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Executive Summary 

The present document describes the work carried out during the second year of activity of 
Task 7.2-1IP ”Application Enabling with communities”. Eleven key application codes of 
value to the main scientific communities at European level were selected for petascaling 
during the first year of Task 7.2. These applications, emblematic of the major computational 
disciplines and challenging for the main scientific communities are: GROMACS and DL-
POLY for Molecular Dynamics; Quantum ESPRESSO and CP2K, for Material Science; 
GPAW for Nanoscience; DALTON for Computational Chemistry; EUTERPE for Plasma 
Physics; the EC-Earth 3 suite for Meteo-climatology, SPECFEM3D for Earth Sciences 
(earthquakes) and OpenFOAM and Code_Saturne for Engineering and CFD. 

The enabling and optimization activity started after the selection of the codes and completed 
at the end of the second year of PRACE-1IP, allowing and reinforcing a long term 
cooperation with the communities and the owners of the codes. The results of this activity are 
significant: for some application codes the improvements were integrated in the official 
distribution releases of the software (i.e. Quantum ESPRESSO, GPAW and DALTON) or in 
the official version installed at the different PRACE Tier-0 Sites (CP2K, GROMACS, 
Quantum ESPRESSO). It is worth underlining that in some cases the scalability work allowed 
specific applications based on these restructured codes to be submitted to the regular access 
calls in PRACE (e.g. GPAW, Quantum ESPRESSO, GROMACS and CP2K). 

For some applications the bottlenecks preventing petascaling were identified, analyzed and 
discussed with the owners of the codes (e.g. Open Foam and EC-Earth 3). In other cases more 
sustained efforts are required and has been scheduled to continue the work in PRACE-2IP 
(WP8 and WP9).  

Task 7.2 issued an effective collaboration with Tasks 7.5 and 7.6 to afford different specific 
aspects, like hybrid parallelization or large dataset I/O optimization. 

The cooperation with the structured communities continued and consolidated for a number of 
subject areas including IS-ENES, for meteo climate, MAPPER, for the communities involved 
in multi-scale methods, ScalaLife, for the Life Sciences community, and VERCE and EPOS 
for the seismological community. 

The activity carried out by Task 7.2 for petascaling applications of interest for scientific 
communities is summarized in this document and has been documented in detail in 12 white 
papers from Task 7.2 and others 9 from Tasks 7.5 and 7.6 in collaboration with Task 7.2. 
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1 Introduction 

Task 7.2 “Application enabling with communities” has the objective of developing 
relationships with important European applications communities and provide petascaling 
expertise to ensure that their key applications codes can effectively exploit Tier-0 systems [1]. 
Deliverable D7.2.1 issued in June 2011, documented the collaboration with scientific 
communities in the first year of activity of PRACE-1IP [2]. The document presented the 
methodology adopted to identify the scientific communities for cooperation and to select the 
application codes of interest for these communities.  

During the first year of activity, Task 7.2 worked to fulfil its objectives by firstly contacting 
the scientific communities and selecting the application codes of interest, then starting to 
work with these communities in a long-term cooperation to petascale the codes. 

Eleven application codes in the main domains of computational sciences were selected. For 
five of these applications the enabling work started in December 2010 and some very 
preliminary results have been already documented in Deliverable D7.2.1. For the remaining 
six applications the work started in May 2011, after the second selection process and the 
agreements with the scientific communities on the work plan to implement. The activity on 
the application codes, once concluded, allowed the related scientific communities to apply to 
the regular calls for access to Tier-0 resources (November 2011 and May 2012).  

With respect to structured communities, cooperation has been established with the IS-ENES 
community, with the long-term objective to run the European climate models, of interest for 
this community, on PRACE Tier-0 systems. The work on EC-EARTH 3 codes was the 
occasion to consolidate the relationship between PRACE and the climate community 
represented by IS-ENES [5]. Further collaborations with other structured communities (i.e. 
MAPPER [6], ScalaLife [7], VERCE [8] and EPOS [9]) has been addressed during the 
current year, working on codes of interest for these communities (i.e. DALTON, GROMACS, 
SPECFEM3D). 

The activity done in this last year of activity of PRACE 1IP has allowed to fully complete the 
petascaling process on the applications selected and to make the results available to enhance 
science by means of Tier-0 systems, demonstrating the utility of working closely with the 
scientific communities and the code developers. This approach has been clearly successful, 
also if it was not always easy to reach the expected results in terms of performance 
improvements with quite limited resources.  

The work done in Task 7.2 has been documented in 12 different white papers, directly driven 
from task 7.2, plus other 9 prepared by Task 7.5 (cooperating for the aspects of new 
programming techniques and architectures for HPC) or Task 7.6 (efficient I/O and handling 
petascale data) in collaboration with Task 7.2. 

This deliverable summarises these white papers. The technical details of interest for the 
scientific communities are reported in the white papers, which will be available on the 
PRACE website http:// www.prace-ri.eu/white-papers. 

The deliverable is structured as follows: Section 2 covers the activity done with the material 
sciences, nano-sciences and Life sciences communities, on the codes GROMACS, Quantum 
ESPRESSO, GPAW and CP2K. Section 3 presents the work done on the codes DL-POLY 
and DALTON of interest for the computational chemistry community. The work on the code 
EUTERPE significant for the Plasma Physics community is presented in Section 4. Section 5 
covers the cooperation with the IS-ENES community on the EC-EARTH 3 suite. The activity 
on the codes OpenFOAM and Code_Saturne representatives of the CFD and engineering 
communities are presented in Section 6. Section 7 presents an overview of the collaboration 
with the Communities. Finally some conclusions follow. 
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2 Material Science, Nanoscience and Life Science  

In recent years, the use of computational modelling in Life Science and Material Science has 
enormously increased, becoming of crucial importance in many areas (nano-science, new-
material engineering, protein simulations, docking etc.). This has been made possible by the 
development of theories into working equations which can be implemented into efficient 
codes. Many of these codes were originally designed for either scalar calculations or small 
parallel computing environments and need to be adapted in order to efficiently run on 
petascale systems. Furthermore the introduction of efficient levels of parallelization (MPI or 
hybrid MPI/OpenMP scheme) might in some cases require large modifications of the 
innermost structure of the original code, becoming therefore not an easy task to perform. In 
the context of PRACE-1P WP7.2, for the area of material sciences, nanosciences and life 
science, we have selected four widely used European codes to be optimized to petascale 
performances: GROMACS (life science), QuantumEspresso (material science), CP2K (life 
science and material science) and GPAW (material science). The activities were performed 
over a period ranging between 6 and 12 months, and were conducted in most cases in close 
collaborations with the developers’ communities. Different optimization strategies were 
adopted for each code, involving modifications at different levels: from the optimization of 
the libraries and flags for the efficient installation on the PRACE machines up to the 
modification of the levels of parallelization inside the code. In some cases the optimization 
strategies were rather complex, requiring expertises and efforts from other tasks in WP7 (e.g. 
GROMACS, QuantumESPRESSO). For the four projects, the proposed goals were met and 
the finals results were reported in white papers. 

2.1 GROMACS 

GROMACS is a versatile package for performing classical molecular dynamics with hundreds 
to millions of particles. It is primarily designed for biochemical molecules, e.g. proteins, 
lipids, nucleic acids, but it is also widely used for simulating non-biological systems, e.g. 
polymers. The general goal of the project is to enable GROMACS to petascale simulations by 
identifying the main reasons for performance deterioration and designing dedicated actions to 
overcome them. The work on GROMACS in the scope of PRACE project has been performed 
in Task 7.2 by involving expertises from Task 7.5 (for the hybridization work) and Task 7.6 
for data I/O optimization. In particular, the efforts from Task 7.2 and Task 7.5 resulted into a 
common white paper, namely “Performance Analysis and Petascaling Enabling of 
GROMACS” [10]. Results obtained from Task 7.6 effort has been reported in a separated 
white paper [10] and documented in [4]. In the following we report the main goals and 
achievement of the first white paper. The results presented in this paper have been combined 
with the achievements reached in collaboration with the ScalaLife project [7] working on the 
latest version of the GROMACS (version 4.6), released at the moment of the work on this 
white paper. 

2.1.1 Performance Analysis and Petascaling Enabling of Gromacs 

Supported by: Berk Hess (KTH), Erik Lindahl (KTH) 

Collaborators: Fabio Affinito (CINECA), Andrew Emerson (CINECA), Leandar Litov 
(NCSA), Peicho Petkov (NCSA), Rossen Apostolov(KTH), Lilit Axner (KTH), Maria 
Francesca Iozzi (UiO). 
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The work consists of three independent tasks: (I) Optimization of GROMACS performance 
on BlueGene systems, (II) Parallel scaling of the OpenMP implementation, (III) Development 
of a new adaptive symplectic integration algorithm with variable step size. 

Optimization of GROMACS performance on BlueGene systems 

Most simulations require the calculation of long range interactions which consist of 
dispersion-type particle-particle (PP) interactions and the electrostatic forces obtained from 
the Particle Mesh Ewald (PME) method which makes extensive use of 3D FFT. On parallel 
computers these forces are obtained via a domain decomposition scheme which distributes the 
atomic interactions amongst the compute nodes assigned to the simulation. A further degree 
of flexibility is provided by the runtime environment of the BlueGene architecture which can 
be used to modify the default distribution of MPI ranks amongst the compute nodes. The aim 
of this work was to study these different scheme of the PP/PME partitioning on the BG/P 
system to obtain a set of optimal program or runtime parameters. 

The different schemes have been tested on a membrane-like system containing nearly 2 
million atoms, designed to show high parallel scalability. The results of the benchmark runs 
are given in the white paper and show that for a given number of cores the differences 
between the performances for the different partitioning schemes and BG/P mappings are 
small, perhaps at most around 10% for the highest core counts. Thus, for large projects it is 
worth investigating these settings but other factors maybe more important.  

Parallel scaling of the OpenMP implementation 

The parallel versions of GROMACS up to release v4.5 use pure MPI to handle the 
communications between the processor cores. As part of the ScalaLife project, the code 
developers have released a hybrid MPI-OpenMP version (v4.6) where multithreading has 
been applied to the PME calculations with the aim of increasing performance on common 
SMP nodes of parallel architectures. In cooperation with ScalaLife, Task 7.2 tested this hybrid 
version by performing benchmark runs on the PLX Intel cluster at the CINECA 
supercomputer centre in Italy (3288 cores Intel Westmere at 2.40 GHz) where nodes have 12 
cores and are connected via an Infiniband network (about 5Gb/s speed). The tests, reported in 
the white paper, showed that there was in fact little difference in performance between the 
two versions of the code. This is in agreement with the documentation from ScalaLife which 
suggests that the hybrid version of the code is only likely to show improvements compared to 
the MPI-only version at high node counts or with slow interconnects: unfortunately on the 
PLX cluster only maximum of 40 nodes were available for tests. Additional tests were then 
run at the PDC Center for High Performance Computing on two different platforms, namely a 
Cray XE6 (Lindgren) and a AMD Opteron (Povel) sysytem. These clusters should provide a 
further test since more nodes are available and have different internal networks (2.7Gb/s 
Infiniband in the case of Povel and Cray Gemini for Lindgren). In addition, the performance 
of the new version 4.6 was compared to that of the previous 4.5.3 version. 

Results are reported in Figure 1. We see that on Povel there is a significant improvement of 
the hybrid GROMACS with respect to the MPI-only code at high node counts and both 
versions are more performing than the earlier v4.5.3. For Lindgren, on the other hand, which 
has fairly fast internal network, there is no performance gain in using the hybrid code, even at 
high core counts. Thus, we see the hybrid MPI/OpenMP version 4.6 of GROMACS only 
really brings benefits with a large number of cores and when the internal network is fairly 
slow, as in the case of Povel. 
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Figure 1: Scaling tests for the hybrid MPI/OpennMP version of GROMACS 

 

Development of new adaptive symplectic integration algorithm with variable step size 

For large atomic systems, one possibility for improving the performance of the MD 
simulations is to employ integration algorithms with variable step size for the calculation of 
full electrostatics. Limitations on the step size in this kind of integrators are severe, and are 
mostly due to stability rather than accuracy. The increasing size and complexity of the 
systems investigated stresses existing algorithms not only because of the exploding 
computation volumes but also because of the poor scalability with the number of the 
processors employed. We have studied the scalability and the work-load increase and 
distribution among the computing cores in the packages GROMACS (version 4.5.3), for the 
example of three test systems with increasing size (5x105, ~106 and ~2.2х106 atoms 
respectively), with the profiling tool SCALASCA and also by means of the GROMACS in-
built tool g_tune_pme. We have also analyzed the stability and scalability of the existing 
integration algorithms with variable time-step implemented in GROMACS in order to define 
the sources of the instabilities (different kinds of resonances). Based on this analysis, a 
symplectic time reversible integration algorithm specially designed for Petascale biomolecular 
MD simulations is under development. 

2.1.2 Data I/O optimization in GROMACS  

The mechanism for data I/O provided by GROMACS does not scale well on MPP systems 
like BG/P. The data I/O bottleneck problems in GROMACS have been studied with the 
support of Task 7.6. A solution has been proposed using a Virtual Array structure. This 
activity is part of Task 7.6 and has been described in D 7.6 [4] and documented on the White 
Paper “Data I/O Optimization in GROMACS using the Global Arrays toolkit”, Supported by: 
Valentin Pavlov and Peicho Petkov (NCSA, Bulgaria), See [4]. 
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2.2 Quantum Espresso 

Quantum ESPRESSO (QE) is an integrated suite of computer codes for electronic-structure 
calculations and materials modelling based on density-functional theory (DFT), plane waves 
basis sets (PW) and pseudopotentials (PP). It is freely available and distributed as open-source 
software under the terms of the GNU General Public License (GPL). The present applicability 
of Quantum ESPRESSO ranges from simple electronic structure calculations to the most 
sophisticated theoretical spectroscopies such as Nuclear Magnetic Resonance (NMR), 
Electron Paramagnetic Resonance (EPR), Raman and Scanning Tunneling Microscopy, etc. 
The simulation tools implemented in Quantum ESPRESSO are used across a wide range of 
R&D applications. The relevance of this code has been highlighted by its adoption in a 
number of key research groups, as well as in industry.  

The work aimed at improving the performance of important modules of the QE suite. In 
particular the goals of the submitted proposal were to enhance the scalability of the GIPAW 
module and the linear response code, needed for the NMR calculations and to improve the 
level of parallelization of the PWscf module. In addition, it was also decided to include the 
porting of the application to the GPGPU architecture among the goals. The work has been 
motivated by the existing strong partnership between PRACE partners and relevant members 
of the Quantum ESPRESSO users community and PRACE experts worked in close 
collaboration with developers to ensure that the Quantum ESPRESSO package can effectively 
exploit Tier-0 systems. Detailed description of the goals, optimization strategies and 
achievements are reported in the white paper: “Enabling of Quantum Espresso to petascale 
challenges” [10]. A brief summary is given below: 

2.2.1 Enabling of Quantum Espresso to petascale challenges 

Supported by: Ivan Girotto, Nicola Varini, Filippo Spiga (ICHEC, Ireland), Carlo Cavazzoni 

(CINECA, Italy)  

Collaborators: Davide Ceresoli (CNR-STM, Italy), Layla Martin-Samos (CNR-IOM, Italy), 
Tommaso Gorni (University of Modena, Italy)  

The work consists of three independent projects: (i) Scalability improvement of QE-GIPAW 
code and PWscf EXact eXchange (EXX) part; (ii) vdW interaction in Quantum ESPRESSO; 
(iii) GPU version of PWscf code. Performance analysis were performed on both PRACE Tier-
0 systems and PRACE Tier-1 GPU systems. 

I Scalability improvement of QE-GIPAW code and PWscf EXact eXchange  

QE-GIPAW and the PWscf EXact eXchange part included in the Quantum ESPRESSO suite 
were showing poor scalability beyond a certain scale. To improve the scalability, additional 
levels of parallelism over electronic bands in both of these two codes have been implemented 
(namely two levels in QE-GIPAW and one in Pwscf Exact eXchange). The validation of the 
development activity was based on a real data set proposed by Prof. Stefano De Gironcoli for 
the study of cholesterol crystal equilibrium structures in human gallstones from first 
principles. Results from the modified QE-GIPAW code and Pwscf Exact eXchange are 
reported in Table 1 and Table 2, respectively.  

In Table 1 the efficiency of the modified QE-GIPAW (number of bands > 1) are compared 
with the old version (number of bands = 1) for runs with different numbers of processors: 
while the band parallelization does not improve the efficiency of the new code when it runs 
on 64 processors, a significant improvement is observed already at 128 processors. 
Furthermore, the second level of parallelization allows the Green function to scale quite well 
up to over 3500 processors. 
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As shown in Table 2 the routine Vexx, that calculates the Exact-Exchange potential, scales 
perfectly by doubling the number of cores and the number of band groups. We measure an 
efficiency of around ~97% moving from 32768 to 65536 cores if we compare the time of 
execution of the single Vexx routine. 

 

# 
Cores 

# 
Threads 

Number of 
bands 

Elapsed Time 
(min) 

#Green function 
(min)  

Efficienc
y % 

64 1 1 621.15 425.94 1.00 
64 1 2 694.66 441.67 0.89 
128 1 1 533.33 358.32 0.58 
128 1 2 416.69 242.11 0.73 
256 1 4 300.79 137.87 0.52 
896 1 2 81.59 58.71 0.54 
1792 2 2 51.82 37.60 0.42 
3584 2 2 36.00 24.81 0.31 

Table 1: QE-GIPAW benchmark data 

 

# Cores Number of bands Vexx Time(s) Elapsed 
Time(s) 

Efficiency 
% 

32768 64 417.18 523.45 1.00 
65536 128 215.96 311.59 0.84 

Table 2: EXX benchmark data 
  

II vdW interaction in Quantum ESPRESSO  

The rVV10 method is a non-local DFT approach that efficiently accounts for the local van der 
Waals interactions. Such interactions are in fact fundamental for a reliable simulation of large 
physical systems, of particular interest for soft matter and molecular biology. The method has 
been implemented in Quantum ESPRESSO. Tests show an improved accuracy of the rVV10 
approach functional with respect to older implementation of vdW functionals. The new 
approach also keeps the same computational efficiency.  

 

III GPU version of PWscf code   

The PWscf code included into the Quantum ESPRESSO suite has been extended to fully 
exploit computing platform equipped with NVIDIA GPUs. Tests for the single node version 
were run on a medium size input benchmark for PWscf, (a gold surface of 112 atoms). Figure 
2 compares wall-time and speed-up between single core, single CPU (6 cores) and also using 
one GPU. Adding one GPU to a single core PWscf achieves a 5.54x acceleration for gamma-
point and 7.81x for k-point. The acceleration becomes 3.54x and 3.49x respectively if we 
consider the use of one GPU on top of a single CPU system. Results from tests of the 
distributed version are presented in Figure 3: The two graphs show wall-time and speed-up of 
parallel MPI+OpenMP versus MPI+OpenMP+CUDA. The data-set have been provided by 
Wei Zhang (Figure 3 top) and by Arrigo Calzolari (Figure 3 bottom). A detailed description 
of the test and comment of the results can be found in the white paper. 
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Figure 2: Best results running QE-PWscf on a six-core Intel Xeon X5650 and one Tesla C2050 

single SCF iteration using K-points (top) and full SCF cycle using gamma-points (bottom) 
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Figure 3: Wall-time and speed-up of parallel MPI+OMP versus MPI+OMP+CUDA 

data-set provided by Wei Zhang (top) and Arrigo Calzolari (bottom) 
 
It is worth underlining that all the goals in the proposal have been met and the code has been 
significantly improved and is now upto petascale performances. Finally, we would like to 
point out that as an outcome of this work, De Gironcoli's research group (SISSA-Italy) was 
granted (millions of CPU-h) for accessing PRACE Tier-0 systems for a research project based 
on these software tools. More details are given in the white paper [10].  

2.2.2 Quantum ESPRESSO FFT Library Performance on PRACE Systems 

Supported by: Vladimir Slavnic, Milos Nikolic, Aleksandar Jovic, , Josip Jakic (IPB, Serbia)  

Specific benchmarks have been performed on the FFT routines used in Quantum ESPRESSO. 
This activity was mainly done in the context of Task 7.5. Task 7.2 cooperated only in 
providing the Quantum ESPRESSO code and provide some consultancy on the use of FFT 
routines in Quantum ESPRESSO. The results of the activity are summarised in [3] and more 
extensively in the white paper by Pickles, Ivan Girotto, Peter Nash, Michael Lysaght, Milos 
Nikolic, Aleksandar Jovic, Josip Jakic, and Vladimir Slavnic. “FFT Library Performance on 
PRACE Systems”, 2012, [10] produced as part of the activity in Task 7.5. 
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2.3 GPAW 

GPAW is a versatile software package for first-principles simulations of nanostructures 
utilizing density-functional theory and time-dependent density-functional theory. The 
optimisation of GPAW for Tier-0 systems are reported in the white paper “Optimizing 
GPAW” [10] and summarised below. 

2.3.1  Optimising GPAW 

Supported by: Jussi Enkovaara, Martti Louhivuori (CSC, Finland), Vladimir Slavnic (IPB, 
Serbia), Petar Jovanovic (IPB), Mikael Rannar (SNIC)  

The optimisation of GPAW for Tier-0 systems has been done in four distinct actions: I/O 
bottlenecks, optimisation of linear response TD-DFT implementation, hybrid OpenMP/MPI 
parallelisation schema, and optimisation of large dense matrix diagonalisations. The last 
activity was done in cooperation with Task 7.5 with the aim of incorporating ELPA 
(EigenvaLue solver for Petaflop Applications) in GPAW instead of ScalaPACK for Cholesky 
inversion routines. We now discuss each of these in turn: 

The implementation based on the Python programming language introduces an I/O bottleneck 
during initialization which becomes serious when using thousands of CPU cores. 

The reason is that when the Python interpreter starts-up, the Python code of all the used 
modules is read from the disk via import statements. The number of files read can be several 
hundreds, and all the processes read the same files. For each file to be read there are also 
several file open/close operations as well as directory operations when searching for the 
modules. With 65536 MPI tasks the start-up time can be over 48 minutes! We have modified 
the Python interpreter in such a way that only single process performs the I/O calls during 
imports, and MPI is used then for broadcasting the information to other process. In Blue 
Gene/P the initialization is improved by a factor of 100, i.e. start-up time is less than 30s with 
65536 MPI tasks. 

Recently, a memory bottleneck has been realized in linear response TD-DFT calculations. A 
large, so called Ω-matrix is replicated over all the MPI tasks, and in very large scale 
calculations there will not be enough memory to store the matrix on all processes. During this 
project, the implementation has been changed in such a way that each process stores only the 
part of the Ω -matrix it has calculated. Measurements of memory usage show that memory 
need decreases as expected, and that by increasing the number of CPUs for the electron-hole 
parallelization the memory requirement per CPU can now be kept constant. 

Even though the current pure MPI implementation of GPAW performs well, it is expected 
that ever increasing number of cores within a CPU can make a hybrid MPI/shared memory 
implementation advantageous in near future. We have experimented with a hybrid 
implementation in Curie and in Blue Gene/P and Q systems. Initial results show no benefit 
from threading in Curie and Blue Gene/P, while in Blue Gene/Q small performance 
improvements can be obtained. An analysis of the communication patterns and performance 
suggests some further optimizations for hybrid implementation. 

Large, dense matrix diagonalisations are expected to become a bottleneck in the future and the 
expectations are that when the number of electrons increases, the routines used from 
ScaLAPACK will not scale on par with the other parts of the code. We have investigated two 
alternatives to the current ScaLAPACK based implementation; Elemental and ELPA libraries. 

Experiments indicate that the alternate libraries can improve the performance, and ELPA 
especially should be easily incorporated as it uses the same framework as ScaLAPACK. 
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Collaboration with scientific communities 

GPAW is currently developed and used in several research groups in Europe and in the USA. 
During this project there has been active collaboration both with the user and developer 
communities. 

The main way of collaboration has been via the mailing lists of GPAW users and developers. 
There has been also some developer teleconferences. Collaboration has been done also 
through visits to research groups in Finland, Denmark, and in the USA, and through 
participation to research workshops. 

The work performed within this project has enabled three proposals to be made for PRACE 
production access, one in each of the PRACE 3rd, 4th, and 5th calls. The proposal in PRACE 
3rd call was accepted and is currently running. 

The modifications to the Python interpreter have been made publicly available in the 
Gitorious code repository http://gitorious.org/scalable-python and are available to the 
researchers who wish to use Python in massively parallel environments. All the modifications 
made to the GPAW code during the project have been made public via the GPAW's main 
source code repository https://trac.fysik.dtu.dk/projects/gpaw, and are thus available to all 
GPAW users.  

2.4 CP2K 

CP2K is a freely available (GPL) program, written in Fortran 95, for performing atomistic and 
molecular simulations of solid state, liquid, molecular and biological systems. CP2K is a 
popular and important code for materials science, life sciences and computational chemistry 
throughout Europe, and its supports the work of many research communities. One feature of 
CP2K which makes it a particularly important code with regards to use on Petascale systems 
in PRACE is its excellent scalability. Results showing scalability on tens of thousands of CPU 
cores are in the public domain and we demonstrated similar performance on the PRACE 
system Jugene in a previous PRACE project. This is achieved in part by a hybrid 
MPI/OpenMP parallelization approach, which allows the power of large numbers of CPU 
cores to be harnessed while reducing the impact of algorithms which scale less than linearly 
with the number of MPI processes used. In some cases such as Hartree-Fock Exchange (HFX) 
calculations, using OpenMP is required to allow each process to access the entire memory of 
a compute node in order to store tables of commonly re-used integrals, which provides 
excellent performance. In addition, the hybrid MPI/OpenMP version maps well to the fat-
node architecture of modern multi-core node supercomputers such as Curie and Hermit, 
where MPI can be used between NUMA regions (and compute nodes), and OpenMP within a 
single NUMA region.  

To best support the user communities of CP2K, this PRACE project ported and tested CP2K 
on the Curie PRACE system. In addition, we have improved and extended the implementation 
of OpenMP within the code, focusing on several areas where we believed performance or 
scalability was an issue. The activity done is documented on the white paper CP2K – scalable 
atomistic simulation for the PRACE community and a brief overview is reported below: 

2.4.1 CP2K - scalable atomistic simulation for the PRACE community 

Supported by: Iain Bethune, Adam Carter, Kevin Stratford (EPCC, UK), Paschalis 
Korosoglou (AUTH, Greece) 

I Porting CP2K to Curie 
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Initially three different configurations (compilers and math libraries) have been considered for 
compiling CP2K on the Curie Tier-0 system. Upon compilation, from each one of these 3 
configurations, 3 versions of the CP2K were obtained, namely sopt (for the serial version), 
popt (for the MPI only version) and psmp (for the hybrid MPI+OpenMP version), resulting 
in a total of 9 executables. Using the regression test suite provided with the CP2K source code 
we have been able to test these 9 versions of the application. By running the regression tests, 
several more problems with the GNU compiled versions linked with the custom build linear 
algebra libraries (BLAS, LAPACK etc) were identified thus further investigations using this 
configuration of CP2K were dropped. Furthermore, the tests using the psmp version of CP2K 
build with the Intel Compiler Suite have not been run to completion since for several test files 
the execution stalled. All the observed errors were fixed and the 5 remaining configurations 
were then tested: the results of the regression tests are shown in Figure 4. 

 
Figure 4. Final CP2K regression test suite results. 

 

OpenMP parallelization of Exchange-Correlation Functionals 

Prior work by Bethune [11] [12] has already introduced or improved OpenMP parallelisation 
in various areas of CP2K. However, it has also identified several other areas, which take up 
significant amounts of time for certain calculations which are not OpenMP parallelized, or 
which were in need of improvement. The exchange-correlation functionals (XC), which 
provide a relevant part of the energy in a density functional calculation, require such a 
parallelization. After surveying the current state of OpenMP for each XC functionals (there 
are 26 XCs in CP2K), we fully parallelized all the functionals using OpenMP, and validated 
the results of these changes by running the CP2K regression test suite. The OpenMP 
performance obtained was overall very good: on a Cray XE6 with 24 cores per node (two 12-
core processors), 95% efficiency within a single NUMA region, and up to 92% efficiency 
across an entire node has been obtained. 
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Realspace grid operations 

Another key element within CP2K is the use of real space grids, which are a key step in the 
transformation from the plane-wave basis (stored as complex values on plane wave grids), to 
the atom-centred Gaussian basis (stored as coefficients in a sparse matrix). In the routine 
calculate_rho_elec, Gaussian basis functions are received in matrix form and are written to 
the real space grids in parallel by the team of OpenMP threads. The existing algorithm had 
been observed to be costly as it does not scale well with increasing numbers of OpenMP 
threads. It was proposed to replace the reduction algorithm with a tree-based one which would 
minimize the total volume of data copied, and in particular reduce copies from one NUMA 
region to another. Three new tree-reduction algorithms were implemented (see the white 
paper for more details) and compared with the existing implementation. (see Table 3). Two of 
them were a significant improvement over the original implementation. Furthermore by 
carrying detailed profiling during the development of the new grid reduction algorithm, a few 
performance bottlenecks were found and resolved (see the white paper for more details).  

Core Hamiltonian calculations 

The calculation of the Core Hamiltonian matrix can take a significant amount of time for 
certain calculations, particularly those with large basis sets, or when using OpenMP since 
there was no existing OpenMP parallelization in this region of the code. We have 
implemented several OpenMP parallelization schemes but the obtained speed-up results were 
always disappointing. Alternative parallelisation strategies will be investigated in the future.  

 

Number of 
Threads 

1 2 4 6 8 12 16 24

Version 0 0.0000019 0.0028 0.0040 0.0059 0.0069 0.0082 0.011 0.013

Version 1 0.0000027 0.0026 0.0037 0.0052 0.0069 0.0097 0.011 0.013

Version 2 0.0000028 0.0029 0.0038 0.0058 0.0062 0.0072 0.0071 0.0083

Version 3 0.0000027 0.0026 0.0039 0.0061 0.0062 0.0073 0.0073 0.0084

Table 3: Comparison of time taken (seconds) for parallel grid reduction algorithms 

2.4.2 Other activities related to CP2K  

In Task 7.6 a specific activity was carried out for the fragment Orbital method (FMO) for 
Highly parallelised Quantum chemical calculations in CP2K. This activity was supported by 
Peicho Petkov, Petko Petkov, Georgi Vayssilov and Stoyan Markov (NCSA, Bulgaria) was 
mainly conducted in Task 7.6, with a light support from Task 7.2. The activity is reported in 
[4].  

In Task 7.5 an activity to improve sparse matrix multiplication (SpMxM) operations in CP2K 
has been done. This activity supported by Cevdet Aykanat, Kadir Akbudak and Ata Türk 
(Bilkent) is reported in a specific white paper as part of the activity in Task 7.5 and 
documented in [3]. 
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3 Computational Chemistry 

Since there is considerable overlap between the chemistry, biology and materials sections, the 
chemistry effort focussed on types of computational chemistry software not covered in the 
other subtasks. This included molecular quantum chemistry (DALTON) and a classical 
simulation code with a focus on materials simulation (DL_POLY).  

3.1 DL_POLY  

DL_POLY is a general purpose molecular dynamics code, supporting a very extensive range 
of force-field options. It is owned and developed by the STFC, with work led from the 
Laboratory by Ilian Todorov. Most of the user community are in the materials science area, 
with a smaller number in the biomolecular simulation area. The central MD core of the 
domain-decomposed versions of DL_POLY are already highly scalable; for example 
DL_POLY_3 performance has shown good hard scaling for a 14 million Gd pyrochlore 
system (full Ewald electrostatics evaluation) on up to 16,000 cores of BG/L at Julich [13]. 
DL_POLY_4 (the current target code) has shown excellent weak scaling on up to 84,000 
cores (500,000,000 Fe particles) of HECToR (http://www.hector.ac.uk/). This version also 
offers a scalable parallel I/O in both ASCII and netCDF. 

Current performance bottlenecks are related to the weakness of the MPI latency and 
bandwidth across fatter nodes and the non-stopping trend of HPC vendors offering solutions 
of higher core density nodes and of inhomogeneous architecture (+GPU), all with less 
memory per core. As the Flops power (as well as RAM) per core decreases but the core count 
offering of the HPC architectures increases users start to use DL_POLY_4 in regimes (< 1000 
particles per core) where the parallel performance is dominated by the pre-factors of 
algorithms and overheads in the communications. Thus a solution of hybridizing the MPI with 
OpenMP threads and further work-offloading to GPUs or alternatively redefining the CUDA 
implementation into OpenCL are the naturally ways to bring back work in well balanced 
regimes and push performance further to the levels expected for a petascale application. 

Work within PRACE has primarily taken place as a collaboration between Task 7.2 and 7.5 
(mainly concerning accelerators, but there has also been some work on the use of numerical 
libraries). The main activity in collaboration with Task 7.5 is described below and reported in 
the white paper Benchmarking and analysis of DL-POLY 4 on GPU Clusters and documented 
in [3]. 

3.1.1 Benchmarking and analysis of DL_POLY_4 on GPU clusters 

Supported by: Mariusz Uchronski, Agnieszka Kwiecien, Marcin Gabarowski (PSNC-
WCNS, Poland), Peter Nash, Michael Lysaght (ICHEC, Ireland), Ilian Todorov (STFC, UK). 

The major achievement of this work is the synchronisation and subsequently the successful 
benchmarking on ICHEC’s Stoney GPU cluster of the ‘CUDA+OpenMP’ port of DL_POLY 
with the latest changes of the vanilla MPI code. Figure 5 shows a comparison of the GPU 
code with the MPI, indicating the reduction of compute time obtained from the use of the 
accelerators. 
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Figure 5: Performance comparison for pure MPI and OpenMP/GPU versions of DL_POLY. 

 
The success of porting DL_POLY to hybrid architectures using the CUDA framework 
inspired the initiation of OpenCL porting of the CUDA DL_POLY version to extend access to 
more general accelerator-based architectures. The OpenCL work proved to be more laborious 
in comparison to the one involving the use of CUDA. However, it is worth emphasising that 
OpenCL is not tied to a particular vendor or even to a particular accelerator-based 
architecture. 

The GPU-enabled port showed a marked performance advantage over the vanilla version for a 
small problem size in cases even where the pure MPI code has shown good scaling. The 
replacement of the DaFT (3DFFT) library of DL_POLY_4 with the GPU-enabled library, 
DiGPUFFT, did not offer any performance benefits for the grid sizes of interest to molecular 
modellers at the present. However, an impressive speedup was observed when using the 
single-CPU-core-single-GPU CUFFT library instead. This however could only be of benefit 
within an MPI ‘gather-scatter’ strategy on small-scale GPU clusters – an approach which 
could be investigated further. 

The flexibility of the DL_POLY_OpenCL port was demonstrated by benchmarking it on 
different accelerator-based architectures including AMD’s Radeon cards along with more 
familiar multicore CPUs. The performance results indicated that the DL_POLY_OpenCL 
code was slower than DL_POLY_CUDA (see Figure 6 for the comparison of a number of 
kernels of the SHAKE algorithm). 
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Figure 6: Performance comparison of DL_POLY_CUDA (top) and DL_POLY_OpenCL (bottom) 

The tests were runned on different systems. Key for Constraints Shake kernels: A=read, B=write, 
C=gather_dv_scatter_hs, D=gather_hs_scatter_dv, E=k1_th, F=k1_bh, G=correct_positions, H=initialize, 
I=insta. 

 

It should be noted that there is room for further optimisation of the DL_POLY_OpenCL code 
to achieve better performance for particular accelerators. Further OpenCL porting of the 
CUDA+OpenMP features will be advantageous and the WCNS team will carry this out in 
PRACE-2IP WP12.2. 

A B C D E F G
Constraints Shake kernel

0

0005

0.001

0015

DL_POLY_CUDA S2050
DL_POLY_OpenCL S2050
DL_POLY_OpenCL AMD

H I
Constraints Shake kernel

0

1

2

3

4

5

6

DL_POLY_CUDA S2050
DL_POLY_OpenCL S2050
DL_POLY_OpenCL AMD



D7.2.2 Final Report on Collaboration with Communities 

PRACE-1IP - RI-261557  25.06.2012 17

3.1.2 Other activity analysis of DL_POLY_4 and collaboration with the Community  

In addition, the activity under Task 7.2 included two collaborations with organisations that 
were not funded under PRACE, but are contributing to the petascaling of the DL_POLY code. 
This work has not yet generated any major results that can be reported in a white paper but the 
collaborations have started work. The projects are: 

1. A project (funded by the UK EPSRC) which will involve re-engineering all 
numerically intensive routines of the package in order to exploit the fine grain 
parallelism and shared memory structures of modern multi-core node architectures 
(openMP hybridisation). The partner in this is NAG Ltd., based in Oxford. 

2. A collaboration with the "Molecular Systems" Simulation Lab at FZ-Julich to test and 
evaluate the FMM of their library ScaFaCoS (http://www2.fz-juelich.de/jsc/scafacos/) 
within the DL_POLY code as an alternative of the DL_POLY DaFT library used in 
the smoothed particle mesh Ewald evaluation. 

Both projects use non-PRACE funding sources and the activity is done in strict cooperation 
with PRACE Task 7.2. 

Work on the OpenMP hybridisation started in November 2011 and is planned to deliver a 
final product in November 2012. Preliminary data and benchmarking on HECToR 
(http://www.hector.ac.uk/) indicate that the critical regime of small number of particles per 
core in pure MPI parallelisation can be up to 8 fold improved with the hybridisation. The 
current prototype was also successfully compiled and run on a MIC card without any 
modification. A release of the first iteration of this work is planned for July 2012. 

Ivo Kabadshow from Julich visited Daresbury Laboratory in February 2012 and spent a week 
with Ilain Todorov on learning DL_POLY and designing a call to FMM in ScaFaCoS that 
complements the DL_POLY data structures. The preliminary results show that the most 
expensive operation is adapting the data from DL_POLY to ScaFaCoS format which renders 
this expensive for conventional system sizes over large processor counts. However, the 
investigation continues. 

It was not possible, since the organisations are working involving partners outside PRACE, to 
guarantee delivery within the timescale of PRACE-1IP but it is still expected that these 
activities will deliver enhanced petascaling of DL_POLY on PRACE systems over the next 
12 months. 

3.2 DALTON 

The DALTON project brought together a number of institutions with plans to work on two 
distinct versions of the DALTON package. The work included both petascaling optimisation 
performance analysis and support for QM/MM calculations in the ChemShell package. 

3.2.1 Petascaling and Performance Analysis of Dalton on Different Platforms 

Supported by: Simen Reine,Thomas Kjærgaard, Trygve Helgaker (UoO, Norway), Olav 
Vahtras, Zilvinas Rinkevicius, Bogdan Frecus (KTH, Sweden), Thomas W. Keal, Andrew 
Sunderland, Paul Sherwood (STFC, UK), Michael Schliephake, Xavier Aguilar, Lilit Axner 
(PDC, Sweden), Maria Francesca Iozzi, Ole Widar Saastad (UoO, Norway), Judit Gimenez 
(BSC, Spain) 
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The activities have been organized into four tasks within the PRACE activity, and we will 
provide a short summary of each: 

1) Analysis of the current status of the Dalton code and identification of bottlenecks, 
implementation of several performance improvement of Dalton QMM and first 
attempt of hybrid parallelization;  

The optimizations in the application code focused on the part for the calculation of the 
molecular properties, that is, the calculation of the response function. These function values  

 
consist of several contributions from different modelling approaches like quantum mechanics 
or density functional theory. 

The bottleneck in the communication between master and worker processes has been removed 
through the introduction of a "team of masters" (see Figure 7). Before the optimization, all 
workers took part in the computation of every contribution to the response function although 
all these different contributions can be calculated independently and in parallel.  

Now after the refactoring, the available set of workers is partitioned into groups that need to 
compute only one contribution. Every group has a size adapted to the computational work 
needed for the calculation and its own master that collects the results. A substantial ease of the 
master's workload can be reached in that way. Smaller worker groups dealing with only one 
task lead to shorter waiting times for point to point communications as well as less complex 
and shorter collective communications. Furthermore, multiple workers can communicate at 
the same time realizing better use of interconnect and a higher degree of parallelism. The 
collected contributions are finally exchanged between the masters, which also compute the 
response function and initiate a new iteration until the convergence is reached. 

The original program version scales until 512 cores (see Table 4) and provides a parallel 
efficiency around 50% (see Figure 8 and  

Figure 9 ). Almost no speedup can be gained beyond this number of nodes. The optimized 
version, on the other hand, now runs up to 1024 cores giving a parallel efficiency around 50% 
or more. We found that our optimized version has increased its average computation time 
from the initial value of 70% for workers to 86%, reducing its average MPI time from around 
30% to 14%. 

 

Figure 7: "Team of masters" communication model in Dalton 
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Figure 8: Parallel speedup of Dalton 

 
2)  Implementation of MPI integral components into LSDALTON, improvements of 

optimization and scalability, interface of matrix operations to PBLAS and 
ScaLAPACK numerical library routines;  

 
The MPI parallelization approach adopted in the LSDALTON code can be categorized into 
two main categories, which naturally follows the underlying quantum-chemical code structure 
that basically boils down to the evaluation of various molecular integral components and a 
number of matrix operations. Efficient integral evaluation requires highly specialized routines 
and as a result specially tailored parallelization strategies, whereas the matrix operations are 
obvious candidates to parallelize using externally developed libraries.  

For the analytical coulomb integral evaluation, we have developed our own MPI strategy 
where we divide the computations into tasks that rely on a priori predictions of the integral-
evaluation cost. Clearly our approach relies heavily on this partitioning scheme. The 
challenges with our scheme are twofold, namely to 1) give good time-estimates and 2) make a 
reasonable partitioning based on the time estimates. As such a significant amount of our time 
in this project has been devoted to ensure that both these two challenges have been addressed. 

The numerical quadrature used in quantum chemistry is based on a superposition of atomic 
grid points, and for efficient evaluation batches of grid points are evaluated simultaneously. 
The parallelization strategy adopted here is for each MPI node to evaluate a predetermined 
subset of these batches and the subsequent looping over these subsets is again parallelized 
using OpenMP. 

In addition to the integral-evaluation components, DFT relies heavily on linear algebra: for 
example for the energy optimization, molecular responses to external perturbations, geometry 
optimization routines and more. Although typically the matrix operations are not the time-
limiting factor of the LSDALTON code (for serial calculations) the computational time are in 
many cases still significant, especially for large molecular systems (comprising tens of 
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thousands of basis functions). In this project we have interface our matrix operations to the 
PBLAS and ScaLAPACK numerical library routines, with assistance from STFC (the Science 
and Technology Facilities Council) in the UK.  

We have also re-designed the integral code to enable a suitable memory-distributed format 
also for the analytical integral evaluation. This scheme relies on transformation between our 
memory distributed format and the ScaLAPACK format. These transformation steps have 
been implemented during the final phases of this project, but are not yet fully tested. 

To determine the performance and scalability of the LSDALTON program we have chosen to 
look at the valinomycine (168 atoms) and insulin molecule (787 atoms, 7604 basis functions). 
The examples given below are for insulin. The two molecules represent typical biochemical 
systems that we would like to investigate using the LSDALTON program, and for both 
molecules we have investigated the scalability of the different components of the code by 
performing typical Kohn-Sham energy optimization iterations using the pure DFT functional 
BLYP. All calculations have been conducted on the so-called ‘fat’ nodes on the Curie 
supercomputer, where each node consists of 4 eight-core x86-64 CPUs 

# cores regJ xc Dens Total Speed-up Ideal Efficiency 
256 3175 32 93 3300 1.0 1 100 
512 1682 20 68 1770 1.9 2 93 
1024 1004 15 49 1068 3.1 4 77 
2048 599 12 131 742 4.4 8 56 

Table 4: Hybrid MPI/OpenMP for insulin using BLYP/cc-pVDZ with no density-fitting 
(Timings in seconds). 
 

 
 

Figure 9: Speedup of Dalton for different components as a function of the number of cores 
 

3) Interfacing the DALTON and LSDALTON QM codes to the ChemShell QM/MM 
package and benchmarking of QM/MM calculations using this approach;  

A QM/MM scheme was successfully implemented for both. The benchmark system was a 
QM/MM model of the enzyme p-hydroxybenzoate hydroxylase (PHBH). The model consists 
of the protein, the oxidized form of the co-factor flavin adenine dinucleotide, substrate p-
hydroxybenzoate and a surrounding shell of solvent molecules, giving a total of 22,748 atoms. 
Three QM regions were considered in order to test how the MPI scaling changes with system 
size. Region A consisted of the substrate, part of the co-factor and a neighboring amino acid 
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residue (no. 293). Region B consisted of region A plus the rest of the co-factor. Region C 
consisted of region B plus several more amino acid residues (nos. 294-298). 

As the exact exchange routines had not yet been optimized in the latest LSDALTON build, 
the benchmark calculations were performed with the BLYP GGA functional. In all cases the 
TZVP basis set (“Turbomole-TZVP”) and the df-def2 auxiliary basis for density fitting was 
used.  

It was not possible to run baseline single MPI process benchmarks for all three regions due to 
the excessive wall time required, and therefore we compare parallel efficiency indirectly using 
“speedup compared to running with half the number of MPI processes” which we denote 
“S(N/2)” in the table. If ChemShell and LSDALTON were ideally parallelized S (N/2) would 
be 2 for every doubling of the number of MPI processes.  

The S (N/2) measure is quite volatile, but does give some indication of the relative parallel 
scaling behavior for each QM region. Because the LSDALTON calculation is the dominant 
factor in the scaling results, the S (N/2) results for LSDALTON are almost identical to S 
(N/2) for ChemShell as a whole. In Figure 10 we plot the LSDALTON S (N/2) scaling for all 
three QM regions. 

 
Figure 10: LSDALTON S (N/2) scaling for the 3 QM regions 

 
4) Analysis of the impact of Dalton QMM system components with Dimemas. Part of 

the results reported here have been achieved through the collaboration with 
ScalaLife project. 

The goal of the parametric study has been to evaluate the sensitivity to different architectural 
parameters. We have focused on 3 parameters that we considered may be the more relevant. 
The two first parameters, network latency and bandwidth will allow us to evaluate the 
network requirements of the code, and estimate the penalty if we move to a machine with a 
low latency network and to measure the potential benefit from moving to a better network. 
The third parameter we call the CPU ratio and corresponds to the speed-up when using more 
processors in parallel. 

The results are shown in Figure 11 – 13 and correspond to the variations of two parameters 
while keeping the third one constant. Figure 11 corresponds to the scenario with a fixed 
latency of 4 microseconds that is quite similar to the current latency on the machine used to 
obtain the trace file. We can see how both the CPU ration and the bandwidth have an impact 
on the achieved speed-up. With networks slower than 512MB/s there would be no benefits on 
the code even if the processor is 64 times faster than the current machine. On the other hand, 
to see significant benefits on the bandwidth at least an 8 times faster CPU is required. This 
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last observation indicates the importance of optimizing or parallelizing the current sequential 
computations to benefit from future faster networks. 

 

 
Figure 11: Fixed latency at the variations of 2 parameters keeping the third one constant 

  
Figure 12 corresponds to the scenario with an improved processor 8 times faster than the one 
used for obtaining the trace file; this scenario focuses on the impact of improving the 
computing time with no changes on the network requirements. The first observation is that 
while with the previous scenario we were able to obtain a speed-up up to 50 times faster than 
the current execution, here we obtain only a factor of 8. Again this is indicating a problem 
with the computing regions. The fact that all the combinations have a speed-up over the 
reference execution is because of the 8 times faster processor. We can see that in this case 
there is almost no impact from variations of the latency. Only when the bandwidth is greater 
than 4GB/s can we start to see a very small benefit from reducing the latency. We can see the 
benefits of increasing the network bandwidth in this scenario but also we see that with 16GB/s 
it is starting to reach the plateau. 

 
Figure 12: Impact of improving the computing time with no changes on the network requirements 
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Figure 13 corresponds to the scenario with a fixed bandwidth of 1GB/s that is quite similar to 
the current bandwidth on the machine used to obtain the trace file. Again we can see almost a 
plain behavior when changing the latency with the fixed bandwidth except for the cases of 32 
and 64 times faster CPU where a latency of 16 microseconds reduces the performance. In this 
scenario, the improvement of the processor speed goes up to 16 indicating that may be 
important to consider reducing the network requirements if the current serial codes are 
optimized for instance porting the code to accelerators.  

 
Figure 13: Changing the latency with respect to a fixed bandwidth. 

 
The scenario with a fixed bandwidth of 1GB/s is quite similar to the current bandwidth on the 
machine used to obtain the trace file.  

3.2.2 Conclusions  

The work to reengineer the software architecture of DALTON allowed the use of high-level 
parallelism that is part of the numerical model in the program. The implementation used so far 
is for the parallel computations to be employed for the calculation of each contribution to the 
response function. However, the scaling of these single contributions is limited at the 
moment. The modification of the master-worker design pattern to a team of masters allows 
several contributions to be calculated at the same time and increases the scalability of the 
application accordingly. 

For the LSDALTON code we have demonstrated good scalability up to 2048 cores for pure 
DFT calculations, through the development of MPI integral components, utilizing a newly 
developed task partitioning scheme, and through the interface to the PBLAS and 
ScaLAPACK numerical library routines. We have thus established the main code framework 
and strategies to exploit parallelism at all levels of the code, and thanks to the PRACE 
community we have learned useful tools for future developments. The results presented 
clearly show that we are well on our way toward peta-scaling capabilities. 

The LSDALTON and DALTON QM codes have also been successfully interfaced to the 
ChemShell QM/MM package with both binary and directly-linked interfaces. Through 
ChemShell, the Dalton codes have access to a range of MM approaches and supporting 
functionality to help enable flexible QM/MM modeling on PRACE systems. The 
LSDALTON interface also supports shared MPI communicators for advanced task-farming 
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parallelization techniques. Benchmark QM/MM calculations using ChemShell/LSDALTON 
achieve good scaling of up to at least 1024 cores. 
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4 Astrophysics, Cosmology, High Energy Physics and Plasma 
Physics 

The communities of Astrophysics, Cosmology, High Energy Physics and Plasma Physics 
widely use computational methods for their research activities, and, as a consequence, a 
consistent part of the resources available in PRACE Tier-0 systems are consumed from these 
groups. These communities in general develop by themselves new algorithms and techniques 
to improve the performance and scalability of their codes, and exploit the new Tier-0 
architectures. As reported in D7.2.1 [2], the requests which arrived from these communities to 
petascale codes of interest for them was quite limited. The process issued in Task 7.2 for the 
selection of codes to petascale, identified EUTERPE as the representative of these 
communities.  

4.1 EUTERPE 

EUTERPE is a gyrokinetic particle-in-cell (PIC) code for the global linear and non-linear 
simulations of fusion plasma instabilities in three-dimensional geometries, in particular in 
tokamaks and stellarators. The code provides good results both in linear and non-linear 
simulations of ion temperature gradient (ITG) instabilities carried out in screw-pinch 
geometry. It is at the forefront of plasma simulations and requires huge amounts of 
computational resources.  

The petascaling activity involving EUTERPE was mainly focused in the following directions: 
introduction of the hybrid parallelisation schema (MPI+OpenMP) to improve scalability, 
porting to heterogeneous architectures (GPU) and I/O performance.  

The activity done has been reported in two different white papers: “Evaluating application 
I/O optimisation by forwarding layers” (by Jan Christian Meyer, Jorn Amundsen, Xavier 
Saez) and “Euterpe” (by Xavier Sáez, Taner Akgün, Edilberto Sánchez). The first one 
analyses the I/O aspects and, being part of the activity in cooperation between Task 7.6 and 
Task 7.2, is described in [4]. The second describes the remaining activities and is summarised 
below.  

4.1.1 EUTERPE Optimization 

Supported by: Xavier Sáez (BSC, Spain), Taner Akgün (BSC, Spain)  

Collaborators: Edilberto Sánchez (Laboratorio National de Fusion, Spain)  
  
The original parallelization of EUTERPE was based on MPI (using only tasks). This has been 
extended by introducing OpenMP in the most time-consuming routines and developing a 
hybrid solver (mixing MPI and OpenMP) to solve the quasi-neutrality equation. We have 
focused our investigation on improving the solver and developed a more complex version 
using the Block Jacobi Preconditioned Conjugate Gradient method. The results suggest that 
the speedup is good, as shown in Figure 14. 
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Figure 14: Benchmark tests of the hybrid Euterpe code 

 
The next task was to port the code to the GPU architecture. We decided to start with the 
solver for the quasi-neutrality equation which allowed us to understand and test the CUDA 
framework. A more detailed analysis suggested that ‘particle push’ and ‘current deposition’ 
were the best candidates to port to accelerate the execution of the code. In particular, the 
particle push was the first choice, because there were no memory access conflicts as in the 
current deposition. It is possible that some unnecessary memory transfers are being done 
between the GPU and host, so this part requires further tuning.  

The performance of EUTERPE is also affected by the choice of parameters. An analysis of 
the following parameters has been done: the step size, the number of markers, and the grid 
size. The influence of them on the signal to noise ratio and energy conservation has been 
studied. 

EUTERPE also demands I/O processing, which may consume considerable time and can 
therefore potentially reduce speed-up at petascale, especially when checkpoints are activated. 
A study has been done to evaluate the feasibility of introducing I/O forwarding in EUTERPE 
to improve the performance. The study concluded that while a file creation bottleneck is 
observed, which can be reduced by user-space I/O forwarding, using the IOFSL forwarding 
software layer comes at prohibitive costs (see. “Evaluating application I/O optimisation by 
forwarding layers” by Jan Christian Meyer, Jorn Amundsen and Xavier Saez, [4] ). 
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5 Weather, Climatology and Earth Sciences  

The EC-EARTH 3 climate model was selected during the initial phase of the project, as it was 
proposed unanimously by the IS-ENES community, which represents the climate community 
across Europe. The NEMO model, one component of EC-EARTH, has been in the PRACE 
benchmark suite since the beginning of PRACE. Different IS-ENES community members 
have applied successfully for computing time to run EC-EARTH on Tier-1 systems. 
Furthermore, some other projects applied successfully for computing time on Tier-0 systems 
with climate models that use components of the EC-EARTH model. 

The SPECFEM3D seismic wave propagation model was selected due to its broad user base, 
with the added benefits that the developers are very helpful and that PRACE has had a good 
experience of SPECFEM3D. 

5.1 EC-Earth 3 

The EC-EARTH model is a global, coupled climate model that consists of the separate 
components IFS, for the atmosphere, and NEMO, for the ocean, that are coupled using the 
OASIS coupler. During a meeting between PRACE and IS-ENES in Paris in December 2010, 
different priorities were defined. The following activities were started by PRACE: a 
performance analysis, efficient mapping tasks and threads, investigate the use of CUDA, 
analyze I/O patterns,. Several activities were started, in this cooperation, by IS-ENES: 
validate and benchmark the OASIS4 coupler for EC-Earth and the design of an application for 
ensemble simulations. Furthermore, the STFC partner worked on the implementation of 
dynamical memory allocation and load-balanced domain decomposition in NEMO. 

The activity carried out by Task 7.2 in cooperation with the IS-ENES community is reported 
in the white paper Performance analysis of EC-EARTH 3.1 and summarized below. The white 
paper integrates and complements the results of white paper High Resolution EC Earth 
Porting, Benchmarking on Curie by Chandan Basu, documenting the activity done in the 
context of Task 7.5. Furthermore, it references the white papers called “Improving MPI 
communication latency on Euroben kernels” and “Analysis of 3DFFT on multi-GPU 
systems”, submitted as part of the Task 7.5 activity, since these papers are also relevant for 
EC-EARTH, but broader in scope. 

5.1.1 Performance analysis of EC-EARTH 3.1   

Supported by: John Donners (SARA), Chandan Basu (SNIC-LiU), Alastair McKinstry 

(ICHEC), Andrew Porter (STFC)  

Collaborators: Eric Maisonnave (CERFACS), Sophie Valcke (CERFACS), Muhammad Asif 
(IC3) , Uwe Fladrich (SMHI) 

EC_EARTH was initially ported and run on the Curie System. Different configurations, using 
resolutions from T159 (approx. 128 km) to T799 (approx 25 km), were available for 
benchmarking. Porting to the Curie system was relatively straightforward, probably helped by 
the fact that the software and hardware used on Curie resembles the system used for the main 
development of the code. On Curie, the MKL library can be used to provide better performing 
BLAS routines. The activity was done in strict collaboration with partners IS-ENES, in 
particular SMHI (the Swedish Meteorological Institute) was leading the development and was 
very helpful in getting the model ported and running on different architectures. The 
collaboration between different developers throughout Europe was organised efficiently 
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through a website that was used to host the software, share plans and have discussions about 
errors, etc. In addition bug reports were always answered, and solved, quickly.  
The IFS model consists of different modules, of which some are only run at certain intervals. 
The most important types of timesteps for our simulations are: computational, radiation, 
coupling, I/O, initialization and finalization. Although the I/O timesteps are the slowest and 
the least scalable, the main bottleneck for scaling of the highest-resolution configuration is the 
time needed for computational timesteps (see Figure 15). 

 

Figure 15: Parallel scaling for the IFS model. 
 

Scalasca was used to analyze the performance of the model in detail. The IFS model uses two 
MPI_Alltoallv calls per timestep and these dominate the loss of scaling at 1024 cores. An 
example program is provided to test the scalability of the MPI_Alltoallv call. This shows that 
the use of the OpenMP functionality in IFS could increase scalability considerably, but the 
computational performance using OpenMP does not yet improve on Curie. Another PRACE 
white paper shows that the MPI_Alltoallv performance on Curie is suboptimal. Work is 
ongoing to make MPI_Alltoallv more efficient on Curie. It is expected that I/O and/or 
coupling does become a bottleneck when IFS can be scaled further than 2000 cores. 
Therefore, the OASIS team increased the scalability of OASIS dramatically with the 
implementation of a radically different approach (OASIS3-MCT), showing less than 1% 
overhead at 2000 cores. The scalability of NEMO was improved dramatically during an 
earlier PRACE project with the implementation of a changed communication pattern and the 
round-robin distribution of MPI tasks across nodes.  

The I/O subsystem in IFS is described and is probably not easily accelerated unless it is 
rewritten and uses a different file format. The bottleneck for the I/O in IFS is not the disk 
activity itself, but the communication for redistribution and gathering of output fields. The 
Darshan tool was used to profile the I/O. Although the summary gives a nice first impression 
of the I/O activity, a more detailed analysis of the raw data is required to see the intensity and 
find specific bottlenecks. The CDO tool was found to be a bottleneck for post-processing 
large amounts of files. It was found that compiler optimizations, most notably SSE options 
and multi-thread support, will go a long way on the very regular operations in CDO. At an 
EC-EARTH meeting in Copenhagen in 2011 it was confirmed that CDO was not any longer 
the bottleneck in post-processing the data. 
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The IFS model uses a built-in routine FFT992 to calculate FFTs, which was replaced with an 
implementation to use the standard FFTW3 interface for 1-D FFT calls. IFS can now use 
standard external FFT libraries. This enables the use of the Intel MKL implementation of 
FFTW3 and the use of GPGPU hardware through the CUDAFFT-library. Testing is underway 
to find the performance gain for IFS using GPGPU hardware. 

There was no discernible difference in performance between using a block and a cyclic 
distribution of MPI processes across the Curie nodes. Since the OpenMP-version of EC-
EARTH on Curie was not faster than the MPI-only version, how to distribute a mix of MPI-
only and hybrid applications efficiently across nodes on different systems was not 
investigated. 

In the context of the collaboration with IS-ENES, the IC3 partner developed Autosubmit, a 
tool to manage and monitor climate forecasting experiments by using supercomputers 
remotely. It is designed with the following goals: efficient handling of dependent jobs; 
optimal utilization of resources; start, stop and monitor experiments; auto restart in case of 
failure; database for experiment history. The current version of Autosubmit has an object 
oriented design and has been developed in Python. 

5.1.2 Further work on EC-EARTH 3.1 

The three components of EC-EARTH (IFS, NEMO and OASIS) have been engineered to run 
as one MPMD program. Porting the EC-EARTH package to new architectures is quite 
complicated as the different components were developed separately by different development 
teams. This has been significantly simplified by the new compilation system in EC-EARTH 
3.1, which unifies the different build mechanisms into one XML file. The EC-EARTH model 
is ported to different architectures, including the Intel-based Curie system and the IBM 
Power6-based Huygens system (a Tier-1 cluster hosted by SARA).  

The porting effort led to several modifications in the build system. Different configurations 
with a resolution up to T799 for IFS and 0.25 degree for NEMO (about 25 km for both 
components) were tested on the Curie platform. Many parts of the IFS model are only 
activated at specific intervals and the time per timestep can therefore vary considerably. This 
is a complicating factor when looking for a balanced combination of IFS and NEMO tasks. 
The SCALASCA tool was used to separate the performance of each component. It is best to 
choose sufficient MPI tasks for the NEMO model, so it is fast enough to keep up with the 
shortest interval between two coupling timesteps in IFS. An analysis of the different timesteps 
in IFS shows that the computational timesteps (without radiation, coupling or I/O) are the 
bottlenecks for further scalability on Curie. The performance of the IFS model depends 
critically on the MPI_Alltoallv primitive, which is in general quite slow on Curie and does not 
scale beyond 1000 MPI tasks.  

A simple benchmark shows that the use of OpenMP in IFS could lower the MPI 
communication overhead. Although IFS supports OpenMP, we were not able to use it 
effectively on Curie. Although the OASIS coupler is not the major bottleneck, it is expected 
to be when the scaling increases. The OASIS team changed the coupled code from a stand-
alone program to a library linked with the IFS and NEMO components, which diminishes the 
coupling overhead (OASIS3-MCT). A built-in FFT routine in IFS was replaced with a generic 
call to the FFTW3-interface, which enables the use of platform-optimized FFTW-routines, 
e.g. MKL or CUDA.  

The distribution of MPI processes across the nodes does not change the performance. A 
description of the I/O subsystem in IFS is included as a first step to improve its I/O 
performance. The Darshan tool was used to get a good idea of the total I/O in EC-EARTH, 
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both of the genuine output files and logs. Different verbosity options were described to 
decrease the amount of metadata operations due to log updates. The development of a 
framework for ensemble simulations and a more flexible domain decomposition are also 
described. 

The collaboration with the IS-ENES community is continued in PRACE2IP WP8, addressing 
somewhat different subjects: OASIS3-MCT is further analyzed, an IO-server approach, new 
dynamical cores and advanced features for the NEMO ocean model (GPU port and fault 
tolerance). 

5.2 SPECFEM3D  

The code SPECFEM3D simulates seismic wave propagation based upon the spectral-element 
method (SEM). The SEM is a continuous Galerkin technique, which can easily be made 
discontinuous. SPECFEM3D has two modes of operation; it can perform either global (Earth-
scale) or local (continental-scale) simulations. The petascaling activity in this project focused 
mainly on the global earth version SPECFEM3D_GLOBE.  

The activity on SPECFEM3D_GLOBE has been done mainly in two directions: the design of 
a hybrid implementation (mixed MPI + OpenMP) and the study of a 3D domain 
decomposition to efficiently deal with complex meshing issues. The activity done has been 
reported in three white papers, summarised below. The first one describes the activity done in 
Task 7.2 for the 3D partitioning of the internal mesher; the second presents the hybridization 
activity, done in collaboration between Task 7.2 and 7.5, and the last paper describes a 
parallel fast BEM for the Helmholtz Equation as an extension of SPECFEM3D. The latter 
work is a collaboration between Tasks 7.2, 7.5 and 7.6. 

5.2.1 3D partitioning in SPECFEM3D internal mesher.  

 Supported by: Valentin Pavlov (NCSA) 
A new parallel acoustic simulation package has been created, using the boundary element 
method (BEM). The acoustical simulation relies on a Fourier transform of the seismic 
elastodynamic data, resulting from SPECFEM3D_GLOBE, which are then postprocessed by 
a sequence of solutions to Helmholtz equations, in the exterior of the globe.  

For the acoustic simulations BEM has been employed, which reduces computation to the 
sphere; however, the naive implementation suffers from quadratic time and memory 
complexity, with respect to the number of unknowns. To overcome the latter, the method was 
accelerated by using hierarchical matrices and adaptive cross approximation techniques, 
which is referred to as fast BEM.  

First, a hierarchical clustering of the globe surface triangulation is performed. The arising 
cluster pairs decompose the fully populated BEM matrices into a hierarchy of blocks, which 
are classified as far-field or near-field. While the near-field blocks are kept as full matrices, 
the far-field blocks are approximated by low-rank matrices. This reduces the quadratic 
complexity of the serial code to almost linear complexity, i.e. O(n*log(n)), where n denotes 
the number of triangles. Furthermore, a parallel implementation was done, so that the blocks 
are assigned to concurrent MPI processes with an optimal load balance.  

The novelty of this approach is based on a nontrivial and theoretically supported memory 
distribution of the hierarchical matrices and right-hand side vectors so that the overall 
memory consumption leads to O(n*log(n)/sqrt(N)), which is the theoretical limit at the same 
time. Figure 16 shows the scalability of SPECFEM3D with the original and modified internal 
meshers.  
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Figure 16: Scalability of SPECFEM3D with original and modified internal meshers. 
Original mesher does not scale further than 1500 cores due to time-step constraints. 

5.2.2 Hybridization of the SPECFEM3D_GLOBE 

Supported by: Marcin Zielinski (SARA), John Donners (SARA) 

The hybrid approach (MPI with OpenMP threads) has been implemented for the solver 
application. The code has been parallelized very efficiently with MPI, however, due to its 
nature the application uses entirely static arrays with fixed dimensions that renders the whole 
application inflexible in use. The application has been divided in two parts called the 'mesher' 
(meshfem3D), which creates the three-dimensional mesh of Earth, and the 'solver' 
(specfem3D), which calculates synthetic seismograms in that three-dimensional earth model.  

The split of the application between the mesher and the solver requires rerunning the 
preprocessing (mesher) when the number of MPI tasks changes, which also entails 
recompilation of the entire application. The application divides the three-dimensional mesh 
using five main parameters which are set explicitly by the user in the input file. The 
restrictions put on these parameters cause the inflexibility in choosing number of the MPI 
tasks, which can be also changed by the user himself. The hybrid version of the solver 
application adds more freedom to the number of parallel tasks that can run. Although not fully 
threaded with the OpenMP-approach, it is efficient for low numbers of OpenMP-threads. The 
implementation of the hybrid approach was a great occasion to discuss and better clarify the 
structure of the code with the main developers. 

5.2.3 A Parallel Fast BEM on Distributed Memory Systems for the Helmholtz Equation as 
an Extension of SPECFEM3D 

Supported by: Dalibor Lukas (VSB), Petr Kovar (VSB), Tereza Kovarova (VSB), Jan 
Zapletal (VSB) 

The SPECFEM3D package uses a parallel implementation of a variation of the Galerkin 
procedure called Spectral Element Method (SEM). The advantage of this method is that it 
produces a diagonal mass matrix which allows for quick, explicit solving of the seismic wave 
equations. The drawback is that using an explicit method the solver is not stable unless the 
Courant-Friedrichs-Lewy (CFL) condition for convergence holds, imposing a certain 
inequality relation between the time step and spatial size of the spectral elements. The internal 
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mesher provided with the package uses a partitioning approach that directly links the number 
of parallel solver tasks with the spatial size of the elements. For any given mesh, increasing 
the number of parallel processes leads to decreasing the element size, and via the CFL 
condition to decreasing the time step. This directly compromises the scalability of the solver 
by requiring more time steps for the same amount of work with no gain in performance. The 
goal of this project was to improve the scalability of the package by reconsidering the 
partitioning approach of the internal mesher. We have analyzed the existing approach and we 
have proposed a new one, based on using the SCOTCH partitioning library, already integrated 
in the workflow for solving the problem on externally generated mesh. Our results indicate 
that the modified partitioning scheme leads to substantial performance benefits for regional 
modeling with the internal mesher in petascale environments. We validate the results by 
running the examples included in the package and observe that the solver produces identical 
synthetic seismograms when run with meshes generated by the original and modified internal 
mesher.  

5.2.4 Conclusions 

A new parallel acoustic simulation package has been created, using the boundary element 
method (BEM). Several algorithmic optimizations reduce the quadratic complexity of the 
serial code to almost linear complexity, i.e. O(n*log(n)), where n denotes the number of 
triangles. Furthermore, a parallel implementation was done, so that the blocks are assigned to 
concurrent MPI processes with an optimal load balance. 

SPECFEM3D has been parallelized very efficiently with MPI, however, due to its nature, the 
application uses static arrays with fixed dimensions that render the whole application 
inflexible. The hybrid version of the solver application adds more freedom to the number of 
parallel tasks that can be run and it is efficient (at least for a low numbers of OpenMP-
threads). 

The SCOTCH partitioning library is used to create externally a modified partitioning scheme. 
This leads to substantial performance benefits for regional modelling in comparison to the 
internal mesher of SPECFEM3D in petascale environments. 
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6 Engineering and CFD 

In engineering and CFD (Computational Fluid Dynamics) different users, depending on their 
individual problems, use quite different software. For this reason the application community 
of engineering and CFD is not organised as a single community. 

In industry, codes from ISVs (Independent Software Vendors) dominate and usually the 
software vendors do not disclose the source code.  

Such ISV codes are often used in research groups, while software developed especially for 
individual needs, is also widely used in research groups. Nevertheless openly available codes 
are used both in industry and research. Typically, from this wide area, CFD programs have 
the highest requirements for computing power and consequently the highest demand for HPC 
systems.  

Only codes not bound by the disclosure limitations of ISV, were selected in Task 7.2. During 
our discussions we found that OpenFOAM and Code_Saturne, both from the CFD area, are 
the most widely used codes being openly available and requiring top level HPC systems for 
current problems in research and industry [2].  

6.1 OpenFoam 

The activity in OpenFoam planned in [2] was carried out by the following contributors: 

CINECA          Ivan Spisso, Massimiliano Culpo 
EPCC              Gavin Pringle 
HLRS             Joerg Hertzer 
LRZ               Orlando Rivera 
METU Turkey Murat Manguoglu 
NTNU              Bjørn Lindi 
ICHEC             Ivan Girotto, Michael Moyles, Peter Nash 

The OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox is a free, open 
source CFD software package originally produced by a commercial company, OpenCFD Ltd. 
While this project was running OpenCFD Ltd was acquired by SGI Corp. OpenFOAM has a 
large user base from most areas of engineering and science, from both commercial and 
academic organisations.  

The user and developers community is wide and active throughout Europe, the US and India. 
The project partners are in touch with different research groups working on relevant scientific 
and engineering cases which will benefit from the enabling of OpenFOAM on a Tier-0 system 
to make advances on their research activity. 

The core technology of OpenFOAM is a flexible set of efficient C++ modules. These are used 
to build a wealth of solvers, to simulate specific problems in engineering mechanics, utilities 
to perform pre- and post-processing tasks ranging from simple data manipulations to 
visualisation and mesh processing, and libraries to create toolboxes that are accessible to the 
solvers/utilities, such as libraries of physical models. 

Following deliverable D7.2.1 [2] priority of the work was given to bottleneck analysis. Both 
IPM (for analysis of computing performance) and darshan (for I/O analysis ) proved to be 
useful for this. Unexpectedly, the disclosure of the model used at the ICE Group at the Energy 
Department of Politecnico di Milano was not allowed. Therefore the work at CINECA 
concentrated on benchmark cases known to have similar performance characteristics to this 
case. In addition to the bottleneck analysis, some studies for performance and scalability 
improvements were done. 
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The parallelization of OpenFOAM is performed by means of MPI (Message Passing 
Interface). Applications and solvers in OpenFOAM are the same for serial or parallel 
execution. In parallel the master-slave configuration is used, where a small set of MPI 
functions are deployed; non-blocking and blocking send/receive functions and reduction 
functions are at the core of each solver. The whole communication system is encapsulated 
into a single library. Parallel optimization and analysis can be done within this library, and no 
extensive modification is required in other sections of the code. 

OpenFOAM’s parallel behaviour is not well understood when run on massively parallel 
systems. Scalability and efficiency of OpenFOAM is still an open debate, depending of the 
solvers and the input data. 

Because of the complexity of OpenFOAM, and because of different priorities of different 
project partners and community members, work on OpenFOAM was done in several groups. 
Therefore the results were reported in several white papers: 

 Orlando Rivera, Karl Fürlinger: Parallel Aspect of OpenFOAM in the solution of 
Turbulent Flows; 

 Murat Manguoglu: Parallel solution of sparse linear systems in OpenFOAM; 
 Massimiliano Culpo: Current bottlenecks in the scalability of OpenFOAM on 

massively parallel clusters; 
 Michael Moyles, Peter Nash, Ivan Girotto: Performance Analysis of Fluid-Structure 

Interactions using OpenFOAM. 

The activity reported in these white papers is the result of a close collaboration of Task 7.2 
with Task 7.5 (for improvements of algorithms) or 7.6 (for improvements of I/O). The work 
of Murat Manguoglu was mainly part of WP7.5 but is nevertheless reported here. 

Some other white papers, directly documented as part of the specific activity in Task 7.5 or 
7.6 are related to OpenFOAM. The white paper I/O-profiling with Darshan by Bjørn Lindi 
presented in [4] should be mentioned in this sense [10]. 

Some more work not mentioned in the white papers was done by Gavin Pringle (EPCC), 
mostly preparation of installations and test runs. HLRS continued with the coordination for 
the work on OpenFOAM. 
All test cases used are either established within the community or real applications selected 
from current usage. 

The results from the white papers are described in more details in the following sections. 

6.1.1 Parallel Aspect of OpenFOAM in the solution of Turbulent Flows 

Supported by: Orlando Rivera (LRZ, Germany).  

Collaborators: Karl Fürlinger (LMU, Germany) 

The test case used was a Large Eddy Simulation (LES). LES is based on the concept that 
small scale turbulence is isotropic and can be modelled, while larger turbulent and energetic 
eddies can be simulated. The backward-facing test case with a Re of 4800 with respect to the 
step height is used. The solver is called pisoFoam for LES, OpenFOAM version 1.7.x, and 
uses the Pressure Implicit solution by Split Operator method (PISO). At the sides of the 
domain, periodic boundary conditions are used, while top and bottom were set as non-slip 
walls.  
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Pressure equations were solved using the geometric-algebraic multigrid (GAMG) solver with 
3 pressure corrections. Other fields were solved with the Biconjugate gradient method (BiCG) 
solver. Tests were run over 100 time steps with output at every 50 time steps.  

Three meshes with different resolutions were used. The first mesh has 250, 96 and 64 cells in 
the x, y and z direction respectively. It contains 2.15 millions of hexahedrical cells while the 
second and third meshes contain 4 and 8 times more cells than the first mesh, respectively. 
256 MPI tasks were used on the 8 million-cell mesh, and 512 on the finer mesh. These meshes 
were used in weak scaling studies. 

The IPM (Integrated Performance Monitoring) application is a portable profiling and 
workload characterization tool for MPI applications and was used to gather profiling 
information. IPM minimizes drastically the overhead caused by application instrumentation 
and displays very detailed information at the same time. It makes important parameters visible 
beyond mere studies of scalability. IPM identifies bottlenecks, detects hot spots and collects 
statistics that help to optimize representative sections of the code. IPM was able to instrument 
OpenFOAM despite its complexity, i.e., the hidden MPI implementation, use of dynamic 
libraries and very complex C++ constructions; other similar tools were unsuccessful or 
provided unusable data. 

All tests were conducted in a massively parallel general purpose computer, an SGI Altix 
4700, with 9728 Intel-Itanium2 cores, a peak performance of 62.3 Tflops and 19 partitions 
connected by a high performance NUMA link interconnection. All runs, when possible, were 
restrained to a single shared-memory partition; in case a partition was not large enough, two 
partitions with the same number of cores were specified. The system was operated by the 
Leibniz Supercomputing Centre (LRZ). 

For the scalability test 16, 32, 64, 128 and 256 MPI tasks were used on the 2.15 million-cell 
mesh. All runs have the same setup and the domain decomposition was done with the Metis 
partitioner in order to have approximately the same number of cells per sub domain and to 
minimize the maximum connectivity of the sub-domains.  

 

Figure 17: Scalability for 16, 32, 64, 128 and 256 MPI Tasks. 

 

From Figure 17 we see that the pisoFoam solver has an acceptable scalability up to 64 MPI 
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tasks. However, with 128 and 256 MPI tasks the performance deteriorates. 

As described in more detail in the white paper some patterns and specific characteristics of the 
bottlenecks have been discovered. Some configurations are more suitable for scaling. One of 
these parameters is to specify the GAMG solver. 

This solver converges rapidly to a solution, faster than the BiCG, but its MPI footprint 
increases and become more evident with a larger number of MPI tasks. The scalability of the 
GAMG solver is limited up to a certain point (for these cases 64 MPI tasks). For finer meshes 
you can still deploy 512 MPI tasks using the GAMG, and despite its overhead, it is the 
sensible choice for BiCG. For further improvement an even more detailed investigation of the 
GAMG and its scalability issues is needed. 

A good partitioning and domain decomposition are vital in order to reduce the MPI time and 
number of visits of MPI functions. Metis is one of the most used graph-based partitioning 
implementations in many areas of science and engineering. However, a deeper knowledge of 
these implementations and their impact on the algorithm is required. Improved or new 
partitioning methods have to be developed to produce domains which are as balanced as 
possible.  

Simple theories of Volume/Area were insufficient here. These partitioning strategies have to 
take in account not only the number of elements, or communication area, but also locality, 
near neighbours, topologies, nodal and element weights, etc. The list of influential parameters 
is quite long but a decent trade off has to be found. 

All these findings would not have been possible without profiling and tracing tools. IPM was 
flexible enough to produce the required information (where other tools have failed) and at the 
same time it was concise and neat. 

6.1.2 Parallel solution of sparse linear systems in OpenFOAM) 

Supported by: Murat Manguoglu 

The most time consuming operation in CFD codes including OpenFOAM is the solution of 
sparse linear systems. This is more pronounced when the mesh is fine (i.e. the coefficient 
matrix is large). With the introduction of multicore processors and emergence of exa-scale 
clusters in which a single prcoessor contains many cores, it is essential to come up with new 
algorithms that are tolerant to the memory and cache hierarchies of these platforms and 
communication is mostly limited to be between the neighbouring nodes. Classical 
preconditioned iterative solvers, although scalable, are known to be not robust while direct 
solvers are robust yet they only provide limited scalability. 

We have recently developed a general sparse solver based DS factorization as opposed to LU 
factorization. The solver can be either used as a direct solver or as a solver for a 
preconditioned linear system where the preconditioner is obtained by ignoring small elements 
in absolute value. An inner and outer iterative scheme exists. The local solves are done in 
parallel using either a direct solver or incomplete LU factorization but it is possible to use 
sparse approximate inverse or other types of approximate solvers as well. 

The algorithm used is based on sparse DS factorization and called domain-decomposing 
parallel sparse solver (DDPS). 

OpenFOAM comes with the variety of preconditioners: Diagonal Incomplete-Cholosky 
(DIC), faster diagonal Incomplete-Cholesky (FDIC), diagonal Incomplete-LU (DILU), 
diagonal, and geometric-algebraic multigrid (GAMG). We note that the DIC, FDIC, and 
DILU are block jacobi type preconditioners (diagonal preconditioner is simple jacobi 
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preconditioner) and they do not consider the elements outside the off-diagonal blocks. 
Gemortric multigrid preconditioners are known to be fast. However, since they require some 
information about the geometry they are not applicable to all problems. Hence, algebraic 
mutligrid (AMG) preconditioners are developed to alleviate this weakness of geometric 
multigrid preconditioners. Algebraic multigrid preconditioners, however, lack strong 
scalability. The DDPS solver has several advantages compared to traditional direct and 
iterative methods. Perhaps the most significant one is that it is a hybrid solver that combines 
direct and iterative solvers. Hence, it is as scalable as most iterative solvers and as robust as a 
direct solver. 

The Lid Driven Cavity Flow was used as a test case. Due to the simplicity of the cavity 
geometry, applying a numerical method on this flow problem in terms of coding is quite easy 
and straight forward. Despite its simple geometry, the driven cavity flow retains a rich fluid 
flow physics manifested by multiple counter rotating recirculating regions on the corners of 
the cavity depending on the Reynolds number. We have extracted a linear system from the 
problem with Reynolds’s number of 5000 and using a mesh with 4 million unknowns using 
OpenFOAM v2.0.  

For the following numerical test Curie cluster located at CEA, France was used. Curie 
consists of 360 “fat” nodes where each node has 4 eight core Intel EX X7560 processors 
running at 2.26 GHz and 128 GB of memory. The nodes are connected with an InfiniBand 
QDR Full Fat Tree network.  

We have used the BiCGStab as the outer and inner iterative solver in DDPS. In Tables Table 
5 and Table 6, we present the parallel scalability of the DDPS solver using only MPI (Table 
5) and MPI combined with OpenMP (Table 6). We note that the algorithm is implemented 
such that it mostly relies on an efficient BLAS kernel. For both cases we use the Intel Fortran 
compiler and for BLAS we use single and multithreaded Math Kernel Library (both the 
compiler and MKL are part of Intel Composer XE ver. 2011.3.174), Bull MPI (ver. 1.1.10.1) 
with “-O2” compiler optimization level and “-openmp” to enable OpenMP threading. The 
hybrid runs are obtained by just enabling threads during runtime and using multithreaded 
version of MKL while the pure MPI runs use sequential MKL and one thread per MPI 
process. In both cases we use no more than 16 cores per node due to memory limitations. 
While the total solve time decrease as we increase the number of MPI processes up to 64 for 
the given problem size, it starts to increase beyond 32 processes for the MPI-OpenMP runs. 

The best time is obtained to be 1.55 seconds. If one, on the other hand, uses only MPI the 
scalability is not affected by the increase in the number of MPI processes and the best time is 
obtained to be 1.00 seconds. The most likely reason for the pure MPI implementation scaling 
better is the fact that the MPI processes run across a smaller number of nodes and hence the 
MPI communication is mostly handled via the shared memory. The hybrid implementation, 
however, places one MPI process per node and therefore the communication time starts to 
dominate the total time especially for large number of processes. If one considers the overall 
efficiency of the algorithm, we observe that the efficiency is higher if one uses only MPI even 
though it makes sense to use some number of threads when the amount of work per MPI 
processes is large (up to 32 processes for this test problem). We note that the factorization 
stage is not affected by increasing the number of threads per node which is not surprising as 
we use an unthreaded routine for it. Nevertheless, the factorization time is a very small 
fraction of time and it scales as one increase the number of partitions (i.e. number of MPI 
processes). 
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nodes processes  cores  factor solve total  
1 8 8 0,41 22,66 23,08 
1 16 16 0,20 19,38 19,58 
2 32 32 0,09 1,82 1,91 
4 64 64 0,03 0,97 1,00 

Table 5: Scalability of DDPS using one MPI process per core on Curie 
(given as wall clock time in seconds for factor, solve and total) 
 

nodes processes  cores  factor solve total  
8 8 128 0,37 7,06 7,44 

16 16 256 0,18 6,57 6,75 
32 32 512 0,09 1,46 1,55 
64 64 1024 0,03 3,71 3,74 

Table 6: Scalability of DDPS using 1 MPI process per node and 16 threads per process on Curie 
(given as wall clock time in seconds for factor, solve and total) 
 

part red. sys. size outer  avg. inner  rel.res  
8 3200 24,5 1,16 3,47E-11 

16 9600 24,5 1,19 2,57E-11 
32 32 26,5 1,83 1,27E-11 
64 96 28 1,72 2,65E-11 

Table 7: DDPS solver parameters using different number of partitions 
Size of the reduced system, number of outer iterations, average number of inner iterations and the final 
relative residual for DDPS solver using different number of partitions 
 

In Table 7, the reduced system size, number of outer and average inner iterations, and the 
final relative residual is presented. Both inner and outer numbers of iterations are very weakly 
dependent on the number of partitions.  

We have presented scalability results of DDPS algorithm for a sparse linear system extracted 
from OpenFOAM 3D lid-driven cavity test problem on Curie cluster. Pure MPI 
implementation performs and scales better than the MPI-OpenMP hybrid implementation. 

6.1.3 Current bottlenecks in the scalability of OpenFOAM on massively parallel clusters 

Supported by: Massimiliano Culpo (CINECA) 

Collaborators: Ivan Spisso (CINECA)   

To understand the scaling behaviour of OpenFOAM on the latest PRACE Tier-0 and PRACE 
Tier-1 computers we analyzed the scalability of two OpenFOAM solvers on problems that are 
considered to be good representatives for realistic production runs on Tier-0 systems. The 
tests have been executed on two computers: CINECA PLX (PRACE Tier-1 system) and 
TGCC Curie (PRACE Tier-0 system). OpenFOAM versions 1.6-ext, 1.7.1 and 2.0.0 have 
been installed both with GNU and Intel C++ compilers. The code has been instrumented 
with the Integrated Performance Monitoring library. 

Much effort has been devoted in establishing and maintaining contacts with the Italian 
OpenFOAM developer communities and with the Wiki head developer (Prof. Hrvoje Jasak). 
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Two test cases were used: The first one was the lid-driven cavity flow benchmark involving 
the solution (using the icoFoam solver) of a laminar, isothermal, incompressible flow in a 
three-dimensional cubic domain. All the boundaries are modelled as walls and are considered 
static, with the exception of the top one that moves in the x direction at a speed of 1 m/s. 
Notice that, despite its simplicity, this benchmark is of particular interest as it is widely 
employed at different sites for benchmarking purposes, thus permitting a direct comparison of 
different application set-ups. The second test case was the droplet splash benchmark involving 
the solution of a two-phase incompressible system that models the impact of a droplet against 
a wall. The solver being used is in this case interFoam. 

Checks proved that the observed performance does not significantly depend on the compiler 
used; also the overhead of the IPM instrumentation was found to have no significant 
performance degradation. The results clearly show that the size of the problems that can be 
handled on a HPC cluster lies far beyond the limitations imposed by smaller in-house clusters. 
Still, the scalability of OpenFOAM is such to permit a proper usage of Tier-1 rather than Tier-
0 architectures. Furthermore the computational performance on the single node is limited by 
the bandwidth to memory available on the node itself. As already pointed out in literature, the 
scalability and performance issues are both related to the sparse linear algebra core libraries. 
To motivate the last statement the Preconditioned Conjugate Gradient (PCG) method, was 
briefly analyzed as a representative of the class of Krylov subspace iterative solvers. The most 
relevant operations performed during each PCG iterative cycle are scalar products, 
preconditioning steps and matrix-vector multiplications. It is worth stressing that these 
operations are common to all the methods based on Krylov subspaces, and therefore their 
optimization will have a positive impact on the whole set of linear solvers. 

The conducted analysis suggests two orthogonal ways to improve the performance of 
OpenFOAM solvers. The first is the implementation of cache blocking techniques to reduce 
the number of cache misses in the core operations due to the random access patterns. This 
may require considerable effort as the basic matrix class must be revised to allow for the 
storage of small, contiguous blocks of scalar type as ”unit” entries of the format. The second 
approach is the modification of the basic linear algebra routines in a way that makes them 
multi-threaded. This will indeed mitigate the increase in the time spent inside MPI routines as 
well designed multi-threaded tasks can ideally exploit the resources provided by the largest 
shared memory portion of the machine. 
Preliminary results on PLX with the lid-driven cavity flow test case are shown in Figure 
18. As expected the best performance (29 sec.) obtained by the hybrid code is 20% faster than 
the best pure-MPI run (36 sec.) and occurs at double the number of cores. Notice that though 
these timings stems from an ad-hoc test case, they suggest that a more careful hybridization of 
the linear algebra core libraries may improve both the scalability and the usability of 
OpenFOAM on many HPC architectures. What could be expected in the best case for a 
production run is a substantial reduction of the intra node MPI communication and, as a 
consequence, a better scalability of the application. 

More extensive studies on this approach and on the effect of cache-aware storage formats will 
be conducted in the future.  
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Figure 18: Scaling results obtained on multiple nodes for the 100×100×100 cells case 
A diagonal preconditioner has been used instead of an Incomplete Cholesky Factorization for the PCG 
algorithm. 
 

6.1.4  Performance Analysis of a large scale Fluid-Structure Interaction  

Supported by: Michael Moyles, (ICHEC, Ireland) 

Collaborators: Peter Nash, Ivan Girotto - (ICHEC, Ireland) 

This study focused on a simulation provided by a CFD group within the National University 
of Ireland, Galway (NUIG). Their research focuses on understanding the turbulent scale of 
fluid interactions with a large, active research vessel – the “Celtic Explorer”. The model 
physics and domain remained entirely unaltered during preliminary scaling tests. The 
simulation was composed of mesh creation and decomposition, snapping the mesh to the 
CelticExplorer surface and then executing the interFoam solver over each subdomain. The 
solver and snappyHexMesh utility were found to be the most time consuming operations and 
so these were analysed individually. The interFoam tests were performed on the Tier-0 
machine, Curie, the results of which showed a significant performance increase up to 256 
cores but extremely poor scaling thereafter, see Figure 19. In a similar fashion to interFoam it 
demonstrated good performance increases but only up to 36 cores (best results found using 12 
cores). After 48 cores, the performance decreased dramatically. 
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Figure 19: Scaling of interFoam on Curie (top) and snappyHexMesh on Stokes (bottom) 

 
The two binaries were analysed individually. snappyHexMesh was found to be highly 
sensitive to domain characteristics, most notably the aspect ratio of the block mesh cells. The 
best performance was found for cells with an aspect ratio as close to 1:1:1 as possible. 
Remarkably, ~600,000 cells of even dimensions were found to converge about 15% faster 
than ~400,000 cells with a 7:2:2 aspect ratio. 
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Aspect Ratio # of Cells # of Domains Convergence 
(min) 

7:2:2 421,875 144 348 

1:1:1 655,360 144 295 

1:1:1 81,920 144 48 

Table 8: Affect of cell aspect ratio on snappyHexMesh scaling 

Using the I/O profiler, Darshan, the behaviour of the interFoam solver was profiled, the 
output shown in Table 9 and Figure 20. The most striking result from this exercise was the 
significant increase in the number of files read by the solver as the number of cores increases.  

The number of files written increased linearly with an increasing number of cores, as 
expected, and this behaviour was found to be controlled by the writeInterval in controlDict. 
Importantly however, lowering the interval with which the solver wrote to disk did not 
produce significant performance gains.  

 

# Cores  Walltime  Cumulative 
MetaData  

% of I/O 
in 
simulation 

# of File 
Created 

# of 
Files 
Read  

Average 
File 
Size  

# of Stat() 
calls  

64 686 64 9.3 512 1089 597K  500000

128 801 202 25 1024 2177 317K  10000000

256 890 274 31 2048 4353 163K  20000000

512 1161 389 34 4096 9729 84K  4400000

1024 2248 892 39 8192 17409 47K  8500000

Table 9: I/O Profile of interFoam using Darshan 
 

Table 9: I/O Profile of interFoam using Darshan 

 shows that as the percentage of I/O in simulation increases the number of files read has a 
more dramatic increase than the number of files created. An analysis of the model set up 
found this to be due to an OpenFOAM function that controls modification during the 
execution of the solver – runTimeModifiable located in controlDict. In the existing set up (as 
used by NUIG) the enablement of this function told the solver to reread all dictionary input 
files at the start of each timestep – of which there are 4E03. As the model does not require run 
time modifications this feature was disabled and the scaling was rerun, the output contained in 
Figure 21.  

Overall, this study has shown that each OpenFOAM case must be considered independently 
when scaling is concerned. Although there have been cases within this paper that show 
petascaling of OpenFOAM to be a highly successful operation, we cannot apply a general set 
of rules to improve the performance of any one particular model. We have proven that there 
are measure that can be taken to ensure optimal performance is achieved within a model, but 
model geometry and functions used along with user output requirements can impede strong 
scaling of OpenFOAM. Nevertheless, if the user can enforce such measure without altering 
their studies then OpenFOAM will scale very well – certainly up to 264 cores as has been 
shown here.  

 



D7.2.2 Final Report on Collaboration with Communities 

PRACE-1IP - RI-261557  25.06.2012 43

 
Figure 20: Files read and written by interfoam for increasing cores 

 
 

 
Figure 21: Affect of runTimeModifiable on walltime of interFoam 
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For this model, optimal performance was achieved by executing snappyHexMesh over a 
subset of the cores used to execute the interFoam solver on. To do this, there must be two sets 
of decomposing instructions (decomposeParDict) and care must be taken to ensure the 
relevant binaries read the correct set of instructions. By executing snappyHexMesh over 12 
cores and interFoam over 264 we obtain the following speed up shown in .Table 10: Speedup 
of snappyHexMesh and interFoam 

 

Model snappyHexMesh 
walltime (min) 

interFoam 
walltime (min) 

Total walltime 
(min) 

Sequential 316 951 1267 

Optimised 28 341 369 

Table 10: Speedup of snappyHexMesh and interFoam 
 

6.1.5 Conclusions 

The work done by the partners involved in OpenFOAM performance was quite extensive and 
focused on different aspects. The activity took a lot of human resources, given the complexity 
of the software involved. Several performance bottlenecks of OpenFOAM have been shown 
and studied, like MPI communication, memory access (cache misses) and I/O. The activity 
was quite complex and the first steps for improvements were done and tested. Given the 
importance of the application code, both for academic and industrial activity at European 
level, the continuation of the scaling and optimisation activity in the next future is 
recommended. 

6.2 Code_Saturne 

It is estimated that a mesh of about 15 billion cells would be required to simulate by 
Computational Fluid Dynamics (CFD), and more specifically by Large-Eddy Simulation 
(LES), the flow in a full reactor of a power plant. Code_Saturne is a multi-purpose CFD 
software developed by EDF-R&D since 1997. It has been released as open source in 2007 and 
is now distributed under a GPL license. The code was originally designed for both industrial 
applications and for research activities in several fields related to energy production, and has 
been selected as part of the PRACE benchmark suite for the engineering community.  

Code_Saturne is based upon a co-located finite volume approach that can handle three-
dimensional meshes built with any type of cell (tetrahedral, hexahedral, prismatic, pyramidal, 
polyhedral) and with any type of grid structure (unstructured, block structured, hybrid). The 
code is able to simulate either incompressible or weakly compressible flows, with or without 
heat transfer, and has a variety of turbulence models. The main bottleneck in CFD applied to 
complex geometries, is the ability to generate large meshes and the time required for it.  

Alternative solutions exist, as for instance joining parts of a large mesh or splitting all the 
cells of an original mesh (also called mesh multiplication). Just to give an example, Figure 22. 
presents the contour map showing velocity variations in the liquid cooling fuel rods in a 
nuclear reactor, obtained with a Code_Saturne simulation. 
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Figure 22: Simulation of the velocities in the cooling liquid fuel rods in a nuclear reactor 

 

It is premature to aim at this stage for 15 billion cell meshes, but a 2 billion cell mesh has 
already been generated by a Code_Saturne joining procedure in 2011, the solver not being 
run.  

The activity related to Code_Saturne carried out in Task 7.2 focused mainly on three technical 
objectives:   

 generate meshes of more than 2 billion cells, 
 test the Navier-Stokes solver for LES, 
 run Code_Saturne on 60,000+ cores. 

The work performed on Code_Saturne by Task 7.2 in collaboration with Task 7.6 is reported 
in three white papers, one from Task 7.2 (C. Moulinec, A.G. Sunderland: Optimisation of 
Code_Saturne for Petascale Simulations) [10] and two from Task 7.6 (Turka, C. Moulinec, 
A.G. Sunderland, C. Aykanata: Code_Saturne Optimizations in Preprocessing, Pavla 
Kabelikova, Ales Ronovsky, Vit Vondraka: Parallel Mesh Multiplication for Code_Saturne) 
[4], [10]. 

Partitioning for hundreds of millions or even billions of cells needs to be undertaken in 
parallel as neither front-end machines nor cluster nodes have sufficient memory to perform 
this task serially. The parallel partitioner in Code_Saturne relies on a Space Filling Curve 
(SFC) algorithm based on the Morton approach, but other libraries might be used within 
Code_Saturne pre-processing stage, e.g. METIS 5.0, SCOTCH 5.1.12, ParMETIS 4.0.2 and 
PT-SCOTCH 5.1.12. Former tests conducted on Jugene with a 107M mesh [2] concluded that 
PT-SCOTCH produces better partitionings for Code_Saturne than ParMETIS and SFC 
(Morton). In order to prepare for the new generation of high-end machines comprising of 
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many nodes with many cores per node, Bilkent University has developed a hierarchical mesh 
partitioner based on graph partitioning between nodes (based on ParMETIS) and a fast 
partitioning locally between cores of the machine. This work was also undertaken within the 
PRACE-1IP WP7.6 project and is summarised in Section 6.2.3. 

6.2.1 Optimisation of Code_Saturne for Petascale Simulations 

Supported by: C. Moulinec (STFC, UK ), A.G. Sunderland (STFC, UK)  

Collaborators: P. Kabelikova (VSB, Czech Republic), A. Ronovsky (VSB, Czech Republic), 
V. Vondrak (VSB, Czech Republic), A. Turk (BU, Turkey ), C. Aykanat (BU, Turkey) , C. 
Theodosiou (AU, Greece) 

This white paper included an overview of the complete project and used the outputs from the 
WP7.6 Code_Saturne projects described in the sections below to undertake a performance 
analysis of very large scale datasets on the PRACE Tier-0 machines. 

The main test cases consist of Large-Eddy Simulations in a bundle of staggered-distributed 
tubes, the configuration obtained by multiplying an elemental configuration containing a 
whole tube in its centre and four quarter of tubes in the corners. The elemental configuration 
contains about 13 million (13M) cells (the 2-D cross-section has 100,040 cells and 128 layers 
are used in the third direction). 

The two PRACE Tier-0 machines available within Task 7.2., i.e. Jugene and Curie have 
diverse architectures, the first one with 4 cores and 2GB RAM per node and the second one 
with 32 cores per node and 128GB RAM per node. Unfortunately the size of the jobs to be 
run on Curie is currently limited to a maximum of 2,048 processors, which prevents testing 
the code at scale. For these reasons, it has been decided to first compare Code_Saturne 
performance on Jugene and Curie, before running the largest simulations on HECToR (a Cray 
XE6 machine), where runs of up to 65,536 cores can be undertaken. 
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Figure 23: Code_Saturne performance on Jugene, Curie and HECToR 
 (a - top) Code_Saturne performance on Jugene, Curie and HECToR for 51M and 204M meshes and (b - 
bottom) performance for 51M, 204M and 816M meshes when PT-SCOTCH, ParMETIS and SFC are 
used as partitioners . 
 
The performance of Code_Saturne is assessed on the three machines for the 51M and 204M 
cell mesh cases and results are presented in Figure 23 (a). A performance speed-up is 
observed in all the cases, even when going from 16,384 to 32,768 cores on Jugene. This 
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comparison also demonstrates Code_Saturne’s portability on machines with various 
architectures, and compilers. 
Figure 23 (b) shows the performance for the 51M, 204M, 816M and 3.2B cell meshes on the 
Cray XE6. Overall, best performance is usually achieved by PT-SCOTCH for the 51M, 204M 
and 816M case. Up-to-now only the SFC partitioning tool could be used for the 3.2B case. 
Code_Saturne was run on that case up to 65,536 cores and a speed-up was observed going 
from 32,768 to 65,536 cores. 

6.2.2 Parallel Mesh Multiplication for Code_Saturne 

Supported by: Pavla Kabelikova, Ales Ronovsky, Vit Vondrak (VSB, Czech Republic) 

The main bottleneck to enable petascaling of Code_Saturne is the time required to generate 
large meshes. This is the case even for relatively modest sizes, e.g. 10 million cells, if the 
geometry is very complex and boundary layers have to be meshed. Therefore it is obvious that 
mesh generation of billion of cell meshes has to be parallelized, but no open-source parallel 
mesh generators are yet available. Therefore other routes must be followed and the one 
proposed by Code_Saturne developers deals with parallel global mesh refinement (or mesh 
multiplication), i.e. an initial mesh of about 100 million cells would be read by Code_Saturne 
and then each of its cells would be split. This process could be repeated several times in order 
for the Navier-Stokes solver to run on a several billion cell mesh, while post-processing 
would be carried out on the initial 100 million cell mesh. 

This project has developed a parallel mesh multiplication package and integrated this to 
Code_Saturne in order to extend its capability to generate more than billion cell meshes. In 
the corresponding whitepaper the basic ingredients of implemented parallel mesh 
multiplication package are detailed and its performance and scalability tests on a local cluster 
at VSB-TU Ostrava (ComSio) and on Curie system are presented. 

 

 

 

 

 

 

 

 

 
Figure 24: Subdomain mesh refinement 
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The subdomain mesh multiplication, shown in Figure 24, has been processed by our 
multiplication algorithm. The mesh refinement is executed in parallel on distributed parts of 
the mesh and it is done in local variables. During the final re-indexation of global mesh nodes 
indices, the special care has to be concentrated on faces on the subdomain interfaces that are 
shared with more processors. Very fine meshes can be obtained applying implemented mesh 
multiplication algorithm recursively. If required, the next levels of refinement can be 
processed in the same way as the first level. 

 
Table 11: Parallel Performance of Mesh Multiplication Method 
 
The performance tests summarised in Table 11 demonstrate the good parallel scalability of the 
presented solution. Using the Curie cluster, we have obtained a refined mesh with more than 1 
billion cells, vertices also, in less than 30 seconds.  

Future improvements to optimize global indexation using other Code_Saturne internal 
structures and/or methods can lead to more effective computation of very fine meshes in 
smaller memory and communication requirements than now. 

In the future work, the multiplication of other types of meshes would need to be implemented 
to complete the full mesh multiplication functionality. While the multiplication of tetrahedral 
and prismatic meshes is straightforward and can be done very easily extending implemented 
package with tetrahedral and pyramid multiplication, the refinement of pyramidal or hybrid 
meshes needs some more effort. 

6.2.3 Code Saturne - Optimizations in Preprocessing Step 

Supported by: A. Turk, C. Moulinec, A.G. Sunderland, C. Aykanat 

In this work, the efforts towards understanding and improving the pre-processing subsystem 
of Code_Saturne are described, and to this end, the performance of different mesh partitioning 
software packages that can be used are investigated. 

Previous studies show that sequential graph partitioner MeTiS [14] provide the best results in 
terms of reducing the average time spent in a timestep of Code_Saturne. However, MeTiS has 
problems in partitioning into 64K parts or more. Furthermore, for sufficiently large problems, 
the memory requirements of MeTiS far surpasses the memory available, even in fat nodes. In 
this document, the efforts towards understanding and improving the preprocessing subsystem 
of Code Saturne are described, and to this end, the performance of different mesh partitioning 
software packages that can be used have been investigated.  

Analysis conducted during the studies reported in this document reveal that, for medium sized 
meshes, if the time spent for partitioning is not important, the usage of sequential SCOTCH 
[16] can be considered, since it provides reasonably good partitions with relatively low 

Parameters of given mesh Number of used cores

32 cores 64 cores 128 cores

 time [s] no. of vertices  time [s] no. of vertices  time [s] no. of vertices

0 16320 18070 <0.1 850 <0.1 550 <0.1 280

3 8.4M 8.5M <0.2 280k <0.1 150k <0.1 76k

4 66.8 66M 1.5 2.2M <1 1.1M <1 600k

5 0.5B 0.5B 12 17M 6 8.6M 3.8 4.4M

6 4.3B 4.3B --- --- --- --- 28 34M

level of 
refinement 

no. of 
cells

no. of 
vertices
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memory requirements and can easily scale to 128K and beyond on a single fat node. As the 
mesh sizes that are to be partitioned reaches to billion-cell meshes, even the mesh generation 
has to be performed in parallel via parallel mesh generators. Thus, both in order to adjust to 
memory constraints and to avoid migration of data, the partitioning has to be done in parallel 
as well. To fit such large meshes in the memory of cluster nodes, the mesh has to be 
partitioned into very large number of cores. Unfortunately, the partitioning performance of 
parallel graph partitioning packages such as Par-MeTiS [15] and PT-SCOTCH decrease with 
increasing number of cores used in the partitioning process. To address this problem we 
propose to utilize a two-level hierarchical partitioning scheme that enables the usage of 
different partitioning schemes in each level. We investigate the different partitioning packages 
that are supported in Code Saturne and also propose a hierarchical partitioning scheme 
utilizing Zoltan [17]. We analyze aspects such as memory requirements, load- balancing 
performance of partitioners and the effect of partitioning quality over the runtime of Code 
Saturne.  

A two-level hierarchical partitioning scheme that enables the usage of different partitioning 
schemes in each level is investigated as an alternative to the partitioning tools supported by 
Code Saturne. The proposed hierarchical partitioning scheme utilizes the Zoltan partitioning 
framework for combining different partitioning schemes. In this scheme, the graph is first 
partitioned into a quotient of the desired number of parts in the first level, and then, in the 
second level, each subgraph is separately partitioned further to obtain the final desired number 
of parts. In the first level of the hierarchical framework, the domain is partitioned using all the 
available cores into the number of available nodes via a graph partitioning tool such as Par-
MeTiS or PT-SCOTCH. This way, all the memory in the nodes can be used. In the second 
level of the hierarchy, each node independently partitions the data allocated to itself into the 
number of cores in the node. In this second level partitioning, graph partitioning tools such as 
Par-MeTiS or PT-SCOTCH can be utilized as well as cheap geometrical or random 
partitioning schemes since the communication between the cores of a node is much faster.  

Two different sets of experiments on two different datasets were conducted to compare the 
partitioning schemes and tools. In the first set of experiments we check the partitioning results 
of the tolls and in the second set of experiments we compare the execution time of Code 
Saturne when utilizing these partitions (see Table 12) using the SMALL dataset with 5.8M 
vertices. The tests for hierarchical scheme (HIER) are conducted on the BGP in STFC 
Daresbury since we wanted to preserve our quota in Jugene for the time we will have much 
larger (e.g. 2 Billion) meshes. In the runs for HIER, PAR-MeTiS is used in the first level to 
divide the graph in Number of parts/4 and then in the second level, Number of parts/4 
separate calls are made to PAR-MeTiS to divide each subgraph into 4. 

 
# of parts HIER (s) MeTIS (s) SCOTCH (s) ParMeTiS (s) PT-SCOTCH (s)

256 13.45 12.37 12.10 12.76 12.51 
512 7.64 5.92 7.04 7.23 7.14 
1024 4.96 3.87 4.64 4.91 5.01 
2048 3.59 3.21 3.26 3.38 3.45 
4096 3.07 2.52 2.52 2.71 2.60 

Table 12: Runtime per timestep (seconds) of Code Saturne 
The partitions are obtained by partitioning the SMALL dataset with HIER, MeTiS, SCOTCH, 
PARMeTiS and PT-SCOTCH. 

An analysis of Table 12 shows that the hierarchical scheme has slightly higher runtime per 
timestep values when compared to other schemes, but it has the potential to be able scale to 
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much larger number of cores then PAR-MeTiS and PT-SCOTCH so it is still interesting to 
investigate this scheme. 

Collected experimental results indicate that proposed hierarchical scheme performs slightly 
worse than classical schemes but its advantages in partitioning into larger number of parts still 
make it a viable approach. Our future work includes improvements in the quality of the 
partitions obtained via our hierarchical scheme and analysis on much larger number of cores. 

6.2.4 Some Conclusions 

This project on Code_Saturne has demonstrated that the code is ready to run on petascale 
machines, as shown by the speed-up observed going from 32,768 to 65,536 cores for a 3.2B. 
The objectives of this project have been fulfilled, as 2B cell meshes had to be handled by the 
code and its performance has been assessed on 60,000+ cores. This work has also strongly 
benefited from two other projects carried out within PRACE-1IP WP7.6, the first one lead by 
VSB concerning mesh multiplication, and the second one by Bilkent University based on 
developing a hierarchical partitioning tool. Future work will involve testing the code on larger 
meshes, of up to 12-15B cell and assessing Code_Saturne scalability in the mixed mode 
MPI/OpenMP. 

This work will enable the use of higher Reynolds numbers in simulations using a highly 
accurate LES model, allowing the study of significantly more realistic flows (closer to 
industrial ones). The functionality in the code remains available for both very large 
simulations and small ones (even serial), and can still be used by researchers who have only 
limited access to HPC computational resources. 
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7 Collaboration with Communities  

Task 7.2 established a strong cooperation with the scientific communities to cooperate to 
enable new challenging HPC applications of their interest and that, once optimised, can be put 
at disposal of the whole scientific community. The activity was issued with both independent 
and structured communities. 

7.1 Independent Communities  

The independent communities are identified by groups of scientists investigating specific 
research topics, characterised by the use of similar application codes and adopting a common 
investigation methodology. Identifying these communities around Europe is not easy as 
usually specific governance rules and research programmes are not defined between the 
groups of scientists involved in the communities. In many cases these communities are 
identified with the suites of computational codes used. In this sense, task 7.2 working with the 
owners of codes GROMACS, Quantum ESPRESSO, GPAW and CP2K, sought to form 
collaborations with the Material Science and Life Science communities. The activity on DL-
POLY and DALTON allowed relationships with the computational chemistry community to 
be created. Other communities represented were those of fluid dynamics and plasma physics. 

During the activity of the project, Task 7.2 continued to further improve contacts with other 
independent communities astrophysics and computational cosmology, in particular. A small 
set of numerical HPC codes for cosmology has emerged in Europe: Dr. Volker Springel and 
the Virgo Consortium have developed a code named Gadget-2 which belongs to the PRACE 
benchmark suite. The version of the code available to the public is not up-to-date, so it was 
decided to not put effort in this application. Currently, the full-physics state-of-the-art version 
of the code (Gadget-3) is essentially distributed among the Virgo Consortium collaboration, 
which is the main organized body in the Computational Cosmology community. Currently 
many different versions of Gadget-3 are distributed, each of which having some different 
physical modules. Contacts have been established in order to try to set up a fruitful 
collaboration, but till now only few groups of Gadget-3 users have agreed to cooperate closely 
with us. Thus, it was not possible to form an explicit collaboration with the community in 
time to actively work on the code before the end of the Task 7.2.  

The lack of time and the difficulties in finding the right representative of the community did 
not allow further collaborations with other independent communities , like the Fundamental 
Physics community, to be consolidated. 

 

7.1 Structured Communities 

Task 7.2 established collaborations with structured communities to investigate their 
applications for exploiting efficiently the PRACE Tier-0 infrastructure. The collaboration was 
issued firstly with the IS-ENES community (https://is.enes.org) and the MAPPER project 
(http://www.mapper-project.eu) then with the ScalaLife project [7] and the VERCE project 
[8]. 

7.1.1 IS-ENES 

IS-ENES [5], promotes the development of a common distributed modeling research 
infrastructure in Europe in order to facilitate the development and exploitation of climate 
models and better fulfill the societal needs with regards to climate change issues. The 
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cooperation with the IS-ENES community was fruitful allowing to improve the scalability of 
the EC-Earth 3 suite, based on the IFS (atmosphere) and NEMO (ocean) models, coupled 
through the OASIS coupler code. The cooperation was a great occasion to allow IS-ENES 
researchers to work with PRACE experts of HPC methodologies. The activity and the results 
reached are reported in Chapter 5. Some of these codes are not well structured to scale 
efficiently on Tier-0 systems, so it was agreed to refactoring some codes in the perspective of 
using advanced HPC systems, continuing the collaboration with IS-ENES in PRACE-2IP. 

7.1.2 MAPPER 

MAPPER is a project funded by the EC in FP7 to develop computational strategies for 
multiscale simulations across disciplines, exploiting existing European e-Infrastructures. 
MAPPER has the objective to deploy a computational science environment for multiscale 
computing, cooperating with other research infrastructures and EU Projects. The cooperation 
between the MAPPER project and PRACE was issued firstly with WP6 to set up a test bed 
distributed infrastructure based on Tier-0, Tier-1 and grid infrastructures to test multi-scale 
applications of interest for MAPPER. Then some cooperation started with WP7 to evaluate 
possible forms of collaboration between the two projects in the context of scaling 
applications. The multiscale scientific applications of interest for the MAPPER community 
span over five challenging scientific domains: fusion, clinical decision making, systems 
biology, nanoscience and engineering. Task 7.2 analysed the codes proposed by MAPPER, 
some of them are already suitable for a Tier-0 environment and was suggest to apply for the 
PRACE Regular calls to get the computational resources. 

7.1.3 ScalaLife 

The ScalaLife project has the objective to develop new hierarchical parallelization approaches 
for codes of interest of the life science community. ScalaLife created a Competence Centre 
for scalable life science software. The cooperation with ScalaLife involved the petascaling 
activity in DALTON and GROMACS and allowed to further reinforce the common activity 
between the PRACE HPC experts and the main developers of the GROMACS and DALTON 
application codes. The petascaling activity and the results reached are described in details in 
Chapters 2 and 3.  

7.1.4 VERCE and EPOS 

The Earth Sciences community and, specifically the Geophysics community, are quite diverse 
and spreads across different disciplines and interests from earthquakes, to volcanology, 
surface dynamics and plate tectonics. Different research centres and national institutes are 
involved in specific research programs involving simulation activities using different models 
and applications. The earthquake and seismology research addresses both fundamental 
problems in understanding Earth's internal wave sources and structures, and augmenting 
applications for societal concerns about natural hazards, energy resources, environmental 
change, and national security. This community is central in the European Plate Observing 
System (EPOS), the ESFRI initiative in solid Earth sciences, recently consolidated in a 
research infrastructure.  

VERCE is an European project aiming at providing to the earthquake and seismology 
research community in Europe, a data-intensive e-Science and HPC environment. VERCE 
was interested in cooperating to the petascaling activity of seismological code like 
SPECFEM3D. The VERCE Community is cooperating with the EPOS RI.  
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The contacts between PRACE, VERCE and EPOS started only some months ago when the 
work on SPECFEM3D was almost completed. The scalability of SPECFEM 3D represents a 
major interest for VERCE and EPOS. Some information on the scalability of the code have 
been discussed with VERCE with the intent to support the community to apply for Tier-0 
resources in PRACE. 
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8 Summary  

Task 7.2 had the main goal of identifying opportunities to enable applications of interest of 
selected scientific communities and specific application projects. During the two-years life of 
the project, a long term collaboration was established with scientific communities interested 
in computational methodologies to facilitate their exploitation of PRACE Tier-0 systems. The 
collaboration involved both independent communities (groups of scientists investigating 
specific research topics and characterised by using similar application codes and adopting a 
common investigation methodology) and structured communities (groups of researchers 
carrying out research in the same scientific area at a European level, with a common 
governance, structure and specific research objectives). The latter communities involved are 
IS-ENES (meteo-climatology), MAPPER (multi-scale problems), ScalaLife (life science) and 
recently VERCE and EPOS for computational seismology.  

Eleven key application codes of value to these main scientific communities at European level 
have been first selected and then petascaled in Task 7.2. All the codes selected are European 
and cover the main computational disciplines: Molecular Dynamics, Material Science, Nano-
sciences, Computational Chemistry, Plasma Physics Meteo-climatology, Earth Sciences, 
Engineering and CFD.  

The petascaling actions in Task 7.2 covered a broad range of activities, from the identification 
of the bottlenecks and the lack of performance, to the optimization and restructuring of the 
algorithms and the data structures, to the implementation of smart parallelization 
methodologies, to the fine tuning of the codes and scalability tests on the Tier-0 architectures. 
Furthermore, a synergic cooperation was initiated with Task 7.5 and Task 7.6 to work on the 
codes with specific actions of their competence including; scalable libraries, hybrid coding on 
multi-many core systems and accelerators, parallel pre-processing, parallel and hierarchical 
I/O.  

The main chapters of the deliverable summarise the activity done and the achievements 
reached for each application code. The whole work is documented in 12 white papers directed 
by Task 7.2, plus other 9 prepared in collaboration from Task 7.5 or Task 7.6 in collaboration 
with Task 7.2. The white papers will be published on the PRACE RI web site and will be 
available for the scientific communities [10].  

The enabling activity allowed long-term collaborations to be established with the related 
communities and the owners of the codes, allowing fast progress to enhance new challenging 
applications that now can be made available to the whole scientific community to realise 
complex and innovative simulations on Tier-0 Systems. This result would not be possible 
without the close collaboration of the communities and the developers involved.  

Of course the activity carried out in Task 7.2 was not always easy and sometimes did not give 
the expected results, in terms of performance improvements and efficiency, or required more 
effort than initially planned. In addition, in some cases it was not trivial to integrate new 
algorithms and methods in existing production codes. 

However, the work resulted from the activity in Task 7.2 often achieved very positive 
outcomes for the owners of the codes and the communities. In some cases, the petascaling 
improvements have been incorporated as part of the official releases of the code (i.e. Quantum 
ESPRESSO, GPAW, DALTON) or the enabled code installed directly on the Tier-0 Systems 
(GROMACS, CP2K, Quantum ESPRESSO). In some other cases the positive collaboration 
will continue also after PRACE-1IP to improve and complete the undertaken activities. Some 
examples of continuing collaborations include: 
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- the OpenFOAM work on scalability will continue in PRACE 2IP-WP9 Industrial 
Application Support, given the interest for the industrial community to improve the 
OpenFOAM performances on Tier-0 and Tier-1 systems, based on the analysis and the 
achievements reached in Task 7.2.  

- A refactoring of Quantum ESPRESSO has been agreed in PRACE-2IP WP8 
Community Code Scaling to address the code toward the next generation of HPC 
Systems (i.e. Exascale).  

- The collaboration with IS-ENES community continues in PRACE-2IP WP8, 
addressing somewhat different subjects: OASIS3-MCT, advanced features for the 
NEMO ocean model, etc. 

In summary, the activity done in Task 7.2 produced a positive impact allowing eleven 
European flagship application codes of interest for the scientific communities to be optimised 
and ready for production on Tier-0 systems. It is worth noting that in different cases 
applications based on these codes have already been submitted successfully to the 4th PRACE 
regular access call and some other are under evaluation in the 5thcall, thanks to the work done 
in Task 7.2. 
  


