Evaluating the lifetime of expiratory COVID droplets

Visualization of COVID-19 droplets

The COVID-DROPLETS project, led by Dr Gaetano Sardina from Chalmers University of Technology, Sweden, in collaboration with Dr Francesco Picano from University of Padua in Italy, is investigating the lifetime of expiratory droplets released by individuals infected with SARS-CoV-2 (the coronavirus strain causing COVID-19). Surprisingly, the current recommendations to hinder the transmission of respiratory infectious diseases are based on a simple model developed 90 years ago.

Predicting structural elements in the SARS-CoV-2 RNA genome

The predicted three-dimensional structure of stem-loop 5a in the 5’ end untranslated region of SARS-CoV-2 RNA genome

The non-coding regions of SARS-CoV-2 RNA play a decisive role in viral replication. Kresten Lindorff-Larsen and Sandro Bottaro of the University of Copenhagen have been using molecular dynamics simulations to predict the structure and dynamics of these regions in the hope that this will enable the development of drugs that target them.

Investigating viral dispersion in enclosed spaces

Airborne droplet dispersion emitted by a person breathing during several minutes in a ventilated office.

The pandemic has caused us to re-examine many aspects of our lives this year. The CFDforCOVID project, led by Florent Duchaine of CERFACS, has been using fluid dynamics tools usually reserved for aeronautical engines to look at how the virus can spread in enclosed environments such as buildings and vehicles, with the aim of helping to turn them into safer spaces that reduce viral transmission.

Network modelling of SARS-Cov-2 transmission

SEIR network model

Modelling how infectious diseases spread is a complex process that involves not only understanding the virus itself, but also the behaviour of the people who are transmitting it. Rafael Villanueva of the Polytechnic University of Valencia has been leading a project that aims to ramp up the capabilities of his network models to provide a deeper understanding of the COVID-19 pandemic and eventually provide advice on the best vaccination strategies for the near future.

Using molecular dynamics to find drugs and vaccines for COVID-19

Overview of drug design process

Molecular dynamics simulations allow us to see into the hidden atomic-scale world that makes up everything we see. Understanding SARS-CoV-2 at this level is helping Vangelis Daskalakis of the Cyprus University of Technology to identify weaknesses in the virus that can be exploited and targeted through drugs and vaccines.

Model aggregating for epidemics

People provide information about their health using technology

Catalan-based company Mitiga Solutions uses supercomputers to provide early warnings to governments and business about natural hazards. Its recent foray into providing such information about infectious diseases has come at a time when the world needs it most, and it is now using PRACE resources to refine its methods for use on a global scale.

Analysing peptides for antiviral and anti-inflammatory properties

SARS-CoV-2 Main Protease

Irish company Nuritas has carved itself a niche in the world of drug discovery with its AI platform that analyses the therapeutic potential of thousands of naturally-occurring peptide sequences. With the onset of the COVID-19 pandemic, they are now putting all of their efforts into discovering peptides that can be used to mitigate the disease’s progression.

Investigating the impact of mutations in SARS-CoV-2

ACE2 variants of different virus strains

Molecular dynamics simulations are one of the best methods for quickly understanding the mechanisms of SARS-CoV-2. A project led by Modesto Orozco of the Spanish Institute for Research in Biomedicine is investigating the evolutionary path of the virus from bats to humans, forecasting human sensitivity to infection, and looking at the impact of viral mutations on infectivity.

The role of glycans in the spike protein

Graphical representation of the SARS-CoV-2 virus surface

Glycan shields allow viruses to hide from their host’s immune system. In SARS-CoV-2, however, it seems that they may also play a critical role in gaining access to the cell, without which the virus would be rendered harmless. Elisa Fadda of Maynooth University has been using molecular dynamics simulations to examine these complex carbohydrates in more detail.

Understanding the structure and dynamics of the spike protein

Model of the SARS-CoV-2 spike protein

The spike protein of SARS-CoV-2 has been the focus of a huge collective effort in computational research to fight the COVID-19 pandemic. It is crucial to the virus’s function, and also represents the best target for treating the disease. Gerhard Hummer of the Max Planck Institute of Biophysics has been leading a project that aims to elucidate the structure and dynamics of this infamous protein.