

SEVENTH FRAMEWORK PROGRAMME
Research Infrastructures

INFRA-2010-2.3.1 – First Implementation Phase of the European High
Performance Computing (HPC) service PRACE

PRACE-1IP

PRACE First Implementation Project

Grant Agreement Number: RI-261557

D7.6

Efficient Handling of Petascale Data

Final

Version: 0.5
Author(s): Mohammad Jowkar, Barcelona Supercomputing Center
 Vit Vondrak, Technical University of Ostrava
 Bjørn Lindi, Norwegian University of Science and Technology
 Olivier Rouchon, Centre Informatique National de l’Enseignement Supérieur
 Marzia Rivi, CINECA Interuniversitary Consortium
Date: 23.12.2011

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 i

Project and Deliverable Information Sheet

PRACE Project Project Ref. №: RI-261557
Project Title: PRACE First Implementation Project
Project Web Site: http://www.prace-project.eu
Deliverable ID: < D7.6>
Deliverable Nature: <DOC_TYPE: Report / Other>
Deliverable Level:
PU *

Contractual Date of Delivery:
31 / December / 2011
Actual Date of Delivery:
31 / December / 2011

EC Project Officer: Bernhard Fabianek

* - The dissemination level are indicated as follows: PU – Public, PP – Restricted to other participants
(including the Commission Services), RE – Restricted to a group specified by the consortium (including the
Commission Services). CO – Confidential, only for members of the consortium (including the Commission
Services).

Document Control Sheet

Document

Title: <Efficient Handling of Petascale Data>
ID: <D7.6>
Version: <0.5 > Status: Final
Available at: http://www.prace-project.eu
Software Tool: Microsoft Word 2007
File(s): D7.6.doc

Authorship

Written by: Mohammad Jowkar (BSC, Spain)
Vit Vondrak (VSB, Czech Republic)
Bjørn Lindi (NTNU, Norway)
Olivier Rouchon (CINES, France)
Marzia Rivi (CINECA, Italy)

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 ii

Contributors: Guillaume Houzeaux (BSC, Spain),
Hadrien Calmet (BSC, Spain),
Jose M. Cela (BSC, Spain),
Mariano Vázquez (BSC, Spain),
Raul de la Cruz (BSC, Spain),
Xavier Saez (BSC, Spain),
Ali Haydar Özer (Bogazici, Turkey),
Can Ozturan (Bogazici, Turkey),
Oğuz Tosun (Bogazici, Turkey),
Seren Soner (Bogazici, Turkey),
Yusuf Yılmaz (Bogazici, Turkey),
Peter Raback (CSC, Finland),
Juha Ruokolainen (CSC, Finland),
Ales Ronovsky (VSB, Czech Republic),
Pavla Kabelikova (VSB, Czech Republic),
Tomas Kozubek (VSB, Czech Republic),
Dalibor Lukas (VSB, Czech Republic),
Jan Zapletal (VSB, Czech Republic),
Charles Moulinec (STFC, England),
Andrew G. Sunderland (STFC, England),
Yvan Fournier (EDF, France),
Ata Turk (Bilkent, Turkey),
Cevdet Aykanat (Bilkent, Turkey),
Vehbi Gunduz Demirc (Bilkent, Turkey),
Sebastian von Alfthan (FMI, Finland),
Ilja Honkonen (FMI, Finland),
Peicho Petkov (NCSA, Bulgaria),
Petko Petkov (NCSA, Bulgaria),
Georgi Vayssilov (NCSA, Bulgaria),
Stoyan Markov (NCSA, Bulgaria),
Valentin Pavlov (NCSA, Bulgaria),
Anton Tomov (NCSA, Bulgaria),
Vesselin Slavchev (NCSA, Bulgaria),
Nina Ilieva (NCSA, Bulgaria),
Dimitar Dimitrov (NCSA, Bulgaria),
Kiril Alexiev (NCSA, Bulgaria),
Huub Stoffers (SARA, Netherlands),
Paul Melis (SARA, Netherlands),
Mark van de Sanden (SARA, Netherlands),
John Donners (SARA, Netherlands),
Jan Christian Meyer (NTNU, Norway),
Jørn Amundsen (NTNU, Norway),
Henrik Nagel (NTNU, Norway),
Jörg Herzer (HLRS, Gemany),
Orlando Rivera (LRZ, Germany),
Peter Nash (ICHEC, Ireland),
Philippe Prat (CINES, France),
Mathieu Cloirec (CINES, France),
Florent Marceteau (CINES, France),
Philippe Wautelet (IDRIS-CNRS, France),
Pierre Kestener (CEA Saclay, France),
Giusy Muscianisi (CINECA, Italy),
Luigi Calori (CINECA, Italy),
Vladimir Slavnic (IPB, Serbia),
George Tsouloupas (CaSToRC, Cyprus),
Nick Sinanis (CaSToRC, Cyprus),
Johan Raber (SNIC, Sweden),
Per Lundqvist (SNIC, Sweden),
Tom Lanborg (SNIC, Sweden),
Bengt Persson (SNIC, Sweden),
Torben Rasmussen (SNIC, Sweden)

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 iii

Reviewed by: Paulo Abreu, IST; D. Erwin, Jülich
Organisation

Approved by: MB/TB

Document Status Sheet

Version Date Status Comments
0.1 22/07/2011 Draft Initial skeleton draft
0.2 01/11/2011 Draft First rough draft
0.3 05/12/2011 Draft First complete draft

version
0.4 09/12/2011 Draft Final draft ready for

review
0.5 23/12/2011 Draft Updated according to

comments from
reviewers

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 iv

Document Keywords

Keywords: PRACE, HPC, Research Infrastructure, Input/Output, Parallel I/O,

Hierarchical I/O, Parallel Pre-Processing, Long-Term Preservation of
Data, Post-Processing, Visualisation

Disclaimer

This deliverable has been prepared by Work Package 7 of the Project in accordance with the
Consortium Agreement and the Grant Agreement n° RI-261557. It solely reflects the opinion
of the parties to such agreements on a collective basis in the context of the Project and to the
extent foreseen in such agreements. Please note that even though all participants to the Project
are members of PRACE AISBL, this deliverable has not been approved by the Council of
PRACE AISBL and therefore does not emanate from it nor should it be considered to reflect
PRACE AISBL’s individual opinion.

Copyright notices

 2011 PRACE Consortium Partners. All rights reserved. This document is a project
document of the PRACE project. All contents are reserved by default and may not be
disclosed to third parties without the written consent of the PRACE partners, except as
mandated by the European Commission contract RI-261557 for reviewing and dissemination
purposes.
All trademarks and other rights on third party products mentioned in this document are
acknowledged as own by the respective holders.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 v

Table of Contents
Project and Deliverable Information Sheet ... i

Document Control Sheet .. i

Document Status Sheet .. iii

Document Keywords .. iv

Table of Contents .. v

List of Figures ... vi

List of Tables ... vi

References and Applicable Documents .. vi

List of Acronyms and Abbreviations ... vii

Executive Summary .. 1

Introduction ... 2

1 Parallel Pre-Processing ... 3
1.1 Parallel Mesh Generation, Migration and Partitioning for the Elmer Application 3

1.2 Parallel Mesh Multiplication for Code_Saturne ... 5

1.3 Code_Saturne – Optimizations in the Pre-processing Step ... 6

1.4 Improving the Load Balancing Performance in Vlasiator ... 8

1.5 Fixing Node Strategies for the Effective Regularization of the Subdomain Stiffness Matrices
Arising in Total FETI .. 10

1.6 A Parallel Fast BEM for the Helmholtz Equation as an Extension of SPECFEM3D 12

1.7 Parallel Uniform Mesh Subdivision in Alya .. 13

1.8 Implementation of Fragment Orbital Method (FMO) for Highly Parallelized Quantum
Chemical Calculations with CP2K .. 15

2 Parallel and Hierarchical I/O ... 18
2.1 Data I/O Optimization in GROMACS Using the Global Arrays Toolkit 18

2.2 The JUGENE I/O Subsystem, its Architecture, Guidelines and Tools for Using it Efficiently .. 19

2.3 Evaluating Application I/O Optimization by I/O Forwarding Layers ... 20

2.4 I/O-profiling with Darshan ... 22

2.5 Parallel I/O Performance and Scalability Study of the PRACE Curie Tier-0 Supercomputer . 23

2.6 Implementing a XDMF/HDF5 Parallel File System in Alya .. 24

2.7 Optimizing the I/O of Pluto .. 25

3 Post-Processing and Visualisation ... 27
3.1 Parallel Visualization of Petascale Simulation Results from GROMACS, NAMD and CP2K on
IBM Blue Gene/P using Visit Visualization Toolkit .. 27

3.2 In-Situ Visualization: State-of-the-Art and Some Use Cases ... 28

3.3 Visualization of Output from Large-Scale Brain Simulation .. 29

4 Long-Term Preservation of Applications Data .. 31
4.1 The Vagn-Ekman Case Study at SNIC-NSC .. 31

4.2 Best Practices on Standards, Policies and Quality Assurance in Digital Repositories for Long
Term Preservation .. 32

4.3 Storage and Long Term Preservation Strategies in PRACE Tier-1 Datacentres 34

4.4 Media and Technology Appraisal for Long-Term Preservation ... 34

4.5 The “Jonker Case” / After Care: Handling the “ENTRAIN” Dataset after its Production on
Jugene .. 35

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 vi

5 Summary .. 37

List of Figures

Figure 1: Example of generated mesh and performance of parallel generation of various meshes 4
Figure 2: Run time performance of Vlasiator utilizing different domain partitioning tools. 9
Figure 3: Pre-processing time overheads of domain partitioning tools ... 10
Figure 4: Computational imbalance values ... 10
Figure 5: Fixing nodes (DOFs) strategies ... 11
Figure 6: Time and speedup of the implemented Alya mesh multiplication ... 14
Figure 7: Speedup of the Alya Navier-Stokes equations ... 14
Figure 8: Evolution of velocity modules at points 8 and 9 located in the computational domain 15
Figure 9: Comparison of HDF5 I/O performance ... 26
Figure 10: Visualization of simulation with 50,000 neurons .. 30

List of Tables
Table 1: Performance of Code_Saturne on the ComSio cluster .. 6
Table 2: Performance of Code_Saturne on Curie Tier-0 cluster ... 6
Table 3: Dataset properties .. 7
Table 4: Properties of partitions obtained by partitioning a SUBMARINE dataset 7
Table 5: Runtime per timestep (seconds) of Code_Saturne by using partitions 8
Table 6: Conditioning of the nonsingular part of A .. 12
Table 7: Scalability results .. 12
Table 8: Efficiency of BEM .. 13
Table 9: Performance data of a system with 5,504,000 atoms. ... 19
Table 10: I/O cost relative to computation step cost ... 21
Table 11: Darshan profile of OpenFoam ... 22
Table 12: Darshan meta data profiling of OpenFoam ... 22
Table 13: Comparison of post-processing times for the human respiratory model in a single snapshot
 ... 25

References and Applicable Documents

[1] Z. Dostal, T. Kozubek, A. Markopoulos, M. Mensik, “Cholesky decdomposition and a
generalized inverse of the stiffness matrix of a floating structure with known null space”,
Applied Mathematics and Computation 2011; 217:6067–6077.
[2] T. Brzobohaty, Z. Dostal, P. Kovar, T. Kozubek, A. Markopoulos, “Cholesky
decomposition with fixing nodes to stable evaluation of a generalized inverse of the stiffness
matrix of a floating structure”, IJNME, DOI: 10.1002/nme.3187.
[3] T. Kozubek, V. Vondrak, M. Mensik, D. Horak, Z. Dostal, V. Hapla, P. Kabelikova, M.
Cermak, “Total FETI domain decomposition method and its massively parallel
implementation”, submitted.
[4] http://www.prace-project.eu
[5] PRACE-1IP deliverable D7.1.2 “Report on applications enabling for capability science”
[6] PRACE-1IP deliverable D7.2.2 “Report on collaboration with communities”
[7] C. Farhat, F. X. Roux, “A method of finite element tearing and interconnecting and its
parallel solution algorithm“, IJNME 1991; 32:1205-1227
[8] Z. Dostal, D. Horak, R. Kucera, „Total FETI - an easier implementable variant of the
FETI method for numerical solution of elliptic PDE“, Commun. Numer. Methods Eng. 2006;
22:1155–1162

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 vii

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 viii

List of Acronyms and Abbreviations

AAA Authorization, Authentication, Accounting.
ACF Advanced Computing Facility
ADP Average Dissipated Power
AMD Advanced Micro Devices
APGAS Asynchronous PGAS (language)
API Application Programming Interface
APML Advanced Platform Management Link (AMD)
ASIC Application-Specific Integrated Circuit
ATI Array Technologies Incorporated (AMD)
BAdW Bayerischen Akademie der Wissenschaften (Germany)
BCO Benchmark Code Owner
BLAS Basic Linear Algebra Subprograms
BSC Barcelona Supercomputing Center (Spain)
CAF Co-Array Fortran
CAL Compute Abstraction Layer
CCE Cray Compiler Environment
ccNUMA cache coherent NUMA
CEA Commissariat à l’Energie Atomique (represented in PRACE by GENCI,

France)
CGS Classical Gram-Schmidt
CGSr Classical Gram-Schmidt with re-orthogonalisation
CINECA Consorzio Interuniversitario, the largest Italian computing centre (Italy)
CINES Centre Informatique National de l’Enseignement Supérieur (represented

in PRACE by GENCI, France)
CLE Cray Linux Environment
CPU Central Processing Unit
CSC Finnish IT Centre for Science (Finland)
CSCS The Swiss National Supercomputing Centre (represented in PRACE by

ETHZ, Switzerland)
CSR Compressed Sparse Row (for a sparse matrix)
CUDA Compute Unified Device Architecture (NVIDIA)
DARPA Defense Advanced Research Projects Agency
DDN DataDirect Networks
DDR Double Data Rate
DEISA Distributed European Infrastructure for Supercomputing Applications.

EU project by leading national HPC centres.
DGEMM Double precision General Matrix Multiply
DIMM Dual Inline Memory Module
DMA Direct Memory Access
DNA DeoxyriboNucleic Acid
DP Double Precision, usually 64-bit floating point numbers
DRAM Dynamic Random Access memory
EC European Community
EESI European Exascale Software Initiative
EoI Expression of Interest
EP Efficient Performance, e.g., Nehalem-EP (Intel)

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 ix

EPCC Edinburg Parallel Computing Centre (represented in PRACE by
EPSRC, United Kingdom)

EPSRC The Engineering and Physical Sciences Research Council (United
Kingdom)

eQPACE extended QPACE, name of the FZJ WP8 prototype
ETHZ Eidgenössische Technische Hochschule Zuerich, ETH Zurich

(Switzerland)
ESFRI European Strategy Forum on Research Infrastructures; created

roadmap for pan-European Research Infrastructure.
EX Expandable, e.g., Nehalem-EX (Intel)
FC Fiber Channel
FFT Fast Fourier Transform
FHPCA FPGA HPC Alliance
FP Floating-Point
FPGA Field Programmable Gate Array
FPU Floating-Point Unit
FZJ Forschungszentrum Jülich (Germany)
GASNet Global Address Space Networking
GB Giga (= 230 ~ 109) Bytes (= 8 bits), also GByte
Gb/s Giga (= 109) bits per second, also Gbit/s
GB/s Giga (= 109) Bytes (= 8 bits) per second, also GByte/s
GCS Gauss Centre for Supercomputing (Germany)
GDDR Graphic Double Data Rate memory
GÉANT Collaboration between National Research and Education Networks to

build a multi-gigabit pan-European network, managed by DANTE.
GÉANT2 is the follow-up as of 2004.

GENCI Grand Equipement National de Calcul Intensif (France)
GFlop/s Giga (= 109) Floating point operations (usually in 64-bit, i.e. DP) per

second, also GF/s
GHz Giga (= 109) Hertz, frequency =109 periods or clock cycles per second
GigE Gigabit Ethernet, also GbE
GLSL OpenGL Shading Language
GNU GNU’s not Unix, a free OS
GPGPU General Purpose GPU
GPU Graphic Processing Unit
GS Gram-Schmidt
GWU George Washington University, Washington, D.C. (USA)
HBA Host Bus Adapter
HCA Host Channel Adapter
HCE Harwest Compiling Environment (Ylichron)
HDD Hard Disk Drive
HE High Efficiency
HET High Performance Computing in Europe Taskforce. Taskforce by

representatives from European HPC community to shape the European
HPC Research Infrastructure. Produced the scientific case and valuable
groundwork for the PRACE project.

HMM Hidden Markov Model
HMPP Hybrid Multi-core Parallel Programming (CAPS enterprise)
HP Hewlett-Packard
HPC High Performance Computing; Computing at a high performance level

at any given time; often used synonym with Supercomputing

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 x

HPCC HPC Challenge benchmark, http://icl.cs.utk.edu/hpcc/
HPCS High Productivity Computing System (a DARPA program)
HPL High Performance LINPACK
HT HyperTransport channel (AMD)
HWA HardWare accelerator
IB InfiniBand
IBA IB Architecture
IBM Formerly known as International Business Machines
ICE (SGI)
IDRIS Institut du Développement et des Ressources en Informatique

Scientifique (represented in PRACE by GENCI, France)
IEEE Institute of Electrical and Electronic Engineers
IESP International Exascale Project
IL Intermediate Language
IMB Intel MPI Benchmark
I/O Input/Output
IOR Interleaved Or Random
IPMI Intelligent Platform Management Interface
ISC International Supercomputing Conference; European equivalent to the

US based SC0x conference. Held annually in Germany.
IWC Inbound Write Controller
JSC Jülich Supercomputing Centre (FZJ, Germany)
KB Kilo (= 210 ~103) Bytes (= 8 bits), also KByte
KTH Kungliga Tekniska Högskolan (represented in PRACE by SNIC,

Sweden)
LBE Lattice Boltzmann Equation
LINPACK Software library for Linear Algebra
LLNL Laurence Livermore National Laboratory, Livermore, California (USA)
LQCD Lattice QCD
LRZ Leibniz Supercomputing Centre (Garching, Germany)
LS Local Store memory (in a Cell processor)
MB Mega (= 220 ~ 106) Bytes (= 8 bits), also MByte
MB/s Mega (= 106) Bytes (= 8 bits) per second, also MByte/s
MDT MetaData Target
MFC Memory Flow Controller
MFlop/s Mega (= 106) Floating point operations (usually in 64-bit, i.e. DP) per

second, also MF/s
MGS Modified Gram-Schmidt
MHz Mega (= 106) Hertz, frequency =106 periods or clock cycles per second
MIPS Originally Microprocessor without Interlocked Pipeline Stages; a RISC

processor architecture developed by MIPS Technology
MKL Math Kernel Library (Intel)
ML Maximum Likelihood
Mop/s Mega (= 106) operations per second (usually integer or logic operations)
MoU Memorandum of Understanding.
MPI Message Passing Interface
MPP Massively Parallel Processing (or Processor)
MPT Message Passing Toolkit
MRAM Magnetoresistive RAM
MTAP Multi-Threaded Array Processor (ClearSpead-Petapath)
mxm DP matrix-by-matrix multiplication mod2am of the EuroBen kernels

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 xi

NAS Network-Attached Storage
NCF Netherlands Computing Facilities (Netherlands)

NDA Non-Disclosure Agreement. Typically signed between vendors and
customers working together on products prior to their general
availability or announcement.

NoC Network-on-a-Chip
NFS Network File System
NIC Network Interface Controller
NUMA Non-Uniform Memory Access or Architecture
OpenCL Open Computing Language
OpenGL Open Graphic Library
Open MP Open Multi-Processing
OS Operating System
OSS Object Storage Server
OST Object Storage Target
PCIe Peripheral Component Interconnect express, also PCI-Express
PCI-X Peripheral Component Interconnect eXtended
PGAS Partitioned Global Address Space
PGI Portland Group, Inc.
pNFS Parallel Network File System
POSIX Portable OS Interface for Unix
PPE PowerPC Processor Element (in a Cell processor)
PRACE Partnership for Advanced Computing in Europe; Project Acronym
PSNC Poznan Supercomputing and Networking Centre (Poland)
QCD Quantum Chromodynamics
QCDOC Quantum Chromodynamics On a Chip
QDR Quad Data Rate
QPACE QCD Parallel Computing on the Cell
QR QR method or algorithm: a procedure in linear algebra to compute the

eigenvalues and eigenvectors of a matrix
RAM Random Access Memory
RDMA Remote Data Memory Access
RISC Reduce Instruction Set Computer
RNG Random Number Generator
RPM Revolution per Minute
SAN Storage Area Network
SARA Stichting Academisch Rekencentrum Amsterdam (Netherlands)
SAS Serial Attached SCSI
SATA Serial Advanced Technology Attachment (bus)
SDK Software Development Kit
SGEMM Single precision General Matrix Multiply, subroutine in the BLAS
SGI Silicon Graphics, Inc.
SHMEM Share Memory access library (Cray)
SIMD Single Instruction Multiple Data
SM Streaming Multiprocessor, also Subnet Manager
SMP Symmetric MultiProcessing
SNIC Swedish National Infrastructure for Computing (Sweden)
SP Single Precision, usually 32-bit floating point numbers
SPE Synergistic Processing Element (core of Cell processor)
SPH Smoothed Particle Hydrodynamics
SPU Synergistic Processor Unit (in each SPE)

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 xii

SSD Solid State Disk or Drive
STFC Science and Technology Facilities Council (represented in PRACE by

EPSRC, United Kingdom)
STRATOS PRACE advisory group for STRAtegic TechnOlogieS
STT Spin-Torque-Transfer
TARA Traffic Aware Routing Algorithm
TB Tera (= 240 ~ 1012) Bytes (= 8 bits), also TByte
TCO Total Cost of Ownership. Includes the costs (personnel, power, cooling,

maintenance, ...) in addition to the purchase cost of a system.
TDP Thermal Design Power
TFlop/s Tera (= 1012) Floating-point operations (usually in 64-bit, i.e. DP) per

second, also TF/s
Tier-0 Denotes the apex of a conceptual pyramid of HPC systems. In this

context the Supercomputing Research Infrastructure would host the
Tier-0 systems; national or topical HPC centres would constitute Tier-1

UFM Unified Fabric Manager (Voltaire)
UNICORE Uniform Interface to Computing Resources. Grid software for seamless

access to distributed resources.
UPC Unified Parallel C
UV Ultra Violet (SGI)
VHDL VHSIC (Very-High Speed Integrated Circuit) Hardware Description

Language

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 1

Executive Summary

This document summarizes the work done in task 7.6 of work package 7 of the PRACE-1IP
project [4]. The main objective of task 7.6 has been to support users, from tasks 7.1 and 7.2,
to overcome their data challenges at Petascale. A Petascale supercomputer is composed of a
very large number of processors and an even larger number of threads. It is common that
many of these processors and threads in a Petascale class simulation need to process a large
amount of data, which brings with it a set of challenges. T7.6 has been successful in helping
users overcome such challenges, by identifying data experts and gathering them in groups,
based on their expertise. The experts have been assigned to supporting users with their data
needs, in order for them to be able to scale their applications further. Typically, these groups
have been composed of experts from different European HPC centers. This approach has thus
led to a closer collaboration among European researchers, as well as to the sharing and
transfer of knowledge between them.

The support provided by the experts in T7.6, to overcome the challenges of petascale-class
applications data, has been documented in detail in whitepapers and summarized in this
document. In total 12 application have been supported, which has resulted in 23 whitepapers,
detailing the work which has been done.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 2

Introduction

As HPC applications approach petascaling, the efficient handling of data and I/O becomes
increasingly more important. The amount of data that applications must process grows
substantially at petascale and can pose a serious bottleneck. Tier-0 petascale systems today
have impressive amounts of computational power, which means that data handling can
consume more time than the actual computations themselves, if not done in an efficient
manner. At a lower scale, not much effort has been put in the efficient handling of data and it
is often done sequentially since it does not pose a big bottleneck. However, this is becoming
less of an option as we move towards petascale and beyond, where the amount of data to be
processed exceeds the memory of a shared memory machines.

Data typically goes through several stages during the execution of an HPC application. In the
first stage input data is read and some pre-processing is performed, such as domain
decomposition, mesh refinement/partitioning, etc. Afterwards during computations, data has
to be exchanged among nodes and results have to be output. When the application terminates
the output data then has to be post-processed and visualized for analysis. Finally, if the results
have importance, they might have to be stored for long term preservation. For a petascale run,
each of the above stages can involve the processing of significant amounts of data.

Overcoming the data challenge in each of the above stages has been the objective of task 7.6
and the main effort has been to provide support on efficient handling of petascale-class
applications data to developers wanting to petascale their applications. The request for
support has come from tasks 7.1 [5] and 7.2 [6], which deal with application enabling.

In order to be able to provide users with support on overcoming their data challenges, experts
were identified from several major European HPC centers, to provide their expertise on
helping and working alongside users of T7.1 and T7.2, with the goal of scaling their
applications. The experts were divided, based on their expertise, into the following four
distinct subtasks: ’Parallel Pre-Processing’, ‘Parallel and Hierarchical I/O’, ‘Post-
Processing and Visualization’, and ‘Long-Term Preservation of Applications Data’. Each of
the subtasks has been led by a subtask leader and the work coordinated via telcons and face to
face meetings. In turn, each subtask has delt with several data related projects, each led by a
team of experts.

The resulting work done in T7.6 has been documented in a total of 23 whitepapers, ranging
from best practice guides to optimizations done for applications and the performance
improvements achieved. This deliverable summarizes the whitepapers. The title of the
whitepaper is identical to the subsection title in chapters 1 to 4. For details the whitepapers
should be consulted, which can be found on the PRACE website:

http://www.prace-ri.eu/White-Papers

This deliverable is structured in four main subsections, each covering the work which has
been done in the above four subtasks of T7.6, followed by a section on conclusions.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 3

1 Parallel Pre-Processing

Many numerical simulations require nontrivial pre-processing of data before actual
computations can start. For Terascale problems, pre-processing is often done on shared
memory machines, after which the set of generated files are moved to a parallel computer for
the actual simulation or for further processing. For Petascale problems, this approach is very
limited, due to the data volume of Petascale problems. At such large scale, the input data
might not even fit in the memory of a single machine or it might be too time consuming to
process sequentially. Therefore, for certain applications one is forced to parallelize the pre-
processing step, in order to take advantage of the distributed memory and processing power of
the whole machine. This section summarizes the support requested from T7.6 and the
corresponding support provided to users with optimizing and parallelizing various pre-
processing steps in their applications.

1.1 Parallel Mesh Generation, Migration and Partitioning for the Elmer
Application

Supported by: Yusuf Yılmaz, Can Ozturan, Oğuz Tosun, Ali Haydar Özer and Seren Soner (Bogazici, Turkey)

Collaborators: Peter Raback (CSC, Finland)

Elmer is an open source multi-physics simulation software developed by CSC - IT Center for
Science (CSC). Elmer employs the finite element method to solve partial differential
equations associated with, for example, physical models of fluid dynamics, structural
mechanics, electromagnetics, heat transfer and acoustics. Elmer has a simple built-in
unstructured mesh generator, which can do sequential mesh generation on simple geometries.
In order to scale further, however, support for parallel mesh generation and mesh partitioning
was requested by the Elmer developers from T7.6. The main objective of this project was to
develop software to "generate large unstructured meshes with sizes in the hundreds of
millions range, on complex geometry". With sequential mesh generators, memory on a single
node becomes a serious bottleneck, allowing generation of only a few tens of millions of
elements. When generating huge meshes, another objective is to reduce the mesh generation
time drastically.

Since development of a robust mesh generator may take many years, the following approach
was followed: An existing sequential mesh generator was taken and the geometry was
decomposed for parallel mesh generation, using the existing mesh generator. As a sequential
mesh generation software, the Netgen mesh generator was used, due to its availability as
LGPL open source software and a wide user base. The parallel mesh generation software was
implemented using the MPI libraries and the C++ language.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 4

(a) (b)

Figure 1: Example of generated mesh and performance of parallel generation of various meshes
with 700, 800 million and 1.4 billion elements.

The parallel mesh generation algorithm developed in this project starts by decomposing
sequentially the whole geometry on a master node into a number of sub-geometries and then
meshes each sub-geometry in parallel using multiple processors. When a mesh is generated
for each sub-geometry by each processor, the partition boundary mesh faces of adjacent sub-
geometries need to be conforming (i.e. match). This is achieved during the initial phase on the
master node, by sequentially generating a coarse mesh for the whole geometry, including the
sub-geometry faces after the geometry partitioning. Each mesh is then sent to the parallel
processors for volume (tetrahedral) mesh generation in parallel. Different methods were
implemented based on whether coarse surface or volume meshes were generated on the
master node. After the parallel volume mesh generation is performed, the result is a
distributed mesh, which may be imbalanced. The imbalanced mesh can be partitioned by
ParMetis. Given a distributed mesh, with final destination processors returned from the
partitioner for each element, a scalable mesh migration algorithm is needed to do the
migration. Therefore a migration algorithm was implemented, which utilises owner updates
rule for updating the new destinations of the partition boundary mesh entities.

Figure 1 (a) shows an example of an unstructured mesh, generated on a complex shaft
geometry, using the Netgen based parallel mesh generator developed in this project. Figure 1
(b) shows various timings obtained on generating 700 million, 800 million and 1.4 billion
mesh for the shaft, cube and torus geometries respectively.

In conclusion, this project has achieved its objective of generating large unstructured meshes,
with sizes in the hundreds of millions range, on complex geometry. In particular using
refinement based methods, a 1.4 billion element mesh was generated in under a minute.
Sequential generation of such a huge mesh would not be possible due to memory limitations.
Using the original Netgen code, a mesh with 10 million elements can be generated sequentiall
in about a minute, using a simple refinement based method. These results also imply that a
user does not need to save the mesh, which would require costly I/O. Instead, the mesh can be
generated on the fly, whenever a solver like Elmer needs it.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 5

1.2 Parallel Mesh Multiplication for Code_Saturne

Supported by: Pavla Kabelikova, Ales Ronovsky and Vit Vondrak (VSB-TU, Ostrava)

Collaborators: Charles Moulinec (STFC, Daresbury) and Yvan Fournier (EDF, France)

Code_Saturne® is a multi-purpose Computational Fluid Dynamics (CFD) software, which
has been developed by Electricité de France Recherche et Développement EDF-R&D since
1997. The code was originally designed for industrial applications and research activities in
several fields related to energy production; typical examples include nuclear power thermal-
hydraulics, gas and coal combustion, turbo-machinery, heating, ventilation, and air
conditioning. Code_Saturne® was released as open source in 2007 and is distributed under a
GPL licence. Code_Saturne® has been selected as an engineering community code in
PRACE-1IP and supported by developing teams from several PRACE project partners, to
enable its petascale capabilities.

The main challenge to enable petascaling of Code_Saturne® is the time required to generate
large meshes. This is the case even for relatively modest sizes, e.g. 10 million cells, where the
geometry is very complex and boundary layers have to be meshed. Therefore it is obvious that
the generation of billions of cell meshes has to be parallel. Unfortunately no industrial
strength open-source parallel mesh generators are available yet. Therefore other routes must
be followed and the one proposed by Code_Saturne® developers deals with parallel global
mesh refinement (or mesh multiplication), i.e. an initial mesh of about 100 million cells would
be read by Code_Saturne®, then each of its cells would be split uniformly. This process could
be repeated several times in order for the Navier-Stokes solver to run on a several billion cell
mesh, while post-processing would be carried out on the initial 100 million cell mesh.

According to the Code_Saturne® developers’ proposal, the main aim of the project was to
develop a parallel mesh multiplication package and integrate it into Code_Saturne® to extend
its capability of generating very large cell meshes. Since Code_Saturne® primarily uses 3D
cells, the work in this project was focused only on structured meshes with regular cells, such
as hexahedras, tetrahedras or prisms. The final developed parallel mesh multiplication
package implements global mesh refinement of hexahedral meshes.

The main part of the work on developing the mesh multiplication package, was dedicated to
the adaptation of the Code_Saturne® data structures into the global mesh refinement data
structure. For efficient mesh refinement, it was necessary to extend the Code_Saturne mesh_t
mesh storage format with vertex-edge based information, since the original mesh_t structure
only handles cell structures of a mesh. This enables the mesh multiplication to be executed in
parallel on distributed parts of the mesh, i.e. each parallel process takes care of its own part of
the mesh, although the faces on the subdomain interface are shared with more processors.
However, it is guaranteed that the resulting refined mesh matches on the subdomain interfaces
for hexahedral elements (support for other regular cell types is in progress).

Application of the parallel mesh multiplication on a distributed mesh, duplicates some surface
subdomain entities (vertices, edges and faces) in multiple processes. This implies
reconfiguration of their global indices, which requires intensive parallel communication
between the neighbouring subdomains. This inter-subdomain communication was optimized
using “adjacency graph of subdomains”, which has to be set-up during the partitioning phase,
to extract all necessary information.

The result of this work has enabled Code_Saturne® to obtain very fine meshes by applying
the implemented mesh multiplication algorithm recursively. The performance and scalability

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 6

of the implemented package have been tested on a local cluster at VSB-TU Ostrava (ComSio)
and on the Curie Tier-0 system.

The following table shows the scalability of an example on the ComSio cluster. As input, an
initial mesh with 700 cells and 1562 vertices was used. Applying six levels of refinement, a
mesh with more than 180 million cells was obtained in less than 7 seconds (using 28 cores).
The measured time contains the time needed for subdomains refinement only. The sixth level
of refinement cannot be computed on 1 core because of lack of memory per 1 core.

The following table shows the scalability test of the same example on the Curie Tier-0 cluster.
The times in the table measure the pure time needed for the mesh refinement.

1.3 Code_Saturne – Optimizations in the Pre-processing Step

Supported by: Ata Turk (Bilkent, Turkey), Charles Moulinec (STFC, England), Andrew G. Sunderland (STFC,
England) and Cevdet Aykanat (Bilkent, Turkey)

In this project the developers of Code_Saturne requested support from T7.6 in the
investigation of pre-processing schemes, which will enable the partitioning of the domain into
100K or more processors, and analysis and improvement of parallel graph-partitioning
schemes, which will enable partitioning of 2 billion cells or more.

This has resulted in the study of the performance of different mesh partitioning software
packages, which can be used in Code_Saturne. Previous studies have shown that MeTis, a
sequential graph partitioner, provides the best results in terms of reducing the average time
spent on a single timestep of Code_Saturne. However, MeTiS has problems with partitioning

Parameters of given mesh Number of used cores

1 core 2 cores 4 cores 8 cores 16 cores 24 cores 28 cores

 time [s] time [s] time [s] time [s] time [s] time [s] time [s]

0 700 1562 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

1 5600 8883 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

2 44800 57605 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

3 358400 408969 0.36 <0.5 <0.5 <0.5 <0.5 <0.1 <0.1

4 ~3M 2.88 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

5 ~23,7M 22.75 12.5 6.3 3.16 1.49 1.11 0.85

6 ~186,6M --- 157.3 46.8 22.5 12.7 8.23 6.81

level of
refinement

no. of
cells

no. of
vertices

~2.87M

~22.9M

~183,5M

Parameters of given mesh Number of used cores

32 cores 64 cores 128 cores

 time [s] no. of vertices time [s] no. of vertices time [s] no. of vertices

0 700 1562 <0.1 72 <0.1 42 <0.1 24

6 183.5M 186.6M 4.12 6.0M 2.5 3.2M 1.2 1.6M

7 1.5B 1.5B --- --- --- --- 8.05 12M

level of
refinement

no. of
cells

no. of
vertices

Table 2: Performance of Code_Saturne on Curie Tier-0 cluster

Table 1: Performance of Code_Saturne on the ComSio cluster

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 7

into 64K parts or more. Furthermore, for sufficiently large problems, the memory
requirements of MeTiS may surpass the memory available even in fat nodes of large-scale
clusters.

Analysis conducted reveal that, for medium sized meshes, if the time spent for partitioning is
not important, the usage of sequential SCOTCH can be considered, since it provides
reasonably good partitions with relatively low memory requirements and can easily scale to
128K cells and beyond on a single fat node. However, as the mesh sizes that are to be
partitioned reach billions of cells, sequential partitioning of such meshes becomes infeasible,
since they require large amounts of time and memory. In order to adjust to the memory
constraints and to avoid unnecessary folding and migration of data, the partitioning has to be
done in parallel and to fit such large meshes in the memory of cluster nodes, the mesh has to
be partitioned into very large number of cores.

Unfortunately the partitioning performance of parallel graph partitioning packages such as
Par-MeTiS and PT-SCOTCH decline with increasing number of cores involved in the
partitioning process and are inferior to their sequential counterparts in terms of partitioning
quality. To address this problem, a two-level hierarchical partitioning scheme has been
proposed, which enables first to partition into a smaller number of parts, compared to the
desired final number of parts, after which it partitions the obtained subgraph in a second level,
to obtain the final number of parts. This scheme also allows the usage of different partitioning
schemes at each level.

Two different sets of experiments on two different datasets (see Table 3 for properties) were
conducted, to compare the partitioning schemes and tools. In the first set of experiments the
partitioning results of the tools have been analyzed and in the second set of experiments, the
execution time of Code_Saturne has been compared when using these partitions.

 # of vertices # of edges

SMALL 5.780.335 23.064.296

SUBMARINE 107.673.905 427.107.558

Table 3: Dataset properties
Table 4 present the partitioning properties of MeTiS, SCOTCH and PAR-MeTiS. As seen in
the table, sequential MeTiS produces the best cut values and runs much faster than sequential
SCOTCH. However, in terms of memory utilization, SCOTCH is more efficient and can
partition into much larger number of parts. Finally, in terms of execution time, PAR-MeTiS is
the fastest. It runs more than 10 times faster than MeTiS and around 100 times faster than
SCOTCH. It also produces better cuts than SCOTCH. However, when the number of parts to
be partitioned increases, PAR-MeTiS has problems, just like MeTiS.

 MeTiS SCOTCH PAR-MeTiS

Number
of parts

cut time
(sec)

memory
(GB)

cut time (sec) memory
(GB)

cut time (sec)

4096 5.899.387 397,30 20,84 6.365.021 2748,80 14,48 6.550.107 28,27

8192 7.569.441 430,51 21,02 8.134.073 3249,69 14,48 8.338.153 32,26

16384 9.703.853 595,28 21,85 10.332.241 3973,43 14,48 10.610.241 26,28

32768 12.405.125 792,76 24,95 13.242.850 4995,55 14,48 X X

65536 X X X 16.820.681 4990,01 14,48 X X

131072 X X X 21.300.171 4983,38 14,48 X X

Table 4: Properties of partitions obtained by partitioning a SUBMARINE dataset
 with MeTiS, SCOTCH and PAR-MeTiS

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 8

In order to be able to utilize the fast and relatively nice partitioning capability of PAR-MeTiS,
namely partitioning into much larger number of processors, the hierarchical scheme was
utilized. The tests for hierarchical schemes were conducted on the BlueGene/P system at
STFC, due to the limited quota on the Jugene Tier-0 system. In the runs for HIER
(hierarchical scheme), shown in Table 5, PAR-MeTiS is used in the first level to divide the
graph in Number_of_parts/4 and then in the second level, Number_of_parts/4 separate calls
are made to PAR-MeTiS to divide each subgraph into 4.

Number of parts HIER MeTiS SCOTCH PAR-MeTiS PT-SCOTCH

256 13,45 12,37 12,10 12,76 12,51

512 7,64 5,92 7,04 7,23 7,14

1024 4,96 3,87 4,64 4,91 5,01

2048 3,59 3,21 3,26

4096 3,07 2,52 2,66 2,71
Table 5: Runtime per timestep (seconds) of Code_Saturne by using partitions

obtained by partitioning the SMALL dataset with MeTiS, SCOTCH, PAR-MeTiS and PT-SCOTCH

Table 5 shows that the hierarchical scheme has slightly higher runtime per timestep values,
when compared to other schemes, but it has the potential to be able to scale to much larger
number of cores then PAR-MeTiS and PT-SCOTCH. It is therefore interesting to investigate
the hierarchical scheme further.

1.4 Improving the Load Balancing Performance in Vlasiator

Supported by: Ata Turk, Vehbi Gunduz Demirc and Cevdet Aykanat (Bilkent, Turkey)

Collaborators: Sebastian von Alfthan and Ilja Honkonen (Finnish Meteorological Institute)

Vlasiator is a hybrid-Vlasov simulation code developed at the Finnish Meteorological
Institute (FMI). It can be used for modeling the electromagnetic plasma system within the
near Earth space including the ionosphere, magnetosphere, and beyond. A large-scale Vlasov-
hybrid simulation is highly challenging, since realistic simulations need to be executed in
~106 spatial grid cells for ~106 time-steps, indicating peta-scale computing.

The support requested by the Vlasiator team from T7.6 includes the following: Profiling of
the performance of the Vlasiator code up to 104 cores (previous tests were performed for less
than 103 cores due to limited resources) and analysis and improvement of the load-balancing
scheme in Vlasiator. Currently Vlasiator uses the parallel hypergraph partitioning option of
the Zoltan toolkit for domain partitioning.

In order to support Vlasiator on a large number of cores, it was first ported to the PRACE
Tier-0 system Jugene. Also, the ZOLTAN partitioning framework in Vlasiator was modified,
such that it can use the parallel graph partitioning tools ParMeTiS, and PT-SCOTCH for
domain partitioning. Unfortunately, graph partitioning cannot exactly model the
communication overheads associated with the Vlasiator communication model. However, if
the problem domain is regular enough, the error made by graph partitioning methods for
estimating the communication overhead of a partition is more or less the same for all possible
partitions in the solution space. This property enables the graph partitioning schemes to
improve their solutions over regular computational domains successfully, since the error made
while moving through different partitions in the solution space cancel each other. Since the

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 9

subject problem domain exhibits such features, we believe that the usage of graph partitioning
tools for Vlasiator will yield good results as well.

Furthermore, the performance of three parallel partitioning tools were compared, namely
ZOLTAN parallel hypergraph partitioner (PHG), ParMeTiS, and PT-SCOTCH, in terms of
pre-processing (partitioning) overhead, communication overhead of the obtained partitions
and the load-balancing quality up to 4K cores on Jugene. ParMeTiS and PT-SCOTCH were
called from within the ZOLTAN framework, so as not to change the interface of the code.
Currently, the number of processors/cores used in the experiments is not sufficient, but it is
planned to extend the analysis to a larger number of processors, to be able to assess the
scalability of the partitioning tools further. The metrics considered for balancing quality
involves computational load-balance, total communication volume and communication load-
balance.

Figure 2 shows the weak and strong scaling performances of Vlasiator while using Zoltan’s
parallel hypergraph partitioning scheme (PHG), ParMeTiS parallel graph partitioning, and
PT-SCOTCH parallel graph partitioning. In these runs, for weak scaling, a 3D grid size is
arranged such that under perfect load balance, each process would have to process eight
spatial cells, and for strong scaling, the total number of spatial cells is set to 32x32x16. As
seen in the figure, all three tools scale reasonably well, however, PT-SCOTCH performs
slightly better.

Figure 3 shows the time spent on pre-processing while using the domain partitioning tools.
Note that the time spent on partitioning increases dramatically with increasing number of
processors, constituting a significant portion of the overall runtime. It can be observed that all
three tools perform in a similar way. This may seem awkward at first, since graph-partitioning
tools are known to perform much faster than hypergraph-partitioning tools. However, as
mentioned before, this equality in performance is due to the fact that all partitioning tools are
called from within the ZOLTAN framework. This means that for running the GP tools, first
all data structures are converted to ZOLTAN specific data structures, then ZOLTAN converts
them back to data structures supported by the GP tools, partitions, and converts back the
results to ZOLTAN specific data structures. This extra overhead can be removed by
embedding GP support within the Vlasiator code, which would make the gains obtained via
PT-SCOTCH more prominent.

Figure 4 shows the computational imbalance values obtained by running the Vlasiator code
and computing the time spent on each processor. Among the partitioning tools, PT-SCOTCH
seems to perform the best, both for weak and strong scaling experiments, which strengthens
the expectation that PT-SCOTCH will perform better in larger number of experiments.

(a) Weak Scaling (b) Strong Scaling

Figure 2: Run time performance of Vlasiator utilizing different domain partitioning tools.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 10

Figure 3: Pre-processing time overheads of domain partitioning tools

(a) Weak Scaling (b) Strong Scaling

Figure 4: Computational imbalance values

1.5 Fixing Node Strategies for the Effective Regularization of the
Subdomain Stiffness Matrices Arising in Total FETI

Supported by: Tomas Kozubek and Vit Vondrak (VSB-TU, Ostrava), Peter Råback and Juha Ruokolainen (CSC,
Helsinki)

The bottlenecks related to the numerical solution of many engineering problems are very
dependent on the techniques used to solve the systems of linear equations, that result from
their linearizations and finite element discretizations. Large linearized problems can be solved
efficiently using the so-called scalable algorithms, based on multigrid or domain
decomposition methods. In cooperation with the Elmer team two variants of the domain
decomposition method have been implemented in Elmer: (i) FETI-1 (Finite Element Tearing
and Interconnecting) introduced by Farhat and Roux [7] (ii) Total FETI introduced by Dostal,
Horak, and Kucera [8]. In the latter, the Dirichlet boundary conditions are torn off to have all
subdomains floating, which makes the method very flexible. In this project, the focus has
been on the stable and flexible implementation of the FETI pre-processing method.

Due to the rounding errors, effective elimination of the primal variables (e.g. displacements in
linear elasticity) of “floating” subdomains is a bottleneck of the implementation of FETI

(a) Weak Scaling (b) Strong Scaling

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 11

methods, as it can be difficult to recognize the positions of zero pivots when the nonsingular
diagonal block of the subdomain system matrix A, is ill-conditioned. Moreover, even if the
zero pivots are recognized properly, it turns out that the ill-conditioning of the nonsingular
submatrix, defined by the nonzero pivots, can have a devastating effect on the precision of the
solution. Ill-conditioning often appears due to the jumps in coefficients and local mesh
refinement.

In this project the results related to the solution of symmetric positive semidefinite systems,
arising in FETI methods when they are applied on elliptic boundary value problems, have
been reviewed and documented in the corresponding whitepaper. Furthermore, three different
strategies are shown to find fixing nodes (or DOFs – degrees of freedom), which enable an
effective regularization of the corresponding subdomain system matrices:

 Kernel strategy is based on transforming matrix R into echelon form using the Gauss
elimination with full pivoting, where the columns of R span the kernel of A. The last
nonzero entries of echelon form determine zero pivots, i.e., DOFs to be fixed (see [1]).

 Geometrical strategy is based on finding fixing nodes using simple geometrical and
combinatorial arguments: choose M mesh nodes that are mutually as far as possible
and that are not placed near any line.

 Almost uniform distribution strategy is based on finding fixing nodes using the
following algorithm: Decompose subdomain mesh into submeshes (e.g. using
METIS), and then choose centers of each submesh using the so-called Perron vector
(see [2]).

Finally, a regularization technique is introduced based on the suitably of the chosen fixing
nodes (DOFs), using the above strategies and adding the regularization term to the entries of
A, corresponding to these nodes (DOFs), see [3] for more details. This regularization with all
mentioned strategies improves stability and flexibility and eliminates the bottleneck of the
FETI implementation. Particularly, it improves conditioning and enables factorization using
any standard Cholesky type decomposition method for nonsingular matrices. This completely
removes the work with singular matrices.

The regularization with the kernel and geometrical strategies for finding fixing nodes have
been implemented in Elmer and tested on benchmarks. In Figure 5 and Table 6, the
improvement of conditioning of the nonsingular part of A, corresponding to the
complementary nodes (DOFs) are shown. The first configuration (NO STRATEGY) may
occur if the nodes with arrows (denoting fixing DOFs) are the last three nodes in the used
node numbering and the top side is curved. The best conditioning gives an almost uniform
distribution strategy described in [2] but the other two strategies also give a practically
sufficient improvement of the condition number.

Figure 5: Fixing nodes (DOFs) strategies

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 12

NO STRATEGY KERNEL STRATEGY GEOMETRICAL
STRATEGY

ALMOST UNIFORM
DISTRIBUTION

9.4e18 9371 900 518

Table 6: Conditioning of the nonsingular part of A

To show the scalability behaviour of the ELMER FETI implementation, a 3D elastic cube was
decomposed into identical boxes. Then each box was discretized by 8000 bricks. Table 7
shows the numbers of unknowns, cores and iterations, and the computational time achieved
by ELMER on the French TIER-0 system CURIE. For large decompositions, the so-called
coarse problem solution starts to dominate. It is therefore planned to replace the standard
FETI method by its hybrid version, which eliminates this drawback.

UNKNOWNS CORES (SUBDOMAINS) TIME CG ITERATIONS

192000 8 5.57 17

648000 27 10.52 26

3000000 125 9.27 31

8232000 343 10.26 32

24000000 1000 19.88 33

81000000 3375 31.52 35

Table 7: Scalability results

1.6 A Parallel Fast BEM for the Helmholtz Equation as an Extension of
SPECFEM3D

Supported by: Dalibor Lukas and Jan Zapletal (VSB-TU Ostrava)

In this project, the post-processing step of a parallel acoustic simulation package has been
improved, using the boundary element method (BEM). The package is built on top of
SPECFEM3D_GLOBE, which is a parallel software for doing seismic simulations, such as
earthquake simulations of the globe. The acoustical simulation relies on a Fourier transform
of the seismic elastodynamic data, resulting from SPECFEM3D_GLOBE, which are then
post-processed by a sequence of solutions to the Helmholtz equations, in the exterior of the
globe. For the acoustic simulations, BEM has been employed, which reduces computation to
the sphere; however, its naive implementation suffers from quadratic time and memory
complexity with respect to the number of unknowns. To overcome the latter limitation, the
method was accelerated by using hierarchical matrices and adaptive cross approximation
techniques, which is referred to as Fast BEM. First, a hierarchical clustering of the globe
surface triangulation is performed. The arising cluster pairs decompose the fully populated
BEM matrices into a hierarchy of blocks, which are classified as far-field or near-field. While
the near-field blocks are kept as full matrices, the far-field blocks are approximated by low-
rank matrices. This reduces the quadratic complexity of the serial code to almost linear
complexity, i.e. O(n*log(n)), where n denotes the number of triangles. Furthermore, a parallel
implementation was done, so that the blocks are assigned to concurrent MPI processes with an
optimal load balance. The processes share the triangulation data. The parallel code reduces the
computational complexity to O(n*log(n)/N), where N denotes the number of processes. This
is a novel implementation of BEM, which overcomes computational times of traditional
volume discretization methods, e.g. finite elements (FEM), by an order of magnitude.

To demonstrate the efficiency of the method, a table with numerical results is given below. A
Dirichlet boundary value problem for the Helmholtz equation was considered with a known

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 13

analytical solution, in order to document the linear decay of the approximation error. The
rows correspond to the levels of discretization. In the first column, numbers of triangles are
given. In the second column, the linear error decay in terms of the L2-norm of the computed
Neumann data is shown. The third column shows the logarithmic compression rate of the full
matrix. Finally, columns 4-8 document the overall serial (top-to-bottom), as well as parallel
(left-to-right) scalability of the implementation. A comparable, i.e. producing similar error,
FEM discretization of the largest problem would lead to 108 volume unknowns.

no. of
triangles

approximation
error

matrix
compression

time [s]
2 cores

time [s]
4 cores

time [s]
8 cores

time [s]
16
cores

time [s]
32 cores

2,560 9.9e-3 100% 142 72 38 20 9
10,240 2.8e-3 65% 1,388 673 335 168 88
40,960 9.0e-4 26% 3,600 1,823 929
163,840 3.3e-4 8% 19,892

Table 8: Efficiency of BEM

1.7 Parallel Uniform Mesh Subdivision in Alya

Supported by: Guillaume Houzeaux, Raul de la Cruz and Mariano Vázquez (BSC, Spain)

The objective of this project has been to implement parallel uniform Mesh Multiplication
(MM) in Alya, which is a Computational Mechanics (CM) HPC code, and to apply it to an
incompressible Navier-Stokes solver. This has enabled Alya to run very big simulations,
otherwise not possible. The basic concept of the MM implemented in Alya is the following:

 An initial mesh (referred to as the 0-level mesh) is obtained from a standard mesh
generator. This mesh is generated with a a-priori knowledge of the problem: for
example with boundary layer elements near the wall (for CFD). For typical
engineering applications, this mesh has between 10M to 100M of elements.

 Since Alya is based on a master-slave strategy the master reads the 0-level mesh,
partitions it, and sends the subdomain meshes to the slaves. After this task, the original
mesh no longer exists, neither any array defined on it. Each slave automatically
subdivides its mesh and reconstructs its communication arrays on the boundaries with
its neighbouring subdomains.

Figure 6 below shows speedups obtained for the MM algorithm. The CPU times required to
perform the MM makes it a very efficient tool for obtaining a fine mesh on the fly, without
having to store it on disk. For example, only 1.4s is required to multiply a 2.9M mesh three
times, so as to obtain a 1.5B mesh, on 16384 CPU’s.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 14

Figure 6: Time and speedup of the implemented Alya mesh multiplication

Figure 7 below shows the resulting (almost linear) speedup obtained for solving the Navier-
Stokes equations on Blue Gene.

Figure 7: Speedup of the Alya Navier-Stokes equations

Finally, the implemented Alya MM algorithm has been tested to carry out a mesh
convergence for the simulation of air flow in large nasal airways. Figure 8 below shows
comparisons of results obtained on meshes, together with the coarse mesh, using one level of
MM.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 15

Figure 8: Evolution of velocity modules at points 8 and 9 located in the computational domain
using 1.1M, 4.4M, 14.2M meshes compared to 1.1M using 1 Mesh Multiplication level: 1.1M+MM(1)

1.8 Implementation of Fragment Orbital Method (FMO) for Highly
Parallelized Quantum Chemical Calculations with CP2K

Supported by: Peicho Petkov, Petko Petkov, Georgi Vayssilov and Stoyan Markov (NCSA, Bulgaria)

The realistic simulation of various biochemical systems requires application of a reliable first-
principle quantum chemical method for extra-large systems (of 106 to 107 atoms), for long
simulation times, from nano- to microsecond. Despite the high performance that parallel
computing systems make available, their use for such simulations is not trivial, mainly for two
reasons:

 Even the most appropriate first-principle methods based on density functional theory
(DFT) scale with N3 (N is the number of electrons in the system).Therefore calculation
of the electronic structure of bio-molecules is not possible.

 The possibilities for efficient parallelization of a quantum chemical system, if it is
considered as one system, are limited due to mutual interactions between the electron
density in all parts of the system (including Coulomb and exchange-correlation
interactions).

An approach for division of the large system into many fragments (monomers), to be
calculated simultaneously on different nodes, has been implemented in CP2K. It provides
essentially linear scaling of the computational power, with the size of the system and efficient
parallelization of the computational work is based on division of the whole system into
fragments (monomers). The change in the scaling is achieved not by modification of the
quantum chemical calculations, but from this division of the system. In this case the
computational time is proportional to the number of monomers nf and the time necessary for

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 16

calculation of the individual monomers, which still scales as Ne
3 for DFT (Ne is the number of

electrons in the monomer):

t
mono

 ~ n
f
 x N

e

3
 or t

mono
 ~ n

f
 x NLogN (in the case of CP2K)

Thus, if the size of the studied system is extended, not by increasing the size of the individual
fragments, but by adding new fragments, then the computational time will increase linearly
with nf, i.e. with the size of the system. Moreover, if the next fragments are calculated at
additional nodes, than the real time of the calculation does not increase. Such perfect
behaviour can be accomplished, however, only for non-interacting fragments, which is not of
particular interest to chemistry. Different strategies to take into account the interactions
between fragments have been developed. They are based on separation of the calculation for
the whole system into three components:

 Global Coulomb interactions of each fragment with the rest of the system, which are
less time consuming than the quantum part of the calculations;

 First principles calculation for the quantum (exchange-correlation) interactions within
the isolated fragment (in the field of the rest of the system);

 Estimation of the quantum interaction of the fragment with other (neighbouring)
fragments.

Since the Coulomb interactions are long-range, it is calculated completely in all methods. The
main difference between different approaches comes from the division of the system into
fragments and accounting of the quantum interactions between them.

As part of this work so far, the following has been developed:

 A scheme for the implementation of the above approach was created, including a
workflow diagram.

 In order to do calculations in the framework of the FMO approach, a concept for
division of the whole system into fragments was developed (for proteins and nucleic
acids). The system is divided into fragments, as it is shown below. The dangling bonds
are saturated by H atoms placed on the C-C bond.

 A pre-processing module for fragment creation was developed

 A pre-processing module for automatic generation of an input file for CP2K for each
fragment was developed.

 A pre-processing module for calculation of the electrostatic field of the whole system
into the space of each fragment was developed.

 A new module was added in the CP2K code for loading the pre-generated electrostatic
potential; this potential will be used as an external field in the quantum chemical
calculation for the fragment. DFT calculations with a predefined external electrostatic
field was originally supported in CP2K, however only by supplying a function to
calculate the external field. If the field map can not be described by a simple function,
which is the case with FMO protein calculations, one needs to be able to load the
electrostatic field from an external source. This is now possible due to this project.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 17

 A post-processing module was developed, which can calculate the energy and electron
density of the whole system from separately calculated fragments.

As a result of this project, pre-processing and post-processing modules which allow
calculation of the electronic structure of bio-molecules, were developed. Although the
modules were developed for CP2K, they can be easily modified, to support other software
which calculate the electronic structure of molecules.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 18

2 Parallel and Hierarchical I/O

An I/O strategy suitable at Terascale can easily swamp Petascale I/O subsystems. Due to the
large number of processors and threads in Petascale systems, applications require massive use
of I/O during simulations and therefore application I/O strategies have to be adapted
accordingly. Furthermore, the lack of global file systems with enough performance for a
Petascale machine degrades scalability, thus, hierarchical mechanisms are also often
necessary to achieve good scalability. This section summarizes the work done on studying
and optimizing the I/O strategies of T7.1 and T7.2 applications and documenting the I/O
subsystems of the Jugene and Curie PRACE Tier-0 systems.

2.1 Data I/O Optimization in GROMACS Using the Global Arrays Toolkit

Supported by: Valentin Pavlov and Peicho Petkov (NCSA, Bulgaria)

GROMACS uses a mechanism for data I/O that does not scale well on IBM Blue Gene/P (and
other machines with distributed memory architectures). All input data is read by the master
MPI node and then scattered to the computing nodes during the domain decomposition step.
Later it is gathered from the computing nodes in order to write it down to the output files.
This method is fine for clusters and shared memory architectures like CRAY, where the
amount of RAM on the master node can be extended, but introduces a bottleneck for
distributed memory systems with hard memory limits like the IBM Blue Gene/P. The effect is
that even though a Tier-0 Blue Gene/P machine has enough overall computing power and
RAM, it cannot process large systems because the master node simply does not have enough
RAM to hold all necessary input data. Thus, the support requested in this project was to
enable GROMACS to handle large systems (> 5,000,000 atoms) on IBM Blue Gene/P, by
introducing changes in its data I/O handling routines.

The objective of the project was to research the means and provide a solution to the memory
bottleneck problem in GROMACS in IBM Blue Gene/P and for distributed memory
architectures in general.

The approach taken was to define and implement a Virtual Array structure, which from the
point of view of the application is just a regular array, but its physical storage is distributed
across all compute nodes. The Virtual Array structure content is accessed only through a well-
defined interface that hides the details of its implementation. This allows the implementation
to change. As part of this project, an implementation based on the Global Arrays Toolkit
(http://www.emsl.pnl.gov/docs/global/) from PNNL was created. The following
improvements and optimizations had to be done in GROMACS in order to achieve the
objective of the project:

 Change the build system to allow the user to choose whether GROMACS is compiled
with virtual arrays or not, and if yes, which implementation to use.

 Change the molecular dynamics simulator set of command line arguments to include a
new argument, which instructs the runner to use virtual arrays where applicable.

 Specify the virtual arrays interface in the form of structure type definition and function
signatures.

 Implement the virtual arrays interface using Global Arrays Toolkit.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 19

 Replace all references to modified structures (atom coordinates and velocities for
now), when used in a global context with corresponding calls to the virtual arrays
interface.

The correctness of the modified package was verified by running many simulations of
different systems, with the original and with the modified package. In all cases, when running
experiments on the same system under same conditions, the original and modified packages
produced identical trajectories.

The scalability of the modified package was verified by running a series of simulations on
exponentially increasing partitions, by both the original package (in DUAL mode) and the
modified package (in VN mode). Table 9 shows the raw results. A brief analysis shows that
the introduction of GA lead to decreased execution scalability due to the introduction of
additional communications. This is expected and it might be argued that the decreased
execution scalability is the price to be paid for the increased data scalability. Careful analysis
however, shows that the delay introduced with GA, grows linearly with exponential growth of
of CPUs, which means that for larger and longer simulations, this might not be a problem.

 Original package, DUAL mode Modified package, VN mode

Nodes # CPUs Time, s GFLOP/s # CPUs Time, s GFLOP/s

128 256 18020.930 10.786 512 10289.501 18.892
256 512 9389.011 20.706 1024 5986.217 32.475
512 1024 5003.518 38.856 2048 3817.619 50.931

1024 2048 2847.314 68.288 4096 2733.136 71.142
Table 9: Performance data of a system with 5,504,000 atoms.

Box 55x34x27 nm; dt=5fs, 1000 steps

2.2 The JUGENE I/O Subsystem, its Architecture, Guidelines and Tools for
Using it Efficiently

Contributor: Huub Stoffers (SARA, Netherlands)

The I/O subsystems of high performance computing installations tend to be very system
specific. The PRACE Tier-0 systems are no exception in this respect. Many applications that
need handling of peta-scale data cannot afford to use the I/O subsystem inefficiently and
hence need to be acquainted with its characteristics. The first part of this paper dissects the
I/O subsystem of JUGENE as a layered system and describes the components, the
interconnections, and the bandwidths of these. Bottlenecks, or oversubscribed channels on
which contention for bandwidth can occur, in the paths from storage to compute environment
are pointed out. While the project was underway, a partial overlap of goals, to provide users
with this information, with task PRACE-1IP 7.3 – which produces “Best Practice Guides” -
was noted. Substantial parts of a preliminary version of this document were contributed to the
PRACE best practice guide for JUGENE.

The second section explores what organization of I/O among multiple tasks works best, or is
at least fairly efficient on JUGENE. Rather than adopting any particular library for parallel
I/O, options open to any program that uses a combination of standard I/O and MPI
communication – rather than parallel MPI I/O - are explored. Simply letting each task
concurrently do its own standard I/O, using its own task-specific file(s), is adopted as a first
baseline model. Routing the I/O of all tasks to a single task is taken as a second baseline

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 20

model. Both models are known not to work well at all for JUGENE, but are nonetheless
realistic points of departure as many existing codes really use one of these two ways of I/O
organization. Hierarchical variants of I/O organization, in which a limited number of tasks do
I/O on behalf of others, are explored. They are made quantitatively comparable amongst each
other, and comparable with the base line models, by implementing them in small I/O-only test
programs that are all given essentially the same job to do: viz. to deliver a fixed I/O volume of
task specific data, produced per task, to the file system. The programs time aspects of their
own I/O organization: opening or closing of file, writing data, and also gathering data from
other tasks by means of MPI communication collectives.

The tests have been run in the JUGENE production environment. Results are compared and
explained – sometimes with reference to the first part of the paper. The test program for the
base line model that uses a file for each task is shown to achieve an average per task
throughput in the 20 – 30 KB/s range, for up to 8192 cores. It drops far below that, when
scaling to 16384 cores or more. Splitting the tasks into a number of equally sized groups, in
which one member does I/O on behalf of others, clearly improves performance - but only
moderately, when group membership is essentially determined arbitrarily. Average per task
throughput diminishes with higher number of cores, but at a much slower rate. For 16384
cores it ranges between 40 and 85 KB/s, depending on the size for groups.

Per task throughput can be substantially improved by grouping non-arbitrarily, i.e. by bringing
topological information about the machine into the program, about which tasks are served by
the same I/O node, and use this for grouping tasks. BlueGene specific MPI extensions have
been used to create a division into groups that not only is balanced in the I/O volume they
produce, but also in the underlying resources to handle the load. The test program that uses
this information achieves average per task throughput in the 200 – 230 KB/s range, even
when scaled up to 65536 tasks.

Source code listings of tests programs that implement a particular improvement are included
as appendices of the paper as programming examples.

2.3 Evaluating Application I/O Optimization by I/O Forwarding Layers

Supported by: Jan Christian Meyer and Jørn Amundsen (NTNU, Norway)

Collaborators: Xavier Saez (BSC, Spain)

This project has assessed the I/O Forwarding and Scalability Layer (IOFSL,
http://www.iofsl.org), which provides a software layer between user applications and the file
system. It intercepts MPI-IO and POSIX I/O calls and forwards them to a designated I/O
server, offloading the native file system. The objective of the project has been to evaluate it
for PRACE application use, as an alternative to the cost of rewriting application I/O routines.

IOFSL can be leveraged through preparing a customized MPICH-2 installation, which adds
an additional virtual filesystem ‘zoidfs’ into the ROMIO framework. To intercept POSIX I/O
calls, a FUSE client program is provided, allowing a zoidfs file system to be mounted at a
user-specified directory. Both mechanisms are transparent to the application code.

The EUTERPE plasma physics code is part of the PRACE benchmark suite, and was selected
as a test case. Its I/O is entirely written in Fortran, making system calls only as reflected by
the compiler’s implementation of Fortran I/O intrinsics. It admits hybrid thread/process
parallelism, through the PetSc library and threaded BLAS/LAPACK.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 21

The tested version of IOFSL imposes structural criteria on the application code, particularly
restricting concurrent access through the POSIX subsystem, and compiler compatibility.

The interactions of EUTERPE and IOFSL were examined for cases ranging from 128 through
4096 threads, executing on an SGI Altix ICE 8200 system, featuring a Lustre filesystem, and
2048 hyperthreaded CPU cores in 8-way SMP nodes connected by InfiniBand. The topology
of this interconnect revealed that hybrid parallelism was required, as the client which
intercepts POSIX system calls failed under simultaneous access by multiple processes.

Hybrid runs of EUTERPE use a PetSc library built with Intel math kernel libraries, and
expects the Intel Fortran compiler. The POSIX system calls, which translate I/O intrinsics,
caused the IOFSL client to fail. Small test cases of Fortran I/O were proven to work with the
gfortran compiler from the toolchain, which built the I/O forwarding server, but using this to
build EUTERPE would require additional porting work.

As the framework did not admit the application, EUTERPE I/O characteristics were emulated
using the IOR filesystem benchmark (http://sourceforge.net/projects/ior-sio/), finding I/O load
induced by a given time step from static analysis of the source code. Coupling I/O
performance figures from IOR with computation time estimates from tracing EUTERPE on
the Lustre filesystem, proved consistent with the overall traces of EUTERPE runs, suggesting
that performance estimates with IOR and IOFSL can reflect its characteristics. The estimated
accuracy was found to be within the variability of compute time traces.

The dominant I/O requirement of EUTERPE is a periodic checkpoint, with a frequency
parameter in the input data. In a strong scaling scenario with a user-provided test case, the
cost reduction obtained by the shrinking size of per-process checkpoint files is smaller than
the reduction in per-process computational work, accounting for 15% of the cost of its
computational step with 8 cpus/128 threads, growing to 44% in the 256 cpu/4096 thread case
(and showing signs of stagnation, as evident in Table 10).

cpu#/thread# 8/128 16/256 32/512 64/1024 128/2048 256/4096

I/O cost 3.97s 2.32s 2.18s 2.01s 1.99s 2.04s

Computation 21.28s 11.31s 6.22s 3.77s 2.65s 2.59s

IO / total 15% 17% 26% 34% 42% 44%

Table 10: I/O cost relative to computation step cost

Table 10 implies that the overhead of creating files ultimately dominates the bandwidth
requirement of writing them, suggesting that further scaling may benefit from offloading
parallel file system, which typically suffer some performance degradation facing growing
numbers of smaller files.

The bandwidth penalty of redirecting the I/O traffic, however, overshadows any potential
benefit on the test system. IOR benchmarks with per-process file sizes ranging from 1 to
64MB consistently produce mean write bandwidths in excess of 4GB/s running over Lustre,
while figures with IOFSL range from 600 though 900 MB/s using MPI-IO, and from 12 to 42
MB/s with the POSIX client, making it intolerable for application use.

The conclusion of this study is that while the file creation bottleneck which can be
ameliorated by user-space I/O forwarding is observable, use of the tested forwarding layer
comes at prohibitive cost. This conclusion is founded on the cost balance using nodes with
small counts of powerful processors, and may not be appropriate for massively parallel,
simplified core architectures.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 22

2.4 I/O-profiling with Darshan

Supported by: Bjørn Lindi and Henrik Nagel (NTNU, Norway)

Collaborators: Jörg Herzer (HLRS, Gemany), Orlando Rivera (LRZ, Germany) and Peter Nash (ICHEC,
Ireland)

Darshan (Sanskrit for “sight” or “vision”) is a tool for I/O-profiling without imposing too
much overhead. It is in essence a library that either is dynamically or statically linked to the
application that gets profiled. The library is implemented with Peta- and Exascale applications
in mind and works on different platforms. Darshan has been used on both Jugene and Curie,
to profile OpenFOAM (Open Source Field Operation and Manipulation), in order to get a
better understanding of its I/O bottlenecks.

OpenFOAM is a C++-library for building applications in continuum mechanics. OpenFOAM
has a huge interest in the different parts of the CFD-community. Accordingly it has been
selected as the preferred community code by T7.2. The use cases of OpenFOAM showed poor
scalability, as the overall compute time increases with increasing number of processes. To
understand how I/O played a part in the execution of the use cases, five cases with 64 to 1024
processes were executed with Darshan enabled, the results are shown in Table 11 below:

Number of Processes 64 128 256 512 1024

Compute time [s] 686 801 890 1161 2248
Cumuluate metadata [s] 64 202 274 389 892
The share of Meta data handling of the
overall compute time

9.3% 25% 31% 34% 39%

Table 11: Darshan profile of OpenFoam

As can be seen, when increasing the number of processes from 64 to 128, the increase in time
spent on metadata handling is larger than the overall increase in compute time. When further
increasing the number of cores, metadata handling takes a larger and larger share of the
overall compute time. The increase in time spent on metadata handling is partly due to an
increasing volume of small files. The number of files created and read doubles with each
doubling of number of processes. The average file size is at the same time approximately
halved, as shown in the Table 12 below:

Number of
processes

64 128 256 512 1024

Number of
files created

512 1024 2048 4096 8192

Number of
files read

1089 2177 4353 9729 17409

Average file
size

597K 317 K 163K 84K 47K

Number of
stat() calls

500 000 1000 000 2000 000 4000 000 8500 000

Table 12: Darshan meta data profiling of OpenFoam

OpenFOAMs I/O characteristics are contradictory to features needed to achieve good I/O-
performance during scaling. Good I/O-performance is achieved by using the services a global
parallel file systems provides, which are reading and writing parallel streams of data in large
chunks. The volume of metadata handling must be low or comparable to the volume in data

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 23

provided to the computing process. Typical chunk or block sizes are in the range of 1MB –
4MB. OpenFOAM on the other hand, creates files where the average size is 10-20% of the
block size of the file system (in the 1024 processes case). Furthermore, each process creates
eight files. Accordingly, the number of files is proportional to the number of processes,
leading to substantial metadata traffic.

Further increased metadata traffic, is caused by the large volume of stat()-calls. Inspection of
the code shows that OpenFOAM uses files as a way of communication between the processes.
MPI is used for process creation, but data is scattered and gathered through updates of files
created by each process. OpenFOAM uses an instance of an object named FileMonitor to
issue stat()-calls, which check the timestamp of the different files during the path of
simulation. A newer timestamp indicates that the parameter/result is updated. Increasing the
number of processes effectively kills scaling since this increases the number of files to stat().
Accordingly, metadata handling is seen as the bottleneck.

In conclusion the profiling of OpenFOAM with Darshan clearly indicates an application with
scaling properties that are constrained by poor I/O-design. Currently, OpenFOAM uses a
IOStream object to read and write updated parameters. IOstream is used throughout the
application code of more than a million lines of C++-code. It is not easy to introduce a new
scheme of communication and I/O under such conditions, although it is worth investigating
whether a I/O-library like parallel-NetCDF can be used by OpenFOAM. By encapsulating
parallel-NetCDF and overloading the IOStream operator, another way of communication
could be implemented.

Finally, it is worth mentioning that a single OpenFOAM user may easily deplete the metadata
service of a global parallel file system. There are examples where the number of files created
in addition to being proportional to the number of cores, also are proportional to the number
of time steps, actually creating a subdirectory for every time step. Under such conditions a
user may create a billion files during a simulation of 100 000 time steps with 1000 processes
creating 10 files per time step.

2.5 Parallel I/O Performance and Scalability Study of the PRACE Curie Tier-
0 Supercomputer

Contributors: Philippe Wautelet (IDRIS-CNRS, France) and Pierre Kestener (CEA Saclay, France)

Data access on large-scale supercomputers tends to be a very big challenge. Understanding
and tuning parallel I/O is necessary to leverage aggregate communication and I/O bandwidth
of client machines. Finding usable, efficient and portable programming interfaces and
portable file formats are also of crucial importance. Ideally, the use of high-level I/O libraries
(HDF5, PnetCDF…) or I/O middleware (MPI-IO) should reduce the need for optimizations in
application codes. However, to obtain good I/O performance, it is absolutely essential to
investigate how to set MPI-IO hints in an application code in order to make an appropriate use
of the underlying I/O software stack (MPI-IO, parallel file system) on top of the actual
hardware. More precisely, MPI-IO hints are parameters that help tune the MPI-IO middleware
for facilitating, for example, concurrent access by a group of processes (collective I/O,
atomicity rules …) and efficiently mapping high-level operations into a dedicated parallel file
system flavour (GPFS, Lustre, …).

In this whitepaper the results of two kinds of parallel IO performance measurements on the
CURIE supercomputer is reported. In a first series of tests, the open source IOR benchmark is
used to make a comparative study of the parallel reading and writing performances on the

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 24

CURIE Lustre filesystem, using different IO paradigms (POSIX, MPI-IO, HDF5 and
Parallel-NetCDF). The impact of the parallel communication mode (collective or
independent) and of the MPI-IO hints on the performance is also studied. Using the IOR
micro-benchmark, it has been possible to study different combinations of MPI-IO hint values
regarding data-sieving techniques and collective buffering. It was discovered that the best
performance in aggregate reading bandwidth, with collective IO enabled, is obtained for the
following set of parameters: romio_cb_read/write = disable and romio_ds_read/write =
disable. This results in Parallel-NetCDF achieving the best performance by a factor of almost
3, compared to MPI-IO. However, the best performance in aggregate writing bandwidth with
collective IO enabled is obtained when all the above mentioned hints are set to value disable,
and in that case Parallel-NetCDF provides a 20% increased bandwidth compared to MPI-IO,
whether in collective mode or not.

Although micro-benchmarks such as IOR are useful, they can give results that are far from
what can be seen in a real application. Therefore, in a second series of tests, a well known
scientific code from the HPC astrophysics community was used, namely RAMSES, which is
a grid-based hydrodynamics solver, with adaptive mesh refinement (AMR). IDRIS added
support for the 3 following parallel IO approaches: MPI-IO, HDF5 and Parallel-netCDF.
They have been compared to the traditional one file per MPI process approach. In a first step,
the MPI-IO hints were selected (they impact also the HDF5 and Parallel-netCDF approaches).
For this application, the default values were the most appropriate ones for the writing phase.
For reading, disabling the collective buffering optimisations was necessary to get the best
performance. After that, scalability tests were made with 2 different problem sizes. The
POSIX approach is still the most efficient one despite its drawbacks. However, with a high
number of cores, the MPI-IO paradigm begins to compete with the POSIX one. The HDF5
and Parallel-netCDF approaches give reasonable results but in some cases can be problematic.

2.6 Implementing a XDMF/HDF5 Parallel File System in Alya

Supported by: Raúl de la Cruz and Hadrien Calmet (BSC, Spain)

Collaborators: Guillaume Houzeaux (BSC, Spain)

Alya is a Computational Mechanics (CM) code, which solves Partial Differential Equations
(PDE’s) in non-structured meshes, using Finite Element (FE) methods. Being a large-scale
scientific code, Alya demands substantial I/O processing, which can consume considerable
time and can therefore potentially reduce speed-up at petascale.

The current Alya I/O model is based on a master-slave approach, which limits scaling and I/O
parallelization. However, efficient parallel I/O can be achieved using freely available
middleware libraries, which provide parallel access to storage. In order to avoid an I/O
bottleneck and allow petascaling, support was requested from T7.6 with implementing
parallel I/O in Alya.

To achieve an open-standard format in Alya, the XDMF approach (eXtensible Data Model
Format) has been used as a metadata container (for light data), along with HDF5 (for heavy
data). To overcome the I/O barrier at petascale, XDMF & HDF5 have been introduced in
Alya and compared to the original master-slave strategy.

Two interesting strategies to arrange data in XDMF format for CFD codes have been
proposed. Ordered from lower to higher complexity of implementation, the proposals are: one
dataset space per unknown variable and multiple dataset spaces per problem domain. In

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 25

addition, depending on the simplicity of the implementation, the former strategy supports two
ways of writing data, namely repeating and not repeating unknown variables, at boundary
nodes. The advantages and disadvantages of each strategy are discussed in the whitepaper.

Finally, the parallel I/O implementation of Alya is also described and assessed on two Tier-0
supercomputers, namely Curie (Intel Nehalem-EX cluster) and Jugene (BG/P cluster). The
I/O gain for the post-processing task is quite significant when compared with the original
strategy; achieving speedups of 1.57 and 1.67 on Curie and Jugene respectively (see Table
13). It is also shown that XDMF and HDF5 formats are well suited to speedup I/O tasks in
CFD codes in general.

Table 13: Comparison of post-processing times for the human respiratory model in a single snapshot

using master-centric versus XDMF/HDF5 model. Note that only the best case is shown for each architecture.

2.7 Optimizing the I/O of Pluto

Supported by: Giusy Muscianisi and Marzia Rivi (CINECA, Italy)

The goal of this project was to optimize the I/O performance of the PLUTO code on the
JUGENE cluster, with the help of T7.6, in order to eliminate its I/O bottlenecks. PLUTO is a
modular Godunov-type code intended mainly for astrophysical applications and high Mach
number flows in multiple spatial dimensions. The code embeds different hydrodynamic
modules and multiple algorithms to solve the equations describing Newtonian relativistic
Magneto Hydro Dynamics (MHD), or relativistic MHD fluids in Cartesian or curvilinear
coordinates. Computations may be carried on either static or adaptive (structured) grids, the
latter functionality being provided through the Chombo adaptive mesh refinement library.

The main output formats of PLUTO are raw binary, VTK for the static grid version and HDF5
for the adaptive grid. The main output bottleneck was related to the raw binary part, handled
by ArrayLib, which is no longer maintained and limited to a subset of MPI functionalities,
which do not allow the proper exploitation of available features of current HPC platforms.
Initially, the HDF5 format was extended to the static grid, after which more effective solutions
for the binary format have been investigated, exploiting the features provided by using non-
blocking collective MPI2 I/O functions.

HDF5 provides two possible parallel file drivers: MPI-IO and MPI-POSIX. While the first
one can be set either 'independent' (i.e. each processor can access the file independently and
any conflicting accesses are handled by the underlying parallel file system) or 'collective' (i.e.
collective buffering is enabled), the MPI-POSIX can perform only independent access to the
file. After testing and tuning these file drivers, the MPI-IO 'collective' was shown to be the

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 26

most efficient. With these settings, a benchmark comparison between the original binary I/O
and the HDF5 format has been performed on the Jugene Tier-0 system.

The test case used for the benchmarking is a numerical simulation of hypersonic
hydrodynamical jets in a 3D Cartesian domain with size 14x70x14, in units of the jet radius.
At the maximum resolution of 20 zones/beam radius, the solution of the Euler equations
requires 280 x 1400 x 280 grid cells. Since five variables (including density, three
components of velocity and pressure) are solved for and written to disk, each output file is
approximately 4 Gb in size for double precision datasets and 2 Gb for single precision. Single
precision data is the main output format and, to closely track the evolution, about 50-60
output files are produced during the whole computation. Figure 9 shows that HDF5 I/O
performs worse than the binary one. This is most likely due to the overhead related to the
HDF5 structure and the corresponding information provided. The compatibility between the
internal parameters of this format and the configuration of the underlying file system (GPFS)
must also be considered. Finally, certain tests and performance analysis of the optimized
binary version have been performed and documented.

Figure 9: Comparison of HDF5 I/O performance

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 27

3 Post-Processing and Visualisation

Due to the large size of petascale simulations, extensive amounts of data are produced as final
output. Post-processing and visualizing petascale output data brings with it the same
challenges as for pre-processing, namely that the output data produced can be too big to fit in
a single machine. Therefore one needs to extract and reduce the relevant information in
parallel. This is especially true for present visualization tools, where petascale data size
problems cannot be visualized without some data filtering, which reduces the data volume
managed by the tool. This section summarizes the work that has been done on introducing
techniques such as parallel remote visualization and in-situ simulation in user codes from
T7.1 and T7.2.

3.1 Parallel Visualization of Petascale Simulation Results from GROMACS,
NAMD and CP2K on IBM Blue Gene/P using Visit Visualization Toolkit

Supported by: Valentin Pavlov, Anton Tomov, Vesselin Slavchev, Nina Ilieva and Dimitar Dimitrov (NCSA,
Bulgaria)

Post-processing of petascale simulation results – and in particular visualization – is in itself a
hard task that requires a lot of resources. In petascale simulations, life science software
packages like GROMACS and NAMD deal with millions of atoms whose trajectory footprint
may require hundreds of MB per frame. Computational chemistry packages like CP2K will
produce similarly sized output for even smaller systems. Just the movement of this data from
the computing center to the scientists’ workstation can become prohibiting. Moreover,
workstation hardware may not be powerful enough to render the millions of atoms and bonds
produced in a single frame. Below is an outline of the support requested in this project,
namely a post-processing code that satisfies the following:

 Provides parallel visualization post-processing that supports at least GROMACS,
NAMD and CP2K output formats;

 Uses a distributed architecture that allows the post-processing engine to run on the
remote computing center, using its resources to process/render the scenes, while the
actual images are viewed on a local workstation close to the scientist;

The objective of the project was to research the means and provide methodology and tools for
users of the above mentioned packages to be able to visualize petascale simulation results,
using the computing power of Tier-0 and Tier-1 machines, and more specifically IBM Blue
Gene/P, without the need to physically transfer the whole output to their workstations.

The VisIt open source package (http://visit.llnl.gov) from LLNL supports to some extent the
above requirements. Still, some improvements and optimizations had to be done in order to
achieve the objectives of the project:

 Port the parallel processing engine to IBM Blue Gene/P. The main problem here is
that this architecture can only do off-screen rendering and VisIt does not support
this a priori. The second difficulty is that VisIt is a very complex, loosely coupled,
dynamically loaded and componentized software, parts of which should run on the
front-end node of the BG/P, while other parts must run on the compute nodes. This
component mix introduces additional complexity and it is very time consuming to
produce the correct combination.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 28

 Implement input plug-ins that support the GROMACS, CP2K and NAMD output
formats, when needed.

 Provide a methodology for the users of these packages that includes instructions on
how to structure their output and best practices for how to use the package.

 Provide a methodology and reference binary package for other centers to integrate
the same package in their software stack.

The objectives of the project have been achieved. A Blue Gene/P port of the parallel
processing engine has been made available; it supports the required input formats.
Methodologies for users and porters are also produced, along with a reference binary package.

3.2 In-Situ Visualization: State-of-the-Art and Some Use Cases

Supported by: Giusy Muscianisi, Luigi Calori and Marzia Rivi (CINECA, Italy), Vladimir Slavnic (IPB,
Serbia)

In this project, tools implementing in-situ visualization have been investigated and their use in
HPC applications studied. This has resulted in a whitepaper detailing the available in-situ
tools and how to integrate such tools in user codes.

The term in-situ visualization means running a solver in tandem with visualization. By
coupling these together, one can use the high performance computing for post-processing,
while circumventing bottlenecks associated with storing and retrieving data from disk storage.
Moreover, it allows monitoring simulations in-situ, performing not only visualization, but also
analysis of the incoming data as it is generated, so that the simulation may be stopped or
modified, thereby conserving CPU resources.

As a starting point, CINECA organized a workshop on “Visualization of Large Dataset” on
the 14th and 15th June 2011 (see http://www.cineca.it/page/workshop-visualization-large-
scientific-data), with the objective of bringing together researchers, developers and
computational scientists for cross-training and to discuss recent developments and future
advancements in remote and in-situ visualization. From this meeting it was concluded that
there are two complementary approaches:

1. Co-processing / in-situ (Computation and Visualization on the same nodes). Parallel
simulations are instrumented to communicate to an outside visualization tool; images
are generated in parallel by the visualization code, linked to the simulation. General-
purpose visualization tools supporting this approach are VisIt (libsim) and ParaView
(CoProcessing).

2. Parallel Data transfer to a remote Distributed Shared Memory (Computation and
Post-processing physically separated). It is aimed mostly at computational steering. It
minimizes modification of existing simulation codes but requires data written using
HDF5 format and usage of a ParaView plug-in (ICARUS) developed by CSCS. Data
sent to HDF5 is automatically redirected to the CSCS driver, H5FDdsm, which
interfaces ParaView.

From the workshop it was decided to investigate two specific visualization tools, namely
ParaView (by CINECA) and VisIt (by IPB), which has resulted in the following:

 A survey of the visualization tools

 Tool deployment on the CINECA Linux cluster PLX

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 29

 Testing of the graphical features

 Analysis and testing of the performance with the client-server modality

 Benchmarking of features enabling MPI with and without the usage of GPUs

The above have been reported in a whitepaper, however, results are also available here:
https://hpc-forge.cineca.it/trac/viz-simula/

Regarding the in-situ visualization, CINECA has tested the ICARUS approach by replicating
an example prepared by CSCS with the Gadget2 code. Then, as use case, this technique has
been applied to the Pluto code, in order to write data when required and to modify boundary
conditions on the fly during simulation. IPB, in turn, has tested the libsim library by first
instrumenting relatively simple simulations, after which, this library was used to instrument
the BrainCore code as a use case for the in-situ approach supported by VisIt (see 3.3
Visualization of Output from Large-Scale Brain Simulation).

3.3 Visualization of Output from Large-Scale Brain Simulation

Supported by: Paul Melis (SARA, Holland), Vladimir Slavnic (IPB, Serbia), Kiril Alexiev (NCSA, Bulgaria)

This project was proposed by members from KTH, specifically the group of Prof. Anders
Lanser at the Department of Computational Biology. The project proposal asked for PRACE
support in visualizing of large-scale neuron simulations, from 50,000 neurons, up to several
100,000s. Both offline rendered animations as well as real-time interactive visualizations were
targeted. For attaining real-time imagery, in-situ visualization of a running simulation was
chosen, which is described below in more detail.

The project basically has two parts: 1) creating visualizations using large-scale simulation
output from existing neural simulation codes (BrainCor, Neuron) and 2) making extensions to
some of the existing codes to make in-situ visualization possible.

The first part was done by members from SARA/NCF and NCSA. As a first step, changes
have been made to the file formats used, because the simulation data was written to text files
and in ways that didn’t allow for easy or efficient visualization with the chosen visualization
application, ParaView. Simulation data was converted to XDMF (basically HDF5 for the
actual data and a high-level XML file for describing that data). Furthermore, the data was split
over multiple HDF5 files, allowing efficient parallel visualization. The latter is needed for
interactive visualization of large-scale simulation output on the order of hundreds of
thousands of neurons. In addition, simulation data was used to visualize relevant aspects of
the model dynamics.

Visualization pipelines were created for different types of visualizations. Goals for the
visualizations were: 1) provide insight into the model behaviour together with a view on the
underlying scientific data, 2) generate synthetic brain signals based on simulation data, to
compare with real-life measurements. Figure 10 shows an example image from a preliminary
animation of a simulation with 50,000 neurons.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 30

Figure 10: Visualization of simulation with 50,000 neurons

The second part of the project, dealing with in-situ visualization, presents an approach where,
while a simulation is running, the data it produces is accessed and visualized (without
affecting the simulation itself). By using the VisIt visualization application and its libsim
library, simulation code can be instrumented so that VisIt can connect to a running simulation
and access simulation data directly. This eliminates large amounts of disk I/O, as the
simulation data is never written out to files on disk (at least not for visualization purposes).
Furthermore, it provides insight into a running simulation, so progress and correctness can be
checked on the fly.

IPB performed testing and analyzing of the simplified BrainCore simulation code provided by
the developer (Simon Benjaminsson, KTH). In cooperation with the developers, relevant parts
of the code for efficient implementation of in-situ visualization using VisIt were identified.
Convenient types of data representation were chosen so as to visualize activity of simulated
neuron units in a more natural, comprehensive way. The code was instrumented and tested on
different clusters, where control of simulation was demonstrated and in-situ visualization of
neural unit data was performed.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 31

4 Long-Term Preservation of Applications Data

Applications on Tier-0 systems are able to produce large amounts of output data and
preserving such data reliably for a long time can be important. This section summarizes
whitepapers written for users of tasks 7.1 and 7.2, wanting to preserve application results. The
whitepapers cover different mediums and tools suitable for storing data, use-case analysis,
best practices and strategies for long-term preservation of data.

4.1 The Vagn-Ekman Case Study at SNIC-NSC

Contributors: Johan Raber and Per Lundqvist (SNIC-NSC, Sweden)

Vagn-Ekman is a dual cluster setup with specialized functionality in the two parts. Ekman is a
large compute cluster located in Stockholm, Sweden, consisting of 1268 compute nodes
sporting 8 CPU cores per node and a high bandwidth, low latency Infiniband interconnect.
Vagn is a storage and post-processing cluster located at NSC, Linköping, with nodes tailored
for analysis of the raw data produced at Ekman.

The Vagn-Ekman cluster duo resembles to an extent future PRACE operations, in the sense
that from a large data production facility there will be a need to conveniently transfer the
produced data to the researchers, potentially scattered across Europe, in a safe manner with
respect to data integrity. The experiences and tools developed during the Vagn-Ekman project
can serve as an example for how this data flow can be carried out.

The very large volumes of data produced at Ekman needs to be safely transferred to the Vagn
cluster, since Ekman does not have the capability to harbour large quantities of data in the
long term. To provide data integrity checks and convenience to the end user, a special purpose
tool was built, FFV the File Transfer Tool.

The trivial synchronous procedure for moving data between hosts goes like this: i) log in and
ii) copy local source files to remote destination or vice-versa; iii) on a successful copy
operation, delete the source and iv) log out.

An application that automatically handles the above steps needs to handle at least the
following issues:

 Interrupts: There is a risk of interrupts due to system failures or network failures
which can be very high over long periods of time. A normal synchronously initiated
move requires the user to be logged in while moving and is as such also vulnerable to
anything that interrupts the initiating process.

 Errors: When moving data, users must themselves make sure that the data was
transferred correctly to the other host before deleting the original. It is a seemingly
trivial operation, but in a scripted environment, with many users and over a long time
span, there is a significant risk for human mistakes.

 Restarts: Although restarting of file transfers is in a sense trivial, the information on
how to restart, e.g. search paths and authentication, has to be provided by the users
themselves. It is also the responsibility of the user not to forget to restart and restart
the correct way with respect to search paths. Potentially, this could be a task of some
complexity, depending on the error causing the restart and the amount of restarts.

 Resuming: The larger the file sets, the higher the risk of being interrupted when

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 32

moving it (see Interrupts). If the transfer tool does not support resuming, moving a
large file set risks being starved out, taking a very long time to finish or even never
finishing at all,. Resuming from the last file not already transferred guarantees that
very large file sets eventually will complete, even when being frequently interrupted.

 Isolation: For performance reasons, no more than one process should move the same
data to a remote host. Ideally, the original data should be immutable or the user should
be able to detect if it has been modified.

FFV (http://www.nsc.liu.se/~perl/ffv/) was developed for the purpose of moving data between
Ekman and Vagn and was designed to handle the problems mentioned above. The basic
design idea is simple: 1) Move the data to be transferred into a hidden subdirectory of its
parent directory; 2) make a hidden transfer directory on the target side, and 3) repeatedly sync
this directory to its remote (hidden) location leveraging the rsync application from a self
contained job script run via cron until considered finished; then 4) move the hidden target
directory to its final, visible location, and 5) remove the local transfer directory.

Using FFV, the typical workflow can be summarized as:

1. A user submits an FFV job. The minimal information supplied to FFV is the source
directory, target directory and references to necessary credentials.

2. FFV does minimal verification that the user request may succeed, e.g. establish a
connection to any remote system, validate paths, etc. When using public key
authentication through an SSH agent, it establishes an SSH session with an SSH
control socket to be used, such that the agent does not need to be contacted again,
unless something causes the job to pause. Lastly, it moves the original data into a
transfer directory within the parent directory.

3. A self-contained transfer job script is automatically created on permanent storage,
containing all information needed to move the requested data to the target location.

4. The user is supplied with a handle that acts as a FFV job identification token, which
can be used to query FFV about the transfer status, yielding a brief report on progress
or possibly problems and solutions.

5. The self-contained job script is then executed asynchronously via cron, the prompt is
returned to the user, and FFV requires no further input unless an exceptional event
occurs, such as expired credentials, or other non-transient errors requiring user
intervention. When necessary, the user is notified either by mail or to a file in the users
home directory, on the system where the job was created.

At its core, FFV is an application automating best practices in data transfer, all the while
providing convenience and error checking to the user. Anyone can replicate this functionality,
provided they have the scripting or programming skills necessary. However, learning best data
transfer practises and automating them should not be required of the user, since it is usually
not their core competence and this provided the impetus to make the file transfer tool.

4.2 Best Practices on Standards, Policies and Quality Assurance in Digital
Repositories for Long Term Preservation

Contributors: Olivier Rouchon, Philippe Prat and Mathieu Cloirec (CINES, France)

During the past twenty years, the long-term preservation of digital information has only been

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 33

a matter under consideration for a few scientific or patrimonial institutions. These have played
a key role in the understanding of the subsequent risks and the definition of standards in this
domain. The best practices rely on four technological risks which are now commonly agreed:
the loss of the knowledge of the content, file format obsolescence, aging media causing data
loss, and sudden software or technology changes. They have been put in place in institutions
dealing with text data, images, sounds or video. How does that translate into raw, primary data
produced by Tier-0 systems, has been evaluated in this project.

The data created, handled, processed, stored, exchanged and distributed in our society is
mainly in digital form. This form of representing data is incredibly powerful and the storage
costs are going lower and lower; it is now possible to preserve them without any alteration
whatsoever, and tools exist for creating complex documents and finding useful information in
them. And yet behind all these huge advantages, lies a major risk; that of severe vulnerability
to time, explicable and identified. This vulnerability lies in the inevitability of one or more
risks linked to the nature of the data itself, if no preventive measures are taken.. The main
methods to be implemented to mitigate and manage these risks are now proven:

 The use of persistent metadata and identifiers to preserve knowledge of content.

 The choice of sustainable file formats to keep control and the ability to migrate to new
formats (when conversion is the preservation strategy).

 Proactive management of the ageing of storage media for the ability to properly
preserve the bit stream making up the files and migrating them to new supports.

 Permanent technological watch and anticipation of technological change.

The quality approach via best practices in this field can be seen from two aspects, technical
and organisational. The technical quality approach to preserving digital documents covers all
the procedures aiming at ensuring a high level of quality of the digital object itself. It can be
divided into three levels: metadata, file formats and storage. There are some specifics in the
high-performance computing domain, with those three aspects, due to the nature of the data
produced by researchers, the volumes generated, etc.

From an organisational point of view, activity management based on risks should be
advocated. The preservation of digital documents is a project like any other, and like any other
activity, generates risks. The aim is not to eliminate the risks, but to determine an acceptable
level of risk. This is a well-defined and proven method. Such a methodology originated in
industry and is now widespread in the management and service sectors.

Certification is the culmination of consolidating an organisation and/or service. It signals
recognition of quality and professionalism, and is therefore a means of instilling trust with
communities of users, and may also be a way of leveraging budgets from governing bodies.
Although, this is a very weighty project, both in the human investment that is required to
manage the project or the changes required, and in the financial investment, as regular
external audits needs to be planned. As a result, it is important to identify the type of
certification that will have the greatest impact, both on the community of users and on the
governing bodies.

Awareness of the need to implement standards, and respect for certain best practices, in
particular regarding a quality approach to long-term preservation, is not neutral. It represents a
considerable and immediate investment, the effects of which are only perceptible in the long-
term; moreover, such an initiative, and its culmination in certification, requires the
commitment of everyone involved in the preservation process. However, quality indicators
and measurements are not yet clearly defined, with little hindsight available to the institutions
implementing it to measure the positive effects.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 34

4.3 Storage and Long Term Preservation Strategies in PRACE Tier-1
Datacentres

Contributors: Huub Stoffers, Mark van de Sanden (SARA), Johan Raber, Tom Lanborg (SNIC), George
Tsouloupas (CaSToRC), Olivier Rouchon, Florent Marceteau (CINES)

SARA, SNIC-NSC, CaSToRC and CINES are Tier-1 datacenters involved in HPC activities,
and particularly active on EU-funded projects such as DEISA, PRACE and EUDAT. In this
project, people from across these centers have worked together to document common long
term preservation strategies at their centers.

SARA’s HPC Central Archive (CA) is a mass storage facility for long-term preservation of
large data sets produced in academic research projects that are of particular relevance to
(Dutch) academic communities. To be more specific about the groups that can benefit from
the service: the CA currently stores data that were produced on several incarnations of the
Dutch supercomputing facility and various other academic HPC facilities at SARA.

Swestore is a Swedish national storage service on the infrastructure level, making storage
space available over the internet for academics. The aim of the Swestore is to build a robust,
flexible and expandable storage system distributed across all six SNIC centers and nationally
accessible, which can be used in most cases where access to large scale storage is needed.

CINES operates state of the art computer services in high-performance computing, long term
data and digital document preservation, as well as the hosting of computer equipments. The
center provides researchers from universities and public research institutes with high
performance parallel computing and storage platforms. The staff of the HPC department at
CINES makes hardware and software available to the users and provides specific assistance
for research modeling.

The Cyprus Institute is developing a Computation-based Science and Technology Research
Center (CaSToRC) that will include a Tier-1 HPC and storage facility. CaSToRC aspires to
encourage the use of high performance computing in Cyprus and the Eastern Mediterranean
region and to serve the needs for HPC and data intensive computing in research, by providing
adequate computing and storage resources to enable Cyprus and the Eastern Mediterranean
research community to pursue forefront computing-related research.

These four actors have all put in place strategies to store and preserve academic data,
produced as part of research projects. Even if they are fairly similar, the policies and
technologies that have been deployed have a few differences which have been detailed. The
way they address the increasing need for long time archival storage, in combination with the
ever-increasing size and rate of research data produced has also been described, as well as
data sharing problems in joint research efforts where large data sets need sharing.

4.4 Media and Technology Appraisal for Long-Term Preservation

Contributers: Huub Stoffers, Mark van de Sander (SARA), Johan Raber, Tom Langborg, Per Lundqvist, Bengt
Persson, Torben Rasmussen (SNIC), Nick Sinanis (CastorC), Olivier Rouchon, Florent Marceteau (CINES)

Reliability, performance, costs and return on investment are key factors in the long-term
preservation of digital data. They differ from one technology to another. Since there are
different media and technologies used for storage and transfer, this whitepaper has done a
comparison, with a particular focus on disks and tapes. Long-term preservation technologies

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 35

are constantly evolving, making it necessary to anticipate and adapt to the various
technological advances, thus enabling quality data preservation services. Loss of data is not an
option, even after ten or twenty years. Unfortunately, no support is 100% reliable and thus
technologies to anticipate failures are useful, as well as a suitable environment. Reliable
equipment and the associated technologies imply a cost, which depends on the chosen
technology.

The environment also has an important impact on the long-term equipment reliability.
Different factors can affect disks and tapes. Humidity, dust, electromagnetism and
temperature are the most common ones. Of course, the age of the equipment affects the
reliability. But its impact is not linear and depends on the chosen equipment. Disks can
present problems with early failures during the first months. But the reliability problems are
more present after a use period of five years, where the disks start to become too old. Between
one year and five years, the failure rate appears to be relatively constant. Then, the risk of
failures increases. This is the reason why five years can be considered as the lifetime of a
disk.

The intensive use of disks can also be considered as a risk factor for reliability, but its impact
is less important than expected and only plays a role in the early failure and during the fifth
year of a disk lifetime. Tapes on the other hand appear to be less time sensitive, with a much
higher reliability when the environment is adequate.

Disk are complex equipment, with numerous components that can cause failure. In order to
anticipate them, the technology SMART (Self-Monitoring Analysis and Reporting
Technology) allows the study of different parameters relevant for reliability. These
parameters (e.g. scan errors and reallocation counts) are indicators of the reliability. The risk
of failure increases drastically when they are present.

All equipment and technologies have a cost. The comparison between disk and tape shows
that tape is the less expensive equipment for large amounts of data. Because tapes require
drivers to be used, and because these are fairly expensive, disks can be cost-effective for small
amount of data. Similarly, the equipment cost for an important amount of data is more
important for disks than tapes. From an energy point of view, disks produce heat, and some
components require constant power supply. Tapes, on the other side, only require an
appropriate environment. For these reasons, the costs of energy for disks are higher than for
tape.

Considering reliability and costs, tapes can be considered as the most interesting equipment
for long-term preservation of data. But since no equipment is 100% reliable, it is important to
have several copies of each data. In general, it is preferable to make those copies on different
media.

The above topics are covered in more detail in the whitepaper.

4.5 The “Jonker Case” / After Care: Handling the “ENTRAIN” Dataset after
its Production on Jugene

Supported by: Huub Stoffers (SARA, Holland)

Collaborators: John Donners and Mark van de Sanden (SARA, Holland)

A project of the Dutch investigator Harm Jonker, of the Delft Technical University (NL),
titled “Providing fundamental laws for weather and climate models”, was granted 35,000,000

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 36

core hours on PRACE Tier-0 resource Jugene, as part of the ‘PRACE Project Access’
program. The core hours have been used to run a massively parallel simulation program
which produced a raw dataset of approximately 13 TB. The project proposal explicitly states
that the produced data should be made publicly available to serve as a benchmark for
atmospheric models. However, no provisions were made, except to produce the data. After the
data was produced on the Tier-0 system, the project was in principle finished as far as PRACE
was concerned — the data had to be moved out from the Jugene file system as soon as
possible.

The raw data had to be further analysed and post-processed, including a conversion to a more
suitable standardized format for making the data publicly available. Programs for this are
generally not massively parallel, so a BlueGene/P would not be the platform of choice for this
type of work. SARA committed to “adopting” the data set and taking care of the trajectory
that comes after the data production phase:

 Via the Dutch PRACE tier-1 system “Huygens” the data has been moved to the SARA
central archive facility.

 “Huygens” is available to the investigators to do their post-processing.

The whitepaper reports on the work that has been done to accommodate the project. It
illustrates that a considerable amount of improvisation was needed to accommodate rather
natural needs of a user using PRACE computational facilities to produce quasi-empirical data
that have to be explored further. The paper notes that at present, PRACE lacks well-defined
support and guidance for users, which goes beyond the stage that allocated compute cycles on
the Tier-0 resource that was used. It also includes a short discussion on how to improve
PRACE procedures or arrangements and “logistics” for handling similar cases.

The whitepaper was written in February 2011, when the choices on how to arrange the public
availability of the dataset still had to be made. Work in this “after care” trajectory is still on-
going. Meanwhile, options have been discussed with Dr. Jonker. A node, publicly accessible
by https, equipped to access the SARA archive, has been setup. It will be used for this and
other projects. The data are being converted to NetCDF format. A pilot will be setup, using
the OpenDAP protocol, for read-only disclosure of the dataset of this project to the public.

D7.6 Efficient Handling of Petascale Data

PRACE-1IP - RI-261557 23.12.2011 37

5 Summary

During its relatively short 18-month period, task 7.6 has successfully provided support to a
wide range of HPC codes and user communities. Experts from task 7.6 have supported in total
12 applications with solving their data challenges. The applications which were supported
were all selected in tasks 7.1 and 7.2 and are listed below:

Alya, BrainCore, Code_Saturne, CP2K, Elmer, EUTERPE, Gromacs, NEMO, OpenFoam,
Pluto, SPECFEM3D and Vlasiator.

For each of these applications there has typically been several data optimization subprojects
lead by teams collaborating from several different PRACE member HPC centers around
Europe. This work has resulted in 23 whitepapers, which have been summarized in this
deliverable. The whitepaper subjects range from detailed descriptions of implemented parallel
algorithms to user guides for Tier-0 I/O subsystems and tools useful for handling of Petascale
data. All whitepapers are available online and are useful for users facing similar data
challenges.

In summary, task 7.6 has had a positive impact on a wide variety of applications important to
European users. Furthermore, it has fostered close collaboration between researchers from
across European HPC centers, which might otherwise not have happened was it not for
PRACE.

