s scheme and a Riemann solver at
each interface on a regular mesh. The HYDRO code was ported to the OpenMP+MPI
paradigm. We used a two-dimensional domain decomposition for the MPI parallelization and
a coarse-grained OpenMP parallelization. The results presented here were run on the Blue
Gene/P system at IDRIS. On small to relatively high number of cores, the performances of the
pure MPI code and the hybrid MPI+OpenMP approach are very similar. But, once the number
of cores is over 4096, the pure MPI implementation begins to lose scalability, whereas the
hybrid approach keeps a near perfect scalability.

Pros & Cons

 Pros Cons
Scalability Excellent. The best that can be achieved on

Petascale architectures. The two levels of
parallelism perfectly fit the hardware
characteristics of various machines (either fat
nodes or thin nodes).

-

Performance Excellent. -
Productivity Variable. It strongly depends on the

characteristics of the code. It is relatively easy
to add OpenMP directives to an existing MPI
program, but results in terms of performance
and scalability may be poor.

Development time to get an
optimized and scalable application
could be very high.

Sustainability Very high (OpenMP and MPI are standards
which are widely used).

-

Correctness - Combining two levels of
parallelization can leads to more
and more complex bugs. The lack
of robust and mature tools to debug
such a code is very penalizing.

Portability Very portable (based on standards). -
Availability Nearly everywhere (just needs an OpenMP

compiler and a MPI library).
-

Table 17 OpenMP+MPI pros and cons

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 40

3.1.7 Coarray Fortran (CAF)

Description

Coarray Fortran (CAF) [6] is a Partitioned Global Address Space (PGAS) language. PGAS
languages promise to provide ease of programming and high performance on platforms with
shared and distributed address spaces. The integrated CAF compiler of the Cray compiler
framework [8] has been evaluated during PRACE-PP [48]. Here, we highlight recent
developments in the compiler, runtime system, and tools for CAF code development. CAF
has been considered as part of the FORTRAN 2008 standard with minimal extensions to the
Fortran syntax along with synchronization and control constructs. We note that the Rice
compiler for CAF [53], extends the language even further.

CAF extends Fortran with coarrays, which are data structures shared between different
images of a program. Accesses to coarrays result in remote memory accesses. Some
interconnection networks offer hardware support for remote memory accesses that are far
more efficiently than exchanging data with MPI. Moreover, since CAF compilers are
interoperable with MPI, existing MPI programs can be ported incrementally to exploit the
benefits of CAF implementations.

The array declarations below illustrate the CAF syntax. The first line is a regular Fortran
declaration of array A. The CAF compiler creates a private copy of A for each CAF image. In
contrast, CAF array A_caf is distributed across the given number of images.

 DOUBLE PRECISION A(ndim)

 DOUBLE PRECISION A_caf(ndim)[*]

Recent developments of the CAF language include the following: Intel has made available the
beta version of its Intel CAF compiler [31]. Cray has produced a performance-optimized
version of the integrated CAF compiler for the Cray XE6 platform with Gemini interconnect,
and included a limited set of features for performance evaluation of CAF codes into its Cray
performance toolset. The beta version of the Intel CAF compiler is an important development
as it could be the first multi-platform compiler for CAF. Hence, we should watch both the
Cray CCE and Intel CAF compilers concerning performance and scalability improvements
and as a vehicle for functional evaluation of CAF features. Furthermore, the Cray XE6
Gemini interconnect has been optimized for remote memory access (RMA) operations. Cray
has implemented a proprietary interface called DMAPP, replacing the public-domain GASNet
runtime [14] that was available on Cray XT series systems.

Code example: 2D dense matrix-matrix multiplication

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 41

Experience & Results

In this section, we present benchmark results for CAF versions of the Euroben kernels
mod2am/MxM and mod2f/FFT on Cray systems, measured in MFlop/s at CSCS.

We have evaluated both the Cray CCE CAF compiler and the beta version of the Intel CAF
compiler. Table 18 and Table 19 list the benchmark results in MFlop/s for two CAF
benchmarks that have been measured during the preparatory project on the Cray XT5 and
Cray XE6 platforms. The XT5 has dual 6-core nodes, operated at 2.4 GHz, with DDR2
memory and SeaStarII interconnect. The XE6 offers an interconnect optimized for remote
memory access operations. The XE6 has dual 12-core nodes, operated at 2.1 GHz, with
DDR3 memory and Gemini interconnect.

Number of CAF images Cray XT5 Cray XE6
4 24588.904 6097.445
16 56253.845 26012.030
64 21143.744 53266.750

Table 18 CAF performance of mod2am/MxM in MFlop/s for 400 x 400 matrices

Number of CAF images Cray XT5 Cray XE6
4 3026.223 2710.906
8 4087.747 5067.822
16 2807.321 9286.350
32 1019.839 13247.659
64 502.681 15049.973

Table 19 CAF performance of mod2f/FFT in MFlop/s (bits=16 and length=65536)

The Intel CAF compiler has been gradually improving allowing development and execution
of complex CAF applications. The execution model is in progress allowing for jobs running in
distributed memory nodes. Overlapping of computation and communication is still work in
progress.

Pros & Cons

 Pros Cons
Scalability With appropriate runtime support for

RMA and fine-grain synchronization
operations, the codes can scale to large
number of cores.

Runtime and compiler optimization are
work in progress. The higher abstraction
level for ease of programming is an issue.
Interoperability standards with other

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 42

programming models such as MPI could
also limit scalability.

Performance With appropriate hardware and
runtime support, performance and
scaling has improved significantly

Locality issues on multi-socket multi-core
systems are work in progress

Productivity Smaller set of Fortran extensions offer
high productivity to language
developers. A higher abstraction level
for parallel programming reduces the
entry barrier.

Restricted language syntax, which only
allows for data parallel programming.
Immature tool support. Performance
efficiencies very low.

Sustainability Part of the Fortran language standard Very few Fortran compiler developers have
it on their roadmaps

Correctness - -
Portability Beta compiler from Intel can be ported

to any x86 platform
Very few Fortran compiler developers have
it on their roadmaps. Extensions and
availability to heterogeneous systems
unclear.

Availability - No stable open-source compiler version
available

Table 20 CAF pros and cons

3.1.8 Unified Parallel C (UPC)

Description

UPC [63] is a Partitioned Global Address Space (PGAS) language. PGAS languages shall
provide ease of programming and high performance on platforms with shared and distributed
address spaces. The Integrated UPC compiler is part of the Cray compiler framework [8], and
has been evaluated during PRACE-PP [48]. Here, we highlight recent developments in the
compiler, runtime system, and tools for UPC code development. UPC is an extension to the C
language, offering the benefits of the PGAS model to programs written primarily in C. UPC
compilers are compliant to a UPC specification that is not part of the ANSI C standard. A
number of UPC compilers are available for parallel multi-core systems, including the UPC
CCE compiler from Cray and Berkley UPC [2].

UPC programs instantiate threads and data are shared among or private to threads. Qualifier
keywords are used to declare whether data are shared and how arrays could be distributed
among threads. The number of threads can be specified at compile time or runtime. Although
the UPC language specification does not address the issue of interoperability with other
programming environments, existing UPC compilers interoperate with other language like
Cilk, for example.

The array declarations below illustrate the UPC syntax. The first line is a regular C
declaration of array A. The UPC compiler creates a private copy of A for each thread. In
contrast, array A_upc is distributed across the given number of threads.

 double A[ndim];

 shared double A_upc[ndim];

Code example: 2D dense matrix-matrix multiplication

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 43

Experience & Results

In this section, we present benchmark results in MFlop/s for UPC versions of the Euroben
kernels mod2am, mod2as/SpMV, and mod2f/FFT on Cray systems, measured at CSCS.

We have evaluated the Cray CCE UPC compiler and beta versions of the code development
and performance toolset. Benchmark results in MFlop/s for three UPC benchmarks that have
been developed during PRACE-PP for modam/MxM, mod2as/SpMV and mod2f/FFT on the
Cray XT5 and Cray XE6 platforms. The XE6 offers an interconnect optimized for remote
memory access operations, that UPC should benefit from.

Number of UPC threads Cray XT5 Cray XE6
4 10237.51 25731.66
16 16262.74 79492.82
64 7286.96 162179.28

Table 21 UPC performance of mod2am/MxM in MFlop/s for 800 x 800 matrices

Number of UPC threads Cray XT5 Cray XE6
4 1578 1031
8 2093 1905
16 3439 3572
32 15402 8542
64 16110 17500

Table 22 UPC performance of mod2as/SpMV in MFlop/s for 10000 x 10000 matrices
(3.5% fill)

Number of UPC threads Cray XT5 Cray XE6
4 1963.51 2744.29
8 2756.52 5018.32
16 1235.76 9381.20
32 579.33 11835.47
64 258.80 9643.86

Table 23 UPC performance of mod2f/FFT in MFlop/s (bits=16 and length=65536)

Pros & Cons

 Pros Cons
Scalability With appropriate runtime support for

RMA and fine-grain synchronization
operations, the codes can scale to large
numbers of cores.

Runtime and compiler optimization are
work in progress. The higher abstraction
level for ease of programming is an issue.
Interoperability standards with other

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 44

programming models such as MPI could
also limit scalability.

Performance With appropriate hardware and runtime
support, performance and scaling has
improved significantly.

Locality issues on multi-socket multi-core
systems are work in progress. Scaling of
the portable UPC compiler on different
distributed memory clusters is an issue.

Productivity Smaller set of UPC extensions and
collective APIs offer high productivity
to language developers. A higher
abstraction level for parallel
programming reduces the entry barrier.

Restricted language syntax, which only
allow for data parallel programming.
Immature tool support. Performance
efficiencies very low.

Sustainability A UPC standard is available Very few compiler developers have UPC
support on their roadmaps

Correctness - -
Portability Berkley UPC compiler is portable to a

large number of clusters.
Very few compiler developers have UPC
support on their roadmaps. Extensions
and availability to heterogeneous systems
unclear.

Availability Stable open-source (functional)
compiler version available

-

Table 24 UPC pros and cons

3.1.9 Chapel

Description

Chapel is a new parallel programming language developed as part of the DARPA HPCS
project by the University of Washington and Cray. See the PRACE-PP deliverable D6.6 [48]
for a detailed description of the important language concepts. Here, we discuss significant
developments and new concepts of Chapel.

Chapel can be classified as a Partitioned Global Address Space (PGAS) language. The global
view on distributed arrays is tightly integrated into the language, however, in contrast to
language extensions like CAF or UPC. In fact, for the Chapel programmer, distributed and
local arrays can behave exactly the same, if desired. Of course, the programmer is expected to
exploit the data-parallelism inherent in using arrays. Besides data-parallelism, Chapel also
supports task-parallelism. Tasks may be created locally or on remote hosts, either as an
implicitly synchronized team or with explicitly programmed synchronization.

The memory mapping is represented through Chapel’s domain map concept, formerly also
called distribution. A domain map controls how a given set of indices, e.g. of an array, is
distributed across the machine. In the default domain map all indices are local. Chapel enables
the programmer to write interfaces for domain maps and to create arbitrarily complex domain
maps. Chapel’s standard module library includes domain maps for block, cyclic, and block-
cyclic distributions. Recently, it also offers a domain map for replicating data on all hosts. All
arrays (or other data collections/containers) are associated with a domain map. If no domain
map is specified the default domain map applies. Other than in the declarations, the program
does not distinguish distributed from local arrays.

Since the initial evaluation of Chapel during PRACE-PP the language and the
compiler/runtime have evolved significantly. One of the most notable areas of improvement is
interoperability with other languages. Chapel now supports calling C functions, converting
to/from C data-types and using native C data-types. In principle, this permits linking C
libraries such as LAPACK, BLAS, or MKL. However, it is unclear as of now, how regular C
functions access distributed data. Chapel has not been designed to interoperate with other

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 45

parallel programming models. However, as long as the model is implemented as a library,
such as MPI, Chapel could be used in a hybrid setting.

We are not aware of strong tool support for Chapel. It is possible to debug Chapel code with
any debugger supporting the GNU gdb interface. There are also some Chapel-specific
command-line tools to monitor communication events and remote tasks spawning within
Chapel programs. But to our knowledge, none of the common performance and debugging
tools supports Chapel.

The most recent version of Chapel (V1.2.1 as of March 2011) is quite mature and produces
much faster scalar code than its predecessors. The most notable improvement is that all
domain maps support multi-threaded traversals of arrays on a single node and also across
nodes. However, they are not yet optimized for performance. In particular, RMA transfer
across nodes is very inefficient. The Chapel team is aware of the RMA problem and currently
working on it. In general the focus of the development work appears to be shifting from
implementing new language concepts or prototyping new library modules to performance
optimizations of the Chapel compiler and runtime. It is not possible, however, to estimate
when this process will lead to acceptable performance and scaling for the Euroben kernels or
other HPC applications.

Code example: non-optimized, non-blocked matrix-matrix multiplication

Experience & Results

The conclusions of the Chapel evaluation at HLRS are as follows.

Remote memory accesses are implemented inefficiently, and the primary reason why the
Euroben kernels do not perform well. This situation has not changed since the initial
evaluation. Tests with the latest Chapel compiler release on the Gemini interconnect of the
Cray XE6 exhibit improved performance due to very low network latency. However, our
benchmarks do not scale beyond an unacceptably small number of nodes.

Pros & Cons

 Pros Cons
Scalability Task spawning and synchronization across the

machine seems to be reasonably efficient.
RMA transfer very inefficient;
does not allow to scale
communication intensive
applications

Performance Scalar performance has improved significantly;
in particular as efficient libraries may be used.

-

Productivity Very short, readable code. Easy to program and Practically no tools support.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 46

maintain. Clear and powerful concepts for
parallel programming.

Sustainability - Will Cray continue to support it?
Correctness - -
Portability May run on a number of network conduits (e.g.

MPI, GASNET, native). Compiler is standard C
code and can be ported onto any Unix-like
platform.

-

Availability Open source with direct access to development
SVN.

-

Table 25 Chapel pros and cons

3.1.10 StarSuperscalar (StarSs) Programming Model

Description

StarSs is a multicore programming model with functional parallelism specified by annotating
sequential applications. In principle, StarSs supports a wide range of devices like, Cell
(CellSs), GPU (GPUSs), SMP (SMPSs), and can also be mixed with MPI for hybrid
programming. ClusterSs, which is currently under development, is the combination of the
StarSs programming model with the GASNet communication layer allowing a multicore
program to be run on distributed machines.

Figure 14 SMPSs Implementation

StarSs is implemented by means of a source-to-source compiler and a runtime library. Given a
sequential application in C or Fortran with StarSs annotations, the source-to-source compiler
generates output files in the target languages. Compiling an annotated program with CellSs
generates a source specific to Cell, whereas compiling it with SMPSs or GPUSs will generate
sources for an SMP or GPU, respectively. Figure 14 shows the process flow to generate
executables on an SMP based machine

StarSs syntax is based on code annotation by means of pragmas. A sample matrix
multiplication with pragmas is shown as code example below.

StarSs is interoperable with standard libraries like BLAS or LAPACK. Currently, the CEPBA
tool (developed at BSC) can be used for performance analysis. The Extrae tool has been
developed to generate traces for hybrid StarSs+MPI programs. The gdb debugger can be used
to debug the C program; however the user has to take care of data dependencies herself.

Code example

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 47

Figure 15 StarSs blocked main routine with function call.

Figure 16 StarSs function with pragma.

Pros & Cons

 Pros Cons

Scalability Scales well across the cores. Currently limited to shared memory systems,
though a version for distributed memory is
under development.

Performance Performance has been
high/acceptable.

Performance is limited to capabilities of user
in creating data dependency and extracting
parallelism.

Productivity Same code can be run across multiple
platforms, with minor modifications
in the source code based on the
architecture.

Development time is affected to some extent
due to unavailability of debuggers.

Sustainability StarSs has been actively developed at
BSC

-

Correctness - Care must be taken making sure that data
dependencies are correct.

Portability Easily portable across several
architectures as the source code
remains the same.

-

Availability Available as free and open source for
different languages under StarSs
programming model.

-

Table 26 StarSs pros and cons

3.1.11 Cilk

Description

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 48

Cilk [36] is an algorithmic multithreaded language with a provably efficient runtime system
suited for divide-and-conquer style programming with a weak shared memory model. The
programmer expresses parallelism explicitly by prepending keyword spawn to function calls
and by synchronizing parent and child threads with keyword sync. Cilk's work-stealing
scheduler automates the tasks of process placement and load-balancing a computation.

Since the serial semantics of a Cilk program equals that of the sequential C program without
spawn's and sync's, familiar debuggers like gdb can be used. The Cilkscreen race detector tool
is available for monitoring and detecting unintended data races.

Cilk emerged as a research project at MIT. Intel supports the CilkPlus variant for C and C++
as part of its Parallel Building Blocks [19]. CilkPlus offers additional programming features:

1. a parallel loop construct “Cilk_for”, which executes each loop iteration in parallel with
the others,

2. so called “Hyper Objects” which offer consistent views of non-local variables and
simplify mitigating races without creating lock contention,

3. full C++ exception support,

4. and a library for mutex-locks.

Code example

The code example shows the kernel of the Euroben kenel mod2as/SpMV using Intel CilkPlus:

The parallel inner product is computed using the parallel “+”-reduction and an element-wise
product of the jth column of sparse matrix matvals and dense vector invec.

Experience & Results

In this section, we report benchmark results of the Euroben kernels transliterated into Cilk and
measured at JKU.

Porting the Euroben benchmarks mod2am/MxM and mod2as/SpMV to Cilk required a
programming effort of a few hours. Instead of transliterating mod2f/FFT into Cilk, we
measured the 1D-FFT program included in the MIT Cilk distribution. We present results
produced with the open-source MIT Cilk version and Intel's CilkPlus.

 n-processor runtime (sec)
Benchmark 1 2 4 8 16 32 64 128 256
mod2am-blas

 1K x 1K 0.65 0.32 0.19 0.12 0.09 0.09 - - -

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 49

 2K x 2K 4.13 2.31 1.25 0.67 0.57 0.50 - - -
 8K x 8K 247 127.1 73.1 38.7 26.3 18.73 16.3 14.98 -
 16K x 16K 2614 1309 678 319.9 181.7 90.53 44.9 23.34 12.94
Mod2as

 10K, 5.7%
fill

0.18 0.08 0.067 0.039 0.034 0.029 - - -

 100K, 4.7%
fill

2.83 1.33 0.93 0.56 0.46 0.41 - - -

1D fft

 2M 0.53 0.353 0.193 0.121 0.102 0.107 - - -
 16M 6.79 5.15 2.87 1.59 1.13 1.07 - - -

Table 27 MIT Cilk results on an SGI Altix 4700, using 256 Itanium2 cores @1.6GHz

 n-processor runtime (sec)
Benchmark 1 2 4 8
mod2am-mkl

 1K x 1K 0.285 0.152 0.088 0.057
 2K x 2K 2.037 1.022 0.552 0.332
 8K x 8K 130.5 65.5 33.9 20.67
 16K x 16K 1046 522.2 274.0 166.7
Mod2as

 10K, 5.7%
fill

0.012 0.007 0.005 0.004

 100K, 4.7%
fill

0.243 0.139 0.085 0.068

1D FFT

 2M 0.28 0.145 0.071 0.044
 16M 3.39 1.80 0.939 0.491

Table 28 Intel CilkPlus results on an Altix ICE 8200 node, using 8 Nehalem-EP cores
@2.8Ghz

Pros & Cons

 Pros Cons
Scalability The Cilk scheduler is capable of

delivering speedup close to the theoretical
parallelism of the algorithm. The
Cilkview scalability analyzer tool aids
understanding the performance and
scalability of a Cilk program.
Hybrid programming of Cilk together
with MPI or UPC works.

Cilk is supported on cache coherent
systems only and will not work in
Exascale environments unless
computer architectures can
efficiently support shared memory at
Exascale.

Performance Cilk achieves near optimal performance in
practice. Cilk interoperates with C/C++
libraries for processor-specific tuning.

Today's cache coherent shared-
memory machines cause
performance non-monotonicities and
do not scale.

Productivity Parallelizing divide-and-conquer
programs requires relatively little
programming effort. CilkPlus supports
parallel loops.

Cilk is limited to divide-and-conquer
parallelism.

Sustainability Cilk development continues at MIT. Intel
offers the commercial CilkPlus dialect.

Cilk is not mainstream.

Correctness Reasoning about the correctness of a Cilk -

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 50

 Pros Cons
program is no more difficult than
reasoning about the correctness of its
serialization. The Cilkscreen race detector
tool supports the programmer in finding
undesirable races.

Portability MIT Cilk ports to shared-memory
machines where the GNU toolchain
exists.

Intel Cilk Plus is available where
Intel supports its toolchain.

Availability MIT Cilk is free software, Intel distributes
the CilkPlus dialect.

-

Table 29 Cilk pros and cons

3.1.12 Intel Array Building Blocks (ArBB)

Description

ArBB is a high-level data parallel programming solution that frees application developers
from dealing with low-level mechanisms of hardware architectures. ArBB will produce
scalable, portable, and deterministic parallel programs from a single high-level, maintainable,
and application-oriented implementation. Intel ArBB is a combination of RapidMind, which
was acquired by Intel in late 2009, and Intel Ct, a former Intel research project. ArBB is
currently available under public beta (ArBB v1.0 Beta 4).

ArBB hides parallelism from the user to simplify programming, and allows the user to focus
on the data objects and their organization by adding special ArBB data types for vectors and
matrices to C++. Furthermore, ArBB offers special operators and control-flow constructs. The
compiler generates parallelism automatically. The ArBB runtime includes a JIT compiler for
performance optimizations and for extracting parallelism.

ArBB uses standard C++ features, including templates and operator overloading, to create
new data types and operators. Recent implementations are restricted to shared-memory
systems, because they are based on pthreads, OpenMP, and TBB. However, this is not an
inherent restriction. An MPI backend is under development at Intel to support ArBB on
distributed systems, but will not become a product in near future. To date, no math library
exists that uses ArBB data types. Since ArBB is interoperable with C++, it is possible to use
standard libraries such as MKL. ArBB is supported by standard C++ debuggers such as gdb,
and comes with supporting scripts for pretty printing ArBB scalars and dense containers,
provides insight into opaque types, etc. We expect ArBB to be released as a product within
2011.

Code example

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 51

Experience & Results

In this section, we report benchmark results for Euroben kernels mod2am/MxM and
mod2as/SpMV, developed and measured at LRZ.

We have successfully ported mod2am/MxM and mod2as/SpMV to ArBB and compared
performance to an MKL version and a naïve implementation on a Intel Core i7 CPU with 8
cores @ 2.67GHz.

Figure 17 Comparison of various ArBB implementations with MKL and a naïve

implementation. The upper row shows the performance for mod2am/MxM, the
lower row the performance for mod2as/SpMV, both for single (left) and double
(right) precision.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 52

Pros & Cons

 Pros Cons
Scalability - Limited to shared memory systems.

Scalability needs improvements.
Performance - Measured performance is still low.

Performance is limited by the
capabilities of the compiler to extract
enough parallelism to fully make use
of SIMD units and available cores.

Productivity Development time is rather low for
people that are used to programming
C++. Although the language is still in
beta, we have not experienced compiler
problems.

-

Sustainability Intel is a big company with enough
market share to introduce a new
language.

Unclear. Depends on whether the
language will be taken up by a larger
circle.

Correctness Since ArBB takes the burden of
performance optimization from the
programmer it is easier to write correct
codes.

-

Portability Currently limited to x86 architectures
(from Intel and AMD). Performance
portability should be high. AVX is
supported.

RapidMind supported GPUs, Cell and
multi-core architectures. Intel ArBB
does not support GPUs (yet?).

Availability Currently available under public beta
(ArBB v1.0 Beta 4) free of charge.

-

Table 30 ArBB pros and cons

3.1.13 Intel Threading Building Blocks (TBB)

Description

TBB is a shared-memory parallel library for developing efficient, scalable, and portable
software that exploits the growing number of cores in modern CPUs. The library interface
consists of a set of algorithms and containers, similar to those provided by STL. The
computation will be divided recursively by the runtime into subtasks as long as their size is
greater than a parameter called grainsize. Although the library has the ability to automatically
carry out the partitioning, the developer is encouraged to provide the grainsize value. The
actual operations to be executed inside a task are written as C++ methods, and are provided to
the library constructs as a functor or a lambda (since TBB is fully C++0x compliant). Once
the runtime builds the dependency tree, each task is scheduled on the available computing
resources using the work stealing policy inherited from the Cilk project. A work stealing
scheduler balances the work dispatched to the CPU cores in order to increase their occupancy
and achieve the best scaling.

The latest TBB version, available for download from http://threadingbuildingblocks.org/, is
available under two licenses: a commercial license with technical support and product updates
and an open-source license, GPLv2 with runtime exception.

TBB promises to hide all the issues involved in writing massively parallel codes on shared
memory architectures allowing the developer to avoid all error-prone and concurrency-
limiting activities (like locks, mutexes or thread communication). In addition to this key
feature, TBB allows to exploit parallelism on a broad set of architectures (x86, SPARC,

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 53

Power), operating systems (Linux, Windows, AIX, Solaris, FreeBSD) and compilers in a
portable manner since the burden of interfacing code to platform dependent concurrency
libraries/paradigms is hidden by the library implementation. TBB provides a rich set of
algorithm templates (loop, reduce, prefix scan, pipeline execution, sorting), STL-like
containers (queue, vector, map, graph), memory allocators (all of them implemented
extending std::allocator) and fine-grained synchronization control tools (better atomic
operations and lock objects).

Code example, matrix multiplication using parallel_for

Experience & Results

In this section, we present results porting an MD code to TBB, developed and measured at
CINECA.

We have ported a classical molecular dynamics algorithm with van der Waals interactions to
TBB and used it to analyze its scaling potential achieving satisfactory results (see Figure 18).
All tests have been carried out on a 4-core Intel Corei7 920 with 8 SMT cores.

Figure 18 TBB speedup of molecular dynamics code

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 54

Pros & Cons

 Pros Cons
Scalability Task based parallelism upon task-

stealing scheduler is meant to be highly
scalable on a growing number of cores;
the lock-free implementation helps in
reaching the goal.

Interoperability (calling from the
inside of functors/lambdas) with
classic paradigms (MPI) should be
verified.

Performance The overhead introduced by the library
is still low since its scheduling
mechanism is meant to mask stall
latencies.

-

Productivity Development time is low for people that
are used to C++ template meta-
programming, STL algorithms and
iterators.

Cannot be directly used from codes
other than C++.

Sustainability Supported by Intel and backed-up by a
fairly large community of developers
and users.

-

Correctness TBB masks all the complexity of
massively multithreaded programming,
helping write efficiently scalable, less
error-prone codes.

-

Portability The current release has been
successfully ported and tested on x86,
Power, SPARC architectures, several
operating systems and compilers.
Performance portability should be high
due to the shared-memory parallelism
paradigm common to all platforms.

Since TBB is designed using advanced
C++ meta-programming features and
interfacing itself with pthreads, it could
be a problem to reach a successful
build on some untested architectures.

Availability The whole library is open-source (GPL)
and publicly available for download.

-

Table 31 TBB pros and cons

3.1.14 Hierarchically Tiled Array (HTA)

Description

Hierarchically Tiled Array (HTA) [18] is a C++-class designed for object oriented
programming to exploit data locality and parallelism using “tiled arrays”. It is developed by
David Padua and his team at the University of Illinois at Urbana-Champaign. HTA uses MPI
for distributed memory and Intel Threading Building Blocks (TBB) for shared memory
architectures. As the name implies the idea is to subdivide arrays into tiles in which each tile
could be subdivided further. Exploiting data locality is achieved via hierarchical subdivisions
as today’s multicore processors and distributed memory architectures have complex and
hierarchical cache/memory structures. This allows expressing parallelism since the operations
on each tile are independent in many algorithms. In other words, the tiles of HTA data types
map naturally to the well-known block structure of many numerical algorithms. The high-
level of abstraction ensures that HTA programs are portable across multiple platforms. The
resulting code is usually compact and easy to understand. Hybrid programming, using MPI
and Threads simultaneously, is not supported. The programmer is encouraged to use
optimized sequential or threaded kernels available from libraries like BLAS, LAPACK, etc.
No specialized debugger is available for HTA. However, since the programming language is
C++, well known debuggers and performance analyzers such as GNU debugger (GDB), Intel
debugger (IDB), or Intel Vtune performance analyzer can be used effectively.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 55

Code example

Since HTA is based on tiled arrays, code has to be blocked. The following is a simple
recursive blocked matrix-matrix multiplication example.

Experience & Results

In this section, we report benchmark results for Euroben kernel mod2am/MxM in HTA,
developed and measured at UYBHM.

We implemented mod2am/MxM using HTA and Intel TBB. For comparison we used the
HTA built-in matrix-matrix multiplication routine. The benchmarks were performed on an
Intel Core i7-740QM processor. Figure 19 shows the wall clock times of matrix
multiplications using up to 8 cores.

Figure 19 Wall clock time (in seconds) as the number of cores increase for our
implementation and built-in matrix-matrix multiplication routine. Tile size is
the same for both implementation and fixed.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 56

We have fixed the number of cores at four and varied the tile (block) size.Figure 20 shows the
effect of the tile size on performance for our matrix-matrix multiplication implementation and
the built-in function.

Figure 20 Wall clock time (in seconds) as we increase tile size for our implementation and

build-in matrix-matrix multiplication routine

Pros & Cons

 Pros Cons
Scalability Scalable for multicore processors. -
Performance - Built-in functions might be optimized

for a specific architecture.
Productivity You can use its functions easily in your

own implementation. To change block
(tile) size, you do not need to re-write
your code.

User documentation needs to be
improved.

Sustainability Uses new technologies like Intel TBB -
Correctness - -
Portability It has both distributed and shared-

memory versions.
-

Availability Open source -
Table 32 HTA pros and cons

3.2 Summary of new Programming Languages and Paradigms

3.2.1 Brief Overview and Classification

We have evaluated the parallel programming languages and environments shown in Table 33.
These languages target traditional multicore CPUs, GPU accelerators, or both. In addition, we
distinguish the use of languages and mixed programming environments for single nodes, i.e.
cache-coherent fat nodes, versus multiple nodes with distributed memory architecture, and
accelerated nodes with one or multiple GPUs per node (single-node accelerator) and multiple
GPUs distributed across multiple nodes (multiple-node accelerator).

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 57

CPU languages GPU languages Languages
targeting CPU
and GPUs

Single node Multiple nodes Single-node
Accelerator (one
or multiple GPUs)

Multiple-node
Accelerator (multiple
GPUs)

‐

OpenCL

UPC

CAF

Chapel

Cilk

StarSs

TBB

ArBB

HTA (TBB)

UPC(+MPI)

CAF(+MPI)

ArBB (in the lab)

StarSs

HTA (MPI)

Chapel

CUDA

OpenCL

CAPS hmpp

PGI Accelerator
Compiler

StarSs

CUDA+MPI

OpenCL+MPI

CAPS hmpp(+MPI)

OpenCL

CAPS hmpp

StarSs

Table 33 Parallel programming languages and environments.

In Table 34 we classify the programming languages by the method used to express parallelism
from the programmer's perspective, In addition, we note that some languages express
parallelism explicitly, including CUDA, OpenCL, and Cilk. Other languages, including
OpenMP, CAPS hmpp, and the PGI accelerator compiler, facilitate compiler-assisted
parallelization of existing sequential programs by expressing parallelism via pragma-style
annotations. The other languages rely on a compiler to translate a mix of declarations of
parallel data structures and parallel control constructs into low-level communication and
synchronization primitives.

Type of
Parallelism

Method Languages Expressing parallelism

Data-parallel SIMD data-parallel
programming

CUDA,
OpenCL

Specific constructs enable the explicit
handling of hierarchical computing
architectures from fine-grained units of
parallelism (threads) to more complex
structures.

 Annotation with
directives

OpenMP,
CAPS hmpp,
PGI
Accelerator
compiler,
StarSs

Add directives to serial code that
indicate regions which can be executed
in parallel (done by compiler auto-
parallelization). StarSs requires code
that is blocked to allow an efficient
automatic parallelization.

 PGAS UPC, CAF,
Chapel

Allow the programmer to treat the
(physically) distributed memory as one
(virtually) shared address space to
simplify programming.

 Declaration of
parallel data
structures

Chapel, ArBB,
HTA

Make use of the underlying data
structures (e.g. dense matrices) to
automatically decompose the data
domain by means of an auto-

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 58

Type of
Parallelism

Method Languages Expressing parallelism

parallelizing compiler.

Divide-and-
conquer
parallelism

Spawn tree-recursive
procedure calls

Cilk Programmers expose parallelism in
divide-and-conquer programs by
spawning recursive function calls. The
runtime system automates tasks like
process placement and load balancing

Libraries Encapsulation of
parallel procedures

MPI, TBB,
HTA

Encapsulate parallel procedures in a
library for portability. Instead of relying
on a separate compiler, the library can
be optimized.

Table 34 Language classification by method for expression parallelism.

3.2.2 Availability and Sustainability

The decision to use a new programming language bears significant risks concerning the
expected return of programming investment. In an attempt to mitigate this risk, we list several
facts about the availability and indicators for the sustainability of the programming languages
in Table 35.

 Size of
user

communi
ty

Restricted to
HPC/scientific

computing?

Size of
developme

nt team

Open
standard?

Free
compiler?

Associated
with a big
company?

CUDA Big No Big No Yes Yes

OpenCL Big No Big
(scattered
across hw
plattforms)

Yes Yes Yes

CAPS
hmpp

Small No Small Ongoing
discussions

No Small
company

PGI
Acceler
ator
Compile
r

Small No Small Ongoing
discussions

No Small
company

UPC Medium Yes Small Yes Partly,
small fees
necessary
for some
compilers

Academic
project

CAF Medium Yes Medium Yes, part of
Fortran

Partly,
small fees
necessary

Yes, picked
up by several
compiler

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 59

 Size of
user

communi
ty

Restricted to
HPC/scientific

computing?

Size of
developme

nt team

Open
standard?

Free
compiler?

Associated
with a big
company?

2008 for some
compilers

vendors

Chapel Small No Small Yes Yes Maintained
by Cray as
research
project

StarSs Small No Small Not yet,
might
become a
possible
OpenMP
extension

Yes Academic
project

Cilk Medium No Small n/a Partly,
small fees
necessary
for some
compilers

Yes,
CilkPlus is
part of the
Intel
Compiler
Suite

ArBB Very
small,
(very
new)

No Medium n/a Probably
not.

Yes, ArBB is
maintained
by Intel

HTA Small No Medium Standard
C++

yes Academic
project

TBB Medium No Medium Yes, library
available
under GPL

use custom
C++
compiler

Yes, TBB is
maintained
by Intel

Table 35 Availability and indicators for sustainability of programming languages

We note that most of the recently developed languages analyzed in this study focus and build
on C or C++. Only the PGI Accelerator compiler, CAPS HMPP, StarSs and CAF target
Fortran code.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 60

4 System Software

Future-generation supercomputers will be assembled from millions of components, including
compute nodes, network switches, and storage nodes. We have launched a survey about
existing solutions for managing today's supercomputers, up to the multi-petascale, within the
PRACE community. This chapter presents the results, analyzes the results, and draws
conclusions by topic: operating systems, system management, data management, MPI and
communication libraries, and ressource management.

4.1 Operating System

Operating systems provide essential services to manage the hardware resources of a computer.
At first glance, operating systems for large-scale machines have to cope with different
requirements than desktop machines. Our survey reveals, however, that Linux is the most
popular operating system for today's supercomputers in Europe.

4.1.1 Survey

Our survey about operating systems lists for each contributing PRACE partner the machine by
vendor and number of nodes, and the operating system. We classify the operating system
(OS) as lightweight or not. A lightweight OS provides only services needed for high-
performance computing, including process management and low-level communication
capabilities. In contrast, a heavyweight OS offers commodity services not used by HPC
applications. Furthermore, we classify the OS as configured diskless or not. A diskless OS
relies on network services to provide remote storage rather than using the local harddisk of a
node. Diskless OS configurations do not require the presence of a local harddisk in each
node.

Site Vendor #
Nodes

OS Type Lightweight Diskles
s

CEA BULL 4000 Linux

BULL A.E-1.0 (based on RedHat
Enterprise Linux 6.0)

No No

CSCS CRAY 1844 Linux

CLE 2.2 (Cray Linux Environment)

Yes Yes

EPCC CRAY 1856 Linux

CLE

Yes Yes

KTH CRAY 1516 Linux

CLE

Yes Yes

UYBH
M

HP 192 Linux

Modified CentOS 5.4

No No

BSC IBM 2560 Linux

SLES 10 SP2 (SUSE Linux
Enterprise Server)

No No

CINEC IBM 168 Proprietary UNIX No No

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 61

Site Vendor #
Nodes

OS Type Lightweight Diskles
s

A AIX-6.1

FZJ IBM 73728 Proprietary (POSIX compliant)

CNK

Yes Yes

STFC IBM 1024 Proprietary (POSIX compliant)

CNK

Yes Yes

HLRS NEC 711 Linux

Scientific Linux 5.3

No Yes

IPB PARADOX 84 Linux

Scientific Linux 5.5

No No

ICHEC SGI 320 Linux

SLES 11 (SP1)

No Yes

JKU SGI 1

(SSI)

Linux

SLES 10

No No

LRZ SGI 19
(SSI)

Linux

SLES 10.3

No No

Table 36 Operating systems used at PRACE sites

4.1.2 Analysis

Our survey reveals that all operating systems are UNIX systems, with the exception of IBM's
proprietary lightweight kernel CNK for Blue Gene. The majority of the UNIX systems are
Linux variants. We note that all OS's are POSIX compliant, and observe a converging
historical trend towards Linux.

Most of the Linux installations are heavyweight public-domain distributions. Some vendors
offer customized Linux variants, such as IBM. The existence of these proprietary Linux
variants demonstrates the need for an optimized OS tailored to large-scale supercomputers.
Large-scale systems expose unique technical challenges to OS design such as
desynchronizing noise that reduces the efficiency of tightly synchronized applications [58].

About half of the PRACE partners operate diskless OS configurations, either because the
machine has no harddisk on the compute nodes or other reasons including reliability and
power savings. We observe that most machines with more than 1000 nodes use a diskless OS
configuration. Diskless configurations require a remote storage system with sufficient
bandwidth to be competitive with local harddisks.

4.1.3 Conclusions

Linux has become the dominant operating system used by PRACE partners. The convergence
towards this commonly used, open-source OS suggests focussing our efforts for future many-
peta- to exascale machines on Linux. Besides evaluating Linux's readiness for exascale, we
suggest to recognize the fact that Linux is open-source software that enables us to contribute

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 62

exascale specific optimizations. We see an opportunity for developing an optimized exascale
Linux, which could serve all PRACE sites in a uniform way.

4.2 System Management

The operating system relies on a number of external services to manage a computer,
including boot services, name services, account management, and configuration. This
section surveys the services in use at the PRACE sites.

4.2.1 Survey

Our survey of system management software consists of two parts. Part I lists for each
contributing PRACE partner basic system management services: boot protocol, user
adminstration, host administation, package and system update services, and configuration
management. These services are used to manage not only the compute nodes of a machine but
other components as well, including storage servers, login nodes, disk arrays, and network
switches.

Boot protocols use a configuration server to assign network addresses and other information
necessary for the boot process of each node in a network. User administration covers the
distribution of information about user accounts, e.g. for access control as a first level of
security. Host administration provides name services for network resources. Tools for
managing software packages and updating system software automate the distribution of
security patches, bug fixes, and release upgrades. Configuration management services
automate consistency and policy checks of installed packages and their configuration across a
network.

Site Vendor # Nodes Boot
protocol

User admin Host admin Package/Syst
em update

Configurati
on
managemen
t

CEA BULL 4000 DHCP/PXE
on Ethernet

LDAP

Flat files

DNS

Flat files

NSCD

YUM over
HTTP

Puppet

Git

CSCS CRAY 1844 Cray
Proprietary
via HSN

LDAP

NSCD

DNS

Flat files

NSCD

Cray
XtopView

RCS

EPCC CRAY 1856 Cray
Proprietary

LDAP DNS

NSCD

Cray
Proprietary

Cray

Proprietary

KTH CRAY 1516 - Flat files DNS

Flat files

- -

UYB
HM

HP 192 DHCP/PXE
on Ethernet

LDAP

NSCD

DNS

Flat files

NSCD

YUM over
HTTP

In-house

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 63

Site Vendor # Nodes Boot
protocol

User admin Host admin Package/Syst
em update

Configurati
on
managemen
t

BSC IBM 2560 BOOTP Flat files DNS

Flat files

- -

CINE
CA

IBM 168 IBM
proprietary
on Ethernet

LDAP DNS

Flat files

NIM CSM

FZJ IBM 73728 - LDAP DNS - Cfengine

STFC IBM 1024 - LDAP - - -

HLRS NEC 711 DHCP/PXE
on Ethernet

LDAP

Flat files

DNS

Flat files

- Cfengine

IPB PARA
DOX

84 None Flat files DNS YUM over
HTTP

Kickstart

ICHE
C

SGI 320 DHCP/PXE
on Ethernet

LDAP

Flat files

NSCD

DNS

Flat files

YUM over
HTTP

SGI Tempo

LRZ SGI 19 (SSI) EFI Kerberos5

Flat files

DNS

Flat files

NSCD

In-house Cfengine

SVN

Table 37 System management software used at PRACE sites, Part I

Part II of our survey of system management software covers tools for remote access and
monitoring. Remote consoles offer administrative access to individual nodes of a machine.
System logging and monitoring tools gather and display events and state of network nodes.
Remote command execution via a remote shell facilitates non-privileged access to individual
nodes of a machine. Remote power management tools provide control over the power
consumption of individual nodes.

Site Vendor #
Nodes

Remote
console

Sys Log and
event
monitoring

Remote
command
execution

Remote
power
management

CEA BULL 4000 Conman

(BULL
flavor)

Syslog-ng

snmpd

SEC

Nagios

ClusterShell Nodectrl
(BULL
software stack
based on
IPMI)

CSCS CRAY 1844 Cray Syslog Pdsh Cray

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 64

Site Vendor #
Nodes

Remote
console

Sys Log and
event
monitoring

Remote
command
execution

Remote
power
management

proprietary

(Xtconsole)

Nagios

Ganglia

(service nodes
only)

proprietary

EPCC CRAY 1856 Cray
proprietary

Syslog

Pdsh Cray
proprietary

UYBHM HP 192 HP ILO2 Rsyslog Pdsh HP ILO2

BSC IBM 2560 - Syslog Pdsh -

CINECA IBM 168 IBM rconsole Syslog

IBM errpt

IBM dsh IBM rpower

FZJ IBM 73728 - Syslog Pdsh -

STFC IBM 1024 - - - -

HLRS NEC 711 - Syslog - Ipmitools

IPB PARADOX 84 Via IPMI Syslog Inhouse Impitools

ICHEC SGI 320 Conserver

(SGI Temp
software
stack)

Syslog-ng Pdsh Ipmitools

LRZ SGI 19
(SSI)

SGI
proprietary

Nagios

Logwatch

SSH

SGI
proprietary
array services

SGI
proprietary

Table 38 System management software used at PRACE sites, Part II

4.2.2 Analysis

We encounter a variety of boot protocols across the PRACE sites. The combination of the
DHCP auto-configuration protocol and the preboot execution environment PXE dominates on
small to medium sized systems with an Ethernet. Larger systems feature proprietary
protocols. We note that DHCP/PXE is widely used for commodity system management other
than supercomputers. For supercomputers with highspeed interconnect networks, no portable
solution appears to exist.

The lightweight directory access protocol LDAP is the dominant tool for managing user
accounts. As secondary solution, we find flat files, stored in protected areas. The simplicity
of flat files yields superior reliability and scalability, whereas LDAP adds convenience of use.
Therefore, we find hybrid solutions combining LDAP and flat files. Some sites also include a
name service cache (NCSD) to improve scalability.

The domain name system DNS is the dominant tool for managing host names. Besides relying
on DNS, the solutions for host management resemble those for user account management.

The software package manager YUM is the dominant tool for installing and updating software
packages on Linux systems.

There is no commonly used tool for configuration management. However, most sites use a
tool similar to the popular cfengine.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 65

Tools for remote access and monitoring vary from site to site. Only the syslog tool appears to
be in common use. We note that open-source solutions exist for these tasks, including syslog-
ng for logging, IPMI for side-band node management, openssh for remote command
execution, conman for remote console management, etc. Some vendors use these solutions,
others provide proprietary tools. We are aware of scalability problems of monitoring tools,
more succinctly their storage and compute requirements both of which are proportional to the
number of nodes of a machine.

4.2.3 Conclusions

We encounter a large number of system management tools across different sites. While some
tools are established de-facto standards, such as LDAP, DNS, and YUM, other services use
open-source software, are vendor proprietary or site-specific solutions. We note that a
convergence towards a standardized set of portable tools is desirable and feasible, because
open-source tools exist already, although not necessarily with the scalability needed for
exascale computing. We recommend to pursue the standardization of system management
tools, and where necessary by developing and contributing scalable solutions to open-source
projects.

4.3 Data Management

Supercomputers impose a challenging set of requirements on data management, including
high-performance I/O and handling huge data sets. Our survey reveals that today's data sets
are managed with a mix of tailored file systems.

4.3.1 Survey

Our survey of data management solutions distinguishes four common usage classes. (1) Users
need easy yet protected access to personal data, ideally not restricted to the domain of the
supercomputer, but via secure access to remote workstations and other network domains. (2)
Scientific applications operate on large data sets, where I/O operations are performance
critical. (3) Some data sets are stored for long periods of time, yet are not used very often. (4)
System services and tools require temporary workspaces independent of user and application
data.

Site Vendor Nodes

Diskless User data Large data
sets

Long term
storage

System
service
workspace

CEA BULL 4000 No NFS Lustre Lustre and

HPSS

NFS

CSCS CRAY 1844 Yes NFS/GPFS Lustre/GPFS GPFS NFS/GPFS

EPCC CRAY 1856 Yes NFS External
Lustre

Netbackup

(DDN
backend)

NFS

KTH CRAY 1516 Yes AFS

Lustre

Lustre - Lustre

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 66

Site Vendor Nodes

Diskless User data Large data
sets

Long term
storage

System
service
workspace

UYBHM HP 192 No Lustre Lustre Lustre Lustre

BSC IBM 2560 No GPFS GPFS HSM GPFS

CINECA IBM 168 No GPFS GPFS GPFS GPFS

FZJ IBM 73728 Yes GPFS GPFS HSM NFS

GPFS

STFC IBM 1024 Yes - GPFS - GPFS

HLRS NEC 711 Yes NFS Lustre HPSS NFS

IPB PARADOX 84 No NFS NFS glite_DPM NFS

ICHEC SGI 320 Yes Panasas Panasas None Panasas

LRZ SGI 19
(SSI)

No NFS CXFS TSM NFS

Table 39 Data management systems used at PRACE sites

4.3.2 Analysis

We find that the PRACE systems employ different solutions for the four usage classes.
Common to all sites is the use of tailored file systems, featuring a mix of network file
systems, high-performance file systems, and long-term file systems.

The network file system NFS is the dominant commodity file system, widely used
everywhere because of its reliability and portability. The PRACE sites employ NFS for user
data and to manage the workspace of system services and tools. These usage classes are less
performance critical than servicing large data sets.

Two high-performance file systems are widely used. GPFS is an IBM product and Lustre is
an open-source file system supported by several vendors. The predominant use of high-
peformance file systems is the management of large data sets and workspaces of system
services. Both GPFS and Lustre are optimized for high throughput. They scale well when
serving data but have known scalability limitations managing metadata [39]. Another known
scalability problem affects the recovery time after a failure of individual system components,
which is proportional to the number of nodes of the machine [39].

Long-term file systems include the proporietary file system HPSS, which is optimized to scale
to large capacities. We note that HPSS is a joint development of several DOE laboratories and
IBM to develop a viable long-term storage solution. Some long-term file systems are
integrated into a hierarchical storage management (HSM) system, where data migrate
between levels of a storage hierachy analogous to cache based memory hierarchies. IBM
offers such a storage solution for GPFS, marketed under the name HSM, which is used in
several IBM installations at PRACE sites. Another HSM solution is under development for
Lustre in collaboration with CEA.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 67

4.3.3 Conclusions

We observe that file systems are the dominant solution for data management, tailored to serve
different usage requirements. High-performance file systems appear to meet contemporary
needs, while gradual improvements to the commodity file system NFS are closing the
performance gap. We are aware of several scalability problems that require our attention for
next-generation exascale systems. We encourage the development of a portable open-source
file system suited to serve as a vendor independent standard.

4.4 MPI and Communication Libraries

The message passing interface (MPI) is a key element of the software infrastructure for
supercomputing. Our survey reveals that a number of well-known scalability problems plague
different MPI implementations.

4.4.1 Survey

The section surveys the use of MPI implementations and underlying communication libraries.
The contributing PRACE sites offer information about the interconnect network and the
supported MPI implementations.

Site Vendor Nodes
Number

Interconnect MPI implementation

CEA BULL 4000 IB QDR OpenMPI

BullxMPI

CSCS CRAY 1844 CRAY
SeaStar

Cray MPI

EPCC CRAY 1856 CRAY Gemini MPICH

KTH CRAY 1516 CRAY Gemini CRAY Mpich2

UYBHM HP 192 IB MPICH

OpenMPI

MVAPICH

IntelMPI

Platform MPI

BSC IBM 2560 Myrinet OpenMPI

MPICH

CINECA IBM 168 IB IBM MPI

FZJ IBM 73728 Proprietary MPICH

STFC IBM 1024 Proprietary MPICH

HLRS NEC 711 IB OpenMPI

MVAPICH

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 68

Site Vendor Nodes
Number

Interconnect MPI implementation

iMPI

PACX-MPI

IPB PARADOX 84 GbE MPICH

Mpich2

OpenMPI

ICHEC SGI 320 IB DDR SGI-MPT

OpenMPI

MVAPICH

IntelMPI

JKU SGI 1

(SSI)

NUMALink 4 OpenMPI

SGI-MPT

LRZ SGI 19 (SSI) NUMALink 4 SGI-MPT

IntelMPI

Table 40 MPI and communication libraries used at PRACE sites

4.4.2 Analysis

As the standard among message passing interfaces, and the workhorse of contemporary high-
performance programming, MPI is supported by all PRACE sites. Proprietary low-level
communication libraries are typically augmented with an MPI compliant library. Systems
based on commodity interconnects, such as IB, tend to support open-source MPI
implementations like OpenMPI.

The performance and scalability of MPI different operations, in particular collective
operations like broadcasts, reductions, and barriers, varies substantially across MPI
implementations and interconnect networks. We briefly describe two of the most severe
scalability problems that require solutions for exascale machines.

One scalability problem is caused by the memory requirements for send and receive buffers.
MPI implementations like OpenMPI are known not to scale on IB because of their buffer
management [39]. Network interface hardware offers buffering support for communication,
such as queue pairs in Infiniband (IB), yet hardware resources are limited. Handling large
numbers of connections per node requires virtualizing the hardware buffers, which introduces
a memory overhead proportional to the number of connections when implemented naively. At
the time of this writing, several solutions have been proposed but no dominant solution has
emerged yet. For example, Mellanox IB cards share communication buffers between tasks
within a node [54]. However, even with such sharing, the memory footprint for send and
receive buffers consumes a significant amount of node memory.

Another scalability problem is caused by network topologies. Today's systems are networks
of multicore nodes. Hence intranode and internode communication are facilitated by different
hardware machanisms, that require an optimized software stack to obtain high performance.
In particular, it is widely believed that portable implementations of collective operations do
not offer the performance and scalability of topology-aware implementations [35].

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 69

4.4.3 Conclusions

MPI is the dominant communication layer for high-performance programming, and as such
considered to be mission-critical software infrastructure. However, MPI implementations
suffer performance and scalability problems, in particular collective operations like
broadcasts, reductions, and barriers. Some of these problems are well-known, but no common
solutions have emerged yet. We have an opportunity to develop and contribute solutions for
exascale computing to open-source projects like OpenMPI.

4.5 Resource Management

The resource manager is responsible for the efficient use of a supercomputer. Its tasks
include allocation of exclusive and/or non-exclusive access to resources such as compute
nodes for a specific duration of time, starting, executing, and monitoring jobs on a set of
allocated nodes, and arbitration of competing requests for compute resources by managing a
queue of pending work.

The scheduler component of the resource manager decides which resources to allocate to a
job according to a given policy. The simplest policy is the first-come-first-served (FCFS)
behavior implemented by a queue. The FCFS policy is not adequate for contemporary
supercomputer architectures with multicore nodes and accelerators, because:

1. Users expect fast response and short turnaround times. They may also expect to obtain a
fair share of resources. Hence, the scheduler must implement advanced sharing policies
that take into account not only the jobs but also the users, so that resource time is divided
among the users. Many schedulers address this issue with so-called fairshare policies.
Preemption is another policy that refers to suspension of a currently executing job so that
the released resources can be allocated to higher priority jobs.

2. Jobs have different resource requirements. For example, parallel applications have
different dependency and communication patterns, some jobs require checkpointing,
others exploit dynamic voltage and frequency scaling to minimize power consumption.

3. Resources of a machine may be heterogeneous. Accelerated architectures feature
multicore processors plus one or more accelerators, such as a GPU. Different
interconnect network topologies benefit from topology-aware schedulers.

4. Power consumption has become a primary concern. Schedulers can help managing
thermal aspects of heat dissipation by exploiting the ability to power on/off resources.
Saving energy necessitates the development of energy-aware scheduling policies.

To improve the utilization of resources most schedulers employ the backfilling technique, that
permits jobs requesting a small number of resources to occupy empty ressource slots without
modifying the order of the execution of previously submitted jobs.

4.5.1 Survey

To evaluate the state-of-the-art in resource management, we present (1) insights from a
literature survey and (2) a survey of the resource managers in use at the PRACE sites.

Our survey of contemporary scientific literature reveals the existence of several resource
managers. Georgiou's PhD thesis [13] includes an excellent assessment, including those
resource managers widely used systems in supercomputer centers:

1. SLURM [57] is open-source resource management software, designed with simplicity,
portability, and scalability in mind. It has a plug-in mechanism for developers to extend

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 70

its functionality. New versions of SLURM extend the simple FCFS scheduler with
features such as backfilling, fairshare, preemption, multi-priority, advanced reservation,
application licenses, external scheduler support, simple topology awareness, and a plug-
in mechanism for generic resource scheduling. Rudimentary support for GPUs is
provided via the generic resource scheduling mechanism. SLURM received a lot of
attention recently, and some supercomputer centers use SLURM, sometimes in
combination with other schedulers such as MOAB, Maui, and LSF.

2. PBSpro [46] is a commercial successor of the PBS resource manager originally
developed at NASA. The original PBS code is available as unsupported open-source
version, called OpenPBS. PBSPro has the usual scheduler features: FCFS, backfilling,
fairshare, preemption, multi-priority, external scheduler support, advanced reservation
support, and application licenses. Recent versions support topology-aware scheduling by
means of so-called ‘placement sets,’ which are sets of cores and nodes for placement of
MPI tasks specified by the site administrator. Support for GPU has been introduced in
two modes: (i) the simple mode schedules one GPU job at a time on a given node
exclusively, and (ii) an advanced distributed mode offers sharing of nodes by multiple
jobs at the same time and grants access to individual GPUs by device number.

3. MOAB [62] is a commercial job scheduler that originated from the PBS system. It
supports the usual features: FCFS, backfilling, fairshare, preemption, multi-priority,
advanced reservation, and application licenses. MOAB is just a scheduler and, hence,
needs to be integrated into a resource manager system.

4. TORQUE and MAUI [62]: TORQUE is the open-source version of the PBSPro resource
manager and MAUI is the open-source version of the MOAB scheduler. MAUI
supports FCFS, backfilling, fairshare, preemption, multi-priority, advanced reservation,
and application licenses, and rudimentary topology awareness. Besides supporting fat
(ccNUMA) nodes, TORQUE also has some built-in support for GPUs.

5. LSF [47] is a commercial scheduler that supports FCFS, backfilling, fairshare,
preemption, multi-priority, advanced reservation, and application licenses. Newer
features include live cluster reconfiguration, SLA-driven scheduling, delegation of
administrative rights, topology-awareness, and support for GPUs. Also, LSF is capable
of using thermal data to avoid hot spots by balancing workloads.

6. LoadLeveler [38] is a commercial product from IBM, initially based on the open-source
CONDOR system [7]. It supports FCFS, backfilling, fairshare, preemption, multi-
priority, advanced reservation, and application licenses. LoadLeveler features a
specialized scheduling algorithm for Blue Gene.

7. OAR [43] is a recently developed open-source resource manager for high-performance
computing. It is the default resource manager of Grid500, a large-scale experimental
platform for computer scientists to run distributed computing experiments under real life
conditions.

In addition to the above scheduling software packages, Condor [7] and Oracle Grid Engine
[45] (formerly known as Sun Grid Engine) systems are also widely used, especially in grid
environments.

Our survey of resource managers at the PRACE sites is shown in Table 41

1. Scheduler

2. Meta-Scheduler: combines multiple distributed schedulers into a single collective view,
and coordinates scheduling of jobs by directing them to the appropriate scheduler for
execution.

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 71

3. Scheduling Policies: QOS (quality of service), first-come-first-served (FCFS), fairshare,
preemption, or backfilling.

4. Topology Awareness: refers to the optimized mapping of a job to the network topology
such that the nodes of a job are in close proximity to each other.

5. Allocation Granularity: refers to the resource allocation units available on the machine.
These can be cores, nodes, board, or memory.

6. Checkpointing / Restart: refers to the ability of the system or application to save
checkpoints of the application for restart after failures.

7. Job Dependencies: refers to the structure of dependencies among subjobs of a larger job,
including linear or pipeline dependencies and arbritrary directed acyclic graphs, i.e.
workflows.

8. MPI Integration: refers to the launcher integration for MPI process management.

Site

Schedul
er

Meta-
Schedul
er

Schedulin
g

Policies

Used

Topology
Awarene
ss

Allocatio
n
Granulari
ty

Check-
point/

Restart

Job
depen-
dencies

MPI
integratio
n

BSC

Spain

SLURM

MOAB

 Fairshare

Backfillin
g

Yes Cores No Graphs SLURM
launcher

CEA

France

SLURM Inhouse QOS+FC
FS

Fairshare

Backfillin
g

Yes Cores

Memory

Yes

App

Level

Linear SLURM/

OpenMPI

Launcher

CINECA

Italy

 Load-
leveler

No Backfillin
g

Preemptio
n

Yes Cores

Memory

Yes

Applicatio
n

Level

Workflo
w

Embedde
d
launcher

CSCS

Switzer-
land

PBSpro

(SLURM
planned)

No Backfillin
g

Yes Nodes Yes

Applicatio
n

Level

Linear Cray
proprietar
y ALPS

EPCC

UK

PBSpro N Backfillin
g

No Nodes No Linear Explicit
job
launcher

FZJ

Germany

Load-
leveler

Yes Backfillin
g

Yes Nodeboar
d

(32 nodes)

Yes

Applicatio
n

 Level

Linear None

HLRS

Germany

Torque

MOAB

No Backfillin
g

Yes Nodes

Memory

Yes

Applicatio
n

 Level

None Other

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 72

ICHEC

Ireland

Torque

MOAB

No Fairshare

Backfilllin
g

No Nodes No Linear

Workflo
w

OSC
MpiExec

IPB

Serbia

Torque

MAUI

Yes

glite_W
MS

Fairshare No Cores

Memory

Yes

Applicatio
n

Level

Graphs
(DAG)

MPI-
START

JKU

Austria

Under full user control without resource management system

KTH

Sweden

MOAB No FCFS

Fairshare

Backfillin
g

Yes Nodes Yes

Applicatio
n

Level

Yes Other

LRZ

Germany

PBSpro Inhouse First fit

Backfillin
g

Starvation

mechanis
m

Yes Altix 4700
nodes

(physical
parts of an
SSI
instance)

No Linear Embedde
d
launcher

STFC

UK

Other No Backfillin
g

Yes Nodes Yes

Applicatio
n

Level

Linear Embedde
d
launcher

UYBHM

Turkey

LSF No Fairshare

Preemptio
n

No Nodes

Cores

Memory

Yes

Applicatio
n

Level

Workflo
w

Embedde
d
launcher

Table 41 Scheduling software, policies and capabilities used at PRACE sites

4.5.2 Analysis

Our surveys yield several observations and suggestions for improving the scalability of
resource managers:

1. 5 out of 14 PRACE sites use open-source schedulers. We note that CEA has chosen
SLURM as the resource management system for Tera100, which is currently Europe's
most powerful system according to the Top500 list, and CSCS is planning to switch to
SLURM. With the exception of one site, all of the remaining sites employ commercial
resource managers.

2. GPU support: As supercomputer vendors are experimenting with GPU accelerators,
schedulers are starting to support various node configurations, either as accelerators
attached to CPU cores, or as separate resources to be shared dynamically among
multiple nodes.

3. Topology awareness: is widely believed that topology-aware mapping of applications to
resources in close topological vicinity improves performance. Large numbers of nodes
and jobs result in a combinatorial explosion of the search space for possible mappings.
Handling faulty nodes by changing the network topology dynamically exacerbates the

D9.2.1 Multi-Petascale to Exascale Software

PRACE-1IP - RI-261557 21.04.2011 73

mapping problem. Traditional search algorithms of first-fit best-fit type may be
insufficient for large-scale systems, and a more sophisticated approach based on
combinatorial optimization should be pursued.

4. Scalability: multi-petascale systems already consist of more than 100,000 cores.
SLURM, currently supports only up to 65,000 nodes and MOAB 40,000-50,000 nodes.

5. Energy awareness: today's resource managers have only initial, rudimentary support for
energy awareness. We observe the need for developing scheduling algorithms that
decide when to power off or put idle machines into sleep mode, and that provide support
for DVFS.

6. Portability: a large variety of resource managers is in use at the PRACE site. There is a
lack of portability among job scripts, access and control of resources.

7. Malleability: current schedulers assign resources statically, i.e. once they are assigned to
a job, they remain assigned for the life time of a job. For long running applications,
system utilization can be improved by adopting the resources dynamically during the life
time of a job. We observe an opportunity for developing malleability techniques for
schedulers, because we expect them to be particularily effective on exascale systems.

8. Workflows: specify the composition of larger jobs from smaller subjobs. Workflows are
not widely used in scientific computing although they are well suited for scheduling with
backfilling algorithms. We observe an opportunity to enhance supercomputer schedulers
with a workflow scheduling capability [51].

9. The experience of supercomputer users with existing schedulers can be invaluable for
the design of improved schedulers. To-date, little experience [1] has been reported in
the literature on this topic. Several PRACE sites have responded to make available their
scheduler logs for research purposes. We suggest establishing a repository for PRACE
scheduler logs to support future research on supercomputing schedulers.

4.5.3 Conclusions

A large variety of open-source and commercial resource managers are in use at the PRACE
sites. Common to almost all existing resource managers is a lack of support for GPU
accelerators and energy awareness. Furthermore, we expect to experience suboptimal
utilization with today's scheduling algorithms when handling the large number of jobs and
heterogeneous resources in future systems. We observe an opportunity to develop advanced
scheduling mechanisms and algorithms for improved system utilization of exascale systems.

